Kaneko, Y; Kimura, T; Nishiyama, H; Noda, Y; Fujita, J
1997-04-07
Apg-1 encodes a heat shock protein belonging to the heat shock protein 110 family, and is inducible by a 32 degrees C to 39 degrees C heat shock. Northern blot analysis of the testis from immature and adult mice, and of the purified germ cells revealed the quantitative change of the apg-1 transcripts during germ cell development. By in situ hybridization histochemistry the expressions of the apg-1 transcripts were detected in germ cells at specific stages of development including spermatocytes and spermatids. Although heat-induction of the apg-1 transcripts was observed in W/Wv mutant testis lacking germ cells, it was not detected in wild-type testis nor in the purified germ cells. Thus, the apg-1 expression is not heat-regulated but developmentally regulated in germ cells, suggesting that APG-1 plays a role in normal development of germ cells.
Jehan, Zeenath; Vallinayagam, Sambandam; Tiwari, Shrish; Pradhan, Suman; Singh, Lalji; Suresh, Amritha; Reddy, Hemakumar M.; Ahuja, Y.R.; Jesudasan, Rachel A.
2007-01-01
The human Y chromosome, because it is enriched in repetitive DNA, has been very intractable to genetic and molecular analyses. There is no previous evidence for developmental stage- and testis-specific transcription from the male-specific region of the Y (MSY). Here, we present evidence for the first time for a developmental stage- and testis-specific transcription from MSY distal heterochromatic block. We isolated two novel RNAs, which localize to Yq12 in multiple copies, show testis-specific expression, and lack active X-homologs. Experimental evidence shows that one of the above Yq12 noncoding RNAs (ncRNAs) trans-splices with CDC2L2 mRNA from chromosome 1p36.3 locus to generate a testis-specific chimeric β sv13 isoform. This 67-nt 5′UTR provided by the Yq12 transcript contains within it a Y box protein-binding CCAAT motif, indicating translational regulation of the β sv13 isoform in testis. This is also the first report of trans-splicing between a Y chromosomal and an autosomal transcript. PMID:17095710
Zhou, Yi; Yu, Fan; Gao, Yun; Luo, Yongju; Tang, Zhanyang; Guo, Zhongbao; Guo, Enyan; Gan, Xi; Zhang, Ming; Zhang, Yaping
2014-01-01
MicroRNAs (miRNAs) are endogenous non-coding small RNAs which play important roles in the regulation of gene expression by cleaving or inhibiting the translation of target gene transcripts. Thereinto, some specific miRNAs show regulatory activities in gonad development via translational control. In order to further understand the role of miRNA-mediated posttranscriptional regulation in Nile tilapia (Oreochromis niloticus) ovary and testis, two small RNA libraries of Nile tilapia were sequenced by Solexa small RNA deep sequencing methods. A total of 9,731,431 and 8,880,497 raw reads, representing 5,407,800 and 4,396,281 unique sequences were obtained from the sexually mature ovaries and testes, respectively. After comparing the small RNA sequences with the Rfam database, 1,432,210 reads in ovaries and 984,146 reads in testes were matched to the genome sequence of Nile tilapia. Bioinformatic analysis identified 764 mature miRNA, 209 miRNA-5p and 202 miRNA-3p were found in the two libraries, of which 525 known miRNAs are both expressed in the ovary and testis of Nile tilapia. Comparison of expression profiles of the testis, miR-727, miR-129 and miR-29 families were highly expressed in tilapia ovary. Additionally, miR-132, miR-212, miR-33a and miR-135b families, showed significant higher expression in testis compared with that in ovary. Furthermore, the expression patterns of the miRNAs were analyzed in different developmental stages of gonad. The result showed different expression patterns were observed during development of testis and ovary. In addition, the identification and characterization of differentially expressed miRNAs in the ovaries and testis of Nile tilapia provides important information on the role of miRNA in the regulation of the ovarian and testicular development and function. This data will be helpful to facilitate studies on the regulation of miRNAs during teleosts reproduction. PMID:24466258
Sakai, Hiroki; Kirino, Yohei; Katsuma, Susumu; Aoki, Fugaku; Suzuki, Masataka G
2016-01-01
The gonad develops as a testis in male or an ovary in female. In the silkworm, B. mori , little is known about testis and ovary in the embryonic stages and early larval stages. In this study, we performed morphological and histomorphological observations of ovaries and testes from the late embryonic stage to the 1st instar larval stage. Results obtained with lack of accurate information on sex of examined individuals may be misleading, thus we performed phenotypic observations of gonads by utilizing sex-limited strain that enables us to easily discriminate female embryos from male ones based on those egg colors. In testis, four testicular follicles were clearly observed in the testis at the first instar larval stage, and boundary layers were formed between the testicular follicles. At the late embryonic stage, the testis consisted of four testicular follicles, while the boundary layers were still obscure. In ovary, four ovarioles were easily recognizable in the ovary at the first instar larval stage, and boundary layers were formed between the ovarioles. However, in the late embryonic stage, it was quite difficult to identify four ovarioles. Morphological characteristics were almost similar between testis and ovary in early developmental stages. Our present study demonstrates that the most reliable difference between testis and ovary in early developmental stages is the attaching point of the duct. Formation and development of the duct may be sensitive to the sex-determining signal and display sexual dimorphism in early embryonic stages.
Anastasiadou, M; Michailidis, G
2016-08-01
Infection of rooster testis and epididymis by pathogens can lead to impaired fertility, resulting in economic losses in the poultry industry. Antimicrobial protection of rooster reproductive organs is, therefore, an important aspect of reproductive physiology. Salmonellosis is one of the most important zoonotic diseases, caused by Salmonella bacteria including Salmonella Enteritidis (SE) and is usually the result of infection of the reproductive organs. Thus, knowledge of the endogenous innate immune mechanisms of the rooster testis and epididymis is an emerging aspect of reproductive physiology. Cytokines are key factors for stimulating the immune response and inflammation in chickens to Salmonella infection. In the present study the expression profile of 11 pro-inflammatory cytokine genes in the rooster testis and epididymis in vivo and transcriptional changes in these organs during sexual maturation and SE infection were investigated. Gene expression analysis data revealed that in both testis and epididymis nine cytokines namely the IL-1β, IL-6, IL-8, IL-10, IL-12, IL-15, IL-16, IL-17 and IL-18 genes were expressed, while no mRNA transcripts were detected in both organs for IL-2 and IL-4. Furthermore, the expression of various cytokine genes during sexual maturation appeared to be developmentally regulated, while SE infection resulted in a significant up-regulation of IL-1β, -6, -12 and -18 genes in the testis and an increase in the mRNA relative abundance of IL-1β, -6, -12, -16 and -18 in the epididymis of SE-infected sexually mature 28-week-old roosters. These results suggest a cytokine-mediated immune response mechanism against Salmonella infection in the rooster reproductive tract. Copyright © 2016 Elsevier B.V. All rights reserved.
Han, Kyuyong; Song, Haengseok; Moon, Irene; Augustin, Robert; Moley, Kelle; Rogers, Melissa; Lim, Hyunjung
2007-03-01
Various nuclear receptors form dimers to activate target genes via specific response elements located within promoters or enhancers. Retinoid X receptor (RXR) serves as a dimerization partner for many nuclear receptors including retinoic acid receptor (RAR) and peroxisome proliferator-activated receptor (PPAR). Dimers show differential preference towards directly repeated response elements with 1-5 nucleotide spacing, and direct repeat 1 (DR1) is a promiscuous element which recruits RAR/RXR, RXR/RXR, and PPAR/RXR in vitro. In the present investigation, we report identification of a novel RAR/RXR target gene which is regulated by DR1s in the promoter region. This gene, namely spermatocyte-specific marker (Ssm), recruits all the three combinations of nuclear receptors in vitro, but in vivo regulation is observed by trans-retinoic acid-activated RAR/RXR dimer. Indeed, chromatin immunoprecipitation experiment demonstrates binding of RARbeta and RXRalpha in the promoter region of the Ssm. Interestingly, expression of Ssm is almost exclusively observed in spermatocytes in the adult mouse testis, where RA signaling is known to regulate developmental program of male germ cells. The results show that Ssm is a RAR/RXR target gene uniquely using DR1 and exhibits stage-specific expression in the mouse testis with potential function in later stages of spermatogenesis. This finding exemplifies usage of DR1s as retinoic acid response element (RARE) under a specific in vivo context.
Sry and SoxE genes: How they participate in mammalian sex determination and gonadal development?
She, Zhen-Yu; Yang, Wan-Xi
2017-03-01
In mammals, sex determination defines the differentiation of the bipotential genital ridge into either testes or ovaries. Sry, the mammalian Y-chromosomal testis-determining gene, is a master regulator of male sex determination. It acts to switch the undifferentiated genital ridge towards testis development, triggering the adoption of a male fate. Sry initiates a cascade of gene networks through the direct regulation of Sox9 expression and promotes supporting cell differentiation, Leydig cell specification, vasculature formation and testis cord development. In the absence of Sry, alternative genetic cascades, including female sex-determining genes RSPO1, Wnt4/β-catenin and Foxl2, are involved in the formation of female genitalia and the maintenance of female ovarian development. The mutual antagonisms between male and female sex-determining pathways are crucial in not just the initiation but also the maintenance of the somatic sex of the gonad throughout the organism's lifetime. Any imbalances in above sex-determining genes can cause disorders of sex development in humans and mice. In this review, we provide a detailed summary of the expression profiles, biochemical properties and developmental functions of Sry and SoxE genes in embryonic testis development and adult gonadal development. We also briefly summarize the dedicate balances between male and female sex-determining genes in mammalian sex development, with particular highlights on the molecular actions of Sry and Sox9 transcription factors. Copyright © 2016 Elsevier Ltd. All rights reserved.
van Lith, Marcel; Karala, Anna-Riikka; Bown, Dave; Gatehouse, John A.; Ruddock, Lloyd W.; Saunders, Philippa T.K.
2007-01-01
Glycoprotein folding is mediated by lectin-like chaperones and protein disulfide isomerases (PDIs) in the endoplasmic reticulum. Calnexin and the PDI homologue ERp57 work together to help fold nascent polypeptides with glycans located toward the N-terminus of a protein, whereas PDI and BiP may engage proteins that lack glycans or have sugars toward the C-terminus. In this study, we show that the PDI homologue PDILT is expressed exclusively in postmeiotic male germ cells, in contrast to the ubiquitous expression of many other PDI family members in the testis. PDILT is induced during puberty and represents the first example of a PDI family member under developmental control. We find that PDILT is not active as an oxido-reductase, but interacts with the model peptide Δ-somatostatin and nonnative bovine pancreatic trypsin inhibitor in vitro, indicative of chaperone activity. In vivo, PDILT forms a tissue-specific chaperone complex with the calnexin homologue calmegin. The identification of a redox-inactive chaperone partnership defines a new system of testis-specific protein folding with implications for male fertility. PMID:17507649
NASA Astrophysics Data System (ADS)
Feng, Junrong; Liu, Liming; Jiang, Haibin; Wang, Maojian; Du, Rongbin
2014-10-01
Black rockfish ( Sebastes schlegeli) is an important species for culture; however, its reproductive characteristics have not been fully documented. In this study, we investigated the morphology and developmental process of germ cells in this ovoviviparous rockfish in reproductive season (October 2011-November 2012) with histological methods. We found that the gonad of mature fish showed notable seasonal changes in developmental characteristics and morphological structure. The sperm cells matured during a period lasting from October to December, significantly earlier than the oocytes did. A large number of spermatozoa and other cells occurred in testis at different developmental stages. Vitellogenesis in oocytes began in October, and gestation appeared in April next year. Spermatophores were discovered for the first time in Sebastes, which assembled in testis, main sperm duct, oviduct and genital tract, as well as ovarian cavity in October and April. These organs may serve either as production or hiding places for spermatophores and spermatozoa which were stored and transported in form of spermatophores. Testicular degeneration started from the distal part of testis in April, with spermatophores assembled in degenerating testis and waiting for transportation. The copulation probably lasted for a long period, during which the spermatozoa were discharged in batches as spermatophores. These spermatophores were coated with sticky materials secreted from the interstitial areas of testis and the main sperm duct, then transported into ovary.
Fukuda, Nanaho; Yomogida, Kentaro; Okabe, Masaru; Touhara, Kazushige
2004-11-15
Although a subset of the olfactory receptor (OR) gene family is expressed in testis, neither their developmental profile nor their physiological functions have been fully characterized. Here, we show that MOR23 (a mouse OR expressed in the olfactory epithelium and testis) functions as a chemosensing receptor in mouse germ cells. In situ hybridization showed that MOR23 was expressed in round spermatids during stages VI-VIII of spermatogenesis. Lyral, a cognate ligand of MOR23, caused an increase in intracellular Ca2+ in a fraction of spermatogenic cells and spermatozoa. We also generated transgenic mice that express high levels of MOR23 in the testis and examined the response of their germ cells to lyral. The results provided evidence that lyral-induced Ca2+ increases were indeed mediated by MOR23. In a sperm accumulation assay, spermatozoa migrated towards an increasing gradient of lyral. Tracking and sperm flagellar analyses suggest that Ca2+ increases caused by MOR23 activation lead to modulation of flagellar configuration, resulting in chemotaxis. By contrast, a gradient of a cAMP analog or K8.6 solution, which elicit Ca2+ influx in spermatozoa, did not cause sperm accumulation, indicating that chemosensing and regulation of sperm motility was due to an OR-mediated local Ca2+ increase. The present studies indicate that mouse testicular ORs might play a role in chemoreception during sperm-egg communication and thereby regulate fertilization.
Sasson, Daniel A; Munoz, Patricio R; Gezan, Salvador A; Miller, Christine W
2016-04-01
The size of weapons and testes can be central to male reproductive success. Yet, the expression of these traits is often extremely variable. Studies are needed that take a more complete organism perspective, investigating the sources of variation in both traits simultaneously and using developmental conditions that mimic those in nature. In this study, we investigated the components of variation in weapon and testis sizes using the leaf-footed cactus bug, Narnia femorata (Hemiptera: Coreidae) on three natural developmental diets. We show that the developmental diet has profound effects on both weapon and testis expression and scaling. Intriguingly, males in the medium-quality diet express large weapons but have relatively tiny testes, suggesting complex allocation decisions. We also find that heritability, evolvability, and additive genetic variation are highest in the high-quality diet for testis and body mass. This result suggests that these traits may have an enhanced ability to respond to selection during a small window of time each year when this diet is available. Taken together, these results illustrate that normal, seasonal fluctuations in the nutritional environment may play a large role in the expression of sexually selected traits and the ability of these traits to respond to selection.
Enriched expression of the ciliopathy gene Ick in cell proliferating regions of adult mice.
Tsutsumi, Ryotaro; Chaya, Taro; Furukawa, Takahisa
2018-04-07
Cilia are essential for sensory and motile functions across species. In humans, ciliary dysfunction causes "ciliopathies", which show severe developmental abnormalities in various tissues. Several missense mutations in intestinal cell kinase (ICK) gene lead to endocrine-cerebro-osteodysplasia syndrome or short rib-polydactyly syndrome, lethal recessive developmental ciliopathies. We and others previously reported that Ick-deficient mice exhibit neonatal lethality with developmental defects. Mechanistically, Ick regulates intraflagellar transport and cilia length at ciliary tips. Although Ick plays important roles during mammalian development, roles of Ick at the adult stage are poorly understood. In the current study, we investigated the Ick gene expression in adult mouse tissues. RT-PCR analysis showed that Ick is ubiquitously expressed, with enrichment in the retina, brain, lung, intestine, and reproductive system. In the adult brain, we found that Ick expression is enriched in the walls of the lateral ventricle, in the rostral migratory stream of the olfactory bulb, and in the subgranular zone of the hippocampal dentate gyrus by in situ hybridization analysis. We also observed that Ick staining pattern is similar to pachytene spermatocyte to spermatid markers in the mature testis and to an intestinal stem cell marker in the adult small intestine. These results suggest that Ick is expressed in proliferating regions in the adult mouse brain, testis, and intestine. Copyright © 2018 Elsevier B.V. All rights reserved.
Wen, Qing; Wang, Yuqian; Tang, Jixin; Cheng, C Yan; Liu, Yi-Xun
2016-01-01
Sertoli cells play a significant role in regulating fetal testis compartmentalization to generate testis cords and interstitium during development. The Sertoli cell Wilms' tumor 1 (Wt1) gene, which encodes ~24 zinc finger-containing transcription factors, is known to play a crucial role in fetal testis cord assembly and maintenance. However, whether Wt1 regulates fetal testis compartmentalization by modulating the development of peritubular myoid cells (PMCs) and/or fetal Leydig cells (FLCs) remains unknown. Using a Wt1-/flox; Amh-Cre mouse model by deleting Wt1 in Sertoli cells (Wt1SC-cKO) at embryonic day 14.5 (E14.5), Wt1 was found to regulate PMC and FLC development. Wt1 deletion in fetal testis Sertoli cells caused aberrant differentiation and proliferation of PMCs, FLCs and interstitial progenitor cells from embryo to newborn, leading to abnormal fetal testis interstitial development. Specifically, the expression of PMC marker genes α-Sma, Myh11 and Des, and interstitial progenitor cell marker gene Vcam1 were down-regulated, whereas FLC marker genes StAR, Cyp11a1, Cyp17a1 and Hsd3b1 were up-regulated, in neonatal Wt1SC-cKO testes. The ratio of PMC:FLC were also reduced in Wt1SC-cKO testes, concomitant with a down-regulation of Notch signaling molecules Jag 1, Notch 2, Notch 3, and Hes1 in neonatal Wt1SC-cKO testes, illustrating changes in the differentiation status of FLC from their interstitial progenitor cells during fetal testis development. In summary, Wt1 regulates the development of FLC and interstitial progenitor cell lineages through Notch signaling, and it also plays a role in PMC development. Collectively, these effects confer fetal testis compartmentalization.
Lin, Bin-Le; Hagino, Satoshi; Kagoshima, Michio; Iwamatsu, Takashi
2009-02-01
A new quantitative evaluation technique, termed the fragmented testis method, has been developed for the detection of testis-ova in genotypic male fish using the medaka (Oryzias latipes). The routine traditional histological method for detection of testis-ova in male fish exposed to estrogens or suspected endocrine-disrupting chemicals has several disadvantages, including possible oversight of testis-ova due to limited sampling of selected tissue sections. The method we have developed here allows for the accurate determination of the developmental stages and the number and the size of testis-ova in a whole testis. Each testis was removed from the fish specimen, fixed with 10% buffered formalin solution, and then divided into small fragments on a glass slide with a dissecting needle or scalpel and aciform forceps in glycerin solution containing a small amount of methylene blue or toluidine blue. If present, all developing testis-ova of various sizes in fragmented testicular tissues were clearly stained and were observable under a dissecting microscope. Testis-ova occurred in controls were ascertained, while spermatozoa were also distinguishable using this method. This proved to be a convenient and cost-effective method for quantitatively evaluating testis-ova appearance in fish, and it may help to clarify the mechanism of testis-ova formation and the biological significance of testis-ova in future studies of endocrine disruption.
Miller, David W; Harrison, Joanne L; Brown, Yvonne A; Doyle, Una; Lindsay, Alanna; Adam, Clare L; Lea, Richard G
2005-01-01
Background The gut hormone, ghrelin, is involved in the neuroendocrine and metabolic responses to hunger. In monogastric species, circulating ghrelin levels show clear meal-related and body weight-related changes. The pattern of secretion and its role in ruminant species is less clear. Ghrelin acts via growth hormone secretagogue receptors (GHSR-1a) to alter food intake, fat utilization, and cellular proliferation. There is also evidence that ghrelin is involved in reproductive function. In the present study we used immunohistochemistry to investigate the presence of ghrelin and GHSR-1a in sheep reproductive tissues. In addition, we examined whether ghrelin and GHSR-1a protein expression is developmentally regulated in the adult and fetal ovine testis, and whether there is an association with markers of cellular proliferation, i.e. stem cell factor (SCF) and proliferating cell nuclear antigen (PCNA). Methods Antibodies raised against ghrelin and its functional receptor, GHSR-type 1a, were used in standard immunohistochemical protocols on various reproductive tissues collected from adult and fetal sheep. GHSR-1a mRNA presence was also confirmed by in situ hybridisation. SCF and PCNA immunoexpression was investigated in fetal testicular samples. Adult and fetal testicular immunostaining for ghrelin, GHSR-1a, SCF and PCNA was analysed using computer-aided image analysis. Image analysis data were subjected to one-way ANOVA, with differences in immunostaining between time-points determined by Fisher's least significant difference. Results In adult sheep tissue, ghrelin and GHSR-1a immunostaining was detected in the stomach (abomasum), anterior pituitary gland, testis, ovary, and hypothalamic and hindbrain regions of the brain. In the adult testis, there was a significant effect of season (photoperiod) on the level of immunostaining for ghrelin (p < 0.01) and GHSR-1a (p < 0.05). In the fetal sheep testis, there was a significant effect of gestational age on the level of immunostaining for ghrelin (p < 0.001), GHSR-1a (p < 0.05), SCF (p < 0.05) and PCNA (p < 0.01). Conclusion Evidence is presented for the presence of ghrelin and its receptor in various reproductive tissues of the adult and fetal sheep. In addition, the data indicate that testicular expression of ghrelin and its receptor is physiologically regulated in the adult and developmentally regulated in the fetus. Therefore, the ghrelin ligand/receptor system may have a role (endocrine and/or paracrine) in the development (cellular proliferation) and function of the reproductive axis of the sheep. PMID:16259638
Stage-specific expression of DDX4 and c-kit at different developmental stages of the porcine testis.
Lee, Ran; Lee, Won-Young; Park, Hyun-Jung; Ha, Woo-Tae; Woo, Jae-Seok; Chung, Hak-Jae; Lee, Ji-Heon; Hong, Kwonho; Song, Hyuk
2018-03-01
Spermatogenesis begins with spermatogonial stem cells (SSCs), which are located in the basement membrane of the adult testes. Previous studies have described specific biomarkers for undifferentiated porcine spermatogonia or SSCs; however, these markers are not sufficient to understand spermatogenesis at different developmental stages. The objective of this study was characterize the expression of DEAD-Box polypeptide 4 (DDX4, also known as VASA) and tyrosine-protein kinase kit (c-kit), as potential markers of male germ cells in the porcine testis. In porcine testis tissue at prepubertal stages (5, 30, and 60 days), DDX4 and c-kit protein expression was detected in the most undifferentiated spermatogonia, which also express protein gene product 9.5 (PGP9.5). However, in porcine testis tissues from pubertal and postpubertal stages (90, 120, and 150 days), DDX4 and c-kit were not detected in PGP9.5-positive undifferentiated spermatogonia. The DDX4 expression pattern was similar to that of c-kit in the porcine testis. In adult porcine testes, DDX4-expressing cells were located on the lumenal side, compared to synaptonemal complex protein 3-positive primary spermatocytes, but DDX-4 was not co-expressed with acrosin, a known acrosome marker. In addition, DDX4 was detected in PGP9.5-expressing porcine SSCs in culture. Based on our results, we suggest that DDX4 and c-kit are putative markers of undifferentiated spermatogonia in the prepubertal porcine testis. While in the postpubertal porcine testis, they are markers of differentiated spermatocytes. These findings may facilitate future studies of porcine spermatogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.
Expression of Apg-1, a member of the Hsp110 family, in the human testis and sperm.
Nonoguchi, K; Tokuchi, H; Okuno, H; Watanabe, H; Egawa, H; Saito, K; Ogawa, O; Fujita, J
2001-06-01
Apg-1 encodes a heat shock protein belonging to the Hsp110 family and is inducible by a 32 degrees C to 39 degrees C heat shock in somatic cells. In mouse testicular germ cells Apg-1 mRNA is constitutively expressed depending on the developmental stage. As human Apg-1 has recently been identified, the expression of Apg-1 in the human testis and sperm was investigated. Expression and heat-inducibility of Apg-1 in the human testicular germ cell tumor cell line, NEC8, was analyzed. Using an antimouse Apg-1 antibody, expression of Apg-1 in the human testis and sperm was examined by western blotting after confirmation of the specificity of the antibody. The cells expressing Apg-1 in the testis were further determined by immunohistochemistry. Slight induction of Apg-1 mRNA was detected in NEC8 cells after 32 degrees C to 39 degrees C temperature shift. In the human testis, the antibody specifically recognized Apg-1, which was absent in the testis without germ cells (Sertoli-cell-only syndrome) or arrested at spermatogonia. Spermatocytes and spermatids, but not testicular somatic cells, were positively stained with the anti-Apg-1 antibody. By western blot analysis, Apg-1 was detected in the preparation enriched for sperm from normal volunteers and infertile patients, but not from azoospermia patients. Apg-1 is developmentally expressed in human testicular germ cells and sperm, suggesting its role in spermatogenesis and fertilization. Identification of substrates for Apg-1 chaperone activity will help elucidate its function.
Comparative Analyses of H3K4 and H3K27 Trimethylations Between the Mouse Cerebrum and Testis
Cui, Peng; Liu, Wanfei; Zhao, Yuhui; Lin, Qiang; Zhang, Daoyong; Ding, Feng; Xin, Chengqi; Zhang, Zhang; Song, Shuhui; Sun, Fanglin; Yu, Jun; Hu, Songnian
2012-01-01
The global features of H3K4 and H3K27 trimethylations (H3K4me3 and H3K27me3) have been well studied in recent years, but most of these studies were performed in mammalian cell lines. In this work, we generated the genome-wide maps of H3K4me3 and H3K27me3 of mouse cerebrum and testis using ChIP-seq and their high-coverage transcriptomes using ribominus RNA-seq with SOLiD technology. We examined the global patterns of H3K4me3 and H3K27me3 in both tissues and found that modifications are closely-associated with tissue-specific expression, function and development. Moreover, we revealed that H3K4me3 and H3K27me3 rarely occur in silent genes, which contradicts the findings in previous studies. Finally, we observed that bivalent domains, with both H3K4me3 and H3K27me3, existed ubiquitously in both tissues and demonstrated an invariable preference for the regulation of developmentally-related genes. However, the bivalent domains tend towards a “winner-takes-all” approach to regulate the expression of associated genes. We also verified the above results in mouse ES cells. As expected, the results in ES cells are consistent with those in cerebrum and testis. In conclusion, we present two very important findings. One is that H3K4me3 and H3K27me3 rarely occur in silent genes. The other is that bivalent domains may adopt a “winner-takes-all” principle to regulate gene expression. PMID:22768982
Mutation of Gonadal soma-derived factor induces medaka XY gonads to undergo ovarian development.
Imai, Takuto; Saino, Kentaro; Matsuda, Masaru
2015-11-06
Gonochoristic species have a bipotential gonad that develops into a testis or an ovary. In species whose sex is determined by a genetic factor, the expression of a sex-determining gene is the first cue that directs the development of a bipotential gonad. Subsequent expression of downstream genes induces the gonad to develop into a testis or an ovary. The TGF-ß family member Gonadal soma-derived factor (Gsdf) is thought to be an important gene for gonadal development in teleost fish, and it is expressed at higher levels in the testis than in the ovary from early to mature stages. However, there is little functional information about the gene. In this study, we targeted the Gsdf coding region in the medaka fish Oryzias latipes using transcription activator-like effector nucleases (TALENs) and studied the phenotypes of the Gsdf mutant medaka. Although normal and heterozygous XY gonads developed into a testis, all XY gonads with a homozygous mutation in Gsdf developed into an ovary at early developmental stages. However, two-thirds of Gsdf mutant XY gonads developed into testes in the adult stages. These results demonstrate that although a gonad can develop into a complete testis in the absence of Gsdf, Gsdf function is critical for directing the bipotential gonad at early developmental stages. Therefore, Gsdf is an endogenous inducer of testicular development similar to a master sex-determining gene. Copyright © 2015 Elsevier Inc. All rights reserved.
Jelinic, Petar; Stehle, Jean-Christophe; Shaw, Phillip
2006-10-01
Expression of imprinted genes is restricted to a single parental allele as a result of epigenetic regulation-DNA methylation and histone modifications. Igf2/H19 is a reciprocally imprinted locus exhibiting paternal Igf2 and maternal H19 expression. Their expression is regulated by a paternally methylated imprinting control region (ICR) located between the two genes. Although the de novo DNA methyltransferases have been shown to be necessary for the establishment of ICR methylation, the mechanism by which they are targeted to the region remains unknown. We demonstrate that CTCFL/BORIS, a paralog of CTCF, is an ICR-binding protein expressed during embryonic male germ cell development, coinciding with the timing of ICR methylation. PRMT7, a protein arginine methyltransferase with which CTCFL interacts, is also expressed during embryonic testis development. Symmetrical dimethyl arginine 3 of histone H4, a modification catalyzed by PRMT7, accumulates in germ cells during this developmental period. This modified histone is also found enriched in both H19 ICR and Gtl2 differentially methylated region (DMR) chromatin of testis by chromatin immunoprecipitation (ChIP) analysis. In vitro studies demonstrate that CTCFL stimulates the histone-methyltransferase activity of PRMT7 via interactions with both histones and PRMT7. Finally, H19 ICR methylation is demonstrated by nuclear co-injection of expression vectors encoding CTCFL, PRMT7, and the de novo DNA methyltransferases, Dnmt3a, -b and -L, in Xenopus oocytes. These results suggest that CTCFL and PRMT7 may play a role in male germline imprinted gene methylation.
Sex-biased miRNAs in gonad and their potential roles for testis development in yellow catfish.
Jing, Jing; Wu, Junjie; Liu, Wei; Xiong, Shuting; Ma, Wenge; Zhang, Jin; Wang, Weimin; Gui, Jian-Fang; Mei, Jie
2014-01-01
Recently, YY super-male yellow catfish had been created by hormonal-induced sex reversal and sex-linked markers, which provides a promising research model for fish sex differentiation and gonad development, especially for testis development. MicroRNAs (miRNAs) have been revealed to play crucial roles in the gene regulation and gonad development in vertebrates. In this study, three small RNA libraries constructed from gonad tissues of XX female, XY male and YY super-male yellow catfish were sequenced. The sequencing data generated a total of 384 conserved miRNAs and 113 potential novel miRNAs, among which 23, 30 and 14 miRNAs were specifically detected in XX ovary, XY testis, and YY testis, respectively. We observed relative lower expression of several miR-200 family members, including miR-141 and miR-429 in YY testis compared with XY testis. Histological analysis indicated a higher degree of testis maturity in YY super-males compared with XY males, as shown by larger spermatogenic cyst, more spermatids and fewer spermatocytes in the spermatogenic cyst. Moreover, five miR-200 family members were significantly up-regulated in testis when treated by 17α-ethinylestradiol (EE2), high dose of which will impair testis development and cell proliferation. The down-regulation of miR-141 and 429 coincides with the progression of testis development in both yellow catfish and human. At last, the expression pattern of nine arbitrarily selected miRNAs detected by quantitative RT-PCR was consistent with the Solexa sequencing results. Our study provides a comprehensive miRNA transcriptome analysis for gonad of yellow catfish with different sex genotypes, and identifies a number of sex-biased miRNAs, some of that are potentially involved in testis development and spermatogenesis.
NASA Technical Reports Server (NTRS)
Chapman, D. L.; Wolgemuth, D. J.
1992-01-01
To begin to examine the function of cyclins in mammalian germ cells, we have screened an adult mouse testis cDNA library for the presence of B-type cyclins. We have isolated cDNAs that encode a murine B-type cyclin, which has been designated cycB1. cycB1 was shown to be expressed in several adult tissues and in the midgestation mouse embryo. In the adult tissues, the highest levels of cycB1 transcripts were seen in the testis and ovary, which contain germ cells at various stages of differentiation. The major transcripts corresponding to cycB1 are 1.7 and 2.5 kb, with the 1.7 kb species being the predominant testicular transcript and the 2.5 kb species more abundant in the ovary. Examination of cDNAs corresponding to the 2.5 kb and 1.7 kb mRNAs revealed that these transcripts encode identical proteins, differing only in the polyadenylation signal used and therefore in the length of their 3' untranslated regions. Northern blot and in situ hybridization analyses revealed that the predominant sites of cycB1 expression in the testis and ovary were in the germinal compartment, particularly in early round spermatids in the testis and growing oocytes in the ovary. Thus cycB1 is expressed in both meiotic and postmeiotic cells. This pattern of cycB1 expression further suggests that cycB1 may have different functions in the two cell types, only one of which correlates with progression of the cell cycle.
Fu, Jun; Luo, Bin; Guo, Wen-Wen; Zhang, Qing-Mei; Shi, Lei; Hu, Qi-Ping; Chen, Fang; Xiao, Shao-Wen; Xie, Xiao-Xun
2015-01-01
Cancer/testis (CT) antigens are normally expressed in testis and overexpressed in various tumor types. However, their biological function is largely unknown. OY-TES-1, one of cancer/testis (CT) antigens, is reported overexpression in hepatocellular carcinoma (HCC). And we assumed that OY-TES-1 contribute to oncogenesis and progression of HCC. In this study, we knocked down OY-TES-1 by small interference RNA (siRNA) in HCC cell lines (HepG2 and BEL-7404) to verify this assumption and evaluate its potential as therapeutic targets for HCC. We showed that down regulation of OY-TES-1 decreased cell growth, induced the G0/G1 arrest and apoptosis, and prevented migration and invasion in the two HCC cell lines. Further analysis revealed that down regulation of OY-TES-1 increased expression of apoptosis-regulated protein caspase-3, and decreased expression of cell cycle-regulated protein cyclin E, migration/invasion-regulated proteins MMP2 and MMP9. These findings may shed light on the gene therapy about the OY-TES-1 expression in HCC cells.
Fu, Jun; Luo, Bin; Guo, Wen-Wen; Zhang, Qing-Mei; Shi, Lei; Hu, Qi-Ping; Chen, Fang; Xiao, Shao-Wen; Xie, Xiao-Xun
2015-01-01
Cancer/testis (CT) antigens are normally expressed in testis and overexpressed in various tumor types. However, their biological function is largely unknown. OY-TES-1, one of cancer/testis (CT) antigens, is reported overexpression in hepatocellular carcinoma (HCC). And we assumed that OY-TES-1 contribute to oncogenesis and progression of HCC. In this study, we knocked down OY-TES-1 by small interference RNA (siRNA) in HCC cell lines (HepG2 and BEL-7404) to verify this assumption and evaluate its potential as therapeutic targets for HCC. We showed that down regulation of OY-TES-1 decreased cell growth, induced the G0/G1 arrest and apoptosis, and prevented migration and invasion in the two HCC cell lines. Further analysis revealed that down regulation of OY-TES-1 increased expression of apoptosis-regulated protein caspase-3, and decreased expression of cell cycle-regulated protein cyclin E, migration/invasion-regulated proteins MMP2 and MMP9. These findings may shed light on the gene therapy about the OY-TES-1 expression in HCC cells. PMID:26339343
The roles of TAM receptor tyrosine kinases in the mammalian testis and immunoprivileged sites.
Deng, Tingting; Chen, Qiaoyuan; Han, Daishu
2016-01-01
Three members of a receptor tyrosine kinase family, including Tyro3, Axl, and Mer, are collectively called as TAM receptors. TAM receptors have two common ligands, namely, growth arrest specific gene 6 (Gas6) and protein S (ProS). The TAM-Gas6/ProS system is essential for phagocytic removal of apoptotic cells, and plays critical roles in regulating immune response. Genetic studies have shown that TAM receptors are essential regulators of the tissue homeostasis in immunoprivileged sites, including the testis, retina and brain. The mechanisms by which the TAM-Gas6/ProS system regulates the tissue homeostasis in immunoprivileged sites are emerging. The roles of the TAM-Gas6/ProS system in regulating the immune privilege were intensively investigated in the mouse testis, and several studies were performed in the eye and brain. This review summarizes our current understanding of TAM signaling in the testis and other immunoprivileged tissues, as well as highlights topics that are worthy of further investigation.
Yan, Hongwei; Cui, Xin; Shen, Xufang; Wang, Lianshun; Jiang, Linan; Liu, Haiying; Liu, Ying; Liu, Qi; Jiang, Chen
2018-06-01
The mantis shrimp Oratosquilla oratoria is a widely distributed, commercially important crustacean species. Although its conservation and the development of successful artificial breeding technologies have recently received considerable attention, there are currently no available data regarding the molecular mechanisms in controlling reproduction. In this study, we performed transcriptome sequencing of the testis, ovary, female and male eyestalks and the androgenic gland of O. oratoria, and compared the expression pattern of transcripts from the testis and ovary libraries to identify genes involved in gonadal development. A total of 147,130,937 clean reads were retrieved after removing the adapters in reads and filtering out low-quality data. All the reads were assembled into 94,990 unigenes (23,133 in testis and ovary) with an average length of 783 base pairs (bp) and N50 of 1502 bp. A search of all-unigenes against COG, GO, KEGG, KOG, Pfam, Swiss-Prot and Nr databases resulted in a total of 19,404 annotated unigenes. Comparison of the sequences in the ovary and testis libraries revealed that 1188 unigenes were up-regulated in the ovary and 2732 were up-regulated in the testis. Twenty ovary-up-regulated and 21 testis-up-regulated unigenes were confirmed by quantitative real-time PCR. Additionally, 13,437 simple sequence repeats (SSRs) and 275,799 putative single nucleotide polymorphisms (SNPs) were identified. The important functional genes and pathways identified here provide a valuable dataset for understanding the molecular mechanisms controlling gonad development in O. oratoria, and the numerous (13,437 SSRs and 275,799 SNPs) molecular markers obtained here will provide fundamental basis for functional genomic and population genetic studies of O. oratoria. Copyright © 2018 Elsevier Inc. All rights reserved.
Yao, Humphrey Hung-Chang; Capel, Blanche
2014-01-01
Most studies to date indicate that the formation of testis cords is critical for proper Sertoli cell differentiation, inhibition of germ cell meiosis, and regulation of Leydig cell differentiation. However, the connections between these events are poorly understood. The objective of this study was to dissect the molecular and cellular relationships between these events in testis formation. We took advantage of the different effects of two hedgehog signaling inhibitors, cyclopamine and forskolin, on gonad explant cultures. Both hedgehog inhibitors phenocopied the disruptive effect of Dhh−/− on formation of testis cords without influencing Sertoli cell differentiation. However, they exhibited different effects on other cellular events during testis development. Treatment with cyclopamine did not affect inhibition of germ cell meiosis and mesonephric cell migration but caused defects in Leydig cell differentiation. In contrast, forskolin treatment induced germ cell meiosis, inhibited mesonephric cell migration, and had no effect on Leydig cell differentiation. By carefully contrasting the different effects of these two hedgehog inhibitors, we demonstrate that although formation of testis cords and development of other cell types normally take place in a tightly regulated sequence, each of these events can occur independent of the others. PMID:12051821
Su, Wenhui; Mruk, Dolores D.; Lie, Pearl P. Y.; Lui, Wing-yee
2012-01-01
The blood-testis barrier (BTB) is an important ultrastructure in the testis. A delay in its assembly during postnatal development leads to meiotic arrest. Also, a disruption of the BTB by toxicants in adult rats leads to a failure in spermatogonial differentiation. However, the regulation of BTB assembly remains unknown. Herein, filamin A, an actin filament cross-linker that is known to maintain and regulate cytoskeleton structure and function in other epithelia, was shown to be highly expressed during the assembly of Sertoli cell BTB in vitro and postnatal development of BTB in vivo, perhaps being used to maintain the actin filament network at the BTB. A knockdown of filamin A by RNA interference was found to partially perturb the Sertoli cell tight junction (TJ) permeability barrier both in vitro and in vivo. Interestingly, this down-regulating effect on the TJ barrier function after the knockdown of filamin A was associated with a mis-localization of both TJ and basal ectoplasmic specialization proteins. Filamin A knockdown also induced a disorganization of the actin filament network in Sertoli cells in vitro and in vivo. Collectively, these findings illustrate that filamin A regulates BTB assembly by recruiting these proteins to the microenvironment in the seminiferous epithelium to serve as the building blocks. In short, filamin A participates in BTB assembly by regulating protein recruitment during postnatal development in the rat testis. PMID:22872576
Function and regulation of heat shock factor 2 during mouse embryogenesis
Rallu, M.; Loones, Mt.; Lallemand, Y.; Morimoto, R.; Morange, M.; Mezger, V.
1997-01-01
The spontaneous expression of heat shock genes during development is well documented in many animal species, but the mechanisms responsible for this developmental regulation are only poorly understood. In vertebrates, additional heat shock transcription factors, distinct from the heat shock factor 1 (HSF1) involved in the stress response, were suggested to be involved in this developmental control. In particular, the mouse HSF2 has been found to be active in testis and during preimplantation development. However, the role of HSF2 and its mechanism of activation have remained elusive due to the paucity of data on its expression during development. In this study, we have examined HSF2 expression during the postimplantation phase of mouse development. Our data show a developmental regulation of HSF2, which is expressed at least until 15.5 days of embryogenesis. It becomes restricted to the central nervous system during the second half of gestation. It is expressed in the ventricular layer of the neural tube which contains mitotically active cells but not in postmitotic neurons. Parallel results were obtained for mRNA, protein, and activity levels, demonstrating that the main level of control was transcriptional. The detailed analysis of the activity of a luciferase reporter gene under the control of the hsp70.1 promoter, as well as the description of the protein expression patterns of the major heat shock proteins in the central nervous system, show that HSF2 and heat shock protein expression domains do not coincide. This result suggests that HFS2 might be involved in other regulatory developmental pathways and paves the way to new functional approaches. PMID:9122205
Genetic regulation of mammalian gonad development.
Eggers, Stefanie; Ohnesorg, Thomas; Sinclair, Andrew
2014-11-01
Sex-specific gonadal development starts with formation of the bipotential gonad, which then differentiates into either a mature testis or an ovary. This process is dependent on activation of either the testis-specific or the ovary-specific pathway while the opposite pathway is continuously repressed. A network of transcription factors tightly regulates initiation and maintenance of these distinct pathways; disruption of these networks can lead to disorders of sex development in humans and male-to-female or female-to-male sex reversal in mice. Sry is the Y-linked master switch that is both required and sufficient to drive the testis-determining pathway. Another key component of the testis pathway is Sox9, which acts immediately downstream of Sry. In contrast to the testis pathway, no single sex-determining factor has been identified in the ovary pathway; however, multiple genes, such as Foxl2, Rspo1, Ctnnb1, and Wnt4, seem to work synergistically and in parallel to ensure proper ovary development. Our understanding of the regulatory networks that underpin testis and ovary development has grown substantially over the past two decades.
Cheng, C Yan; Mruk, Dolores D
2002-10-01
Spermatogenesis is an intriguing but complicated biological process. However, many studies since the 1960s have focused either on the hormonal events of the hypothalamus-pituitary-testicular axis or morphological events that take place in the seminiferous epithelium. Recent advances in biochemistry, cell biology, and molecular biology have shifted attention to understanding some of the key events that regulate spermatogenesis, such as germ cell apoptosis, cell cycle regulation, Sertoli-germ cell communication, and junction dynamics. In this review, we discuss the physiology and biology of junction dynamics in the testis, in particular how these events affect interactions of Sertoli and germ cells in the seminiferous epithelium behind the blood-testis barrier. We also discuss how these events regulate the opening and closing of the blood-testis barrier to permit the timely passage of preleptotene and leptotene spermatocytes across the blood-testis barrier. This is physiologically important since developing germ cells must translocate across the blood-testis barrier as well as traverse the seminiferous epithelium during their development. We also discuss several available in vitro and in vivo models that can be used to study Sertoli-germ cell anchoring junctions and Sertoli-Sertoli tight junctions. An in-depth survey in this subject has also identified several potential targets to be tackled to perturb spermatogenesis, which will likely lead to the development of novel male contraceptives.
Skaftnesmo, K O; Edvardsen, R B; Furmanek, T; Crespo, D; Andersson, E; Kleppe, L; Taranger, G L; Bogerd, J; Schulz, R W; Wargelius, A
2017-10-18
Our understanding of the molecular mechanisms implementing pubertal maturation of the testis in vertebrates is incomplete. This topic is relevant in Atlantic salmon aquaculture, since precocious male puberty negatively impacts animal welfare and growth. We hypothesize that certain miRNAs modulate mRNAs relevant for the initiation of puberty. To explore which miRNAs regulate mRNAs during initiation of puberty in salmon, we performed an integrated transcriptome analysis (miRNA and mRNA-seq) of salmon testis at three stages of development: an immature, long-term quiescent stage, a prepubertal stage just before, and a pubertal stage just after the onset of single cell proliferation activity in the testis. Differentially expressed miRNAs clustered into 5 distinct expression profiles related to the immature, prepubertal and pubertal salmon testis. Potential mRNA targets of these miRNAs were predicted with miRmap and filtered for mRNAs displaying negatively correlated expression patterns. In summary, this analysis revealed miRNAs previously known to be regulated in immature vertebrate testis (miR-101, miR-137, miR-92b, miR-18a, miR-20a), but also miRNAs first reported here as regulated in the testis (miR-new289, miR-30c, miR-724, miR-26b, miR-new271, miR-217, miR-216a, miR-135a, miR-new194 and the novel predicted n268). By KEGG enrichment analysis, progesterone signaling and cell cycle pathway genes were found regulated by these differentially expressed miRNAs. During the transition into puberty we found differential expression of miRNAs previously associated (let7a/b/c), or newly associated (miR-15c, miR-2184, miR-145 and the novel predicted n7a and b) with this stage. KEGG enrichment analysis revealed that mRNAs of the Wnt, Hedgehog and Apelin signaling pathways were potential regulated targets during the transition into puberty. Likewise, several regulated miRNAs in the pubertal stage had earlier been associated (miR-20a, miR-25, miR-181a, miR-202, let7c/d/a, miR-125b, miR-222a/b, miR-190a) or have now been found connected (miR-2188, miR-144, miR-731, miR-8157 and the novel n2) to the initiation of puberty. This study has - for the first time - linked testis maturation to specific miRNAs and their inversely correlated expressed targets in Atlantic salmon. The study indicates a broad functional conservation of already known miRNAs and associated pathways involved in the transition into puberty in vertebrates. The analysis also reveals miRNAs not previously associated with testis tissue or its maturation, which calls for further functional studies in the testis.
Schultz, R; Yan, W; Toppari, J; Völkl, A; Gustafsson, J A; Pelto-Huikko, M
1999-07-01
Peroxisome proliferator-activated receptor a (PPARalpha), a member of the steroid hormone receptor superfamily, has been linked to lipid homeostasis and tumorigenesis in tissues with high expression of receptor protein. On the other hand, the role of PPARalpha in tissues with a lower expression is not well known. Here we demonstrate the localization of PPARalpha messenger RNA (mRNA) and protein in developing and adult rat testis. Additionally, we demonstrate the expression of PPARalpha protein in adult human testis. Our experiments with Northern analysis, in situ hybridization and immunocytochemistry reveal a complex distribution of PPARalpha in tubular and interstitial cells of both adult and developing rat testis. The overall expression is rather low but may be modified by exogenous or endogenous stimuli. An up-regulation of PPARalpha mRNA could be observed after stimulation with FSH. In the developing rat testis, a clear expression of PPARalpha mRNA was present from the first days after birth. Additionally, PPARalpha mRNA and protein increased toward adulthood. In adult human testis PPARalpha immunoreactivity (IR) was present in interstitial Leydig cells and tubular cells. In the seminiferous epithelium of adult human testis the expression of PPARalpha-IR could be seen in meiotic spermatocytes, spermatids and myoid peritubular cells. The findings of our study suggest that PPARalpha may be involved in the regulation of growth and differentiation of tubular and interstitial cells in rat and human testis.
Foetal exposure to phthalates is known to adversely impact male reproductive development and function. Developmental anomalies of reproductive tract have been attributed to impaired testosterone synthesis. However, species differences in the ability to produce testosterone have...
Jelinic, Petar; Stehle, Jean-Christophe; Shaw, Phillip
2006-01-01
Expression of imprinted genes is restricted to a single parental allele as a result of epigenetic regulation—DNA methylation and histone modifications. Igf2/H19 is a reciprocally imprinted locus exhibiting paternal Igf2 and maternal H19 expression. Their expression is regulated by a paternally methylated imprinting control region (ICR) located between the two genes. Although the de novo DNA methyltransferases have been shown to be necessary for the establishment of ICR methylation, the mechanism by which they are targeted to the region remains unknown. We demonstrate that CTCFL/BORIS, a paralog of CTCF, is an ICR-binding protein expressed during embryonic male germ cell development, coinciding with the timing of ICR methylation. PRMT7, a protein arginine methyltransferase with which CTCFL interacts, is also expressed during embryonic testis development. Symmetrical dimethyl arginine 3 of histone H4, a modification catalyzed by PRMT7, accumulates in germ cells during this developmental period. This modified histone is also found enriched in both H19 ICR and Gtl2 differentially methylated region (DMR) chromatin of testis by chromatin immunoprecipitation (ChIP) analysis. In vitro studies demonstrate that CTCFL stimulates the histone-methyltransferase activity of PRMT7 via interactions with both histones and PRMT7. Finally, H19 ICR methylation is demonstrated by nuclear co-injection of expression vectors encoding CTCFL, PRMT7, and the de novo DNA methyltransferases, Dnmt3a, -b and -L, in Xenopus oocytes. These results suggest that CTCFL and PRMT7 may play a role in male germline imprinted gene methylation. PMID:17048991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelali, Ala
Diabetes induces oxidative stress, DNA damage and alters several intracellular signaling pathways in organ systems. This study investigated modulatory effects of Trans-Resveratrol on type 1 diabetes mellitus (T1DM)-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase (PARP) signaling in rat testis. Trans-Resveratrol administration (5mg/kg/day, ip) to Streptozotocin-induced T1DM adult male Wistar rats from day 22–42 resulted in recovery of induced oxidative stress, abnormal spermatogenesis and inhibited DNA synthesis, and led to mitigation of 8-hydroxy-2'-deoxyguanosine formation in the testis and spermatozoa, and DNA double-strand breaks in the testis. Trans-Resveratrol aggravated T1DM-induced up-regulation of aminoacyl tRNA synthetase complex-interacting multifunctional proteinmore » 2 expression; however, it did not modify the up-regulated total PARP and down-regulated PARP1 expressions, but recovered the decreased SirT1 (Sirtuin 1) levels in T1DM rat testis. Trans-Resveratrol, when given alone, reduced the poly (ADP-ribosyl)ation (pADPr) process in the testis due to an increase in PAR glycohydrolase activity, but when given to T1DM rats it did not affect the pADPr levels. T1DM with or without Trans-Resveratrol did not induce nuclear translocation of apoptosis-inducing factor and the formation of 50 kb DNA breaks, suggesting to the lack of caspase-3-independent cell death called parthanatos. T1DM with or without Trans-Resveratrol did not increase necrotic cell death in the testis. Primary spermatocytes, Sertoli cells, Leydig cells and intra-testicular vessels showed the expression of PARP pathway related proteins. In conclusion, Trans-Resveratrol mitigates T1DM-induced sperm abnormality and DNA damage, but does not significantly modulate PARP signaling pathway, except the SirT1 expression, in the rat testis. - Highlights: • Resveratrol inhibits diabetes-induced abnormal sperm morphogenesis • Resveratrol recovers diabetes-induced DNA damage in testis and spermatozoa • Resveratrol does not normalize diabetes-induced increase in total PARP • Resveratrol does not modulate diabetes-induced decrease in PARP1 • Resveratrol normalizes diabetes-induced decrease in SirT1 levels in testis.« less
Hirakawa, Ikumi; Miyagawa, Shinichi; Katsu, Yoshinao; Kagami, Yoshihiro; Tatarazako, Norihisa; Kobayashi, Tohru; Kusano, Teruhiko; Mizutani, Takeshi; Ogino, Yukiko; Takeuchi, Takashi; Ohta, Yasuhiko; Iguchi, Taisen
2012-05-01
The occurrence of oocytes in the testis (testis-ova) of several fish species is often associated with exposure of estrogenic chemicals. However, induction mechanisms of the testis-ova remain to be elucidated. To develop marker genes for detecting testis-ova in the testis, adult male medaka were exposed to nominal concentration of 100 ng L(-1) of 17α-ethinylestradiol (EE2) for 3-5 weeks, and 800 ng estradiol benzoate (EB) for 3 weeks (experiment I), and a measured concentration of 20 ng L(-1) EE2 for 1-6 weeks (experiment II). Histological analysis was performed for the testis, and microarray analyses were performed for the testis, liver and brain. Microarray analysis in the estrogen-exposed medaka liver showed vitellogenin and choriogenin as estrogen responsive genes. Testis-ova were induced in the testis after 4 weeks of exposure to 100 ng L(-1) EE2, 3 weeks of exposure to 800 ng EB, and 6 weeks of exposure to 20 ng L(-1) EE2. Microarray analysis of estrogen-exposed testes revealed up-regulation of genes related to zona pellucida (ZP) and the oocytes marker gene, 42Sp50. Using quantitative RT-PCR we confirmed that Zpc5 gene can be used as a marker for the detection of testis-ova in male medaka. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wong, Elissa W. P.; Lee, Will M.; Cheng, C. Yan
2013-01-01
Development of spermatozoa in adult mammalian testis during spermatogenesis involves extensive cell migration and differentiation. Spermatogonia that reside at the basal compartment of the seminiferous epithelium differentiate into more advanced germ cell types that migrate toward the apical compartment until elongated spermatids are released into the tubule lumen during spermiation. Apical ectoplasmic specialization (ES; a testis-specific anchoring junction) is the only cell junction that anchors and maintains the polarity of elongating/elongated spermatids (step 8–19 spermatids) in the epithelium. Little is known regarding the signaling pathways that trigger the disassembly of the apical ES at spermiation. Here, we show that secreted Frizzled-related protein 1 (sFRP1), a putative tumor suppressor gene that is frequently down-regulated in multiple carcinomas, is a crucial regulatory protein for spermiation. The expression of sFRP1 is tightly regulated in adult rat testis to control spermatid adhesion and sperm release at spermiation. Down-regulation of sFRP1 during testicular development was found to coincide with the onset of the first wave of spermiation at approximately age 45 d postpartum, implying that sFRP1 might be correlated with elongated spermatid adhesion conferred by the apical ES before spermiation. Indeed, administration of sFRP1 recombinant protein to the testis in vivo delayed spermiation, which was accompanied by down-regulation of phosphorylated (p)-focal adhesion kinase (FAK)-Tyr397 and retention of nectin-3 adhesion protein at the apical ES. To further investigate the functional relationship between p-FAK-Tyr397 and localization of nectin-3, we overexpressed sFRP1 using lentiviral vectors in the Sertoli-germ cell coculture system. Consistent with the in vivo findings, overexpression of sFRP1 induced down-regulation of p-FAK-Tyr397, leading to a decline in phosphorylation of nectin-3. In summary, this report highlights the critical role of sFRP1 in regulating spermiation via its effects on the FAK signaling and retention of nectin-3 adhesion complex at the apical ES.—Wong, E. W. P., Lee, W. M., Cheng, C. Y. Secreted Frizzled-related protein 1 (sFRP1) regulates spermatid adhesion in the testis via dephosphorylation of focal adhesion kinase and the nectin-3 adhesion protein complex. PMID:23073828
[Molecular mechanisms in sex determination: from gene regulation to pathology].
Ravel, C; Chantot-Bastaraud, S; Siffroi, J-P
2004-01-01
Testis determination is the complex process by which the bipotential gonad becomes a normal testis during embryo development. As a consequence, this process leads to sexual differentiation corresponding to the masculinization of both genital track and external genitalia. The whole phenomenon is under genetic control and is particularly driven by the presence of the Y chromosome and by the SRY gene, which acts as the key initiator of the early steps of testis determination. However, many other autosomal genes, present in both males and females, are expressed during testis formation in a gene activation pathway, which is far to be totally elucidated. All these genes act in a dosage-sensitive manner by which quantitative gene abnormalities, due to chromosomal deletions, duplications or mosaicism, may lead to testis determination failure and sex reversal.
Hurtado, Alicia; Real, Francisca M; Palomino, Rogelio; Carmona, Francisco David; Burgos, Miguel; Jiménez, Rafael; Barrionuevo, Francisco J
2018-01-01
MicroRNAs are frequently organized into polycistronic clusters whose transcription is controlled by a single promoter. The miR-17-92 cluster is expressed in most embryonic and postnatal organs. It is a potent oncogene associated to several types of cancer and it is involved in several important developmental processes. In the testis, expression of the miR-17-92 cluster in the germ cells is necessary to maintain normal spermatogenesis. This cluster is also expressed in Sertoli cells (the somatic cells of the seminiferous tubules), which require miRNAs for correct cell development and survival. To study the possible role of miR-17-92 in Sertoli cell development and function and, in order to overcome the postnatal lethality of miR-17-92-/ mice, we conditionally deleted it in embryonic Sertoli cells shortly after the sex determination stage using an Amh-Cre allele. Mutant mice developed apparently normal testes and were fertile, but their testis transcriptomes contained hundreds of moderately deregulated genes, indicating that testis homeostasis is tightly controlled in mammals and that miR-17-92 expression in Sertoli cells contribute to maintain normal gene expression levels, but is unnecessary for testis development and function. Our results show that significant deregulation of hundreds of genes might have no functional consequences.
RAI14 (retinoic acid induced protein 14) is an F-actin regulator
Qian, Xiaojing; Mruk, Dolores D.; Cheng, Yan-ho; Cheng, C. Yan
2013-01-01
RAI14 (retinoic acid induced protein 14) is an actin-binding protein first identified in the liver. In the testis, RAI14 is expressed by both Sertoli and germ cells in the seminiferous epithelium. Besides binding to actin in the testis, RAI14 is also a binding protein for palladin, an actin cross-linking and bundling protein. A recent report has shown that RAI14 displays stage-specific and spatiotemporal expression at the ES [ectoplasmic specialization, a testis-specific filamentous (F)-actin-rich adherens junction] in the seminiferous epithelium of adult rat testes during the epithelial cycle of spermatogenesis, illustrating its likely involvement in F-actin organization at the ES. Functional studies in which RAI14 was knocked down by RNAi in Sertoli cells in vitro and also in testicular cells in vivo have illustrated its role in conferring the integrity of actin filament bundles at the ES, perturbing the Sertoli cell tight junction (TJ)-pemeability barrier function in vitro, and also spermatid polarity and adhesion in vivo, thereby regulating spermatid transport at spermiation. Herein, we critically evaluate these earlier findings and also provide a likely hypothetic model based on the functional role of RAI14 at the ES, and how RAI14 is working with palladin and other actin regulatory proteins in the testis to regulate the transport of (1) spermatids and (2) preleptotene spermatocytes across the seminiferous epithelium and the blood-testis barrier (BTB), respectively, during spermatogenesis. This model should serve as a framework upon which functional experiments can be designed to better understand the biology of RAI14 and other actin-binding and regulatory proteins in the testis. PMID:23885305
He, Miao; Kratz, Lisa E.; Michel, Joshua J.; Vallejo, Abbe N.; Ferris, Laura; Kelley, Richard I.; Hoover, Jacqueline J.; Jukic, Drazen; Gibson, K. Michael; Wolfe, Lynne A.; Ramachandran, Dhanya; Zwick, Michael E.; Vockley, Jerry
2011-01-01
Defects in cholesterol synthesis result in a wide variety of symptoms, from neonatal lethality to the relatively mild dysmorphic features and developmental delay found in individuals with Smith-Lemli-Opitz syndrome. We report here the identification of mutations in sterol-C4-methyl oxidase–like gene (SC4MOL) as the cause of an autosomal recessive syndrome in a human patient with psoriasiform dermatitis, arthralgias, congenital cataracts, microcephaly, and developmental delay. This gene encodes a sterol-C4-methyl oxidase (SMO), which catalyzes demethylation of C4-methylsterols in the cholesterol synthesis pathway. C4-Methylsterols are meiosis-activating sterols (MASs). They exist at high concentrations in the testis and ovary and play roles in meiosis activation. In this study, we found that an accumulation of MASs in the patient led to cell overproliferation in both skin and blood. SMO deficiency also substantially altered immunocyte phenotype and in vitro function. MASs serve as ligands for liver X receptors α and β (LXRα and LXRβ), which are important in regulating not only lipid transport in the epidermis, but also innate and adaptive immunity. Deficiency of SMO represents a biochemical defect in the cholesterol synthesis pathway, the clinical spectrum of which remains to be defined. PMID:21285510
Nishiyama, Maki; Uchida, Katsuhisa; Abe, Nozomi; Nozaki, Masumi
2015-02-01
Since hagfishes are considered the most primitive vertebrate known, extant or extinct, studies on their reproduction are indispensable for understanding phylogenetic aspects of vertebrate reproduction. However, little information is available on the endocrine regulation of the gonadal function in the hagfish. Based on EST analysis of the testis of the brown hagfish (Paramyxine atami), P450 side chain cleavage (CYP11A), which is the first and essential enzyme for steroidogenesis in jawed vertebrates, was cloned. The deduced amino acid sequence of hagfish CYP11A shows high identity to other animal forms especially in two functional domains, adrenodoxin binding domain and heme-binding domain. In the phylogenetic analysis, hagfish CYP11A forms a clade with the vertebrate CYP11A. Following the real-time PCR analysis, CYP11A mRNA expression levels were clearly correlated to the developmental stages of gonads in both sexes of the brown hagfish. By in situ hybridization, CYP11A mRNA signals were found in the theca cells of the ovarian follicles and Leydig cells and the tubule-boundary cells of the testis. These molecular and histological evidences are suggesting that CYP11A plays functional roles as a steroidogenic enzyme in gonadal development. Moreover, native GTH purified from hagfish pituitary stimulated the transcriptional levels of CYP11A in the organ-cultured testis in vitro, clearly suggesting that the steroidogenic activity of the hagfish is under the control of the pituitary GTH. It is suggested that vertebrates, during their early evolution, have established the pituitary-gonadal reproductive system. Copyright © 2015 Elsevier Inc. All rights reserved.
Zamoner, Ariane; Barreto, Kátia Padilha; Filho, Danilo Wilhelm; Sell, Fabíola; Woehl, Viviane Mara; Guma, Fátima Costa Rodrigues; Silva, Fátima Regina Mena Barreto; Pessoa-Pureur, Regina
2007-03-15
Hyperthyroidism was induced in rats and somatic indices and metabolic parameters were analyzed in testis. In addition, the morphological analysis evidenced testes maturation and intense protein synthesis and processing, supporting the enhancement in vimentin synthesis in hyperthyroid testis. Furthermore, vimentin phosphorylation was increased, indicating an accumulation of phosphorylated vimentin associated to the cytoskeleton, which could be a consequence of the extracellular-regulated kinase (ERK) activation regulating the cytoskeleton. Biomarkers of oxidative stress demonstrated an increased basal metabolic rate measured by tissue oxygen consumption, as well as, increased TBARS levels. In addition, the enzymatic and non-enzymatic antioxidant defences appeared to respond according to the augmented oxygen consumption. We observed decreased total glutathione levels, with enhancement of reduced glutathione, whereas most of the antioxidant enzyme activities were induced. Otherwise, superoxide dismutase activity was inhibited. These results support the idea that an increase in mitochondrial ROS generation, underlying cellular oxidative damage, is a side effect of hyperthyroid-induced biochemical changes by which rat testis increase their metabolic capacity.
Regulation of the X Chromosome in the Germline and Soma of Drosophila melanogaster Males.
Argyridou, Eliza; Parsch, John
2018-05-04
During the evolution of heteromorphic sex chromosomes, the sex-specific Y chromosome degenerates, while the X chromosome evolves new mechanisms of regulation. Using bioinformatic and experimental approaches, we investigate the expression of the X chromosome in Drosophila melanogaster . We observe nearly complete X chromosome dosage compensation in male somatic tissues, but not in testis. The X chromosome contains disproportionately fewer genes with high expression in testis than the autosomes, even after accounting for the lack of dosage compensation, which suggests that another mechanism suppresses their expression in the male germline. This is consistent with studies of reporter genes and transposed genes, which find that the same gene has higher expression when autosomal than when X-linked. Using a new reporter gene that is expressed in both testis and somatic tissues, we find that the suppression of X-linked gene expression is limited to genes with high expression in testis and that the extent of the suppression is positively correlated with expression level.
0610009K11Rik, a testis-specific and germ cell nuclear receptor-interacting protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Heng; Denhard, Leslie A.; Zhou Huaxin
Using an in silico approach, a putative nuclear receptor-interacting protein 0610009K11Rik was identified in mouse testis. We named this gene testis-specific nuclear receptor-interacting protein-1 (Tnrip-1). Tnrip-1 was predominantly expressed in the testis of adult mouse tissues. Expression of Tnrip-1 in the testis was regulated during postnatal development, with robust expression in 14-day-old or older testes. In situ hybridization analyses showed that Tnrip-1 is highly expressed in pachytene spermatocytes and spermatids. Consistent with its mRNA expression, Tnrip-1 protein was detected in adult mouse testes. Immunohistochemical studies showed that Tnrip-1 is a nuclear protein and mainly expressed in pachytene spermatocytes and roundmore » spermatids. Moreover, co-immunoprecipitation analyses showed that endogenous Tnrip-1 protein can interact with germ cell nuclear receptor (GCNF) in adult mouse testes. Our results suggest that Tnrip-1 is a testis-specific and GCNF-interacting protein which may be involved in the modulation of GCNF-mediated gene transcription in spermatogenic cells within the testis.« less
A Short-Term Exposure to Tributyltin Blocks Leydig Cell Regeneration in the Adult Rat Testis
Wu, Xiaolong; Liu, Jianpeng; Duan, Yue; Gao, Shiyu; Lü, Yao; Li, Xiaoheng; Zhu, Qiqi; Chen, Xianwu; Lin, Jing; Ye, Leping; Ge, Ren-Shan
2017-01-01
Background: Tributyltin (TBT) is widely used as an antifouling agent that may cause reproductive toxicity. The mechanism of TBT on Leydig cell development is still unknown. The objective of the present study was to investigate whether a brief exposure to low doses of TBT permanently affects Leydig cell development and to clarify the underlying mechanism. Methods: Adult male Sprague Dawley rats were randomly assigned into four groups and gavaged normal saline (control), 0.1, 1.0, or 10.0 mg/kg/day TBT for a consecutive 10 days, respectively. At the end of TBT treatment, all rats received a single intraperitoneal injection of 75 mg/kg ethane dimethane sulfonate (EDS) to eliminate all of adult Leydig cells. Leydig cells began a developmental regeneration process on post-EDS day 35. The Leydig cell regeneration was evaluated by measuring serum testosterone, luteinizing hormone, and follicle-stimulating hormone levels on post-EDS day 7, 35, and 56, the expression levels of Leydig cell genes, Leydig cell morphology and number and proliferation on post-EDS day 56. Results: TBT significantly reduced serum testosterone levels on post-EDS day 35 and 56 and increased serum luteinizing hormone and follicle-stimulating hormone levels on post-EDS day 56 at ≥1 mg/kg/day. Immunohistochemical staining showed that there were fewer regenerated Leydig cells in the TBT-treated testis on post-EDS day 56. Further study demonstrated that the mRNA or protein levels of Leydig (Lhcgr, Cyp11a1, Hsd3b1, Cyp17a1, and Hsd17b3) and Sertoli cells (Fshr, Dhh, and Sox9) were significantly down-regulated in the TBT-treated testes when compared to the control. Immunofluorescent staining showed that TBT inhibited Leydig cell proliferation as judged by the reduced number of proliferating cyclin nuclear antigen-positive Leydig cells on post-EDS day 35. Conclusion: The present study demonstrated that a short-term TBT exposure blocked Leydig cell developmental regeneration process via down-regulating steroidogenesis-related proteins and inhibiting the proliferation of Leydig cells. PMID:29075189
A Short-Term Exposure to Tributyltin Blocks Leydig Cell Regeneration in the Adult Rat Testis.
Wu, Xiaolong; Liu, Jianpeng; Duan, Yue; Gao, Shiyu; Lü, Yao; Li, Xiaoheng; Zhu, Qiqi; Chen, Xianwu; Lin, Jing; Ye, Leping; Ge, Ren-Shan
2017-01-01
Background: Tributyltin (TBT) is widely used as an antifouling agent that may cause reproductive toxicity. The mechanism of TBT on Leydig cell development is still unknown. The objective of the present study was to investigate whether a brief exposure to low doses of TBT permanently affects Leydig cell development and to clarify the underlying mechanism. Methods: Adult male Sprague Dawley rats were randomly assigned into four groups and gavaged normal saline (control), 0.1, 1.0, or 10.0 mg/kg/day TBT for a consecutive 10 days, respectively. At the end of TBT treatment, all rats received a single intraperitoneal injection of 75 mg/kg ethane dimethane sulfonate (EDS) to eliminate all of adult Leydig cells. Leydig cells began a developmental regeneration process on post-EDS day 35. The Leydig cell regeneration was evaluated by measuring serum testosterone, luteinizing hormone, and follicle-stimulating hormone levels on post-EDS day 7, 35, and 56, the expression levels of Leydig cell genes, Leydig cell morphology and number and proliferation on post-EDS day 56. Results: TBT significantly reduced serum testosterone levels on post-EDS day 35 and 56 and increased serum luteinizing hormone and follicle-stimulating hormone levels on post-EDS day 56 at ≥1 mg/kg/day. Immunohistochemical staining showed that there were fewer regenerated Leydig cells in the TBT-treated testis on post-EDS day 56. Further study demonstrated that the mRNA or protein levels of Leydig ( Lhcgr , Cyp11a1, Hsd3b1, Cyp17a1 , and Hsd17b3 ) and Sertoli cells ( Fshr , Dhh , and Sox9 ) were significantly down-regulated in the TBT-treated testes when compared to the control. Immunofluorescent staining showed that TBT inhibited Leydig cell proliferation as judged by the reduced number of proliferating cyclin nuclear antigen-positive Leydig cells on post-EDS day 35. Conclusion: The present study demonstrated that a short-term TBT exposure blocked Leydig cell developmental regeneration process via down-regulating steroidogenesis-related proteins and inhibiting the proliferation of Leydig cells.
He, Yan; Luo, Majing; Yi, Minhan; Sheng, Yue; Cheng, Yibin; Zhou, Rongjia; Cheng, Hanhua
2013-01-01
Gonad differentiation is one of the most important developmental events in vertebrates. Some heat shock proteins are associated with gonad development. Heat shock protein 70 (Hsp70) in the teleost fish and its roles in sex differentiation are poorly understood. We have identified a testis-enriched heat shock protein Hspa8b2 in the swamp eel using Western blot analysis and Mass Spectrometry (MS). Fourteen Hsp70 family genes were further identified in this species based on transcriptome information. The phylogenetic tree of Hsp70 family was constructed using the Maximum Likelihood method and their expression patterns in the swamp eel gonads were analyzed by reverse transcription-polymerase chain reaction (RT-PCR). There are fourteen gene members in the Hsp70 family in the swamp eel genome. Hsp70 family, particularly Hspa8, has expanded in the species. One of the family members Hspa8b2 is predominantly expressed in testis of the swamp eel.
George, Manju; Rainey, Mark A.; Naramura, Mayumi; Ying, GuoGuang; Harms, Don W.; Vitaterna, Martha H.; Doglio, Lynn; Crawford, Susan E.; Hess, Rex A.; Band, Vimla; Band, Hamid
2010-01-01
The four highly homologous members of the C-terminal EH domain-containing (EHD) protein family (EHD1-4) regulates endocytic recycling. To delineate the role of EHD4 in normal physiology and development, mice with a conditional knockout of the Ehd4 gene were generated. PCR of genomic DNA and Western blotting of organ lysates from Ehd4−/− mice confirmed EHD4 deletion. Ehd4−/− mice were viable and born at expected Mendelian ratios; however, males showed a 50% reduction in testis weight, obvious from postnatal day 31. An early (day 10) increase in germ cell proliferation and apoptosis and a later increase in apoptosis (day 31) were seen in the Ehd4−/− testis. Other defects included a progressive reduction in seminiferous tubule diameter, dysregulation of seminiferous epithelium and head abnormalities in elongated spermatids. As a consequence, lower sperm counts and reduced fertility were observed in Ehd4−/− males. Interestingly, EHD protein expression was seen to be temporally regulated in the testis and levels peaked between days 10 and 15. In the adult testis, EHD4 was highly expressed in primary spermatocytes and EHD4 deletion altered the levels of other EHD proteins in an age-dependent manner. We conclude that high levels of EHD1in the adult Ehd4−/− testis functionally compensate for lack of EHD4 and prevents the development of severe fertility defects. Our results suggest a role for EHD4 in the proper development of post-mitotic and post-meiotic germ cells and implicate EHD protein-mediated endocytic recycling as an important process in germ cell development and testis function. PMID:20213691
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Specialized rules of gene transcription in male germ cells: the CREM paradigm.
Monaco, Lucia; Kotaja, Noora; Fienga, Giulia; Hogeveen, Kevin; Kolthur, Ullas S; Kimmins, Sarah; Brancorsini, Stefano; Macho, Betina; Sassone-Corsi, Paolo
2004-12-01
Specialized transcription complexes that coordinate the differentiation programme of spermatogenesis have been found in germ cells, which display specific differences in the components of the general transcription machinery. The TATA-binding protein family and its associated cofactors, for example, show upregulated expression in testis. In this physiological context, transcriptional control mediated by the activator cAMP response element modulator (CREM) represents an established paradigm. Somatic cell activation by CREM requires its phosphorylation at a unique regulatory site (Ser117) and subsequent interaction with the ubiquitous coactivator CREB-binding protein. In testis, CREM transcriptional activity is controlled through interaction with a tissue-specific partner, activator of CREM in the testis (ACT), which confers a powerful, phosphorylation-independent activation capacity. The function of ACT was found to be regulated by the testis-specific kinesin KIF17b. Here we discuss some aspects of the testis-specific transcription machinery, whose function is essential for the process of spermatogenesis.
2005-01-01
In goats, the PIS (polled intersex syndrome) mutation is responsible for both the absence of horns in males and females and sex-reversal affecting exclusively XX individuals. The mode of inheritance is dominant for the polled trait and recessive for sex-reversal. In XX PIS-/- mutants, the expression of testis-specific genes is observed very precociously during gonad development. Nevertheless, a delay of 4–5 days is observed in comparison with normal testis differentiation in XY males. By positional cloning, we demonstrate that the PIS mutation is an 11.7-kb regulatory-deletion affecting the expression of two genes, PISRT1 and FOXL2 which could act synergistically to promote ovarian differentiation. The transcriptional extinction of these two genes leads, very early, to testis-formation in XX homozygous PIS-/- mutants. According to their expression profiles and bibliographic data, we propose that FOXL2 may be an ovary-differentiating gene, and the non-coding RNA PISRT1, an anti-testis factor repressing SOX9, a key regulator of testis differentiation. Under this hypothesis, SRY, the testis-determining factor would inhibit these two genes in the gonads of XY males, to ensure testis differentiation. PMID:15601595
Pailhoux, Eric; Vigier, Bernard; Schibler, Laurent; Cribiu, Edmond P; Cotinot, Corinne; Vaiman, Daniel
2005-01-01
In goats, the PIS (polled intersex syndrome) mutation is responsible for both the absence of horns in males and females and sex-reversal affecting exclusively XX individuals. The mode of inheritance is dominant for the polled trait and recessive for sex-reversal. In XX PIS-/- mutants, the expression of testis-specific genes is observed very precociously during gonad development. Nevertheless, a delay of 4-5 days is observed in comparison with normal testis differentiation in XY males. By positional cloning, we demonstrate that the PIS mutation is an 11.7-kb regulatory-deletion affecting the expression of two genes, PISRT1 and FOXL2 which could act synergistically to promote ovarian differentiation. The transcriptional extinction of these two genes leads, very early, to testis-formation in XX homozygous PIS-/- mutants. According to their expression profiles and bibliographic data, we propose that FOXL2 may be an ovary-differentiating gene, and the non-coding RNA PISRT1, an anti-testis factor repressing SOX9, a key regulator of testis differentiation. Under this hypothesis, SRY, the testis-determining factor would inhibit these two genes in the gonads of XY males, to ensure testis differentiation.
Wang, Chong; Chen, Yan; Manthari, Ram Kumar; Wang, Jundong
2018-04-01
cAMP response element modulator (CREM) is involved in regulating gene expression in normal spermatogenesis. The transcriptional activity of CREM is partly regulated by activator of CREM in the testis (ACT). To investigate the effects of different concentrations of sodium fluoride (NaF) on the gene and protein expression of CREM and ACT in the mouse testis, sexually mature male Kunming mice were exposed to 50, 100, or 150 mg/L NaF in their drinking water for 90 days. NaF reduced the sperm count and viability and increased the percentage of malformed sperm in a dose-dependent manner. The mRNA expression of CREM and ACT was markedly downregulated in the NaF-treated groups. Furthermore, immunohistochemistry revealed that CREM and ACT proteins were decreased significantly in the 50, 100, and 150 mg/L NaF-treated groups compared to the control group. These findings indicate that the decreased gene and protein expression of CREM and ACT in the testis is associated with an impairment of reproductive functions by NaF.
Diethylstilbestrol affects the expression of GPER in the gubernaculum testis.
Zhang, Xuan; Ke, Song; Chen, Kai-Hong; Li, Jian-Hong; Ma, Lian; Jiang, Xue-Wu
2015-01-01
Recent evidence suggested a positive correlation between environmental estrogens (EEs) and high incidence of abnormalities in male urogenital system. EEs are known to cause the abnormalities of testes development and testicular descent. Diethylstilbestrol (DES) is a nonsteroidal synthetic estrogen that disrupts the morphology and proliferation of gubernacular cells, and its nongenomic effects on gubernaculum testis cells may be mediated by G protein-coupled estrogen receptor (GPER). In this study, we detected the expression of GPER in mouse gubernacular testis and investigated the effects of DES on the expression of GPER in gubernaculum testis cells. RT-PCR analysis revealed that GPER mRNA was expressed in the gubernaculum. GPER protein was detected in the parenchymal cells of the gubernaculum early in development. Furthermore, we demonstrate that GPER inhibitor G15 relieved DES-induced inhibition of GPER expression in gubernaculum testis cell, but ER inhibitor ICI 182780 had the converse effects on DES-induced inhibition of GPER expression in these cells. These data suggest that the effects of DES on mouse gubernaculum testis cells are mediated at least partially by the regulation of GPER expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Euling, Susan Y., E-mail: euling.susan@epa.gov; White, Lori D.; Kim, Andrea S.
An evaluation of the toxicogenomic data set for dibutyl phthalate (DBP) and male reproductive developmental effects was performed as part of a larger case study to test an approach for incorporating genomic data in risk assessment. The DBP toxicogenomic data set is composed of nine in vivo studies from the published literature that exposed rats to DBP during gestation and evaluated gene expression changes in testes or Wolffian ducts of male fetuses. The exercise focused on qualitative evaluation, based on a lack of available dose–response data, of the DBP toxicogenomic data set to postulate modes and mechanisms of action formore » the male reproductive developmental outcomes, which occur in the lower dose range. A weight-of-evidence evaluation was performed on the eight DBP toxicogenomic studies of the rat testis at the gene and pathway levels. The results showed relatively strong evidence of DBP-induced downregulation of genes in the steroidogenesis pathway and lipid/sterol/cholesterol transport pathway as well as effects on immediate early gene/growth/differentiation, transcription, peroxisome proliferator-activated receptor signaling and apoptosis pathways in the testis. Since two established modes of action (MOAs), reduced fetal testicular testosterone production and Insl3 gene expression, explain some but not all of the testis effects observed in rats after in utero DBP exposure, other MOAs are likely to be operative. A reanalysis of one DBP microarray study identified additional pathways within cell signaling, metabolism, hormone, disease, and cell adhesion biological processes. These putative new pathways may be associated with DBP effects on the testes that are currently unexplained. This case study on DBP identified data gaps and research needs for the use of toxicogenomic data in risk assessment. Furthermore, this study demonstrated an approach for evaluating toxicogenomic data in human health risk assessment that could be applied to future chemicals. - Highlights: ► We evaluate the dibutyl phthalate toxicogenomic data for use in risk assessment. ► We focus on information about the mechanism of action for the developing testis. ► Multiple studies report effects on testosterone and insl3-related pathways. ► We identify additional affected pathways that may explain some testis effects. ► The case study is a template for evaluating toxicogenomic data in risk assessment.« less
Lin, Haijiang; Keriel, Anne; Morales, Carlos R.; Bedard, Nathalie; Zhao, Qing; Hingamp, Pascal; Lefrançois, Stephane; Combaret, Lydie; Wing, Simon S.
2000-01-01
Ubiquitin-specific processing proteases (UBPs) presently form the largest enzyme family in the ubiquitin system, characterized by a core region containing conserved motifs surrounded by divergent sequences, most commonly at the N-terminal end. The functions of these divergent sequences remain unclear. We identified two isoforms of a novel testis-specific UBP, UBP-t1 and UBP-t2, which contain identical core regions but distinct N termini, thereby permitting dissection of the functions of these two regions. Both isoforms were germ cell specific and developmentally regulated. Immunocytochemistry revealed that UBP-t1 was induced in step 16 to 19 spermatids while UBP-t2 was expressed in step 18 to 19 spermatids. Immunoelectron microscopy showed that UBP-t1 was found in the nucleus while UBP-t2 was extranuclear and was found in residual bodies. For the first time, we show that the differential subcellular localization was due to the distinct N-terminal sequences. When transfected into COS-7 cells, the core region was expressed throughout the cell but the UBP-t1 and UBP-t2 isoforms were concentrated in the nucleus and the perinuclear region, respectively. Fusions of each N-terminal end with green fluorescent protein yielded the same subcellular localization as the native proteins, indicating that the N-terminal ends were sufficient for determining differential localization. Interestingly, UBP-t2 colocalized with anti-γ-tubulin immunoreactivity, indicating that like several other components of the ubiquitin system, a deubiquitinating enzyme is associated with the centrosome. Regulated expression and alternative N termini can confer specificity of UBP function by restricting its temporal and spatial loci of action. PMID:10938131
Copy Number Variation in Patients with Disorders of Sex Development Due to 46,XY Gonadal Dysgenesis
White, Stefan; Ohnesorg, Thomas; Notini, Amanda; Roeszler, Kelly; Hewitt, Jacqueline; Daggag, Hinda; Smith, Craig; Turbitt, Erin; Gustin, Sonja; van den Bergen, Jocelyn; Miles, Denise; Western, Patrick; Arboleda, Valerie; Schumacher, Valerie; Gordon, Lavinia; Bell, Katrina; Bengtsson, Henrik; Speed, Terry; Hutson, John; Warne, Garry; Harley, Vincent; Koopman, Peter; Vilain, Eric; Sinclair, Andrew
2011-01-01
Disorders of sex development (DSD), ranging in severity from mild genital abnormalities to complete sex reversal, represent a major concern for patients and their families. DSD are often due to disruption of the genetic programs that regulate gonad development. Although some genes have been identified in these developmental pathways, the causative mutations have not been identified in more than 50% 46,XY DSD cases. We used the Affymetrix Genome-Wide Human SNP Array 6.0 to analyse copy number variation in 23 individuals with unexplained 46,XY DSD due to gonadal dysgenesis (GD). Here we describe three discrete changes in copy number that are the likely cause of the GD. Firstly, we identified a large duplication on the X chromosome that included DAX1 (NR0B1). Secondly, we identified a rearrangement that appears to affect a novel gonad-specific regulatory region in a known testis gene, SOX9. Surprisingly this patient lacked any signs of campomelic dysplasia, suggesting that the deletion affected expression of SOX9 only in the gonad. Functional analysis of potential SRY binding sites within this deleted region identified five putative enhancers, suggesting that sequences additional to the known SRY-binding TES enhancer influence human testis-specific SOX9 expression. Thirdly, we identified a small deletion immediately downstream of GATA4, supporting a role for GATA4 in gonad development in humans. These CNV analyses give new insights into the pathways involved in human gonad development and dysfunction, and suggest that rearrangements of non-coding sequences disturbing gene regulation may account for significant proportion of DSD cases. PMID:21408189
Qian, Xiaojing; Mruk, Dolores D.; Wong, Elissa W. P.
2013-01-01
Drug transporters determine the bioavailability of drugs in the testis behind the blood-testis barrier (BTB). Thus, they are crucial for male contraceptive development if these drugs (e.g., adjudin) exert their effects behind the BTB. Herein breast cancer resistance protein (Bcrp), an efflux drug transporter, was found to be expressed by both Sertoli and germ cells. Interestingly, Bcrp was not a component of the Sertoli cell BTB. Instead, it was highly expressed by peritubular myoid cells at the tunica propria and also endothelial cells of the microvessels in the interstitium at all stages of the epithelial cycle. Unexpectedly, Bcrp was found to be expressed at the Sertoli-step 18–19 spermatid interface but limited to stage VI-early VIII tubules, and an integrated component of the apical ectoplasmic specialization (apical ES). Apparently, Bcrp is being used by late-stage spermatids to safeguard their completion of spermiogenesis by preventing harmful drugs to enter these cells while they transform to spermatozoa. Also, the association of Bcrp with actin, Eps8 (epidermal growth factor receptor pathway substrate 8, an actin barbed end capping and bundling protein), and Arp3 (actin-related protein 3, a component of the Arp2/3 complex known to induce branched actin polymerization) at the apical ES suggest that Bcrp may be involved in regulating the organization of actin filament bundles at the site. Indeed, a knockdown of Bcrp by RNAi in the testis perturbed the apical ES function, disrupting spermatid polarity and adhesion. In summary, Bcrp is a regulator of the F-actin-rich apical ES in the testis. PMID:23403943
YANAI, Shogo; HIRANO, Tetsushi; OMOTEHARA, Takuya; TAKADA, Tadashi; YONEDA, Naoki; KUBOTA, Naoto; YAMAMOTO, Anzu; MANTANI, Youhei; YOKOYAMA, Toshifumi; KITAGAWA, Hiroshi; HOSHI, Nobuhiko
2017-01-01
Neonicotinoids are pesticides used worldwide. They bind to insect nicotinic acetylcholine receptors (nAChRs) with high affinity. We previously reported that clothianidin (CTD), one of the latest neonicotinoids, reduced antioxidant expression and induced germ cell death in the adult testis of vertebrates. Here, we investigated the male reproductive toxicity of prenatal and early postnatal exposure to CTD, because it is likely that developmental exposure more severely affects the testis compared to adults due to the absence of the blood-testis barrier. Pregnant C57BL/6 mice were given water gel blended with CTD (0, 10 or 50 mg/kg/day; no-observed-adverse-effect-level [NOAEL for mice]: 47.2 mg/kg/day) between gestational day 1 and 14 days post-partum. We then examined the testes of male offspring at postnatal day 14. The testis weights and the numbers of germ cells per seminiferous tubule were decreased in the CTD-50 group, and abnormal tubules containing no germ cells appeared. Nevertheless, the apoptotic cell number and proliferative activity were not significantly different between the control and CTD-exposed groups. There were no significant differences in the androgen-related parameters, such as the Leydig cell volume per testis, the Sertoli cell number and the tubule diameter. The present study is the first demonstration that in utero and lactational exposures to CTD at around the NOAEL for mice reduce the germ cell number, but our findings suggest that these exposures do not affect steroidogenesis in Leydig cells during prenatal or early postnatal life. PMID:28579575
Habert, René; Muczynski, Vincent; Grisin, Tiphany; Moison, Delphine; Messiaen, Sébastien; Frydman, René; Benachi, Alexandra; Delbes, Géraldine; Lambrot, Romain; Lehraiki, Abdelali; N'Tumba-Byn, Thierry; Guerquin, Marie-Justine; Levacher, Christine; Rouiller-Fabre, Virginie; Livera, Gabriel
2014-01-01
Fetal testis is a major target of endocrine disruptors (EDs). During the last 20 years, we have developed an organotypic culture system that maintains the function of the different fetal testis cell types and have used this approach as a toxicological test to evaluate the effects of various compounds on gametogenesis and steroidogenesis in rat, mouse and human testes. We named this test rat, mouse and human fetal testis assay. With this approach, we compared the effects of six potential EDs ((mono-(2-ethylhexyl) phthalate (MEHP), cadmium, depleted uranium, diethylstilboestrol (DES), bisphenol A (BPA) and metformin) and one signalling molecule (retinoic acid (RA)) on the function of rat, mouse and human fetal testis at a comparable developmental stage. We found that the response is similar in humans and rodents for only one third of our analyses. For instance, RA and MEHP have similar negative effects on gametogenesis in the three species. For another third of our analyses, the threshold efficient concentrations that disturb gametogenesis and/or steroidogenesis differ as a function of the species. For instance, BPA and metformin have similar negative effects on steroidogenesis in human and rodents, but at different threshold doses. For the last third of our analyses, the qualitative response is species specific. For instance, MEHP and DES affect steroidogenesis in rodents, but not in human fetal testis. These species differences raise concerns about the extrapolation of data obtained in rodents to human health risk assessment and highlight the need of rigorous comparisons of the effects in human and rodent models, when assessing ED risk. PMID:24497529
BmDJ-1 Is a Key Regulator of Oxidative Modification in the Development of the Silkworm, Bombyx mori
Tabunoki, Hiroko; Ode, Hiroaki; Banno, Yutaka; Katsuma, Susumu; Shimada, Toru; Mita, Kazuei; Yamamoto, Kimiko; Sato, Ryoichi; Ishii-Nozawa, Reiko; Satoh, Jun-ichi
2011-01-01
We cloned cDNA for the Bombyx mori DJ-1 protein (BmDJ-1) from the brains of larvae. BmDJ-1 is composed of 190 amino acids and encoded by 672 nucleotides. Northern blot analysis showed that BmDJ-1 is transcribed as a 756-bp mRNA and has one isoform. Reverse transcriptase (RT)-PCR experiments revealed that the BmDJ-1 was present in the brain, fatbody, Malpighian tubule, ovary and testis but present in only low amounts in the silkgland and hemocyte of day 4 fifth instar larvae. Immunological analysis demonstrated the presence of BmDJ-1 in the brain, midgut, fatbody, Malpighian tubule, testis and ovary from the larvae to the adult. We found that BmDJ-1 has a unique expression pattern through the fifth instar larval to adult developmental stage. We assessed the anti-oxidative function of BmDJ-1 using rotenone (ROT) in day 3 fifth instar larvae. Administration of ROT to day 3 fifth instar larvae, together with exogenous (BmNPV-BmDJ-1 infection for 4 days in advance) BmDJ-1, produced significantly lower 24-h mortality in BmDJ-1 groups than in the control. 2D-PAGE revealed an isoelectric point (pI) shift to an acidic form for BmDJ-1 in BmN4 cells upon ROT stimulus. Among the factors examined for their effects on expression level of BmDJ-1 in the hemolymph, nitric oxide (NO) concentration was identified based on dramatic developmental stage-dependent changes. Administration of isosorbide dinitrate (ISDN), which is an NO donor, to BmN4 cells produced increased expression of BmDJ-1 compared to the control. These results suggest that BmDJ-1 might control oxidative stress in the cell due to NO and serves as a development modulation factor in B. mori. PMID:21455296
Starvaggi Cucuzza, Laura; Divari, Sara; Mulasso, Chiara; Biolatti, Bartolomeo; Cannizzo, Francesca T.
2014-01-01
Regucalcin (RGN) is a mammalian Ca2+-binding protein that plays an important role in intracellular Ca2+ homeostasis. Recently, RGN has been identified as a target gene for sex steroid hormones in the prostate glands and testis of rats and humans, but no studies have focused on RGN expression in bovine tissues. Thus, in the present study, we examined RGN mRNA and protein expression in the different tissues and organs of veal calves and beef cattle. Moreover, we investigated whether RGN expression is controlled through sex steroid hormones in bovine target tissues, namely the bulbo-urethral and prostate glands and the testis. Sex steroid hormones are still illegally used in bovine husbandry to increase muscle mass. The screening of the regulation and function of anabolic sex steroids via modified gene expression levels in various tissues represents a new approach for the detection of illicit drug treatments. Herein, we used quantitative PCR, western blot and immunohistochemistry analyses to demonstrate RGN mRNA and protein expression in bovine tissues. In addition, estrogen administration down-regulated RGN gene expression in the accessory sex glands of veal calves and beef cattle, while androgen treatment reduced RGN gene expression only in the testis. The confirmation of the regulation of RGN gene expression through sex steroid hormones might facilitate the potential detection of hormone abuse in bovine husbandry. Particularly, the specific response in the testis suggests that this tissue is ideal for the detection of illicit androgen administration in veal calves and beef cattle. PMID:25415588
de Angelis, Cristina; Galdiero, Mariano; Pivonello, Claudia; Salzano, Ciro; Gianfrilli, Daniele; Piscitelli, Prisco; Lenzi, Andrea; Colao, Annamaria; Pivonello, Rosario
2017-10-01
Cadmium is an environmental pollutant known as endocrine disruptor. Testis is particularly susceptible to cadmium, and testis injury occurs at high but even low levels of exposure. Cadmium reproductive toxicity is mediated by multiple mechanisms, including structural damage to testis vasculature and blood-testis barrier, inflammation, cytotoxicity on Sertoli and Leydig cells, oxidative stress mainly by means of mimicry and interference with essential ions, apoptosis, interference with selected signaling pathways and epigenetic regulation of genes involved in the regulation of reproductive function, and disturbance of the hypothalamus-pituitary-gonadal axis. The current review outlines epidemiological observational findings from environmental and occupational exposure in humans, and reports experimental studies in humans and animals. Lastly, a focus on the pathogenetic mechanisms of cadmium toxicity and on the specific mechanisms of cadmium sensitivity and resistance, particularly assessed in animal models, is included. Despite convincing experimental findings in animals and supporting evidences in humans identifying cadmium as reproductive toxicant, observational findings are controversial, suffering from heterogeneity of study design and pattern of exposure, and from co-exposure to multiple pollutants. Copyright © 2017 Elsevier Inc. All rights reserved.
Thyroid Hormone and Leptin in the Testis
Ramos, Cristiane Fonte; Zamoner, Ariane
2014-01-01
Leptin is primarily expressed in white adipose tissue; however, it is expressed in the hypothalamus and reproductive tissues as well. Leptin acts by activating the leptin receptors (Ob-Rs). Additionally, the regulation of several neuroendocrine and reproductive functions, including the inhibition of glucocorticoids and enhancement of thyroxine and sex hormone concentrations in human beings and mice are leptin functions. It has been suggested that thyroid hormones (TH) could directly regulate leptin expression. Additionally, hypothyroidism compromises the intracellular integration of leptin signaling specifically in the arcuate nucleus. Two TH receptor isoforms are expressed in the testis, TRa and TRb, with TRa being the predominant one that is present in all stages of development. The effects of TH involve the proliferation and differentiation of Sertoli and Leydig cells during development, spermatogenesis, and steroidogenesis. In this context, TH disorders are associated with sexual dysfunction. An endocrine and/or direct paracrine effect of leptin on the gonads inhibits testosterone production in Leydig cells. Further studies are necessary to clarify the effects of both hormones in the testis during hypothyroidism. The goal of this review is to highlight the current knowledge regarding leptin and TH in the testis. PMID:25505448
Korrodi-Gregório, Luís; Vieira, Sandra I.; Esteves, Sara L. C.; Silva, Joana V.; Freitas, Maria João; Brauns, Ann-Kristin; Luers, Georg; Abrantes, Joana; Esteves, Pedro J.; da Cruz e Silva, Odete A. B.; Fardilha, Margarida; da Cruz e Silva, Edgar F.
2013-01-01
Summary Reversible phosphorylation plays an important role as a mechanism of intracellular control in eukaryotes. PPP1, a major eukaryotic Ser/Thr-protein phosphatase, acquires its specificity by interacting with different protein regulators, also known as PPP1 interacting proteins (PIPs). In the present work we characterized a physiologically relevant PIP in testis. Using a yeast two-hybrid screen with a human testis cDNA library, we identified a novel PIP of PPP1CC2 isoform, the T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) that has recently been described as a Tctex1 dynein light chain family member. The overlay assays confirm that TCTEX1D4 interacts with the different spliced isoforms of PPP1CC. Also, the binding domain occurs in the N-terminus, where a consensus PPP1 binding motif (PPP1BM) RVSF is present. The distribution of TCTEX1D4 in testis suggests its involvement in distinct functions, such as TGFβ signaling at the blood–testis barrier and acrosome cap formation. Immunofluorescence in human ejaculated sperm shows that TCTEX1D4 is present in the flagellum and in the acrosome region of the head. Moreover, TCTEX1D4 and PPP1 co-localize in the microtubule organizing center (MTOC) and microtubules in cell cultures. Importantly, the TCTEX1D4 PPP1BM seems to be relevant for complex formation, for PPP1 retention in the MTOC and movement along microtubules. These novel results open new avenues to possible roles of this dynein, together with PPP1. In essence TCTEX1D4/PPP1C complex appears to be involved in microtubule dynamics, sperm motility, acrosome reaction and in the regulation of the blood–testis barrier. PMID:23789093
Cryptorchidism is a fairly common human malformation, being displayed in 1-3 males per 100 at birth. Since only a small percentage of these lesions can be linked to known genetic defects, developmental exposure to man-made chemicals has been implicated in the increase in thisrepr...
Genome-wide analysis of long non-coding RNAs and their role in postnatal porcine testis development.
Weng, Bo; Ran, Maoliang; Chen, Bin; He, Changqing; Dong, Lianhua; Peng, Fuzhi
2017-10-01
A comprehensive and systematic understanding of the roles of lncRNAs in the postnatal development of the pig testis has still not been achieved. In the present study, we obtained more than one billion clean reads and identified 15,528 lncRNA transcripts; these transcripts included 5032 known and 10,496 novel porcine lncRNA transcripts and corresponded to 10,041 lncRNA genes. Pairwise comparisons identified 449 known and 324 novel lncRNAs that showed differential expression patterns. GO and KEGG pathway enrichment analyses revealed that the targeted genes were involved in metabolic pathways regulating testis development and spermatogenesis, such as the TGF-beta pathway, the PI3K-Akt pathway, the Wnt/β-catenin pathway, and the AMPK pathway. Using this information, we predicted some lncRNAs and coding gene pairs were predicted that may function in testis development and spermatogenesis; these are listed in detail. This study has provided the most comprehensive catalog to date of lncRNAs in the postnatal pig testis and will aid our understanding of their functional roles in testis development and spermatogenesis. Copyright © 2017. Published by Elsevier Inc.
A blood-testis barrier restricting passage from blood into rete testis fluid but not into lymph
Setchell, B. P.; Voglmayr, J. K.; Waites, G. M. H.
1969-01-01
1. A permeability barrier in or around the seminiferous tubules of rams has been demonstrated by studying the rate of passage of a variety of substances from blood plasma into fluid collected from the rete testis and into testicular lymph. 2. All substances studied passed readily into testicular lymph. 3. Tritiated water, urea, ethanol and bicarbonate in rete testis fluid equilibrated with blood plasma within 3 hr; Na+, K+, Rb+, Cl-, I-, CNS-, creatinine and galactose entered slowly and p-aminohippurate (PAH), glutamate, iodinated albumin, inulin and [51Cr]EDTA did not appear in rete testis fluid at all. 4. Rubidium was excluded relative to iodoantipyrine from the testes of control and hypophysectomized rats and from rat testes heated to 37, 40, 43 and 45° C; no such exclusion was seen in testes of rats which had been given cadmium chloride 5 months earlier so as to destroy the seminiferous tubules. 5. It is suggested that this permeability barrier will regulate the access to the seminiferous epithelium of some constituents of blood plasma, isolate the germinal cells immunologically and help to maintain the concentration differences between rete testis fluid and lymph or blood plasma. PMID:4973530
Meng, Xian-liang; Liu, Ping; Jia, Fu-long; Li, Jian; Gao, Bao-Quan
2015-01-01
The swimming crab Portunus trituberculatus is a commercially important crab species in East Asia countries. Gonadal development is a physiological process of great significance to the reproduction as well as commercial seed production for P. trituberculatus. However, little is currently known about the molecular mechanisms governing the developmental processes of gonads in this species. To open avenues of molecular research on P. trituberculatus gonadal development, Illumina paired-end sequencing technology was employed to develop deep-coverage transcriptome sequencing data for its gonads. Illumina sequencing generated 58,429,148 and 70,474,978 high-quality reads from the ovary and testis cDNA library, respectively. All these reads were assembled into 54,960 unigenes with an average sequence length of 879 bp, of which 12,340 unigenes (22.45% of the total) matched sequences in GenBank non-redundant database. Based on our transcriptome analysis as well as published literature, a number of candidate genes potentially involved in the regulation of gonadal development of P. trituberculatus were identified, such as FAOMeT, mPRγ, PGMRC1, PGDS, PGER4, 3β-HSD and 17β-HSDs. Differential expression analysis generated 5,919 differentially expressed genes between ovary and testis, among which many genes related to gametogenesis and several genes previously reported to be critical in differentiation and development of gonads were found, including Foxl2, Wnt4, Fst, Fem-1 and Sox9. Furthermore, 28,534 SSRs and 111,646 high-quality SNPs were identified in this transcriptome dataset. This work represents the first transcriptome analysis of P. trituberculatus gonads using the next generation sequencing technology and provides a valuable dataset for understanding molecular mechanisms controlling development of gonads and facilitating future investigation of reproductive biology in this species. The molecular markers obtained in this study will provide a fundamental basis for population genetics and functional genomics in P. trituberculatus and other closely related species. PMID:26042806
Tan, Fu-Qing; Ma, Xiao-Xin; Zhu, Jun-Quan; Yang, Wan-Xi
2013-12-10
In this study, we investigated the gene sequence and characteristic of kifc1 in Sepiella maindroni through PCR and RACE technology. Our research aimed particularly at the spatio-temporal expression pattern of kifc1 in the developmental testis through in situ hybridization. The particular role of kifc1 in the spermatogenesis of S. maindroni was our particular interest. Based on multiple protein sequence alignments of KIFC1 homologues, kifc1 gene from the testis of S. maindroni was identified, which consisted of 2432bp including a 2109 in-frame ORF corresponding to 703 continuous amino acids. The encoded polypeptide shared highest similarity with Octopus tankahkeei. Through the prediction of the secondary and tertiary structures, the motor domain of KIFC1 was conserved at the C-terminal, having putative ATP-binding and microtubule-binding motifs, while the N-terminal was more specific to bind various cargoes for cellular events. The stalk domain connecting between the C-terminal and N-terminal determined the direction of movement. According to RT-PCR results, the kifc1 gene is not tissue-specific, commonly detected in different tissues, for example, the testis, liver, stomach, muscle, caecum and gills. Through an in situ hybridization method, the expression pattern of KIFC1 protein mimics in the spermatogenesis of S. maindroni. During the primary stage of the spermatogenesis, the kifc1 mRNA signal was barely detectable. At the early spermatids, the signal started to be present. With the elongation of spermatids, the signals increased substantially. It peaked and gathered around the acrosome area when the spermatids began to transform to spindle shape. As the spermatids developed into mature sperm, the signal vanished. In summary, the expression of kfic1 at specific stages during spermiogenesis and its distribution shed light on the potential functions of this motor in major cytological transformations. The KIFC1 homologue may provide a direct shaping force to the nucleus or influence the shaping process through indirect regulation. © 2013.
Di, Cui-xia; Han, Lu; Zhang, Hong; Xu, Shuai; Mao, Ai-hong; Sun, Chao; Liu, Yang; Si, Jing; Li, Hong-yan; Zhou, Xin; Liu, Bing; Miao, Guo-ying
2015-01-01
Diallyl disulfide (DADS), a major organosulfur compound derived from garlic, has various biological properties, including anti-cancer effects. However, the protective mechanism of DADS against radiation-induced mouse testis cell apoptosis has not been elucidated. In this study, the magnitude of radiation effects evoked by carbon ion irradiation was marked by morphology changes, significant rise in apoptotic cells, activation expression of p53, up regulation the ratio of pro-apoptotic Tap73/anti-apoptotic ΔNp73, as well as alterations of crucial mediator of the mitochondrial pathway. Interestingly, pretreatment with DADS attenuated carbon ion irradiation-induced morphology damages and apoptotic cells. Additionally, DADS elevated radiation-induced p53 and p21 expression, suggesting that p53 might be involved in the inhibition of cell cycle progression through up regulation of p21. Furthermore, administration with DADS prevented radiation-induced Tap73/ΔNp73 expression and consequently down regulated Bax/Bcl-2 ratio, cytochrome c release and caspase-3 expression, indicating that the balance between Tap73 and ΔNp73 had potential to activate p53 responsive genes. Thus, our results showed that radio protection effect of DADS on mouse testis is mediated by blocking apoptosis through changing the ratio of Tap73/ΔNp73 via mitochondrial pathway, suggesting that DADS could be used as a potential radio protection agent for the testis against heavy-ion radiation. PMID:26526304
Hu, Qiaomu; Zhu, Ying; Liu, Yang; Wang, Na; Chen, Songlin
2014-11-24
Wnt4 gene plays a role in developmental processes in mammals. However, little is known regarding its function in teleosts. We cloned and characterized the full-length half-smooth tongue sole (Cynoglossus semilaevis) wnt4a gene (CS-wnt4a). CS-wnt4a cDNA was 1746 bp in length encoding 353aa. CS-wnt4a expression level was highest in the testis, and gradually increased in the developing gonads until 1 year of age. In situ hybridization revealed that CS-wnt4a expression level was highest in stage II oocytes and sperm in the adult ovary and testis, respectively. CS-wnt4a expression level was significantly up-regulated in the gonads after exposure to high temperature. The level of methylation of the CS-wnt4a first exon was negatively correlated with the expression of CS-wnt4a. The branch-site model suggested that vertebrate wnt4a differed significantly from that of wnt4b, and that the selective pressures differed between ancestral aquatic and terrestrial organisms. Two positively selected sites were found in the ancestral lineages of teleost fish, but none in the ancestral lineages of mammals. One positively selected site was located on the α-helices of the 3D structure, the other on the random coil. Our results are of value for further study of the function of wnt4 and the mechanism of selection.
NASA Astrophysics Data System (ADS)
Hu, Qiaomu; Zhu, Ying; Liu, Yang; Wang, Na; Chen, Songlin
2014-11-01
Wnt4 gene plays a role in developmental processes in mammals. However, little is known regarding its function in teleosts. We cloned and characterized the full-length half-smooth tongue sole (Cynoglossus semilaevis) wnt4a gene (CS-wnt4a). CS-wnt4a cDNA was 1746 bp in length encoding 353aa. CS-wnt4a expression level was highest in the testis, and gradually increased in the developing gonads until 1 year of age. In situ hybridization revealed that CS-wnt4a expression level was highest in stage II oocytes and sperm in the adult ovary and testis, respectively. CS-wnt4a expression level was significantly up-regulated in the gonads after exposure to high temperature. The level of methylation of the CS-wnt4a first exon was negatively correlated with the expression of CS-wnt4a. The branch-site model suggested that vertebrate wnt4a differed significantly from that of wnt4b, and that the selective pressures differed between ancestral aquatic and terrestrial organisms. Two positively selected sites were found in the ancestral lineages of teleost fish, but none in the ancestral lineages of mammals. One positively selected site was located on the α-helices of the 3D structure, the other on the random coil. Our results are of value for further study of the function of wnt4 and the mechanism of selection.
Tzfp represses the androgen receptor in mouse testis.
Furu, Kari; Klungland, Arne
2013-01-01
The testis zinc finger protein (Tzfp), also known as Repressor of GATA, belongs to the BTB/POZ zinc finger family of transcription factors and is thought to play a role in spermatogenesis due to its remarkably high expression in testis. Despite many attempts to find the in vivo role of the protein, the molecular function is still largely unknown. Here, we address this issue using a novel mouse model with a disrupted Tzfp gene. Homozygous Tzfp null mice are born at reduced frequency but appear viable and fertile. Sertoli cells in testes lacking Tzfp display an increase in Androgen Receptor (AR) signaling, and several genes in the testis, including Gata1, Aie1 and Fanc, show increased expression. Our results indicate that Tzfp function as a transcriptional regulator and that loss of the protein leads to alterations in AR signaling and reduced number of apoptotic cells in the testicular tubules.
Testis development, fertility, and survival in Ethanolamine kinase 2-deficient mice.
Gustin, Sonja E; Western, Patrick S; McClive, Peter J; Harley, Vincent R; Koopman, Peter A; Sinclair, Andrew H
2008-12-01
Ethanolamine kinase 2 (Eki2) was previously isolated from a differential expression screen designed to identify candidate genes involved in testis development and differentiation. In mouse, Eki2 is specifically up-regulated in Sertoli cells of the developing testis at the time of sex determination. Based on this expression profile, Eki2 was considered a good candidate testis-determining gene. To investigate a possible role of Eki2 in testis development, we have generated a mouse with targeted disruption of the Eki2 gene by using an EGFP replacement strategy. No abnormalities were detected in the Eki2-deficient mice with regard to embryonic and adult testis morphology, differentiation, function, or fertility. Furthermore, no significant differences were observed in litter sizes, pup mortality rates, or distribution of the sexes among the offspring. Ethanolamine kinases are involved in the biosynthesis of phosphatidylethanolamine, a major membrane phospholipid. Expression analysis indicates that the absence of an apparent phenotype in the Eki2-deficient mice may be due to compensation by Eki2-family members or the activation of an alternative pathway to generate phosphatidylethanolamine. Expression of EGFP in this mouse model enabled the isolation of gonad cell populations, providing a useful resource from which to obtain relatively pure early steroidogenic cells for further studies.
Regulation of Sex Determination in Mice by a Non-coding Genomic Region
Arboleda, Valerie A.; Fleming, Alice; Barseghyan, Hayk; Délot, Emmanuèle; Sinsheimer, Janet S.; Vilain, Eric
2014-01-01
To identify novel genomic regions that regulate sex determination, we utilized the powerful C57BL/6J-YPOS (B6-YPOS) model of XY sex reversal where mice with autosomes from the B6 strain and a Y chromosome from a wild-derived strain, Mus domesticus poschiavinus (YPOS), show complete sex reversal. In B6-YPOS, the presence of a 55-Mb congenic region on chromosome 11 protects from sex reversal in a dose-dependent manner. Using mouse genetic backcross designs and high-density SNP arrays, we narrowed the congenic region to a 1.62-Mb genomic region on chromosome 11 that confers 80% protection from B6-YPOS sex reversal when one copy is present and complete protection when two copies are present. It was previously believed that the protective congenic region originated from the 129S1/SviMJ (129) strain. However, genomic analysis revealed that this region is not derived from 129 and most likely is derived from the semi-inbred strain POSA. We show that the small 1.62-Mb congenic region that protects against B6-YPOS sex reversal is located within the Sox9 promoter and promotes the expression of Sox9, thereby driving testis development within the B6-YPOS background. Through 30 years of backcrossing, this congenic region was maintained, as it promoted male sex determination and fertility despite the female-promoting B6-YPOS genetic background. Our findings demonstrate that long-range enhancer regions are critical to developmental processes and can be used to identify the complex interplay between genome variants, epigenetics, and developmental gene regulation. PMID:24793290
[The regulation of FSH release by the testis. Studies on inhibin].
Krause, W
1977-05-12
The FSH release from the hypophysis is suggested to be particularly regulated by a testicular hormone called inhibin. Origin, structure and target organs of inhibin are unknown. Experiments to test some hypotheses in this field are described. Adult male rats, prenatally treated with busulfan, show only Sertoli cells in the semiferous tubules. Experimental cryptorchidism and orchidectomy, however, leads to an increase in FSH levels as observed in normal animals. This indicates the role of Sertoli cells in FSH regulation. Ligation of efferent ducts of testes leads to an increase of FSH levels, too, indicating that an FSH-inhibiting principle cannot be absorbed. Interstitial testis fluid (ITF) of normal rats was applicated to immature female rats. Their FSH release is inhibited, visible in the lower ovarian weight gain following additional hCG-administration. Orchidectomized animals react with a decrease of FSH levels to the application of ITF. Therefore ITF seems to contain a FSH-inhibiting factor. Androgen binding protein-content of epididymes, however, is increased after repeated injections of ITF. It is concluded that testis (probably the Sertoli cells) produces a FSH-inhibiting factor, but ITF contains only small amounts of inhibin.
Anderson, Ashley K.; Ohler, Uwe; Wassarman, David A.
2012-01-01
To investigate the importance of core promoter elements for tissue-specific transcription of RNA polymerase II genes, we examined testis-specific transcription in Drosophila melanogaster. Bioinformatic analyses of core promoter sequences from 190 genes that are specifically expressed in testes identified a 10 bp A/T-rich motif that is identical to the translational control element (TCE). The TCE functions in the 5′ untranslated region of Mst(3)CGP mRNAs to repress translation, and it also functions in a heterologous gene to regulate transcription. We found that among genes with focused initiation patterns, the TCE is significantly enriched in core promoters of genes that are specifically expressed in testes but not in core promoters of genes that are specifically expressed in other tissues. The TCE is variably located in core promoters and is conserved in melanogaster subgroup species, but conservation dramatically drops in more distant species. In transgenic flies, short (300–400 bp) genomic regions containing a TCE directed testis-specific transcription of a reporter gene. Mutation of the TCE significantly reduced but did not abolish reporter gene transcription indicating that the TCE is important but not essential for transcription activation. Finally, mutation of testis-specific TFIID (tTFIID) subunits significantly reduced the transcription of a subset of endogenous TCE-containing but not TCE-lacking genes, suggesting that tTFIID activity is limited to TCE-containing genes but that tTFIID is not an obligatory regulator of TCE-containing genes. Thus, the TCE is a core promoter element in a subset of genes that are specifically expressed in testes. Furthermore, the TCE regulates transcription in the context of short genomic regions, from variable locations in the core promoter, and both dependently and independently of tTFIID. These findings set the stage for determining the mechanism by which the TCE regulates testis-specific transcription and understanding the dual role of the TCE in translational and transcriptional regulation. PMID:22984601
Katzenberger, Rebeccah J; Rach, Elizabeth A; Anderson, Ashley K; Ohler, Uwe; Wassarman, David A
2012-01-01
To investigate the importance of core promoter elements for tissue-specific transcription of RNA polymerase II genes, we examined testis-specific transcription in Drosophila melanogaster. Bioinformatic analyses of core promoter sequences from 190 genes that are specifically expressed in testes identified a 10 bp A/T-rich motif that is identical to the translational control element (TCE). The TCE functions in the 5' untranslated region of Mst(3)CGP mRNAs to repress translation, and it also functions in a heterologous gene to regulate transcription. We found that among genes with focused initiation patterns, the TCE is significantly enriched in core promoters of genes that are specifically expressed in testes but not in core promoters of genes that are specifically expressed in other tissues. The TCE is variably located in core promoters and is conserved in melanogaster subgroup species, but conservation dramatically drops in more distant species. In transgenic flies, short (300-400 bp) genomic regions containing a TCE directed testis-specific transcription of a reporter gene. Mutation of the TCE significantly reduced but did not abolish reporter gene transcription indicating that the TCE is important but not essential for transcription activation. Finally, mutation of testis-specific TFIID (tTFIID) subunits significantly reduced the transcription of a subset of endogenous TCE-containing but not TCE-lacking genes, suggesting that tTFIID activity is limited to TCE-containing genes but that tTFIID is not an obligatory regulator of TCE-containing genes. Thus, the TCE is a core promoter element in a subset of genes that are specifically expressed in testes. Furthermore, the TCE regulates transcription in the context of short genomic regions, from variable locations in the core promoter, and both dependently and independently of tTFIID. These findings set the stage for determining the mechanism by which the TCE regulates testis-specific transcription and understanding the dual role of the TCE in translational and transcriptional regulation.
Vaucher, Laurent; Funaro, Michael G; Mehta, Akanksha; Mielnik, Anna; Bolyakov, Alexander; Prossnitz, Eric R; Schlegel, Peter N; Paduch, Darius A
2014-01-01
Estradiol (E2) modulates testicular functions including steroidogenesis, but the mechanisms of E2 signaling in human testis are poorly understood. GPER-1 (GPR30), a G protein-coupled membrane receptor, mediates rapid genomic and non-genomic response to estrogens. The aim of this study was to evaluate GPER-1 expression in the testis, and its role in estradiol dependent regulation of steroidogenesis in isolated rat Leydig cells and human testis. Isolated Leydig cells (LC) from adult rats and human testicular tissue were used in this study. Expression and localization studies of GPER-1 were performed with qRT-PCR, immunofluorescence, immunohistochemistry and Western Blot. Luteinizing Hormone (LH) -stimulated, isolated LC were incubated with estradiol, G-1 (GPER-1-selective agonist), and estrogen receptor antagonist ICI 182,780. Testosterone production was measured with radioimmunoassay. LC viability after incubation with G-1 was measured using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. GPER-1 mRNA is abundantly expressed in rat LC and human testis. Co-localization experiments showed high expression levels of GPER-1 protein in LC. E2-dependent activation of GPER-1 lowers testosterone production in isolated rats LCs and in human testis, with statistically and clinically significant drops in testosterone production by 20-30% as compared to estradiol-naïve LC. The exposure to G-1 does not affect viability of isolated LCs. Our results indicate that activation of GPER-1 lowers testosterone levels in the rat and human testis. The expression of GPER-1 in human testis, which lack ERα, makes it an exciting target for developing new agents affecting testosterone production in men.
Jiang, Mei; Gao, Zhengliang; Wang, Jian; Nurminsky, Dmitry I
2018-01-01
To analyze transcription factors involved in gene regulation by testis-specific TAF (tTAF), tTAF-dependent promoters were mapped and analyzed in silico. Core promoters show decreased AT content, paucity of classical promoter motifs, and enrichment with translation control element CAAAATTY. Scanning of putative regulatory regions for known position frequency matrices identified 19 transcription regulators possibly contributing to tTAF-driven gene expression. Decreased male fertility associated with mutation in one of the regulators, Acj6, indicates its involvement in male reproduction. Transcriptome study of testes from male mutants for tTAF, Acj6, and previously characterized tTAF-interacting factor Modulo implies the existence of a regulatory hierarchy of tTAF, Modulo and Acj6, in which Modulo and/or Acj6 regulate one-third of tTAF-dependent genes. © 2017 Federation of European Biochemical Societies.
NASA Astrophysics Data System (ADS)
Han, Tiantian; Ma, Xiaoshi; Liang, Shaoshuai; Gao, Beibei; Zhang, Zhifeng
2015-12-01
Prohibitin (PHB) participates in several biological processes including apoptosis, transcription regulation and suppression of cell proliferation in mammals. In this study, we cloned the full-length cDNA of prohibitin 2 ( Cf-phb2) from the testis of scallop ( Chlamys farreri). The deduced amino acid sequence presented a characteristic of PHB family with the PHB domain, and clustered with PHB2 of other species. Temporal and spatial expression of Cf-phb2 in testis during the reproductive cycle was detected by quantitative real-time PCR (qRT-PCR) and in situ hybridization. The expression of Cf-phb2 in the testis increased when testis developed from the resting stage to mature stage. The mRNA abundance of Cf-phb2 was the highest at mature stage, which was about 15-fold higher than that at proliferative stage. The expression of Cf-phb2 could be detected by in situ hybridization in all types of germ cells in testis, including spermatogonia, spermatocytes, spermatids and spermatozoa. The intensity of the signal increased with the spermatogenesis and was the highest in spermatids, which suggested that CF-PHB2 might affect the spermatogenesis of C. farreri.
Archambeault, Denise R.; Yao, Humphrey Hung-Chang
2014-01-01
ABSTRACT As the central component of canonical TGFbeta superfamily signaling, SMAD4 is a critical regulator of organ development, patterning, tumorigenesis, and many other biological processes. Because numerous TGFbeta superfamily ligands are expressed in developing testes, there may exist specific requirements for SMAD4 in individual testicular cell types. Previously, we reported that expansion of the fetal testis cords requires expression of SMAD4 by the Sertoli cell lineage. To further uncover the role of Smad4 in murine testes, we produced conditional knockout mice lacking Smad4 in either Leydig cells or in both Sertoli and Leydig cells simultaneously. Loss of Smad4 concomitantly in Sertoli and Leydig cells led to underdevelopment of the testis cords during fetal life and mild testicular dysgenesis in young adulthood (decreased testis size, partially dysgenic seminiferous tubules, and low sperm production). When the Sertoli/Leydig cell Smad4 conditional knockout mice aged (56- to 62-wk old), the testis phenotypes became exacerbated with the appearance of hemorrhagic tumors, Leydig cell adenomas, and a complete loss of spermatogenesis. In contrast, loss of Smad4 in Leydig cells alone did not appreciably alter fetal and adult testis development. Our findings support a cell type-specific requirement of Smad4 in testis development and suppression of testicular tumors. PMID:24501173
Identification and characterization of Rhox13, a novel X-linked mouse homeobox gene
Geyer, Christopher B.; Eddy, Edward M.
2008-01-01
Homeobox genes encode transcription factors whose expression organizes programs of development. A number of homeobox genes expressed in reproductive tissues have been identified recently, including a colinear cluster on the X chromosome in mice. This has led to an increased interest in understanding the role(s) of homeobox genes in regulating development of reproductive tissues including the testis, ovary, and placenta. Here we report the identification and characterization of a novel homeobox gene of the paired-like class on the X chromosome distal to the reproductive homeobox (Rhox) cluster in mice. Transcripts are found in the testis and ovary as early as 13.5 days post-coitum (dpc). Transcription ceases in the ovary by 3 days post-partum (dpp), but continues in the testis through adulthood. The Rhox13 gene encodes a 25.3 kDa protein expressed in the adult testis in germ cells at the basal aspect of the seminiferous epithelium. PMID:18675325
Zhang, Ling; Zhang, Hui; Zhang, Huan; Benson, Mikael; Han, Xiaodong; Li, Dongmei
2017-07-01
In the present study, we evaluated the toxic effects on the testis of the male offspring of MC-LR exposure during fetal and lactational periods. Pregnant females were distributed into two experimental groups: control group and MC-LR group which were exposed to 0 and 10 μg/L of MC-LR, respectively, through drinking water separately during fetal and lactational periods. At the age of 30 days after birth, the male offspring were euthanized. The body weight, testis index, and histomorphology change were observed and the global changes of piwi-interacting RNA (piRNA) expression were evaluated. The results revealed that MC-LR was found in the testis of male offspring, body weight and testis index decreased significantly, and testicular tissue structure was damaged in the MC-LR group. In addition, the exposure to MC-LR resulted in an altered piRNA expression profile and an increase of the cell apoptosis and a decrease of the cell proliferation in the testis of the male offspring. It was reasonable to speculate that the toxic effects on reproductive system of the male offspring in MC-LR group might be mediated by piRNAs through the regulation of the target genes. As far as we are aware, this is the first report showing that MC-LR could play a role in disorder of proliferative and cell apoptosis in the testis of the male offspring by the maternal transmission effect of toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Human Fetal Testis Xenografts Are Resistant to Phthalate-Induced Endocrine Disruption
Heger, Nicholas E; Hall, Susan J; Sandrof, Moses A; McDonnell, Elizabeth V; Hensley, Janan B; McDowell, Erin N; Martin, Kayla A; Gaido, Kevin W; Johnson, Kamin J
2012-01-01
Background: In utero exposure to endocrine-disrupting chemicals may contribute to testicular dysgenesis syndrome (TDS), a proposed constellation of increasingly common male reproductive tract abnormalities (including hypospadias, cryptorchidism, hypospermatogenesis, and testicular cancer). Male rats exposed in utero to certain phthalate plasticizers exhibit multinucleated germ cell (MNG) induction and suppressed steroidogenic gene expression and testosterone production in the fetal testis, causing TDS-consistent effects of hypospadias and cryptorchidism. Mice exposed to phthalates in utero exhibit MNG induction only. This disparity in response demonstrates a species-specific sensitivity to phthalate-induced suppression of fetal Leydig cell steroidogenesis. Importantly, ex vivo phthalate exposure of the fetal testis does not recapitulate the species-specific endocrine disruption, demonstrating the need for a new bioassay to assess the human response to phthalates. Objectives: In this study, we aimed to develop and validate a rat and mouse testis xenograft bioassay of phthalate exposure and examine the human fetal testis response. Methods: Fetal rat, mouse, and human testes were xenografted into immunodeficient rodent hosts, and hosts were gavaged with a range of phthalate doses over multiple days. Xenografts were harvested and assessed for histopathology and steroidogenic end points. Results: Consistent with the in utero response, phthalate exposure induced MNG formation in rat and mouse xenografts, but only rats exhibited suppressed steroidogenesis. Across a range of doses, human fetal testis xenografts exhibited MNG induction but were resistant to suppression of steroidogenic gene expression. Conclusions: Phthalate exposure of grafted human fetal testis altered fetal germ cells but did not reduce expression of genes that regulate fetal testosterone biosynthesis. PMID:22511013
Gungor-Ordueri, N. Ece; Celik-Ozenci, Ciler
2014-01-01
In the testis, spermatids are polarized cells, with their heads pointing toward the basement membrane during maturation. This polarity is crucial to pack the maximal number of spermatids in the seminiferous epithelium so that millions of sperms can be produced daily. A loss of spermatid polarity is detected after rodents are exposed to toxicants (e.g., cadmium) or nonhormonal male contraceptives (e.g., adjudin), which is associated with a disruption on the expression and/or localization of polarity proteins. In the rat testis, fascin 1, an actin-bundling protein found in mammalian cells, was expressed by Sertoli and germ cells. Fascin 1 was a component of the ectoplasmic specialization (ES), a testis-specific anchoring junction known to confer spermatid adhesion and polarity. Its expression in the seminiferous epithelium was stage specific. Fascin 1 was localized to the basal ES at the Sertoli cell-cell interface of the blood-testis barrier in all stages of the epithelial cycle, except it diminished considerably at late stage VIII. Fascin 1 was highly expressed at the apical ES at stage VII–early stage VIII and restricted to the step 19 spermatids. Its knockdown by RNAi that silenced fascin 1 by ∼70% in Sertoli cells cultured in vitro was found to perturb the tight junction-permeability barrier via a disruption of F-actin organization. Knockdown of fascin 1 in vivo by ∼60–70% induced defects in spermatid polarity, which was mediated by a mislocalization and/or downregulation of actin-bundling proteins Eps8 and palladin, thereby impeding F-actin organization and disrupting spermatid polarity. In summary, these findings provide insightful information on spermatid polarity regulation. PMID:25159326
Tully, Douglas B; Bao, Wenjun; Goetz, Amber K; Blystone, Chad R; Ren, Hongzu; Schmid, Judith E; Strader, Lillian F; Wood, Carmen R; Best, Deborah S; Narotsky, Michael G; Wolf, Douglas C; Rockett, John C; Dix, David J
2006-09-15
Four triazole fungicides were studied using toxicogenomic techniques to identify potential mechanisms of action. Adult male Sprague-Dawley rats were dosed for 14 days by gavage with fluconazole, myclobutanil, propiconazole, or triadimefon. Following exposure, serum was collected for hormone measurements, and liver and testes were collected for histology, enzyme biochemistry, or gene expression profiling. Body and testis weights were unaffected, but liver weights were significantly increased by all four triazoles, and hepatocytes exhibited centrilobular hypertrophy. Myclobutanil exposure increased serum testosterone and decreased sperm motility, but no treatment-related testis histopathology was observed. We hypothesized that gene expression profiles would identify potential mechanisms of toxicity and used DNA microarrays and quantitative real-time PCR (qPCR) to generate profiles. Triazole fungicides are designed to inhibit fungal cytochrome P450 (CYP) 51 enzyme but can also modulate the expression and function of mammalian CYP genes and enzymes. Triazoles affected the expression of numerous CYP genes in rat liver and testis, including multiple Cyp2c and Cyp3a isoforms as well as other xenobiotic metabolizing enzyme (XME) and transporter genes. For some genes, such as Ces2 and Udpgtr2, all four triazoles had similar effects on expression, suggesting possible common mechanisms of action. Many of these CYP, XME and transporter genes are regulated by xeno-sensing nuclear receptors, and hierarchical clustering of CAR/PXR-regulated genes demonstrated the similarities of toxicogenomic responses in liver between all four triazoles and in testis between myclobutanil and triadimefon. Triazoles also affected expression of multiple genes involved in steroid hormone metabolism in the two tissues. Thus, gene expression profiles helped identify possible toxicological mechanisms of the triazole fungicides.
Essential role of citron kinase in cytokinesis of spermatogenic precursors.
Cunto, Ferdinando Di; Imarisio, Sara; Camera, Paola; Boitani, Carla; Altruda, Fiorella; Silengo, Lorenzo
2002-12-15
During spermatogenesis, the first morphological indication of spermatogonia differentiation is incomplete cytokinesis, followed by the assembly of stable intercellular cytoplasmic communications. This distinctive feature of differentiating male germ cells has been highly conserved during evolution, suggesting that regulation of the cytokinesis endgame is a crucial aspect of spermatogenesis. However, the molecular mechanisms underlying testis-specific regulation of cytokinesis are still largely unknown. Citron kinase is a myotonin-related protein acting downstream of the GTPase Rho in cytokinesis control. We previously reported that Citron kinase knockout mice are affected by a complex neurological syndrome caused by cytokinesis block and apoptosis of specific neuronal precursors. In this report we show that, in addition, these mice display a dramatic testicular impairment, with embryonic and postnatal loss of undifferentiated germ cells and complete absence of mature spermatocytes. By contrast, the ovaries of mutant females appear essentially normal. Developmental analysis revealed that the cellular depletion observed in mutant testes is caused by increased apoptosis of undifferentiated and differentiating precursors. The same cells display a severe cytokinesis defect, resulting in the production of multinucleated cells and apoptosis. Our data indicate that Citron kinase is specifically required for cytokinesis of the male germ line.
USDA-ARS?s Scientific Manuscript database
Host cytoskeletons facilitate the entry, replication and egress of viruses; because cytoskeletons are essential for viral survival, one mechanism of resisting viral infections involves regulating cytoskeletal polymerization/depolymerization. However, the molecular mechanisms of regulating these chan...
Valero, Yulema; Arizcun, Marta; Esteban, M. Ángeles; Bandín, Isabel; Olveira, José G.; Patel, Sonal; Cuesta, Alberto; Chaves-Pozo, Elena
2015-01-01
Viruses are threatening pathogens for fish aquaculture. Some of them are transmitted through gonad fluids or gametes as occurs with nervous necrosis virus (NNV). In order to be transmitted through the gonad, the virus should colonize and replicate inside some cell types of this tissue and avoid the subsequent immune response locally. However, whether NNV colonizes the gonad, the cell types that are infected, and how the immune response in the gonad is regulated has never been studied. We have demonstrated for the first time the presence and localization of NNV into the testis after an experimental infection in the European sea bass (Dicentrarchus labrax), and in the gilthead seabream (Sparus aurata), a very susceptible and an asymptomatic host fish species, respectively. Thus, we localized in the testis viral RNA in both species using in situ PCR and viral proteins in gilthead seabream by immunohistochemistry, suggesting that males might also transmit the virus. In addition, we were able to isolate infective particles from the testis of both species demonstrating that NNV colonizes and replicates into the testis of both species. Blood contamination of the tissues sampled was discarded by completely fish bleeding, furthermore the in situ PCR and immunocytochemistry techniques never showed staining in blood vessels or cells. Moreover, we also determined how the immune and reproductive functions are affected comparing the effects in the testis with those found in the brain, the main target tissue of the virus. Interestingly, NNV triggered the immune response in the European sea bass but not in the gilthead seabream testis. Regarding reproductive functions, NNV infection alters 17β-estradiol and 11-ketotestosterone production and the potential sensitivity of brain and testis to these hormones, whereas there is no disruption of testicular functions according to several reproductive parameters. Moreover, we have also studied the NNV infection of the testis in vitro to assess local responses. Our in vitro results show that the changes observed on the expression of immune and reproductive genes in the testis of both species are different to those observed upon in vivo infections in most of the cases. PMID:26691348
Papp, S; Robaire, B; Hermo, L
1994-11-01
Glutathione S-transferases (GSTs) are a family of isozymes that catalyze the conjugation of glutathione with various toxic electrophilic compounds. GSTs are composed of several classes based on the degree of sequence homology of their subunits. The Yo subunit, a member of the mu class, is expressed at high levels in the testis and epididymis. The purpose of this study was to immunolocalize the GST-Yo in these tissues during development. The testes and epididymides of rats aged 7, 15, 21, 28, 39, 42, 45, 49, and 56 days were fixed in Bouin's fixative, and immunostained for light microscopic analysis. In the testis the cytoplasm of all germ cells was unreactive until day 39. At that time, step 18 spermatids appeared moderately reactive, while the few observed step 19 spermatids were intensely reactive as were their residual bodies. The presence of residual bodies indicates that spermiation takes place as early as day 39; however, the number of step 19 spermatids is low at this age. A progressive increase in the size of the tubule and number of elongating spermatids was seen between days 42 and 49. In addition, by day 49, a weak staining was observed in steps 12-15, moderate in steps 16-17, and intense in steps 18-19 spermatids. In terms of the intensity of staining, cell types stained, size of the tubules, and number of elongating spermatids, no difference was noted between day 49, 56, and adult animals. Thus Yo protein expression in germ cells reached maturity by day 49. The epithelial cells of the rete testis were intensely reactive at day 7 and remained so throughout development. In contrast, while the epithelial cells of the efferent ducts at day 7 were intensely reactive, they were weakly reactive by day 39 and remained so at later ages. Along the entire epididymis, the columnar epithelial cells showed a moderate apical/supranuclear reaction from day 7 to 28. By day 39 principal cells of the initial segment became weakly reactive, while those in the caput and corpus were moderately stained, a situation seen at later ages including adults. Only by day 49 did principal cells of the proximal cauda become moderately stained as seen in adult animals. Thus the expression of the Yo protein in the principal cells of the proximal cauda may be regulated by different factors than those of the caput and corpus epididymidis. Alternatively, the expression of the Yo subunit in principal cells of the proximal cauda may develop later since this region would be the last to receive luminally derived testicular products. In the initial segment, the decrease in staining of principal cells at day 39 may be due to an inhibiting factor emanating from the testis. Spermatozoa appeared in the lumen of each epididymal region well after the expression of Yo had reached its adult staining pattern indicating that they are not a factor. Overall these results suggest that the expression of GST-Yo in the various cells of the testis and epididymis are controlled by different factors during postnatal development.
Bi-directional gap junction-mediated soma-germline communication is essential for spermatogenesis.
Smendziuk, Christopher M; Messenberg, Anat; Vogl, A Wayne; Tanentzapf, Guy
2015-08-01
Soma-germline interactions play conserved essential roles in regulating cell proliferation, differentiation, patterning and homeostasis in the gonad. In the Drosophila testis, secreted signalling molecules of the JAK-STAT, Hedgehog, BMP and EGF pathways are used to mediate soma-germline communication. Here, we demonstrate that gap junctions may also mediate direct, bi-directional signalling between the soma and germ line. When gap junctions between the soma and germ line are disrupted, germline differentiation is blocked and germline stem cells are not maintained. In the soma, gap junctions are required to regulate proliferation and differentiation. Localization and RNAi-mediated knockdown studies reveal that gap junctions in the fly testis are heterotypic channels containing Zpg (Inx4) and Inx2 on the germ line and the soma side, respectively. Overall, our results show that bi-directional gap junction-mediated signalling is essential to coordinate the soma and germ line to ensure proper spermatogenesis in Drosophila. Moreover, we show that stem cell maintenance and differentiation in the testis are directed by gap junction-derived cues. © 2015. Published by The Company of Biologists Ltd.
Exposure to 2,4-dichlorophenoxyacetic acid induces oxidative stress and apoptosis in mouse testis.
Zhang, Dalei; Wu, Yaling; Yuan, Yangyang; Liu, Wenwen; Kuang, Haibin; Yang, Jianhua; Yang, Bei; Wu, Lei; Zou, Weiying; Xu, Changshui
2017-09-01
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is used worldwide. It has been associated with a variety of toxicities in rodents. In this study, male mice were orally administered 2,4-D at 50, 100 or 200mg/kg/day to investigate testicular toxicity and the possible mechanisms of action. Exposure to 2,4-D at high concentrations (100 and 200mg/kg/day) for 14 consecutive days caused spermatogenic disruption and seminiferous epithelial destruction. Furthermore, 2,4-D administration (100 and 200mg/kg/day) increased the formation of the lipid peroxidation product malondialdehyde and decreased activities of the antioxidant enzymes superoxide dismutase and catalase in the testis. Moreover, 2,4-D exposure up-regulated the expression of p53 and Bax protein and down-regulated the expression of Bcl-2 protein in the testis. These results demonstrate that oxidative stress and apoptosis may be involved in testicular toxicity induced by high concentrations of 2,4-D in mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Gonzalez, C R; Muscarsel Isla, M L; Fraunhoffer, N A; Leopardo, N P; Vitullo, A D
2012-08-01
Cell proliferation and cell death are essential processes in the physiology of the developing testis that strongly influence the normal adult spermatogenesis. We analysed in this study the morphometry, the expression of the proliferation cell nuclear antigen (PCNA), cell pluripotency marker OCT-4, germ cell marker VASA and apoptosis in the developing testes of Lagostomus maximus, a rodent in which female germ line develops through abolished apoptosis and unrestricted proliferation. Morphometry revealed an increment in the size of the seminiferous cords with increasing developmental age, arising from a significant increase of PCNA-positive germ cells and a stable proportion of PCNA-positive Sertoli cells. VASA showed a widespread cytoplasmic distribution in a great proportion of proliferating gonocytes that increased significantly at late development. In the somatic compartment, Leydig cells increased at mid-development, whereas peritubular cells showed a stable rate of proliferation. In contrast to other mammals, OCT-4 positive gonocytes increased throughout development reaching 90% of germ cells in late-developing testis, associated with a conspicuous increase in circulating FSH from mid- to late-gestation. TUNEL analysis was remarkable negative, and only a few positive cells were detected in the somatic compartment. These results show that the South American plains viscacha displays a distinctive pattern of testis development characterized by a sustained proliferation of germ cells throughout development, with no signs of apoptosis cell demise, in a peculiar endocrine in utero ambiance that seems to promote the increase of spermatogonial number as a primary direct effect of FSH.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Lin, Yi; Zhang, Xue-Ying; Wang, De-Hua
2015-06-01
Cold commonly affects growth and reproductive development in small mammals. Here, we test the hypothesis that low ambient temperature will affect growth and puberty onset, associated with altered hypothalamic Kiss-1 gene expression and serum leptin concentration in wild rodents. Male Brandt's voles ( Lasiopodomys brandtii) were exposed to cold (4 ± 1 °C) and warm (23 ± 1 °C) conditions from the birth and sacrificed on different developmental stages (day 26, day 40, day 60, and day 90, respectively). Brandt's voles increased the thermogenic capacity of brown adipose tissue, mobilized body fat, decreased serum leptin levels, and delayed the reproductive development especially on day 40 in the cold condition. They increased food intake to compensate for the high energy demands in the cold. The hypothalamic Kiss-1 gene expression on day 26 was decreased, associated with lower wet testis mass and testis testosterone concentration on day 40, in the cold-exposed voles compared to that in the warm. Serum leptin was positively correlated with body fat, testis mass, and testosterone concentration. These data suggested that cold exposure inhibited hypothalamic Kiss-1 gene expression during the early stage of development, decreased serum leptin concentration, and delayed reproductive development in male Brandt's voles.
Szczepny, Anette; Hogarth, Cathryn A; Young, Julia; Loveland, Kate L
2009-02-01
The Hedgehog (Hh) signaling pathway affects fetal testis growth. Recently, we described the dynamic cellular production of Hh signaling pathway components in juvenile and adult rodent testes. The Hh signaling is understood to regulate cord formation in the fetal testis, but minimal knowledge exists regarding how Hh signaling impacts the postnatal testis. To investigate this, we employed hanging drop cultures, which are used routinely in embryoid body formation. This approach has the advantage of using small media volume, and we examined its suitability for short-term culture of both murine embryonic gonads and adult testis tubules. The effects of cyclopamine, a specific Hh signaling inhibitor, were examined following culture of Embryonic Day 11.5 urogenital ridges (as control) and adult seminiferous tubule fragments for 24-48 h using histological, cell proliferation, and gene expression analyses. Cultured embryonic testes displayed generally normal cord structure, anti-Müllerian hormone (Amh) expression, and cell proliferation; known Hh target gene expression (Gli1, osteopontin, official symbol Spp1, and Amh) was altered in response to cyclopamine. Cultured adult tubules exhibited some loss of seminiferous epithelium organization over 48 h. Spermatogonia continued to proliferate, however, and no significant loss of viability was noted overall. Addition of cyclopamine significantly affected levels of Gli1, Igfbp6, Ccnd2 (cyclin D2), Ccnb1 (cyclin B1), Spp1, Kit, and Amh mRNAs; these genes have been shown previously to be expressed in Sertoli and germ cells. These novel results identify Hh target genes in the testis and demonstrate this signaling pathway likely affects cell survival and differentiation in the context of normal adult testis.
Szczepny, Anette; Hogarth, Cathryn A.; Young, Julia; Loveland, Kate L.
2008-01-01
The Hedgehog (Hh) signaling pathway affects fetal testis growth. Recently, we described the dynamic cellular production of Hh signaling pathway components in juvenile and adult rodent testes. The Hh signaling is understood to regulate cord formation in the fetal testis, but minimal knowledge exists regarding how Hh signaling impacts the postnatal testis. To investigate this, we employed hanging drop cultures, which are used routinely in embryoid body formation. This approach has the advantage of using small media volume, and we examined its suitability for short-term culture of both murine embryonic gonads and adult testis tubules. The effects of cyclopamine, a specific Hh signaling inhibitor, were examined following culture of Embryonic Day 11.5 urogenital ridges (as control) and adult seminiferous tubule fragments for 24–48 h using histological, cell proliferation, and gene expression analyses. Cultured embryonic testes displayed generally normal cord structure, anti-Müllerian hormone (Amh) expression, and cell proliferation; known Hh target gene expression (Gli1, osteopontin, official symbol Spp1, and Amh) was altered in response to cyclopamine. Cultured adult tubules exhibited some loss of seminiferous epithelium organization over 48 h. Spermatogonia continued to proliferate, however, and no significant loss of viability was noted overall. Addition of cyclopamine significantly affected levels of Gli1, Igfbp6, Ccnd2 (cyclin D2), Ccnb1 (cyclin B1), Spp1, Kit, and Amh mRNAs; these genes have been shown previously to be expressed in Sertoli and germ cells. These novel results identify Hh target genes in the testis and demonstrate this signaling pathway likely affects cell survival and differentiation in the context of normal adult testis. PMID:18843087
Stringer, Jessica M.; van den Bergen, Jocelyn A.; Wilhelm, Dagmar; Sinclair, Andrew H.; Western, Patrick S.
2013-01-01
The developing testis provides an environment that nurtures germ cell development, ultimately ensuring spermatogenesis and fertility. Impacts on this environment are considered to underlie aberrant germ cell development and formation of germ cell tumour precursors. The signaling events involved in testis formation and male fetal germ cell development remain largely unknown. Analysis of knockout mice lacking single Tgfβ family members has indicated that Tgfβ's are not required for sex determination. However, due to functional redundancy, it is possible that additional functions for these ligands in gonad development remain to be discovered. Using FACS purified gonadal cells, in this study we show that the genes encoding Activin's, TGFβ's, Nodal and their respective receptors, are expressed in sex and cell type specific patterns suggesting particular roles in testis and germ cell development. Inhibition of signaling through the receptors ALK4, ALK5 and ALK7, and ALK5 alone, demonstrated that TGFβ signaling is required for testis cord formation during the critical testis-determining period. We also show that signaling through the Activin/NODAL receptors, ALK4 and ALK7 is required for promoting differentiation of male germ cells and their entry into mitotic arrest. Finally, our data demonstrate that Nodal is specifically expressed in male germ cells and expression of the key pluripotency gene, Nanog was significantly reduced when signaling through ALK4/5/7 was blocked. Our strategy of inhibiting multiple Activin/NODAL/TGFβ receptors reduces the functional redundancy between these signaling pathways, thereby revealing new and essential roles for TGFβ and Activin signaling during testis formation and male germ cell development. PMID:23342175
Genetics of Gonadal Stem Cell Renewal
Greenspan, Leah Joy; de Cuevas, Margaret
2015-01-01
Stem cells are necessary for the maintenance of many adult tissues. Signals within the stem cell microenvironment, or niche, regulate the self-renewal and differentiation capability of these cells. Misregulation of these signals through mutation or damage can lead to overgrowth or depletion of different stem cell pools. In this review, we focus on the Drosophila testis and ovary, both of which contain well-defined niches, as well as the mouse testis, which has become a more approachable stem cell system with recent technical advances. We discuss the signals that regulate gonadal stem cells in their niches, how these signals mediate self-renewal and differentiation under homeostatic conditions, and how stress, whether from mutations or damage, can cause changes in cell fate and drive stem cell competition. PMID:26355592
Regulation of blood-testis barrier by actin binding proteins and protein kinases
Li, Nan; Tang, Elizabeth I.; Cheng, C. Yan
2016-01-01
The blood-testis barrier (BTB) is an important ultrastructure in the testis since the onset of spermatogenesis coincides with the establishment of a functional barrier in rodents and humans. It is also noted that a delay in the assembly of a functional BTB following treatment of neonatal rats with drugs such as diethylstilbestrol or adjudin also delays the first wave of spermiation. While the BTB is one of the tightest blood-tissue barriers, it undergoes extensive remodeling, in particular at stage VIII of the epithelial cycle to facilitate the transport of preleptotene spermatocytes connected in clones across the immunological barrier. Without this timely transport of preleptotene spermatocytes derived from type B spermatogonia, meiosis will be arrested, causing aspermatogenesis. Yet the biology and regulation of the BTB remains largely unexplored since the morphological studies in the 1970s. Recent studies, however, have shed new light on the biology of the BTB. Herein, we critically evaluate some of these findings, illustrating that the Sertoli cell BTB is regulated by actin binding proteins (ABPs), likely supported by non-receptor protein kinases, to modulate the organization of actin microfilament bundles at the site. Furthermore, microtubule (MT)-based cytoskeleton is also working in concert with the actin-based cytoskeleton to confer BTB dynamics. This timely review provides an update on the unique biology and regulation of the BTB based on the latest findings in the field, focusing on the role of ABPs and non-receptor protein kinases. PMID:26628556
Local Actions of Melatonin in Somatic Cells of the Testis
Frungieri, Mónica Beatriz; Calandra, Ricardo Saúl; Rossi, Soledad Paola
2017-01-01
The pineal hormone melatonin regulates testicular function through the hypothalamic-adenohypophyseal axis. In addition, direct actions of melatonin in somatic cells of the testis have been described. Melatonin acts as a local modulator of the endocrine activity in Leydig cells. In Sertoli cells, melatonin influences cellular growth, proliferation, energy metabolism and the oxidation state, and consequently may regulate spermatogenesis. These data pinpoint melatonin as a key player in the regulation of testicular physiology (i.e., steroidogenesis, spermatogenesis) mostly in seasonal breeders. In patients with idiopathic infertility, melatonin exerts anti-proliferative and anti-inflammatory effects on testicular macrophages, and provides protective effects against oxidative stress in testicular mast cells. Consequently, melatonin is also involved in the modulation of inflammatory and oxidant/anti-oxidant states in testicular pathology. Overall, the literature data indicate that melatonin has important effects on testicular function and male reproduction. PMID:28561756
Ditewig, Amy C
2005-01-01
The general perspective of ovary organogenesis is that the ovary is the default organ which develops in the absence of testis-promoting factors. Testis formation, on the other hand, is a male-specific event promoted by active components that override the default ovarian process. However, when comparing the sex determination mechanism among different vertebrate species, it is apparent that this default view of ovary formation can only be applied to mammals. In species such as reptiles and birds, ovary formation is an active process stimulated by estrogen. Remnants of this estrogen-dominant pathway are still present in marsupials, a close relative of eutherian mammals, like humans and mice. Although initial formation of the mammalian ovary has become strictly regulated by genetic components and is therefore independent of estrogen, the feminizing effect of estrogen regains its command in adult ovaries. When estrogen production, or its signaling, is inhibited, transdifferentiation of ovarian tissues to testis structures occur in adult females. Taken together, these observations prompt us to reconsider the process of ovary organogenesis as the default organ and question if testis development is actually the default pathway. PMID:19521565
Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation
Yu, Wenjie; Li, Xiao; Eliason, Steven; Romero-Bustillos, Miguel; Ries, Ryan J.; Cao, Huojun; Amendt, Brad A.
2017-01-01
The Iroquois genes (Irx) appear to regulate fundamental processes that lead to cell proliferation, differentiation, and maturation during development. In this report, the Iroquois homeobox 1 (Irx1) transcription factor was functionally disrupted using a LacZ insert and LacZ expression demonstrated stage-specific expression during embryogenesis. Irx1 is highly expressed in the brain, lung, digits, kidney, testis and developing teeth. Irx1 null mice are neonatal lethal and this lethality it due to pulmonary immaturity. Irx1−/− mice show delayed lung maturation characterized by defective surfactant protein secretion and Irx1 marks a population of SP-C expressing alveolar type II cells. Irx1 is specifically expressed in the outer enamel epithelium (OEE), stellate reticulum (SR) and stratum intermedium (SI) layers of the developing tooth. Irx1 mediates dental epithelial cell differentiation in the lower incisors resulting in delayed growth of the lower incisors. Irx1 is specifically and temporally expressed during developmental stages and we have focused on lung and dental development in this report. Irx1+ cells are unique to the development of the incisor outer enamel epithelium, patterning of Lef-1+ and Sox2+ cells as well as a new marker for lung alveolar type II cells. Mechanistically, Irx1 regulates Foxj1 and Sox9 to control cell differentiation during development. PMID:28746823
Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation.
Yu, Wenjie; Li, Xiao; Eliason, Steven; Romero-Bustillos, Miguel; Ries, Ryan J; Cao, Huojun; Amendt, Brad A
2017-09-01
The Iroquois genes (Irx) appear to regulate fundamental processes that lead to cell proliferation, differentiation, and maturation during development. In this report, the Iroquois homeobox 1 (Irx1) transcription factor was functionally disrupted using a LacZ insert and LacZ expression demonstrated stage-specific expression during embryogenesis. Irx1 is highly expressed in the brain, lung, digits, kidney, testis and developing teeth. Irx1 null mice are neonatal lethal and this lethality it due to pulmonary immaturity. Irx1 -/- mice show delayed lung maturation characterized by defective surfactant protein secretion and Irx1 marks a population of SP-C expressing alveolar type II cells. Irx1 is specifically expressed in the outer enamel epithelium (OEE), stellate reticulum (SR) and stratum intermedium (SI) layers of the developing tooth. Irx1 mediates dental epithelial cell differentiation in the lower incisors resulting in delayed growth of the lower incisors. Irx1 is specifically and temporally expressed during developmental stages and we have focused on lung and dental development in this report. Irx1+ cells are unique to the development of the incisor outer enamel epithelium, patterning of Lef-1+ and Sox2+ cells as well as a new marker for lung alveolar type II cells. Mechanistically, Irx1 regulates Foxj1 and Sox9 to control cell differentiation during development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Cotton, Leanne M.; O’Bryan, Moira K.; Hinton, Barry T.
2008-01-01
The major function of the reproductive system is to ensure the survival of the species by passing on hereditary traits from one generation to the next. This is accomplished through the production of gametes and the generation of hormones that function in the maturation and regulation of the reproductive system. It is well established that normal development and function of the male reproductive system is mediated by endocrine and paracrine signaling pathways. Fibroblast growth factors (FGFs), their receptors (FGFRs), and signaling cascades have been implicated in a diverse range of cellular processes including: proliferation, apoptosis, cell survival, chemotaxis, cell adhesion, motility, and differentiation. The maintenance and regulation of correct FGF signaling is evident from human and mouse genetic studies which demonstrate that mutations leading to disruption of FGF signaling cause a variety of developmental disorders including dominant skeletal diseases, infertility, and cancer. Over the course of this review, we will provide evidence for differential expression of FGFs/FGFRs in the testis, male germ cells, the epididymis, the seminal vesicle, and the prostate. We will show that this signaling cascade has an important role in sperm development and maturation. Furthermore, we will demonstrate that FGF/FGFR signaling is essential for normal epididymal function and prostate development. To this end, we will provide evidence for the involvement of the FGF signaling system in the regulation and maintenance of the male reproductive system. PMID:18216218
Cotton, Leanne M; O'Bryan, Moira K; Hinton, Barry T
2008-04-01
The major function of the reproductive system is to ensure the survival of the species by passing on hereditary traits from one generation to the next. This is accomplished through the production of gametes and the generation of hormones that function in the maturation and regulation of the reproductive system. It is well established that normal development and function of the male reproductive system is mediated by endocrine and paracrine signaling pathways. Fibroblast growth factors (FGFs), their receptors (FGFRs), and signaling cascades have been implicated in a diverse range of cellular processes including: proliferation, apoptosis, cell survival, chemotaxis, cell adhesion, motility, and differentiation. The maintenance and regulation of correct FGF signaling is evident from human and mouse genetic studies which demonstrate that mutations leading to disruption of FGF signaling cause a variety of developmental disorders including dominant skeletal diseases, infertility, and cancer. Over the course of this review, we will provide evidence for differential expression of FGFs/FGFRs in the testis, male germ cells, the epididymis, the seminal vesicle, and the prostate. We will show that this signaling cascade has an important role in sperm development and maturation. Furthermore, we will demonstrate that FGF/FGFR signaling is essential for normal epididymal function and prostate development. To this end, we will provide evidence for the involvement of the FGF signaling system in the regulation and maintenance of the male reproductive system.
Effects of dietary omega-3/omega-6 fatty acid ratios on reproduction in the young breeder rooster.
Feng, Yun; Ding, Yu; Liu, Juan; Tian, Ye; Yang, Yanzhou; Guan, Shuluan; Zhang, Cheng
2015-03-21
Polyunsaturated fatty acids (PUFAs) are necessary for the body's metabolism, growth and development. Although PUFAs play an important role in the regulation of reproduction, their role in testis development in the rooster is unknown. The present study was conducted to investigate the effects of omega-3/omega-6 (n-3/n-6, PUFAs) ratios on reproductive performance in young breeder roosters. Plasma levels of reproductive hormones, testis development, and reproductive hormone receptor and StAR mRNA expression were also assessed. Although PUFAs (n-3/n-6: 1/4.15) had no significant effect on the testis index (P > 0.05), the spermatogonial development and germ cell layers were increased. Moreover, serum levels of hormones (GnRH, FSH, LH and T) on day 35 were also significantly increased by PUFAs (n-3/n-6: 1/4.15). To investigate whether PUFAs regulate the expression of hormone receptors and StAR, real time-PCR was used to measure GnRHR, FSHR, LHR and StAR mRNA levels. PUFAs significantly increased the mRNA levels of all of these genes. These results indicate that PUFAs enhance the reproductive performance of young roosters by increasing hormone secretion and function, the latter by up-regulating receptor expression. These findings provide a sound basis for a balanced n-3/n-6 PUFA ratio being beneficial to young rooster reproduction.
Pannetier, M; Servel, N; Cocquet, J; Besnard, N; Cotinot, C; Pailhoux, E
2003-01-01
In mammals, the Y-located SRY gene is known to induce testis formation from the indifferent gonad. A related gene, SOX9, also plays a critical role in testis differentiation in mammals, in birds and reptiles. It is now assumed that SRY acts upstream of SOX9 in the sex determination cascade, but the regulatory link which should exist between these two genes remains unknown. Studies on XX sex reversal in polled goats (PIS mutation: Polled Intersex Syndrome) have led to the discovery of a female-specific locus crucial for ovarian differentiation. This genomic region is composed of at least two genes, FOXL2 and PISRT1, which share a common transcriptional regulatory region, PIS. In this review, we present the expression pattern of these PIS-regulated genes in mice. The FOXL2 expression profile of mice is similar to that described in goats in accordance with a conserved role of this ovarian differentiating gene in mammals. On the contrary, the PISRT1 expression profile is different between mice and goats, suggesting different mechanisms of the primary switch in the testis determination process within mammals. A model based on two different modes of SOX9 regulation in mice and other mammals is proposed in order to integrate our results into the current scheme of gonad differentiation. Copyright 2003 S. Karger AG, Basel
1994-01-01
OBJECTIVE--To determine the risk of testicular cancer associated with undescended testis, inguinal hernia, age at puberty, marital status, infertility, vasectomy, and amount of exercise. DESIGN--A population based case-control study with a questionnaire administered by an interviewer and with relevant supplementary data extracted from general practitioners' notes. SETTING--Nine health regions within England and Wales. SUBJECTS--794 men, aged 15-49 years, with a testicular germ cell tumour diagnosed between 1 January 1984 and 1 January 1987; each had an age matched (within one year) control selected from the list of their general practitioner. RESULTS--There was a significant association of testicular cancer with undescended testis (odds ratio 3.82; 95% confidence interval 2.24 to 6.52) and inguinal hernia (1.91; 1.12 to 3.23). The excess risk associated with undescended testis was eliminated in men who had had an orchidopexy before the age of 10 years. There were positive associations with early age at voice breaking, early age at starting to shave, and infertility. There was a significant association with a sedentary lifestyle and a moderate protective effect of exercise. There was no association with vasectomy. CONCLUSION--This study confirms previous reports that developmental urogenital abnormalities result in an increased risk of testicular cancer. The trend to perform orchidopexy at younger ages may reduce the risk associated with undescended testis. The increased risks associated with early age at puberty and low amounts of exercise may be related to effects of exposure to endogenous hormones. Changes in both of these factors may partly contribute to the increasing rates of testicular cancer observed in the past few decades. PMID:7912596
Zhang, Lei; Wang, Huaxi; Yang, Yan; Liu, Hui; Zhang, Qihao; Xiang, Qi; Ge, Renshan; Su, Zhijian; Huang, Yadong
2013-06-28
Nerve growth factor (NGF) has been reported to be involved in male reproductive physiology. However, few reports have described the activity of NGF during Leydig cell development. The objective of the present study was to examine the role of NGF during stem-Leydig-cell (SLC) regeneration. We investigated the effects of NGF on Leydig-cell (LC) regeneration by measuring mRNA levels in the adult rat testis after ethane dimethanesulfonate (EDS) treatment. Furthermore, we used the established organ culture model of rat seminiferous tubules to examine the regulation of NGF during SLC proliferation and differentiation using EdU staining, real-time PCR and western blotting. Progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs) were also used to investigate the effects of NGF on LCs at different developmental stages. NGF mRNA levels changed significantly during Leydig-cell regeneration in vivo. In vitro, NGF significantly promoted the proliferation of stem Leydig cells and also induced steroidogenic enzyme gene expression and 3β-HSD protein expression. The data from PLCs and ILCs showed that NGF could increase Cyclin D1 and Hsd 17b3 mRNA levels in PLCs and Cyclin D1 mRNA levels in ILCs. These results indicate that NGF may play an important role during LC regeneration by regulating the proliferation and differentiation of LCs at different developmental stages, from SLCs to PLCs and from PLCs to ILCs. The discovery of this effect of NGF on Leydig cells will provide useful information for developing new potential therapies for PADAM (Partial Androgen Deficiency in the Aging Male). Copyright © 2013 Elsevier Inc. All rights reserved.
[Research progress of health effect of polybrominated diphenyl ethers].
Zhai, J X; Tong, S L
2016-06-01
Polybrominated diphenyl ethers (PBDEs) was one of the most common brominated flame retardants, it has been widely used in products such as furnitures, polymer and plastical material, textiles, electronic products and building materials. PBDEs have potential effect such as neurodevelopmental toxicity, reproductive toxicity, thyroid toxicity, immunological toxicity, embryo toxicity, liver toxicity, teratogenicity and potential carcinogenicity. This paper was aimed to review the environmental exposure way, current level, neurotoxicity, neurodevelopmental toxicity and reproductive toxicity of PBDEs. In recent years, PBDEs has been detected in environment, wildlife animal and human body around the world, there were the significant differences of exposure levels of PBDEs. The most abundant congener were tetra-BDE or BDE-47, hexa-BDE or BDE-153, and deca-BDE or BDE-209. Prenatal exposure to PBDEs has great impact on the infants' neurodevelopmental function, induces changes in neuropsychological developmental behavior, decreases of congnition, motivation and attention. High levels of PBDEs have positive relationship with Luteinizing hormone levels, testis disfunction and children's cryptorchidism, and have negative relationship with sperm number and testis size.
Imaging of Chromosome Dynamics in Mouse Testis Tissue by Immuno-FISH.
Scherthan, Harry
2017-01-01
The mouse (Mus musculus) represents the central mammalian genetic model system for biomedical and developmental research. Mutant mouse models have provided important insights into chromosome dynamics during the complex meiotic differentiation program that compensates for the genome doubling at fertilization. Homologous chromosomes (homologues) undergo dynamic pairing and recombine during first meiotic prophase before they become partitioned into four haploid sets by two consecutive meiotic divisions that lack an intervening S-phase. Fluorescence in situ hybridization (FISH) has been instrumental in the visualization and imaging of the dynamic reshaping of chromosome territories and mobility during prophase I, in which meiotic telomeres were found to act as pacemakers for the chromosome pairing dance. FISH combined with immunofluorescence (IF) co-staining of nuclear proteins has been instrumental for the visualization and imaging of mammalian meiotic chromosome behavior. This chapter describes FISH and IF methods for the analysis of chromosome dynamics in nuclei of paraffin-embedded mouse testes. The techniques have proven useful for fresh and archived paraffin testis material of several mammalian species.
Camerino, Claudia; Conte, Elena; Caloiero, Roberta; Fonzino, Adriano; Carratù, Mariarosaria; Lograno, Marcello D; Tricarico, Domenico
2017-01-01
The correlation between the Ngf/p75ntr-Ntrk1 and Bdnf , Osteocalcin- Ost / Gprc6a and Oxytocin- Oxt/Oxtr genes, was challenged investigating their mRNA levels in 3 months-old mice after cold-stress (CS). Uncoupling protein-1 ( Ucp-1) was used as positive control. Control mice were maintained at room temperature T = 25°C, CS mice were maintained at T = 4°C for 6 h and 5-days ( N = 15 mice). RT-PCR experiments showed that Ucp-1 and Ngf genes were up-regulated after 6 h CS in brown adipose tissues (BAT), respectively, by 2 and 1.5-folds; Ucp-1 was upregulated also after 5-days, while Ngfr (p75ntr) and Ntrk1 genes were downregulated after 6 h and 5-days CS in BAT. NGF and P75NTR were upregulated in bone and testis following 5-days, and P75NTR in testis after 6 h CS. Bdnf was instead up-regulated in bone following 5-days CS and down-regulated in testis. OST was upregulated by 16 and 3-fold in bone and BAT, respectively, following 5-days CS. Gprc6a was upregulated after 6 h in brain, while Bglap ( Ost) gene was downregulated. Oxt gene was upregulated by 5-fold following 5-days CS in bone. Oxtr was upregulated by 0.5 and 0.3-fold, respectively, following 6 h and 5-days CS in brain. Oxtr and Oxt were downregulated in testis and in BAT. The changes in the expression levels of control genes vs. genes following 6 h and 5-days CS were correlated in all tissues, but not in BAT. Correlation in BAT was improved eliminating Ngfr (p75ntr) data. The correlation in brain was lost eliminating Oxtr data. In sum, Ucp-1 potentiation in BAT after cold stress is associated with early Ngf -response in the same tissue and trophic action in bone and testis. In contrast, BDNF exerts bone and neuroprotective effects. Similarly to Ucp-1, Bglap ( Ost) signaling is enhanced in bone and BAT while it may exert local neuroprotective effects thought its receptor. Ngfr (p75ntr) regulates the adaptation to CS through a feed-back loop in BAT. Oxtr regulates the gene-response to CS through a feed-forward loop in brain. Overall these results expand the understanding of the physiology of these molecules under metabolic thermogenesis.
CHEN, JIANG KAI; HECKERT, LESLIE L.
2006-01-01
Dmrt1 is a recently described gene that is expressed exclusively in the testis and is required for postnatal testis differentiation. Here we describe the expression of Dmrt1 in postnatal rat testis and Sertoli cells. RNase protection analysis was used to examine Dmrt1 messenger RNA (mRNA) levels in intact testis during postnatal development and in primary cultures of Sertoli cells under various culture conditions. We show that Dmrt1 mRNA levels rise significantly beginning approximately 10 days after birth and remain elevated until after the third postnatal week. Thereafter, mRNA levels drop coincident with the proliferation of germ cells in the testis. In freshly isolated Sertoli cells, Dmrt1 mRNA levels were robust but decreased significantly when the cells were placed in culture for 24 h. Treatment of Sertoli cells with either FSH or 8-bromo-cAMP resulted in a significant rise in Dmrt1 mRNA levels. This cAMP response was sensitive to treatment with the transcriptional inhibitor actinomycin D but not to the translational inhibitor cycloheximide. The cAMP-dependent rise in Dmrt1 mRNA also required activation of protein kinase A, as mRNA induction was sensitive to the inhibitor H89. Studies also show that Dmrt1 expression was inhibited by phorbol esters (PMA) but only modestly effected by serum. PMID:11181532
staggerer phenotype in retinoid-related orphan receptor α-deficient mice
Steinmayr, Markus; André, Elisabeth; Conquet, François; Rondi-Reig, Laure; Delhaye-Bouchaud, Nicole; Auclair, Nathalie; Daniel, Hervé; Crépel, Francis; Mariani, Jean; Sotelo, Constantino; Becker-André, Michael
1998-01-01
Retinoid-related orphan receptor α (RORα) is a member of the nuclear receptor superfamily. To study its physiological role we generated null-mutant mice by targeted insertion of a lacZ reporter gene encoding the enzyme β-galactosidase. In heterozygous RORα+/− mice we found β-galactosidase activity, indicative of RORα protein expression, confined to the central nervous system, skin and testis. In the central nervous system, the RORα gene is expressed in cerebellar Purkinje cells, the thalamus, the suprachiasmatic nuclei, and retinal ganglion cells. In skin, RORα is strongly expressed in the hair follicle, the epidermis, and the sebaceous gland. Finally, the peritubular cells of the testis and the epithelial cells of the epididymis also strongly express RORα. Recently, it was reported that the ataxic mouse mutant staggerer (sg/sg) is caused by a deletion in the RORα gene. The analysis of the cerebellar and the behavioral phenotype of homozygous RORα−/− mice proves identity to sg/sg mice. Although the absence of RORα causes dramatic developmental effects in the cerebellum, it has no apparent morphological effect on thalamus, hypothalamus, and retina. Similarly, testis and skin of RORα−/− mice display a normal phenotype. However, the pelage hair of both sg/sg and RORα−/− is significantly less dense and when shaved shows reluctance to regrow. PMID:9520475
Contrasting Levels of Molecular Evolution on the Mouse X Chromosome
Larson, Erica L.; Vanderpool, Dan; Keeble, Sara; Zhou, Meng; Sarver, Brice A. J.; Smith, Andrew D.; Dean, Matthew D.; Good, Jeffrey M.
2016-01-01
The mammalian X chromosome has unusual evolutionary dynamics compared to autosomes. Faster-X evolution of spermatogenic protein-coding genes is known to be most pronounced for genes expressed late in spermatogenesis, but it is unclear if these patterns extend to other forms of molecular divergence. We tested for faster-X evolution in mice spanning three different forms of molecular evolution—divergence in protein sequence, gene expression, and DNA methylation—across different developmental stages of spermatogenesis. We used FACS to isolate individual cell populations and then generated cell-specific transcriptome profiles across different stages of spermatogenesis in two subspecies of house mice (Mus musculus), thereby overcoming a fundamental limitation of previous studies on whole tissues. We found faster-X protein evolution at all stages of spermatogenesis and faster-late protein evolution for both X-linked and autosomal genes. In contrast, there was less expression divergence late in spermatogenesis (slower late) on the X chromosome and for autosomal genes expressed primarily in testis (testis-biased). We argue that slower-late expression divergence reflects strong regulatory constraints imposed during this critical stage of sperm development and that these constraints are particularly acute on the tightly regulated sex chromosomes. We also found slower-X DNA methylation divergence based on genome-wide bisulfite sequencing of sperm from two species of mice (M. musculus and M. spretus), although it is unclear whether slower-X DNA methylation reflects development constraints in sperm or other X-linked phenomena. Our study clarifies key differences in patterns of regulatory and protein evolution across spermatogenesis that are likely to have important consequences for mammalian sex chromosome evolution, male fertility, and speciation. PMID:27317678
Valcarce, David G; Vuelta, Elena; Robles, Vanesa; Herráez, Maria Paz
2017-12-01
The synthetic estrogen 17-α-ethinylestradiol (EE2), a major constituent in contraceptive pills, is an endocrine disrupting chemical (EDC) present in the aquatic environment at concentrations of ng/L. Developmental exposure to these low concentrations in fish can induce several disorders. Zebrafish (Danio rerio) is a perfect organism for monitoring the effects of environmental contaminants. Our hypothesis is that changes promoted by EE2 in the germ line of male adults could be transmitted to the unexposed progeny. We exposed male zebrafish to 2.5, 5 and 10ng/L of EE2 during spermatogenesis and mated them with untreated females. Detailed progeny development was studied concentrating to survival, hatching and malformations. Due to the high incidence of lymphedemas within larvae, we performed qPCR analysis of genes involved in lymphatic development (vegfc and vegfr3) and endothelial cell migration guidance (cxcr4a and cxcl12b). Estrogen receptor (ER) transcript presence was also evaluated in sperm, testis and embryos. Progenies showed a range of disorders although at a low incidence: skeletal distortions, uninflated swimbladder, lymphedema formation, cartilage deformities and otolith tethering. Swimming evaluation revealed less active locomotion. All these processes are related to pathways involving ERs (esr1, esr2a and esr2b). mRNA analysis revealed that environmental EE2 causes the up-regulation of esr1 an esr2b in testis and the increase of esr2b transcripts in sperm pointing to a link between lymphedema in embryos and ER expression impairment. We demonstrate that the effects induced by environmental toxicants can be paternally inherited and point to the changes on the sperm transcriptome as the responsible mechanism. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Xiaozhong; Hong, Sung Woo; Moreira, Estefania G.
Gonocytes exist in the neonatal testis and represent a transient population of male germ-line stem cells. It has been shown that stem cell self-renewal and progeny production is probably controlled by the neighboring differentiated cells and extracellular matrix (ECM) in vivo known as niches. Recently, we developed an in vitro three-dimensional (3D) Sertoli cell/gonocyte co-culture (SGC) model with ECM overlay, which creates an in vivo-like niche and supports germ-line stem cell functioning within a 3D environment. In this study, we applied morphological and cytotoxicity evaluations, as well as microarray-based gene expression to examine the effects of different phthalate esters (PE)more » on this model. Known in vivo male developmentally toxic PEs (DTPE) and developmentally non-toxic PEs (DNTPE) were evaluated. We observed that DTPE induced significantly greater dose-dependent morphological changes, a decrease in cell viability and an increase in cytotoxicity compared to those treated with DNTPE. Moreover, the gene expression was more greatly altered by DTPE than by DNTPE and non-supervised cluster analysis allowed the discrimination of DTPE from the DNTPE. Our systems-based GO-Quant analysis showed significant alterations in the gene pathways involved in cell cycle, phosphate transport and apoptosis regulation with DTPE but not with DNTPE treatment. Disruptions of steroidogenesis related-gene expression such as Star, Cyp19a1, Hsd17b8, and Nr4a3 were observed in the DTPE group, but not in the DNTPE group. In summary, our observation on cell viability, cytotoxicity, and microarray-based gene expression analysis induced by PEs demonstrate that our in vitro 3D-SGC system mimicked in vivo responses for PEs and suggests that the 3D-SGC system might be useful in identifying developmental reproductive toxicants.« less
Insights into female germ cell biology: from in vivo development to in vitro derivations.
Jung, Dajung; Kee, Kehkooi
2015-01-01
Understanding the mechanisms of human germ cell biology is important for developing infertility treatments. However, little is known about the mechanisms that regulate human gametogenesis due to the difficulties in collecting samples, especially germ cells during fetal development. In contrast to the mitotic arrest of spermatogonia stem cells in the fetal testis, female germ cells proceed into meiosis and began folliculogenesis in fetal ovaries. Regulations of these developmental events, including the initiation of meiosis and the endowment of primordial follicles, remain an enigma. Studying the molecular mechanisms of female germ cell biology in the human ovary has been mostly limited to spatiotemporal characterizations of genes or proteins. Recent efforts in utilizing in vitro differentiation system of stem cells to derive germ cells have allowed researchers to begin studying molecular mechanisms during human germ cell development. Meanwhile, the possibility of isolating female germline stem cells in adult ovaries also excites researchers and generates many debates. This review will mainly focus on presenting and discussing recent in vivo and in vitro studies on female germ cell biology in human. The topics will highlight the progress made in understanding the three main stages of germ cell developments: namely, primordial germ cell formation, meiotic initiation, and folliculogenesis.
Alterations in the developing testis transcriptome following embryonic vinclozolin exposure.
Clement, Tracy M; Savenkova, Marina I; Settles, Matthew; Anway, Matthew D; Skinner, Michael K
2010-11-01
The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic days 13, 14 and 16. A total of 576 differentially expressed genes were identified and the major cellular functions and pathways associated with these altered transcripts were examined. The sets of regulated genes at the different development periods were found to be transiently altered and distinct. Categorization by major known functions of altered genes was performed. Specific cellular process and pathway analyses suggest the involvement of Wnt and calcium signaling, vascular development and epigenetic mechanisms as potential mediators of the direct F1 generation actions of vinclozolin. Copyright © 2010 Elsevier Inc. All rights reserved.
ALTERATIONS IN THE DEVELOPING TESTIS TRANSCRIPTOME FOLLOWING EMBRYONIC VINCLOZOLIN EXPOSURE
Clement, Tracy M.; Savenkova, Marina I.; Settles, Matthew; Anway, Matthew D.; Skinner, Michael K.
2010-01-01
The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic day 13, 14 and 16. A total of 576 differentially expressed genes were identified and the major cellular functions and pathways associated with these altered transcripts were examined. The sets of regulated genes at the different development periods were found to be transiently altered and distinct. Categorization by major known functions of altered genes was performed. Specific cellular process and pathway analyses suggest the involvement of Wnt and calcium signaling, vascular development and epigenetic mechanisms as potential mediators of the direct F1 generation actions of vinclozolin. PMID:20566332
Actin nucleator Spire 1 is a regulator of ectoplasmic specialization in the testis.
Wen, Qing; Li, Nan; Xiao, Xiang; Lui, Wing-Yee; Chu, Darren S; Wong, Chris K C; Lian, Qingquan; Ge, Renshan; Lee, Will M; Silvestrini, Bruno; Cheng, C Yan
2018-02-12
Germ cell differentiation during the epithelial cycle of spermatogenesis is accompanied by extensive remodeling at the Sertoli cell-cell and Sertoli cell-spermatid interface to accommodate the transport of preleptotene spermatocytes and developing spermatids across the blood-testis barrier (BTB) and the adluminal compartment of the seminiferous epithelium, respectively. The unique cell junction in the testis is the actin-rich ectoplasmic specialization (ES) designated basal ES at the Sertoli cell-cell interface, and the apical ES at the Sertoli-spermatid interface. Since ES dynamics (i.e., disassembly, reassembly and stabilization) are supported by actin microfilaments, which rapidly converts between their bundled and unbundled/branched configuration to confer plasticity to the ES, it is logical to speculate that actin nucleation proteins play a crucial role to ES dynamics. Herein, we reported findings that Spire 1, an actin nucleator known to polymerize actins into long stretches of linear microfilaments in cells, is an important regulator of ES dynamics. Its knockdown by RNAi in Sertoli cells cultured in vitro was found to impede the Sertoli cell tight junction (TJ)-permeability barrier through changes in the organization of F-actin across Sertoli cell cytosol. Unexpectedly, Spire 1 knockdown also perturbed microtubule (MT) organization in Sertoli cells cultured in vitro. Biochemical studies using cultured Sertoli cells and specific F-actin vs. MT polymerization assays supported the notion that a transient loss of Spire 1 by RNAi disrupted Sertoli cell actin and MT polymerization and bundling activities. These findings in vitro were reproduced in studies in vivo by RNAi using Spire 1-specific siRNA duplexes to transfect testes with Polyplus in vivo-jetPEI as a transfection medium with high transfection efficiency. Spire 1 knockdown in the testis led to gross disruption of F-actin and MT organization across the seminiferous epithelium, thereby impeding the transport of spermatids and phagosomes across the epithelium and perturbing spermatogenesis. In summary, Spire 1 is an ES regulator to support germ cell development during spermatogenesis.
Shi, Lei; Zhao, Hui; Ren, Youshe; Yao, Xiaolei; Song, Ruigao; Yue, Wenbin
2014-10-01
The objective of this study was to investigate the different levels of dietary Se (from sodium selenite) on the proliferation of SSCs (spermatogonial stem cells) in testis of roosters. Also, the antioxidant status and Se content in blood plasma and testis were evaluated. A total of eighty 12-week-old Hy-Line Variety white roosters at an averaged body weight of 1.38 ± 0.2 kg were selected and randomly divided into four experimental groups. They were fed with the basal diet (0.044 mgSe/kg DM) supplemented with 0 (control), 0.5, 1.0 or 2.0 mgSe/kg DM (from sodium selenite). After the feeding experiment, blood and testis samples were collected for analysis of the antioxidant status and Se concentration. The testis samples were also used to examine the Thy-1 and β1-integrin mRNA expression by RT-PCR and detect the population of SSCs by immunofluorescence analysis. The results show that Se concentration in blood and testis of the animals was progressively increased with the increasing Se level in diet. The highest GSH-Px (glutathione peroxidase) activity and lowest MDA content in blood and testis was obtained in the treatment of 0.5mg/kg. RT-PCR analysis showed that mRNA expression of SSCs markers were significantly lower in the control and 1.0mg/kg groups when compared with that in the treatment of 0.5mg/kg. A similar trend was observed in the population of SSCs analyzed by immunofluorescence assay. These data suggest that dietary Se can influence the population of SSCs of roosters during spermatogenesis and that oxidative stress can modulate SSCs behavior through regulating some key factors during spermatogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yomogida, Kentaro
The mature mammalian testis is a marvelous organ that produces numerous sperm cells during its reproductive phase. This biologically significant process consists of three steps: stem cell self-renewal and differentiation, meiosis and genetic recombination, and haploid cell morphogenesis into sperm (Russell et al., 1990). The first step provides a good model for investigating the molecular mechanism of stem cell regulation. Currently, the mechanism underlying sperm cell production is a very exciting topic in regenerative medicine (Lensch et al. 2007; Okita et al., 2007). The spermatogonial stem cell system has several advantages, including the easy histological identification of stem cells (Russell et al., 1990), a clear relationship between stem cells and the supporting Sertoli cells, which provide a stem cell niche (Tadokoro et al., 2002; Yomogida et al., 2003), and a transplantation assay for stem cell activity (Oatley & Brinster, 2006). Although germline stem (GS) cells derived from the gonocytes in newborn testis constitute a suitable in vitro system for investigating the properties of spermatogonial stem cells (Kanatsu-Shinohara et al., 2003, 2004), studies using living mammalian testes continue to provide information regarding the roles of the stem cell niche. In vivo electroporation of the supporting cells in the testis will expand our ability to study it.
Verma, Rachna; Krishna, Amitabh
2017-01-15
The aim of present study was to evaluate the significance of estradiol (E2) in testicular activities and to find out the mechanism by which E2 regulates spermatogenesis in mice. To achieve this, both in vivo and in vitro effect of Letrozole on testis of adult mice was investigated. Letrozole-induced changes in testicular histology, cell proliferation (proliferating cell nuclear antigen; PCNA), cell survival (B cell lymphoma factor-2; Bcl2), apoptotic (cysteine-aspartic proteases; caspase-3), steroidogenic (side chain cleavage; SCC, 3β-hydroxy steroid dehydrogenase enzyme; 3β HSD, steroidogenic acute regulatory protein; StAR, aromatase and luteinizing hormone receptor; LH-R) markers, glucose level, and rate of expression of glucose transporter (GLUT) 8 and insulin receptor (IR) proteins in the testis along with changes in serum E2 and testosterone (T) levels were evaluated. Letrozole acts on testis and caused significant decrease in E2 synthesis, but increase in testosterone level and showed regressive changes in the spermatogenesis. Letrozole-induced changes in various testicular markers were compared with the changes in serum E2 level. The correlation study showed that decreased circulating E2 level may be responsible for decreased insulin receptor (IR) level in the testis. The decreased effects of insulin inhibited the glucose transport in the testis by suppressing GLUT8. The decreased level of testicular glucose may produce less lactate as energy support to developing germ cells consequently resulting in decreased cell proliferation and cell survival, but increased apoptosis. Thus, Letrozole suppresses spermatogenesis by reducing insulin sensitivity and glucose transport in the testis, but significantly increased testosterone level by promoting gonadotrophin release by decreased E2. Copyright © 2016 Elsevier Inc. All rights reserved.
GPER Signaling in Spermatogenesis and Testicular Tumors.
Chimento, Adele; Sirianni, Rosa; Casaburi, Ivan; Pezzi, Vincenzo
2014-01-01
Estrogens play important roles in the regulation of testis development and spermatogenesis. Moreover, several evidences suggest that estrogen signaling can be involved in testicular tumorigenesis. The physiological effects of estrogen are mediated by the classical nuclear estrogen receptors ESR1 and 2, which regulate both genomic and rapid signaling events. In the recent years, a member of the seven-transmembrane G protein-coupled receptor family, GPR30 (GPER), has been identified to promote estrogen action in target cells including testicular cells. Ours and other studies reported that GPER is expressed in normal germ cells (spermatogonia, spermatocytes, spermatids), somatic cells (Sertoli and Leydig cells), and it is also involved in mediating estrogen action during spermatogenesis and testis development. In addition, GPER seems to be involved in modulating estrogen-dependent testicular cancer cell growth. However, in this context, the effects of GPER stimulation on cell survival and proliferation appear to be cell type specific. This review summarizes the current knowledge on the functions regulated by estrogens and mediated by GPER in normal and tumor testicular cells.
GPER Signaling in Spermatogenesis and Testicular Tumors
Chimento, Adele; Sirianni, Rosa; Casaburi, Ivan; Pezzi, Vincenzo
2014-01-01
Estrogens play important roles in the regulation of testis development and spermatogenesis. Moreover, several evidences suggest that estrogen signaling can be involved in testicular tumorigenesis. The physiological effects of estrogen are mediated by the classical nuclear estrogen receptors ESR1 and 2, which regulate both genomic and rapid signaling events. In the recent years, a member of the seven-transmembrane G protein-coupled receptor family, GPR30 (GPER), has been identified to promote estrogen action in target cells including testicular cells. Ours and other studies reported that GPER is expressed in normal germ cells (spermatogonia, spermatocytes, spermatids), somatic cells (Sertoli and Leydig cells), and it is also involved in mediating estrogen action during spermatogenesis and testis development. In addition, GPER seems to be involved in modulating estrogen-dependent testicular cancer cell growth. However, in this context, the effects of GPER stimulation on cell survival and proliferation appear to be cell type specific. This review summarizes the current knowledge on the functions regulated by estrogens and mediated by GPER in normal and tumor testicular cells. PMID:24639669
Li, Jingping; Guo, Wenbin; Li, Fei; He, Jincan; Yu, Qingfeng; Wu, Xiaoqiang; Li, Jianming; Mao, Xiangming
2012-06-06
Sertoli cell only syndrome (SCOS) is one of the main causes leading to the abnormal spermatogenesis. However, the mechanisms for abnormal spermatogenesis in SCOS are still unclear. Here, we analyzed the clinical testis samples of SCOS patients by two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to find the key factors contributing to SCOS. Thirteen differential proteins were identified in clinical testis samples between normal spermatogenesis group and SCOS group. Interestingly, in these differential proteins, Heterogeneous nuclear ribonucleoprotein L(HnRNPL) was suggested as a key regulator involved in apoptosis, death and growth of spermatogenic cells by String and Pubgene bioinformatic programs. Down-regulated HnRNPL in testis samples of SCOS patients was further confirmed by immunohistochemical staining and western blotting. Moreover, in vitro and in vivo experiments demonstrated that knockdown of HnRNPL led to inhibited proliferation, increased apoptosis of spermatogenic cell but decreased apoptosis of sertoli cells. Expression of carcinoembryonic antigen-related cell adhesion molecule 1 in GC-1 cells or expression of inducible nitric oxide synthases in TM4 sertoli cells, was found to be regulated by HnRNPL. Our study first shows HnRNPL as a key factor involved in the spermatogenesis by functional proteomic studies of azoospermia patients with sertoli cell only syndrome. This article is part of a Special Issue entitled: Proteomics: The clinical link. Copyright © 2012 Elsevier B.V. All rights reserved.
Xu, Fengqin; Wang, Weiping; Lei, Chen; Liu, Qingmei; Qiu, Hao; Muraleedharan, Vinaydhar; Zhou, Bin; Cheng, Hongxia; Huang, Zhongkai; Xu, Weian; Li, Bichun; Wang, Minghua
2012-04-01
Zinc finger proteins (ZFPs) that contain multiple cysteine and/or histidine residues perform important roles in various cellular functions, including transcriptional regulation, cell proliferation, differentiation, and apoptosis. The Cys-Cys-His-His (C(2)H(2)) type of ZFPs are the well-defined members of this super family and are the largest and most complex proteins in eukaryotic genomes. In this study, we identified a novel C(2)H(2) type of zinc finger gene ZNFD from mice which has a 1,002 bp open reading frame and encodes a protein with 333 amino acid residues. The predicted 37.4 kDa protein contains a C(2)H(2) zinc finger domain. ZNFD gene is located on chromosome 18qD1. RT-PCR analysis revealed that the ZNFD gene was specifically expressed in mouse testis but not in other tissues. Subcellular localization analysis demonstrated that ZNFD was localized in the nucleus. Reporter gene assays showed that overexpression of ZNFD in the COS7 cells activates the transcriptional activities of heat shock element (HSE). Overall, these results suggest that ZNFD is a member of the zinc finger transcription factor family and it participates in the transcriptional regulation of HSE. Many heat shock proteins regulated by HSE are involved in testicular development. Therefore, our results suggest that ZNFD may probably participate in the development of mouse testis and function as a transcription activator in HSE-mediated gene expression and signaling pathways.
Retinoic Acid Signalling and the Control of Meiotic Entry in the Human Fetal Gonad
Kinnell, Hazel L.; Anderson, Richard A.; Saunders, Philippa T. K.
2011-01-01
The development of mammalian fetal germ cells along oogenic or spermatogenic fate trajectories is dictated by signals from the surrounding gonadal environment. Germ cells in the fetal testis enter mitotic arrest, whilst those in the fetal ovary undergo sex-specific entry into meiosis, the initiation of which is thought to be mediated by selective exposure of fetal ovarian germ cells to mesonephros-derived retinoic acid (RA). Aspects of this model are hard to reconcile with the spatiotemporal pattern of germ cell differentiation in the human fetal ovary, however. We have therefore examined the expression of components of the RA synthesis, metabolism and signalling pathways, and their downstream effectors and inhibitors in germ cells around the time of the initiation of meiosis in the human fetal gonad. Expression of the three RA-synthesising enzymes, ALDH1A1, 2 and 3 in the fetal ovary and testis was equal to or greater than that in the mesonephros at 8–9 weeks gestation, indicating an intrinsic capacity within the gonad to synthesise RA. Using immunohistochemistry to detect RA receptors RARα, β and RXRα, we find germ cells to be the predominant target of RA signalling in the fetal human ovary, but also reveal widespread receptor nuclear localization indicative of signalling in the testis, suggesting that human fetal testicular germ cells are not efficiently shielded from RA by the action of the RA-metabolising enzyme CYP26B1. Consistent with this, expression of CYP26B1 was greater in the human fetal ovary than testis, although the sexually-dimorphic expression patterns of the germ cell-intrinsic regulators of meiotic initiation, STRA8 and NANOS2, appear conserved. Finally, we demonstrate that RA induces a two-fold increase in STRA8 expression in cultures of human fetal testis, but is not sufficient to cause widespread meiosis-associated gene expression. Together, these data indicate that while local production of RA within the fetal ovary may be important in regulating the onset of meiosis in the human fetal ovary, mechanisms other than CYP26B1-mediated metabolism of RA may exist to inhibit the entry of germ cells into meiosis in the human fetal testis. PMID:21674038
Song, W; Zhu, H; Li, M; Li, N; Wu, J; Mu, H; Yao, X; Han, W; Liu, W; Hua, J
2013-08-01
Previous studies have shown that promyelocytic leukaemia zinc finger (PLZF) is a spermatogonia-specific transcription factor in the testis, required to regulate self-renewal and maintenance of the spermatogonia stem cell. Up to now, expression and function of PLZF in the goat testis has not been known. The objectives of this study were to investigate PLZF expression pattern in the dairy goat and its effect on male goat germline stem cell (mGSC) self-renewal and differentiation. Testis development and expression patterns of PLZF in the dairy goat were analysed by haematoxylin and eosin staining, immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, effects of PLZF overexpression on mGSC self-renewal and differentiation were evaluated by quantitative RT-PCR (QRT-PCR), immunofluorescence and BrdU incorporation assay. Promyelocytic leukaemia zinc finger was essential for dairy goat testis development and expression of several proliferation and pluripotency-associated proteins including OCT4, C-MYC were upregulated by PLZF overexpression. The study demonstrated that PLZF played a key role in maintaining self-renewal of mGSCs and its overexpression enhanced expression of proliferation-associated genes. Promyelocytic leukaemia zinc finger could function in the dairy goat as well as in other species in maintaining self-renewal of germline stem cells and this study provides a model to study the mechanism on self-renewal and differentiation of mGSCs in livestock. © 2013 John Wiley & Sons Ltd.
Rajakumar, Anbazhagan; Senthilkumaran, Balasubramanian
2014-01-01
In teleosts, the expression of steroidogenic enzymes and related transcription factor genes occurs in a stage- and tissue-specific manner causing sexual development. The role of sox3, an evolutionary ancestor of SRY, has not been studied in detail. Therefore, the full-length cDNA of sox3 (1,197 kb) was cloned from catfish testis, and mRNA expression was analyzed during gonadal development, during the seasonal reproductive cycle, and after human chorionic gonadotropin (hCG) induction. Tissue distribution analysis showed that sox3 expression was higher in testis, ovary, and brain compared to other tissues analyzed. Developing and mature testis showed higher sox3 expression than ovary of corresponding stages, and more sox3 transcripts were found during the spawning phase of the seasonal reproductive cycle. Expression of sox3 was upregulated by hCG after in vivo and in vitro induction, suggesting that gonadotropins might stimulate it. In situ hybridization and immunohistochemistry showed the presence of sox3 mRNA and protein in somatic and interstitial cell layers of the testis. Sox3 could also be found in the zona radiata of developing and mature oocytes. Exposure of methyltestosterone (1 µg/l) and ethinylestradiol (1 µg/l) for 21 days during testicular development showed lower sox3 expression levels in the testis and brain, indicating a certain feedback intervention. These results suggest a possible role for Sox3 in the regulation of testicular development and function. © 2014 S. Karger AG, Basel.
Antibacterial and antiviral roles of a fish β-defensin expressed both in pituitary and testis.
Jin, Jun-Yan; Zhou, Li; Wang, Yang; Li, Zhi; Zhao, Jiu-Gang; Zhang, Qi-Ya; Gui, Jian-Fang
2010-12-20
Defensins are a group of cationic peptides that exhibit broad-spectrum antimicrobial activity. In this study, we cloned and characterized a β-defensin from pituitary cDNA library of a protogynous hermaphroditic orange-spotted grouper (Epinephelus coioides). Interestingly, the β-defensin was shown to be dominantly expressed in pituitary and testis by RT-PCR and Western blot analysis, and its transcript level is significantly upregulated in reproduction organs from intersexual gonad to testis during the natural and artificial sex reversal. Promoter sequence and the responsible activity region analyses revealed the pituitary-specific POU1F1a transcription binding site and testis-specific SRY responsible site, and demonstrated that the pituitary-specific POU1F1a transcription binding site that locates between -180 and -208 bp is the major responsible region of grouper β-defensin promoter activity. Immunofluorescence localization observed its pituicyte expression in pituitary and spermatogonic cell expression in testis. Moreover, both in vitro antibacterial activity assay of the recombinant β-defensin and in vivo embryo microinjection of the β-defensin mRNA were shown to be effective in killing gram-negative bacteria. And, its antiviral role was also demonstrated in EPC cells transfected with the β-defensin construct. Additionally, the antibacterial activity was sensitive to concentrations of Na(+), K(+), Ca(2+) and Mg(2+). The above intriguing findings strongly suggest that the fish β-defensin might play significant roles in both innate immunity defense and reproduction endocrine regulation.
Tang, Elizabeth I.; Lee, Will M.
2016-01-01
Germ cell transport across the seminiferous epithelium during spermatogenesis requires the intricate coordination of cell junctions, signaling proteins, and both actin- and microtubule (MT)-based cytoskeletons. Although the involvement of cytoskeletons in germ cell transport has been suggested, the precise mechanism(s) remains elusive. Based on growing evidence that actin and MT interactions underlie fundamental cellular processes, such as cell motility, it is unlikely that actin- and MT-based cytoskeletons work independently to regulate germ cell transport in the testis. Using rats treated with adjudin, a potential male contraceptive that disrupts spermatid adhesion and transport in the testis, as a study model, we show herein that actin- and MT-based cytoskeletons are both necessary for transport of spermatids and residual bodies/phagosomes across the seminiferous epithelium in adult rat testes. Analysis of intratubular expression of F-actin and tubulin revealed disruption of both actin and MT networks, concomitant with misdirected spermatids and phagosomes in rats treated with adjudin. Actin regulatory proteins, epidermal growth factor receptor pathway substrate 8 and actin-related protein 3, were mislocalized and down-regulated at the actin-rich anchoring junction between germ and Sertoli cells (apical ectoplasmic specialization) after adjudin treatment. Nonreceptor tyrosine kinase p-FAK-Tyr407, known to regulate F-actin nucleation via actin-related protein 3, was also mislocalized and down-regulated at the apical ectoplasmic specialization, corroborating the observation of actin cytoskeleton disruption. Additionally, spatiotemporal expression of MT regulatory protein end-binding protein 1, shown to be involved in MT-actin cross talk herein, was also disrupted after adjudin treatment. In summary, spermatid/phagosome transport across the epithelium during spermatogenesis requires the coordination between actin- and MT-based cytoskeletons. PMID:26894662
D-Aspartic acid and nitric oxide as regulators of androgen production in boar testis.
Lamanna, Claudia; Assisi, Loredana; Vittoria, Alfredo; Botte, Virgilio; Di Fiore, Maria Maddalena
2007-01-15
D-Aspartic acid (D-Asp) and nitric oxide (NO) are two biologically active molecules playing important functions as neurotransmitters and neuromodulators of nerve impulse and as regulators of hormone production by endocrine organs. We studied the occurrence of D-Asp and NO as well as their effects on testosterone synthesis in the testis of boar. This model was chosen for our investigations because it contains more Leydig cells than other mammals. Indirect immunofluorescence applied to cryostat sections was used to evaluate the co-localization of D-Asp and of the enzyme nitric oxide synthase (NOS) in the same Leydig cells. D-Asp and NOS often co-existed in the same Leydig cells and were found, separately, in many other testicular cytotypes. D-Asp level was dosed by an enzymatic method performed on boar testis extracts and was 40+/-3.6 nmol/g of fresh tissue. NO measurement was carried out using a biochemical method by NOS activity determination and expressed as quantity of nitrites produced: it was 155.25+/-21.9 nmol/mg of tissue. The effects of the two molecules on steroid hormone production were evaluated by incubating testis homogenates, respectively with or without D-Asp and/or the NO-donor L-arginine (L-Arg). After incubation, the testosterone presence was measured by immunoenzymatic assay (EIA). These in vitro experiments showed that the addition of D-Asp to incubated testicular homogenates significantly increased testosterone concentration, whereas the addition of L-Arg decreased the hormone production. Moreover, the inclusion of L-Arg to an incubation medium of testicular homogenates with added D-Asp, completely inhibited the stimulating effects of this enantiomer. Our results suggest an autocrine action of both D-Asp and NO on the steroidogenetic activity of the Leydig cell.
BmTGIF, a Bombyx mori Homolog of Drosophila DmTGIF, Regulates Progression of Spermatogenesis
Sheng, Jie; Xue, Renyu; Gong, Chengliang
2012-01-01
TG-interacting factor (TGIF) in Drosophila consists of two tandemly-repeated genes, achintya (Dmachi) and vismay (Dmvis), which act as transcriptional activators in Drosophila spermatogenesis. In contrast, TGIF in humans is a transcriptional repressor that binds directly to DNA or interacts with corepressors to repress the transcription of target genes. In this study, we investigated the characteristics and functions of BmTGIF, a Bombyx mori homolog of DmTGIF. Like DmTGIF, BmTGIF is predominantly expressed in the testes and ovaries. Four alternatively spliced isoforms could be isolated from testes, and two isoforms from ovaries. Quantitative polymerase chain reaction indicated BmTGIF was abundantly expressed in the testis of 3rd instar larvae, when the testis is almost full of primary spermatocytes. The results of luciferase assays indicated that BmTGIF contains two adjacent acidic domains that activate the transcription of reporter genes. Immunofluorescence assay in BmN cells showed that the BmTGIF protein was located mainly in the nucleus, and paraffin sections of testis showed BmTGIF was grossly expressed in primary spermatocytes and mature sperms. Consistent with the role of DmVis in Drosophila development, BmTGIF significantly affected spermatid differentiation, as indicated by hematoxylin-eosin staining of paraffin sections of testis from BmTGIF-small interfering RNA (siRNA)-injected male silkworms. Co-immunoprecipitation experiments suggested that BmTGIF interacted with BmAly, and that they may recruit other factors to form a complex to regulate the genes required for meiotic divisions and spermatid differentiation. The results of this analysis of BmTGIF will improve our understanding of the mechanism of spermatid differentiation in B. mori, with potential applications for pest control. PMID:23152760
Sarkar, D; Singh, S K
2017-07-01
Thyroid hormones (THs) play an important role in maintaining the link between metabolism and reproduction and the altered THs status is associated with induction of oxidative stress in various organs like brain, heart, liver and testis. Further, reactive oxygen species play a pivotal role in regulation of glucose homeostasis in several organs, and glucose utilization by Leydig cells is essential for testosterone biosynthesis and thus is largely dependent on glucose transporter 8 (GLUT8). Glucose uptake by Sertoli cells is mediated through glucose transporter 3 (GLUT3) under the influence of THs to meet energy requirement of developing germ cells. THs also modulate level of gap junctional protein such as connexin 43 (Cx43), a potential regulator of cell proliferation and apoptosis in the seminiferous epithelium. Although the role of transient neonatal hypothyroidism in adult testis in terms of testosterone production is well documented, the effect of THs deficiency in early developmental period and its role in testicular glucose homeostasis and oxidative stress with reference to Cx43 in immature mice remain unknown. Therefore, the present study was conducted to evaluate the effect of neonatal hypothyroidism on testicular glucose homeostasis and oxidative stress at postnatal days (PND) 21 and 28 in relation to GLUT3, GLUT8 and Cx43. Hypothyroidism induced by 6-propyl-2-thiouracil (PTU) markedly decreased testicular glucose level with considerable reduction in expression level of GLUT3 and GLUT8. Likewise, lactate dehydrogenase (LDH) activity and intratesticular concentration of lactate were also decreased in hypothyroid mice. There was also a rise in germ cell apoptosis with increased expression of caspase-3 in PTU-treated mice. Further, neonatal hypothyroidism affected germ cell proliferation with decreased expression of proliferating cell nuclear antigen (PCNA) and Cx43. In conclusion, our results suggest that neonatal hypothyroidism alters testicular glucose homeostasis via increased oxidative stress in prepubertal mice, thereby affecting germ cell survival and proliferation. © 2017 American Society of Andrology and European Academy of Andrology.
Jørgensen, A; Nielsen, J E; Perlman, S; Lundvall, L; Mitchell, R T; Juul, A; Rajpert-De Meyts, E
2015-10-01
What are the effects of experimentally manipulating meiosis signalling by addition of retinoic acid (RA) in cultured human fetal gonads? RA-treatment accelerated meiotic entry in cultured fetal ovary samples, while addition of RA resulted in a dysgenetic gonadal phenotype in fetal testis cultures. One of the first manifestations of sex differentiation is the initiation of meiosis in fetal ovaries. In contrast, meiotic entry is actively prevented in the fetal testis at this developmental time-point. It has previously been shown that RA-treatment mediates initiation of meiosis in human fetal ovary ex vivo. This was a controlled ex vivo study of human fetal gonads treated with RA in 'hanging-drop' tissue cultures. The applied experimental set-up preserves germ cell-somatic niche interactions and the investigated outcomes included tissue integrity and morphology, cell proliferation and survival and the expression of markers of meiosis and sex differentiation. Tissue from 24 first trimester human fetuses was included in this study, all from elective terminations at gestational week (GW) 7-12. Gonads were cultured for 2 weeks with and without addition of 1 µM RA. Samples were subsequently formalin-fixed and investigated by immunohistochemistry and cell counting. Proteins investigated and quantified included; octamer-binding transcription factor 4 (OCT4), transcription factor AP-2 gamma (AP2γ) (embryonic germ cell markers), SRY (sex determining region Y)-box 9 (SOX9), anti-Müllerian hormone (AMH) (immature Sertoli cell markers), COUP transcription factor 2 (COUP-TFII) (marker of interstitial cells), forkhead box L2 (FOXL2) (granulosa cell marker), H2A histone family, member X (γH2AX) (meiosis marker), doublesex and mab-3 related transcription factor 1 (DMRT1) (meiosis regulator), cleaved poly ADP ribose polymerase (PARP), cleaved Caspase 3 (apoptosis markers) and Ki-67 antigen (Ki-67) (proliferation marker). Also, proliferation was determined using a 5'-bromo-2'-deoxyuridine (BrdU) incorporation assay. A novel ex vivo 'hanging-drop' culture model for human fetal gonads was successfully established. Continued proliferation of cells without signs of increased apoptosis was observed after 2 weeks of culture. In cultured fetal ovaries treated with RA, an increased number of meiotic germ cells (P < 0.05) and DMRT1-positive oogonia initiating meiosis (P < 0.05) was observed, which is in agreement with a previous study. In fetal testes, RA-treatment resulted in a decreased number of gonocytes (P < 0.05), a reduced percentage of proliferating gonocytes (P < 0.05), altered expression pattern of the somatic cell markers AMH and COUP-TFII, as well as disrupted seminiferous cord structure and testis morphology. The number of samples included in this study was relatively small due to the limited availability of human fetal tissue. The hanging-drop culture, similarly to other organ culture approaches, allows studies of germ cell-somatic niche interactions and determination of effects after manipulating specific signalling pathways. Our novel finding of disrupted fetal testis development after treatment with RA indicates that abnormal meiosis regulation can potentially cause gonadal dysgenesis. Further studies will elucidate the exact mechanisms and timing of observed effects. This work was supported in part by an ESPE Research Fellowship, sponsored by Novo Nordisk A/S to A.Jø. Additional funding for this project was obtained from The Research Council of the Capital Region of Denmark (E.R.-D.M.), The Research Fund at Rigshospitalet (A.Ju. and J.E.N.), Familien Erichssens Fund (A.Jø.), Dagmar Marshalls Fund (A.Jø.) and Aase & Ejnar Danielsens Fund (A.Jø.). The authors have no conflicts of interest. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Focal adhesion kinase is a regulator of F-actin dynamics
Li, Stephen YT; Mruk, Dolores D; Cheng, C Yan
2013-01-01
During spermatogenesis, spermatogonia (2n, diploid) undergo a series of mitotic divisions as well as differentiation to become spermatocytes, which enter meiosis I to be followed by meiosis II to form round spermatids (1n, haploid), and then differentiate into spermatozoa (1n, haploid) via spermiogenesis. These events take place in the epithelium of the seminiferous tubule, involving extensive junction restructuring at the Sertoli-Sertoli and Sertoli-germ cell interface to allow the transport of developing germ cells across the epithelium. Although structural aspects of these cell-cell junctions have been studied, the underlying mechanism(s) that governs these events has yet to be explored. Earlier studies have shown that a non-receptor protein tyrosine kinase known as focal adhesion kinase (FAK) is a likely regulator of these events due to the stage-specific and spatiotemporal expression of its various phosphorylated/activated forms at the testis-specific anchoring junctions in the testis, as well as its association with actin regulatory proteins. Recent studies have shown that FAK, in particular its two activated phosphorylated forms p-FAK-Tyr407 and p-FAK-Tyr397, are crucial regulators in modulating junction restructuring at the Sertoli cell-cell interface at the blood-testis barrier (BTB) known as the basal ectoplasmic specialization (basal ES), as well as at the Sertoli-spermatid interface called apical ES during spermiogenesis via its effects on the filamentous (F)-actin organization at the ES. We herein summarize and critically evaluate the current knowledge regarding the physiological significance of FAK in regulating BTB and apical ES dynamics by governing the conversion of actin filaments at the ES from a “bundled” to a “de-bundled/branched” configuration and vice versa. We also provide a molecular model on the role of FAK in regulating these events based on the latest findings in the field. PMID:24381802
NASA Astrophysics Data System (ADS)
Jin, Wenjie; Jia, Yishu; Tan, E.; Xi, Gengsi
2017-12-01
Estrogen-related receptor gene ( ERR) and ecdysone receptor gene ( EcR) belong to the nuclear receptor gene superfamily, both of which are associated with the regulation of insect reproductive development. However, the relationship between ERR and EcR and whether ERR participates in the 20E signal pathway during male reproduction are unclear. In this paper, adult male crickets Teleogryllus emma Ohmschi & Matsumura were divided into the experimental group, negative group, and control group. Crickets of the experimental group were injected with TeERR or TeEcR-dsRNA, and those in the negative group received EGFP-dsRNA. The efficiency of TeERR and TeEcR-RNAi was detected in the experimental group. Furthermore, the transcription level, morphological characteristics as well as weight were analyzed in the TeERR or TeEcR knocked-down testis. Results showed that the expression level of TeERR or TeEcR was significantly down-regulated ( P < 0.05) when treated with 2000 ng TeERR or TeEcR-dsRNA for 48 h. The expression level of TeERR could be down-regulated ( P < 0.05) using TeEcR-RNAi and vice versa. TeERR and TeEcR-RNAi caused morphological changes in testes, but they had no obvious effect on weight ( P > 0.05). These results indicate that TeERR and TeEcR are intimately related to each other. In addition, TeERR may be involved in the 20E signal pathway and maintain the function of adult cricket testis.
This paper provides the first report on the effects of two endocrine-active fungicides, ketoconazole and vinclozolin, on the expression of steroidogenesis-related genes in the testis of male fathead minnows.
Frutkin, Andrew D; Shi, Haikun; Otsuka, Goro; Levéen, Per; Karlsson, Stefan; Dichek, David A
2006-10-01
Smooth muscle cell (SMC)-specific deletion of transforming growth factor beta (TGF-beta) signaling would help elucidate the mechanisms through which TGF-beta signaling contributes to vascular development and disease. We attempted to generate mice with SMC-specific deletion of TGF-beta signaling by mating mice with a conditional ("floxed") allele for the type II TGF-beta receptor (tgfbr2flox) to mice with SMC-targeted expression of Cre recombinase. We bred male mice transgenic for smooth muscle myosin heavy chain (SMMHC)-Cre with females carrying tgfbr2flox. Surprisingly, SMMHC-Cre mice recombined tgfbr2flox at low levels in SMC and at high levels in the testis. Recombination of tgfbr2flox in testis correlated with high-level expression of SMMHC-Cre in testis and germline transmission of tgfbr2null. In contrast, mice expressing Cre from a SM22alpha promoter (SM22-Cre) efficiently recombined tgfbr2flox in vascular and visceral SMC and the heart, but not in testis. Use of the R26R reporter allele confirmed that Cre-mediated recombination in vascular SMC was inefficient for SMMHC-Cre mice and highly efficient for SM22-Cre mice. Breedings that introduced the SM22-Cre allele into tgfbr2flox/flox zygotes in order to generate adult mice that are hemizygous for SM22-Cre and homozygous for tgfbr2flox- and would have conversion of tgfbr2flox/flox to tgfbr2null/null in SMC-produced no live SM22-Cre : tgfbr2flox/flox pups (P<0.001). We conclude: (1) "SMC-targeted" Cre lines vary significantly in specificity and efficiency of Cre expression; (2) TGF-beta signaling in the subset of cells that express SM22alpha is required for normal development; (3) generation of adult mice with absent TGF-beta signaling in SMC remains a challenge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faid, Iman; Al-Hussaini, Heba; Kilarkaje, Narayana, E-mail: knarayana@hsc.edu.kw
Diabetes adversely affects reproductive functions in humans and animals. The present study investigated the effects of Resveratrol on diabetes-induced alterations in oxidative stress, c-Jun N-terminal kinase (JNK) signaling and apoptosis in the testis. Adult male Wistar rats (13–15 weeks; n = 6/group) were segregated into 1) normal control, 2) Resveratrol-treated (5 mg/kg; ip; given during last 3 weeks), 3) Streptozotocin-induced diabetic and, 4) Resveratrol-treated diabetic groups, and euthanized on day 42 after the confirmation of diabetes. Resveratrol did not normalize blood glucose levels in diabetic rats. Resveratrol supplementation recovered diabetes-induced decreases in reproductive organ weights, sperm count and motility, intra-testicularmore » levels of superoxide dismutase, catalase, and glutathione peroxidase and an increase in 4-hydroxynonenal activities (P < 0.05). Resveratrol also recovered diabetes-induced increases in JNK signaling pathway proteins, namely, ASK1 (apoptosis signal-regulating kinase 1), JNKs (46 and 54 kDa isoforms) and p-JNK to normal control levels (P < 0.05). Interestingly, the expression of a down-stream target of ASK1, MKK4 (mitogen-activated protein kinase kinase 4) and its phosphorylated form (p-MKK4) did not change in experimental groups. Resveratrol inhibited diabetes-induced increases in AP-1 (activator protein-1) components, c-Jun and ATF2 (activating transcription factor 2), but not their phosphorylated forms, to normal control levels (P < 0.05). Further, Resveratrol inhibited diabetes-induced increase in cleaved-caspase-3 to normal control levels. In conclusion, Resveratrol alleviates diabetes-induced apoptosis in testis by modulating oxidative stress, JNK signaling pathway and caspase-3 activities, but not by inhibiting hyperglycemia, in rats. These results suggest that Resveratrol supplementation may be a useful strategy to treat diabetes-induced testicular dysfunction. - Highlights: • Resveratrol up-regulates glutathione peroxidase and catalase levels in the testis. • Diabetes up-regulates oxidative stress and JNK pathway in the testis. • Resveratrol inhibits diabetes-induced oxidative stress and JNK pathway. • Resveratrol mitigates diabetes-induced apoptosis of testicular cells. • Resveratrol treatment alleviates diabetes-induced testicular dysfunction.« less
Bar, Ido; Cummins, Scott; Elizur, Abigail
2016-03-10
Controlling and managing the breeding of bluefin tuna (Thunnus spp.) in captivity is an imperative step towards obtaining a sustainable supply of these fish in aquaculture production systems. Germ cell transplantation (GCT) is an innovative technology for the production of inter-species surrogates, by transplanting undifferentiated germ cells derived from a donor species into larvae of a host species. The transplanted surrogates will then grow and mature to produce donor-derived seed, thus providing a simpler alternative to maintaining large-bodied broodstock such as the bluefin tuna. Implementation of GCT for new species requires the development of molecular tools to follow the fate of the transplanted germ cells. These tools are based on key reproductive and germ cell-specific genes. RNA-Sequencing (RNA-Seq) provides a rapid, cost-effective method for high throughput gene identification in non-model species. This study utilized RNA-Seq to identify key genes expressed in the gonads of Southern bluefin tuna (Thunnus maccoyii, SBT) and their specific expression patterns in male and female gonad cells. Key genes involved in the reproductive molecular pathway and specifically, germ cell development in gonads, were identified using analysis of RNA-Seq transcriptomes of male and female SBT gonad cells. Expression profiles of transcripts from ovary and testis cells were compared, as well as testis germ cell-enriched fraction prepared with Percoll gradient, as used in GCT studies. Ovary cells demonstrated over-expression of genes related to stem cell maintenance, while in testis cells, transcripts encoding for reproduction-associated receptors, sex steroids and hormone synthesis and signaling genes were over-expressed. Within the testis cells, the Percoll-enriched fraction showed over-expression of genes that are related to post-meiosis germ cell populations. Gonad development and germ cell related genes were identified from SBT gonads and their expression patterns in ovary and testis cells were determined. These expression patterns correlate with the reproductive developmental stage of the sampled fish. The majority of the genes described in this study were sequenced for the first time in T. maccoyii. The wealth of SBT gonadal and germ cell-related gene sequences made publicly available by this study provides an extensive resource for further GCT and reproductive molecular biology studies of this commercially valuable fish.
McMaster, Mark E.; Servos, Mark R.; Martyniuk, Christopher J.; Munkittrick, Kelly R.
2016-01-01
Intersex is a condition that has been associated with exposure to sewage effluents in male rainbow darter (Etheostoma caeruleum). To better understand changes in the transcriptome that are associated with intersex, we characterized annual changes in the testis transcriptome in wild, unexposed fish. Rainbow darter males were collected from the Grand River (Ontario, Canada) in May (spawning), August (post-spawning), October (recrudescence), January (developing) and March (pre-spawning). Histology was used to determine the proportion of spermatogenic cell types that were present during each period of testicular maturation. Regression analysis determined that the proportion of spermatozoa versus spermatocytes in all stages of development (R2 ≥ 0.58) were inversely related; however this was not the case when males were in the post-spawning period. Gene networks that were specific to the transition from developing to pre-spawning stages included nitric oxide biosynthesis, response to wounding, sperm cell function, and stem cell maintenance. The pre-spawning to spawning transition included gene networks related to amino acid import, glycogenesis, Sertoli cell proliferation, sperm capacitation, and sperm motility. The spawning to post-spawning transition included unique gene networks associated with chromosome condensation, ribosome biogenesis and assembly, and mitotic spindle assembly. Lastly, the transition from post-spawning to recrudescence included gene networks associated with egg activation, epithelial to mesenchymal transition, membrane fluidity, and sperm cell adhesion. Noteworthy was that there were a significant number of gene networks related to immune system function that were differentially expressed throughout reproduction, suggesting that immune network signalling has a prominent role in the male testis. Transcripts in the testis of post-spawning individuals showed patterns of expression that were most different for the majority of transcripts investigated when compared to the other stages. Interestingly, many transcripts associated with female sex differentiation (i.e. esr1, sox9, cdca8 and survivin) were significantly higher in the testis during the post-spawning season compared to other testis stages. At post-spawning, there were higher levels of estrogen and androgen receptors (esr1, esr2, ar) in the testis, while there was a decrease in the levels of sperm associated antigen 1 (spag1) and spermatogenesis associated 4 (spata4) mRNA. Cyp17a was more abundant in the testis of fish in the pre-spawning, spawning, and post-spawning seasons compared to those individuals that were recrudescent while aromatase (cyp19a) did not vary in expression over the year. This study identifies cell process related to testis development in a seasonally spawning species and improves our understanding regarding the molecular signaling events that underlie testicular growth. This is significant because, while there are a number of studies characterizing molecular pathways in the ovary, there are comparatively less describing transcriptomic patterns in the testis in wild fish. PMID:27861489
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lei; Wang, Huaxi; Yang, Yan
Highlights: •Nerve growth factor has shown significant changes on mRNA levels during Adult Leydig cells regeneration. •We established the organ culture model of rat seminiferous tubules with ethane dimethyl sulphonate (EDS) treatment. •Nerve growth factor has shown proliferation and differentiation-promoting effects on Adult stem Leydig cells. •Nerve growth factor induces progenitor Leydig cells to proliferate and differentiate and immature Leydig cells to proliferate. -- Abstract: Nerve growth factor (NGF) has been reported to be involved in male reproductive physiology. However, few reports have described the activity of NGF during Leydig cell development. The objective of the present study was tomore » examine the role of NGF during stem-Leydig-cell (SLC) regeneration. We investigated the effects of NGF on Leydig-cell (LC) regeneration by measuring mRNA levels in the adult rat testis after ethane dimethanesulfonate (EDS) treatment. Furthermore, we used the established organ culture model of rat seminiferous tubules to examine the regulation of NGF during SLC proliferation and differentiation using EdU staining, real-time PCR and western blotting. Progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs) were also used to investigate the effects of NGF on LCs at different developmental stages. NGF mRNA levels changed significantly during Leydig-cell regeneration in vivo. In vitro, NGF significantly promoted the proliferation of stem Leydig cells and also induced steroidogenic enzyme gene expression and 3β-HSD protein expression. The data from PLCs and ILCs showed that NGF could increase Cyclin D1 and Hsd 17b3 mRNA levels in PLCs and Cyclin D1 mRNA levels in ILCs. These results indicate that NGF may play an important role during LC regeneration by regulating the proliferation and differentiation of LCs at different developmental stages, from SLCs to PLCs and from PLCs to ILCs. The discovery of this effect of NGF on Leydig cells will provide useful information for developing new potential therapies for PADAM (Partial Androgen Deficiency in the Aging Male)« less
Identification of Developmentally Regulated PCP-Responsive Non-Coding RNA, prt6, in the Rat Thalamus
Umino, Asami; Nishikawa, Toru
2014-01-01
Schizophrenia and similar psychoses induced by NMDA-type glutamate receptor antagonists, such as phencyclidine (PCP) and ketamine, usually develop after adolescence. Moreover, adult-type behavioral disturbance following NMDA receptor antagonist application in rodents is observed after a critical period at around 3 postnatal weeks. These observations suggest that the schizophrenic symptoms caused by and psychotomimetic effects of NMDA antagonists require the maturation of certain brain neuron circuits and molecular networks, which differentially respond to NMDA receptor antagonists across adolescence and the critical period. From this viewpoint, we have identified a novel developmentally regulated phencyclidine-responsive transcript from the rat thalamus, designated as prt6, as a candidate molecule involved in the above schizophrenia-related systems using a DNA microarray technique. The transcript is a non-coding RNA that includes sequences of at least two microRNAs, miR132 and miR212, and is expressed strongly in the brain and testis, with trace or non-detectable levels in the spleen, heart, liver, kidney, lung and skeletal muscle, as revealed by Northern blot analysis. The systemic administration of PCP (7.5 mg/kg, subcutaneously (s.c.)) significantly elevated the expression of prt6 mRNA in the thalamus at postnatal days (PD) 32 and 50, but not at PD 8, 13, 20, or 24 as compared to saline-treated controls. At PD 50, another NMDA receptor antagonist, dizocilpine (0.5 mg/kg, s.c.), and a schizophrenomimetic dopamine agonist, methamphetamine (4.8 mg/kg, s.c.), mimicked a significant increase in the levels of thalamic prt6 mRNAs, while a D2 dopmamine receptor antagonist, haloperidol, partly inhibited the increasing influence of PCP on thalamic prt6 expression without its own effects. These data indicate that prt6 may be involved in the pathophysiology of the onset of drug-induced schizophrenia-like symptoms and schizophrenia through the possible dysregulation of target genes of the long non-coding RNA or microRNAs in the transcript. PMID:24886782
Yamaguchi, Sonoko; Miura, Chiemi; Ito, Aki; Agusa, Tetsuro; Iwata, Hisato; Tanabe, Shinsuke; Tuyen, Bui Cach; Miura, Takeshi
2007-06-05
To estimate the influence of water contaminants on fish reproduction in the Mekong Delta area, we sampled cultivated male catfish (Pangasianodon hypophthalmus), investigated testicular development, and measured persistent organic pollutants (POPs) and trace element levels in muscle and liver, respectively. Various testes sizes were observed although sampling took place during a short period. Histological analysis revealed that all developmental stages of germ cells were observed in catfish with large testis, whereas only necrotic spermatogonia but no other germ cells were observed in catfish with small testis. In small testis, furthermore, vacuolization and hypertrophy of Sertoli cells were observed. Measurement of POPs in muscle and trace elements in liver demonstrated that there were negative correlations between GSI and the concentrations of Pb, Mo, Rb and As. To clarify possible direct effects of Pb, Mo, Rb and As on spermatogenesis in fish, we investigated the effects of these trace elements on spermatogenesis using in vitro testicular organ culture of Japanese eel (Anguilla japonica). Treatment with each of the trace elements alone did not affect spermatogenesis. However, treatment with 10(-7)M of Pb, 10(-5) and 10(-4)M of Mo, 10(-5)-10(-3)M of Rb or 10(-5)M of As inhibited the spermatogenesis induced by 11-ketotestosterone (11KT). Furthermore, treatment with 10(-4)M of As in combination with 11KT caused necrosis of testicular fragments. Taken together, these results are consistent with the hypothesis that Pb, Mo, Rb and As can exert inhibitory effects on spermatogenesis in catfish inhabiting the Mekong Delta area.
A Novel Testis-Specific Gene, Ccdc136, Is Required for Acrosome Formation and Fertilization in Mice.
Geng, Qiang; Ni, Liwei; Ouyang, Bin; Hu, Yanhua; Zhao, Yu; Guo, Jun
2016-10-01
Testis-specific genes are essential for the spermatogenesis in mammalian male reproduction. In this study, we have identified a novel testis-specific gene, Ccdc136 (coiled-coil domain containing 136), from the results of high-throughput gene expression profiling in the developmental stage of mouse testes. Ccdc136 was conserved across species in evolution. Quantitative real-time polymerase chain reaction and Western blot analyses showed that Ccdc136 messenger RNA and protein were extraordinarily expressed in mouse testes, which was first presented at postnatal 3 week and increased in an age-dependent manner before adulthood. Immunofluorescence staining revealed that CCDC136 protein was most abundantly located in the acrosome of round spermatids and elongating spermatids within seminiferous tubules of the adult mouse testes. To investigate the function of Ccdc136 in mouse testes, we generated the Ccdc136-knockout mice using Cas9/RNA-mediated gene targeting technology. Interestingly, we found Ccdc136(-/-) males were infertile, due to severe defect of disrupting acrosome formation. The expression levels of proteins (SPACA1 and PICK1) involved in acrosome formation were significantly downregulated in the testes of Ccdc136(-/-) mice than wide-type mice. Moreover, in vitro fertilization assay revealed that anti-CCDC136 antibody could remarkably inhibit fertilization, suggesting CCDC136 also plays an important role in fertilization. All of these demonstrated the essential role of CCDC136-mediated acrosome formation in spermatogenesis and fertilization, which might also provide new insight into the genetic causes of human infertility. © The Author(s) 2016.
Mouse RC/BTB2, a Member of the RCC1 Superfamily, Localizes to Spermatid Acrosomal Vesicles
Shen, Xuening; Nagarkatti-Gude, David R.; Hess, Rex A.; Henderson, Scott C.; Strauss, Jerome F.; Zhang, Zhibing
2012-01-01
Mouse RC/BTB2 is an unstudied protein of the RCC1 (Regulator of Chromosome Condensation) superfamily. Because of the significant remodeling of chromatin that occurs during spermiogenesis, we characterized the expression and localization of mouse RC/BTB2 in the testis and male germ cells. The Rc/btb2 gene yields two major transcripts: 2.3 kb Rc/btb2-s, present in most somatic tissues examined; and 2.5 kb Rc/btb2-t, which contains a unique non-translated exon in its 5′-UTR that is only detected in the testis. During the first wave of spermatogenesis, Rc/btb2-t mRNA is expressed from day 8 after birth, reaching highest levels of expression at day 30 after birth. The full-length protein contains three RCC1 domains in the N-terminus, and a BTB domain in the C-terminus. In the testis, the protein is detectable from day 12, but is progressively up-regulated to day 30 and day 42 after birth. In spermatids, some of the protein co-localizes with acrosomal markers sp56 and peanut lectin, indicating that it is an acrosomal protein. A GFP-tagged RCC1 domain is present throughout the cytoplasm of transfected CHO cells. However, both GFP-tagged, full-length RC/BTB2 and a GFP-tagged BTB domain localize to vesicles in close proximity to the nuclear membrane, suggesting that the BTB domain might play a role in mediating full-length RC/BTB2 localization. Since RCC1 domains associate with Ran, a small GTPase that regulates molecular trafficking, it is possible that RC/BTB2 plays a role in transporting proteins during acrosome formation. PMID:22768142
Jin, Wenjie; Jia, Yishu; Tan, E; Xi, Gengsi
2017-10-30
Estrogen-related receptor gene (ERR) and ecdysone receptor gene (EcR) belong to the nuclear receptor gene superfamily, both of which are associated with the regulation of insect reproductive development. However, the relationship between ERR and EcR and whether ERR participates in the 20E signal pathway during male reproduction are unclear. In this paper, adult male crickets Teleogryllus emma Ohmschi & Matsumura were divided into the experimental group, negative group, and control group. Crickets of the experimental group were injected with TeERR or TeEcR-dsRNA, and those in the negative group received EGFP-dsRNA. The efficiency of TeERR and TeEcR-RNAi was detected in the experimental group. Furthermore, the transcription level, morphological characteristics as well as weight were analyzed in the TeERR or TeEcR knocked-down testis. Results showed that the expression level of TeERR or TeEcR was significantly down-regulated (P < 0.05) when treated with 2000 ng TeERR or TeEcR-dsRNA for 48 h. The expression level of TeERR could be down-regulated (P < 0.05) using TeEcR-RNAi and vice versa. TeERR and TeEcR-RNAi caused morphological changes in testes, but they had no obvious effect on weight (P > 0.05). These results indicate that TeERR and TeEcR are intimately related to each other. In addition, TeERR may be involved in the 20E signal pathway and maintain the function of adult cricket testis.
Testis tumor associated to microlithiasis.
Jesus, Lisieux Eyer de; Maciel, Felipe; Monnerat, Andrea Lima C; Fernandes, Marcia Antunes; Dekermache, Samuel
2013-12-01
To discuss the relationship between testicular microlithiasis and testis tumors in children and to consider the chances of testis preserving surgery in specific cases. Pre-adolescent presenting testicular microlithiasis and a larger left testis, corresponding to a cystic testicular tumor. The tumor was excised, with ipsilateral testis preservation. Histology diagnosed a testis dermoid tumor. The relationship between testis tumors and testicular microlithiasis is ill defined in children. Pediatric urologists need to develop specific follow-up protocols for pre-pubertal children.
Stine, Rachel R.; Greenspan, Leah J.; Ramachandran, Kapil V.; Matunis, Erika L.
2014-01-01
Stem cells in tissues reside in and receive signals from local microenvironments called niches. Understanding how multiple signals within niches integrate to control stem cell function is challenging. The Drosophila testis stem cell niche consists of somatic hub cells that maintain both germline stem cells and somatic cyst stem cells (CySCs). Here, we show a role for the axon guidance pathway Slit-Roundabout (Robo) in the testis niche. The ligand Slit is expressed specifically in hub cells while its receptor, Roundabout 2 (Robo2), is required in CySCs in order for them to compete for occupancy in the niche. CySCs also require the Slit-Robo effector Abelson tyrosine kinase (Abl) to prevent over-adhesion of CySCs to the niche, and CySCs mutant for Abl outcompete wild type CySCs for niche occupancy. Both Robo2 and Abl phenotypes can be rescued through modulation of adherens junction components, suggesting that the two work together to balance CySC adhesion levels. Interestingly, expression of Robo2 requires JAK-STAT signaling, an important maintenance pathway for both germline and cyst stem cells in the testis. Our work indicates that Slit-Robo signaling affects stem cell function downstream of the JAK-STAT pathway by controlling the ability of stem cells to compete for occupancy in their niche. PMID:25375180
Arterbery, Adam S; Deitcher, David L; Bass, Andrew H
2010-05-15
The vocalizing midshipman fish, Porichthys notatus, has two male morphs that exhibit alternative mating tactics. Only territorial males acoustically court females with long duration (minutes to >1h) calls, whereas sneaker males attempt to steal fertilizations. During the breeding season, morph-specific tactics are paralleled by a divergence in relative testis and vocal muscle size, plasma levels of the androgen 11-ketotestosterone (11KT) and the glucocorticoid cortisol, and mRNA expression levels in the central nervous system (CNS) of the steroid-synthesizing enzyme aromatase (estrogen synthase). Here, we tested the hypothesis that the midshipman's two male morphs would further differ in the CNS, as well as in the testis and vocal muscle, in mRNA abundance for the enzymes 11beta-hydroxylase (11betaH) and 11beta-hydroxysteroid dehydrogenase (11betaHSD) that directly regulate both 11KT and cortisol synthesis. Quantitative real-time PCR demonstrated male morph-specific profiles for both enzymes. Territorial males had higher 11betaH and 11betaHSD mRNA levels in testis and vocal muscle. By contrast, sneaker males had the higher CNS expression, especially for 11betaHSD, in the region containing an expansive vocal pacemaker circuit that directly determines the temporal attributes of natural calls. We propose for territorial males that higher enzyme expression in testis underlies its greater plasma 11KT levels, which in vocal muscle provides both gluconeogenic and androgenic support for its long duration calling. We further propose for sneaker males that higher enzyme expression in the vocal CNS contributes to known cortisol-specific effects on its vocal physiology. Copyright 2010 Elsevier Inc. All rights reserved.
Salehipour, Pouya; Nematzadeh, Mahsa; Mobasheri, Maryam Beigom; Afsharpad, Mandana; Mansouri, Kamran; Modarressi, Mohammad Hossein
2017-09-01
Testis specific gene antigen 10 (TSGA10) is a cancer testis antigen involved in the process of spermatogenesis. TSGA10 could also play an important role in the inhibition of angiogenesis by preventing nuclear localization of HIF-1α. Although it has been shown that TSGA10 messenger RNA (mRNA) is mainly expressed in testis and some tumors, the transcription pattern and regulatory mechanisms of this gene remain largely unknown. Here, we report that human TSGA10 comprises at least 22 exons and generates four different transcript variants. It was identified that using two distinct promoters and splicing of exons 4 and 7 produced these transcript variants, which have the same coding sequence, but the sequence of 5'untanslated region (5'UTR) is different between them. This is significant because conserved regulatory RNA elements like upstream open reading frame (uORF) and putative internal ribosome entry site (IRES) were found in this region which have different combinations in each transcript variant and it may influence translational efficiency of them in normal or unusual environmental conditions like hypoxia. To indicate the transcription pattern of TSGA10 in breast cancer, expression of identified transcript variants was analyzed in 62 breast cancer samples. We found that TSGA10 tends to express variants with shorter 5'UTR and fewer uORF elements in breast cancer tissues. Our study demonstrates for the first time the expression of different TSGA10 transcript variants in testis and breast cancer tissues and provides a first clue to a role of TSGA10 5'UTR in regulation of translation in unusual environmental conditions like hypoxia. Copyright © 2017. Published by Elsevier B.V.
Regulation of steroid hormones and energy status with cysteamine and its effect on spermatogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yandi
Although it is well known that cysteamine is a potent chemical for treating many diseases including cystinosis and it has many adverse effects, the effect of cysteamine on spermatogenesis is as yet unknown. Therefore the objective of this investigation was to explore the effects of cysteamine on spermatogenesis and the underlying mechanisms. Sheep were treated with vehicle control, 10 mg/kg or 20 mg/kg cysteamine for six months. After that, the semen samples were collected to determine the spermatozoa motility by computer-assisted sperm assay method. Blood samples were collected to detect the levels of hormones and the activity of enzymes. Spermatozoamore » and testis samples were collected to study the mechanism of cysteamine's actions. It was found that the effects of cysteamine on spermatogenesis were dose dependent. A low dose (10 mg/kg) cysteamine treatment increased ovine spermatozoa motility; however, a higher dose (20 mg/kg) decreased both spermatozoa concentration and motility. This decrease might be due to a reduction in steroid hormone production by the testis, a reduction in energy in the testis and spermatozoa, a disruption in the blood-testis barrier, or a breakdown in the vital signaling pathways involved in spermatogenesis. The inhibitory effects of cysteamine on sheep spermatogenesis may be used to model its effects on young male patients with cystinosis or other diseases that are treated with this drug. Further studies on spermatogenesis that focus on patients treated with cysteamine during the peripubertal stage are warranted. - Highlights: • Dose dependent effects of cysteamine on spermatogenesis • A low dose (10 mg/kg) increased spermatozoa motility. • A higher dose (20 mg/kg) decreased both concentration and motility of spermatozoa. • Disruption in the blood-testis barrier caused reduction in concentration and motility.« less
Sterols in spermatogenesis and sperm maturation
Keber, Rok; Rozman, Damjana; Horvat, Simon
2013-01-01
Mammalian spermatogenesis is a complex developmental program in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. One intriguing aspect of sperm production is the dynamic change in membrane lipid composition that occurs throughout spermatogenesis. Cholesterol content, as well as its intermediates, differs vastly between the male reproductive system and nongonadal tissues. Accumulation of cholesterol precursors such as testis meiosis-activating sterol and desmosterol is observed in testes and spermatozoa from several mammalian species. Moreover, cholesterogenic genes, especially meiosis-activating sterol-producing enzyme cytochrome P450 lanosterol 14α-demethylase, display stage-specific expression patterns during spermatogenesis. Discrepancies in gene expression patterns suggest a complex temporal and cell-type specific regulation of sterol compounds during spermatogenesis, which also involves dynamic interactions between germ and Sertoli cells. The functional importance of sterol compounds in sperm production is further supported by the modulation of sterol composition in spermatozoal membranes during epididymal transit and in the female reproductive tract, which is a prerequisite for successful fertilization. However, the exact role of sterols in male reproduction is unknown. This review discusses sterol dynamics in sperm maturation and describes recent methodological advances that will help to illuminate the complexity of sperm formation and function. PMID:23093550
Testis tumor associated to microlithiasis
de Jesus, Lisieux Eyer; Maciel, Felipe; Monnerat, Andrea Lima C.; Fernandes, Marcia Antunes; Dekermache, Samuel
2013-01-01
OBJECTIVE: To discuss the relationship between testicular microlithiasis and testis tumors in children and to consider the chances of testis preserving surgery in specific cases. CASE DESCRIPTION: Pre-adolescent presenting testicular microlithiasis and a larger left testis, corresponding to a cystic testicular tumor. The tumor was excised, with ipsilateral testis preservation. Histology diagnosed a testis dermoid tumor. COMMENTS: The relationship between testis tumors and testicular microlithiasis is ill defined in children. Pediatric urologists need to develop specific follow-up protocols for pre-pubertal children. PMID:24473964
Rajakumar, Anbazhagan; Senthilkumaran, Balasubramanian
2014-10-01
In teleosts, the levels of steroids are critical for sexual development and hence, expression of steroidogenic enzyme genes and specific substrate availability are indispensable for gonadal steroidogenesis. Early stages of steroidogenesis specifically cholesterol to pregnenolone conversion by Cyp11a1 is crucial for estradiol and testosterone biosynthesis. Based on this, in this study, full length cDNA of cyp11a1 (2581bp) was cloned from catfish testis to investigate the importance of Cyp11a1 by analyzing the expression of cyp11a1 during gonadal development, seasonal reproductive cycle, after human chorionic gonadotropin (hCG) induction and sex steroid analog treatment. Phylogenetic analysis revealed that the Cyp11a1 is more conserved across teleosts. Tissue distribution analysis showed that the cyp11a1 expression was higher in the testis followed by the brain, head kidney, muscle and ovary compared to other tissues analyzed. High expression of cyp11a1 in the head kidney and muscle revealed that Cyp11a1 could potentially regulate the extra-gonadal and/or circulating steroid levels in teleosts. Developing and mature testes showed higher expression of cyp11a1 than the ovary of corresponding age group. Further, cyp11a1 expression was found to be higher during pre-spawning and spawning phases of testicular cycle and was upregulated by hCG, in vivo and in vitro, which indicates the possible regulation by gonadotropin. Exposure of methyltestosterone (1μg/L) and ethinylestradiol (1μg/L) for 21days during catfish testicular development showed lower cyp11a1 expression levels in the testis and brain indicating a certain feedback intervention. These results suggest possible role for Cyp11a1 in the testis development and recrudescence. Copyright © 2014 Elsevier Inc. All rights reserved.
Svingen, Terje; Koopman, Peter
2013-01-01
Development of testes in the mammalian embryo requires the formation and assembly of several cell types that allow these organs to achieve their roles in male reproduction and endocrine regulation. Testis development is unusual in that several cell types such as Sertoli, Leydig, and spermatogonial cells arise from bipotential precursors present in the precursor tissue, the genital ridge. These cell types do not differentiate independently but depend on signals from Sertoli cells that differentiate under the influence of transcription factors SRY and SOX9. While these steps are becoming better understood, the origins and roles of many testicular cell types and structures—including peritubular myoid cells, the tunica albuginea, the arterial and venous blood vasculature, lymphatic vessels, macrophages, and nerve cells—have remained unclear. This review synthesizes current knowledge of how the architecture of the testis unfolds and highlights the questions that remain to be explored, thus providing a roadmap for future studies that may help illuminate the causes of XY disorders of sex development, infertility, and testicular cancers. PMID:24240231
Dobloug, I
1989-01-30
This article discusses civilian and military insurance regulations, including social support in case of illness or injury during compulsory military service. The procedure is exemplified by the treatment of conscripts who are diagnosed as having cancer testis while doing their compulsory service. It is essential that civilian medical practitioners are familiar with this procedure, so that they can advise any conscripts who consult them.
Thyroid hormone actions on male reproductive system of teleost fish.
Tovo-Neto, Aldo; da Silva Rodrigues, Maira; Habibi, Hamid R; Nóbrega, Rafael Henrique
2018-04-17
Thyroid hormones (THs) play important roles in the regulation of many biological processes of vertebrates, such as growth, metabolism, morphogenesis and reproduction. An increasing number of studies have been focused on the involvement of THs in the male reproductive system of vertebrates, in particular of fish. Therefore, this mini-review aims to summarize the main findings on THs role in male reproductive system of fish, focusing on sex differentiation, testicular development and spermatogenesis. The existing data in the literature have demonstrated that THs exert their roles at the different levels of the hypothalamic-pituitary-gonadal (HPG) axis. In general a positive correlation has been shown between THs and fish reproductive status; where THs are associated with testicular development, growth and maturation. Recently, the molecular mechanisms underlying the role of THs in spermatogenesis have been unraveled in zebrafish testis. THs promote germ cell proliferation and differentiation by increasing a stimulatory growth factor of spermatogenesis produced by Sertoli cells. In addition, THs enhanced the gonadotropin-induced androgen release in zebrafish testis. Next to their functions in the adult testis, THs are involved in the gonadal sex differentiation through modulating sex-related gene expression, and testicular development via regulation of Sertoli cell proliferation. In conclusion, this mini-review showed that THs modulate the male reproductive system during the different life stages of fish. The physiological and molecular mechanisms showed a link between the thyroid and reproduction, suggesting a possibly co-evolution and interdependence of these two systems. Copyright © 2018 Elsevier Inc. All rights reserved.
Li, MeiYan; Cao, Jinling; Chen, Jianjie; Song, Jie; Zhou, Bingrui; Feng, Cuiping; Wang, Jundong
2016-02-01
Excessive fluoride in natural water ecosystem has been demonstrated to have adverse effects on reproductive system in humans and mammals, while the most vulnerable aquatic organisms were ignored. In this study, the effects of waterborne fluoride on growth performance, sex steroid hormone, histological structure, and the transcriptional profiles of sex steroid related genes were examined in both female and male zebrafish exposed to different concentrations of 0.79, 18.60, 36.83 mg L(-1) of fluoride for 30 and 60 d to investigate the effects of fluoride on reproductive system and the underlying toxic mechanisms caused by fluoride. The results showed that the body weight was remarkably decreased, the structure of ovary and testis were serious injured, and the T and E2 levels were significantly reduced in male zebrafish. The transcriptional profiles of steroidogenic related genes displayed phenomenal alterations, the expressions of pgr and cyp19a1a were significantly up-regulated, while the transcriptional levels of er, ar and hsd3β were decreased both in the ovary and testis, and hsd17β8 were down-regulated just in males. Taken together, these results demonstrated that fluoride could significantly inhibit the growth of zebrafish, and notably affect the reproductive system in both sex zebrafish by impairing the structure of ovary and testis, altering steroid hormone levels and steroidogenic genes expression related to the synthesis of sex hormones in zebrafish. Copyright © 2015 Elsevier Ltd. All rights reserved.
Activin C Antagonizes Activin A in Vitro and Overexpression Leads to Pathologies in Vivo
Gold, Elspeth; Jetly, Niti; O'Bryan, Moira K.; Meachem, Sarah; Srinivasan, Deepa; Behuria, Supreeti; Sanchez-Partida, L. Gabriel; Woodruff, Teresa; Hedwards, Shelley; Wang, Hong; McDougall, Helen; Casey, Victoria; Niranjan, Birunthi; Patella, Shane; Risbridger, Gail
2009-01-01
Activin A is a potent growth and differentiation factor whose synthesis and bioactivity are tightly regulated. Both follistatin binding and inhibin subunit heterodimerization block access to the activin receptor and/or receptor activation. We postulated that the activin-βC subunit provides another mechanism regulating activin bioactivity. To test our hypothesis, we examined the biological effects of activin C and produced mice that overexpress activin-βC. Activin C reduced activin A bioactivity in vitro; in LNCaP cells, activin C abrogated both activin A-induced Smad signaling and growth inhibition, and in LβT2 cells, activin C antagonized activin A-mediated activity of an follicle-stimulating hormone-β promoter. Transgenic mice that overexpress activin-βC exhibited disease in testis, liver, and prostate. Male infertility was caused by both reduced sperm production and impaired sperm motility. The livers of the transgenic mice were enlarged because of an imbalance between hepatocyte proliferation and apoptosis. Transgenic prostates showed evidence of hypertrophy and epithelial cell hyperplasia. Additionally, there was decreased evidence of nuclear Smad-2 localization in the testis, liver, and prostate, indicating that overexpression of activin-βC antagonized Smad signaling in vivo. Underlying the significance of these findings, human testis, liver, and prostate cancers expressed increased activin-βC immunoreactivity. This study provides evidence that activin-βC is an antagonist of activin A and supplies an impetus to examine its role in development and disease. PMID:19095948
Spreading the Clinical Window for Diagnosing Fetal-Onset Hypogonadism in Boys
Grinspon, Romina P.; Loreti, Nazareth; Braslavsky, Débora; Valeri, Clara; Schteingart, Helena; Ballerini, María Gabriela; Bedecarrás, Patricia; Ambao, Verónica; Gottlieb, Silvia; Ropelato, María Gabriela; Bergadá, Ignacio; Campo, Stella M.; Rey, Rodolfo A.
2014-01-01
In early fetal development, the testis secretes – independent of pituitary gonadotropins – androgens and anti-Müllerian hormone (AMH) that are essential for male sex differentiation. In the second half of fetal life, the hypothalamic–pituitary axis gains control of testicular hormone secretion. Follicle-stimulating hormone (FSH) controls Sertoli cell proliferation, responsible for testis volume increase and AMH and inhibin B secretion, whereas luteinizing hormone (LH) regulates Leydig cell androgen and INSL3 secretion, involved in the growth and trophism of male external genitalia and in testis descent. This differential regulation of testicular function between early and late fetal periods underlies the distinct clinical presentations of fetal-onset hypogonadism in the newborn male: primary hypogonadism results in ambiguous or female genitalia when early fetal-onset, whereas it becomes clinically undistinguishable from central hypogonadism when established later in fetal life. The assessment of the hypothalamic–pituitary–gonadal axis in male has classically relied on the measurement of gonadotropin and testosterone levels in serum. These hormone levels normally decline 3–6 months after birth, thus constraining the clinical evaluation window for diagnosing male hypogonadism. The advent of new markers of gonadal function has spread this clinical window beyond the first 6 months of life. In this review, we discuss the advantages and limitations of old and new markers used for the functional assessment of the hypothalamic–pituitary–testicular axis in boys suspected of fetal-onset hypogonadism. PMID:24847309
Primary hypogonadism in gonadotropin-releasing hormone II receptor knockdown boars
USDA-ARS?s Scientific Manuscript database
Paradoxically, the second mammalian GnRH isoform (GnRH-II) and its receptor (GnRHR-II) are not physiological regulators of gonadotropin secretion. Instead, our data suggests that both are abundantly produced in the porcine testis and mediate testosterone secretion, independent of luteinizing hormone...
Current federal regulations require monitoring for fecal coliforms or Salmonella in biosolids destined for land application. Methods used for analysis of fecal coliforms and Salmonella were reviewed and a standard protocol was developed. The protocols were then evaluated by testi...
Effects of In Utero Exposure to Di-n-Butyl Phthalate on Testicular Development in Rat
Ma, Tan; Yin, Xiaoqin; Han, Ruitong; Ding, Jie; Zhang, Huan; Han, Xiaodong
2017-01-01
Humans are inevitably exposed to ubiquitous phthalate esters (PAEs). In utero exposure to di-n-butyl phthalate (DBP) induces abnormal development of the testis and reproductive tract in male offspring, which correspond closely with the human condition of testicular dysgenesis syndrome (TDS)-like syndrome. However, the underlying mechanisms have not been elucidated in detail. In this study, pregnant rats were orally exposed to either corn oil (controls) or DBP at three different doses by gavage during Gestational Days 12.5–21.5. Pathological examinations were performed for toxicity evaluation. Proliferation and apoptosis related proteins (ras related dexamethasone induced 1 (Rasd1), mitogen-activated protein kinase kinases1/2 (MEK1/2), Bcl-2, and Bax) were measured for mechanisms exploration. The results showed that different doses of DBP caused male developmental and reproductive toxicity in rats, including the decrease of anogenital distance (AGD), the histological damage of testis, and apoptosis of seminiferous tubule cells. Our data suggested that DBP played chronic and continuous toxic roles on male reproductive system by disrupting expression of Rasd1 and MEK1/2 as well as Bcl-2/Bax ratio. Further research is warranted. PMID:29064414
Thundathil, J C; Rajamanickam, G D; Kastelic, J P; Newton, L D
2012-08-01
Impaired testicular thermoregulation is commonly implicated in abnormal spermatogenesis and impaired sperm function in animals and humans, with outcomes ranging from subclinical infertility to sterility. Bovine testes must be maintained 4-5 °C below body-core temperature for normal spermatogenesis. The effects of elevated testicular temperature have been extensively studied in cattle using a scrotal insulation model, which results in abnormal spermatogenesis and impaired sperm morphology and function. Using this model and proteomic approaches, we compared normal and abnormal sperm (from the same bulls) to elucidate the molecular basis of impaired function. We identified a cohort of sperm functional proteins differentially expressed between normal vs abnormal sperm, including a testis-specific isoform of Na(+) /K(+) -ATPase. In addition to its role as a sodium pump regulating sperm motility, Na(+) /K(+) -ATPase is also involved as a signalling molecule during sperm capacitation. In conclusion, because of its involvement in regulation of sperm function, this protein has potential as a fertility marker. Furthermore, comparing normal vs abnormal sperm (induced by scrotal insulation) is a useful model for identifying proteins regulating sperm function. © 2012 Blackwell Verlag GmbH.
Dynamics of testis-ova in a wild population of Japanese pond frogs, Rana nigromaculata.
Kobayashi, Tohru; Kumakura, Masahiko; Yoshie, Sumio; Sugishima, Tomomi; Horie, Yoshifumi
2015-02-01
Although many studies have reported the occurrence of testis-ova in wild frog populations, the origin and trigger of testis-ova differentiation/development remain unclear. A high frequency of testis-ova has been previously reported for wild populations of the Japanese pond frog, Rana nigromaculata (cf. Iwasawa and Asai, '59). In the present study, we aimed to clarify the dynamics of testis-ova in this frog species, including the origin and artificial induction of testis-ova. Testis-ova were observed in both mature frogs and puberty-stage frogs (i.e., 0- and 1-year-old frogs). However, the early stages of testis-ova (~pachytene stage) were mostly observed in puberty-stage male frogs at the onset of spermatogenesis. The early stages of testis-ova were observed in the cysts of early secondary spermatogonia and the single cysts of the primary spermatogonium. This finding indicates that testis-ova differentiation occurs during spermatogonial proliferation and that it is correlated with the initiation of spermatogenesis. We also examined whether estrogen exposure induced testis-ova differentiation and how it is correlated with the progression of spermatogenesis. When 1-year-old frogs were exposed to estradiol-17β during spring (i.e., when spermatogenesis was initiated), testis-ova differentiation was induced in a dose-dependent manner. However, this phenomenon did not occur in 1-year-old frogs during summer, (i.e., when the transition from spermatogonia to spermatocytes mainly occurs). These results present the first evidence that testis-ova of the Japanese pond frog are derived from primary and early secondary spermatogonia, and that estrogen exposure induces testis-ova differentiation accompanied by the initiation of spermatogenesis. © 2015 Wiley Periodicals, Inc.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
USDA-ARS?s Scientific Manuscript database
Paradoxically, the second mammalian GnRH isoform (GnRH-II) and its receptor (GnRHR-II) are not physiological regulators of gonadotropin secretion. Instead, data from our laboratory suggests that both are abundantly produced in the porcine testis and mediate testosterone secretion independent of lute...
Minutoli, Letteria; Micali, Antonio; Pisani, Antonina; Puzzolo, Domenico; Bitto, Alessandra; Rinaldi, Mariagrazia; Pizzino, Gabriele; Irrera, Natasha; Galfo, Federica; Arena, Salvatore; Pallio, Giovanni; Mecchio, Anna; Germanà, Antonino; Bruschetta, Daniele; Laurà, Rosaria; Magno, Carlo; Marini, Herbert; Squadrito, Francesco; Altavilla, Domenica
2015-11-01
Cadmium (Cd) causes male infertility. There is the need to identify safe treatments counteracting this toxicity. Flavocoxid is a flavonoid that induces a balanced inhibition of cyclooxygenase (COX)-1 and COX-2 peroxidase moieties and of 5-lipoxygenase (LOX) and has efficacy in the male genitourinary system. We investigated flavocoxid effects on Cd-induced testicular toxicity in mice. Swiss mice were divided into 4 groups: 2 control groups received 0.9% NaCl (vehicle; 1 ml/kg/day) or flavocoxid (20 mg/kg/day ip); 2 groups were challenged with cadmium chloride (CdCl2; 2 mg/kg/day ip) and administered with vehicle or flavocoxid. The treatment lasted for 1 or 2 weeks. The testes were processed for biochemical and morphological studies. CdCl2 increased phosphorylated extracellular signal-regulated kinase (p-ERK) 1/2, tumor necrosis factor (TNF)-α, COX-2, 5-LOX, malondialdehyde (MDA), B-cell-lymphoma (Bcl)-2-associated X protein (Bax), follicle-stimulating hormone (FSH), luteinizing hormone (LH), transforming growth factor (TGF) -β3, decreased Bcl-2, testosterone, inhibin-B, occludin, N-Cadherin, induced structural damages in the testis and disrupted the blood-testis barrier. Many TUNEL-positive germ cells and changes in claudin-11, occludin, and N-cadherin localization were present. Flavocoxid administration reduced, in a time-dependent way, p-ERK 1/2, TNF-α, COX-2, 5-LOX, MDA, Bax, FSH, LH, TGF-β3, augmented Bcl-2, testosterone, inhibin B, occludin, N-Cadherin, and improved the structural organization of the testis and the blood-testis barrier. Few TUNEL-positive germ cells were present and a morphological retrieval of the intercellular junctions was observed. In conclusion, flavocoxid has a protective anti-inflammatory, antioxidant, and antiapoptotic function against Cd-induced toxicity in mice testis. We suggest that flavocoxid may play a relevant positive role against environmental levels of Cd, otherwise deleterious to gametogenesis and tubular integrity. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
45 CFR 1385.2 - Purpose of the regulations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION ON DEVELOPMENTAL DISABILITIES, DEVELOPMENTAL... regulations. These regulations implement the Developmental Disabilities Assistance and Bill of Rights Act as...
Testicular cell junction: a novel target for male contraception.
Lee, Nikki P Y; Wong, Elissa W P; Mruk, Dolores D; Cheng, C Yan
2009-01-01
Even though various contraceptive methods are widely available, the number of unwanted pregnancies is still on the rise in developing countries, pressurizing the already resource limited nations. One of the major underlying reasons is the lack of effective, low cost, and safe contraceptives for couples. During the past decade, some studies were performed using animal models to decipher if the Sertoli-germ cell junction in the testis is a target for male fertility regulation. Some of these study models were based on the use of hormones and/or chemicals to disrupt the hypothalamic-pituitary-testicular axis (e.g., androgen-based implants or pills) and others utilized a panel of chemical entities or synthetic peptides to perturb spermatogenesis either reversibly or non-reversibly. Among them, adjudin, a potential male contraceptive, is one of the compounds exerting its action on the unique adherens junctions, known as ectoplasmic specializations, in the testis. Since the testis is equipped with inter-connected cell junctions, an initial targeting of one junction type may affect the others and these accumulative effects could lead to spermatogenic arrest. This review attempts to cover an innovative theme on how male infertility can be achieved by inducing junction instability and defects in the testis, opening a new window of research for male contraceptive development. While it will still take much time and effort of intensive investigation before a product can reach the consumable market, these findings have provided hope for better family planning involving men.
Roy, Souvik; Metya, Satyajit Kumar; Rahaman, Noorjaman; Sannigrahi, Santanu; Ahmed, Faiqa
2014-01-01
The aim of this study was to investigate the protective effect of ferulic acid at different doses (50 mg kg(-1) alternative day and 50 mg kg(-1) daily) on the streptozotocin (STZ)-induced post-diabetes rat testicular damage. Diabetes was induced by a single intraperitoneal injection of STZ (50 mg/kg). Rats treated with ferulic acid were given once a day orally for 10 weeks, starting 3 days after STZ injection. Testis tissue and blood samples were collected for investigating biochemical analysis, antioxidant status, sperm parameters, and histopathological, immunohistochemical and apoptotic studies. Treatment with ferulic acid to diabetic rats significantly improved the body weight, testis weight, serum insulin level, serum testosterone level and sperm parameters (viability, motility and count). Histopathological study also revealed that ferulic acid-treated diabetic rats showed an improved histological appearance. Our data indicated that significant reduction in the activity of apoptosis by using terminal deoxyuridine triphosphate nick end-labelling and reduced expression of transforming growth factor-β1 and interleukin-1β in the testis tissue of ferulic acid-treated diabetic rats. Conversely, it was also revealed that ferulic acid-treated diabetic rats markedly enhanced the serine/threonine protein kinase protein expression in the testis tissue. Our result suggests that ferulic acid inhibits testicular damage in diabetic rats by declining oxidative stress. Copyright © 2013 John Wiley & Sons, Ltd.
Bruggeman, Jan Willem; Koster, Jan; Lodder, Paul; Repping, Sjoerd; Hamer, Geert
2018-06-15
Cancer cells have been found to frequently express genes that are normally restricted to the testis, often referred to as cancer/testis (CT) antigens or genes. Because germ cell-specific antigens are not recognized as "self" by the innate immune system, CT-genes have previously been suggested as ideal candidate targets for cancer therapy. The use of CT-genes in cancer therapy has thus far been unsuccessful, most likely because their identification has relied on gene expression in whole testis, including the testicular somatic cells, precluding the detection of true germ cell-specific genes. By comparing the transcriptomes of micro-dissected germ cell subtypes, representing the main developmental stages of human spermatogenesis, with the publicly accessible transcriptomes of 2617 samples from 49 different healthy somatic tissues and 9232 samples from 33 tumor types, we here discover hundreds of true germ cell-specific cancer expressed genes. Strikingly, we found these germ cell cancer genes (GC-genes) to be widely expressed in all analyzed tumors. Many GC-genes appeared to be involved in processes that are likely to actively promote tumor viability, proliferation and metastasis. Targeting these true GC-genes thus has the potential to inhibit tumor growth with infertility being the only possible side effect. Moreover, we identified a subset of GC-genes that are not expressed in spermatogonial stem cells. Targeting of this GC-gene subset is predicted to only lead to temporary infertility, as untargeted spermatogonial stem cells can recover spermatogenesis after treatment. Our GC-gene dataset enables improved understanding of tumor biology and provides multiple novel targets for cancer treatment.
Akbari, Omar S; Antoshechkin, Igor; Hay, Bruce A; Ferree, Patrick M
2013-09-04
A widespread phenomenon in nature is sex ratio distortion of arthropod populations caused by microbial and genetic parasites. Currently little is known about how these agents alter host developmental processes to favor one sex or the other. The paternal sex ratio (PSR) chromosome is a nonessential, paternally transmitted centric fragment that segregates in natural populations of the jewel wasp, Nasonia vitripennis. To persist, PSR is thought to modify the hereditary material of the developing sperm, with the result that all nuclear DNA other than the PSR chromosome is destroyed shortly after fertilization. This results in the conversion of a fertilized embryo--normally a female--into a male, thereby insuring transmission of the "selfish" PSR chromosome, and simultaneously leading to wasp populations that are male-biased. To begin to understand this system at the mechanistic level, we carried out transcriptional profiling of testis from WT and PSR-carrying males. We identified a number of transcripts that are differentially expressed between these conditions. We also discovered nine transcripts that are uniquely expressed from the PSR chromosome. Four of these PSR-specific transcripts encode putative proteins, whereas the others have very short open reading frames and no homology to known proteins, suggesting that they are long noncoding RNAs. We propose several different models for how these transcripts could facilitate PSR-dependent effects. Our analyses also revealed 15.71 MB of novel transcribed regions in the N. vitripennis genome, thus increasing the current annotation of total transcribed regions by 53.4%. Finally, we detected expression of multiple meiosis-related genes in the wasp testis, despite the lack of conventional meiosis in the male sex.
Akbari, Omar S.; Antoshechkin, Igor; Hay, Bruce A.; Ferree, Patrick M.
2013-01-01
A widespread phenomenon in nature is sex ratio distortion of arthropod populations caused by microbial and genetic parasites. Currently little is known about how these agents alter host developmental processes to favor one sex or the other. The paternal sex ratio (PSR) chromosome is a nonessential, paternally transmitted centric fragment that segregates in natural populations of the jewel wasp, Nasonia vitripennis. To persist, PSR is thought to modify the hereditary material of the developing sperm, with the result that all nuclear DNA other than the PSR chromosome is destroyed shortly after fertilization. This results in the conversion of a fertilized embryo—normally a female—into a male, thereby insuring transmission of the “selfish” PSR chromosome, and simultaneously leading to wasp populations that are male-biased. To begin to understand this system at the mechanistic level, we carried out transcriptional profiling of testis from WT and PSR-carrying males. We identified a number of transcripts that are differentially expressed between these conditions. We also discovered nine transcripts that are uniquely expressed from the PSR chromosome. Four of these PSR-specific transcripts encode putative proteins, whereas the others have very short open reading frames and no homology to known proteins, suggesting that they are long noncoding RNAs. We propose several different models for how these transcripts could facilitate PSR-dependent effects. Our analyses also revealed 15.71 MB of novel transcribed regions in the N. vitripennis genome, thus increasing the current annotation of total transcribed regions by 53.4%. Finally, we detected expression of multiple meiosis-related genes in the wasp testis, despite the lack of conventional meiosis in the male sex. PMID:23893741
FOXL2 impairment in human disease.
Verdin, Hannah; De Baere, Elfride
2012-01-01
FOXL2 encodes a forkhead transcription factor that plays important roles in the ovary during development and in post-natal, adult life. Here, we focus on the clinical consequences of FOXL2 impairment in human disease. In line with other forkhead transcription factors, its constitutional genetic defects and a somatic mutation lead to developmental disease and cancer, respectively. More than 100 unique constitutional mutations and regulatory defects have been found in blepharophimosis syndrome (BPES), a complex eyelid malformation associated (type I) or not (type II) with premature ovarian failure (POF). In agreement with the BPES phenotype, FOXL2 is expressed in the developing eyelids and in fetal and adult ovaries. Two knock-out mice and at least one natural animal model, the Polled Intersex Syndrome goat, are known. They recapitulate the BPES phenotype and have provided many insights into the ovarian pathology. Only a few constitutional mutations have been described in nonsyndromic POF. Moreover, a recurrent somatic mutation p.C134W was found to be specific for adult ovarian granulo-sa cell tumors. Functional studies investigating the consequences of FOXL2 mutations or regulatory defects have shed light on the molecular pathogenesis of the aforementioned conditions, and contributed considerably to genotype-phenotype correlations. Recently, a conditional knock-out of Foxl2 in the mouse induced somatic transdifferentiation of ovary into testis in adult mice, suggesting that Foxl2 has an anti-testis function in the adult ovary. This changed our view on the ovary and testis as terminally differentiated organs in adult mammals. Finally, this might have potential implications for the understanding and treatment of frequent conditions such as POF and polycystic ovary syndrome. Copyright © 2012 S. Karger AG, Basel.
AKAP9, a Regulator of Microtubule Dynamics, Contributes to Blood-Testis Barrier Function
Venkatesh, Deepak; Mruk, Dolores; Herter, Jan M.; Cullere, Xavier; Chojnacka, Katarzyna; Cheng, C. Yan; Mayadas, Tanya N.
2017-01-01
The blood-testis barrier (BTB), formed between adjacent Sertoli cells, undergoes extensive remodeling to facilitate the transport of preleptotene spermatocytes across the barrier from the basal to apical compartments of the seminiferous tubules for further development and maturation into spermatozoa. The actin cytoskeleton serves unique structural and supporting roles in this process, but little is known about the role of microtubules and their regulators during BTB restructuring. The large isoform of the cAMP-responsive scaffold protein AKAP9 regulates microtubule dynamics and nucleation at the Golgi. We found that conditional deletion of Akap9 in mice after the initial formation of the BTB at puberty leads to infertility. Akap9 deletion results in marked alterations in the organization of microtubules in Sertoli cells and a loss of barrier integrity despite a relatively intact, albeit more apically localized F-actin and BTB tight junctional proteins. These changes are accompanied by a loss of haploid spermatids due to impeded meiosis. The barrier, however, progressively reseals in older Akap9 null mice, which correlates with a reduction in germ cell apoptosis and a greater incidence of meiosis. However, spermiogenesis remains defective, suggesting additional roles for AKAP9 in this process. Together, our data suggest that AKAP9 and, by inference, the regulation of the microtubule network are critical for BTB function and subsequent germ cell development during spermatogenesis. PMID:26687990
Doperalski, Nicholas J.; Martyniuk, Christopher J.; Prucha, Melinda S.; Kroll, Kevin J.; Denslow, Nancy D.; Barber, David S.
2011-01-01
Cholesterol transport across the mitochondrial membrane is rate-limiting for steroidogenesis in vertebrates. Previous studies in fish have characterized expression of the steroidogenic acute regulatory protein, however the function and regulation of other genes and proteins involved in piscine cholesterol transport have not been evaluated. In the current study, mRNA sequences of the 18 kDa translocator protein (tspo; formerly peripheral benzodiazepine receptor), voltage-dependent anion channel (vdac), and diazepam binding inhibitor (dbi; also acyl-CoA binding protein) were cloned from largemouth bass. Gonadal expression was examined across reproductive stages to determine if expression is correlated with changes in steroid levels and with indicators of reproductive maturation. In testis, transcript abundance of tspo and dbi increased with reproductive maturation (6- and 23-fold maximal increase, respectively) and expression of tspo and dbi was positively correlated with reproductive stage, gonadosomatic index (GSI), and circulating levels of testosterone. Testis vdac expression was positively correlated with reproductive stage and GSI. In females, gonadal tspo and vdac expression was negatively correlated with GSI and levels of plasma testosterone and 17β-estradiol. Ovarian dbi expression was not correlated with indicators of reproductive maturation. These studies represent the first investigation of the steroidogenic role of tspo, vdac, and dbi in fish. Findings suggest that cholesterol transport in largemouth bass testis, but not ovary, may be transcriptionally-regulated, however further investigation will be necessary to fully elucidate the role of these genes in largemouth bass steroidogenesis. PMID:21600210
The case of an Sry-negative XX male Pug with an inguinal gonad.
Rota, A; Cucuzza, A Starvaggi; Iussich, S; Delorenzi, L; Parma, P
2010-08-01
A case of intersexuality in a Pug that was bought as a male in a pet shop is described. The dog was presented at the Veterinary Teaching Hospital, University of Turin, for a reddish mass protruding from the prepuce. The mass had the aspect of an enlarged clitoris, with a caudoventral direction and a dorsal urethral ostium. A gonad was palpable in the left inguinal region. Laparotomy confirmed ultrasound detection of an abdominal uterine structure together with the right gonad. The histology of both gonads was similar, showing an exclusively masculine character, with seminiferous tubules lined only by Sertoli cells; the uterus showed a normal histological structure. Karyological analysis revealed a female karyotype (78,XX), and polymerase chain reaction showed the absence of Sry. The diagnosis was an XX male. The pathogenesis of the XX sex reversal syndrome in dogs is not completely understood, as Sry, the master gene regulating testis differentiation, is not present; to date, no genetic cause has been identified for this phenotypic condition in dogs. This case is unusual because the dog showed an inguinal testis, implying a partial activity of the mechanisms leading to abdominal testis translocation along a gubernaculum and transinguinal migration.
NASA Technical Reports Server (NTRS)
Gruppi, C. M.; Wolgemuth, D. J.
1993-01-01
This study extends to the protein level our previous observations, which had established the stage and cellular specificity of expression of hsp86 and hsp84 in the murine testis in the absence of exogenous stress. Immunoblot analysis was used to demonstrate that HSP86 protein was present throughout testicular development and that its levels increased with the appearance of differentiating germ cells. HSP86 was most abundant in the germ cell population and was present at significantly lower levels in the somatic cells. By contrast, the HSP84 protein was detected in the somatic cells of the testis rather than in germ cells. The steady-state levels of HSP86 and HSP84 paralleled the pattern of the expression of their respective mRNAs, suggesting that regulation at the level of translation was not a major mechanism controlling hsp90 gene expression in testicular cells. Immunoprecipitation analysis revealed that a 70-kDa protein coprecipitated with the HSP86/HSP84 proteins in testicular homogenates. This protein was identified as an HSP70 family member by immunoblot analysis, suggesting that HSP70 and HSP90 family members interact in testicular cells.
2017-07-01
and anterior), bladder, testis, seminal vesicles, liver, and kidney were collected. Half of the set were formalin-fixation for IHC and the other half...xenografts containing 250,000 cells will be inserted either with or without MBP treatment under the kidney capsule of immunocompromised male nude
Sex differentiation of the mammalian reproductive tract is a highly regulated process that is driven, in part, by fetal testosterone (T) production. In utero exposure to phthalate esters (PE) during sex differentiation can cause reproductive tract malformations in rats. PE alter ...
Sex differentiation of the mammalian reproductive tract is a highly regulated process that is driven, in part, by fetal testosterone (T) production. In utero exposure to phthalate esters (PE) during sex differentiation can result in reproductive tract malformations in rats. PE al...
Cell cycle arrest and gene expression profiling of testis in mice exposed to fluoride.
Su, Kai; Sun, Zilong; Niu, Ruiyan; Lei, Ying; Cheng, Jing; Wang, Jundong
2017-05-01
Exposure to fluoride results in low reproductive capacity; however, the mechanism underlying the impact of fluoride on male productive system still remains obscure. To assess the potential toxicity in testis of mice administrated with fluoride, global genome microarray and real-time PCR were performed to detect and identify the altered transcriptions. The results revealed that 763 differentially expressed genes were identified, including 330 up-regulated and 433 down-regulated genes, which were involved in spermatogenesis, apoptosis, DNA damage, DNA replication, and cell differentiation. Twelve differential expressed genes were selected to confirm the microarray results using real-time PCR, and the result kept the same tendency with that of microarray. Furthermore, compared with the control group, more apoptotic spermatogenic cells were observed in the fluoride group, and the spermatogonium were markedly increased in S phase and decreased in G2/M phase by fluoride. Our findings suggested global genome microarray provides an insight into the reproductive toxicity induced by fluoride, and several important biological clues for further investigations. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1558-1565, 2017. © 2016 Wiley Periodicals, Inc.
Hantke, Janina; Chandler, David; King, Rosalind; Wanders, Ronald J A; Angelicheva, Dora; Tournev, Ivailo; McNamara, Elyshia; Kwa, Marcel; Guergueltcheva, Velina; Kaneva, Radka; Baas, Frank; Kalaydjieva, Luba
2009-12-01
Hereditary Motor and Sensory Neuropathy -- Russe (HMSNR) is a severe autosomal recessive disorder, identified in the Gypsy population. Our previous studies mapped the gene to 10q22-q23 and refined the gene region to approximately 70 kb. Here we report the comprehensive sequencing analysis and fine mapping of this region, reducing it to approximately 26 kb of fully characterised sequence spanning the upstream exons of Hexokinase 1 (HK1). We identified two sequence variants in complete linkage disequilibrium, a G>C in a novel alternative untranslated exon (AltT2) and a G>A in the adjacent intron, segregating with the disease in affected families and present in the heterozygote state in only 5/790 population controls. Sequence conservation of the AltT2 exon in 16 species with invariable preservation of the G allele at the mutated site, strongly favour the exonic change as the pathogenic mutation. Analysis of the Hk1 upstream region in mouse mRNA from testis and neural tissues showed an abundance of AltT2-containing transcripts generated by extensive, developmentally regulated alternative splicing. Expression is very low compared with ubiquitous Hk1 and all transcripts skip exon1, which encodes the protein domain responsible for binding to the outer mitochondrial membrane, and regulation of energy production and apoptosis. Hexokinase activity measurement and immunohistochemistry of the peripheral nerve showed no difference between patients and controls. The mutational mechanism and functional effects remain unknown and could involve disrupted translational regulation leading to increased anti-apoptotic activity (suggested by the profuse regenerative activity in affected nerves), or impairment of an unknown HK1 function in the peripheral nervous system (PNS).
Hantke, Janina; Chandler, David; King, Rosalind; Wanders, Ronald JA; Angelicheva, Dora; Tournev, Ivailo; McNamara, Elyshia; Kwa, Marcel; Guergueltcheva, Velina; Kaneva, Radka; Baas, Frank; Kalaydjieva, Luba
2009-01-01
Hereditary Motor and Sensory Neuropathy – Russe (HMSNR) is a severe autosomal recessive disorder, identified in the Gypsy population. Our previous studies mapped the gene to 10q22-q23 and refined the gene region to ∼70 kb. Here we report the comprehensive sequencing analysis and fine mapping of this region, reducing it to ∼26 kb of fully characterised sequence spanning the upstream exons of Hexokinase 1 (HK1). We identified two sequence variants in complete linkage disequilibrium, a G>C in a novel alternative untranslated exon (AltT2) and a G>A in the adjacent intron, segregating with the disease in affected families and present in the heterozygote state in only 5/790 population controls. Sequence conservation of the AltT2 exon in 16 species with invariable preservation of the G allele at the mutated site, strongly favour the exonic change as the pathogenic mutation. Analysis of the Hk1 upstream region in mouse mRNA from testis and neural tissues showed an abundance of AltT2-containing transcripts generated by extensive, developmentally regulated alternative splicing. Expression is very low compared with ubiquitous Hk1 and all transcripts skip exon1, which encodes the protein domain responsible for binding to the outer mitochondrial membrane, and regulation of energy production and apoptosis. Hexokinase activity measurement and immunohistochemistry of the peripheral nerve showed no difference between patients and controls. The mutational mechanism and functional effects remain unknown and could involve disrupted translational regulation leading to increased anti-apoptotic activity (suggested by the profuse regenerative activity in affected nerves), or impairment of an unknown HK1 function in the peripheral nervous system (PNS). PMID:19536174
Joshi, Deepanshu; Singh, Shio Kumar
2017-01-15
Orexin A (OXA), a hypothalamic neuropeptide, is involved in regulation of various biological functions and its actions are mediated through G-protein-coupled receptor, OX1R. This neuropeptide has emerged as a central neuroendocrine modulator of reproductive functions. Both OXA and OX1R have been shown to be expressed in peripheral organs such as gastrointestinal and genital tracts. In the present study, localization and expression of OXA and OX1R in mouse testis during different stages of postnatal development have been investigated. Immunohistochemical results demonstrated localization of OXA and OX1R in both the interstitial and the tubular compartments of the testis throughout the period of postnatal development. In testicular sections on 0day postpartum (dpp), gonocytes, Sertoli cells and foetal Leydig cells showed OXA and OX1R-immunopositive signals. At 10dpp, Sertoli cells, spermatogonia, early spermatocytes and Leydig cells showed immunopositive signals for both, the ligand and the receptor. On 30 and 90dpp, the spermatogonia, Sertoli cells, spermatocytes, spermatids and Leydig cells showed the OXA and OX1R-immunopositive signals. At 90dpp, strong OXA-positive signals were seen in Leydig cells, primary spermatocytes and spermatogonia, while OX1R-immunopositive intense signals were observed in Leydig cells and elongated spermatids. Further, semiquantitative RT-PCR and immunoblot analyses showed that OXA and OX1R were expressed in the testis both at transcript and protein levels during different stages of postnatal development. The expression of OXA and OX1R increased progressively from day of birth (0dpp) until adulthood (90dpp), with maximal expression at 90 dpp. The results suggest that OXA and OX1R are expressed in the testis and that they may help in proliferation and development of germ cells, Leydig cells and Sertoli cells, and in the spermatogenic process and steroidogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
Cerny, K L; Garbacik, S; Skees, C; Burris, W R; Matthews, J C; Bridges, P J
2016-01-01
In areas where soils are deficient in Selenium (Se), dietary supplementation of this trace mineral directly to cattle is recommended. Because Se status affects testosterone synthesis and frequency of sperm abnormalities, and the form of Se supplemented to cows affects tissue-specific gene expression, the objective of this study was to determine whether the form of Se consumed by cows during gestation would affect the expression of mRNAs that regulate steroidogenesis and/or spermatogenesis in the neonatal calf testis. Twenty-four predominantly Angus cows were assigned randomly to have individual, ad libitum, access of a mineral mix containing 35 ppm of Se in free-choice vitamin-mineral mixes as either inorganic (ISe), organic (OSe), or a 50/50 mix of ISe and OSe (MIX), starting 4 months prior to breeding and continuing throughout gestation. Thirteen male calves were born over a 3-month period (ISe, n = 5; OSe, n = 4; MIX, n = 4), castrated within 2 days of birth, and extracted testis RNA subjected to transcriptomal analysis by microarray (Affymetrix Bovine 1.0 ST arrays) and targeted gene expression analysis by real-time reverse-transcription PCR (RT-PCR) of mRNAs encoding proteins known to affect steroidogenesis and/or spermatogenesis. The form of dam Se affected (P < 0.05) the expression of 853 annotated genes, including 17 mRNAs putatively regulating steroidogenesis and/or spermatogenesis. Targeted RT-PCR analysis indicated that the expression of mRNA encoding proteins CYP2S1 (cytochrome P450, family 2, subfamily S, polypeptide 1), HSD17B7 (hydroxysteroid (17β) dehydrogenase 7), SULT1E1 (sulfotransferase family 1E, estrogen preferring, member 1), LDHA (lactate dehydrogenase A), CDK5R1 (cyclin-dependent kinase 5, regulatory subunit 1), and LEP (leptin) was affected (P < 0.05) by form of Se consumed by dams of developing bull calves, while AKR1C4 (aldo-keto reductase family 1, member C4) and CCND2 (cyclin D2) tended (P < 0.09) to be affected. Our results indicate that form of Se fed to dams during gestation affected the transcriptome of the neonatal calf testis. If these profiles are maintained throughout maturation, then the form of Se fed to dams may impact bull fertility and the development of Se form-dependent mineral mixes that target gestational development of the testis are warranted.
Ortiz-Zarragoitia, Maren; Bizarro, Cristina; Rojo-Bartolomé, Iratxe; Diaz de Cerio, Oihane; Cajaraville, Miren P.; Cancio, Ibon
2014-01-01
Effects on fish reproduction can result from a variety of toxicity mechanisms first operating at the molecular level. Notably, the presence in the environment of some compounds termed endocrine disrupting chemicals (EDCs) can cause adverse effects on reproduction by interfering with the endocrine system. In some cases, exposure to EDCs leads to the animal feminization and male fish may develop oocytes in testis (intersex condition). Mugilid fish are well suited sentinel organisms to study the effects of reproductive EDCs in the monitoring of estuarine/marine environments. Up-regulation of aromatases and vitellogenins in males and juveniles and the presence of intersex individuals have been described in a wide array of mullet species worldwide. There is a need to develop new molecular markers to identify early feminization responses and intersex condition in fish populations, studying mechanisms that regulate gonad differentiation under exposure to xenoestrogens. Interestingly, an electrophoresis of gonad RNA, shows a strong expression of 5S rRNA in oocytes, indicating the potential of 5S rRNA and its regulating proteins to become useful molecular makers of oocyte presence in testis. Therefore, the use of these oocyte markers to sex and identify intersex mullets could constitute powerful molecular biomarkers to assess xenoestrogenicity in field conditions. PMID:25222666
The NOTCH Ligand JAG1 Regulates GDNF Expression in Sertoli Cells
Garcia, Thomas X.; Parekh, Parag; Gandhi, Pooja; Sinha, Krishna
2017-01-01
In the seminiferous epithelium of the testis, Sertoli cells are key niche cells directing proliferation and differentiation of spermatogonial stem cells (SSCs) into spermatozoa. Sertoli cells produce glial cell line-derived neurotrophic factor (GDNF), which is essential for SSC self-renewal and progenitor expansion. While the role of GDNF in the testis stem cell niche is established, little is known about how this factor is regulated. Our previous studies on NOTCH activity in Sertoli cells demonstrated a role of this pathway in limiting stem/progenitor cell numbers, thus ultimately downregulating sperm cell output. In this study we demonstrate through a double-mutant mouse model that NOTCH signaling in Sertoli cells functions solely through the canonical pathway. Further, we demonstrate through Dual luciferase assay and chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) analysis that the NOTCH targets HES1 and HEY1, which are transcriptional repressors, directly downregulate GDNF expression by binding to the Gdnf promoter, thus antagonizing the effects of FSH/cAMP. Finally, we demonstrate that testicular stem/progenitors cells are activating NOTCH signaling in Sertoli cells in vivo and in vitro through the NOTCH ligand JAG1 at their surface, indicating that these cells may ensure their own homeostasis through negative feedback regulation. PMID:28051360
Singh, Satyendra; Klarmann, Kimberly D.; Coppola, Vincenzo; Keller, Jonathan R.; Tessarollo, Lino
2016-01-01
c-Kit is a tyrosine kinase receptor important for gametogenesis, hematopoiesis, melanogenesis and mast cell biology. Dysregulation of c-Kit function is oncogenic and its expression in the stem cell niche of a number of tissues has underlined its relevance for regenerative medicine and hematopoietic stem cell biology. Yet, very little is known about the mechanisms that control c-Kit protein levels. Here we show that the RanBPM/RanBP9 scaffold protein binds to c-Kit and is necessary for normal c-Kit protein expression in the mouse testis and subset lineages of the hematopoietic system. RanBPM deletion causes a reduction in c-Kit protein but not its mRNA suggesting a posttranslational mechanism. This regulation is specific to the c-Kit receptor since RanBPM reduction does not affect other membrane proteins examined. Importantly, in both mouse hematopoietic system and testis, RanBPM deficiency causes defects consistent with c-Kit loss of expression suggesting that RanBPM is an important regulator of c-Kit function. The finding that this regulatory mechanism is also present in human cells expressing endogenous RanBPM and c-Kit suggests a potential new strategy to target oncogenic c-Kit in malignancies. PMID:27835883
Puverel, Sandrine; Kiris, Erkan; Singh, Satyendra; Klarmann, Kimberly D; Coppola, Vincenzo; Keller, Jonathan R; Tessarollo, Lino
2016-12-20
c-Kit is a tyrosine kinase receptor important for gametogenesis, hematopoiesis, melanogenesis and mast cell biology. Dysregulation of c-Kit function is oncogenic and its expression in the stem cell niche of a number of tissues has underlined its relevance for regenerative medicine and hematopoietic stem cell biology. Yet, very little is known about the mechanisms that control c-Kit protein levels. Here we show that the RanBPM/RanBP9 scaffold protein binds to c-Kit and is necessary for normal c-Kit protein expression in the mouse testis and subset lineages of the hematopoietic system. RanBPM deletion causes a reduction in c-Kit protein but not its mRNA suggesting a posttranslational mechanism. This regulation is specific to the c-Kit receptor since RanBPM reduction does not affect other membrane proteins examined. Importantly, in both mouse hematopoietic system and testis, RanBPM deficiency causes defects consistent with c-Kit loss of expression suggesting that RanBPM is an important regulator of c-Kit function. The finding that this regulatory mechanism is also present in human cells expressing endogenous RanBPM and c-Kit suggests a potential new strategy to target oncogenic c-Kit in malignancies.
Mammalian target of rapamycin (mTOR): a central regulator of male fertility?
Jesus, Tito T; Oliveira, Pedro F; Sousa, Mário; Cheng, C Yan; Alves, Marco G
2017-06-01
Mammalian target of rapamycin (mTOR) is a central regulator of cellular metabolic phenotype and is involved in virtually all aspects of cellular function. It integrates not only nutrient and energy-sensing pathways but also actin cytoskeleton organization, in response to environmental cues including growth factors and cellular energy levels. These events are pivotal for spermatogenesis and determine the reproductive potential of males. Yet, the molecular mechanisms by which mTOR signaling acts in male reproductive system remain a matter of debate. Here, we review the current knowledge on physiological and molecular events mediated by mTOR in testis and testicular cells. In recent years, mTOR inhibition has been explored as a prime strategy to develop novel therapeutic approaches to treat cancer, cardiovascular disease, autoimmunity, and metabolic disorders. However, the physiological consequences of mTOR dysregulation and inhibition to male reproductive potential are still not fully understood. Compelling evidence suggests that mTOR is an arising regulator of male fertility and better understanding of this atypical protein kinase coordinated action in testis will provide insightful information concerning its biological significance in other tissues/organs. We also discuss why a new generation of mTOR inhibitors aiming to be used in clinical practice may also need to include an integrative view on the effects in male reproductive system.
Dmrt1 is necessary for male sexual development in zebrafish
Webster, Kaitlyn A.; Schach, Ursula; Ordaz, Angel; Steinfeld, Jocelyn S.; Draper, Bruce W.; Siegfried, Kellee R.
2018-01-01
The dmrt1 (doublesex and mab-3 related transcription factor 1) gene is a key regulator of sex determination and/or gonadal sex differentiation across metazoan animals. This is unusual given that sex determination genes are typically not well conserved. The mechanisms by which zebrafish sex is determined have remained elusive due to the lack of sex chromosomes and the complex polygenic nature of sex determination in domesticated strains. To investigate the role of dmrt1 in zebrafish sex determination and gonad development, we isolated mutations disrupting this gene. We found that the majority of dmrt1 mutant fish develop as fertile females suggesting a complete male-to-female sex reversal in mutant animals that would have otherwise developed as males. A small percentage of mutant animals became males, but were sterile and displayed testicular dysgenesis. Therefore zebrafish dmrt1 functions in male sex determination and testis development. Mutant males had aberrant gonadal development at the onset of gonadal sex-differentiation, displaying reduced oocyte apoptosis followed by development of intersex gonads and failed testis morphogenesis and spermatogenesis. By contrast, female ovaries developed normally. We found that Dmrt1 is necessary for normal transcriptional regulation of the amh (anti-Müllerian hormone) and foxl2 (forkhead box L2) genes, which are thought to be important for male or female sexual development respectively. Interestingly, we identified one dmrt1 mutant allele that cooperates with a linked segregation distorter locus to generate an apparent XY sex determination mechanism. We conclude that dmrt1 is dispensable for ovary development but necessary for testis development in zebrafish, and that dmrt1 promotes male development by transcriptionally regulating male and female genes as has been described in other animals. Furthermore, the strong sex-ratio bias caused by dmrt1 reduction-of-function points to potential mechanisms through which sex chromosomes may evolve. PMID:27940159
Hart-Smith, Gene; Tay, Ying Jin; Tng, Wei-Quan; Wilkins, Marc; Ryan, Daniel
2017-01-01
The replacement of histone H2A with its variant forms is critical for regulating all aspects of genome organisation and function. The histone variant H2A.B appeared late in evolution and is most highly expressed in the testis followed by the brain in mammals. This raises the question of what new function(s) H2A.B might impart to chromatin in these important tissues. We have immunoprecipitated the mouse orthologue of H2A.B, H2A.B.3 (H2A.Lap1), from testis chromatin and found this variant to be associated with RNA processing factors and RNA Polymerase (Pol) II. Most interestingly, many of these interactions with H2A.B.3 (Sf3b155, Spt6, DDX39A and RNA Pol II) were inhibited by the presence of endogenous RNA. This histone variant can bind to RNA directly in vitro and in vivo, and associates with mRNA at intron—exon boundaries. This suggests that the ability of H2A.B to bind to RNA negatively regulates its capacity to bind to these factors (Sf3b155, Spt6, DDX39A and RNA Pol II). Unexpectedly, H2A.B.3 forms highly decompacted nuclear subdomains of active chromatin that co-localizes with splicing speckles in male germ cells. H2A.B.3 ChIP-Seq experiments revealed a unique chromatin organization at active genes being not only enriched at the transcription start site (TSS), but also at the beginning of the gene body (but being excluded from the +1 nucleosome) compared to the end of the gene. We also uncover a general histone variant replacement process whereby H2A.B.3 replaces H2A.Z at intron-exon boundaries in the testis and the brain, which positively correlates with expression and exon inclusion. Taken together, we propose that a special mechanism of splicing may occur in the testis and brain whereby H2A.B.3 recruits RNA processing factors from splicing speckles to active genes following its replacement of H2A.Z. PMID:28234895
Song, Feibiao; Wang, Lanmei; Zhu, Wenbin; Fu, Jianjun; Dong, Juanjuan; Dong, Zaijie
2016-01-01
Since the insulin-like growth factor 3 (igf3) gene was recently discovered in fish ovary, its function in the gonads has received much attention. In this study, we isolated two igf3 subtypes from common carp (Cyprinus carpio), which comprised full-length cDNA of 707 and 1153 nucleotides encoding 205 and 198 amino acids (aa), respectively. The Igf3 aa sequence had the highest gene homology of 72% with the corresponding sequence in zebrafish (Danio rerio). Phylogenetic tree construction revealed that the C. carpio igf3 gene was first clustered with D. rerio and then with other teleost species. Igf3 mRNA was widely expressed, with expression being highest in the gonads and blood. In the gonad development stage, igf3a mRNA expression was highest in the maturity and recession stage of the ovary, and decline phase of the testis, while igf3b was highest in the recession and fully mature periods of the ovaries and testes, respectively. Western blotting of testis protein samples showed two bands of approximately 21 kDa and 34 kDa corresponding to the calculated molecular mass of the two Igf3 subtypes; no signal was detected in the ovary. The Igf3 protein was localized in the ovary granulosa cells and testis spermatogonium and spermatids. 17β-Ethinylestradiol treatment increased both ovary and testis igf3 mRNA expression. These findings suggest that Igf3 may play an important role in C. carpio gonadal development.
Zhu, Wenbin; Fu, Jianjun; Dong, Juanjuan; Dong, Zaijie
2016-01-01
Since the insulin-like growth factor 3 (igf3) gene was recently discovered in fish ovary, its function in the gonads has received much attention. In this study, we isolated two igf3 subtypes from common carp (Cyprinus carpio), which comprised full-length cDNA of 707 and 1153 nucleotides encoding 205 and 198 amino acids (aa), respectively. The Igf3 aa sequence had the highest gene homology of 72% with the corresponding sequence in zebrafish (Danio rerio). Phylogenetic tree construction revealed that the C. carpio igf3 gene was first clustered with D. rerio and then with other teleost species. Igf3 mRNA was widely expressed, with expression being highest in the gonads and blood. In the gonad development stage, igf3a mRNA expression was highest in the maturity and recession stage of the ovary, and decline phase of the testis, while igf3b was highest in the recession and fully mature periods of the ovaries and testes, respectively. Western blotting of testis protein samples showed two bands of approximately 21 kDa and 34 kDa corresponding to the calculated molecular mass of the two Igf3 subtypes; no signal was detected in the ovary. The Igf3 protein was localized in the ovary granulosa cells and testis spermatogonium and spermatids. 17β-Ethinylestradiol treatment increased both ovary and testis igf3 mRNA expression. These findings suggest that Igf3 may play an important role in C. carpio gonadal development. PMID:28002497
Zebrafish sex: a complicated affair
Liew, Woei Chang
2014-01-01
In this review, we provide a detailed overview of studies on the elusive sex determination (SD) and gonad differentiation mechanisms of zebrafish (Danio rerio). We show that the data obtained from most studies are compatible with polygenic sex determination (PSD), where the decision is made by the allelic combinations of several loci. These loci are typically dispersed throughout the genome, but in some teleost species a few of them might be located on a preferential pair of (sex) chromosomes. The PSD system has a much higher level of variation of SD genotypes both at the level of gametes and the sexual genotype of individuals, than that of the chromosomal sex determination systems. The early sexual development of zebrafish males is a complicated process, as they first develop a ‘juvenile ovary’, that later undergoes a transformation to give way to a testis. To date, three major developmental pathways were shown to be involved with gonad differentiation through the modulation of programmed cell death. In our opinion, there are more pathways participating in the regulation of zebrafish gonad differentiation/transformation. Introduction of additional powerful large-scale genomic approaches into the analysis of zebrafish reproduction will result in further deepening of our knowledge as well as identification of additional pathways and genes associated with these processes in the near future. PMID:24148942
L(3)mbt and the LINT complex safeguard cellular identity in the Drosophila ovary.
Coux, Rémi-Xavier; Teixeira, Felipe Karam; Lehmann, Ruth
2018-04-04
Maintenance of cellular identity is essential for tissue development and homeostasis. At the molecular level, cell identity is determined by the coordinated activation and repression of defined sets of genes. The tumor suppressor L(3)mbt has been shown to secure cellular identity in Drosophila larval brains by repressing germline-specific genes. Here, we interrogate the temporal and spatial requirements for L(3)mbt in the Drosophila ovary, and show that it safeguards the integrity of both somatic and germline tissues. l(3)mbt mutant ovaries exhibit multiple developmental defects, which we find to be largely caused by the inappropriate expression of a single gene, nanos , a key regulator of germline fate, in the somatic ovarian cells. In the female germline, we find that L(3)mbt represses testis-specific and neuronal genes. At the molecular level, we show that L(3)mbt function in the ovary is mediated through its co-factor Lint-1 but independently of the dREAM complex. Together, our work uncovers a more complex role for L(3)mbt than previously understood and demonstrates that L(3)mbt secures tissue identity by preventing the simultaneous expression of original identity markers and tissue-specific misexpression signatures. © 2018. Published by The Company of Biologists Ltd.
Testis cancer: the forgotten poster child.
Raghavan, Derek
2014-07-15
In germ cell cancers, the unique reversibility of malignancy and the balance between somatic differentiation and dedifferentiation may be critical to late relapse that is dominated by non-germ cell elements. Targeting regulators of differentiation may provide a solution, and this may be elucidated via serial liquid biopsies (via circulating tumor cells). ©2014 American Association for Cancer Research.
Nuclear lamina builds tissues from the stem cell niche.
Chen, Haiyang; Zheng, Yixian
2014-01-01
Recent studies show that nuclear lamins, the type V intermediate filament proteins, are required for proper building of at least some organs. As the major structural components of the nuclear lamina found underneath the inner nuclear membranes, lamins are ubiquitously expressed in all animal cells. How the broadly expressed lamins support the building of specific tissues is not understood. By studying Drosophila testis, we have uncovered a mechanism by which lamin-B functions in the cyst stem cell (CySC) and its differentiated cyst cell, the cell types known to form the niche/microenvironment for the germline stem cells (GSC) and the developing germ line, to ensure testis organogenesis (1). In this extra view, we discuss some remaining questions and the implications of our findings in the understanding of how the ubiquitous nuclear lamina regulates tissue building in a context-dependent manner.
[Sclerotherapy with 3% polidocanol for hydrocele testis].
Mizoguchi, H; Imagawa, M; Fukunaga, Y; Nomura, Y; Kubota, M; Okita, J
1995-12-01
We studied the clinical efficacy of sclerotherapy with injection of 3% polidocanol for hydrocele testis. From July, 1992 to March, 1995 sclerotherapy with single injection of polidocanol was performed for 11 patients with 12 hydrocele testis on an outpatient basis. We instilled 3 or 5ml of 3% polidocanol after complete removal of fluid in the hydrocele testis. Complete disappearance on ultrasonography was observed in 75% of the hydrocele testis 6 months after this sclerotherapy. There was neither pain during instillation of 3% polidocanol nor any other complication. Two patients with fluid reaccumulation underwent hydrocelectomy 16 and 6 months after sclerotherapy, respectively. This procedure seems to be a safe and useful technique as primary treatment for hydrocele testis.
Bolor, Hasbaira; Wakasugi, Noboru; Zhao, Wei Dong; Ishikawa, Akira
2006-04-01
The small testis (Smt) mutant mouse is characterized by a small testis of one third to one half the size of a normal testis, and its spermatogenesis is mostly arrested at early stages of meiosis, although a small number of spermatocytes at the late prophase of meiosis and a few spermatids can sometimes be seen. We performed quantitative trait locus (QTL) analysis of these spermatogenic traits and testis weight using 221 F2 males obtained from a cross between Smt and MOM (Mus musculus molossinus) mice. At the genome-wide 5% level, we detected two QTLs affecting meiosis on chromosomes 4 and 13, and two QTLs for paired testis weight as a percentage of body weight on chromosomes 4 and X. In addition, we found several QTLs for degenerated germ cells and multinuclear giant cells on chromosomes 4, 7 and 13. Interestingly, for cell degeneration, the QTL on chromosome 13 interacted epistatically with the QTL on chromosome 4. These results reveal polygenic participation in the abnormal spermatogenesis and small testis size in the Smt mutant.
The relationship between the testis and tunica vaginalis changes with age.
Lopez-Marambio, Francisco A; Hutson, John M
2015-12-01
Anatomy of the testis and tunica vaginalis (TV) is taught to pediatric surgeons from adult postmortem material. Textbooks describe the testis as 'behind' the TV, but at pediatric orchidopexy it appears to be inside the TV. We aimed to study whether testis and TV anatomy changes with age. After ethical approval, postmortem photographs and measurements of testis length, width, and mesenteric attachment length (mm) in 37 adults (22-92years), one infant (4/12), and one fetus (19/52) were compared with intraoperative orchidopexies (x6) after opening TV (n=4; 7/12-14years). Testis length, area and perimeter and ratios for mesentery attachment were plotted against age. The fetal and pediatric testes were intraperitoneal with a mesentery (mesorchium), but after 50years secondary adhesions between TV and testis obliterated the mesorchium, so in advanced age the testis appeared to be behind the TV. These results show that in childhood testes were 'intraperitoneal', but after 50years of age the TV progressively shrinks and adheres to the testis, making it appear to be behind the TV. This difference between anatomical texts and childhood anatomy suggests that pediatric surgery may need anatomy texts that specifically highlight age differences. Copyright © 2015 Elsevier Inc. All rights reserved.
Uzumcu, Mehmet; Suzuki, Hiroetsu; Skinner, Michael K
2004-01-01
Vinclozolin is a systemic dicarboximide fungicide that is used on fruits, vegetables, ornamental plants, and turf grass. Vinclozolin and its metabolites are known to be endocrine disruptors and act as androgen receptor antagonists. The hypothesis tested in the current study is that transient embryonic exposure to an anti-androgenic endocrine disruptor at the time of testis determination alters testis development and subsequently influences adult spermatogenic capacity and male reproduction. The effects of vinclozolin on embryonic testicular cord formation in vitro were examined, as well as the effects of transient in utero vinclozolin exposure on postnatal testis development and function. Embryonic day 13 (E13, sperm-positive vaginal smear day = E0) gonads were cultured in the absence or presence of vinclozolin (50-500microM). Vinclozolin treated gonads had significantly fewer cords (P < 0.05) and the histology of the cords that formed were abnormal as compared to vehicle-treated organs. Pregnant rats were exposed to vinclozolin (100 mg/kg/day) between embryonic days 8 and 14 (E8-E14) of development. Testis morphology and function were analyzed from postnatal day (P) 0, pubertal P20, and adult P60. No significant effect of vinclozolin on testis histology or germ cell viability was observed in P0 testis. The pubertal P20 testis from vinclozolin exposed animals had significantly higher numbers of apoptotic germ cells (P < 0.01), but testis weight was not affected. The adult P60 sperm motility was significantly lower in vinclozolin exposed males (P < 0.01). In addition, apoptotic germ cell number in testis of vinclozolin exposed animals was higher in adult P60 animals. Observations demonstrate that vinclozolin can effect embryonic testicular cord formation in vitro and that transient in utero exposure to vinclozolin increases apoptotic germ cell numbers in the testis of pubertal and adult animals. This correlated to reduced sperm motility in the adult. In conclusion, transient exposure to vinclozolin during the time of testis differentiation (i.e. cord formation) alters testis development and function. Observations indicate that transient exposure to an anti-androgenic endocrine disruptor during embryonic development causes delayed effects later in adult life on spermatogenic capacity.
Doperalski, Nicholas J; Martyniuk, Christopher J; Prucha, Melinda S; Kroll, Kevin J; Denslow, Nancy D; Barber, David S
2011-08-01
Cholesterol transport across the mitochondrial membrane is rate-limiting for steroidogenesis in vertebrates. Previous studies in fish have characterized expression of the steroidogenic acute regulatory protein, however the function and regulation of other genes and proteins involved in piscine cholesterol transport have not been evaluated. In the current study, mRNA sequences of the 18 kDa translocator protein (tspo; formerly peripheral benzodiazepine receptor), voltage-dependent anion channel (vdac), and diazepam binding inhibitor (dbi; also acyl-CoA binding protein) were cloned from largemouth bass. Gonadal expression was examined across reproductive stages to determine if expression is correlated with changes in steroid levels and with indicators of reproductive maturation. In testis, transcript abundance of tspo and dbi increased with reproductive maturation (6- and 23-fold maximal increase, respectively) and expression of tspo and dbi was positively correlated with reproductive stage, gonadosomatic index (GSI), and circulating levels of testosterone. Testis vdac expression was positively correlated with reproductive stage and GSI. In females, gonadal tspo and vdac expression was negatively correlated with GSI and levels of plasma testosterone and 17β-estradiol. Ovarian dbi expression was not correlated with indicators of reproductive maturation. These studies represent the first investigation of the steroidogenic role of tspo, vdac, and dbi in fish. Findings suggest that cholesterol transport in largemouth bass testis, but not in ovary, may be transcriptionally-regulated, however further investigation will be necessary to fully elucidate the role of these genes in largemouth bass steroidogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.
Purification, cDNA cloning, and regulation of lysophospholipase from rat liver.
Sugimoto, H; Hayashi, H; Yamashita, S
1996-03-29
A lysophospholipase was purified 506-fold from rat liver supernatant. The preparation gave a single 24-kDa protein band on SDS-polyacrylamide gel electrophoresis. The enzyme hydrolyzed lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylinositol, lysophosphatidylserine, and 1-oleoyl-2-acetyl-sn-glycero-3-phosphocholine at pH 6-8. The purified enzyme was used for the preparation of antibody and peptide sequencing. A cDNA clone was isolated by screening a rat liver lambda gt11 cDNA library with the antibody, followed by the selection of further extended clones from a lambda gt10 library. The isolated cDNA was 2,362 base pairs in length and contained an open reading frame encoding 230 amino acids with a Mr of 24,708. The peptide sequences determined were found in the reading frame. When the cDNA was expressed in Escherichia coli cells as the beta-galactosidase fusion, lysophosphatidylcholine-hydrolyzing activity was markedly increased. The deduced amino acid sequence showed significant similarity to Pseudomonas fluorescence esterase A and Spirulina platensis esterase. The three sequences contained the GXSXG consensus at similar positions. The transcript was found in various tissues with the following order of abundance: spleen, heart, kidney, brain, lung, stomach, and testis = liver. In contrast, the enzyme protein was abundant in the following order: testis, liver, kidney, heart, stomach, lung, brain, and spleen. Thus the mRNA abundance disagreed with the level of the enzyme protein in liver, testis, and spleen. When HL-60 cells were induced to differentiate into granulocytes with dimethyl sulfoxide, the 24-kDa lysophospholipase protein increased significantly, but the mRNA abundance remained essentially unchanged. Thus a posttranscriptional control mechanism is present for the regulation of 24-kDa lysophospholipase.
Antioxidant protects blood-testis barrier against synchrotron radiation X-ray-induced disruption
Zhang, Tingting; Liu, Tengyuan; Shao, Jiaxiang; Sheng, Caibin; Hong, Yunyi; Ying, Weihai; Xia, Weiliang
2015-01-01
Synchrotron radiation (SR) X-ray has wide biomedical applications including high resolution imaging and brain tumor therapy due to its special properties of high coherence, monochromaticity and high intensity. However, its interaction with biological tissues remains poorly understood. In this study, we used the rat testis as a model to investigate how SR X-ray would induce tissue responses, especially the blood-testis barrier (BTB) because BTB dynamics are critical for spermatogenesis. We irradiated the male gonad with increasing doses of SR X-ray and obtained the testicles 1, 10 and 20 d after the exposures. The testicle weight and seminiferous tubule diameter reduced in a dose- and time-dependent manner. Cryosections of testes were stained with tight junction (TJ) component proteins such as occludin, claudin-11, JAM-A and ZO-1. Morphologically, increasing doses of SR X-ray consistently induced developing germ cell sloughing from the seminiferous tubules, accompanied by shrinkage of the tubules. Interestingly, TJ constituent proteins appeared to be induced by the increasing doses of SR X-ray. Up to 20 d after SR X-ray irradiation, there also appeared to be time-dependent changes on the steady-state level of these protein exhibiting differential patterns at 20-day after exposure, with JAM-A/claudin-11 still being up-regulated whereas occludin/ZO-1 being down-regulated. More importantly, the BTB damage induced by 40 Gy of SR X-ray could be significantly attenuated by antioxidant N-Acetyl-L-Cysteine (NAC) at a dose of 125 mg/kg. Taken together, our studies characterized the changes of TJ component proteins after SR X-ray irradiation, illustrating the possible protective effects of antioxidant NAC to BTB integrity. PMID:26413412
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shun; Jiang, Chunyang; Department of Thoracic Surgery, Tianjin Union Medicine Centre, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, Tianjin
Long-term excessive fluoride intake is known to be toxic and can damage a variety of organs and tissues in the human body. However, the molecular mechanisms underlying fluoride-induced male reproductive toxicity are not well understood. In this study, we used a rat model to simulate the situations of human exposure and aimed to evaluate the roles of endoplasmic reticulum (ER) stress and inflammatory response in fluoride-induced testicular injury. Sprague–Dawley rats were administered with sodium fluoride (NaF) at 25, 50 and 100 mg/L via drinking water from pre-pregnancy to gestation, birth and finally to post-puberty. And then the testes of malemore » offspring were studied at 8 weeks of age. Our results demonstrated that fluoride treatment increased MDA accumulation, decreased SOD activity, and enhanced germ cell apoptosis. In addition, fluoride elevated mRNA and protein levels of glucose-regulated protein 78 (GRP78), inositol requiring ER-to-nucleus signal kinase 1 (IRE1), and C/EBP homologous protein (CHOP), indicating activation of ER stress signaling. Furthermore, fluoride also induced testicular inflammation, as manifested by gene up-regulation of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in a nuclear factor-κB (NF-κB)-dependent manner. These were associated with marked histopathological lesions including injury of spermatogonia, decrease of spermatocytes and absence of elongated spermatids, as well as severe ultrastructural abnormalities in testes. Taken together, our results provide compelling evidence that ER stress and inflammation would be novel and significant mechanisms responsible for fluoride-induced disturbance of spermatogenesis and germ cell loss in addition to oxidative stress. - Highlights: • We used a rat model to simulate the situations of human fluoride (F) exposure. • Developmental F exposure induces testicular damage related with oxidative stress. • Endoplasmic reticulum stress is involved in testis disorder and germ cell apoptosis. • Inflammatory response is implicated in impaired spermatogenesis and germ cell loss.« less
Cosentino, Marco; Algaba, Ferran; Saldaña, Lily; Bujons, Ana; Caffaratti, Jorge; Garat, Jose M; Villavicencio, Humberto
2014-09-01
Granulosa cell tumor of the testis is an infrequent stromal cell tumor that can be distinguished into adult and juvenile, the latter being more common. Juvenile granulosa cell tumor of the testis is a rare pathologic finding, accounting for 1.2%-3.9% of prepubertal testicular tumors. It is considered as a benign stromal sex cord tumor and is usually unilateral. Although radical surgery was previously considered the treatment of choice, testis-sparing surgery is now recommended in all cases where applicable. We report a bilateral synchronous juvenile granulosa cell tumor in a 6-month-old child treated with testis-sparing surgery and provide a review of the literature. Copyright © 2014 Elsevier Inc. All rights reserved.
Ramalho-Santos, João; Varum, Sandra; Amaral, Sandra; Mota, Paula C; Sousa, Ana Paula; Amaral, Alexandra
2009-01-01
Mitochondria are multitasking organelles involved in ATP synthesis, reactive oxygen species (ROS) production, calcium signalling and apoptosis; and mitochondrial defects are known to cause physiological dysfunction, including infertility. The goal of this review was to identify and discuss common themes in mitochondrial function related to mammalian reproduction. The scientific literature was searched for studies reporting on the several aspects of mitochondrial activity in mammalian testis, sperm, oocytes, early embryos and embryonic stem cells. ATP synthesis and ROS production are the most discussed aspects of mitochondrial function. Metabolic shifts from mitochondria-produced ATP to glycolysis occur at several stages, notably during gametogenesis and early embryo development, either reflecting developmental switches or substrate availability. The exact role of sperm mitochondria is especially controversial. Mitochondria-generated ROS function in signalling but are mostly described when produced under pathological conditions. Mitochondria-based calcium signalling is primarily important in embryo activation and embryonic stem cell differentiation. Besides pathologically triggered apoptosis, mitochondria participate in apoptotic events related to the regulation of spermatogonial cell number, as well as gamete, embryo and embryonic stem cell quality. Interestingly, data from knock-out (KO) mice is not always straightforward in terms of expected phenotypes. Finally, recent data suggests that mitochondrial activity can modulate embryonic stem cell pluripotency as well as differentiation into distinct cellular fates. Mitochondria-based events regulate different aspects of reproductive function, but these are not uniform throughout the several systems reviewed. Low mitochondrial activity seems a feature of 'stemness', being described in spermatogonia, early embryo, inner cell mass cells and embryonic stem cells.
Liu, Xue-song; Zhao, Xu-dong; Wang, Xiaoxing; Yao, Yi-xin; Zhang, Liang-liang; Shu, Run-zhe; Ren, Wei-hua; Huang, Ying; Huang, Lei; Gu, Ming-min; Kuang, Ying; Wang, Long; Lu, Shun-yuan; Chi, Jun; Fen, Jing-sheng; Wang, Yi-fei; Fei, Jian; Dai, Wei; Wang, Zhu-Gang
2010-01-01
Chromosomal instability during cell division frequently causes cell death or malignant transformation. Orderly chromosome congression at the metaphase plate, a paramount process to vertebrate mitosis and meiosis, is controlled by a number of molecular regulators, including kinesins. Kinesin-8 (Kif18A) functions to control mitotic chromosome alignment at the mid-zone by negative regulation of kinetochore oscillation. Here the authors report that disrupting Kif18a function results in complete sterility in male but not in female mice. Histological examination reveals that Kif18a−/− testes exhibit severe developmental impairment of seminiferous tubules. Testis atrophy in Kif18a−/− mice is caused by perturbation of microtubule dynamics and spindle pole integrity, leading to chromosome congression defects during mitosis and meiosis. Depletion of KIF18A via RNAi causes mitotic arrest accompanied by unaligned chromosomes and increased microtubule nucleating centers in both GC-1 and HeLa cells. Prolonged depletion of KIF18A causes apoptosis due to perturbed microtubule dynamics. Further studies reveal that KIF18A silencing results in degradation of CENP-E and BubR1, which is accompanied by premature sister chromatid separation. KIF18A physically interacts with BubR1 and CENP-E, and this interaction is modulated during mitosis. Combined, the studies indicate that KIF18A is essential for normal chromosome congression during cell division and that the absence of KIF18A function causes severe defects in microtubule dynamics, spindle integrity, and checkpoint activation, leading to germinal cell aplasia in mice. PMID:20981276
Cell-specific occupancy of an extended repertoire of CREM and CREB binding loci in male germ cells
2010-01-01
Background CREB and CREM are closely related factors that regulate transcription in response to various stress, metabolic and developmental signals. The CREMτ activator isoform is selectively expressed in haploid spermatids and plays an essential role in murine spermiogenesis. Results We have used chromatin immunoprecipitation coupled to sequencing (ChIP-seq) to map CREM and CREB target loci in round spermatids from adult mouse testis and spermatogonia derived GC1-spg cells respectively. We identify more than 9000 genomic loci most of which are cell-specifically occupied. Despite the fact that round spermatids correspond to a highly specialised differentiated state, our results show that they have a remarkably accessible chromatin environment as CREM occupies more than 6700 target loci corresponding not only to the promoters of genes selectively expressed in spermiogenesis, but also of genes involved in functions specific to other cell types. The expression of only a small subset of these target genes are affected in the round spermatids of CREM knockout animals. We also identify a set of intergenic binding loci some of which are associated with H3K4 trimethylation and elongating RNA polymerase II suggesting the existence of novel CREB and CREM regulated transcripts. Conclusions We demonstrate that CREM and CREB occupy a large number of promoters in highly cell specific manner. This is the first study of CREM target promoters directly in a physiologically relevant tissue in vivo and represents the most comprehensive experimental analysis of CREB/CREM regulatory potential to date. PMID:20920259
Gheri, Gherardo; Sgambati, Eleonora; Thyrion, Giorgia D Zappoli; Vichi, Debora; Orlandini, Giovanni E
2004-01-01
The saccharidic content of the glycoconjugates has been studied in the descended the undescended testes of a 8 years old boy. For this purpose, a battery of seven HRP-conjugated lectins (SBA, DBA,PNA,WGA,UEAI, LTA and ConA) was used. D-galactose-N-acetyl-D-galactosamine and alpha-L-fucose sugar residues, which were present in the cytoplasm of the Sertoli cells of the normally positioned prepubertal testis, were not detected in the same cells of the undescended testis. The Leydig's cells of the descended testis appeared characterized by N-acetyl-D-glucosamine which was absent in the rare and atrophic Leydig's cells of the cryptorchid testis. Differences in sugar residues distribution between the descended and the undescended testis were also detected in the lamina propria of the seminiferous tubules. Peritubular myoid cells in the undescended testis only reacted with PNA, after neuraminidase digestion, thus revealing the presence of D-galactose (beta1-->3)-N-acetyl-D-galactosamine and sialic acid. In this study a complete distributional map of the sugar residues of the glycoconjugates in the descended and undescended prepubertal testis is reported.
Kim, J J; Nam, Y K; Bang, I C; Gong, S P
BACKGROUND: Miho spine loach (Cobitis choii) is an endangered Korean endemic fish. Whole testis cryopreservation is a good way for species preservation, but needs to the sacrifice of a large number of fish to optimize the freezing condition. Considering this limitation, a surrogate fish species was used for the protocol development. This study was to establish the effective condition for Miho spine loach whole testis cryopreservation by optimizing the conditions for whole testis cryopreservation in an allied species, mud loach (Misgurnus mizolepis). The condition for whole testis cryopreservation was optimized in mud loach first, and then the optimal condition was applied to Miho spine loach testes. The optimal condition for mud loach testis cryopreservation consists of the freezing medium containing 1.3 M dimethyl sulfoxide, 6% fetal bovine serum and 0.3 M trehalose, -1 C/min cooling rate and 26 degree C thawing temperature, which also permits effective cryopreservation of Miho spine loach testes. An effective cryopreservation condition for whole testis of the endangered Miho spine loach has been established by using mud loach as a surrogate fish.
Hydrogen-rich saline attenuates spinal cord hemisection-induced testicular injury in rats.
Ge, Li; Wei, Li-Hua; Du, Chang-Qing; Song, Guo-Hua; Xue, Ya-Zhuo; Shi, Hao-Shen; Yang, Ming; Yin, Xin-Xin; Li, Run-Ting; Wang, Xue-Er; Wang, Zhen; Song, Wen-Gang
2017-06-27
To study how hydrogen-rich saline (HS) promotes the recovery of testicular biological function in a hemi-sectioned spinal cord injury (hSCI) rat model, a right hemisection was performed at the T11-T12 of the spinal cord in Wistar rats. Animals were divided into four groups: normal group; vehicle group: sham-operated rats administered saline; hSCI group: subjected to hSCI and administered saline; HRST group: subjected to hSCI and administered HS. Hind limb neurological function, testis index, testicular morphology, mean seminiferous tubular diameter (MSTD) and seminiferous epithelial thickness (MSET), the expression of heme oxygenase-1 (HO-1), mitofusin-2 (MFN-2), and high-mobility group box 1 (HMGB-1), cell ultrastructure, and apoptosis of spermatogenic cells were studied. The results indicated that hSCI significantly decreased the hind limb neurological function, testis index, MSTD, and MSET, and induced severe testicular morphological injury. The MFN-2 level was decreased, and HO-1 and HMGB-1 were overexpressed in testicular tissues. In addition, hSCI accelerated the apoptosis of spermatogenic cells and the ultrastructural damage of cells in the hypophysis and testis. After HS administration, all these parameters were considerably improved, and the characteristics of hSCI testes were similar to those of normal control testes. Taken together, HS administration can promote the recovery of testicular biological function by anti-oxidative, anti-inflammatory, and anti-apoptotic action. More importantly, HS can inhibit the hSCI-induced ultrastructural changes in gonadotrophs, ameliorate the abnormal regulation of the hypothalamic-pituitary-testis axis, and thereby promote the recovery of testicular injury. HS administration also inhibited the hSCI-induced ultrastructural changes in testicular spermatogenic cells, Sertoli cells and interstitial cells.
Anderson, Alison M.; Carter, Kim W.; Anderson, Denise; Wise, Michael J.
2012-01-01
Background Endocrine disruptor chemicals elicit adverse health effects by perturbing nuclear receptor signalling systems. It has been speculated that these compounds may also perturb epigenetic mechanisms and thus contribute to the early origin of adult onset disease. We hypothesised that histone methylation may be a component of the epigenome that is susceptible to perturbation. We used coexpression analysis of publicly available data to investigate the combinatorial actions of nuclear receptors and genes involved in histone methylation in normal testis and when faced with endocrine disruptor compounds. Methodology/Principal Findings The expression patterns of a set of genes were profiled across testis tissue in human, rat and mouse, plus control and exposed samples from four toxicity experiments in the rat. Our results indicate that histone methylation events are a more general component of nuclear receptor mediated transcriptional regulation in the testis than previously appreciated. Coexpression patterns support the role of a gatekeeper mechanism involving the histone methylation modifiers Kdm1, Prdm2, and Ehmt1 and indicate that this mechanism is a common determinant of transcriptional integrity for genes critical to diverse physiological endpoints relevant to endocrine disruption. Coexpression patterns following exposure to vinclozolin and dibutyl phthalate suggest that coactivity of the demethylase Kdm1 in particular warrants further investigation in relation to endocrine disruptor mode of action. Conclusions/Significance This study provides proof of concept that a bioinformatics approach that profiles genes related to a specific hypothesis across multiple biological settings can provide powerful insight into coregulatory activity that would be difficult to discern at an individual experiment level or by traditional differential expression analysis methods. PMID:22496781
Sexually Dimorphic Expression of Foxl2 and Ftz-F1 in Chinese Giant Salamander Andrias Davidianus.
Hu, Qiaomu; Meng, Yan; Tian, Haifeng; Zhang, Y U; Xiao, Hanbing
2016-09-01
Foxl2 and FTZ-F1 play a crucial role in the regulation of gonad development in fish and mammals, but studies of their function in amphibians are scarce. We isolated the full length of Foxl2 (adFoxl2) and Ftz-F1 (adFtz-f1) cDNA from the Chinese giant salamander Andrias davidianus and quantified its expression in various tissues and developing gonads. The adFoxl2 gene encodes 301aa including a conserved forkhead box, and the adFtz-f1 gene encodes 467aa containing an Ftz-F1 box. The amino acid sequences showed high homology with other amphibians. adFoxl2 expression was high in ovary, whereas adFtz-f1 was higher in testis, moderate in pituitary, ovary, and kidney; and low in the remaining tested tissues. Expression of adFoxl2 gradually increased from 1Y to 5Y in ovary, whereas adFtz-f1 expression gradually decreased in testis. In addition, adFoxl2 and adFtz-f1 were detected in granulosa cell in ovary and in spermatocytes in testis. The adFoxl2 transcription was inhibited in brain and ovary after treatment with methyltestosterone and with letrozole, whereas adFtz-f1 expression was upregulated. High-temperature suppressed the expression of adFxl2 in ovary and enhanced the transcription of adFtz-f1. These results suggest that adFoxl2 functioned in ovary differentiation, whereas adFtz-f1 played a role in testis development, which lays a foundation for study of the sex differentiation mechanism in A. davidianus. © 2016 Wiley Periodicals, Inc.
Hydrogen-rich saline attenuates spinal cord hemisection-induced testicular injury in rats
Ge, Li; Wei, Li-Hua; Du, Chang-Qing; Song, Guo-Hua; Xue, Ya-Zhuo; Shi, Hao-Shen; Yang, Ming; Yin, Xin-Xin; Li, Run-Ting; Wang, Xue-er; Wang, Zhen; Song, Wen-Gang
2017-01-01
To study how hydrogen-rich saline (HS) promotes the recovery of testicular biological function in a hemi-sectioned spinal cord injury (hSCI) rat model, a right hemisection was performed at the T11–T12 of the spinal cord in Wistar rats. Animals were divided into four groups: normal group; vehicle group: sham-operated rats administered saline; hSCI group: subjected to hSCI and administered saline; HRST group: subjected to hSCI and administered HS. Hind limb neurological function, testis index, testicular morphology, mean seminiferous tubular diameter (MSTD) and seminiferous epithelial thickness (MSET), the expression of heme oxygenase-1 (HO-1), mitofusin-2 (MFN-2), and high-mobility group box 1 (HMGB-1), cell ultrastructure, and apoptosis of spermatogenic cells were studied. The results indicated that hSCI significantly decreased the hind limb neurological function, testis index, MSTD, and MSET, and induced severe testicular morphological injury. The MFN-2 level was decreased, and HO-1 and HMGB-1 were overexpressed in testicular tissues. In addition, hSCI accelerated the apoptosis of spermatogenic cells and the ultrastructural damage of cells in the hypophysis and testis. After HS administration, all these parameters were considerably improved, and the characteristics of hSCI testes were similar to those of normal control testes. Taken together, HS administration can promote the recovery of testicular biological function by anti-oxidative, anti-inflammatory, and anti-apoptotic action. More importantly, HS can inhibit the hSCI-induced ultrastructural changes in gonadotrophs, ameliorate the abnormal regulation of the hypothalamic-pituitary-testis axis, and thereby promote the recovery of testicular injury. HS administration also inhibited the hSCI-induced ultrastructural changes in testicular spermatogenic cells, Sertoli cells and interstitial cells. PMID:28404953
Changes in Gene Expression and Metabolism in the Testes of the Rat following Spinal Cord Injury
Fortune, Ryan D.; Grill, Raymond J.; Beeton, Christine; Tanner, Mark; Huq, Redwan
2017-01-01
Abstract Spinal cord injury (SCI) results in devastating changes to almost all aspects of a patient's life. In addition to a permanent loss of sensory and motor function, males also will frequently exhibit a profound loss of fertility through poorly understood mechanisms. We demonstrate that SCI causes measureable pathology in the testis both acutely (24 h) and chronically up to 1.5 years post-injury, leading to loss in sperm motility and viability. SCI has been shown in humans and rats to induce leukocytospermia, with the presence of inflammatory cytokines, anti-sperm antibodies, and reactive oxygen species found within the ejaculate. Using messenger RNA and metabolomic assessments, we describe molecular and cellular changes that occur within the testis of adult rats over an acute to chronic time period. From 24 h, 72 h, 28 days, and 90 days post-SCI, the testis reveal a distinct time course of pathological events. The testis show an acute drop in normal sexual organ processes, including testosterone production, and establishment of a pro-inflammatory environment. This is followed by a subacute initiation of an innate immune response and loss of cell cycle regulation, possibly due to apoptosis within the seminiferous tubules. At 1.5 years post-SCI, there is a chronic low level immune response as evidenced by an elevation in T cells. These data suggest that SCI elicits a wide range of pathological processes within the testes, the actions of which are not restricted to the acute phase of injury but rather extend chronically, potentially through the lifetime of the subject. The multiplicity of these pathological events suggest a single therapeutic intervention is unlikely to be successful. PMID:27750479
Utilization of GnRH-II receptor knockdown pigs to explore steroidogenesis in the testis
USDA-ARS?s Scientific Manuscript database
The historical form of gonadotropin-releasing hormone (GnRH-I) is well established as an important regulator of mammalian reproduction. More recently, a second form of GnRH (GnRH-II) was identified in mammals. GnRH-II is also a decapeptide, differing from GnRH-I by only 3 amino acids (His5, Trp7, ...
Coordinated transcriptional regulation patterns associated with infertility phenotypes in men
Ellis, Peter J I; Furlong, Robert A; Conner, Sarah J; Kirkman‐Brown, Jackson; Afnan, Masoud; Barratt, Christopher; Griffin, Darren K; Affara, Nabeel A
2007-01-01
Introduction Microarray gene‐expression profiling is a powerful tool for global analysis of the transcriptional consequences of disease phenotypes. Understanding the genetic correlates of particular pathological states is important for more accurate diagnosis and screening of patients, and thus for suggesting appropriate avenues of treatment. As yet, there has been little research describing gene‐expression profiling of infertile and subfertile men, and thus the underlying transcriptional events involved in loss of spermatogenesis remain unclear. Here we present the results of an initial screen of 33 patients with differing spermatogenic phenotypes. Methods Oligonucleotide array expression profiling was performed on testis biopsies for 33 patients presenting for testicular sperm extraction. Significantly regulated genes were selected using a mixed model analysis of variance. Principle components analysis and hierarchical clustering were used to interpret the resulting dataset with reference to the patient history, clinical findings and histological composition of the biopsies. Results Striking patterns of coordinated gene expression were found. The most significant contains multiple germ cell‐specific genes and corresponds to the degree of successful spermatogenesis in each patient, whereas a second pattern corresponds to inflammatory activity within the testis. Smaller‐scale patterns were also observed, relating to unique features of the individual biopsies. PMID:17496197
Hu, Xiangjing; Shen, Bin; Liao, Shangying; Ning, Yan; Ma, Longfei; Chen, Jian; Lin, Xiwen; Zhang, Daoqin; Li, Zhen; Zheng, Chunwei; Feng, Yanmin; Huang, Xingxu; Han, Chunsheng
2017-06-29
ZMYM3, a member of the MYM-type zinc finger protein family and a component of a LSD1-containing transcription repressor complex, is predominantly expressed in the mouse brain and testis. Here, we show that ZMYM3 in the mouse testis is expressed in somatic cells and germ cells until pachytene spermatocytes. Knockout (KO) of Zmym3 in mice using the CRISPR-Cas9 system resulted in adult male infertility. Spermatogenesis of the KO mice was arrested at the metaphase of the first meiotic division (MI). ZMYM3 co-immunoprecipitated with LSD1 in spermatogonial stem cells, but its KO did not change the levels of LSD1 or H3K4me1/2 or H3K9me2. However, Zmym3 KO resulted in elevated numbers of apoptotic germ cells and of MI spermatocytes that are positive for BUB3, which is a key player in spindle assembly checkpoint. Zmym3 KO also resulted in up-regulated expression of meiotic genes in spermatogonia. These results show that ZMYM3 has an essential role in metaphase to anaphase transition during mouse spermatogenesis by regulating the expression of diverse families of genes.
Mammalian target of rapamycin (mTOR): a central regulator of male fertility?
Jesus, Tito T.; Oliveira, Pedro F.; Sousa, M ario; Cheng, C. Yan; Alves, Marco G.
2017-01-01
Mammalian target of rapamycin (mTOR) is a central regulator of cellular metabolic phenotype and is involved in virtually all aspects of cellular function. It integrates not only nutrient and energy-sensing pathways but also actin cytoskeleton organization, in response to environmental cues including growth factors and cellular energy levels. These events are pivotal for spermato-genesis and determine the reproductive potential of males. Yet, the molecular mechanisms by which mTOR signaling acts in male reproductive system remain a matter of debate. Here, we review the current knowledge on physiological and molecular events mediated by mTOR in testis and testicular cells. In recent years, mTOR inhibition has been explored as a prime strategy to develop novel therapeutic approaches to treat cancer, cardiovascular disease, autoimmunity, and metabolic disorders. However, the physiological consequences of mTOR dysregulation and inhibition to male reproductive potential are still not fully understood. Compelling evidence suggests that mTOR is an arising regulator of male fertility and better understanding of this atypical protein kinase coordinated action in testis will provide insightful information concerning its biological significance in other tissues/organs. We also discuss why a new generation of mTOR inhibitors aiming to be used in clinical practice may also need to include an integrative view on the effects in male reproductive system. PMID:28124577
Saucedo, Lucía; Buffa, Gabriela N; Rosso, Marina; Guillardoy, Tomás; Góngora, Adrian; Munuce, María J; Vazquez-Levin, Mónica H; Marín-Briggiler, Clara
2015-01-01
Fibroblast growth factors receptors (FGFRs) have been widely characterized in somatic cells, but there is scarce evidence of their expression and function in mammalian gametes. The objective of the present study was to evaluate the expression of FGFRs in human male germ cells, to determine sperm FGFR activation by the FGF2 ligand and their participation in the regulation of sperm motility. The expression of FGFR1, 2, 3 and 4 mRNAs and proteins in human testis and localization of these receptors in germ cells of the seminiferous epithelium was demonstrated. In ejaculated sperm, FGFRs were localized to the acrosomal region and flagellum. Sperm exposure to FGF2 caused an increase in flagellar FGFR phosphorylation and activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB or Akt) signaling pathways. Incubation with FGF2 led to a significant increase in the percentage of total and progressive sperm motility, as well as in sperm kinematics. All responses were prevented by sperm preincubation with BGJ398, a specific inhibitor of FGFR tyrosine kinase activity. In addition to confirming the expression of FGFRs in germ cells of the human testis, our study describes for the first time the presence, localization and functionality of human sperm FGFRs, and provides evidence of the beneficial effect of FGF2 upon sperm motility.
Saucedo, Lucía; Buffa, Gabriela N.; Rosso, Marina; Guillardoy, Tomás; Góngora, Adrian; Munuce, María J.
2015-01-01
Fibroblast growth factors receptors (FGFRs) have been widely characterized in somatic cells, but there is scarce evidence of their expression and function in mammalian gametes. The objective of the present study was to evaluate the expression of FGFRs in human male germ cells, to determine sperm FGFR activation by the FGF2 ligand and their participation in the regulation of sperm motility. The expression of FGFR1, 2, 3 and 4 mRNAs and proteins in human testis and localization of these receptors in germ cells of the seminiferous epithelium was demonstrated. In ejaculated sperm, FGFRs were localized to the acrosomal region and flagellum. Sperm exposure to FGF2 caused an increase in flagellar FGFR phosphorylation and activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB or Akt) signaling pathways. Incubation with FGF2 led to a significant increase in the percentage of total and progressive sperm motility, as well as in sperm kinematics. All responses were prevented by sperm preincubation with BGJ398, a specific inhibitor of FGFR tyrosine kinase activity. In addition to confirming the expression of FGFRs in germ cells of the human testis, our study describes for the first time the presence, localization and functionality of human sperm FGFRs, and provides evidence of the beneficial effect of FGF2 upon sperm motility. PMID:25970615
Ultrastructure of spermatozoa in cobia, Rachycentron canadum (Linnaeus, 1766).
Dhanasekar, Krishnamoorthy; Selvakumar, Narasimman; Munuswamy, Natesan
2018-02-01
Ultrastructure and development of spermatozoa in cobia, Rachycentron canadum are described. Sections through the testis show different developmental stages viz, Spermatocytes, spermatids and sperm. Spermatozoa of R. canadum exhibit the configuration of uniflagellated, anacrosomal Type I aquasperm, typical for externally fertilizing fish. Mature spermatozoon is seen with a prominent head and long cylindrical flagellum. Ultrastructure of sperm shows invaginated 'U' shaped nucleus and other organelles. The mitochondrial matrix is electron-dense with irregular arrangement of the cristae. The nucleus reveals a deep invagination (nuclear fossa) in which the centriolar complex is located. The centriolar complex lies inside the nuclear fossa and is composed of a proximal and a distal centriole. The two centrioles are placed perpendicular to each other. The flagellum has a typical eukaryotic organization (microtubule doublets 9 + 2 pattern) and measures around 36.21 ± 0.42 μm in length. This study for the first time provides a comprehensive detail on the ultrastructure and developmental process of sperm in cobia, R. canadum. Copyright © 2017 Elsevier B.V. All rights reserved.
Cen, Yan-Hui; Guo, Wen-Wen; Luo, Bin; Lin, Yong-Da; Zhang, Qing-Mei; Zhou, Su-Fang; Luo, Guo-Rong; Xiao, Shao-Wen; Xie, Xiao-Xun
2012-10-01
OY-TES-1 is a member of the CTA (cancer-testis antigen) group expressed in a variety of cancer and restrictedly expressed in adult normal tissues, except for testis. To determine whether MSCs (mesenchymal stem cells) express OY-TES-1 and its possible roles on MSCs, OY-TES-1 expression in MSCs isolated from human bone marrow was tested with RT (reverse transcription)-PCR, immunocytochemistry and Western blot. Using RNAi (RNA interference) technology, OY-TES-1 expression was knocked down followed by analysing cell viability, cell cycle, apoptosis and migration ability. MSCs expressed OY-TES-1 at both mRNA and protein levels. The down-regulation of OY-TES-1 expression in these MSCs caused cell growth inhibition, cell cycle arrest, apoptosis induction and migration ability attenuation. Through these primary results it was suggested that OY-TES-1 may influence the biological behaviour of MSCs.
New frontiers in nonhormonal male contraception
Cheng, C. Yan; Mruk, Dolores D.
2015-01-01
The world’s population is nearing 6.8 billion, and we are in need of a male contraceptive that is safe, effective, reversible and affordable. Hormonal approaches, which employ different formulations of testosterone administered in combination with other hormones, have shown considerable promise in clinical trials, and they are currently at the forefront of research and development. However, the long-term effects of using hormones throughout a male’s reproductive life for contraception are unknown, and it may take decades before this information becomes available. Because of this, many investigators are aiming to bring a nonhormonal male contraceptive to the consumer market. Indeed, there are several distinct but feasible avenues in which fertility can be regulated without affecting the hypothalamus-pituitary-testis axis. In this review, we discuss several approaches for fertility control involving the testis that one day may lead to the development of a nonhormonal male contraceptive. PMID:20933122
New frontiers in nonhormonal male contraception.
Cheng, C Yan; Mruk, Dolores D
2010-11-01
The world's population is nearing 6.8 billion, and we are in need of a male contraceptive that is safe, effective, reversible and affordable. Hormonal approaches, which employ different formulations of testosterone administered in combination with other hormones, have shown considerable promise in clinical trials, and they are currently at the forefront of research and development. However, the long-term effects of using hormones throughout a male's reproductive life for contraception are unknown, and it may take decades before this information becomes available. Because of this, many investigators are aiming to bring a nonhormonal male contraceptive to the consumer market. Indeed, there are several distinct but feasible avenues in which fertility can be regulated without affecting the hypothalamus-pituitary-testis axis. In this review, we discuss several approaches for fertility control involving the testis that one day may lead to the development of a nonhormonal male contraceptive. Copyright © 2010 Elsevier Inc. All rights reserved.
Epigenetics of the myotonic dystrophy-associated DMPK gene neighborhood
Buckley, Lauren; Lacey, Michelle; Ehrlich, Melanie
2016-01-01
Aim: Identify epigenetic marks in the vicinity of DMPK (linked to myotonic dystrophy, DM1) that help explain tissue-specific differences in its expression. Materials & methods: At DMPK and its flanking genes (DMWD, SIX5, BHMG1 and RSPH6A), we analyzed many epigenetic and transcription profiles from myoblasts, myotubes, skeletal muscle, heart and 30 nonmuscle samples. Results: In the DMPK gene neighborhood, muscle-associated DNA hypermethylation and hypomethylation, enhancer chromatin, and CTCF binding were seen. Myogenic DMPK hypermethylation correlated with high expression and decreased alternative promoter usage. Testis/sperm hypomethylation of BHMG1 and RSPH6A was associated with testis-specific expression. G-quadruplex (G4) motifs and sperm-specific hypomethylation were found near the DM1-linked CTG repeats within DMPK. Conclusion: Tissue-specific epigenetic features in DMPK and neighboring genes help regulate its expression. G4 motifs in DMPK DNA and RNA might contribute to DM1 pathology. PMID:26756355
Divina, Petr; Vlcek, Cestmír; Strnad, Petr; Paces, Václav; Forejt, Jirí
2005-03-05
We generated the gene expression profile of the total testis from the adult C57BL/6J male mice using serial analysis of gene expression (SAGE). Two high-quality SAGE libraries containing a total of 76 854 tags were constructed. An extensive bioinformatic analysis and comparison of SAGE transcriptomes of the total testis, testicular somatic cells and other mouse tissues was performed and the theory of male-biased gene accumulation on the X chromosome was tested. We sorted out 829 genes predominantly expressed from the germinal part and 944 genes from the somatic part of the testis. The genes preferentially and specifically expressed in total testis and testicular somatic cells were identified by comparing the testis SAGE transcriptomes to the available transcriptomes of seven non-testis tissues. We uncovered chromosomal clusters of adjacent genes with preferential expression in total testis and testicular somatic cells by a genome-wide search and found that the clusters encompassed a significantly higher number of genes than expected by chance. We observed a significant 3.2-fold enrichment of the proportion of X-linked genes specific for testicular somatic cells, while the proportions of X-linked genes specific for total testis and for other tissues were comparable. In contrast to the tissue-specific genes, an under-representation of X-linked genes in the total testis transcriptome but not in the transcriptomes of testicular somatic cells and other tissues was detected. Our results provide new evidence in favor of the theory of male-biased genes accumulation on the X chromosome in testicular somatic cells and indicate the opposite action of the meiotic X-inactivation in testicular germ cells.
Divina, Petr; Vlček, Čestmír; Strnad, Petr; Pačes, Václav; Forejt, Jiří
2005-01-01
Background We generated the gene expression profile of the total testis from the adult C57BL/6J male mice using serial analysis of gene expression (SAGE). Two high-quality SAGE libraries containing a total of 76 854 tags were constructed. An extensive bioinformatic analysis and comparison of SAGE transcriptomes of the total testis, testicular somatic cells and other mouse tissues was performed and the theory of male-biased gene accumulation on the X chromosome was tested. Results We sorted out 829 genes predominantly expressed from the germinal part and 944 genes from the somatic part of the testis. The genes preferentially and specifically expressed in total testis and testicular somatic cells were identified by comparing the testis SAGE transcriptomes to the available transcriptomes of seven non-testis tissues. We uncovered chromosomal clusters of adjacent genes with preferential expression in total testis and testicular somatic cells by a genome-wide search and found that the clusters encompassed a significantly higher number of genes than expected by chance. We observed a significant 3.2-fold enrichment of the proportion of X-linked genes specific for testicular somatic cells, while the proportions of X-linked genes specific for total testis and for other tissues were comparable. In contrast to the tissue-specific genes, an under-representation of X-linked genes in the total testis transcriptome but not in the transcriptomes of testicular somatic cells and other tissues was detected. Conclusion Our results provide new evidence in favor of the theory of male-biased genes accumulation on the X chromosome in testicular somatic cells and indicate the opposite action of the meiotic X-inactivation in testicular germ cells. PMID:15748293
Park, Sun-Ji; Kim, Tae-Shin; Park, Choon-Keun; Lee, Sang-Hee; Kim, Jin-Man; Lee, Kyu-Sun; Lee, In-kyu; Park, Jeen-Woo; Lawson, Mark A; Lee, Dong-Seok
2014-01-01
Endoplasmic reticulum (ER) stress generally occurs in secretory cell types. It has been reported that Leydig cells, which produce testosterone in response to human chorionic gonadotropin (hCG), express key steroidogenic enzymes for the regulation of testosterone synthesis. In this study, we analyzed whether hCG induces ER stress via three unfolded protein response (UPR) pathways in mouse Leydig tumor (mLTC-1) cells and the testis. Treatment with hCG induced ER stress in mLTC-1 cells via the ATF6, IRE1a/XBP1, and eIF2α/GADD34/ATF4 UPR pathways, and transient expression of 50 kDa protein activating transcription factor 6 (p50ATF6) reduced the expression level of steroidogenic 3β-hydroxy-steroid dehydrogenase Δ5-Δ4-isomerase (3β-HSD) enzyme. In an in vivo model, high-level hCG treatment induced expression of p50ATF6 while that of steroidogenic enzymes, especially 3β-HSD, 17α-hydroxylase/C17–20 lyase (CYP17), and 17β-hydrozysteroid dehydrogenase (17β-HSD), was reduced. Expression levels of steroidogenic enzymes were restored by the ER stress inhibitor tauroursodeoxycholic acid (TUDCA). Furthermore, lentivirus-mediated transient expression of p50ATF6 reduced the expression level of 3β-HSD in the testis. Protein expression levels of phospho-JNK, CHOP, and cleaved caspases-12 and -3 as markers of ER stress-mediated apoptosis markedly increased in response to high-level hCG treatment in mLTC-1 cells and the testis. Based on transmission electron microscopy and H&E staining of the testis, it was shown that abnormal ER morphology and destruction of testicular histology induced by high-level hCG treatment were reversed by the addition of TUDCA. These findings suggest that hCG-induced ER stress plays important roles in steroidogenic enzyme expression via modulation of the ATF6 pathway as well as ER stress-mediated apoptosis in Leydig cells. PMID:23256993
Do retractile testes have anatomical anomalies?
Anderson, Kleber M.; Costa, Suelen F.; Sampaio, Francisco J.B.; Favorito, Luciano A.
2016-01-01
ABSTRACT Objectives: To assess the incidence of anatomical anomalies in patients with retractile testis. Materials and Methods: We studied prospectively 20 patients (28 testes) with truly retractile testis and compared them with 25 human fetuses (50 testes) with testis in scrotal position. We analyzed the relations among the testis, epididymis and patency of the processus vaginalis (PV). To analyze the relations between the testis and epididymis, we used a previous classification according to epididymis attachment to the testis and the presence of epididymis atresia. To analyze the structure of the PV, we considered two situations: obliteration of the PV and patency of the PV. We used the Chi-square test for contingency analysis of the populations under study (p <0.05). Results: The fetuses ranged in age from 26 to 35 weeks post-conception (WPC) and the 20 patients with retractile testis ranged in ages from 1 to 12 years (average of 5.8). Of the 50 fetal testes, we observed complete patency of the PV in 2 cases (4%) and epididymal anomalies (EAs) in 1 testis (2%). Of the 28 retractile testes, we observed patency of the PV in 6 cases (21.4%) and EA in 4 (14.28%). When we compared the incidence of EAs and PV patency we observed a significantly higher prevalence of these anomalies in retractile testes (p=0.0116). Conclusions: Retractile testis is not a normal variant with a significant risk of patent processus vaginalis and epididymal anomalies. PMID:27564294
Rhen, T; Metzger, K; Schroeder, A; Woodward, R
2007-01-01
Modes of sex determination are quite variable in vertebrates. The developmental decision to form a testis or an ovary can be influenced by one gene, several genes, environmental variables, or a combination of these factors. Nevertheless, certain morphogenetic aspects of sex determination appear to be conserved in amniotes. Here we clone fragments of nine candidate sex-determining genes from the snapping turtle Chelydra serpentina, a species with temperature-dependent sex determination (TSD). We then analyze expression of these genes during the thermosensitive period of gonad development. In particular, we compare gene expression profiles in gonads from embryos incubated at a male-producing temperature to those from embryos at a female-producing temperature. Expression of Dmrt1 and Sox9 mRNA increased gradually at the male-producing temperature, but was suppressed at the female-producing temperature. This finding suggests that Dmrt1 and Sox9 play a role in testis development. In contrast, expression of aromatase, androgen receptor (Ar), and Foxl2 mRNA was constant at the male-producing temperature, but increased several-fold in embryos at the female-producing temperature. Aromatase, Ar, and Foxl2 may therefore play a role in ovary development. In addition, there was a small temperature effect on ER alpha expression with lower mRNA levels found in embryos at the female-producing temperature. Finally, Dax1, Fgf9, and SF-1 were not differentially expressed during the sex-determining period, suggesting these genes are not involved in sex determination in the snapping turtle. Comparison of gene expression profiles among amniotes indicates that Dmrt1 and Sox9 are part of a core testis-determining pathway and that Ar, aromatase, ER alpha, and Foxl2 are part of a core ovary-determining pathway. 2007 S. Karger AG, Basel
Yamamoto, Keisuke; Takada, Tsuyoshi; Momohara, Chikahiro; Komori, Kazuhiko; Honda, Masahito; Fujioka, Hideki
2003-04-01
A case of epidermoid cyst of the testis is presented. The patient was a 64-year-old man who complained of a painless mass in the left scrotum. Physical examination revealed a hen-egg sized enlargement of the left scrotal contents. The ultrasonographic appearance did not show a hyperechoic partition, which is called echogenic rim, a characteristic of this tumor on the echoic examination, and was homogeneous, almost similar to that of a normal testis. Because malignant testicular tumors could not be excluded preoperatively, excisional biopsy of the left testis was performed first. Histological diagnosis was an epidermoid cyst of the testis. As the left testis was almost completely occupied by the tumor and no normal testicular tissue was recognized, we performed orchiectomy additionally. Epidermoid cyst of the testis is a rare benign tumor that accounts for about 1 percent of all testicular tumors. It clinically resembles malignant testicular tumors, and orchiectomy is often performed for treatment. About 154 cases of testicular epidermoid cyst have been reported in the Japanese literature and are reviewed briefly here.
Expression of the Wilms' tumor gene WT1 in the murine urogenital system.
Pelletier, J; Schalling, M; Buckler, A J; Rogers, A; Haber, D A; Housman, D
1991-08-01
The Wilms' tumor gene WT1 is a recessive oncogene that encodes a putative transcription factor implicated in nephrogenesis during kidney development. In this report we analyze expression of WT1 in the murine urogenital system. WT1 is expressed in non-germ-cell components of the testis and ovaries in both young and adult mice. In situ mRNA hybridization studies demonstrate that WT1 is expressed in the granulosa and epithelial cells of ovaries, the Sertoli cells of the testis, and in the uterine wall. In addition to the 3.1-kb WT1 transcript detected by Northern blotting of RNA from kidney, uterus, and gonads, there is an approximately 2.5-kb WT1-related mRNA species in testis. The levels of WT1 mRNA in the gonads are among the highest observed, surpassing amounts detected in the embryonic kidney. During development, these levels are differentially regulated, depending on the sexual differentiation of the gonad. Expression of WT1 mRNA in the female reproductive system does not fluctuate significantly from days 4 to 40 postpartum. In contrast, WT1 mRNA levels in the tesis increase steadily after birth, reaching their highest expression levels at day 8 postpartum and decreasing slightly as the animal matures. Expression of WT1 in the gonads is detectable as early as 12.5 days postcoitum (p.c.). As an initial step toward exploring the tissue-specific expression of WT1, DNA elements upstream of WT1 were cloned and sequenced. Three putative transcription initiation sites, utilized in testis, ovaries, and uterus, were mapped by S1 nuclease protection assays. The sequences surrounding these sites have a high G + C content, and typical upstream CCAAT and TATAA boxes are not present. These studies allowed us to identify the translation initiation site for WT1 protein synthesis. We have also used an epitope-tagging protocol to demonstrate that WT1 is a nuclear protein, consistent with its role as a transcription factor. Our results demonstrate regulation of WT1 expression during development of the gonads, implicate WT1 in genitourinary development, and provide a molecular framework toward understanding genitourinary defects observed among hereditary cases of Wilms' tumor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oumeddour, Abdelkader; CNRS, UMR 6293, GReD, F-63171 Aubiere; INSERM, UMR 1103, GReD, F-63171 Aubiere
Highlights: • Part of the neonatal effect of DES on testis needs the presence of Lxrα/β. • Some DES-induced pathways are blocked in Lxr-deficient mice. • Lxr-deficient mice analysis defines DES-target genes protected by Lxr. - Abstract: Liver X receptors LXRα (NR1H3) and LXRβ (NR1H2) are transcription factors belonging to the nuclear receptor superfamily, activated by specific oxysterols, oxidized derivatives of cholesterol. These receptors are involved in the regulation of testis physiology. Lxr-deficient mice pointed to the physiological roles of these nuclear receptors in steroid synthesis, lipid homeostasis and germ cell apoptosis and proliferation. Diethylstilbestrol (DES) is a synthetic estrogenmore » considered as an endocrine disruptor that affects the functions of the testis. Various lines of evidences have made a clear link between estrogens, their nuclear receptors ERα (NR3A1) and ERβ (NR3A2), and Lxrα/β. As LXR activity could also be regulated by the nuclear receptor small heterodimer partner (SHP, NR0A2) and DES could act through SHP, we wondered whether LXR could be targeted by estrogen-like endocrine disruptors such as DES. For that purpose, wild-type and Lxr-deficient mice were daily treated with 0.75 μg DES from days 1 to 5 after birth. The effects of DES were investigated at 10 or 45 days of age. We demonstrated that DES induced a decrease of the body mass at 10 days only in the Lxr-deficient mice suggesting a protective effect of Lxr. We defined three categories of DES-target genes in testis: those whose accumulation is independent of Lxr; those whose accumulation is enhanced by the lack of both Lxrα/β; those whose accumulation is repressed by the absence of Lxrα/β. Lipid accumulation is also modified by neonatal DES injection. Lxr-deficient mice present different lipid profiles, demonstrating that DES could have its effects in part due to Lxrα/β. Altogether, our study shows that both nuclear receptors Lxrα and Lxrβ are not only basally important for testicular physiology but could also have a preventive effect against estrogen-like endocrine disruptors.« less
Rare presentation of a testicular angiofibroma treated with testis sparing surgery.
Leone, Luca; Fulvi, Paola; Sbrollini, Giulia; Filosa, Alessandra; Caraceni, Enrico; Marronaro, Angelo; Galosi, Andrea B
2016-12-30
Testicular benign tumors are very rare (< 5%). Testicular Angiofibroma (AF) is one of those, however the gold standard of treatment and follow-up is still unclear. A 47 years-old man with only one functioning testis was referred to our clinic for a palpable right testicular mass and atrophic contralateral testis. Patient underwent testis-sparing surgery with inguinal approach and intraoperative frozen sections examination with diagnosis of AF. Final histology confirmed AF. Post-operative follow-up was uneventful. Clinical and ultrasonographic follow-up was negative after 8 months. We report a conservative surgery in a patient with AF of the solitary testis. AF is a benign para-testicular fibrous neoplasm that could be misinterpreted as malignant tumor and treated with orchiectomy. Testis-sparing surgery is recommended in this case with intraoperative pathological examination. The excision of the mass is enough but in front of a possible recurrence a long follow-up is advisable.
An oncological view on the blood-testis barrier.
Bart, Joost; Groen, Harry J M; van der Graaf, Winette T A; Hollema, Harry; Hendrikse, N Harry; Vaalburg, Willem; Sleijfer, Dirk T; de Vries, Elisabeth G E
2002-06-01
The function of the blood-testis barrier is to protect germ cells from harmful influences; thus, it also impedes the delivery of chemotherapeutic drugs to the testis. The barrier has three components: first, a physicochemical barrier consisting of continuous capillaries, Sertoli cells in the tubular wall, connected together with narrow tight junctions, and a myoid-cell layer around the seminiferous tubule. Second, an efflux-pump barrier that contains P-glycoprotein in the luminal capillary endothelium and on the myoid-cell layer; and multidrug-resistance associated protein 1 located basolaterally on Sertoli cells. Third, an immunological barrier, consisting of Fas ligand on Sertoli cells. Inhibition of P-glycoprotein function offers the opportunity to increase the delivery of cytotoxic drugs to the testis. In the future, visualisation of function in the blood-testis barrier may also be helpful to identify groups of patients in whom testis conservation is safe or to select drugs that are less harmful to fertility.
Gao, Jiancao; Liu, Shaozhen; Zhang, Yingying; Yang, Yanping; Yuan, Cong; Chen, Shu; Wang, Zaizhao
2015-09-01
The 17α-methyltestosterone (MT), a synthetic androgen, is known for its interference effects on the endocrine system. Aiming to investigate the transcriptome profiling of gonads induced by MT and to understand the molecular mechanism by which MT causes adverse effects in fish, transcriptome profiling of gonads, gonadal histology and the sex steroid hormones in response to MT were analyzed in Gobiocypris rarus. Eight libraries, 4 from the ovary and 4 from the testis, were constructed and sequenced and then a total number of clean reads per sample ranging from 7.03 to 9.99 million were obtained. In females, a total of 191 transcripts were differentially regulated by MT, consisting of 102 up-regulated transcripts and 89 down-regulated transcripts. In males, 268 differentially expressed genes with 108 up-regulated and 160 down-regulated were detected upon MT exposure. Testosterone serves as the major sex steroid hormone content in G. rarus of both sexes. The concentrations of 17β-estradiol, testosterone and 11-ketotestosterone were significantly increased in females and decreased in males after MT exposure. Interestingly, MT caused a decreased number of vitellogenic oocytes in the ovary and spermatozoa in the testis. After MT exposure, four differentially expressed genes (ndufa4, slc1a3a, caskin-2 and rpt3) were found in G. rarus of both sexes. Overall, we suggest that MT seemed to affect genes involved in pathways related to physiological processes in the gonads of G. rarus. These processes include the electron transfer of Complex IV, endothelial cell activation, axon growth and guidance, and proteasome assembly and glutamate transport metabolic. Copyright © 2015 Elsevier Inc. All rights reserved.
Du, Xinxin; Liu, Xiaobing; Zhang, Kai; Liu, Yuxiang; Cheng, Jie; Zhang, Quanqi
2018-05-16
The spotted knifejaw (Oplegnathus punctatus) is a newly emerging economical fishery species in China. Studies focused on the regulation of gonadal development and gametogenesis of spotted knifejaw are still insufficient. As a key post-transcriptional regulator, miRNAs have been shown to play important roles in development and reproduction systems. In this study, small RNA deep sequencing in ovary and testis of spotted knifejaw were performed to screen miRNA expression patterns. After sequencing and bioinformatics analysis, a total of 247 conserved known miRNAs and 41 novel miRNAs were identified in spotted knifejaw gonads for the first time. In addition, 36 miRNAs were differentially expressed between testis and ovary. The putative target genes of differentially expressed (DE) miRNAs were significantly enriched in several pathways related to sexual differentiation and gonadal development, such as steroid hormone biosynthesis. Sequencing data was validated through qRT-PCR analysis of selected DE miRNAs. Dual-luciferase reporter analyses of filtered miRNA-target gene pairs confirmed that opu-miR-27b-3p targeted in piwi2 and mov10l1 3' UTRs and down-regulated their expressions in spotted knifejaw. The notion that mov10l1 and piwi2 enhance germ cells proliferation and regulate gonadal development and gametogenesis suggests that opu-miR-27b-3p may attenuated this process in the gonads of spotted knifejaw. These findings provided insights into regulatory roles of gonadal miRNAs and supplied fundamental resources for further studies on miRNA-mediated post-transcriptional regulation in reproductive system of spotted knifejaw. Copyright © 2018. Published by Elsevier Inc.
The nuclear import factor importin α4 can protect against oxidative stress.
Young, Julia C; Ly-Huynh, Jennifer D; Lescesen, Helen; Miyamoto, Yoichi; Browne, Cate; Yoneda, Yoshihiro; Koopman, Peter; Loveland, Kate L; Jans, David A
2013-10-01
The importin (IMP) superfamily of nuclear transport proteins is essential to key developmental pathways, including in the murine testis where expression of the 6 distinct IMPα proteins is highly dynamic. Present predominantly from the spermatocyte stage onwards, IMPα4 is unique in showing a striking nuclear localization, a property we previously found to be linked to maintenance of pluripotency in embryonic stem cells and to the cellular stress response in cultured cells. Here we examine the role of IMPα4 in vivo for the first time using a novel transgenic mouse model in which we overexpress an IMPα4-EGFP fusion protein from the protamine 1 promoter to recapitulate endogenous testicular germ cell IMPα4 expression in spermatids. IMPα4 overexpression did not affect overall fertility, testis morphology/weight or spermatogenic progression under normal conditions, but conferred significantly (>30%) increased resistance to oxidative stress specifically in the spermatid subpopulation expressing the transgene. Consistent with a cell-specific role for IMPα4 in protecting against oxidative stress, haploid germ cells from IMPα4 null mice were significantly (c. 30%) less resistant to oxidative stress than wild type controls. These results from two unique and complementary mouse models demonstrate a novel protective role for IMPα4 in stress responses specifically within haploid male germline cells, with implications for male fertility and genetic integrity. Copyright © 2013 Elsevier B.V. All rights reserved.
Li, Yansen; Huang, Yi; Piao, Yuanguo; Nagaoka, Kentaro; Watanabe, Gen; Taya, Kazuyoshi; Li, ChunMei
2013-03-21
Whole body heat stress had detrimental effect on male reproductive function. It's known that the nuclear factor erythroid 2-related factor 2 (Nrf2) activates expression of cytoprotective genes to enable cell adaptation to protect against oxidative stress. However, it's still unclear about the exactly effects of Nrf2 on the testis. Here, we investigate the protective effect of Nrf2 on whole body heat stress-induced oxidative damage in mouse testis. Male mice were exposed to the elevated ambient temperature (42°C) daily for 2 h. During the period of twelve consecutive days, mice were sacrificed on days 1, 2, 4, 8 and 12 immediately following heat exposure. Testes weight, enzymatic antioxidant activities and concentrations of malondialdehyde (MDA) and glutathione (GSH) in the testes were determined and immunohistochemical detection of Nrf2 protein and mRNA expression of Nrf2-regulated genes were analyzed to assess the status of Nrf2-antioxidant system. Heat-exposed mice presented significant increases in rectal, scrotal surface and body surface temperature. The concentrations of cortisol and testosterone in serum fluctuated with the number of exposed days. There were significant decrease in testes weight and relative testes weight on day 12 compared with those on other days, but significant increases in catalase (CAT) activity on day 1 and GSH level on day 4 compared with control group. The activities of total superoxide dismutase (T-SOD) and copper-zinc SOD (CuZn-SOD) increased significantly on days 8 and 12. Moreover, prominent nuclear accumulation of Nrf2 protein was observed in Leydig cells on day 2, accompanying with up-regulated mRNA levels of Nrf2-regulated genes such as Nrf2, heme oxygenase 1 (HO-1), γ-Glutamylcysteine synthetase (GCLC) and NAD (P) H: quinone oxidoreductase 1 (NQO1)) in heat-treated groups. These results suggest that Nrf2 displayed nuclear accumulation and protective activity in the process of heat treated-induced oxidative stress in mouse testes, indicating that Nrf2 might be a potential target for new drugs designed to protect germ cell and Leydig cell from oxidative stress.
Yan, Helen H. N.; Mruk, Dolores D.; Lee, Will M.; Cheng, C. Yan
2009-01-01
During spermatogenesis in the mammalian testis, preleptotene/leptotene spermatocytes differentiate from type B spermatogonia and traverse the blood-testis barrier (BTB) at stage VIII of the seminiferous epithelial cycle for further development. This timely movement of germ cells involves extensive junction restructuring at the BTB. Previous studies have shown that these events are regulated by testosterone (T) and cytokines [e.g., the transforming growth factor (TGF) -βs], which promote and disrupt the BTB assembly, respectively. However, the mechanisms underlying the “opening” of the BTB above a migrating preleptotene/leptotene spermatocyte and the “resealing” of the barrier underneath this cell remain obscure. We now report findings on a novel mechanism utilized by the testes to regulate these events. Using cell surface protein biotinylation coupled with immunoblotting and immunofluorescent microscopy, we assessed the kinetics of endocytosis and recycling of BTB-associated integral membrane proteins: occludin, JAM-A, and N-cadherin. It was shown that these proteins were continuously endocytosed and recycled back to the Sertoli cell surface via the clathrin-mediated but not the caveolin-mediated pathway. When T or TGF-β2 was added to Sertoli cell cultures with established functional BTB, both factors accelerated the kinetics of internalization of BTB proteins from the cell surface, perhaps above the migrating preleptotene spermatocyte, thereby opening the BTB. Likewise, T also enhanced the kinetics of recycling of internalized biotinylated proteins back to the cell surface, plausibly relocating these proteins beneath the migrating spermatocyte to reassemble the BTB. In contrast, TGF-β2 targeted internalized biotinylated proteins to late endosomes for degradation, destabilizing the BTB. In summary, the transient opening of the BTB that facilitates germ cell movement is mediated via the differential effects of T and cytokines on the kinetics of endocytosis and recycling of integral membrane proteins at the BTB. The net result of these interactions, in turn, determines the steady-state protein levels at the Sertoli-Sertoli cell interface at the BTB. PMID:18192323
Bogani, Debora; Siggers, Pam; Brixey, Rachel; Warr, Nick; Beddow, Sarah; Edwards, Jessica; Williams, Debbie; Wilhelm, Dagmar; Koopman, Peter; Flavell, Richard A.; Chi, Hongbo; Ostrer, Harry; Wells, Sara; Cheeseman, Michael; Greenfield, Andy
2009-01-01
Sex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male (XY) gonad, sex-determining region of the Y (SRY) protein acts to up-regulate expression of the related gene, SOX9, a transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex determination, intracellular signalling components functioning in this process have not been defined. Here we report a role for the phylogenetically ancient mitogen-activated protein kinase (MAPK) signalling pathway in mouse sex determination. Using a forward genetic screen, we identified the recessive boygirl (byg) mutation. On the C57BL/6J background, embryos homozygous for byg exhibit consistent XY gonadal sex reversal. The byg mutation is an A to T transversion causing a premature stop codon in the gene encoding MAP3K4 (also known as MEKK4), a mitogen-activated protein kinase kinase kinase. Analysis of XY byg/byg gonads at 11.5 d post coitum reveals a growth deficit and a failure to support mesonephric cell migration, both early cellular processes normally associated with testis development. Expression analysis of mutant XY gonads at the same stage also reveals a dramatic reduction in Sox9 and, crucially, Sry at the transcript and protein levels. Moreover, we describe experiments showing the presence of activated MKK4, a direct target of MAP3K4, and activated p38 in the coelomic region of the XY gonad at 11.5 d post coitum, establishing a link between MAPK signalling in proliferating gonadal somatic cells and regulation of Sry expression. Finally, we provide evidence that haploinsufficiency for Map3k4 accounts for T-associated sex reversal (Tas). These data demonstrate that MAP3K4-dependent signalling events are required for normal expression of Sry during testis development, and create a novel entry point into the molecular and cellular mechanisms underlying sex determination in mice and disorders of sexual development in humans. PMID:19753101
Tokuhiro, Keizo; Miyagawa, Yasushi; Yamada, Shuichi; Hirose, Mika; Ohta, Hiroshi; Nishimune, Yoshitake; Tanaka, Hiromitsu
2007-03-01
Haspin is a unique protein kinase expressed predominantly in haploid male germ cells. The genomic structure of haspin (Gsg2) has revealed it to be intronless, and the entire transcription unit is in an intron of the integrin alphaE (Itgae) gene. Transcription occurs from a bidirectional promoter that also generates an alternatively spliced integrin alphaE-derived mRNA (Aed). In mice, the testis-specific alternative splicing of Aed is expressed bidirectionally downstream from the Gsg2 transcription initiation site, and a segment consisting of 26 bp transcribes both genomic DNA strands between Gsg2 and the Aed transcription initiation sites. To investigate the mechanisms for this unique gene regulation, we cloned and characterized the Gsg2 promoter region. The 193-bp genomic fragment from the 5' end of the Gsg2 and Aed genes, fused with EGFP and DsRed genes, drove the expression of both proteins in haploid germ cells of transgenic mice. This promoter element contained only a GC-rich sequence, and not the previously reported DNA sequences known to bind various transcription factors--with the exception of E2F1, TCFAP2A1 (AP2), and SP1. Here, we show that the 193-bp DNA sequence is sufficient for the specific, bidirectional, and synchronous expression in germ cells in the testis. We also demonstrate the existence of germ cell nuclear factors specifically bound to the promoter sequence. This activity may be regulated by binding to the promoter sequence with germ cell-specific nuclear complex(es) without regulation via DNA methylation.
Male sex determination: insights into molecular mechanisms
McClelland, Kathryn; Bowles, Josephine; Koopman, Peter
2012-01-01
Disorders of sex development often arise from anomalies in the molecular or cellular networks that guide the differentiation of the embryonic gonad into either a testis or an ovary, two functionally distinct organs. The activation of the Y-linked gene Sry (sex-determining region Y) and its downstream target Sox9 (Sry box-containing gene 9) triggers testis differentiation by stimulating the differentiation of Sertoli cells, which then direct testis morphogenesis. Once engaged, a genetic pathway promotes the testis development while actively suppressing genes involved in ovarian development. This review focuses on the events of testis determination and the struggle to maintain male fate in the face of antagonistic pressure from the underlying female programme. PMID:22179516
Fink, Cornelia; Weigel, Roswitha; Hembes, Tanja; Lauke-Wettwer, Heidrun; Kliesch, Sabine; Bergmann, Martin; Brehm, Ralph H
2006-01-01
Abstract Carcinoma in situ (CIS) is the noninvasive precursor of most human testicular germ cell tumors. In normal seminiferous epithelium, specialized tight junctions between Sertoli cells constitute the major component of the blood-testis barrier. Sertoli cells associated with CIS exhibit impaired maturation status, but their functional significance remains unknown. The aim was to determine whether the blood-testis barrier is morphologically and/or functionally altered. We investigated the expression and distribution pattern of the tight junction proteins zonula occludens (ZO) 1 and 2 in normal seminiferous tubules compared to tubules showing CIS. In normal tubules, ZO-1 and ZO-2 immunostaining was observed at the blood-testis barrier region of adjacent Sertoli cells. Within CIS tubules, ZO-1 and ZO-2 immunoreactivity was reduced at the blood-testis barrier region, but spread to stain the Sertoli cell cytoplasm. Western blot analysis confirmed ZO-1 and ZO-2, and their respective mRNA were shown by RT-PCR. Additionally, we assessed the functional integrity of the blood-testis barrier by lanthanum tracer study. Lanthanum permeated tight junctions in CIS tubules, indicating disruption of the blood-testis barrier. In conclusion, Sertoli cells associated with CIS show an altered distribution of ZO-1 and ZO-2 and lose their blood-testis barrier function. PMID:17217619
Kobayashi, Tohru; Chiba, Ayaka; Sato, Tadashi; Myosho, Taijun; Yamamoto, Jun; Okamura, Tetsuro; Onishi, Yuta; Sakaizumi, Mitsuru; Hamaguchi, Satoshi; Iguchi, Taisen; Horie, Yoshifumi
2017-10-01
Testis-ova differentiation in sexually mature male medaka (Oryzias latipes) is easily induced by estrogenic chemicals, indicating that spermatogonia persist in sexual bipotentiality, even in mature testes in medaka. By contrast, the effects of estrogen on testicular somatic cells associated with testis-ova differentiation in medaka remain unclear. In this study, we focused on the dynamics of sex-related genes (Gsdf, Dmrt1, and Foxl2) expressed in Sertoli cells in the mature testes of adult medaka during estrogen-induced testis-ova differentiation. When mature male medaka were exposed to estradiol benzoate (EB; 800ng/L), testis-ova first appeared after EB treatment for 14days (observed as the first oocytes of the leptotene-zygotene stage). However, the testis remained structurally unchanged, even after EB treatment for 28days. Although Foxl2 is a female-specific sex gene, EB treatment for 7days induced Foxl2/FOXL2 expression in all Sertoli cell-enclosed spermatogonia before testis-ova first appeared; however, Foxl2 was not detected in somatic cells in control testes. Conversely, Sertoli-cell-specific Gsdf mRNA expression levels significantly decreased after EB treatment for 14days, and no changes were observed in DMRT1 localization following EB treatment, whereas Dmrt1 mRNA levels increased significantly. Furthermore, after EB exposure, FOXl2 and DMRT1 were co-localized in Sertoli cells during testis-ova differentiation, although FOXL2 localization was undetectable in Sertoli-cell-enclosed apoptotic testis-ova, whereas DMRT1 remained localized in Sertoli cells. These results indicated for the first time that based on the expression of female-specific sex genes, feminization of Sertoli cells precedes testis-ova differentiation induced by estrogen in mature testes in medaka; however, complete feminization of Sertoli cells was not induced in this study. Additionally, it is suggested strongly that Foxl2 and Gsdf expression constitute potential molecular markers for evaluating the effects of estrogenic chemicals on testicular somatic cells associated with estrogen-induced testis-ova differentiation in mature male medaka. Copyright © 2017 Elsevier B.V. All rights reserved.
Hovey, Adriann M.; Devor, Eric J.; Breheny, Patrick J.; Mott, Sarah L.; Dai, Donghai; Thiel, Kristina W.; Leslie, Kimberly K.
2015-01-01
Cancer-testis (CT) antigens are a large family of genes that are selectively expressed in human testis germ cells, overexpressed in a variety of tumors and predominantly located on the X chromosome. To date, all known CT antigens are protein-coding genes. Here, we identify miR-888 as the first miRNA with features characteristic of a CT antigen. In a panel of 21 normal human tissues, miR-888 expression was high in testes and minimal or absent in all other examined tissues. In situ hybridization localized miR-888 expression specifically to the early stages of sperm development within the testes. Using The Cancer Genome Atlas database, we discovered that miR-888 was predominately expressed in endometrial tumors, with a significant association to high-grade tumors and increased percent invasion. In a separate panel of endometrial tumor specimens, we validated overexpression of miR-888 by real-time polymerase chain reaction. In addition, miR-888 expression was highest in endometrial carcinosarcoma, a rare and aggressive type of endometrial tumor. Moreover, we identified the progesterone receptor (PR), a potent endometrial tumor suppressor, as a direct target of miR-888. These data define miR-888 as the first miRNA CT antigen and a potential mediator of an aggressive endometrial tumor phenotype through down-regulation of PR. PMID:25926074
Jørgensen, A; Young, J; Nielsen, J E; Joensen, U N; Toft, B G; Rajpert-De Meyts, E; Loveland, K L
2014-05-13
Testicular germ cell tumours of young adults, seminoma or non-seminomas, are preceded by a pre-invasive precursor, carcinoma in situ (CIS), understood to arise through differentiation arrest of embryonic germ cells. Knowledge about the malignant transformation of germ cells is currently limited by the lack of experimental models. The aim of this study was to establish an experimental tissue culture model to maintain normal and malignant germ cells within their niche and allow investigation of treatment effects. Human testis and testis cancer specimens from orchidectomies were cultured in 'hanging drops' and effects of activin A and follistatin treatment were investigated in seminoma cultures. Testis fragments with normal spermatogenesis or CIS cells were cultured for 14 days with sustained proliferation of germ cells and CIS cells and without increased apoptosis. Seminoma cultures survived 7 days, with proliferating cells detectable during the first 5 days. Activin A treatment significantly reduced KIT transcript and protein levels in seminoma cultures, thereby demonstrating a specific treatment response. Hanging drop cultures of human testis and testis cancer samples can be employed to delineate mechanisms governing growth of normal, CIS and tumorigenic germ cells retained within their niche.
[Cloning and characterization of a novel rat gene RSD-7 differentially expressed in testis].
Zhang, Xiao-dong; Gou, Da-wei; Miao, Shi-ying; Zhang, Jian-chao; Zong, Shu-dong; Wang, Lin-fang
2003-06-01
To isolate and identify the differentially expressed genes in spermatogenesis for the understanding molecular mechanism of spermatogenesis. Screening of the cDNA library, Northern blot, expression and purification in E. coli with GST expression system, immunocytochemical staining of testis sections were used. (1) A cDNA fragment designated as RSD-7 was isolated from rat testis cDNA library. It was 1,238 bp in length, coding a protein of 232 amino acids with the GenBank accession number AF315467. The encoding protein of RSD-7 cDNA had a Ubiquitin-like domain. (2) Northern blot indicated that RSD-7 was uniquely expressed in rat testis, and in the testis RSD-7 emerged on the 30th postnatal day and expressed until 120th postnatal day. (3) Expression and purification of RSD-7 protein in E. coli with GST expression system and were used to obtain anti-RSD-7 antibody. (4) Immunolocalization of RSD-7 in rat testis revealed that it is expressed only in Sertoli cells. Transcription pattern of RSD-7 and localization of RSD-7 protein in testis have been made, which established the base for the functional study of RSD-7.
NASA Technical Reports Server (NTRS)
Hadley, Jill A.; Hall, Joseph C.; O'Brien, Ami; Ball, Richard
1992-01-01
The effect of simulated microgravity on the structure and function of the testis and epididymis cells was investigated in rats subjected to 7 days of tail suspension. Results of a histological examination revealed presence of disorganized seminiferous tubules and accumulation of large multinucleated cells and spermatids in the lumen of the epididymis. In addition, decreases in the content of testis protein and in testosterone levels in the testis, the interstitial fluid, and the epididymis were observed.
FGF9, activin and TGFβ promote testicular characteristics in an XX gonad organ culture model.
Gustin, Sonja E; Stringer, Jessica M; Hogg, Kirsten; Sinclair, Andrew H; Western, Patrick S
2016-11-01
Testis development is dependent on the key sex-determining factors SRY and SOX9, which activate the essential ligand FGF9. Although FGF9 plays a central role in testis development, it is unable to induce testis formation on its own. However, other growth factors, including activins and TGFβs, also present testis during testis formation. In this study, we investigated the potential of FGF9 combined with activin and TGFβ to induce testis development in cultured XX gonads. Our data demonstrated differing individual and combined abilities of FGF9, activin and TGFβ to promote supporting cell proliferation, Sertoli cell development and male germ line differentiation in cultured XX gonads. FGF9 promoted proliferation of supporting cells in XX foetal gonads at rates similar to those observed in vivo during testis cord formation in XY gonads but was insufficient to initiate testis development. However, when FGF9, activin and TGFβ were combined, aspects of testicular development were induced, including the expression of Sox9, morphological reorganisation of the gonad and deposition of laminin around germ cells. Enhancing β-catenin activity diminished the testis-promoting activities of the combined growth factors. The male promoting activity of FGF9 and the combined growth factors directly or indirectly extended to the germ line, in which a mixed phenotype was observed. FGF9 and the combined growth factors promoted male germ line development, including mitotic arrest, but expression of pluripotency genes was maintained, rather than being repressed. Together, our data provide evidence that combined signalling by FGF9, activin and TGFβ can induce testicular characteristics in XX gonads. © 2016 Society for Reproduction and Fertility.
Misuse of ultrasound for palpable undescended testis by primary care providers: A prospective study
Wong, Nathan C.; Bansal, Rahul K.; Lorenzo, Armando J.; DeMaria, Jorge; Braga, Luis H.
2015-01-01
Introduction: Although previous evidence has shown that ultrasound is unreliable to diagnose undescended testis, many primary care providers (PCP) continue to misuse it. We assessed the performance of ultrasound as a diagnostic tool for palpable undescended testis, as well as the diagnostic agreement between PCP and pediatric urologists. Methods: We performed a prospective observational cohort study between 2011 and 2013 for consecutive boys referred with a diagnosis of undescended testis to our tertiary pediatric hospital. Patients referred without an ultrasound and those with non-palpable testes were excluded. Data on referring diagnosis, pediatric urology examination and ultrasound reports were analyzed. Results: Our study consisted of 339 boys. Of these, patients without an ultrasound (n = 132) and those with non-palpable testes (n = 38) were excluded. In the end, there were 169 pateints in this study. Ultrasound was performed in 50% of referred boys showing 256 undescended testis. The mean age at time of referral was 45 months. When ultrasound was compared to physical examination by the pediatric urologist, agreement was only 34%. The performance of ultrasound for palpable undescended testis was: sensitivity = 100%; specificity = 16%; positive predictive value = 34%; negative predictive value = 100%; positive likelihood ratio = 1.2; and negative likelihood ratio = 0. Diagnosis of undescended testis by PCP was confirmed by physical examination in 30% of cases, with 70% re-diagnosed with normal or retractile testes. Conclusion: Ultrasound performed poorly to assess for palpable undescended testis in boys and should not be used. Although the study has important limitations, there is an increasing need for education and evidence-based guidelines for PCP in the management of undescended testis. PMID:26788226
HISTOLOGICAL AND HISTOPATHOLOGICAL EVALUATION OF THE TESTIS
This book, the first to describe how the testis is evaluated in research and toxicology testing settings, is a resource for individuals who wish to perform a systematic evaluation of the testis. he book contains 728 illustrations and drawings. The book begins with a description o...
Testisimmune privilege - Assumptions versus facts
Kaur, G.; Mital, P.; Dufour, J.M.
2013-01-01
The testis has long enjoyed a reputation as an immunologically privileged site based on its ability to protect auto-antigenic germ cells and provide an optimal environment for the extended survival of transplanted allo- or xeno-grafts. Exploration of the role of anatomical, physiological, immunological and cellular components in testis immune privilege revealed that the tolerogenic environment of the testis is a result of the immunomodulatory factors expressed or secreted by testicular cells (mainly Sertoli cells, peritubular myoid cells, Leydig cells, and resident macrophages). The blood-testis barrier/Sertoli cell barrier, is also important to seclude advanced germ cells but its requirement in testis immune privilege needs further investigation. Testicular immune privilege is not permanent, as an effective immune response can be mounted against transplanted tissue, and bacterial/viral infections in the testis can be effectively eliminated. Overall, the cellular components control the fate of the immune response and can shift the response from immunodestructive to immunoprotective, resulting in immune privilege. PMID:25309630
Kovacs, Maria; Lopez-Duran, Nestor L
2012-04-01
For this special issue about child and adolescent depression, the authors were asked to describe contextual emotion regulation therapy as an example of a developmentally informed psychosocial intervention. The article begins with the authors' definition of the elements that should comprise such an intervention. A succinct summary of this contextual emotion regulation therapy is then provided, including its explanatory paradigm of depression, followed by an exposition of how it addresses the various definitional criteria of a developmentally informed intervention. The article concludes with a brief overview of the challenges of implementing a developmentally sensitive psychotherapy for depressed children and adolescents.
Li, Xiaoxue; Luo, Lingyan; Karthi, Sengodan; Zhang, Ke; Luo, Jianjun; Hu, Qiongbo; Weng, Qunfang
2018-04-26
The diamondback moth, Plutella xylostella (Linnaeus), is one of the notorious pests causing substantial loses to many cruciferous vegetables across the nations. The effects of 60 Co-γ radiation on physiology of P. xylostella were investigated and the results displayed that 200 Gy irradiation significantly alters the antioxidant enzyme regulation in six-day-old male pupae of P. xylostella . First, in our research, we detected Oxidase system and stress response mechanism of irradiated pupae, the results displayed that 200 Gy irradiation significantly alters the antioxidant enzyme regulation in six-day-old male pupae of P. xylostella . The levels of superoxide dismutase (SOD) and catalase (CAT) were increased significantly in contrast the level of peroxidase (POD) and glutathione S-transferase (GST) were decreased in 12⁻24 h post-treatment. The heat shock proteins (Hsps) gene expression level was significant increasing, maximum > 2-folds upregulation of genes were observed in peak. However, they also had a trend of gradual recovery with development. Second, we detected the testis lactate dehydrogenase (LDH) and acid phosphatase (ACP) activity found that in male adults testis they increased significantly than control during its development. Thus the present research investigation highlights that the 60 Co-γ radiation treatments alters the physiological development of diamondback moth. The results showed that 200 Gy dosage resulted in stress damage to the body and reproductive system of the diamondback moth.
NASA Astrophysics Data System (ADS)
Marti, Hugo H.; Risau, Werner
1998-12-01
Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases. Hypoxia is a potent inducer of VEGF in vitro. Here we demonstrate that VEGF is induced in vivo by exposing mice to systemic hypoxia. VEGF induction was highest in brain, but also occurred in kidney, testis, lung, heart, and liver. In situ hybridization analysis revealed that a distinct subset of cells within a given organ, such as glial cells and neurons in brain, tubular cells in kidney, and Sertoli cells in testis, responded to the hypoxic stimulus with an increase in VEGF expression. Surprisingly, however, other cells at sites of constitutive VEGF expression in normal adult tissues, such as epithelial cells in the choroid plexus and kidney glomeruli, decreased VEGF expression in response to the hypoxic stimulus. Furthermore, in addition to VEGF itself, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was induced by hypoxia in endothelial cells of lung, heart, brain, kidney, and liver. VEGF itself was never found to be up-regulated in endothelial cells under hypoxic conditions, consistent with its paracrine action during normoxia. Our results show that the response to hypoxia in vivo is differentially regulated at the level of specific cell types or layers in certain organs. In these tissues, up- or down-regulation of VEGF and VEGFR-1 during hypoxia may influence their oxygenation after angiogenesis or modulate vascular permeability.
Cavalie, G; Bellier, Alexandre; Marnas, G; Boisson, B; Robert, Y; Rabattu, P Y; Chaffanjon, P
2018-04-01
The anatomy of gubernaculum testis (GT) is often discussed; however, the postnatal anatomy of the GT or scrotal ligament (SL) is rarely described. Hence, we performed an anatomical and histological study to analyze histologically the structures between testis and scrotum. We performed anatomical dissections on 25 human fresh cadavers' testes. Each testis was removed with its envelopes and macroscopically analyzed. Then samples were included for histological study. Finally, they were analyzed under microscope, looking for attachments between testis, epididymis and scrotal envelopes. The absence of proximal and distal attachment was found in 56.0% of cases. Looking at the proximal attachment of the SL, the main one found is the epididymal attachment (28.0%), whereas no cases of testis attachment was found. Distally, there are more variations with scrotal attachment (12%) and cremaster attachment (12.0%). We found a significant prevalence of multiple adherences in 16.0% of cases too. Finally, in 15 cases (57.7%) an attachment is present between testis and epididymis, as it is commonly described. In the majority of cases there is no attachment of the lower pole of the testis and epididymis and these structures remain free. So it seems that the SL disappears with aging. Moreover, there is not only one kind of ligamentous attachment, but a high variability of attachments at the lower pole of the testiculo-epididymal structure. When it exists, this structure is never a real ligament and it seems more appropriate to use the term "attachments".
Kwak, Ho-Geun; Dohmae, Naoshi
2016-11-15
Various histones, including testis-specific histones, exist during spermatogenesis and some of them have been reported to play a key role in chromatin remodeling. Mass spectrometry (MS)-based characterization has become the important step to understand histone structures. Although individual histones or partial histone variant groups have been characterized, the comprehensive analysis of histone variants has not yet been conducted in the mouse testis. Here, we present the comprehensive separation and characterization of histone variants from mouse testes by a top-down approach using MS. Histone variants were successfully separated on a reversed phase column using high performance liquid chromatography (HPLC) with an ion-pairing reagent. Increasing concentrations of testis-specific histones were observed in the mouse testis and some somatic histones increased in the epididymis. Specifically, the increase of mass abundance in H3.2 in the epididymis was inversely proportional to the decrease in H3t in the testis, which was approximately 80%. The top-down characterization of intact histone variants in the mouse testis was performed using LC-MS/MS. The masses of separated histone variants and their expected post-translation modifications were calculated by performing deconvolution with information taken from the database. TH2A, TH2B and H3t were characterized by MS/MS fragmentation. Our approach provides comprehensive knowledge for identification of histone variants in the mouse testis that will contribute to the structural and functional research of histone variants during spermatogenesis.
Li, Mingcheng; Gao, Lijun; Qu, Li; Sun, Jingyu; Yuan, Guangxin; Xia, Wei; Niu, Jiamu; Fu, Guilian; Zhang, Lihua
2016-07-01
The use of Penis et testis cervi, as a kind of precious Traditional Chinese Medicine (TCM), which is derived from dry deer's testis and penis, has been recorded for many years in China. There are abundant species of deer in China, the Penis et testis from species of Cervus Nippon and Cervus elaphusL were authentic, others species were defined as adulterant (different subspecies of deer) or counterfeits (different species). Identification of their origins or authenticity becomes a key in controlling the herbal products. A modified column chromatography was used to extract mitochondrial DNA of dried deer's testis and penis from sika deer (C. Nippon) and red deer (C. elaphusL) in addition to adulterants and counterfeits. Column chromatography requires for a short time to extract mitochondrial DNA of high purity with little damage of DNA molecules, which provides the primary structure of guarantee for the specific PCR; PCR-SSCP method showed a clear intra-specific difference among patterns of single-chain fragments, and completely differentiate Penis et testis origins from C. Nippon and C. elaphusL. RAPD-HPCE was based on the standard electropherograms to compute a control spectrum curve as similarity reference (R) among different samples. The similarity analysis indicated that there were significant inter-species differences among Penis et testis' adulterant or counterfeits. Both techniques provide a fast, simple, and accurate way to directly identify among inter-species or intra-species of Penis et testis.
[Effects of electromagnetic pulses on apoptosis and TGF-β3 expression of mouse testis tissue].
Luo, Yaning; Ding, Guirong; Chen, Yongbin; Xu, Shenglong; Wang, Xiaowu
2014-04-01
To investigate the effects of electromagnetic pulses (EMP) on the apoptosis and transforming growth factor beta 3 (TGF-β3) expression of mouse testis tissue. Thirty-two male BALB/c mice were randomly and equally divided into one control group and three EMP treated groups, which were whole-body exposed to EMP at 200 kV/m with 100, 200, and 400 pulses, respectively. The control group received no treatment. The pathological changes and cell apoptosis in testis tissue were analyzed by TUNEL assay. The mRNA expression of TGF-β3 in testis tissue was determined by RT-PCR, and the protein expression of TGF-β3 was determined by immunohistochemistry and Western blot. No obvious pathological changes were found in testis tissue after EMP exposure at 200 kV/m with 100 and 200 pulses. However, after EMP exposure with 400 pulses, degeneration and shedding of testis tissue, accompanied by significant increase in apoptosis rate (P < 0.05), was observed. The RT-PCR, immunohistochemistry, and Western blot showed that the expression of TGF-β3 mRNA and protein increased significantly after EMP exposure with 400 pulses as compared with that of the control group (P < 0.05). EMP exposure at 200 kV/m with 400 pulses increases the incidence of apoptosis and expression of TGF-β3 in mouse testis tissue, which is potentially one of the mechanisms by which EMP increases blood-testis barrier permeability in mice.
NASA Astrophysics Data System (ADS)
Huang, Qingyu; Luo, Lianzhong; Alamdar, Ambreen; Zhang, Jie; Liu, Liangpo; Tian, Meiping; Eqani, Syed Ali Musstjab Akber Shah; Shen, Heqing
2016-09-01
Arsenic is a widespread metalloid in environment, whose exposure has been associated with a broad spectrum of toxic effects. However, a global view of arsenic-induced male reproductive toxicity is still lack, and the underlying mechanisms remain largely unclear. Our results revealed that arsenic exposure decreased testosterone level and reduced sperm quality in rats. By conducting an integrated proteomics and metabolomics analysis, the present study aims to investigate the global influence of arsenic exposure on the proteome and metabolome in rat testis. The abundance of 70 proteins (36 up-regulated and 34 down-regulated) and 13 metabolites (8 increased and 5 decreased) were found to be significantly altered by arsenic treatment. Among these, 19 proteins and 2 metabolites were specifically related to male reproductive system development and function, including spermatogenesis, sperm function and fertilization, fertility, internal genitalia development, and mating behavior. It is further proposed that arsenic mainly impaired spermatogenesis and fertilization via aberrant modulation of these male reproduction-related proteins and metabolites, which may be mediated by the ERK/AKT/NF-κB-dependent signaling pathway. Overall, these findings will aid our understanding of the mechanisms responsible for arsenic-induced male reproductive toxicity, and from such studies useful biomarkers indicative of arsenic exposure could be discovered.
Huang, Qingyu; Luo, Lianzhong; Alamdar, Ambreen; Zhang, Jie; Liu, Liangpo; Tian, Meiping; Eqani, Syed Ali Musstjab Akber Shah; Shen, Heqing
2016-09-02
Arsenic is a widespread metalloid in environment, whose exposure has been associated with a broad spectrum of toxic effects. However, a global view of arsenic-induced male reproductive toxicity is still lack, and the underlying mechanisms remain largely unclear. Our results revealed that arsenic exposure decreased testosterone level and reduced sperm quality in rats. By conducting an integrated proteomics and metabolomics analysis, the present study aims to investigate the global influence of arsenic exposure on the proteome and metabolome in rat testis. The abundance of 70 proteins (36 up-regulated and 34 down-regulated) and 13 metabolites (8 increased and 5 decreased) were found to be significantly altered by arsenic treatment. Among these, 19 proteins and 2 metabolites were specifically related to male reproductive system development and function, including spermatogenesis, sperm function and fertilization, fertility, internal genitalia development, and mating behavior. It is further proposed that arsenic mainly impaired spermatogenesis and fertilization via aberrant modulation of these male reproduction-related proteins and metabolites, which may be mediated by the ERK/AKT/NF-κB-dependent signaling pathway. Overall, these findings will aid our understanding of the mechanisms responsible for arsenic-induced male reproductive toxicity, and from such studies useful biomarkers indicative of arsenic exposure could be discovered.
Molecular characterization and epigenetic regulation of Mei1 in cattle and cattle-yak.
Li, Bojiang; Wu, Wangjun; Luo, Hua; Liu, Zequn; Liu, Honglin; Li, Qifa; Pan, Zengxiang
2015-11-15
Mei1 is required for the homologous recombination of meiosis during the mammalian spermatogenesis. However, the knowledge about bovine Mei1 (bMei1) is still limited. In the present study, we cloned and characterized the bMei1, and investigated the epigenetic regulatory mechanism of bMei1 expression in vivo and in vitro. The full length coding region of bMei1 was 3819bp, which encoded a polypeptide of 1272 amino acids. Real-time PCR showed that the mRNA expression level of bMei1 in the testis of cattle-yak with meiotic arrest and male infertility was significantly decreased as compared with cattle (P<0.01). Conversely, the methylation levels of bMei1 promoter and gene body in the testis of cattle-yak were significantly increased. Additionally, the expression level of bMei1 in bovine mammary epithelial cells (BMECs) was activated by treatment with the methyltransferase inhibitor 5-aza-2' deoxycytidine (5-Aza-CdR). Our data suggest that bMei1 may play an important role in the meiosis of spermatogenesis and may be involved in cattle-yak male sterility, and its transcription was regulated by DNA methylation. Copyright © 2015 Elsevier B.V. All rights reserved.
Role of the testis interstitial compartment in spermatogonial stem cell function
Potter, Sarah J.; DeFalco, Tony
2017-01-01
Male fertility is maintained through intricate cellular and molecular interactions that ensure spermatogonial stem cells (SSCs) proceed in a step-wise differentiation process through spermatogenesis and spermiogenesis to produce sperm. SSCs lie within the seminiferous tubule compartment, which provides a nurturing environment for the development of sperm. Cells outside of the tubules, such as interstitial and peritubular cells, also help direct SSC activity. This review focuses on interstitial (interstitial macrophages, Leydig cells, and vasculature) and peritubular (peritubular macrophages, peritubular myoid cells) cells and their role in regulating SSC self-renewal and differentiation in mammals. Leydig cells, the major steroidogenic cells in the testis, influence SSCs through secreted factors, such as insulin growth factor 1 (IGF1) and colony stimulating factor 1 (CSF1). Macrophages interact with SSCs through various potential mechanisms, such as CSF1 and retinoic acid (RA), to induce proliferation or differentiation of SSCs, respectively. Vasculature influences SSC dynamics through CSF1, vascular endothelial growth factor (VEGF), and regulating oxygen levels. Lastly, peritubular myoid cells produce one of the most well-known factors that is required for SSC self-renewal, glial cell line derived neurotrophic factor (GDNF), as well as CSF1. Overall, SSC interactions with interstitial and peritubular cells are critical for SSC function and are an important underlying factor promoting male fertility. PMID:28115580
Activins in reproductive biology and beyond.
Wijayarathna, R; de Kretser, D M
2016-04-01
Activins are members of the pleiotrophic family of the transforming growth factor-beta (TGF-β) superfamily of cytokines, initially isolated for their capacity to induce the release of FSH from pituitary extracts. Subsequent research has demonstrated that activins are involved in multiple biological functions including the control of inflammation, fibrosis, developmental biology and tumourigenesis. This review summarizes the current knowledge on the roles of activin in reproductive and developmental biology. It also discusses interesting advances in the field of modulating the bioactivity of activins as a therapeutic target, which would undoubtedly be beneficial for patients with reproductive pathology. A comprehensive literature search was carried out using PUBMED and Google Scholar databases to identify studies in the English language which have contributed to the advancement of the field of activin biology, since its initial isolation in 1987 until July 2015. 'Activin', 'testis', 'ovary', 'embryonic development' and 'therapeutic targets' were used as the keywords in combination with other search phrases relevant to the topic of activin biology. Activins, which are dimers of inhibin β subunits, act via a classical TGF-β signalling pathway. The bioactivity of activin is regulated by two endogenous inhibitors, inhibin and follistatin. Activin is a major regulator of testicular and ovarian development. In the ovary, activin A promotes oocyte maturation and regulates granulosa cell steroidogenesis. It is also essential in endometrial repair following menstruation, decidualization and maintaining pregnancy. Dysregulation of the activin-follistatin-inhibin system leads to disorders of female reproduction and pregnancy, including polycystic ovary syndrome, ectopic pregnancy, miscarriage, fetal growth restriction, gestational diabetes, pre-eclampsia and pre-term birth. Moreover, a rise in serum activin A, accompanied by elevated FSH, is characteristic of female reproductive aging. In the male, activin A is an autocrine and paracrine modulator of germ cell development and Sertoli cell proliferation. Disruption of normal activin signalling is characteristic of many tumours affecting reproductive organs, including endometrial carcinoma, cervical cancer, testicular and ovarian cancer as well as prostate cancer. While activin A and B aid the progression of many tumours of the reproductive organs, activin C acts as a tumour suppressor. Activins are important in embryonic induction, morphogenesis of branched glandular organs, development of limbs and nervous system, craniofacial and dental development and morphogenesis of the Wolffian duct. The field of activin biology has advanced considerably since its initial discovery as an FSH stimulating agent. Now, activin is well known as a growth factor and cytokine that regulates many aspects of reproductive biology, developmental biology and also inflammation and immunological mechanisms. Current research provides evidence for novel roles of activins in maintaining the structure and function of reproductive and other organ systems. The fact that activin A is elevated both locally as well as systemically in major disorders of the reproductive system makes it an important biomarker. Given the established role of activin A as a pro-inflammatory and pro-fibrotic agent, studies of its involvement in disorders of reproduction resulting from these processes should be examined. Follistatin, as a key regulator of the biological actions of activin, should be evaluated as a therapeutic agent in conditions where activin A overexpression is established as a contributing factor. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Oryan, Alireza; Wahedi, Azizia; Paluzzi, Jean-Paul V
2018-03-04
To cope with stressful events such as flight, organisms have evolved various regulatory mechanisms, often involving control by endocrine-derived factors. In insects, two stress-related factors include the gonadotropin-releasing hormone-related peptides adipokinetic hormone (AKH) and corazonin (CRZ). AKH is a pleiotropic hormone best known as a substrate liberator of proteins, lipids, and carbohydrates. Although a universal function has not yet been elucidated, CRZ has been shown to have roles in pigmentation, ecdysis or act as a cardiostimulatory factor. While both these neuropeptides and their respective receptors (AKHR and CRZR) have been characterized in several organisms, details on their specific roles within the disease vector, Aedes aegypti, remain largely unexplored. Here, we obtained three A. aegypti AKHR transcript variants and further identified the A. aegypti CRZR receptor. Receptor expression using a heterologous functional assay revealed that these receptors exhibit a highly specific response for their native ligands. Developmental quantitative expression analysis of CRZR revealed enrichment during the pupal and adult stages. In adults, quantitative spatial expression analysis revealed CRZR transcript in a variety of organs including head, thoracic ganglia, primary reproductive organs (ovary and testis), as well as male carcass. This suggest CRZ may play a role in ecdysis, and neuronal expression of CRZR indicates a possible role for CRZ within the nervous system. Quantitative developmental expression analysis of AKHR identified significant transcript enrichment in early adult stages. AKHR transcript was observed in the head, thoracic ganglia, accessory reproductive tissues and the carcass of adult females, while it was detected in the abdominal ganglia and enriched significantly in the carcass of adult males, which supports the known function of AKH in energy metabolism. Collectively, given the enrichment of CRZR and AKHR in the primary and secondary sex organs, respectively, of adult mosquitoes, these neuropeptides may play a role in regulating mosquito reproductive biology. Copyright © 2018 Elsevier Inc. All rights reserved.
Ramsey, Mary; Crews, David
2009-01-01
The developmental processes underlying gonadal differentiation are conserved across vertebrates, but the triggers initiating these trajectories are extremely variable. The red-eared slider turtle (Trachemys scripta elegans) exhibits temperature-dependent sex determination (TSD), a system where incubation temperature during a temperature-sensitive period of development determines offspring sex. However, gonadal sex is sensitive to both temperature and hormones during this period – particularly estrogen. We present a model for temperature-based differences in aromatase expression as a critical step in ovarian determination. Localized estrogen production facilitates ovarian development while inhibiting male-specific gene expression. At male-producing temperatures aromatase is not upregulated, thereby allowing testis development. PMID:18992835
Jørgensen, A; Young, J; Nielsen, J E; Joensen, U N; Toft, B G; Rajpert-De Meyts, E; Loveland, K L
2014-01-01
Background: Testicular germ cell tumours of young adults, seminoma or non-seminomas, are preceded by a pre-invasive precursor, carcinoma in situ (CIS), understood to arise through differentiation arrest of embryonic germ cells. Knowledge about the malignant transformation of germ cells is currently limited by the lack of experimental models. The aim of this study was to establish an experimental tissue culture model to maintain normal and malignant germ cells within their niche and allow investigation of treatment effects. Methods: Human testis and testis cancer specimens from orchidectomies were cultured in ‘hanging drops' and effects of activin A and follistatin treatment were investigated in seminoma cultures. Results: Testis fragments with normal spermatogenesis or CIS cells were cultured for 14 days with sustained proliferation of germ cells and CIS cells and without increased apoptosis. Seminoma cultures survived 7 days, with proliferating cells detectable during the first 5 days. Activin A treatment significantly reduced KIT transcript and protein levels in seminoma cultures, thereby demonstrating a specific treatment response. Conclusions: Hanging drop cultures of human testis and testis cancer samples can be employed to delineate mechanisms governing growth of normal, CIS and tumorigenic germ cells retained within their niche. PMID:24781282
Yang, Yan-Jing; Wang, Yang; Li, Zhi; Zhou, Li; Gui, Jian-Fang
2017-01-01
Foxl2 is essential for mammalian ovary maintenance. Although sexually dimorphic expression of foxl2 was observed in many teleosts, its role and regulative mechanism in fish remained largely unclear. In this study, we first identified two transcript variants of foxl2a and its homologous gene foxl2b in zebrafish, and revealed their specific expression in follicular layer cells in a sequential and divergent fashion during ovary differentiation, maturation, and maintenance. Then, homozygous foxl2a mutants (foxl2a−/−) and foxl2b mutants (foxl2b−/−) were constructed and detailed comparisons, such as sex ratio, gonadal histological structure, transcriptome profiling, and dynamic expression of gonadal development-related genes, were carried out. Initial ovarian differentiation and oocyte development occur normally both in foxl2a−/− and foxl2b−/− mutants, but foxl2a and foxl2b disruptions result in premature ovarian failure and partial sex reversal, respectively, in adult females. In foxl2a−/− female mutants, sox9a-amh/cyp19a1a signaling was upregulated at 150 days postfertilization (dpf) and subsequently oocyte apoptosis was triggered after 180 dpf. In contrast, dmrt1 expression was greater at 105 dpf and increased several 100-fold in foxl2b−/− mutated ovaries at 270 dpf, along with other testis-related genes. Finally, homozygous foxl2a−/−/foxl2b−/− double mutants were constructed in which complete sex reversal occurs early and testis-differentiation genes robustly increase at 60 dpf. Given mutual compensation between foxl2a and foxl2b in foxl2b−/− and foxl2a−/− mutants, we proposed a model in which foxl2a and foxl2b cooperate to regulate zebrafish ovary development and maintenance, with foxl2b potentially having a dominant role in preventing the ovary from differentiating as testis, as compared to foxl2a. PMID:28193729
Environmental toxicants and male reproductive function
Wong, Elissa W.P; Lie, Pearl P.Y; Li, Michelle W.M; Su, Linlin; Siu, Erica R; Yan, Helen H.N; Mannu, Jayakanthan; Mathur, Premendu P; Bonanomi, Michele; Silvestrini, Bruno; Mruk, Dolores D
2011-01-01
Environmental toxicants, such as cadmium and bisphenol A (BPA) are endocrine disruptors. In utero, perinatal or neonatal exposure of BPA to rats affect the male reproductive function, such as the blood-testis barrier (BTB) integrity. This effect of BPA on BTB integrity in immature rats is likely mediated via a loss of gap junction function at the BTB, failing to coordinate tight junction and anchoring junction function at the site to maintain the immunological barrier integrity. This in turn activates the extracellular signal-regulated kinases 1/2 (Erk1/2) downstream and an increase in protein endocytosis, destabilizing the BTB. The cadmium-induced disruption of testicular dysfunction is mediated initially via its effects on the occludin/ZO-1/focal adhesion kinase (FAK) complex at the BTB, causing redistribution of proteins at the Sertoli-Sertoli cell interface, leading to the BTB disruption. The damaging effects of these toxicants to testicular function are mediated by mitogen-activated protein kinases (MAPK) downstream, which in turn perturbs the actin bundling and accelerates the actin-branching activity, causing disruption of the Sertoli cell tight junction (TJ)-barrier function at the BTB and perturbing spermatid adhesion at the apical ectoplasmic specialization (apical ES, a testis-specific anchoring junction type) that leads to premature release of germ cells from the testis. However, the use of specific inhibitors against MAPK was shown to block or delay the cadmium-induced testicular injury, such as BTB disruption and germ cell loss. These findings suggest that there may be a common downstream p38 and/or Erk1/2 MAPK-based signaling pathway involving polarity proteins and actin regulators that is shared between different toxicants that induce male reproductive dysfunction. As such, the use of inhibitors and/or antagonists against specific MAPKs can possibly be used to “manage” the illnesses caused by these toxicants and/or “protect” industrial workers being exposed to high levels of these toxicants in their work environment. PMID:21866273
LeCuyer, Elizabeth A; Zhang, Yi
2015-04-01
To examine the evidence for cross-cultural variation in socialization and children's normative self-regulation, based on a contextual-developmental perspective. Nurses and healthcare workers in multi-cultural societies must understand diversity in socializing influences (including parenting) and in children's behaviour. A contextual-developmental perspective implies that normative cultural and ethnic values will influence socializing processes and behaviour, which in turn will influence children's self-regulation. Integrative review. Studies were located using five major search engines from 1990-2011. Domains of a contextual-developmental perspective and a comprehensive definition of self-regulation assisted the generation of search terms. Selected studies compared at least two ethnic or cultural groups and addressed contextual-developmental domains: (1) culturally specific social values, beliefs, or attitudes; (2) socializing behaviours; and (3) children's normative self-regulation. Eleven studies about children's self-regulation were found to have data consistent with a contextual-developmental perspective. Studies used descriptive correlational or comparative designs with primarily convenience sampling; eight confirmed stated hypotheses, three were exploratory. Findings across studies evidenced coherent patterns of sociocultural influence on children's attention, compliance, delay of gratification, effortful control and executive function. A contextual-developmental perspective provided a useful perspective to examine normative differences in values, socializing behaviours and children's self-regulation. This perspective and these findings are expected to guide future research, to assist nurses and healthcare providers to understand diversity in parenting and children's behaviour. © 2014 John Wiley & Sons Ltd.
Anchoring Junctions As Drug Targets: Role in Contraceptive Development
Mruk, Dolores D.; Silvestrini, Bruno; Cheng, C. Yan
2010-01-01
In multicellular organisms, cell-cell interactions are mediated in part by cell junctions, which underlie tissue architecture. Throughout spermatogenesis, for instance, preleptotene leptotene spermatocytes residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier to enter the adluminal compartment for continued development. At the same time, germ cells must also remain attached to Sertoli cells, and numerous studies have reported extensive restructuring at the Sertoli-Sertoli and Sertoli-germ cell interface during germ cell movement across the seminiferous epithelium. Furthermore, the proteins and signaling cascades that regulate adhesion between testicular cells have been largely delineated. These findings have unveiled a number of potential “druggable” targets that can be used to induce premature release of germ cells from the seminiferous epithelium, resulting in transient infertility. Herein, we discuss a novel approach with the aim of developing a nonhormonal male contraceptive for future human use, one that involves perturbing adhesion between Sertoli and germ cells in the testis. PMID:18483144
Memon, Mushtaq A.; Anway, Matthew D.; Covert, Trevor R.; Uzumcu, Mehmet; Skinner, Michael K.
2008-01-01
The role transforming growth factor beta (TGFb) isoforms TGFb1, TGFb2 and TGFb3 have in the regulation of embryonic gonadal development was investigated with the use of null-mutant (i.e. knockout) mice for each of the TGFb isoforms. Late embryonic gonadal development was investigated because homozygote TGFb null-mutant mice generally die around birth, with some embryonic loss as well. In the testis, the TGFb1 null-mutant mice had a decrease in the number of germ cells at birth, postnatal day 0 (P0). In the testis, the TGFb2 null-mutant mice had a decrease in the number of seminiferous cords at embryonic day 15 (E15). In the ovary, the TGFb2 null-mutant mice had an increase in the number of germ cells at P0. TGFb isoforms appear to have a role in gonadal development, but interactions between the isoforms is speculated to compensate in the different TGFb isoform null-mutant mice. PMID:18790002
Guo, Xiuyang; Reuben Kaufman, W
2008-07-01
In most ticks of the family Ixodidae, gonad maturation and spermatogenesis are stimulated by the taking of a blood meal. Previous work from this laboratory identified 35 genes that are up-regulated by feeding [Weiss, B.L., Stepczynski, J.M., Wong, P., Kaufman, W.R., 2002. Identification and characterization of genes differentially expressed in the testis/vas deferens of the fed male tick, Amblyomma hebraeum. Insect Biochemistry and Molecular Biology 32, 785-793]. The functions of most of these genes remain unknown. We used RNA interference technology to investigate the consequences of blocking the function of 13 of these genes. Attenuation of the expression of two of these in particular, AhT/VD 8 and AhT/VD 10, correlated with deformities in the testis and abnormalities in spermiogenesis. Furthermore, most females fed in the company of these males did not engorge properly and laid many fewer eggs, most of which were infertile.
Schieck, Maximilian; Schouten, Jan P; Michel, Sven; Suttner, Kathrin; Toncheva, Antoaneta A; Gaertner, Vincent D; Illig, Thomas; Lipinski, Simone; Franke, Andre; Klintschar, Michael; Kalayci, Omer; Sahiner, Umit M; Birben, Esra; Melén, Erik; Pershagen, Göran; Freidin, Maxim B; Ogorodova, Ludmila M; Granell, Raquel; Henderson, John; Brunekreef, Bert; Smit, Henriëtte A; Vogelberg, Christian; von Berg, Andrea; Bufe, Albrecht; Heinzmann, Andrea; Laub, Otto; Rietschel, Ernst; Simma, Burkhard; Genuneit, Jon; Jonigk, Danny; Postma, Dirkje S; Koppelman, Gerard H; Vonk, Judith M; Timens, Wim; Boezen, H Marike; Kabesch, Michael
2016-08-01
Asthma is a disease affecting more boys than girls in childhood and more women than men in adulthood. The mechanisms behind these sex-specific differences are not yet understood. We analyzed whether and how genetic factors contribute to sex-specific predisposition to childhood-onset asthma. Interactions between sex and polymorphisms on childhood asthma risk were evaluated in the Multicentre Asthma Genetics in Childhood Study (MAGICS)/Phase II International Study of Asthma and Allergies in Childhood (ISAAC II) population on a genome-wide level, and findings were validated in independent populations. Genetic fine mapping of sex-specific asthma association signals was performed, and putatively causal polymorphisms were characterized in vitro by using electrophoretic mobility shift and luciferase activity assays. Gene and protein expression of the identified gene doublesex and mab-3 related transcription factor 1 (DMRT1) were measured in different human tissues by using quantitative real-time PCR and immunohistochemistry. Polymorphisms in the testis-associated gene DMRT1 displayed interactions with sex on asthma status in a population of primarily clinically defined asthmatic children and nonasthmatic control subjects (lowest P = 5.21 × 10(-6)). Replication of this interaction was successful in 2 childhood populations clinically assessed for asthma but showed heterogeneous results in other population-based samples. Polymorphism rs3812523 located in the putative DMRT1 promoter was associated with allele-specific changes in transcription factor binding and promoter activity in vitro. DMRT1 expression was observed not only in the testis but also in lung macrophages. DMRT1 might influence sex-specific patterns of childhood asthma, and its expression in testis tissue and lung macrophages suggests a potential involvement in hormone or immune cell regulation. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. All rights reserved.
Katz, D; Niederberger, C; Slaughter, G R; Cooney, A J
1997-10-01
Nuclear receptors, such as those for androgens, estrogens, and progesterones, control many reproductive processes. Proteins with structures similar to these receptors, but for which ligands have not yet been identified, have been termed orphan nuclear receptors. One of these orphans, germ cell nuclear factor (GCNF), has been shown to be germ cell specific in the adult and, therefore, may also participate in the regulation of reproductive functions. In this paper, we examine more closely the expression patterns of GCNF in germ cells to begin to define spatio-temporal domains of its activity. In situ hybridization showed that GCNF messenger RNA (mRNA) is lacking in the testis of hypogonadal mutant mice, which lack developed spermatids, but is present in the wild-type testis. Thus, GCNF is, indeed, germ cell specific in the adult male. Quantitation of the specific in situ hybridization signal in wild-type testis reveals that GCNF mRNA is most abundant in stage VII round spermatids. Similarly, Northern analysis and specific in situ hybridization show that GCNF expression first occurs in testis of 20-day-old mice, when round spermatids first emerge. Therefore, in the male, GCNF expression occurs postmeiotically and may participate in the morphological changes of the maturing spermatids. In contrast, female expression of GCNF is shown in growing oocytes that have not completed the first meiotic division. Thus, GCNF in the female is expressed before the completion of meiosis. Finally, the nature of the two different mRNAs that hybridize to the GCNF complementary DNA was studied. Although both messages contain the DNA binding domain, only the larger message is recognized by a probe from the extreme 3' untranslated region. In situ hybridization with these differential probes demonstrates that both messages are present in growing oocytes. In addition, the coding region and portions of the 3' untranslated region of the GCNF complementary DNA are conserved in the rat.
Wt1 dictates the fate of fetal and adult Leydig cells during development in the mouse testis.
Wen, Qing; Zheng, Qiao-Song; Li, Xi-Xia; Hu, Zhao-Yuan; Gao, Fei; Cheng, C Yan; Liu, Yi-Xun
2014-12-15
Wilms' tumor 1 (Wt1) is a tumor suppressor gene encoding ∼24 zinc finger transcription factors. In the mammalian testis, Wt1 is expressed mostly by Sertoli cells (SCs) involved in testis development, spermatogenesis, and adult Leydig cell (ALC) steroidogenesis. Global knockout (KO) of Wt1 is lethal in mice due to defects in embryogenesis. Herein, we showed that Wt1 is involved in regulating fetal Leydig cell (FLC) degeneration and ALC differentiation during testicular development. Using Wt1(-/flox);Amh-Cre mice that specifically deleted Wt1 in the SC vs. age-matched wild-type (WT) controls, FLC-like-clusters were found in Wt1-deficient testes that remained mitotically active from postnatal day 1 (P1) to P56, and no ALC was detected at these ages. Leydig cells in mutant adult testes displayed morphological features of FLC. Also, FLC-like cells in adult mutant testes had reduced expression in ALC-associated genes Ptgds, Sult1e1, Vcam1, Hsd11b1, Hsd3b6, and Hsd17b3 but high expression of FLC-associated genes Thbs2 and Hsd3b1. Whereas serum LH and testosterone level in mutant mice were not different from controls, intratesticular testosterone level was significantly reduced. Deletion of Wt1 gene also perturbed the expression of steroidogenic enzymes Star, P450c17, Hsd3b6, Hsd3b1, Hsd17b1, and Hsd17b3. FLCs in adult mutant testes failed to convert androstenedione to testosterone due to a lack of Hsd17b3, and this defect was rescued by coculturing with fetal SCs. In summary, FLC-like cells in mutant testes are putative FLCs that remain mitotically active in adult mice, illustrating that Wt1 dictates the fate of FLC and ALC during postnatal testis development. Copyright © 2014 the American Physiological Society.
Li, Chun Ge; Wang, Hui; Chen, Hong Ju; Zhao, Yan; Fu, Pei Sheng; Ji, Xiang Shan
2014-01-01
Nowadays, high temperature effects on the molecular pathways during sex differentiation in teleosts need to be deciphered. In this study, a systematic differential expression analysis of genes involved in high temperature-induced sex differentiation was done in the Nile tilapia gonad and brain. Our results showed that high temperature caused significant down-regulation of CYP19A1A in the gonad of both sexes in induction group, and FOXL2 in the ovary of the induction group. The expressions of GTHα, LHβ and ERα were also significantly down-regulated in the brain of both sexes in the induction and recovery groups. On the contrary, the expression of CYP11B2 was significantly up-regulated in the ovary, but not in the testis in both groups. Spearman rank correlation analysis showed that there are significant correlations between the expressions of CYP19A1A, FOXL2, or DMRT1 in the gonads and the expression of some genes in the brain. Another result in this study showed that high temperature up-regulated the expression level of DNMT1 in the testis of the induction group, and DNMT1 and DNMT3A in the female brain of both groups. The expression and correlation analysis of HSPs showed that high temperature action on tilapia HSPs might indirectly induce the expression changes of sex differentiation genes in the gonads. These findings provide new insights on TSD and suggest that sex differentiation related genes, heat shock proteins, and DNA methylation genes are new candidates for studying TSD in fish species. Copyright © 2014 Elsevier Inc. All rights reserved.
Piro, Eugenia; Abati, Laura; Zocca, Veronica; Brugnoni, Marta; D'Alessio, Antonio
2017-06-23
Polyorchidism is an anomaly characterized by more than two gonads; triorchidism is the most common variant. Its management is controversial, mostly when surgical treatment is occasional. CB, 14 year-old, came to the hospital due to right-sided testicular torsion. During surgery, testis was rotated and the contralateral testis, which presented as an anatomically continuum with a gonadic structure similar to the other testes but with a smaller diameter, was fixed. We performed biopsy on both left testes and decided to preserve the supernumerary one. Following the anatomic and functional classification of polyorchidism by Singer, preservation is justified on the grounds of the presence of a supernumerary testis that drains into the epididymis of the normal testis, merging into one single deferent duct (Singer Type 1). At biopsy, both testes had a valid spermatogenic asset. The diagnostic follow-up at 6 and 12 months did not show any pathological alteration. Diagnosis of polyorchidism is occasional. Its treatment varies depending on the site, dimension, and anatomy of the drainage system of the supernumerary testis. If the supernumerary testis is preserved, a standardized diagnostic follow-up is recommended.
Lim, Jung-Hyun; Choi, Seong-Young; Yoo, Han-Woong; Cho, Sun-Jung; Son, Youngsook
2013-01-01
The expression of the Crlz-1 gene in mouse testis, where it was found to be expressed most highly among the tested mouse organs, was analyzed spatiotemporally by employing RT-PCR and in situ hybridization techniques with the aid of immunohistochemistry and/or immunofluorescence methods. In 1-week-old neonatal testis, Crlz-1 was strongly expressed in the spermatogonia and Sertoli cells in its seminiferous cord. In 2- to 3-week-old prepubertal testis, where Sertoli cells cease to proliferate, Crlz-1 expression dropped and remained weakly at the rim layer of seminiferous cords and/or tubules, where spermatogonia are present. In the adult testis at 12 weeks after birth, Crlz-1 was expressed mainly in the spermatids near the lumen of seminiferous tubules. In a further in situ hybridization of Crlz-1 in the 12-week-old adult testis with hematoxylin nuclear counterstaining, Crlz-1 was mainly expressed at step 16 of spermatids between stages VII and VIII of seminiferous tubules as well as in their residual bodies at stage IX of seminiferous tubules. PMID:23525569
Thyroid Hormone Role and Economy in the Developing Testis.
Hernandez, Arturo
2018-01-01
Thyroid hormones (TH) exhibit pleiotropic regulatory effects on growth, development, and metabolism, and it is becoming increasingly apparent that the developing testis is an important target for them. Testicular development is highly dependent on TH status. Both hypo- and hyperthyroidism affect testis size and the proliferation and differentiation of Sertoli, Leydig, and germ cells, with consequences for steroidogenesis, spermatogenesis, and male fertility. These observations suggest that an appropriate content of TH and by implication TH action in the testis, whether the result of systemic hormonal levels or regulatory mechanisms at the local level, is critical for normal testicular and reproductive function. The available evidence indicates the presence in the developing testis of a number of transporters, deiodinases and receptors that could play a role in the timely delivery of TH action on testicular cells. These include the thyroid hormone receptor alpha (THRA), the MCT8 transporter, the TH-activating deiodinase DIO2, and the TH-inactivating deiodinase DIO3, all of which appear to modulate testicular TH economy and testis outcomes. © 2018 Elsevier Inc. All rights reserved.
Mašek, T; Starčević, K
2017-05-01
We studied the influence of long-term treatment with sucrose and tannic acid in drinking water on the fatty acid profile and lipid peroxidation in rat testes. Male Wistar rats were supplemented with sucrose (30% w/v) or with sucrose and tannic acid (sucrose 30% w/v, tannic acid 0.1% w/v) in drinking water. The treatment with sucrose elevated blood glucose levels in the plasma (p < .05) and decreased the testis weight (p < .05) and testis index (p < .05) of the rats. Sucrose treatment increased monounsaturated fatty acids (MUFA) and C22:6n3, and decreased n6 fatty acids in testis tissue. Lipid peroxidation was significantly increased after sucrose administration in plasma (p < .05) and testis tissue (p < .01). The addition of tannic acid led to the decrease in lipid peroxidation in the plasma (p < .05) and testis (p < .05), a further increase in MUFA and decrease in n6 fatty acids. In conclusion, sucrose significantly altered the testis fatty acid profile with an increase in MUFA and C22:6n3, and a decrease in n6 fatty acids. Tannic acid attenuated oxidative stress and hyperglycaemia, but it did not improve pathological changes in the fatty acid composition of the testis. © 2016 Blackwell Verlag GmbH.
Adam, Marion; Urbanski, Henryk F.; Garyfallou, Vasilios T.; Welsch, Ulrich; Köhn, Frank M.; Schwarzer, J. Ullrich; Strauss, Leena; Poutanen, Matti; Mayerhofer, Artur
2011-01-01
Decorin (DCN), a component of the extracellular matrix of the peritubular wall and the interstitial areas of the human testis, can interact with growth factor (GF) signaling, thereby blocking downstream actions of GFs. In the present study the expression and regulation of DCN using both human testes and two experimental animal models, namely the rhesus monkey and mouse, were examined. DCN protein was present in peritubular and interstitial areas of adult human and monkey testes, while it was almost undetectable in adult wild-type mice. Interestingly, the levels and sites of testicular DCN expression in the monkeys were inversely correlated with testicular maturation markers. A strong DCN expression associated with the abundant connective tissue of the interstitial areas in the postnatal through prepubertal phases was observed. In adult and old monkeys the DCN pattern was similar to the one in normal human testes, presenting strong expression at the peritubular region. In the testes of both infertile men and in a mouse model of inflammation associated infertility (aromatase-overexpressing transgenic mice), the fibrotic changes and increased numbers of Tumor necrosis factor (TNF)-α-producing immune cells were shown to be associated with increased production of DCN. Furthermore, studies with human testicular peritubular cells isolated from fibrotic testis indicated that TNF-α significantly increased DCN production. The data, thus, show that an increased DCN level is associated with impaired testicular function, supporting our hypothesis that DCN interferes with paracrine signaling of the testis in health and disease. PMID:22413766
Isolation and expression analysis of FTZ-F1 encoding gene of black rock fish ( Sebastes schlegelii)
NASA Astrophysics Data System (ADS)
Shafi, Muhammad; Wang, Yanan; Zhou, Xiaosu; Ma, Liman; Muhammad, Faiz; Qi, Jie; Zhang, Quanqi
2013-03-01
Sex related FTZ-F1 is a transcriptional factor regulating the expression of fushi tarazu (a member of the orphan nuclear receptors) gene. In this study, FTZ-F1 gene ( FTZ-F1) was isolated from the testis of black rockfish ( Sebastes schlegeli) by homology cloning. The full-length cDNA of S. schlegeli FTZ-F1 ( ssFTZ-F1) contained a 232bp 5' UTR, a 1449bp ORF encoding FTZ-F1 (482 amino acid residules in length) with an estimated molecular weight of 5.4kD and a 105bp 3' UTR. Sequence, tissue distribution and phylogenic analysis showed that ssFTZ-F1 belonged to FTZ group, holding highly conserved regions including I, II and III FTZ-F1 boxes and an AF-2 hexamer. Relatively high expression was observed at different larva stages. In juveniles (105 days old), the transcript of ssFTZ-F1 can be detected in all tissues and the abuncance of the gene transcript in testis, ovary, spleen and brain was higher than that in other tissues. In mature fish, the abundance of gene transcript was higher in testis, ovary, spleen and brain than that in liver (trace amount), and the gene was not transcribed in other tissues. The highest abundance of gene transcript was always observed in gonads of both juvenile and mature fish. In addition, the abundance of gene transcript in male tissues were higher than that in female tissue counterparts ( P<0.05).
USDA-ARS?s Scientific Manuscript database
The second mammalian GnRH isoform (GnRH-II) and its cognate receptor (GnRHR-II) are poor modulators of gonadotropin secretion in swine. However, both are abundantly produced within the porcine testis suggesting an autocrine/paracrine role. Within the boar testis, GnRHR-II immunolocalizes to the plas...
Ultrasonographic Assessment of Testicular Viability Using Heterogeneity Levels in Torsed Testicles.
Samson, Patrick; Hartman, Christopher; Palmerola, Ricardo; Rahman, Zara; Siev, Michael; Palmer, Lane S; Ghorayeb, Sleiman R
2017-03-01
Gross testicular heterogeneity on ultrasound has been associated with testis loss following testicular torsion in children. We aimed to quantify the extent of temporal heterogeneity associated with testis loss in testicular torsion cases using a noninvasive technique to determine a HI (heterogeneity index) on ultrasound images. We retrospectively studied the records of patients who presented with acute scrotal pain to the Pediatric Emergency Department over a 6-year period. Ultrasound images of the affected testis and the unaffected contralateral testis were examined using a proprietary program to determine the extent of heterogeneity of each image. The difference between the HI of the torsed testis and that of the contralateral normal testis was termed ΔHI. Receiver operating characteristics curve analysis was performed to determine the ΔHI threshold for nonviability. Among 529 patients who presented with acute scrotal pain 147 had testicular torsion based on surgical findings. Of these 147 patients 110 (74.8%) were found to have a viable testis while 37 (25.2%) had a nonviable testis. Using the ΔHI cutoff of 0.394 or greater for nonviability, sensitivity and specificity were 100% and 94.5%, respectively. Positive and negative predictive values were 86% and 100%, respectively. Our results demonstrate that a quantifiable temporal gradation of heterogeneity exists and the heterogeneity index can be used as an objective parameter to determine the viability of a torsed testicle. By developing the technology to measure the heterogeneity index in real time, we could potentially identify which patients with testicular torsion have a nonviable testicle and, thus, would not require immediate surgical exploration. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
An old culprit but a new story: bisphenol A and “NextGen” bisphenols
Sartain, Caroline V.; Hunt, Patricia A.
2017-01-01
The concept that developmental events shape adult health and disease was sparked by the recognition of a link between maternal undernutrition and coronary disease in adults. From that beginning, a new field—the developmental origins of health and disease—emerged, and attention has focused on the effects of a wide array of developmental perturbations. Exposure to endocrine-disrupting chemicals has been of particular interest, and a ubiquitous environmental contaminant bisphenol A (BPA) has become the endocrine-disrupting chemical poster child. Bisphenol A has been the subject of intense investigation for nearly two decades, and exposure effects have been described in hundreds of experimental, epidemiological, and clinical studies. From the standpoint of reproductive health, the findings are particularly important, as they suggest that the ovary, testis, and reproductive tract in both sexes are targets of BPA action. The findings and the media and regulatory attention garnered by them have generated increasing public concern and resulted in legislative bans on BPA in some countries. The subsequent introduction of BPA-free products, although a masterful marketing strategy, is in reality only the beginning of a new and complex chapter of the BPA story. In this review we attempt to summarize what we have learned about the reproductive effects of BPA, present the reasons why studying the effects of this chemical in humans is no longer sufficient, and outline the challenges that the growing array of next generation bisphenols represents to clinicians, researchers, federal agencies, and the general public. PMID:27504789
[Perineal ectopic testis: report of four paediatric cases].
Jlidi, Said; Echaieb, Anis; Ghorbel, Sofiene; Khemakhem, Rachid; Ben Khalifa, Sonia; Chaouachi, Béji
2004-09-01
Perineal ectopic testis is a rare congenital malformation in which the testis is abnormally situated between the penoscrotal raphe and the genitofemoral fold. The authors report four new cases in children aged 2 months, 6 months, 2 years and 5 years. The abnormality was associated with an inguinal hernia in one case. The diagnosis was based on the presence of an empty scrotum or perineal swelling. Treatment, via an inguinal incision, consisted of orchidopexy in a dartos pouch with a favourable course in every case. The aetiopathogenesis of perineal ectopic testis is controversial. It can be easily diagnosed by palpation of the testis in the perineal region. Orchidopexy in a dartos pouch must be performed early, and does not raise any particular problems because of the sufficient length of the spermatic cord. The functional prognosis, always difficult to define, appears to be identical to that of other sites.
A case of adenocarcinoma of the rete testis accompanied by focal adenomatous hyperplasia
2013-01-01
Abstract Adenocarcinoma of the rete testis is very rare. There is still little knowledge about its etiology and pathogenesis. Herein, we present a case of rete testis adenocarcinoma in a 36-year-old Chinese male. The tumor was predominantly composed of irregular small tubules and papillary structures with cuboidal or polygonal cells. In peripheral area of the tumor, the remaining normal rete testis and adenomatous hyperplasia of the rete testis could also be seen, indicating the possible relationship between adenomatous hyperplasia and adenocarcinoma. In addition, the patient underwent a left hydrocelectomy because of the existence of hydrocele 3 years ago. But, it is unclear whether hydrocele and hydrocelectomy is its cause or just the early clinical presentation of the adenocarcinoma. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/6757609119625499 PMID:23800084
Developmental Regulation across the Life Span: Toward a New Synthesis
ERIC Educational Resources Information Center
Haase, Claudia M.; Heckhausen, Jutta; Wrosch, Carsten
2013-01-01
How can individuals regulate their own development to live happy, healthy, and productive lives? Major theories of developmental regulation across the life span have been proposed (e.g., dual-process model of assimilation and accommodation; motivational theory of life-span development; model of selection, optimization, and compensation), but they…
FOXO Regulates Organ-Specific Phenotypic Plasticity In Drosophila
Tang, Hui Yuan; Smith-Caldas, Martha S. B.; Driscoll, Michael V.; Salhadar, Samy; Shingleton, Alexander W.
2011-01-01
Phenotypic plasticity, the ability for a single genotype to generate different phenotypes in response to environmental conditions, is biologically ubiquitous, and yet almost nothing is known of the developmental mechanisms that regulate the extent of a plastic response. In particular, it is unclear why some traits or individuals are highly sensitive to an environmental variable while other traits or individuals are less so. Here we elucidate the developmental mechanisms that regulate the expression of a particularly important form of phenotypic plasticity: the effect of developmental nutrition on organ size. In all animals, developmental nutrition is signaled to growing organs via the insulin-signaling pathway. Drosophila organs differ in their size response to developmental nutrition and this reflects differences in organ-specific insulin-sensitivity. We show that this variation in insulin-sensitivity is regulated at the level of the forkhead transcription factor FOXO, a negative growth regulator that is activated when nutrition and insulin signaling are low. Individual organs appear to attenuate growth suppression in response to low nutrition through an organ-specific reduction in FOXO expression, thereby reducing their nutritional plasticity. We show that FOXO expression is necessary to maintain organ-specific differences in nutritional-plasticity and insulin-sensitivity, while organ-autonomous changes in FOXO expression are sufficient to autonomously alter an organ's nutritional-plasticity and insulin-sensitivity. These data identify a gene (FOXO) that modulates a plastic response through variation in its expression. FOXO is recognized as a key player in the response of size, immunity, and longevity to changes in developmental nutrition, stress, and oxygen levels. FOXO may therefore act as a more general regulator of plasticity. These data indicate that the extent of phenotypic plasticity may be modified by changes in the expression of genes involved in signaling environmental information to developmental processes. PMID:22102829
Germ cell control of testin production is inverse to that of other Sertoli cell products.
Jégou, B; Pineau, C; Velez de la Calle, J F; Touzalin, A M; Bardin, C W; Cheng, C Y
1993-06-01
Recent studies have shown that germ cells can regulate testins, two newly identified Sertoli cell proteins that are associated with junctional complexes. To investigate this possibility, several parameters of Sertoli cell function were investigated over 2-120 days post exposure of the rat testes to x-rays (3 Grays). The irradiation-induced loss of spermatogonia resulted in a maturation-depletion process progressively affecting all germ cell classes. Testis weight began to decrease when the most numerous germ cell type (spermatids) began to decline. A complete or near complete recovery of spermatogenesis and of the testis weight had occurred by day 120 post irradiation. There was no significant change in FSH, epididymal androgen-binding protein, and tubule fluid levels during the first weeks after irradiation, when the seminiferious epithelium was depleted of spermatogonia and germ cells up to early spermatids. In contrast, when the number of the more mature forms of spermatids declined (between day 21 and 54), FSH rose and androgen-binding protein as well as fluid production declined. The subsequent recovery of these parameters was also highly correlated with the number of late spermatids. By contrast, testicular testin contents reacted to the depletion of germ cells with a biphasic increase; a doubling occurred when spermatogonia, spermatocytes, and early spermatids were absent (days 4-28), and a 7-fold rise occurred by day 37 when the number of late spermatids had decreased by 50%. By day 54, when the sperm counts had reached a nadir, testin contents had returned to levels corresponding to about four times the control levels; they progressively recovered thereafter. These observations support the postulate that germ cells negatively regulate testins. This possibility was investigated with in vitro experiments showing that addition of germ cell-conditioned medium to Sertoli cell monolayers inhibited testin secretion in a dose-dependent manner. In conclusion this study; 1) highlights the complex interplay between the various germ cell classes in the control of the Sertoli cell function in the adult testis; 2) establishes that germ cell effects may be opposite on different Sertoli cell products; 3) demonstrates that several classes of germ cells negatively control testicular testin contents; and 4) emphasizes the particular role of late spermatids in Sertoli cell regulation.
2013-01-01
Background Whole body heat stress had detrimental effect on male reproductive function. It's known that the nuclear factor erythroid 2-related factor 2 (Nrf2) activates expression of cytoprotective genes to enable cell adaptation to protect against oxidative stress. However, it’s still unclear about the exactly effects of Nrf2 on the testis. Here, we investigate the protective effect of Nrf2 on whole body heat stress-induced oxidative damage in mouse testis. Methods Male mice were exposed to the elevated ambient temperature (42°C) daily for 2 h. During the period of twelve consecutive days, mice were sacrificed on days 1, 2, 4, 8 and 12 immediately following heat exposure. Testes weight, enzymatic antioxidant activities and concentrations of malondialdehyde (MDA) and glutathione (GSH) in the testes were determined and immunohistochemical detection of Nrf2 protein and mRNA expression of Nrf2-regulated genes were analyzed to assess the status of Nrf2-antioxidant system. Results Heat-exposed mice presented significant increases in rectal, scrotal surface and body surface temperature. The concentrations of cortisol and testosterone in serum fluctuated with the number of exposed days. There were significant decrease in testes weight and relative testes weight on day 12 compared with those on other days, but significant increases in catalase (CAT) activity on day 1 and GSH level on day 4 compared with control group. The activities of total superoxide dismutase (T-SOD) and copper-zinc SOD (CuZn-SOD) increased significantly on days 8 and 12. Moreover, prominent nuclear accumulation of Nrf2 protein was observed in Leydig cells on day 2, accompanying with up-regulated mRNA levels of Nrf2-regulated genes such as Nrf2, heme oxygenase 1 (HO-1), γ-Glutamylcysteine synthetase (GCLC) and NAD (P) H: quinone oxidoreductase 1 (NQO1)) in heat-treated groups. Conclusions These results suggest that Nrf2 displayed nuclear accumulation and protective activity in the process of heat treated-induced oxidative stress in mouse testes, indicating that Nrf2 might be a potential target for new drugs designed to protect germ cell and Leydig cell from oxidative stress. PMID:23514035
The current study examines the actions of methoxychlor and its estrogenic metabolite, 2, 2-bis-(p-hydroxyphenyl)-1, 1, 1-trichloroethane (HPTE), on seminiferous cord formation and growth of the developing rat testis. The developing testis in the embryonic and ...
Brinkmann, Ulrich; Vasmatzis, George; Lee, Byungkook; Yerushalmi, Noga; Essand, Magnus; Pastan, Ira
1998-01-01
We have used a combination of computerized database mining and experimental expression analyses to identify a gene that is preferentially expressed in normal male and female reproductive tissues, prostate, testis, fallopian tube, uterus, and placenta, as well as in prostate cancer, testicular cancer, and uterine cancer. This gene is located on the human X chromosome, and it is homologous to a family of genes encoding GAGE-like proteins. GAGE proteins are expressed in a variety of tumors and in testis. We designate the novel gene PAGE-1 because the expression pattern in the Cancer Genome Anatomy Project libraries indicates that it is predominantly expressed in normal and neoplastic prostate. Further database analysis indicates the presence of other genes with high homology to PAGE-1, which were found in cDNA libraries derived from testis, pooled libraries (with testis), and in a germ cell tumor library. The expression of PAGE-1 in normal and malignant prostate, testicular, and uterine tissues makes it a possible target for the diagnosis and possibly for the vaccine-based therapy of neoplasms of prostate, testis, and uterus. PMID:9724777
Brinkmann, U; Vasmatzis, G; Lee, B; Yerushalmi, N; Essand, M; Pastan, I
1998-09-01
We have used a combination of computerized database mining and experimental expression analyses to identify a gene that is preferentially expressed in normal male and female reproductive tissues, prostate, testis, fallopian tube, uterus, and placenta, as well as in prostate cancer, testicular cancer, and uterine cancer. This gene is located on the human X chromosome, and it is homologous to a family of genes encoding GAGE-like proteins. GAGE proteins are expressed in a variety of tumors and in testis. We designate the novel gene PAGE-1 because the expression pattern in the Cancer Genome Anatomy Project libraries indicates that it is predominantly expressed in normal and neoplastic prostate. Further database analysis indicates the presence of other genes with high homology to PAGE-1, which were found in cDNA libraries derived from testis, pooled libraries (with testis), and in a germ cell tumor library. The expression of PAGE-1 in normal and malignant prostate, testicular, and uterine tissues makes it a possible target for the diagnosis and possibly for the vaccine-based therapy of neoplasms of prostate, testis, and uterus.
Trace elemental analysis in cancer-afflicted tissues of penis and testis by PIXE technique
NASA Astrophysics Data System (ADS)
Naga Raju, G. J.; John Charles, M.; Bhuloka Reddy, S.; Sarita, P.; Seetharami Reddy, B.; Rama Lakshmi, P. V. B.; Vijayan, V.
2005-04-01
PIXE technique was employed to estimate the trace elemental concentrations in the biological samples of cancerous penis and testis. A 3 MeV proton beam was employed to excite the samples. From the present results it can be seen that the concentrations of Cl, Fe and Co are lower in the cancerous tissue of the penis when compared with those in normal tissue while the concentrations of Cu, Zn and As are relatively higher. The concentrations of K, Ca, Ti, Cr, Mn, Br, Sr and Pb are in agreement within standard deviations in both cancerous and normal tissues. In the cancerous tissue of testis, the concentrations of K, Cr and Cu are higher while the concentrations of Fe, Co and Zn are lower when compared to those in normal tissue of testis. The concentrations of Cl, Ca, Ti and Mn are in agreement in both cancerous and normal tissues of testis. The higher levels of Cu lead to the development of tumor. Our results also support the underlying hypothesis of an anticopper, antiangiogenic approach to cancer therapy. The Cu/Zn ratios of both penis and testis were higher in cancer tissues compared to that of normal.
Cystic dysplasia of the testis: a very rare paediatric tumor of the testis.
Eberli, Daniel; Gretener, Heini; Dommann-Scherrer, Corina; Pestalozzi, Dietegen; Fehr, Jean-Luc
2002-01-01
To describe a case of cystic dysplasia of the testis (CDT), an uncommon cause of scrotal swelling in the pediatric patient. Clinic, therapy, fertility, and radiographic and pathologic findings are discussed and the 30 previously reported cases are reviewed. A 9-year-old boy presented with asymptomatic scrotal swelling. A scrotal ultrasound showed a multicystic scrotal mass in the rete testis and an ipsilateral renal agenesis. The growth in size of the mass forced the authors to perform an operative exploration. Intraoperative findings included a multicystic mass in the rete testis of the right testicle. Testicle-sparing total removal of the multicystic mass was performed and the pathologic examination revealed a benign, multilobulated configuration of the cysts in the region of the rete testis. These findings were similar to those found in previously reported cases of CDT. Ipsilateral renal agenesis is the most common associated anomaly. As a pathogenetic factor, mal-junction of the Wolffian duct in the 5th week of gestation is most creditable. CDT is a rare cause of pediatric scrotal mass. When feasible, a testicle-sparing approach should be considered and all patients should undergo evaluation for associated urologic anomalies.
Ma, Qixiang; Shao, Haozhen; Feng, Yanyan; Zhang, Linpeng; Li, Pengshou; Hu, Xiaowei; Ma, Zhitao; Lou, Hua; Zeng, Xianwei; Luo, Guangbin
2018-05-24
Excessive oxidative stress (OS) leads to cellular dysfunctions and cell death and constitutes a major cause of male infertility. However, the etiologies of increased reactive oxygen species (ROS) in male infertility is not fully understood. One major limitation is the lack of an in vivo imaging system that can be used to effectively study the impact of excessive ROS in the testis. Recently, we discovered that the hepatocellular carcinoma reporter (HCR) mice previously generated in our laboratory also expressed luciferase in the spermatids of the testis. The goal of the current study is to use the HCR mice to detect OS in the testis and to investigate the potential use of this new system in studying OS-induced male infertility. Bioluminescence imaging (BLI) was performed in HCR mice that were treated with peroxy caged luciferin-1 (PCL-1), an OS reporter, to establish a new mouse model for in vivo monitoring of the OS status inside the male reproductive tract. Subsequently, the effect of acetaminophen (APAP) overdose on the OS inside the testis and male fertility were determined. Lastly, APAP was co-administered with glutathione, an antioxidant reagent, to test if the HCR mice can serve as a model for the effective and rapid assessment of the potency of individual agents in modifying the OS inside the mouse testis. The OS level in the testis in the HCR mice was readily detected by BLI. The use of this new model led to the discovery that APAP caused a sudden rise of OS in the testis and was a potent toxicant for the male reproductive system. Moreover, administration of glutathione was effective in preventing the APAP-induced elevation of OS and in ameliorating all of the OS-induced anomalies in the testis. The HCR mice represent an excellent model for monitoring OS change in the mouse testis by real time BLI. APAP is a potent male reproductive toxicant and APAP-treated mice represent a valid model for OS-induced male infertility. This model can be used to study OS-induced damage in male reproductive tract and in assessing the effects of therapeutic agents on the relative levels of OS and male fertility. Copyright © 2018 Elsevier Inc. All rights reserved.
Effect of vitamin E supplement in diet on antioxidant ability of testis in Boer goat.
Hong, Zhu; Hailing, Luo; Hui, Meng; Guijie, Zhang; Leyan, Yan; Dubing, Yue
2010-01-01
The aim of this study was to evaluate the supplementation of Vitamin E in diet on the antioxidant capacity of testis in Boer goat. Twenty-four healthy, Boer male kids of similar body weight (BW) were selected at 3 months of age from the kid flock. Kids were born from does treated with simultaneous flushing and artificial insemination technology. The Boer kids were divided into four groups randomly, supplemented with 0, 80, 320 and 880 IU kid(-1)d(-1) Vitamin E, which were labeled as Groups 1, 2, 3 and 4, respectively, for 150 days (5 months). Blood samples were collected at the 15th-, 30th-, 60th-, 90th-, 120th-, and 150th-day during the experimental period, and the serums were used to determine Vitamin E content. Three Boer goats in each group were slaughtered at the age of eight months at the end of the experiment. Liver and testis were collected to test the Vitamin E content and the antioxidant capacity of testis. Results showed that the content of Vitamin E in serum, liver and testis increased with the increasing addition of Vitamin E. However, the content of Vitamin E in the serum, liver and testis, in the control, was significantly lower than in Groups 2 and 3, respectively, but there was no significant difference between the control Group and Group 4. When high levels of Vitamin E (880 IU kid(-1)d(-1)) were added, contents of Vitamin E in serum, liver and testis were decreased and compared with the controls. Adding a low level (80 IU kid(-1)d(-1)) of Vitamin E can increase activity of total anti-oxidation competence (T-AOC) and superoxide dismutase (SOD), and decrease content of nitric oxide (NO) in testis. MDA (malondialdehyde) content was decreased significantly in Group 3 (P<0.05). Supplementing a low level (80 IU kid(-1)d(-1)) and middle level (320 IU kid(-1)d(-1)) of Vitamin E decreased activity of nitric oxide syntha (NOS) in testis (P<0.05). Vitamin E can increase activity of GSH-PX (glutathione peroxidase). These results indicate that supplementing Vitamin E protects testis from damage by preoxidation.
The Development of Self-Regulation across Early Childhood
Montroy, Janelle J.; Bowles, Ryan P.; Skibbe, Lori E.; McClelland, Megan M.; Morrison, Frederick J.
2016-01-01
The development of early childhood self-regulation is often considered an early life marker for later life successes. Yet little longitudinal research has evaluated whether there are different trajectories of self-regulation development across children. This study investigates the development of behavioral self-regulation between the ages of three and seven, with a direct focus on possible heterogeneity in the developmental trajectories, and a set of potential indicators that distinguish unique behavioral self-regulation trajectories. Across three diverse samples, 1,386 children were assessed on behavioral self-regulation from preschool through first grade. Results indicated that majority of children develop self-regulation rapidly during early childhood, and that children follow three distinct developmental patterns of growth. These three trajectories were distinguishable based on timing of rapid gains, as well as child gender, early language skills, and maternal education levels. Findings highlight early developmental differences in how self-regulation unfolds with implications for offering individualized support across children. PMID:27709999
MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain
Somel, Mehmet; Guo, Song; Fu, Ning; Yan, Zheng; Hu, Hai Yang; Xu, Ying; Yuan, Yuan; Ning, Zhibin; Hu, Yuhui; Menzel, Corinna; Hu, Hao; Lachmann, Michael; Zeng, Rong; Chen, Wei; Khaitovich, Philipp
2010-01-01
Changes in gene expression levels determine differentiation of tissues involved in development and are associated with functional decline in aging. Although development is tightly regulated, the transition between development and aging, as well as regulation of post-developmental changes, are not well understood. Here, we measured messenger RNA (mRNA), microRNA (miRNA), and protein expression in the prefrontal cortex of humans and rhesus macaques over the species' life spans. We find that few gene expression changes are unique to aging. Instead, the vast majority of miRNA and gene expression changes that occur in aging represent reversals or extensions of developmental patterns. Surprisingly, many gene expression changes previously attributed to aging, such as down-regulation of neural genes, initiate in early childhood. Our results indicate that miRNA and transcription factors regulate not only developmental but also post-developmental expression changes, with a number of regulatory processes continuing throughout the entire life span. Differential evolutionary conservation of the corresponding genomic regions implies that these regulatory processes, although beneficial in development, might be detrimental in aging. These results suggest a direct link between developmental regulation and expression changes taking place in aging. PMID:20647238
Uljarević, Mirko; Hedley, Darren; Nevill, Rose; Evans, David W; Cai, Ru Ying; Butter, Eric; Mulick, James A
2018-04-06
The present study examined the link between poor self-regulation (measured by the child behavior checklist dysregulated profile [DP]) and core autism symptoms, as well as with developmental level, in a sample of 107 children with autism spectrum disorder (ASD) aged 19-46 months. We further examined the utility of DP in predicting individual differences in adaptive functioning, relative to the influence of ASD severity, chronological age (CA), and developmental level. Poor self-regulation was unrelated to CA, developmental level, and severity of ADOS-2 restricted and repetitive behaviors, but was associated with lower ADOS-2 social affect severity. Hierarchical regression identified poor self-regulation as a unique independent predictor of adaptive behavior, with more severe dysregulation predicting poorer adaptive functioning. Results highlight the importance of early identification of deficits in self-regulation, and more specifically, of the utility of DP, when designing individually tailored treatments for young children with ASD. Autism Res 2018. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. This study explored the relationship between poor self-regulation and age, verbal and non-verbal developmental level, severity of autism symptoms and adaptive functioning in 107 children with autism under 4 years of age. Poor self-regulation was unrelated to age, developmental level, and severity of restricted and repetitive behaviors but was associated with lower social affect severity. Importantly, more severe self-regulation deficits predicted poorer adaptive functioning. © 2018 International Society for Autism Research, Wiley Periodicals, Inc.
Chronic pain has a negative impact on sexuality in testis cancer survivors.
Pühse, Gerald; Wachsmuth, Julia Urte; Kemper, Sebastian; Husstedt, Ingo W; Evers, Stefan; Kliesch, Sabine
2012-01-01
Testis cancer is a disease that directly affects a man's sense of masculinity and involves treatments compromising sexual function. The aim of this study was to investigate the prevalence of sexual dysfunction and the influence of chronic pain on sexuality in long-term testis cancer survivors. Thus, we examined 539 patients after they had one testis removed because of a testicular germ cell tumor. Having completed oncologic therapy, all patients received a detailed questionnaire asking about the occurrence and clinical presentation of testis pain before and after orchiectomy. In addition, items from the abridged International Index of Erectile Function and Brief Sexual Function Inventory were used to gain precise information on individual sexual function. Overall, 34.5% of our testicular cancer survivors complained of reduced sexual desire, and sexual activity was reduced in 41.6%. Erectile dysfunction was present in up to 31.5% of patients. In 24.4%, the ability to maintain an erection during intercourse was impaired. Ejaculatory disorders (premature, delayed, retrograde, or anejaculation) occurred in 84.9% of our testis cancer survivors. A total of 32.4% of our participants experienced a reduced intensity of orgasm, and 95.4% experienced reduced overall sexual satisfaction. There was a significant correlation between the occurrence of chronic pain symptoms and the relative frequency and intensity of erectile dysfunction, inability to maintain an erection, ejaculation disorders, and reduced intensity of orgasm. In conclusion, chronic pain has a negative impact on sexuality in testis cancer survivors.
Gilmore, Sarah A.; Voorhies, Mark; Gebhart, Dana; Sil, Anita
2015-01-01
Eukaryotic cells integrate layers of gene regulation to coordinate complex cellular processes; however, mechanisms of post-transcriptional gene regulation remain poorly studied. The human fungal pathogen Histoplasma capsulatum (Hc) responds to environmental or host temperature by initiating unique transcriptional programs to specify multicellular (hyphae) or unicellular (yeast) developmental states that function in infectivity or pathogenesis, respectively. Here we used recent advances in next-generation sequencing to uncover a novel re-programming of transcript length between Hc developmental cell types. We found that ~2% percent of Hc transcripts exhibit 5’ leader sequences that differ markedly in length between morphogenetic states. Ribosome density and mRNA abundance measurements of differential leader transcripts revealed nuanced transcriptional and translational regulation. One such class of regulated longer leader transcripts exhibited tight transcriptional and translational repression. Further examination of these dually repressed genes revealed that some control Hc morphology and that their strict regulation is necessary for the pathogen to make appropriate developmental decisions in response to temperature. PMID:26177267
Gilmore, Sarah A; Voorhies, Mark; Gebhart, Dana; Sil, Anita
2015-07-01
Eukaryotic cells integrate layers of gene regulation to coordinate complex cellular processes; however, mechanisms of post-transcriptional gene regulation remain poorly studied. The human fungal pathogen Histoplasma capsulatum (Hc) responds to environmental or host temperature by initiating unique transcriptional programs to specify multicellular (hyphae) or unicellular (yeast) developmental states that function in infectivity or pathogenesis, respectively. Here we used recent advances in next-generation sequencing to uncover a novel re-programming of transcript length between Hc developmental cell types. We found that ~2% percent of Hc transcripts exhibit 5' leader sequences that differ markedly in length between morphogenetic states. Ribosome density and mRNA abundance measurements of differential leader transcripts revealed nuanced transcriptional and translational regulation. One such class of regulated longer leader transcripts exhibited tight transcriptional and translational repression. Further examination of these dually repressed genes revealed that some control Hc morphology and that their strict regulation is necessary for the pathogen to make appropriate developmental decisions in response to temperature.
Chen, Sijie; Zhang, Hefei; Wang, Fenghua; Zhang, Wei; Peng, Gang
2016-09-15
Sex determinations are diverse in vertebrates. Although many sex-determining genes and pathways are conserved, the mechanistic roles of these genes and pathways in the genetic sex determination are not well understood. DAX1 (encoded by the NR0B1 gene) is a vertebrate specific orphan nuclear receptor that regulates gonadal development and sexual determination. In human, duplication of the NR0B1 gene leads to male-to-female sex reversal. In mice, Nr0b1 shows both pro-testis and anti-testis functions. We generated inheritable nr0b1 mutation in the zebrafish and found the nr0b1 mutation caused homozygous mutants to develop as fertile males due to female-to-male sex reversal. The nr0b1 mutation did not increase Caspase-3 labeling nor tp53 expression in the developing gonads. Introduction of a tp53 mutation into the nr0b1 mutant did not rescue the sex-reversal phenotype. Further examination revealed reduction in cell proliferation and abnormal somatic cell differentiation in the nr0b1 mutant gonads at the undifferentiated and bi-potential ovary stages. Together, our results suggest nr0b1 regulates somatic cell differentiation and cell proliferation to ensure normal sex development in the zebrafish. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Murugananthkumar, R; Akhila, M V; Rajakumar, A; Mamta, S K; Sudhakumari, C C; Senthilkumaran, B
2016-12-01
Testicular receptor 2 (TR2; also known as Nr2c1) is one of the first orphan nuclear receptors identified and known to regulate various physiological process with or without any ligand. In this study, we report the cloning of full length nr2c1 and its expression analysis during gonadal development, seasonal testicular cycle and after human chorionic gonadotropin (hCG) induction. In addition, in situ hybridization (ISH) was performed to localize nr2c1 transcripts in adult testis and whole catfish (1day post hatch). Tissue distribution and gonadal ontogeny studies revealed high expression of nr2c1 in developing and adult testis. Early embryonic stage-wise expression of nr2c1 seems to emphasize its importance in cellular differentiation and development. Substantial expression of nr2c1 during pre-spawning phase and localization of nr2c1 transcripts in sperm/spermatids were observed. Significant upregulation after hCG induction indicate that nr2c1 is under the regulation of gonadotropins. Whole mount ISH analysis displayed nr2c1 expression in notochord indicating its role in normal vertebrate development. Taken together, our findings suggest that nr2c1 may have a plausible role in the testicular and embryonic development of catfish. Copyright © 2015. Published by Elsevier Inc.
Feng, Lijuan; Shi, Zhen; Chen, Xin
2017-01-01
Stem cells reside in a particular microenvironment known as a niche. The interaction between extrinsic cues originating from the niche and intrinsic factors in stem cells determines their identity and activity. Maintenance of stem cell identity and stem cell self-renewal are known to be controlled by chromatin factors. Herein, we use the Drosophila adult testis which has two adult stem cell lineages, the germline stem cell (GSC) lineage and the cyst stem cell (CySC) lineage, to study how chromatin factors regulate stem cell differentiation. We find that the chromatin factor Enhancer of Polycomb [E(Pc)] acts in the CySC lineage to negatively control transcription of genes associated with multiple signaling pathways, including JAK-STAT and EGF, to promote cellular differentiation in the CySC lineage. E(Pc) also has a non-cell-autonomous role in regulating GSC lineage differentiation. When E(Pc) is specifically inactivated in the CySC lineage, defects occur in both germ cell differentiation and maintenance of germline identity. Furthermore, compromising Tip60 histone acetyltransferase activity in the CySC lineage recapitulates loss-of-function phenotypes of E(Pc), suggesting that Tip60 and E(Pc) act together, consistent with published biochemical data. In summary, our results demonstrate that E(Pc) plays a central role in coordinating differentiation between the two adult stem cell lineages in Drosophila testes. PMID:28196077
ERIC Educational Resources Information Center
Edossa, Ashenafi Kassahun; Schroeders, Ulrich; Weinert, Sabine; Artelt, Cordula
2018-01-01
Self-regulation is an essential ability of children to cope with various developmental challenges. This study examines the developmental interplay between emotional and behavioral self-regulation during childhood and the relationship with academic achievement using data from the longitudinal Millennium Cohort Study (UK). Using cross-lagged panel…
ERIC Educational Resources Information Center
Thomas, Jenna C.; Letourneau, Nicole; Campbell, Tavis S.; Tomfohr-Madsen, Lianne; Giesbrecht, Gerald F.
2017-01-01
Emotion regulation is essential to cognitive, social, and emotional development and difficulties with emotion regulation portend future socioemotional, academic, and behavioral difficulties. There is growing awareness that many developmental outcomes previously thought to begin their development in the postnatal period have their origins in the…
Faunes, Fernando; Larraín, Juan
2016-08-01
Developmental transitions include molting in some invertebrates and the metamorphosis of insects and amphibians. While the study of Caenorhabditis elegans larval transitions was crucial to determine the genetic control of these transitions, Drosophila melanogaster and Xenopus laevis have been classic models to study the role of hormones in metamorphosis. Here we review how heterochronic genes (lin-4, let-7, lin-28, lin-41), hormones (dafachronic acid, ecdysone, thyroid hormone) and the environment regulate developmental transitions. Recent evidence suggests that some heterochronic genes also regulate transitions in higher organisms that they are controlled by hormones involved in metamorphosis. We also discuss evidence demonstrating that heterochronic genes and hormones regulate the proliferation and differentiation of embryonic and neural stem cells. We propose the hypothesis that developmental transitions are regulated by an evolutionary conserved mechanism in which heterochronic genes and hormones interact to control stem/progenitor cells proliferation, cell cycle exit, quiescence and differentiation and determine the proper timing of developmental transitions. Finally, we discuss the relevance of these studies to understand post-embryonic development, puberty and regeneration in humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Blueberry extracts protect testis from hypobaric hypoxia induced oxidative stress in rats.
Zepeda, Andrea; Aguayo, Luis G; Fuentealba, Jorge; Figueroa, Carolina; Acevedo, Alejandro; Salgado, Perla; Calaf, Gloria M; Farías, Jorge
2012-01-01
Exposure to hypobaric hypoxia causes oxidative damage to male rat reproductive function. The aim of this study was to evaluate the protective effect of a blueberry extract (BB-4) in testis of rats exposed to hypobaric hypoxia. Morphometric analysis, cellular DNA fragmentation, glutathione reductase (GR), and superoxide dismutase (SOD) activities were evaluated. Our results showed that supplementation of BB-4 reduced lipid peroxidation, decreased apoptosis, and increased GR and SOD activities in rat testis under hypobaric hypoxia conditions (P < 0.05). Therefore, this study demonstrates that blueberry extract significantly reduced the harmful effects of oxidative stress caused by hypobaric hypoxia in rat testis by affecting glutathione reductase and superoxide dismutase activities.
Transgenerational Epigenetic Programming of the Embryonic Testis Transcriptome
Anway, Matthew D.; Rekow, Stephen S.; Skinner, Michael K.
2008-01-01
Embryonic exposure to the endocrine disruptor vinclozolin during gonadal sex determination appears to promote an epigenetic reprogramming of the male germ-line that is associated with transgenerational adult onset disease states. Transgenerational effects on the embryonic day 16 (E16) testis demonstrated reproducible changes in the testis transcriptome for multiple generations (F1-F3). The expression of 196 genes were found to be influenced, with the majority of gene expression being decreased or silenced. Dramatic changes in the gene expression of methyltransferases during gonadal sex determination were observed in the F1 and F2 vinclozolin generation (E16) embryonic testis, but the majority returned to control generation levels by the F3 generation. The most dramatic effects were on the germ-line associated Dnmt3A and Dnmt3L isoforms. Observations demonstrate that an embryonic exposure to vinclozolin appears to promote an epigenetic reprogramming of the male germ-line that correlates with transgenerational alterations in the testis transcriptome in subsequent generations. PMID:18042343
ERIC Educational Resources Information Center
Otts, Cynthia D.
2010-01-01
The purpose of the study was to investigate the relationship among math attitudes, self-regulated learning, and course outcomes in developmental math. Math attitudes involved perceived usefulness of math and math anxiety. Self-regulated learning represented the ability of students to control cognitive, metacognitive, and behavioral aspects of…
ERIC Educational Resources Information Center
de Oliveira, Rita F.; Wann, John P.
2011-01-01
In two experiments, we used an automatic car simulator to examine the steering control, speed regulation and response to hazards of young adults with developmental coordination disorder (DCD) and limited driving experience. In Experiment 1 participants either used the accelerator pedal to regulate their speed, or used the brake pedal when they…
Does testis weight decline towards the Subarctic? A case study on the common frog, Rana temporaria
NASA Astrophysics Data System (ADS)
Hettyey, Attila; Laurila, Anssi; Herczeg, Gábor; Jönsson, K. Ingemar; Kovács, Tibor; Merilä, Juha
2005-04-01
Interpopulation comparisons of variation in resource availability and in allocation patterns along altitudinal and latitudinal gradients allow insights into the mechanisms shaping the life history of animals. Patterns of between-population differences in female life history traits have been studied intensively across a wide range of taxa, but similar investigations in males have remained scarce. To study if testis weight—a measure of reproductive investment—varies on a geographical scale in anurans, we focussed on the variation in relative testis weight (RelTW) and asymmetry in 22 populations of the common frog Rana temporaria along a 1,600-km latitudinal transect across the Scandinavian peninsula. We found that RelTW decreased towards the north. Body mass and body length both had independent positive effects on testes mass. We found evidence for directional asymmetry (DA) in testis weight with the right testis being larger than the left. The level of DA in testis weight was not related to latitude, but both body mass and testes mass had independent positive effects on asymmetry. We discuss the northwards decrease in RelTW in terms of a decreased reproductive investment as a possible consequence of harsher environmental conditions, and perhaps also, weaker sexual selection in the north than in the south.
Noorafshan, Ali; Karbalay-Doust, Saied; Ardekani, Fakhrodin Mesbah
2005-02-01
Anabolic-androgenic steroid (AAS) compounds rank among the drugs most widely abused with the goal of improving athletic ability, appearance, or muscle mass. It has been shown that these compounds have adverse effects on human and animal physiology and sperm quality, but quantitative structural changes of the testis have received less attention. The present study was conducted to evaluate the effects of nandrolone decanoate, which is one of the AAS compounds, on testis weight and volume, diameter and length of seminiferous tubules in rats by unbiased stereological methods. Adult rats were divided into three groups. The first comprised control rats; the second and third groups received low and high doses of nandrolone decanoate for 14 weeks. The rats were then left untreated for 14 weeks. After removal of the testis, stereological study of these tissues showed that the mean volume of testis and length of the seminiferous tubules in the animals that received high doses of nandrolone decanoate were reduced approximately 32% (p<0.01) and approximately 31% (p<0.04), respectively, in comparison with the control group. It can be concluded that the high doses of nandrolone decanoate produce structural changes in the rat testis that remain 14 weeks after stopping injection of the drug.
Mavrogenis, Stelios; Urbán, Robert; Czeizel, Andrew E
2015-07-01
Undescended testis (cryptorchidism) is a common congenital abnormality of male genital organs diagnosed at birth followed with frequent postnatal descensus. However, the so-called isolated true undescended testis (ITUT) diagnosed at the third postnatal month seems to be an independent defect-entity, and this hypothesis was planned to confirm or reject in the study. The evaluation of birth outcomes and maternal socio-demographic data of cases with ITUT in the population-based large dataset of the Hungarian Congenital Abnormality Registry. There was a higher rate of preterm birth and particularly of low birthweight in 2052 cases with ITUT compared to 24,814 population male controls without any defects. The rate of twins was not higher in cases with older mothers, higher birth order and lower socio-economic status. The comparison of data of boys with undescended testis diagnosed at birth found in the previous study and with ITUT in this study confirmed our hypothesis. Undescended testis can be differentiated into two subgroups: boys with frequent postnatal descensus mainly after preterm delivery and boys with ITUT without postnatal testis descensus with frequent intrauterine growth restriction, older mothers with higher birth order and low socio-economic status.
Esteves, Sandro C; Roque, Matheus; Garrido, Nicolás
2018-01-01
Spermatozoa retrieved from the testis of men with high levels of sperm DNA fragmentation (SDF) in the neat semen tend to have better DNA quality. Given the negative impact of SDF on the outcomes of Assisted Reproductive Technology (ART), an increased interest has emerged about the use of testicular sperm for intracytoplasmic sperm injection (Testi-ICSI). In this article, we used a SWOT (strengths, weaknesses, opportunities, and threats) analysis to summarize the advantages and drawbacks of this intervention. The rationale of Testi-ICSI is bypass posttesticular DNA fragmentation caused by oxidative stress during sperm transit through the epididymis. Hence, oocyte fertilization by genomically intact testicular spermatozoa may be optimized, thus increasing the chances of creating a normal embryonic genome and the likelihood of achieving a live birth, as recently demonstrated in men with high SDF. However, there is still limited evidence as regards the clinical efficacy of Testi-ICSI, thus creating opportunities for further confirmatory clinical research as well as investigation of Testi-ICSI in clinical scenarios other than high SDF. Furthermore, Testi-ICSI can be compared to other laboratory preparation methods for deselecting sperm with damaged DNA. At present, the available literature supports the use of testicular sperm when performing ICSI in infertile couples whose male partners have posttesticular SDF. Due to inherent risks of sperm retrieval, Testi-ICSI should be offered when less invasive treatments for alleviating DNA damage have failed. A call for continuous monitoring is nonetheless required concerning the health of generated offspring and the potential complications of sperm retrieval. PMID:28440264
Esteves, Sandro C; Roque, Matheus; Garrido, Nicolás
2018-01-01
Spermatozoa retrieved from the testis of men with high levels of sperm DNA fragmentation (SDF) in the neat semen tend to have better DNA quality. Given the negative impact of SDF on the outcomes of Assisted Reproductive Technology (ART), an increased interest has emerged about the use of testicular sperm for intracytoplasmic sperm injection (Testi-ICSI). In this article, we used a SWOT (strengths, weaknesses, opportunities, and threats) analysis to summarize the advantages and drawbacks of this intervention. The rationale of Testi-ICSI is bypass posttesticular DNA fragmentation caused by oxidative stress during sperm transit through the epididymis. Hence, oocyte fertilization by genomically intact testicular spermatozoa may be optimized, thus increasing the chances of creating a normal embryonic genome and the likelihood of achieving a live birth, as recently demonstrated in men with high SDF. However, there is still limited evidence as regards the clinical efficacy of Testi-ICSI, thus creating opportunities for further confirmatory clinical research as well as investigation of Testi-ICSI in clinical scenarios other than high SDF. Furthermore, Testi-ICSI can be compared to other laboratory preparation methods for deselecting sperm with damaged DNA. At present, the available literature supports the use of testicular sperm when performing ICSI in infertile couples whose male partners have posttesticular SDF. Due to inherent risks of sperm retrieval, Testi-ICSI should be offered when less invasive treatments for alleviating DNA damage have failed. A call for continuous monitoring is nonetheless required concerning the health of generated offspring and the potential complications of sperm retrieval.
Replacement of serum with ocular fluid for cryopreservation of immature testes.
Pothana, Lavanya; Devi, Lalitha; Venna, Naresh Kumar; Pentakota, Niharika; Varma, Vivek Phani; Jose, Jedy; Goel, Sandeep
2016-12-01
Cryopreservation of immature testis is a feasible approach for germplasm preservation of male animals. Combinations of dimethyl sulfoxide (DMSO) and foetal bovine serum (FBS) are used for testis cryopreservation. However, an alternative to FBS is needed, because FBS is expensive. Buffalo ocular fluid (BuOF), a slaughter house by-product, could be an economical option. The objective of the present study was to assess whether BuOF can replace FBS for cryopreservation of immature mouse (Mus musculus), rat (Rattus norvegicus), and buffalo (Bubalus bubalis) testes. Results showed that rodent and buffalo testes frozen in DMSO (10% for rodents and 20% for buffalo) with 20% FBS or BuOF had similar numbers of viable and DNA-damaged cells (P > 0.05). The expression of cell proliferation- (PCNA) and apoptosis-specific proteins (Annexin V and BAX/BCL2 ratio) were also comparable in mouse and buffalo testes frozen in DMSO with FBS or BuOF (P > 0.05). Interestingly, rat testis frozen in DMSO with BuOF had lower expression of Annexin V protein than testis frozen in DMSO with FBS (P < 0.05). The percentage of meiotic germ cells (pachytene-stage spermatocytes) in xenografts from testis frozen either in DMSO with BuOF or FBS did not significantly differ in rats or buffalo (P > 0.05). These findings provide evidence that BuOF has potential to replace FBS for cryopreservation of immature rodent and buffalo testis. Further investigation is needed to explore whether BuOF can replace FBS for testis cryopreservation of other species. Copyright © 2016 Elsevier Inc. All rights reserved.
Identification of human candidate genes for male infertility by digital differential display.
Olesen, C; Hansen, C; Bendsen, E; Byskov, A G; Schwinger, E; Lopez-Pajares, I; Jensen, P K; Kristoffersson, U; Schubert, R; Van Assche, E; Wahlstroem, J; Lespinasse, J; Tommerup, N
2001-01-01
Evidence for the importance of genetic factors in male fertility is accumulating. In the literature and the Mendelian Cytogenetics Network database, 265 cases of infertile males with balanced reciprocal translocations have been described. The candidacy for infertility of 14 testis-expressed transcripts (TETs) were examined by comparing their chromosomal mapping position to the position of balanced reciprocal translocation breakpoints found in the 265 infertile males. The 14 TETs were selected by using digital differential display (electronic subtraction) to search for apparently testis-specific transcripts in the TIGR database. The testis specificity of the 14 TETs was further examined by reverse transcription-polymerase chain reaction (RT-PCR) on adult and fetal tissues showing that four TETs (TET1 to TET4) were testis-expressed only, six TETs (TET5 to TET10) appeared to be differentially expressed and the remaining four TETs (TET11 to TET14) were ubiquitously expressed. Interestingly, the two tesis expressed-only transcripts, TET1 and TET2, mapped to chromosomal regions where seven and six translocation breakpoints have been reported in infertile males respectively. Furthermore, one ubiquitously, but predominantly testis-expressed, transcript, TET11, mapped to 1p32-33, where 13 translocation breakpoints have been found in infertile males. Interestingly, the mouse mutation, skeletal fusions with sterility, sks, maps to the syntenic region in the mouse genome. Another transcript, TET7, was the human homologue of rat Tpx-1, which functions in the specific interaction of spermatogenic cells with Sertoli cells. TPX-1 maps to 6p21 where three cases of chromosomal breakpoints in infertile males have been reported. Finally, TET8 was a novel transcript which in the fetal stage is testis-specific, but in the adult is expressed in multiple tissues, including testis. We named this novel transcript fetal and adult testis-expressed transcript (FATE).
Dadras, Soheil S.; Cai, Xiaoyan; Abasolo, Ibane; Wang, Zhou
2001-01-01
The growth and development of some of the male sex accessory organs such as the prostate requires the conversion of testosterone to dihydrotestosterone (DHT) by 5α-reductase. To provide insights into the role of testosterone versus DHT in the prostate, we studied the impact of finasteride, a potent and specific inhibitor of 5α-reductase, on the expression of prostatic androgen-response genes in testis-intact rats and in 7-day castrated rats. Finasteride inhibition of the conversion of testosterone to DHT was confirmed by measuring serum and intraprostatic androgens. As expected, finasteride treatment caused a reduction in the wet weight of the prostate in the testis-intact rats and inhibited the testosterone-stimulated prostatic regrowth in the 7-day castrated rats. Although finasteride treatment had little or no effect on the expression of the surveyed androgen-response genes in testis-intact rats, its administration enhanced the expression of many androgen-response genes during the testosterone-stimulated regrowth of the regressed prostate in castrated rats. These observations suggest that testosterone is more potent than DHT in stimulating the expression of many androgen-response genes in the regressed prostate. The expression of androgen-response genes is mainly prostate specific and thus is likely to be associated with androgen-dependent prostatic differentiation. Therefore, testosterone is more potent than DHT in inducing differentiation and weaker in stimulating proliferation during prostate regrowth. The fact that testosterone is a strong inducer of prostatic differentiation has potential clinical implications. PMID:11444528
Zhu, Shaoyu; Eclarinal, Jesse; Baker, Maria S; Li, Ge; Waterland, Robert A
2016-02-01
Extensive human and animal model data show that environmental influences during critical periods of prenatal and early postnatal development can cause persistent alterations in energy balance regulation. Although a potentially important factor in the worldwide obesity epidemic, the fundamental mechanisms underlying such developmental programming of energy balance are poorly understood, limiting our ability to intervene. Most studies of developmental programming of energy balance have focused on persistent alterations in the regulation of energy intake; energy expenditure has been relatively underemphasised. In particular, very few studies have evaluated developmental programming of physical activity. The aim of this review is to summarise recent evidence that early environment may have a profound impact on establishment of individual propensity for physical activity. Recently, we characterised two different mouse models of developmental programming of obesity; one models fetal growth restriction followed by catch-up growth, and the other models early postnatal overnutrition. In both studies, we observed alterations in body-weight regulation that persisted to adulthood, but no group differences in food intake. Rather, in both cases, programming of energy balance appeared to be due to persistent alterations in energy expenditure and spontaneous physical activity (SPA). These effects were stronger in female offspring. We are currently exploring the hypothesis that developmental programming of SPA occurs via induced sex-specific alterations in epigenetic regulation in the hypothalamus and other regions of the central nervous system. We will summarise the current progress towards testing this hypothesis. Early environmental influences on establishment of physical activity are likely an important factor in developmental programming of energy balance. Understanding the fundamental underlying mechanisms in appropriate animal models will help determine whether early life interventions may be a practical approach to promote physical activity in man.
The development of self-regulation across early childhood.
Montroy, Janelle J; Bowles, Ryan P; Skibbe, Lori E; McClelland, Megan M; Morrison, Frederick J
2016-11-01
The development of early childhood self-regulation is often considered an early life marker for later life successes. Yet little longitudinal research has evaluated whether there are different trajectories of self-regulation development across children. This study investigates the development of behavioral self-regulation between the ages of 3 and 7 years, with a direct focus on possible heterogeneity in the developmental trajectories, and a set of potential indicators that distinguish unique behavioral self-regulation trajectories. Across 3 diverse samples, 1,386 children were assessed on behavioral self-regulation from preschool through first grade. Results indicated that majority of children develop self-regulation rapidly during early childhood, and that children follow 3 distinct developmental patterns of growth. These 3 trajectories were distinguishable based on timing of rapid gains, as well as child gender, early language skills, and maternal education levels. Findings highlight early developmental differences in how self-regulation unfolds, with implications for offering individualized support across children. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Chen, Haiqi; Li, Michelle W.M.
2018-01-01
Drebrin is a family of actin-binding proteins with two known members called drebrin A and E. Apart from the ability to stabilize F-actin microfilaments via their actin-binding domains near the N-terminus, drebrin also regulates multiple cellular functions due to its unique ability to recruit multiple binding partners to a specific cellular domain, such as the seminiferous epithelium during the epithelial cycle of spermatogenesis. Recent studies have illustrated the role of drebrin E in the testis during spermatogenesis in particular via its ability to recruit branched actin polymerization protein known as actin-related protein 3 (Arp3), illustrating its involvement in modifying the organization of actin microfilaments at the ectoplasmic specialization (ES) which includes the testis-specific anchoring junction at the Sertoli-spermatid (apical ES) interface and at the Sertoli cell-cell (basal ES) interface. These data are carefully evaluated in light of other recent findings herein regarding the role of drebrin in actin filament organization at the ES. We also provide the hypothetical model regarding its involvement in germ cell transport during the epithelial cycle in the seminiferous epithelium to support spermatogenesis. PMID:28865027
Cytokines in Male Fertility and Reproductive Pathologies: Immunoregulation and Beyond
Loveland, Kate L.; Klein, Britta; Pueschl, Dana; Indumathy, Sivanjah; Bergmann, Martin; Loveland, Bruce E.; Hedger, Mark P.; Schuppe, Hans-Christian
2017-01-01
Germline development in vivo is dependent on the environment formed by somatic cells and the differentiation cues they provide; hence, the impact of local factors is highly relevant to the production of sperm. Knowledge of how somatic and germline cells interact is central to achieving biomedical goals relating to restoring, preserving or restricting fertility in humans. This review discusses the growing understanding of how cytokines contribute to testicular function and maintenance of male reproductive health, and to the pathologies associated with their abnormal activity in this organ. Here we consider both cytokines that signal through JAKs and are regulated by SOCS, and those utilizing other pathways, such as the MAP kinases and SMADs. The importance of cytokines in the establishment and maintenance of the testis as an immune-privilege site are described. Current research relating to the involvement of immune cells in testis development and disease is highlighted. This includes new data relating to testicular cancer which reinforce the understanding that tumorigenic cells shape their microenvironment through cytokine actions. Clinical implications in pathologies relating to local inflammation and to immunotherapies are discussed. PMID:29250030
Fusion Imaging: A Novel Staging Modality in Testis Cancer
2010-01-01
the anatomic precision of computed tomography. To the best of our knowledge, this represents the first study of the effectiveness using fusion...imaging in evaluation of patients with testis cancer. Methods: A prospective study of 49 patients presenting to Walter Reed Army Medical Center with...incidence of testis cancer has been increasing at an annual rate of 3%, leading to a doubling in cases world-wide over the last 40 years. With the advent
The molecular and cellular basis of gonadal sex reversal in mice and humans
Warr, Nick; Greenfield, Andy
2012-01-01
The mammalian gonad is adapted for the production of germ cells and is an endocrine gland that controls sexual maturation and fertility. Gonadal sex reversal, namely, the development of ovaries in an XY individual or testes in an XX, has fascinated biologists for decades. The phenomenon suggests the existence of genetic suppressors of the male and female developmental pathways and molecular genetic studies, particularly in the mouse, have revealed controlled antagonism at the core of mammalian sex determination. Both testis and ovary determination represent design solutions to a number of problems: how to generate cells with the right properties to populate the organ primordium; how to produce distinct organs from an initially bipotential primordium; how to pattern an organ when the expression of key cell fate determinants is initiated only in a discrete region of the primordium and extends to other regions asynchronously; how to coordinate the interaction between distinct cell types in time and space and stabilize the resulting morphology; and how to maintain the differentiated state of the organ throughout the adult period. Some of these, and related problems, are common to organogenesis in general; some are distinctive to gonad development. In this review, we discuss recent studies of the molecular and cellular events underlying testis and ovary development, with an emphasis on the phenomenon of gonadal sex reversal and its causes in mice and humans. Finally, we discuss sex-determining loci and disorders of sex development in humans and the future of research in this important area. WIREs Dev Biol 2012, 1:559–577. doi: 10.1002/wdev.42 PMID:23801533
Endocrine regulation of predator-induced phenotypic plasticity.
Dennis, Stuart R; LeBlanc, Gerald A; Beckerman, Andrew P
2014-11-01
Elucidating the developmental and genetic control of phenotypic plasticity remains a central agenda in evolutionary ecology. Here, we investigate the physiological regulation of phenotypic plasticity induced by another organism, specifically predator-induced phenotypic plasticity in the model ecological and evolutionary organism Daphnia pulex. Our research centres on using molecular tools to test among alternative mechanisms of developmental control tied to hormone titres, receptors and their timing in the life cycle. First, we synthesize detail about predator-induced defenses and the physiological regulation of arthropod somatic growth and morphology, leading to a clear prediction that morphological defences are regulated by juvenile hormone and life-history plasticity by ecdysone and juvenile hormone. We then show how a small network of genes can differentiate phenotype expression between the two primary developmental control pathways in arthropods: juvenoid and ecdysteroid hormone signalling. Then, by applying an experimental gradient of predation risk, we show dose-dependent gene expression linking predator-induced plasticity to the juvenoid hormone pathway. Our data support three conclusions: (1) the juvenoid signalling pathway regulates predator-induced phenotypic plasticity; (2) the hormone titre (ligand), rather than receptor, regulates predator-induced developmental plasticity; (3) evolution has favoured the harnessing of a major, highly conserved endocrine pathway in arthropod development to regulate the response to cues about changing environments (risk) from another organism (predator).
Shi, Lei; Song, Ruigao; Yao, Xiaolei; Duan, Yunli; Ren, Youshe; Zhang, Chunxiang; Yue, Wenbin; Lei, Fulin
2018-07-01
To investigate the effects of maternal dietary selenium (Se-enriched yeast) on testis development, testosterone level and steroidogenesis-related gene expression in testis of their male kids, selected pregnant Taihang Black Goats were randomly allotted to four treatment groups. They were fed the basal gestation and lactation diets supplemented with 0 (control), 0.5, 2.0 and 4.0 mg of Se/kg DM. Thirty days after weaning, testes were collected from the kids. After the morphological development status of testis was examined, tissue samples were collected for analyzing testosterone concentration and histological parameters. Testosterone synthesis-related genes were detected using real-time PCR. Localization and quantification of androgen receptor (AR) in testis of goats were determined by immunohistochemical and western blot analysis. The results show that Se supplementation in the diet of dams led to higher (p < 0.05) testicular weight, volume, length, width, transverse and vertical grith of their male kids. Excessive Se (4.0 mg/kg) can inhibit the development of testis by decreasing testicular weight and volume. The density of spermatogenic cells and Leydig cells in the Se treatment groups was significantly (p < 0.05) higher than that in the control. Maternal dietary Se did not affect the thickness of testes, thickness of germinal epithelium and diameter of seminiferous tubule. Se supplemented in the diet of dams improved the testosterone level in testis tissue and serum, and promote the expression of testosterone-related genes. The mRNA expression of StAR, 3β-HSD and CYP11A1 was decreased with the increasing dietary Se levels of dams. Maternal dietary Se can improve the AR protein abundance in testis of their offspring. AR immunopositive product was detected in Leydig cells, peritubular myoid cells, perivascular smooth muscle cells, primary spermatocytes and spermatids. The expression of AR in spermatogenetic cells is stage specific. This study suggests that maternal dietary Se can influence the testis development and spermatogenesis of their male kids by modulating testosterone synthesis in goats. More attention should be given to the potential role of maternal nutrition in improving reproductive performance of their offspring. Copyright © 2018 Elsevier Inc. All rights reserved.
Bartkova, J; Rajpert-de Meyts, E; Skakkebaek, N E; Bartek, J
1999-04-01
D-type cyclins are proto-oncogenic components of the 'RB pathway', a G1/S regulatory mechanism centred around the retinoblastoma tumour suppressor (pRB) implicated in key cellular decisions that control cell proliferation, cell-cycle arrest, quiescence, and differentiation. This study focused on immunohistochemical and immunochemical analysis of human adult testis and 32 testicular tumours to examine the differential expression and abundance of cyclins D1, D2, and D3 in relation to cell type, proliferation, differentiation, and malignancy. In normal testis, the cell type-restricted expression patterns were dominated by high levels of cyclin D3 in quiescent Leydig cells and the lack of any D-type cyclin in the germ cells, the latter possibly representing the only example of normal mammalian cells proliferating in the absence of these cyclins. Most carcinoma-in-situ lesions appeared to gain expression of cyclin D2 but not D1 or D3, while the invasive testicular tumours showed variable positivity for cyclins D2 and D3, but rarely D1. An unexpected correlation with differentiation rather than proliferation was found particularly for cyclin D3 in teratomas, a conceptually significant observation confirmed by massive up-regulation of cyclin D3 in the human teratocarcinoma cell line NTera2/D1 induced to differentiate along the neuronal lineage. These results suggest a possible involvement of cyclin D2 in the early stages of testicular oncogenesis and the striking examples of proliferation-independent expression point to potential dual or multiple roles of the D-type cyclins, particularly of cyclin D3. These findings extend current concepts of the biology of the cyclin D subfamily, as well as of the biology and oncopathology of the human adult testis. Apart from practical implications for the assessment of proliferation and oncogenic aberrations in human tissues and tumours, this study may inspire further research into the emerging role of the cyclin D proteins in the establishment and/or maintenance of the differentiated phenotypes. Copyright 1999 John Wiley & Sons, Ltd.
Denari, Daniela; Ceballos, Nora R
2006-07-01
Glucocorticoids (GC) are the hormonal mediators of stress. In mammals, high levels of GC have negative effects on reproductive physiology. For instance, GC can inhibit testicular testosterone synthesis by acting via glucocorticoid receptors (GR), the extent of the inhibition being dependent on GC levels. However, the effect of GC on testicular function and even the presence of GR in amphibians are still unclear. The purpose of this work was to characterise testicular cytosolic GR in Bufo arenarum, determining the seasonal changes in its binding parameters as well as the intratesticular localisation. The binding assays were performed in testis cytosol with [3H]dexamethasone (DEX) and [3H]corticosterone (CORT). Binding kinetics of DEX and CORT fitted to a one-site model. Results were expressed as means +/- standard error. Apparent number of binding sites (Bapp) was similar for both steroids (Bapp DEX = 352.53 +/- 72.08 fmol/mg protein; Bapp CORT = 454.24 +/- 134.97 fmol/mg protein) suggesting that both hormones bind to the same site. Competition studies with different steroids showed that the order of displacement of [3H]DEX and [3H]CORT specific binding is: DEX approximately RU486 approximately deoxycorticosterone (DOC) > CORT > aldosterone > RU28362 > progesterone > 11-dehydroCORT. The affinity of GR for DEX (Kd = 11.2 +/- 1.5 nM) remained constant throughout the year while circulating CORT clearly increased during the reproductive season. Therefore, testis sensitivity to GC action would depend mainly on inactivating mechanisms (11beta-hydroxysteroid dehydrogenase type 2) and CORT plasma levels. Since total and free CORT are higher in the reproductive than in the non-reproductive period, the magnitude of GC actions could be higher during the breeding season. The intratesticular localisation of the GR was determined after separation of cells by a Percoll density gradient followed by binding assays in each fraction. DEX binds to two different fractions corresponding to Leydig and Sertoli cells. In conclusion, in the testis of B. arenarum GC could regulate the function of both cellular types particularly during breeding when CORT reaches the highest plasma concentration.
Differential expression of Mediator complex subunit MED15 in testicular germ cell tumors.
Klümper, Niklas; Syring, Isabella; Offermann, Anne; Shaikhibrahim, Zaki; Vogel, Wenzel; Müller, Stefan C; Ellinger, Jörg; Strauß, Arne; Radzun, Heinz Joachim; Ströbel, Philipp; Brägelmann, Johannes; Perner, Sven; Bremmer, Felix
2015-09-17
Testicular germ cell tumors (TGCT) are the most common cancer entities in young men with increasing incidence observed in the last decades. For therapeutic management it is important, that TGCT are divided into several histological subtypes. MED15 is part of the multiprotein Mediator complex which presents an integrative hub for transcriptional regulation and is known to be deregulated in several malignancies, such as prostate cancer and bladder cancer role, whereas the role of the Mediator complex in TGCT has not been investigated so far. Aim of the study was to investigate the implication of MED15 in TGCT development and its stratification into histological subtypes. Immunohistochemical staining (IHC) against Mediator complex subunit MED15 was conducted on a TGCT cohort containing tumor-free testis (n = 35), intratubular germ cell neoplasia unclassified (IGCNU, n = 14), seminomas (SEM, n = 107) and non-seminomatous germ cell tumors (NSGCT, n = 42), further subdivided into embryonic carcinomas (EC, n = 30), yolk sac tumors (YST, n = 5), chorionic carcinomas (CC, n = 5) and teratomas (TER, n = 2). Quantification of MED15 protein expression was performed through IHC followed by semi-quantitative image analysis using the Definiens software. In tumor-free seminiferous tubules, MED15 protein expression was absent or only low expressed in spermatogonia. Interestingly, the precursor lesions IGCNU exhibited heterogeneous but partly very strong MED15 expression. SEM weakly express the Mediator complex subunit MED15, whereas NSGCT and especially EC show significantly enhanced expression compared to tumor-free testis. In conclusion, MED15 is differentially expressed in tumor-free testis and TGCT. While MED15 is absent or low in tumor-free testis and SEM, NSGCT highly express MED15, hinting at the diagnostic potential of this marker to distinguish between SEM and NSGCT. Further, the precursor lesion IGCNU showed increased nuclear MED15 expression in the preinvasive precursor cells, which may provide diagnostic value to distinguish between benign and pre-malignant testicular specimen, and may indicate a role for MED15 in carcinogenesis in TGCT.
Wang, Wei; Zhu, Hua; Dong, Ying; Tian, ZhaoHui; Dong, Tian; Hu, HongXia; Niu, CuiJuan
2017-12-01
Molecular mechanism of sex determination and differentiation of sturgeon, a primitive fish species, is extraordinarily important due to the valuable caviar; however, it is still poorly known. The present work aimed to identify the major genes involved in regulating gonadal development of sterlet, a small species of sturgeon, from 13 candidate genes which have been shown to relate to gonadal differentiation and development in other teleost fish. The sex and gonadal development of sterlets were determined by histological observation and levels of sex steroids testosterone (T), 11-ketotestosterone (11-KT), and 17β-estradiol (E2) in serum. Sexually dimorphic gene expressions were investigated. The results revealed that gonadal development were asynchronous in 2-year-old male and female sterlets with the testes in early or mid-spermatogenesis and the ovaries in chromatin nucleolus stage or perinucleolus stage, respectively. The levels of T and E2 were not significantly different between sexes or different gonadal development stages while 11-KT had the higher level in mid-spermatogenesis testis stage. In all the investigated gonadal development stages, gene dmrt1 and hsd11b2 were expressed higher in male whereas foxl2 and cyp19a1 were expressed higher in female. Thus, these genes provided the promising markers for sex identification of sterlet. It was unexpected that dkk1 and dax1 had significantly higher expression in ovarian perinucleolus stage than in ovarian chromatin nucleolus stage and in the testis, suggesting that these two genes had more correlation with ovarian development than with the testis, contrary to the previous reports in other vertebrates. Testicular development-related genes (gsdf and amh) and estrogen receptor genes (era and erb) differentially expressed at different testis or ovary development stages, but their expressions were not absolutely significantly different in male and female, depending on the gonadal development stage. Expression of androgen receptor gene ar or rspo, which was supposed to be related to ovarian development, presented no difference between gonadal development stages investigated in this study whenever in male or female.
Histone modifications in the male germ line of Drosophila.
Hennig, Wolfgang; Weyrich, Alexandra
2013-02-22
In the male germ line of Drosophila chromatin remains decondensed and highly transcribed during meiotic prophase until it is rapidly compacted. A large proportion of the cell cycle-regulated histone H3.1 is replaced by H3.3, a histone variant encoded outside the histone repeat cluster and not subject to cell cycle controlled expression. We investigated histone modification patterns in testes of D. melanogaster and D. hydei. In somatic cells of the testis envelope and in germ cells these modification patterns differ from those typically seen in eu- and heterochromatin of other somatic cells. During the meiotic prophase some modifications expected in active chromatin are not found or are found at low level. The absence of H4K16ac suggests that dosage compensation does not take place. Certain histone modifications correspond to either the cell cycle-regulated histone H3.1 or to the testis-specific variant H3.3. In spermatogonia we found H3K9 methylation in cytoplasmic histones, most likely corresponding to the H3.3 histone variant. Most histone modifications persist throughout the meiotic divisions. The majority of modifications persist until the early spermatid nuclei, and only a minority further persist until the final chromatin compaction stages before individualization of the spermatozoa. Histone modification patterns in the male germ line differ from expected patterns. They are consistent with an absence of dosage compensation of the X chromosome during the male meiotic prophase. The cell cycle-regulated histone variant H3.1 and H3.3, expressed throughout the cell cycle, also vary in their modification patterns. Postmeiotically, we observed a highly complex pattern of the histone modifications until late spermatid nuclear elongation stages. This may be in part due to postmeiotic transcription and in part to differential histone replacement during chromatin condensation.
The Evolution of Epigenetic Regulators CTCF and BORIS/CTCFL in Amniotes
Hore, Timothy A.; Deakin, Janine E.; Marshall Graves, Jennifer A.
2008-01-01
CTCF is an essential, ubiquitously expressed DNA-binding protein responsible for insulator function, nuclear architecture, and transcriptional control within vertebrates. The gene CTCF was proposed to have duplicated in early mammals, giving rise to a paralogue called “brother of regulator of imprinted sites” (BORIS or CTCFL) with DNA binding capabilities similar to CTCF, but testis-specific expression in humans and mice. CTCF and BORIS have opposite regulatory effects on human cancer-testis genes, the anti-apoptotic BAG1 gene, the insulin-like growth factor 2/H19 imprint control region (IGF2/H19 ICR), and show mutually exclusive expression in humans and mice, suggesting that they are antagonistic epigenetic regulators. We discovered orthologues of BORIS in at least two reptilian species and found traces of its sequence in the chicken genome, implying that the duplication giving rise to BORIS occurred much earlier than previously thought. We analysed the expression of CTCF and BORIS in a range of amniotes by conventional and quantitative PCR. BORIS, as well as CTCF, was found widely expressed in monotremes (platypus) and reptiles (bearded dragon), suggesting redundancy or cooperation between these genes in a common amniote ancestor. However, we discovered that BORIS expression was gonad-specific in marsupials (tammar wallaby) and eutherians (cattle), implying that a functional change occurred in BORIS during the early evolution of therian mammals. Since therians show imprinting of IGF2 but other vertebrate taxa do not, we speculate that CTCF and BORIS evolved specialised functions along with the evolution of imprinting at this and other loci, coinciding with the restriction of BORIS expression to the germline and potential antagonism with CTCF. PMID:18769711
The evolution of epigenetic regulators CTCF and BORIS/CTCFL in amniotes.
Hore, Timothy A; Deakin, Janine E; Marshall Graves, Jennifer A
2008-08-29
CTCF is an essential, ubiquitously expressed DNA-binding protein responsible for insulator function, nuclear architecture, and transcriptional control within vertebrates. The gene CTCF was proposed to have duplicated in early mammals, giving rise to a paralogue called "brother of regulator of imprinted sites" (BORIS or CTCFL) with DNA binding capabilities similar to CTCF, but testis-specific expression in humans and mice. CTCF and BORIS have opposite regulatory effects on human cancer-testis genes, the anti-apoptotic BAG1 gene, the insulin-like growth factor 2/H19 imprint control region (IGF2/H19 ICR), and show mutually exclusive expression in humans and mice, suggesting that they are antagonistic epigenetic regulators. We discovered orthologues of BORIS in at least two reptilian species and found traces of its sequence in the chicken genome, implying that the duplication giving rise to BORIS occurred much earlier than previously thought. We analysed the expression of CTCF and BORIS in a range of amniotes by conventional and quantitative PCR. BORIS, as well as CTCF, was found widely expressed in monotremes (platypus) and reptiles (bearded dragon), suggesting redundancy or cooperation between these genes in a common amniote ancestor. However, we discovered that BORIS expression was gonad-specific in marsupials (tammar wallaby) and eutherians (cattle), implying that a functional change occurred in BORIS during the early evolution of therian mammals. Since therians show imprinting of IGF2 but other vertebrate taxa do not, we speculate that CTCF and BORIS evolved specialised functions along with the evolution of imprinting at this and other loci, coinciding with the restriction of BORIS expression to the germline and potential antagonism with CTCF.
Martins, Rute S T; Fuentes, Juan; Almeida, Olinda; Power, Deborah M; Canario, Adelino V M
2009-06-01
The Ca(2+)-Calmodulin (CaM) signaling pathway has previously been shown to be involved in the regulation of teleost fish ovarian steroidogenesis. However, a putative role of CaM in testicular steroidogenesis and potential targets has not been examined. To examine whether basal steroidogenesis is modulated by Ca(2+) and CaM levels in the testis of Mozambique tilapia (Oreochromis mossambicus) we have incubated testicular fragments in vitro under different conditions and analyzed steroid output. Calcium-free medium with or without EGTA did not affect testicular basal 11-ketotestosterone (11-KT) and testosterone (T) secretion. However, addition of 80microM the CaM inhibitor W7 significantly reduced basal 11-KT, T and androstenedione secretion. Interestingly, the decreased androgen production by 80microM of W7 was accompanied by increased 11-desoxicortisol output and by the activation of cortisol synthesis in the testis, the latter undetected in untreated tissues. However, production of 17,20alpha-dihydroxy-4-pregnen-3-one was unaltered by W7. This suggests that C17,20 desmolase, 21-hydroxylase and possibly 11beta-hydroxysteroid dehydrogenase are targets for CaM. In addition, androgen production was also found to be regulated by the level of cAMP since incubations with forskolin (FK) significantly increased 11-KT and T output. A cross-talk between the cAMP and Ca(2+)-CaM signaling pathways was detected since W7 administration also decreased FK stimulated androgen production. Altogether, these data show that both basal and cAMP stimulated androgen levels were modulated by intracellular Ca(2+)-dependent CaM and that possibly Ca(2+)-CaM determines the shift in steroidogenesis from C21 steroids to androgens.
An old culprit but a new story: bisphenol A and "NextGen" bisphenols.
Sartain, Caroline V; Hunt, Patricia A
2016-09-15
The concept that developmental events shape adult health and disease was sparked by the recognition of a link between maternal undernutrition and coronary disease in adults. From that beginning, a new field-the developmental origins of health and disease-emerged, and attention has focused on the effects of a wide array of developmental perturbations. Exposure to endocrine-disrupting chemicals has been of particular interest, and a ubiquitous environmental contaminant bisphenol A (BPA) has become the endocrine-disrupting chemical poster child. Bisphenol A has been the subject of intense investigation for nearly two decades, and exposure effects have been described in hundreds of experimental, epidemiological, and clinical studies. From the standpoint of reproductive health, the findings are particularly important, as they suggest that the ovary, testis, and reproductive tract in both sexes are targets of BPA action. The findings and the media and regulatory attention garnered by them have generated increasing public concern and resulted in legislative bans on BPA in some countries. The subsequent introduction of BPA-free products, although a masterful marketing strategy, is in reality only the beginning of a new and complex chapter of the BPA story. In this review we attempt to summarize what we have learned about the reproductive effects of BPA, present the reasons why studying the effects of this chemical in humans is no longer sufficient, and outline the challenges that the growing array of next generation bisphenols represents to clinicians, researchers, federal agencies, and the general public. Copyright © 2016. Published by Elsevier Inc.
Gheri, G; Vannelli, G B; Marini, M; Zappoli Thyrion, G D; Gheri, R G; Sgambati, E
2004-01-01
In the present research we have investigated the distribution of the sugar residues of the glycoconjugates in the prepubertal and postpubertal testes of a subject with Morris's syndrome (CAIS, Complete Androgen Insensitivity Syndrome). For this purpose a battery of six horseradish peroxidase-conjugated lectins was used (SBA, PNA, WGA, ConA, LTA and UEAI). We have obtained a complete distributional map of the terminal and sub-terminal oligosaccharides in the tunica albuginea, interstitial tissue, lamina propria of the seminiferous tubules, Leydig cells, Sertoli cells, spermatogonia, mastocytes and endothelial cells. Furthermore the present study has shown that a large amount of sugar residues were detectable in the prepubertal and postpubertal testes but that some differences exist with particular regard to the Sertoli cells. The Sertoli cells and the Leydig cells of the retained prepubertal testis of the patient affected by Morris's syndrome were characterized by the presence of alpha-L-fucose, which was absent in the retained prepubertal testis of the normal subjects. Comparing the results on the postpubertal testis with those obtained on the same aged testis of healthy subjects we have demonstrated that alpha-L-fucose in the Sertoli and Leydig cells and D-galactose-N-acetyl-D-galactosamine in the Leydig cells are a unique feature of the subject affected by Morris's syndrome. D-galactose (ss1,3)-N-acetyl-D-galactosamine and sialic acid, which are present in the Leydig cells of the normal testis were never observed in the same cells of the postpubertal testis of the CAIS patient.
Castillo, Rodrigo L; Zepeda, Andrea B; Short, Stefania E; Figueroa, Elías; Bustos-Obregon, Eduardo; Farías, Jorge G
2015-01-23
Intermittent hypobaric hypoxia (IHH) induces changes in the redox status and structure in rat testis. These effects may be present in people at high altitudes, such as athletes and miners. Polyunsaturated fatty acids (PUFA) can be effective in counteracting these oxidative modifications due to their antioxidants properties. The aim of the work was to test whether PUFA supplementation attenuates oxidative damage in testis by reinforcing the antioxidant defense system. The animals were divided into four groups (7 rats per group): normobaric normoxia (~750 tor; pO2 156 mmHg; Nx); Nx + PUFA, supplemented with PUFA (DHA: EPA = 3:1; 0.3 g kg(-1) of body weight per day); hypoxic hypoxia (~428 tor; pO2 90 mmHg; Hx) and, Hx + PUFA. The hypoxic groups were exposed in 4 cycles to 96 h of HH followed by 96 h of normobaric normoxia for 32 days. Total antioxidant capacity (FRAP) and lipid peroxidation (malondialdehyde, MDA) in plasma and reduced (GSH)/oxidized glutathione (GSSG) ratio, tissue lipid peroxidation (TBARS) and antioxidant enzymes activity were assessed at the end of the study in testis. Also, SIRTUIN 1 and HIF-1 protein expression in testis were determined. IHH increased lipid peroxidation in plasma and HIF-1 protein levels in testis. In addition, IHH reduced FRAP levels in plasma, antioxidant enzymes activities and SIRTUIN 1 protein levels in testis. PUFA supplementation attenuated these effects, inducing the increases in FRAP, in the antioxidant enzymes activity and HIF-1 levels. These results suggest that the IHH model induces a prooxidant status in plasma and testis. The molecular protective effect of PUFA may involve the induction of an antioxidant mechanism.
Ketelslegers, J M; Catt, K J
1978-07-03
The interaction between enzymatically radioiodinated human follitropin and the follitropin receptors in testis homogenate was investigated in immature and adult rats. The 125I-labeled human follitropin exhibited high binding activity with specific binding of up to 17% in the presence of an excess of testis homogenate. Approx. 50% of the bound hormone could be eluted at pH 5, and the receptor purified tracer exhibited a 3.6-fold increase in binding activity when compared with the original tracer preparation. Quantitative analysis of equilibrium binding data was performed with corrections for the measured specific activity and maximum binding activity of the tracer hormone. The equilibrium association constants (Ka) determined 24 degrees C were not significantly different in immature and adult rat testis, and the mean value for Ka was 3.9 . 10(9) M-1. At 37 degrees C, the Ka value obtained using immature rat testis was 1.3 . 10(10) M-1. The association of 125I-labeled human follitropin with immature rat testis homogenate was time and temperature dependent. In the presence of an excess of unlabeled hormone, 30--60% of the preformed hormone . receptor complex was dissociated after 24 h incubation. A specific and sensitive radioligand-receptor assay for follitropin was developed using immature rat testis homogenate. The minimum detectable dose of purified human follitropin was 0.6 ng, and human urinary and pituitary follitropin, ovine follitropin and pregnant mare serum gonadotropin reacted in the assay with equivalent slopes. The potencies of highly purified pregnent mare serum gonadotropin and highly purified human follitropin were similar in the radioligand-receptor assay, consistent with the follitropin bioactivity of the equine gonadotropin.
Morphological and Surgical Overview of Adolescent Testis Affected by Varicocele
Santoro, Giuseppe
2013-01-01
Varicocele is a common pathology of the testis frequently associated with infertility. For its management, a fine morphological study of the testis, both macroscopically and microscopically, and an accurate choice of surgical procedure are mandatory. The present review focuses its attention on the anatomic substrates of adolescent varicocele and its pathophysiologic modifications. The comprehensive assessment of all the reported alterations should be considered by the clinician before deciding the type of treatment and the timing. PMID:24348160
Effects of vitamin E on reproductive hormones and testis structure in chronic dioxin-treated mice.
Yin, Hai-Ping; Xu, Jian-Ping; Zhou, Xian-Qing; Wang, Ying
2012-03-01
The purpose of this study was to investigate the effects of vitamin E on reproductive hormones and testis structure in mice treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Five experimental groups of a combination of TCDD and vitamin E were designed as follows: 0 ng/kg/d and 0 mg/kg/d (control group), 100 ng/kg/d and 0 mg/kg/d (Group I), 100 ng/kg/d and 20 mg/kg/d (Group II), 100 ng/kg/d and 100 mg/kg/d (Group III), and 100 ng/kg/d and 500 mg/kg/d (Group IV) respectively. Vitamin E and TCDD were given by oral gavage for 7 weeks. The results demonstrated that TCDD decreased the levels of brain gonadotropin releasing hormone (GnRH), testis luteinizing hormone (LH) and follicle stimulating hormone (FSH), serum testosterone and testis spermatozoa number, and damaged testis structure. Vitamin E at 20 mg/kg alleviated the decrease of GnRH; vitamin E at 20, 100, and 500 mg/kg antagonized the decline of LH and FSH; vitamin E at 20 and 100 mg/kg reversed the decrease of testosterone and spermatozoa number; and vitamin E at 100 mg/kg decreased the damage of the testis structure caused by TCDD. The results indicate that vitamin E antagonizes the reproductive endocrine toxicity and alleviates the changes in testicular structure caused by TCDD.
SRY protein is expressed in ovotestis and streak gonads from human sex-reversal.
Salas-Cortés, L; Jaubert, F; Nihoul-Feketé, C; Brauner, R; Rosemblatt, M; Fellous, M
2000-01-01
In mammals, a master gene located on the Y chromosome, the testis-determining gene SRY, controls sex determination. SRY protein is expressed in the genital ridge before testis determination, and in the testis it is expressed in Sertoli and germ cells. Completely sex-reversed patients are classified as either 46,XX males or 46,XY females. SRY mutations have been described in only 15% of patients with 46,XY complete or partial gonadal dysgenesis. However, although incomplete or partial sex-reversal affects 46,XX true hermaphrodites, 46,XY gonadal dysgenesis, and 46,XX/46,XY mosaicism, only 15% of the 46,XX true hermaphrodites analyzed have the SRY gene. Here, we demonstrate that the SRY protein is expressed in the tubules of streak gonads and rete testis, indicating that the SRY protein is normally expressed early during testis determination. Based on these results, we propose that some factors downstream from SRY may be mutated in these 46,XY sex-reversal patients. We have also analyzed SRY protein expression in the ovotestis from 46,XX true hermaphrodites and 46,XX/46,XY mosaicism, demonstrating SRY protein expression in both testicular and ovarian portions in these patients. This suggests that the SRY protein does not inhibit ovary development. These results confirm that other factors are needed for complete testis development, in particular, those downstream of the SRY protein. Copyright 2001 S. Karger AG, Basel
Protective effect of Zingiber officinale extract on rat testis after cyclophosphamide treatment.
Mohammadi, F; Nikzad, H; Taghizadeh, M; Taherian, A; Azami-Tameh, A; Hosseini, S M; Moravveji, A
2014-08-01
Decreasing the side effects of chemotherapy in testis has been the subjects of many studies. In this study, the protective effects of Zingiber officinale extract on rat testis were investigated after chemotherapy with cyclophosphamide. Histological and biochemical parameters were compared in cyclophosphamide-treated rats with or without ginger extract intake. Wistar male rats were randomly divided into four groups each 10. The control group received a single injection of 1 ml isotonic saline intraperitoneally. The Cyclophosphamide (CP) group received a single dose of cyclophosphamide (100 mg kg(-1) BW) intraperitoneally. CP + 300 and CP + 600 groups received orally 300 or 600 mg of ginger extract, respectively, for a period of 6 weeks after cyclophosphamide injection. The morphologic and histological structure of the testis was compared in different groups of the rats. Also, factors like malondialdehyde, reactive oxygen species, total antioxidant capacity and testosterone level were assessed in blood serum as well. Our results showed that although ginger extract could not change testis weight, malondialdehyde (MDA) and ROS, but antioxidant and testosterone levels in serum were increased significantly. Also, an obvious improved histological change was seen in CP + 300 and CP + 600 groups in comparison with CP group. These protective effects of ginger on rat testis after cyclophosphamide treatment could be attributed to the higher serum level of antioxidants. © 2013 Blackwell Verlag GmbH.
Sex differences in the developing brain as a source of inherent risk.
McCarthy, Margaret M
2016-12-01
Brain development diverges in males and females in response to androgen production by the fetal testis. This sexual differentiation of the brain occurs during a sensitive window and induces enduring neuroanatomical and physiological changes that profoundly impact behavior. What we know about the contribution of sex chromosomes is still emerging, highlighting the need to integrate multiple factors into understanding sex differences, including the importance of context. The cellular mechanisms are best modeled in rodents and have provided both unifying principles and surprising specifics. Markedly distinct signaling pathways direct differentiation in specific brain regions, resulting in mosaicism of relative maleness, femaleness, and sameness through-out the brain, while canalization both exaggerates and constrains sex differences. Non-neuronal cells and inflammatory mediators are found in greater number and at higher levels in parts of male brains. This higher baseline of inflammation is speculated to increase male vulnerability to developmental neuropsychiatric disorders that are triggered by inflammation.
Free radicals in adolescent varicocele testis.
Romeo, Carmelo; Santoro, Giuseppe
2014-01-01
We examine the relationship between the structure and function of the testis and the oxidative and nitrosative stress, determined by an excessive production of free radicals and/or decreased availability of antioxidant defenses, which occur in the testis of adolescents affected by varicocele. Moreover, the effects of surgical treatment on oxidative stress were provided. We conducted a PubMed and Medline search between 1980 and 2014 using "adolescent," "varicocele," "free radicals," "oxidative and nitrosative stress," "testis," and "seminiferous tubules" as keywords. Cross-references were checked in each of the studies, and relevant articles were retrieved. We conclude that increased concentration of free radicals, generated by conditions of hypoxia, hyperthermia, and hormonal dysfunction observed in adolescent affected by varicocele, can harm germ cells directly or indirectly by influencing nonspermatogenic cells and basal lamina. With regard to few available data in current literature, further clinical trials on the pre- and postoperative ROS and RNS levels together with morphological studies of the cellular component of the testis are fundamental for complete comprehension of the role played by free radicals in the pathogenesis of adolescent varicocele and could justify its pharmacological treatment with antioxidants.
Chandrashekar, K N; Muralidhara
2008-07-01
The objective of the present study was to investigate the oxidative induction response following in vitro treatment with D-aspartic acid (DA) in prepubertal rat testis (homogenates, explants, and cell suspensions). In all three preparations, DA enhanced (P<0.001) lipid peroxidation, manifest as increased reactive oxygen species (ROS) and malondialdehyde (MDA). Further, DA-induced oxidative induction was potentiated (P<0.001) in the presence of iron (5 microM) and 3-amino triazole and mercaptosuccinate (P<0.001), known inhibitors of the peroxide metabolizing enzymes, catalase and glutathione peroxidase, respectively. Testis homogenates exposed to L-arginine (LA) per se had reduced (P<0.001) endogenous levels of ROS and MDA; furthermore, pre-incubation with L-arginine markedly suppressed (P<0.001) DA-induced oxidative induction, suggesting an antagonistic action, perhaps due to LA-derived nitric oxide. In conclusion, DA caused significant oxidative induction in prepubertal rat testis, but this action was abrogated by L-arginine. The relevance of this phenomenon in vivo merits further study, as both of these molecules have specific physiological functions in the testis.
Sivasankaran, T G; Udayakumar, R; Elanchezhiyan, C; Sabhanayakam, Selvi
2008-02-01
The effects of sildenafil citrate with ethanol on the rat testis was studied using scanning electron microscopy. Male Albino rats were divided into 8 groups, each being treated for a maximum of 45 days as follows. In the 4 short-term treatment groups, control rats were administered normal saline orally, whereas experimental animals were fed sildenafil citrate (Viagra) 1 microg/g with 18% ethanol (5 g/kg body weight), which was given orally as a single dose. After 1, 2.5, 4 and 24h the rats were killed. In the 4 long-term treatment groups, daily continuous doses of drug and ethanol with a single dosage were given for 15, 30 and 45 days and the animals killed 4h after the last dosage. Changes in the testis were compared with the normal healthy rat testis. The use of a scanning electron microscope for evaluation of the changes in the testis is more suitable for observation of the surface and morphological shapes of the tissue structures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION ON DEVELOPMENTAL DISABILITIES, DEVELOPMENTAL DISABILITIES... the Rights of Individuals with Developmental Disabilities; (c)Projects of National Significance;and (d...
Lee, Nikki P Y; Cheng, C Yan
2003-07-01
Nitric oxide (NO) synthase (NOS) catalyzes the oxidation of L-arginine to NO. NO plays a crucial role in regulating various physiological functions, possibly including junction dynamics via its effects on cAMP and cGMP, which are known modulators of tight junction (TJ) dynamics. Although inducible NOS (iNOS) and endothelial NOS (eNOS) are found in the testis and have been implicated in the regulation of spermatogenesis, their role(s) in TJ dynamics, if any, is not known. When Sertoli cells were cultured at 0.5-1.2 x 10(6) cells/cm(2) on Matrigel-coated dishes or bicameral units, functional TJ barrier was formed when the barrier function was assessed by quantifying transepithelial electrical resistance across the cell epithelium. The assembly of the TJ barrier was shown to associate with a significant plummeting in the levels of iNOS and eNOS, seemingly suggesting that their presence by producing NO might perturb TJ assembly. To further confirm the role of NOS on the TJ barrier function in vitro, zinc (II) protoporphyrin-IX (ZnPP), an NOS inhibitor and a soluble guanylate cyclase inhibitor, was added to the Sertoli cell cultures during TJ assembly. Indeed, ZnPP was found to facilitate the assembly and maintenance of the Sertoli cell TJ barrier, possibly by inducing the production of TJ-associated proteins, such as occludin. Subsequent studies by immunoprecipitation and immunoblotting have shown that iNOS and eNOS are structurally linked to TJ-integral membrane proteins, such as occludin, and cytoskeletal proteins, such as actin, vimentin, and alpha-tubulin. When the cAMP and cGMP levels in these ZnPP-treated samples were quantified, a ZnPP-induced reduction of intracellular cGMP, but not cAMP, was indeed detected. Furthermore, 8-bromo-cGMP, a cell membrane-permeable analog of cGMP, could also perturb the TJ barrier dose dependently similar to the effects of 8-bromo-cAMP. KT-5823, a specific inhibitor of protein kinase G, was shown to facilitate the Sertoli cell TJ barrier assembly. Cytokines, such as TGF-beta and TNF-alpha, known to perturb the Sertoli cell TJ barrier, were also shown to stimulate Sertoli cell iNOS and eNOS expression dose dependently in vitro. Collectively, these results illustrate NOS is an important physiological regulator of TJ dynamics in the testis, exerting its effects via the NO/soluble guanylate cyclase/cGMP/protein kinase G signaling pathway.
Guo, Dongchuan; Wu, Yun; Kaplan, Heidi B.
2000-01-01
Starvation and cell density regulate the developmental expression of Myxococcus xanthus gene 4521. Three classes of mutants allow expression of this developmental gene during growth on nutrient agar, such that colonies of strains containing a Tn5 lac Ω4521 fusion are Lac+. One class of these mutants inactivates SasN, a negative regulator of 4521 expression; another class activates SasS, a sensor kinase-positive regulator of 4521 expression; and a third class blocks lipopolysaccharide (LPS) O-antigen biosynthesis. To identify additional positive regulators of 4521 expression, 11 Lac− TnV.AS transposon insertion mutants were isolated from a screen of 18,000 Lac+ LPS O-antigen mutants containing Tn5 lac Ω4521 (Tcr). Ten mutations identified genes that could encode positive regulators of 4521 developmental expression based on their ability to abolish 4521 expression during development in the absence of LPS O antigen and in an otherwise wild-type background. Eight of these mutations mapped to the sasB locus, which encodes the known 4521 regulators SasS and SasN. One mapped to sasS, whereas seven identified new genes. Three mutations mapped to a gene encoding an NtrC-like response regulator homologue, designated sasR, and four others mapped to a gene designated sasP. One mutation, designated ssp10, specifically suppressed the LPS O-antigen defect; the ssp10 mutation had no effect on 4521 expression in an otherwise wild-type background but reduced 4521 developmental expression in the absence of LPS O antigen to a level close to that of the parent strain. All of the mutations except those in sasP conferred defects during growth and development. These data indicate that a number of elements are required for 4521 developmental expression and that most of these are necessary for normal growth and fruiting body development. PMID:10913090
Intercellular adhesion molecules (ICAMs) and spermatogenesis
Xiao, Xiang; Mruk, Dolores D.; Cheng, C. Yan
2013-01-01
BACKGROUND During the seminiferous epithelial cycle, restructuring takes places at the Sertoli–Sertoli and Sertoli–germ cell interface to accommodate spermatogonia/spermatogonial stem cell renewal via mitosis, cell cycle progression and meiosis, spermiogenesis and spermiation since developing germ cells, in particular spermatids, move ‘up and down’ the seminiferous epithelium. Furthermore, preleptotene spermatocytes differentiated from type B spermatogonia residing at the basal compartment must traverse the blood–testis barrier (BTB) to enter the adluminal compartment to prepare for meiosis at Stage VIII of the epithelial cycle, a process also accompanied by the release of sperm at spermiation. These cellular events that take place at the opposite ends of the epithelium are co-ordinated by a functional axis designated the apical ectoplasmic specialization (ES)—BTB—basement membrane. However, the regulatory molecules that co-ordinate cellular events in this axis are not known. METHODS Literature was searched at http://www.pubmed.org and http://scholar.google.com to identify published findings regarding intercellular adhesion molecules (ICAMs) and the regulation of this axis. RESULTS Members of the ICAM family, namely ICAM-1 and ICAM-2, and the biologically active soluble ICAM-1 (sICAM-1) are the likely regulatory molecules that co-ordinate these events. sICAM-1 and ICAM-1 have antagonistic effects on the Sertoli cell tight junction-permeability barrier, involved in Sertoli cell BTB restructuring, whereas ICAM-2 is restricted to the apical ES, regulating spermatid adhesion during the epithelial cycle. Studies in other epithelia/endothelia on the role of the ICAM family in regulating cell movement are discussed and this information has been evaluated and integrated into studies of these proteins in the testis to create a hypothetical model, depicting how ICAMs regulate junction restructuring events during spermatogenesis. CONCLUSIONS ICAMs are crucial regulatory molecules of spermatogenesis. The proposed hypothetical model serves as a framework in designing functional experiments for future studies. PMID:23287428
Boyer, Alexandre; Girard, Meggie; Thimmanahalli, Dayananda S; Levasseur, Adrien; Céleste, Christophe; Paquet, Marilène; Duggavathi, Rajesha; Boerboom, Derek
2016-07-01
The mammalian target of rapamycin (Mtor) gene encodes a serine/threonine kinase that acts as a master regulator of processes as diverse as cell growth, protein synthesis, cytoskeleton reorganization, and cell survival. In the testis, physiological roles for Mtor have been proposed in perinatal Sertoli cell proliferation and blood-testis barrier (BTB) remodeling during spermatogenesis, but no in vivo studies of Mtor function have been reported. Here, we used a conditional knockout approach to target Mtor in Sertoli cells. The resulting Mtor(flox/flox); Amhr2(cre/+) mice were characterized by progressive, adult-onset testicular atrophy associated with disorganization of the seminiferous epithelium, loss of Sertoli cell polarity, increased germ cell apoptosis, premature release of germ cells, decreased epididymal sperm counts, increased sperm abnormalities, and infertility. Histopathologic analysis and quantification of the expression of stage-specific markers showed a specific loss of pachytene spermatocytes and spermatids. Although the BTB and the ectoplasmic specializations did not appear to be altered in Mtor(flox/flox);Amhr2(cre/+) mice, a dramatic redistribution of gap junction alpha-1 (GJA1) was detected in their Sertoli cells. Phosphorylation of GJA1 at Ser373, which is associated with its internalization, was increased in the testes of Mtor(flox/flox); Amhr2(cre/+) mice, as was the expression and phosphorylation of AKT, which phosphorylates GJA1 at this site. Together, these results indicate that Mtor expression in Sertoli cells is required for the maintenance of spermatogenesis and the progression of germ cell development through the pachytene spermatocyte stage. One mechanism of mTOR action may be to regulate gap junction dynamics by inhibiting AKT, thereby decreasing GJA1 phosphorylation and internalization. mTOR regulates gap junction alpha-1 protein distribution in Sertoli cells and is necessary for progression through the pachytene spermatocyte stage. © 2016 by the Society for the Study of Reproduction, Inc.
2012-01-01
Background Early liver development and the transcriptional transitions during hepatogenesis are well characterized. However, gene expression changes during the late postnatal/pre-pubertal to young adulthood period are less well understood, especially with regards to sex-specific gene expression. Methods Microarray analysis of male and female mouse liver was carried out at 3, 4, and 8 wk of age to elucidate developmental changes in gene expression from the late postnatal/pre-pubertal period to young adulthood. Results A large number of sex-biased and sex-independent genes showed significant changes during this developmental period. Notably, sex-independent genes involved in cell cycle, chromosome condensation, and DNA replication were down regulated from 3 wk to 8 wk, while genes associated with metal ion binding, ion transport and kinase activity were up regulated. A majority of genes showing sex differential expression in adult liver did not display sex differences prior to puberty, at which time extensive changes in sex-specific gene expression were seen, primarily in males. Thus, in male liver, 76% of male-specific genes were up regulated and 47% of female-specific genes were down regulated from 3 to 8 wk of age, whereas in female liver 67% of sex-specific genes showed no significant change in expression. In both sexes, genes up regulated from 3 to 8 wk were significantly enriched (p < E-76) in the set of genes positively regulated by the liver transcription factor HNF4α, as determined in a liver-specific HNF4α knockout mouse model, while genes down regulated during this developmental period showed significant enrichment (p < E-65) for negative regulation by HNF4α. Significant enrichment of the developmentally regulated genes in the set of genes subject to positive and negative regulation by pituitary hormone was also observed. Five sex-specific transcriptional regulators showed sex-specific expression at 4 wk (male-specific Ihh; female-specific Cdx4, Cux2, Tox, and Trim24) and may contribute to the developmental changes that lead to global acquisition of liver sex-specificity by 8 wk of age. Conclusions Overall, the observed changes in gene expression during postnatal liver development reflect the deceleration of liver growth and the induction of specialized liver functions, with widespread changes in sex-specific gene expression primarily occurring in male liver. PMID:22475005
Gao, Yu; Jia, Dan; Hu, Qing; Li, Dapeng
2016-11-01
Two foxl2 paralogs, foxl2 (also named foxl2a) and foxl3 (also named foxl2b), were considered as fish-specific duplicates. Both belong to the Forkhead box family of transcription factors, which play important roles in regulating reproduction involved in sexual differentiation and regulation of primordial germ cell and gonadal somatic cell development. We isolated the complete foxl3 cDNA from the rice field eel (Monopterus albus), which undergoes a natural female-to-male sex change via an intersex stage during its life cycle. The deduced amino acid sequence of M albus Foxl3 exhibited high identity with that of the European sea bass (Dicentrarchus labrax, 82.9%). The foxl3 expression levels in gonads were increased during the natural sex change process in M albus. The relative expression level in the testis was greater than 40-fold greater than in the ovary (P < .05). A dual-luciferase assay confirmed that the miR-9, but not the miR-430 family, bound to the foxl3 3' untranslated region of M albus. Foxl3 was primarily expressed in granulosa cells and previtellogenic follicles in the ovary and in spermatogonia and Sertoli cells in the testis. In conclusion, Foxl3 and miR-9 may be involved in physiological processes that promote oocyte degeneration in the ovotestis and stimulating spermatogenesis in spermatogonia in M albus.
Rico-Leo, Eva M.; Moreno-Marín, Nuria; González-Rico, Francisco J.; Barrasa, Eva; Ortega-Ferrusola, Cristina; Martín-Muñoz, Patricia; Sánchez-Guardado, Luis O.; Llano, Elena; Alvarez-Barrientos, Alberto; Infante-Campos, Ascensión; Catalina-Fernández, Inmaculada; Hidalgo-Sánchez, Matías; de Rooij, Dirk G.; Pendás, Alberto M.; Peña, Fernando J.; Merino, Jaime M.
2016-01-01
Previous studies suggested that the aryl hydrocarbon receptor (AhR) contributes to mice reproduction and fertility. However, the mechanisms involved remain mostly unknown. Retrotransposon silencing by Piwi-interacting RNAs (piRNAs) is essential for germ cell maturation and, remarkably, AhR has been identified as a regulator of murine B1-SINE retrotransposons. Here, using littermate AhR+/+ and AhR−/− mice, we report that AhR regulates the general course of spermatogenesis and oogenesis by a mechanism likely to be associated with piRNA-associated proteins, piRNAs and retrotransposons. piRNA-associated proteins MVH and Miwi are upregulated in leptotene to pachytene spermatocytes with a more precocious timing in AhR−/− than in AhR+/+ testes. piRNAs and transcripts from B1-SINE, LINE-1 and IAP retrotransposons increased at these meiotic stages in AhR-null testes. Moreover, B1-SINE transcripts colocalize with MVH and Miwi in leptonema and pachynema spermatocytes. Unexpectedly, AhR−/− males have increased sperm counts, higher sperm functionality and enhanced fertility than AhR+/+ mice. In contrast, piRNA-associated proteins and B1-SINE and IAP-derived transcripts are reduced in adult AhR−/− ovaries. Accordingly, AhR-null female mice have lower numbers of follicles when compared with AhR+/+ mice. Thus, AhR deficiency differentially affects testis and ovary development possibly by a process involving piRNA-associated proteins, piRNAs and transposable elements. PMID:28003471
Expression Profile of NOTCH3 in Mouse Spermatogonia.
Okada, Ryu; Fujimagari, Megumi; Koya, Eri; Hirose, Yoshikazu; Sato, Tomomi; Nishina, Yukio
2017-01-01
Stable and sustainable spermatogenesis is supported by the strict regulation of self-renewal and differentiation of spermatogonial stem cells (SSC), which are a rare population of undifferentiated spermatogonia. It has been revealed that some signaling factors regulate the self-renewal of SSC; however, the molecular mechanism of SSC maintenance is still not completely understood. Notch signaling is an evolutionarily conserved juxtacrine signaling that plays important roles in the cell fate determination of various tissue stem cells. Recently, analyses of loss- and gain-of-function suggested that Notch signaling was necessary for normal spermatogenesis. However, the expression of Notch signal components in spermatogonia is still unclear. Here, we analyzed the distribution of NOTCH3-expressing spermatogonia and the target genes. Double immunostaining with differentiation markers revealed that NOTCH3 was expressed in some undifferentiated and differentiated spermatogonia in mouse testes. To define the target gene of Notch3 signaling in spermatogonia, we analyzed the mRNA expression pattern of Hes and Hey family genes during testis development. Hes1 abundance was decreased during testis development, suggesting that spermatogonia may express Hes1. Immunohistochemical analysis showed that HES1 was expressed in prepubertal spermatogonia, whereas it was expressed predominantly in adult Sertoli cells and weakly in adult spermatogonia. Furthermore, NOTCH3-HES1 double-positive spermatogonia were in pup and adult testes. These results suggest that Notch3 signaling in spermatogonia could promote Hes1 expression. © 2017 S. Karger AG, Basel.
Liu, Wei; Li, Shi-Zhu; Li, Zhi; Wang, Yang; Li, Xi-Yin; Zhong, Jian-Xiang; Zhang, Xiao-Juan; Zhang, Jun; Zhou, Li; Gui, Jian-Fang
2015-11-18
Gynogenesis is one of unisexual reproduction modes in vertebrates, and produces all-female individuals with identical genetic background. In sexual reproduction vertebrates, the roles of primordial germ cells on sexual dimorphism and gonadal differentiation have been largely studied, and two distinct functional models have been proposed. However, the role of primordial germ cells remains unknown in unisexual animals, and it is also unclear whether the functional models in sexual reproduction animals are common in unisexual animals. To solve these puzzles, we attempt to utilize the gynogenetic superiority of polyploid Carassius gibelio to create a complete germ cell-depleted gonad model by a similar morpholino-mediated knockdown approach used in other examined sexual reproduction fishes. Through the germ cell-depleted gonad model, we have performed comprehensive and comparative transcriptome analysis, and revealed a complete alteration of sex-biased gene expression. Moreover, the expression alteration leads to up-regulation of testis-biased genes and down-regulation of ovary-biased genes, and results in the occurrence of sterile all-males with testis-like gonads and secondary sex characteristics in the germ cell-depleted gynogenetic Carassius gibelio. Our current results have demonstrated that unisexual gynogenetic embryos remain keeping male sex determination information in the genome, and the complete depletion of primordial germ cells in the all-female fish leads to sex-biased gene expression alteration and sterile all-male occurrence.
Juvenile granulosa cell tumor of the testis: case report and review of literature.
Nieto, Nieves; Torres-Valdivieso, Maria José; Aguado, Pablo; Mateos, Maria Elena; López-Pérez, Jesús; Melero, Carmen; Vivanco, José Luis; Gómez, Andrés
2002-01-01
Juvenile granulosa cell tumor of the testis is an infrequent tumor of the gonadal stroma characteristic of the pediatric age. It usually appears as a scrotal mass and less frequently as an abdominal or inguinal mass. It may be associated with ambiguous genitalia and/or abnormal sex chromosomes. The recommended treatment is orchiectomy alone because local recurrence or metastasis have never been observed. We describe a patient with a juvenile granulosa cell tumor of the testis and review the literature.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION ON DEVELOPMENTAL DISABILITIES, DEVELOPMENTAL... Developmental Disabilities Assistance and Bill of Rights Act. This term includes Federal funds provided under...
Regulation of phagocytosis by TAM receptors and their ligands
Lu, Qingxian; Li, Qiutang; Lu, Qingjun
2010-01-01
The TAM family of receptors is preferentially expressed by professional and non-professional phagocytes, including macrophages, dendritic cells and natural killer cells in the immune system, osteoclasts in bone, Sertoli cells in testis, and retinal pigmental epithelium cells in the retina. Mutations in the Mertk single gene or in different combinations of the double or triple gene mutations in the same cell cause complete or partial impairment in phagocytosis of their preys; and as a result, either the normal apoptotic cells cannot be efficiently removed or the tissue neighbor cells die by apoptosis. This scenario of TAM regulation represents a widely adapted model system used by phagocytes in all different tissues. The present review will summarize current known functional roles of TAM receptors and their ligands, Gas 6 and protein S, in the regulation of phagocytosis. PMID:21057587
Self-Regulated Strategy Instruction in College Developmental Writing
ERIC Educational Resources Information Center
MacArthur, Charles A.; Philippakos, Zoi A.; Ianetta, Melissa
2015-01-01
The purpose of this study was to evaluate the effects of a curriculum for college developmental writing classes, developed in prior design research and based on self-regulated strategy instruction. Students learned strategies for planning, drafting, and revising compositions with an emphasis on using knowledge of genre organization to guide…
GLUCOCORTICOID RECEPTOR REGULATION IN THE RAT EMBRYO: A POTENTIAL SITE FOR DEVELOPMENTAL TOXICITY?
Glucocorticoid receptor regulation in the rat embryo: a potential site for developmental toxicity?
Ghosh B, Wood CR, Held GA, Abbott BD, Lau C.
National Research Council, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
Epidemiological and animal toxicity studies have raised concerns regarding possible adverse reproductive and developmental effects of disinfection by-products (DBPs) in drinking water. To address these concerns, we provided mixtures of the regulated trihalomethanes (THMs; chlorof...
Developmental mechanisms regulating secondary growth in woody plants
Andrew Groover; Marcel Robischon
2006-01-01
Secondary growth results in the radial expansion of woody stems, and requires the coordination of tissue patterning, cell differentiation, and the maintenance of meristematic stem cells within the vascular cambium. Advances are being made towards describing molecular mechanisms that regulate these developmental processes, thanks in part to the application of new...
Developmental College Student Self-Regulation: Results from Two Measures
ERIC Educational Resources Information Center
Young, Dawn; Ley, Kathryn
2005-01-01
This study compared 34 lower-achieving (developmental) first-time college students' self-reported self-regulation strategies from a Likert scale to those they reported in structured interviews. Likert scales have offered convenient administration and evaluation and have been used to identify what and how learners study. The reported study activity…
Beauzamy, Léna; Caporali, Elisabetta; Koroney, Abdoul-Salam
2016-01-01
Although many transcription factors involved in cell wall morphogenesis have been identified and studied, it is still unknown how genetic and molecular regulation of cell wall biosynthesis is integrated into developmental programs. We demonstrate by molecular genetic studies that SEEDSTICK (STK), a transcription factor controlling ovule and seed integument identity, directly regulates PMEI6 and other genes involved in the biogenesis of the cellulose-pectin matrix of the cell wall. Based on atomic force microscopy, immunocytochemistry, and chemical analyses, we propose that structural modifications of the cell wall matrix in the stk mutant contribute to defects in mucilage release and seed germination under water-stress conditions. Our studies reveal a molecular network controlled by STK that regulates cell wall properties of the seed coat, demonstrating that developmental regulators controlling organ identity also coordinate specific aspects of cell wall characteristics. PMID:27624758
ERIC Educational Resources Information Center
Dang, Michelle T.
2010-01-01
A significant number of children in the United States have developmental disabilities. Historically, many children with developmental disabilities were institutionalized and rarely seen in public. Currently, children with developmental disabilities are entitled to education and health-related support services that permit them access to public…
Oxidative Stress, Unfolded Protein Response, and Apoptosis in Developmental Toxicity
Kupsco, Allison; Schlenk, Daniel
2016-01-01
Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems. PMID:26008783
Ku, Hsiao-Yun; Huang, Yu-Fei; Chao, Pei-Hsuan; Huang, Chiung-Chun; Hsu, Kuei-Sen
2008-11-01
Activity-dependent alterations of synaptic efficacy or connectivity are essential for the development, signal processing, and learning and memory functions of the nervous system. It was observed that, in particular in the CA1 region of the hippocampus, low-frequency stimulation (LFS) became progressively less effective at inducing long-term depression (LTD) with advancing developmental age. The physiological factors regulating this developmental plasticity change, however, have not yet been elucidated. Here we examined the hypothesis that neonatal isolation (once per day for 1 h from postnatal days 1-7) is able to alter processes underlying the developmental decline of LTD. We confirm that the magnitude of LTD induced by LFS (900 stimuli at 1 Hz) protocol correlates negatively with developmental age and illustrates that neonatal isolation delays this developmental decline via the activation of corticotrophin-releasing factor (CRF) system. Furthermore, this modulation appears to be mediated by an increased transcription of N-methyl-D-aspartate receptor NR2B subunits. We also demonstrate that intracerebroventricular injection of CRF postnatally mimicked the effect of neonatal isolation to increase the expression of NR2B subunits and delayed the developmental decline of LTD, which was specifically blocked by CRF receptor 1 antagonist NBI27914 pretreatment. These results suggest a novel role for CRF in regulating developmental events in the hippocampus and indicate that although maternal deprivation is stressful for neonate, appropriate neonatal isolation can serve to promote an endocrine state that may regulate the gradual developmental change in the induction rules for synaptic plasticity in the hippocampal CA1 region.
45 CFR 1386.33 - Protection of employee's interests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 1386.33 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION ON DEVELOPMENTAL DISABILITIES, DEVELOPMENTAL DISABILITIES PROGRAM FORMULA GRANT PROGRAMS Federal Assistance to State Developmental Disabilities...
An epigenetic view of developmental diseases: new targets, new therapies.
Xie, Pei; Zang, Li-Qun; Li, Xue-Kun; Shu, Qiang
2016-08-01
Function of epigenetic modifications is one of the most competitive fields in life science. Over the past several decades, it has been revealed that epigenetic modifications play essential roles in development and diseases including developmental diseases. In the present review, we summarize the recent progress about the function of epigenetic regulation, especially DNA and RNA modifications in developmental diseases. Original research articles and literature reviews published in PubMed-indexed journals. DNA modifications including methylation and demethylation can regulate gene expression, and are involved in development and multiple diseases including Rett syndrome, Autism spectrum disorders, congenital heart disease and cancer, etc. RNA methylation and demethylation play important roles in RNA processing, reprogramming, circadian, and neuronal activity, and then modulate development. DNA and RNA modifications play important roles in development and diseases through regulating gene expression. Epigenetic components could serve as novel targets for the treatment of developmental diseases.
Persson, H; Pelto-Huikko, M; Metsis, M; Söder, O; Brene, S; Skog, S; Hökfelt, T; Ritzén, E M
1990-09-01
The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility.
Persson, H; Pelto-Huikko, M; Metsis, M; Söder, O; Brene, S; Skog, S; Hökfelt, T; Ritzén, E M
1990-01-01
The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility. Images PMID:1697032
Tissue-Specific Transcriptomics in the Field Cricket Teleogryllus oceanicus
Bailey, Nathan W.; Veltsos, Paris; Tan, Yew-Foon; Millar, A. Harvey; Ritchie, Michael G.; Simmons, Leigh W.
2013-01-01
Field crickets (family Gryllidae) frequently are used in studies of behavioral genetics, sexual selection, and sexual conflict, but there have been no studies of transcriptomic differences among different tissue types. We evaluated transcriptome variation among testis, accessory gland, and the remaining whole-body preparations from males of the field cricket, Teleogryllus oceanicus. Non-normalized cDNA libraries from each tissue were sequenced on the Roche 454 platform, and a master assembly was constructed using testis, accessory gland, and whole-body preparations. A total of 940,200 reads were assembled into 41,962 contigs, to which 36,856 singletons (reads not assembled into a contig) were added to provide a total of 78,818 sequences used in annotation analysis. A total of 59,072 sequences (75%) were unique to one of the three tissues. Testis tissue had the greatest proportion of tissue-specific sequences (62.6%), followed by general body (56.43%) and accessory gland tissue (44.16%). We tested the hypothesis that tissues expressing gene products expected to evolve rapidly as a result of sexual selection—testis and accessory gland—would yield a smaller proportion of BLASTx matches to homologous genes in the model organism Drosophila melanogaster compared with whole-body tissue. Uniquely expressed sequences in both testis and accessory gland showed a significantly lower rate of matching to annotated D. melanogaster genes compared with those from general body tissue. These results correspond with empirical evidence that genes expressed in testis and accessory gland tissue are rapidly evolving targets of selection. PMID:23390599
Tissue-specific transcriptomics in the field cricket Teleogryllus oceanicus.
Bailey, Nathan W; Veltsos, Paris; Tan, Yew-Foon; Millar, A Harvey; Ritchie, Michael G; Simmons, Leigh W
2013-02-01
Field crickets (family Gryllidae) frequently are used in studies of behavioral genetics, sexual selection, and sexual conflict, but there have been no studies of transcriptomic differences among different tissue types. We evaluated transcriptome variation among testis, accessory gland, and the remaining whole-body preparations from males of the field cricket, Teleogryllus oceanicus. Non-normalized cDNA libraries from each tissue were sequenced on the Roche 454 platform, and a master assembly was constructed using testis, accessory gland, and whole-body preparations. A total of 940,200 reads were assembled into 41,962 contigs, to which 36,856 singletons (reads not assembled into a contig) were added to provide a total of 78,818 sequences used in annotation analysis. A total of 59,072 sequences (75%) were unique to one of the three tissues. Testis tissue had the greatest proportion of tissue-specific sequences (62.6%), followed by general body (56.43%) and accessory gland tissue (44.16%). We tested the hypothesis that tissues expressing gene products expected to evolve rapidly as a result of sexual selection--testis and accessory gland--would yield a smaller proportion of BLASTx matches to homologous genes in the model organism Drosophila melanogaster compared with whole-body tissue. Uniquely expressed sequences in both testis and accessory gland showed a significantly lower rate of matching to annotated D. melanogaster genes compared with those from general body tissue. These results correspond with empirical evidence that genes expressed in testis and accessory gland tissue are rapidly evolving targets of selection.
High androgen receptor immunoexpression in human "Sertoli cell only" testis.
Loukil, L Hadjkacem; Boudawara, T Sellami; Ayadi, I; Bahloul, A; Jlidi, R; Ayadi, H; Keskes, L Ammar
2005-01-01
Our purpose was to evaluate cellular androgen receptor (AR) distribution and intensity of immunostaining in the human azoospermic testis. Thirty six biopsy specimens from azoospermic men were immunostained, using a monoclonal antibody of human AR. The localization and the intensity of AR immunostaining was evaluated in Sertoli Cell Only (SCO) testis (G1, n = 21), in spermatogenesis arrest testis (G2, n = 11) and in histologically normal testis (G3, n = 4). We found an AR immunostaining in Sertoli, peritubular myoid and Leydig cells, but not in germ cells. The intensity of the immunostaining varied substantially between biopsy specimens of different patients. Sertoli and Leydig cells AR immunostaining (score and intensity) in SCO group was higher than in the other groups. For Sertoli cells, the score means of AR immunoreactivity were 20 +/- 2.36, 10.18 +/- 1.0 and 1 +/- 1, for G1, G2 and G3 groups, respectively. For Leydig cells, the score means were 10.24 +/- 1.37, 6 +/- 0.71 and 0, for G1, G2 and G3 groups, respectively. We found significant differences between G1 and G2 (p = 0.0008), between G1 and G3 (p = 1.54 10-7) and G2 and G3 (p = 0.00032). These results suggest that in the testis AR is located exclusively in somatic cells and its expression is higher in SCO syndrome than in normal and in arrest spermatogenesis testes.
Li, Mingzhao; Yu, Meng; Liu, Chao; Zhu, Haijing; Hua, Jinlian
2013-06-01
Reproduction is required for the survival of all mammalian animals. Spermatogenesis is an essential and complex developmental process that ultimately results in production of haploid spermatozoa. Recent studies demonstrated that Boule and stimulated by retinoic acid 8 (Stra8) played important roles in initiation meiosis in male germ cells. miR-34c is indispensable in the late steps of spermatogenesis; remarkably, the main function of miR-34c is to reduce cell proliferation potentiality and promote cellular apoptosis. The objectives of this study were to investigate the expression patterns of Boule, Stra8, P53 and miR-34c in dairy goat testis and their relationship in male germ line stem cells (mGSCs). The results first revealed the expression patterns of Boule, Stra8, P53 and miR-34c in 30 dpp, 90 dpp and adult testes of dairy goats. The expression levels of Boule, Stra8, P53 and miR-34c in adult dairy goat testes were significantly higher than that of 30 dpp. Overexpression of Boule and Stra8 promoted the expression of miR-34c in dairy goat mGSCs. In our previous study, we showed that miR-34c was P53 dependent in mGSCs. These results have shown that the up-regulation of miR-34c was not due to P53 protein activation but which might be caused by the up-regulation of Boule and Stra8 promoting the advance of meiosis. In addition, we found retinoic acid would decrease the expression of P53 and miR-34c, however, did not change the expression of c-Myc greatly. It suggested that the function of driving differentiation of dairy goat mGSCs by retinoic acid might not be caused by P53. Copyright © 2013 John Wiley & Sons, Ltd.
Pang, Jing; Li, Fengzhe; Feng, Xu; Yang, Hua; Han, Le; Fan, Yixuan; Nie, Haitao; Wang, Zhen; Wang, Feng; Zhang, Yanli
2018-03-01
Energy balance is an important feature for spermatozoa production in the testis. The 5'-AMP-activated protein kinase (AMPK) is a sensor of cell energy, has been implicated as a mediator between gonadal function and energy balance. Herein, we intended to determine the physiological effects of AMPK on testicular development in feed energy restricted and compensated pre-pubertal rams. Lambs had restricted feeding for 2 months and then provided compensatory feeding for another 3 months. Feed levels were 100%(control), 15% and 30% of energy restriction (ER) diets, respectively. The results showed that lambs fed the 30% ER diet had significantly lower testicular weight (P < .05) and spermatids number in the seminiferous tubules, but there were no differences between control and 15% ER groups. Meanwhile, 15% ER and 30% ER diets induced testis autophagy and apoptosis through activating AMPK-ULK1(ULK1, Unc-51 like autophagy activating kinase) signal pathway with characterization of increased Beclin-1 and Light chain 3-Ⅱ/Light chain 3-Ⅰ (LC3-II/LC3-I) ratio, up-regulated the ratio of pro-apoptotic Bcl-2-associated X protein (BAX) and anti-apoptotic B-cell lymphoma 2 (Bcl-2), as well as activated AMPK, phosphorylated AMPK(p-AMPK) and ULK1. Furthermore, a compensation of these parameters occurred when the lambs were re-fed with normal energy requirement after restriction. Taken together, dietary energy levels influence testicular development through autophagy and apoptosis interplay mediated by AMPK-ULK1 signal pathway, which also indicates the important role of the actions of AMPK in the testis homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.
Counts, Jenna T; Hester, Tasha M; Rouhana, Labib
2017-12-01
Chaperonin-containing Tail-less complex polypeptide 1 (CCT) is a highly conserved, hetero-oligomeric complex that ensures proper folding of actin, tubulin, and regulators of mitosis. Eight subunits (CCT1-8) make up this complex, and every subunit has a homolog expressed in the testes and somatic tissue of the planarian flatworm Schmidtea mediterranea. Gene duplications of four subunits in the genomes of S. mediterranea and other planarian flatworms created paralogs to CCT1, CCT3, CCT4, and CCT8 that are expressed exclusively in the testes. Functional analyses revealed that each CCT subunit expressed in the S. mediterranea soma is essential for homeostatic integrity and survival, whereas sperm elongation defects were observed upon knockdown of each individual testis-specific paralog (Smed-cct1B; Smed-cct3B; Smed-cct4A; and Smed-cct8B), regardless of potential redundancy with paralogs expressed in both testes and soma (Smed-cct1A; Smed-cct3A; Smed-cct4B; and Smed-cct8A). Yet, no detriment was observed in the number of adult somatic stem cells (neoblasts) that maintain differentiated tissue in planarians. Thus, expression of all eight CCT subunits is required to execute the essential functions of the CCT complex. Furthermore, expression of the somatic paralogs in planarian testes is not sufficient to complete spermatogenesis when testis-specific paralogs are knocked down, suggesting that the evolution of chaperonin subunits may drive changes in the development of sperm structure and that correct CCT subunit stoichiometry is crucial for spermiogenesis. © 2017 Wiley Periodicals, Inc.
The low expression of Dmrt7 is associated with spermatogenic arrest in cattle-yak.
Yan, Ping; Xiang, Lin; Guo, Xian; Bao, Peng-Jia; Jin, Shuai; Wu, Xiao-Yun
2014-11-01
Dmrt7 is a member of the DM domain family of genes. Dmrt7 deficiency is also a strong candidate as a cause for male cattle-yak infertility, as it is regarded as essential for male spermatogenesis, between the pachynema and diplonema stages. In our study, the coding region sequence of yak and cattle-yak Dmrt7 was cloned by molecular cloning techniques, and the sequence, conserved domains, functional sites, and secondary and tertiary structures of the Dmrt7-encoded protein were predicted and analyzed using bioinformatics methods. The coding region sequences of the Dmrt7 gene, encoding 370 amino acids, were consistent in yak and cattle-yak. The protein encoded by yak and cattle-yak Dmrt7 contains a DM domain. We detected Dmrt7 mRNA expression in testis, but not in any other tissue. Dmrt7 mRNA and protein expression was significantly higher in testis of cattle and yak than that in cattle-yak (p < 0.01). Histological analysis indicated that seminiferous tubules in male cattle-yak were highly vacuolated and contained primarily Sertoli cells and spermatogonia, while those of cattle and yak contained abundant primary spermatocytes. Male cattle-yak testis contained a significantly larger number of apoptotic cells than those in cattle and yak assessed by terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) analysis. The accumulation of SCP3-positive spermatocytes indicated the arrest of spermatogenesis at the pachynema stage in the cattle-yak. These results suggest low levels of Dmrt7 expression lead to male sterility in cattle-yak. The molecular function of Dmrt7 and the regulation of its expression warrant need to be examined in future studies.
Cancer/Testis Antigens: “Smart” Biomarkers for Diagnosis and Prognosis of Prostate and Other Cancers
Kulkarni, Prakash; Uversky, Vladimir N.
2017-01-01
A clinical dilemma in the management of prostate cancer (PCa) is to distinguish men with aggressive disease who need definitive treatment from men who may not require immediate intervention. Accurate prediction of disease behavior is critical because radical treatment is associated with high morbidity. Here, we highlight the cancer/testis antigens (CTAs) as potential PCa biomarkers. The CTAs are a group of proteins that are typically restricted to the testis in the normal adult but are aberrantly expressed in several types of cancers. Interestingly, >90% of CTAs are predicted to belong to the realm of intrinsically disordered proteins (IDPs), which do not have unique structures and exist as highly dynamic conformational ensembles, but are known to play important roles in several biological processes. Using prostate-associated gene 4 (PAGE4) as an example of a disordered CTA, we highlight how IDP conformational dynamics may regulate phenotypic heterogeneity in PCa cells, and how it may be exploited both as a potential biomarker as well as a promising therapeutic target in PCa. We also discuss how in addition to intrinsic disorder and post-translational modifications, structural and functional variability induced in the CTAs by alternate splicing represents an important feature that might have different roles in different cancers. Although it is clear that significant additional work needs to be done in the outlined direction, this novel concept emphasizing (multi)functionality as an important trait in selecting a biomarker underscoring the theranostic potential of CTAs that is latent in their structure (or, more appropriately, the lack thereof), and casts them as next generation or “smart” biomarker candidates. PMID:28362316
Adibnia, Elmira; Razi, Mazdak; Malekinejad, Hassan
2016-09-15
The estrogen receptors (ERs)-dependent effects of Zearalenone (ZEA) on structure and function of the testis as well as sperm parameters were compared with 17-β estradiol as endogenous substance. For this purpose, 30 mature male rats were assigned into five groups as; control (appropriate volume of normal saline, i. p.), ZEA-received (1, 2 and 4 mg/kg, b. w., i. p.) and 17 β-estradiol (E2)-received (appropriate dose of 0.1 mg/kg, i. p.). Following 28 days, the mRNA levels of estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) in the testis and sperms and the expression of them at protein levels in testicles were estimated. Mitochondrial content of germinal epithelium, Leydig cells steroid foci, sperm quality parameters and serum level of testosterone were assessed. Fluorescent techniques were used for analyzing apoptosis and mRNA damage in necrotic cells. ZEA reduced the mRNA and protein levels of ERα in testicles while up-regulated the ERβ expression. The mRNA level of ERα decreased in sperms of ZEA and E2-received animals. No remarkable changes were found for ERβ expression in sperms from ZEA and E2-received animals. ZEA reduced the Leydig cells steroidogenesis, mitochondrial content of germinal cells and elevated cellular apoptosis and necrosis dose-dependently. E2 reduced the testosterone concentration, enhanced the apoptosis and reduced sperm quality. Our data suggest that ZEA-induced detrimental effects in the structure and function of testis, may attribute to changing the ERs expression at mRNA and translational level. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characterization and expression of cyp19a gene in the Chinese giant salamander Andrias davidianus.
Hu, Qiaomu; Xiao, Hanbing; Tian, HaiFeng; Meng, Yan
2016-02-01
We cloned the full length cyp19a of Chinese giant salamander Andrias davidianus, determined its distribution in tissues and developing gonads, and analyzed the CpG methylation pattern of the cyp19a promoter. The results revealed isoforms of 1706 bp (G arom) and 1698 bp (B arom) in length, differing in the 5' flanking region, both encoding 502 amino acids. The G arom gene was observed mainly in the ovary and kidney, with little in other investigated tissues, while B arom expression was high in the brain, ovary, testis, and pituitary, with low or undetected expression in other examined tissues. Total aromatase expression was high in the ovary; moderate in the kidney, brain, testis, and pituitary; and low in the remaining tissues. G arom expression was significantly higher in the ovary than in the testis and gradually decreased with maturation of the salamander. A single injection of methyltestosterone or letrozole resulted in ovarian G arom expression decreasing over a 12-96 h period. A 1366 bp sequence of the cyp19a promoter was cloned and shown to be conserved in selected species. CpG methylation level was negatively correlated with cyp19a expression in the examined tissues and developing ovaries. Five and three CpG methylation sites positively correlated with DNA methylation levels in tissues and developing ovary, suggesting that they play an important role in regulating cyp19a expression. The aromatase gene showed two isoforms with distinct expression patterns, and the promoter methylation level at specific CpG sites was associated with variation in expression profiles of tissues and developing ovaries. Copyright © 2015 Elsevier Inc. All rights reserved.
Piprek, Rafal P; Kolasa, Michal; Podkowa, Dagmara; Kloc, Malgorzata; Kubiak, Jacek Z
2017-10-01
Unlike other organ anlagens, the primordial gonad is sexually bipotential in all animals. In mouse, the bipotential gonad differentiates into testis or ovary depending on the genetic sex (XY or XX) of the fetus. During gonad development cells segregate, depending on genetic sex, into distinct compartments: testis cords and interstitium form in XY gonad, and germ cell cysts and stroma in XX gonad. However, our knowledge of mechanisms governing gonadal sex differentiation remains very vague. Because it is known that adhesion molecules (CAMs) play a key role in organogenesis, we suspected that diversified expression of CAMs should also play a crucial role in gonad development. Using microarray analysis we identified 129 CAMs and factors regulating cell adhesion during sexual differentiation of mouse gonad. To identify genes expressed differentially in three cell lines in XY and XX gonads: i) supporting (Sertoli or follicular cells), ii) interstitial or stromal cells, and iii) germ cells, we used transgenic mice expressing EGFP reporter gene and FACS cell sorting. Although a large number of CAMs expressed ubiquitously, expression of certain genes was cell line- and genetic sex-specific. The sets of CAMs differentially expressed in supporting versus interstitial/stromal cells may be responsible for segregation of these two cell lines during gonadal development. There was also a significant difference in CAMs expression pattern between XY supporting (Sertoli) and XX supporting (follicular) cells but not between XY and XX germ cells. This indicates that differential CAMs expression pattern in the somatic cells but not in the germ line arbitrates structural organization of gonadal anlagen into testis or ovary. Copyright © 2017 Elsevier B.V. All rights reserved.
CHIHARA, Masataka; OTSUKA, Saori; ICHII, Osamu; KON, Yasuhiro
2013-01-01
Abstract The blood testis-barrier (BTB) is essential for maintaining homeostasis in the seminiferous epithelium. Although many studies have reported that vitamin A (VA) is required for the maintenance of spermatogenesis, the relationships between the BTB, spermatogenesis and VA have not been elucidated. In this study, we analyzed BTB assembly and spermatogenesis in the testes of mice fed the VA-deficient (VAD) diet from the prepubertal period to adulthood. During the prepubertal period, no changes were observed in the initiation and progression of the first spermatogenic wave in mice fed the VAD diet. However, the numbers of preleptotene/leptotene spermatocytes derived from the second spermatogenic wave onwards were decreased, and initial BTB formation was also delayed, as evidenced by the decreased expression of mRNAs encoding BTB components and VA signaling molecules. From 60 days postpartum, mice fed the VAD diet exhibited apoptosis of germ cells, arrest of meiosis, disruption of the BTB, and dramatically decreased testis size. Furthermore, vacuolization and calcification were observed in the seminiferous epithelium of adult mice fed the VAD diet. Re-initiation of spermatogenesis by VA replenishment in adult mice fed the VAD diet rescued BTB assembly after when the second spermatogenic wave initiated from the arrested spermatogonia reached the preleptotene/leptotene spermatocytes. These results suggested that BTB integrity was regulated by VA metabolism with meiotic progression and that the impermeable BTB was required for persistent spermatogenesis rather than meiotic initiation. In conclusion, consumption of the VAD diet led to critical defects in spermatogenesis progression and altered the dynamics of BTB assembly. PMID:23934320
Kalmykova, Alla I.; Shevelyov, Yury Y.; Dobritsa, Anna A.; Gvozdev, Vladimir A.
1997-01-01
The acquisition of autosomal fertility genes has been proposed to be an important process in human Y chromosome evolution. For example, the Y-linked fertility factor DAZ (Deleted in Azoospermia) appears to have arisen after the transposition and tandem amplification of the autosomal DAZH gene. The Drosophila melanogaster Y chromosome contains tandemly repeated Su(Ste) units that are thought to affect male fertility as suppressors of the homologous X-linked Stellate repeats. Here we report the detection of a testis-expressed autosomal gene, SSL [Su(Ste)-like], that appears to be an ancestor of the Y-linked Su(Ste) units. SSL encodes a casein kinase 2 (CK2) β-subunit-like protein. Its putative ORF shares extensive (45%) homology with the genuine β-subunit of CK2 and retains the conserved C-terminal and Glu/Asp-rich domains that are essential for CK2 holoenzyme regulation. SSL maps within region 60D1–2 of D. melanogaster and D. simulans polytene chromosomes. We present evidence that SSL was derived from the genuine βCK2 gene by reverse transcription. This event resulted in the loss of the first three introns in the coding region of the SSL ancestor gene. Evolutionary analysis indicates that SSL has evolved under selective pressure at the translational level. Its sequence, especially in the 3′ region, is much closer to the Y-linked Su(Ste) tandem repeats than to the βCK2 gene. These results suggest that the acquisition of testis-specific autosomal genes may be important for the evolution of Drosophila as well as human Y chromosomes. PMID:9177211
Interleukin 6 inhibits the differentiation of rat stem Leydig cells.
Wang, Yiyan; Chen, Lanlan; Xie, Lubin; Li, Linchao; Li, Xiaoheng; Li, Huitao; Liu, Jianpeng; Chen, Xianwu; Mao, Baiping; Song, Tiantian; Lian, Qingquan; Ge, Ren-Shan
2018-09-05
Inflammation causes male hypogonadism. Several inflammatory cytokines, including interleukin 6 (IL-6), are released into the blood and may suppress Leydig cell development. The objective of the present study was to investigate whether IL-6 affected the proliferation and differentiation of rat stem Leydig cells. Leydig cell-depleted rat testis (in vivo) and seminiferous tubules (in vitro) with ethane dimethane sulfonate (EDS) were used to explore the effects of IL-6 on stem Leydig cell development. Intratesticular injection of IL-6 (10 and 100 ng/testis) from post-EDS day 14 to 28 blocked the regeneration of Leydig cells, as shown by the lower serum testosterone levels (21.6% of the control at 100 ng/testis dose), the down-regulated Leydig cell gene (Lhcgr, Star, Cyp11a1, Cyp17a1, and Hsd17b3) expressions, and the reduced Leydig cell number. Stem Leydig cells on the surface of the seminiferous tubules were induced to enter the Leydig cell lineage in vitro in the medium containing luteinizing hormone and lithium. IL-6 (1, 10, and 100 ng/ml) concentration-dependently decreased testosterone production and Lhcgr, Cyp11a1, Cyp17a1, Hsd17b3 and Insl3 mRNA levels. The IL-6 mediated effects were antagonized by Janus kinase 1 (JAK) inhibitor (filgotinib) and Signal Transducers and Activators of Transcription 3 (STAT3) inhibitor (S3I-201), indicating that a JAK-STAT3 signaling pathway is involved. In conclusion, our results demonstrated that IL-6 was an inhibitory factor of stem Leydig cell development. Copyright © 2017. Published by Elsevier B.V.
Sengupta, Anamika; Kumar Maitra, Saumen
2006-01-01
The role of the pineal gland and its hormone melatonin in the regulation of annual testicular events was investigated for the first time in a psittacine bird, the roseringed parakeet (Psittacula krameri). Accordingly, the testicular responsiveness of the birds was evaluated following surgical pinealectomy with or without the exogenous administration of melatonin and the experimental manipulations of the endogenous levels of melatonin through exposing the birds to continuous illumination. An identical schedule was followed during the four reproductive phases, each characterizing a distinct testicular status in the annual cycle, namely, the phases of gametogenic quiescence (preparatory phase), seasonal recovery of gametogenesis (progressive phase), seasonal initiation of sperm formation (pre-breeding phase), and peak gametogenic activity (breeding phase). In each reproductive phase, the birds were subjected to various experimental conditions, and the effects were studied comparing the testicular conditions in the respective control birds. The study included germ cell profiles of the seminiferous tubules, the activities of steroidogenic enzymes 17beta-hydroxysteroid dehydrogenase (17beta-HSD), and Delta(5)3beta-hydroxysteroid dehydrogenase (Delta(5)3beta- HSD) in the testis, and the serum levels of testosterone and melatonin. An analysis of the data reveals that the pineal gland and its hormone melatonin may play an inhibitory role in the development of the testis until the attainment of the seasonal peak in the annual reproductive cycle. However, in all probability, the termination of the seasonal activity of the testis or the initiation of testicular regression in the annual reproductive cycle appears to be the function of the pineal gland, but not of melatonin.
[Expression and localization of transmembrane protein CMTM2 in human testis and sperm].
Zhang, X W; Lan, K; Yang, W B; Li, Q; Zhao, Y P; Yin, H Q; Kite, B; Bai, W J; Xu, T
2017-08-18
To study the expression of transmembrane protein CMTM2 in the testis and sperm of adult males and to approach the potential function of the protein in the male reproductive system. The expression of CMTM2 in human testis and sperm was confirmed by Western blot. Immunohistochemical staining was used for detecting CMTM2 localization in the testis tissue, TRITC-CMTM2 and FITC-Hoechst double immunofluorescence staining was performed to examine the subcellular localization of CMTM2 in the human sperm before and after acrosome reaction, that is, immunofluorescent staining was used for detecting CMTM2 localization in both the testis and sperm before and after the acrosome reaction. CMTM2 was presented in both human testis and sperm. In the testis, CMTM2 immunoreactive particles were observed mainly in the membrane of the different stages of spermatogenic cells. In the human sperm, its immunoreactivity was restrictively localized to the posterior head where sperm-egg fusion occurred, and the CMTM2 localization was not affected by sperm acrosome reaction. CMTM2 was widely expressed in seminiferous tubules of the human testis, mainly in the cell membranes of spermatogenic cells, which was consistent with the previous reports. The immunofluorescence performed on frozen human testis slides showed similar findings with immunohistochemistry, which gave weight to the localization of CMTM2 in the cell membranes of spermatogenic cells at different stages. TRITC-CMTM2 and FITC-Hoechst double immunofluorescence staining was performed to examine the subcellular localization of CMTM2 in the human sperm before and after acrosome reaction. CMTM2 was localized at the posterior head of sperm before and after acrosome reaction. The localization and expression of CMTM2 were not affected by sperm acrosome reaction. Expression of CMTM2 in the male reproductive system of the adult human exhibits cell- and region-specific patterns, which suggests that they may play an important role in spermatogenesis and sperm-egg fusion. The expression of CMTM2 in the male reproductive system of the adult human exhibits cell- and region-specific patterns, which suggests that they may play an important role in spermatogenesis and sperm-egg fusion. However, it still remains to be further elucidated about the definite role of CMTM2 in male reproductive system and the process of spermatogenesis. And in vitro fertilization experiments are needed to confirm the role of CMTM2 in fertilization in future.
Sexual behavior and testis morphology in the BACHD rat model
Novati, Arianna; Yu-Taeger, Libo; Gonzalez Menendez, Irene; Quintanilla Martinez, Leticia
2018-01-01
Background Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene, which results in brain neurodegeneration and peripheral pathology affecting different organs including testis. Patients with HD suffer from motor and cognitive impairment, and multiple psychiatric symptoms. Among behavioral abnormalities in HD, sexual disturbances have often been reported, but scarcely investigated in animal models. The BACHD rat model of HD carries the human full-length mutated HTT (mHTT) genomic sequence with 97 CAG-CAA repeats and displays HD-like alterations at neuropathological and behavioral level. Objective This study aims to phenotype the BACHD rats’ sexual behavior and performance as well as testis morphology because alterations in these aspects have been associated to HD. Methods Two rat cohorts at the age of 3 and 7 months were subjected to mating tests to assess different parameters of sexual behavior. Histological analyses for testis morphology were performed in different rat cohorts at 1.5, 7 and 12 months of age whereas immunohistochemical analyses were carried out at 7 and 12 months of age to visualize the presence of mHTT in testicular tissue. Furthermore, western blot analyses were used to assess HTT and mHTT expression levels in striatum and testis at three months of age. Results At 3 months, BACHD rats showed a decreased time exploring the female anogenital area (AGA), decreased latency to mount, increased number of intromissions and ejaculations and enhanced hit rate. At 7 months, all sexual parameters were comparable between genotypes with the exception that BACHD rats explored the AGA less than wild type rats. Testis analyses did not reveal any morphological alteration at any of the examined ages, but showed presence of mHTT limited to Sertoli cells in transgenic rats at both 7 and 12 months. BACHD rat HTT and mHTT expression levels in testis were lower than striatum at 3 months of age. Conclusions The testis phenotype in the BACHD rat model does not mimic the changes observed in human HD testis. The altered sexual behavior in BACHD rats at three months of age could be to a certain extent representative of and share common underlying pathways with some of the sexual disturbances in HD patients. Further investigating the biological causes of the sexual phenotype in BACHD rats may therefore contribute to clarifying the mechanisms at the base of sexual behavior changes in HD. PMID:29883458
Su, Yujing; Li, Li; Hou, Jie; Wu, Ning; Lin, Wang; Li, Guangyu
2016-06-01
Recently, MC-LR reproductive toxicity drew great attention. Limited information was available on endocrine-disrupting effects of MC-LR on the reproduction system in fish. In the present study, zebrafish hatchlings (5 d post-fertilization) were exposed to 0, 0.3, 3 and 30μg/L MC-LR for 90 d until they reached sexual maturity. Male zebrafish were selected, and changes in growth and developmental parameters, testicular histological structure as well as the levels of gonadal steroid hormones were studied along with the related-gene transcriptional responses in the hypothalamic-pituitary-gonadal axis (HPG-axis). The results, for the first time, show a life cycle exposure to MC-LR causes growth inhibition, testicular damage and delayed sperm maturation. A significant decrease in T/E2 ratio indicated that MC-LR disrupted sex steroid hormones balance. The changes in transcriptional responses of HPG-axis related genes revealed that MC-LR promoted the conversion of T to E2 in circulating blood. It was also noted that vtg1 mRNA expression in the liver was up-regulated, which implied that MC-LR could induce estrogenic-like effects at environmentally relevant concentrations and long-term exposure. Our findings indicated that a life cycle exposure to MC-LR causes endocrine disruption with organic and functional damage of the testis, which might compromise the quality of life for the survivors and pose a potent threat on fish reproduction and thus population dynamics in MCs-contaminated aquatic environments. Copyright © 2016 Elsevier B.V. All rights reserved.
SLXL1, a novel acrosomal protein, interacts with DKKL1 and is involved in fertilization in mice.
Zhuang, Xin-jie; Hou, Xiao-jun; Liao, Shang-Ying; Wang, Xiu-Xia; Cooke, Howard J; Zhang, Ming; Han, Chunsheng
2011-01-01
Spermatogenesis is a complex cellular developmental process which involves diverse families of genes. The Xlr (X-linked, lymphocyte regulated) family includes multiple members, only a few of which have reported functions in meiosis, post-meiotic maturation, and fertilization of germ cells. Slx-like1 (Slxl1) is a member of the Xlr family, whose expression and function in spermatogenesis need to be elucidated. The mRNA and protein expression and localization of Slxl1 were investigated by RT-PCR, Western blotting and immunohistochemistry in different tissues and at different stages of spermatogenesis. The interacting partner of SLXL1 was examined by co-immunoprecipitation and co-localization. Assessment of the role of SLXL1 in capacitation, acrosome reaction, zona pellucida binding/penetration, and fertilization was carried out in vitro using blocking antisera. The results showed that Slxl1 mRNA and protein were specifically expressed in the testis. SLXL1 was exclusively located in the acrosome of post-meiotic germ cells and interacts with DKKL1 (Dickkopf-like1), which is an acrosome-associated protein and plays an important role in fertilization. The rates of zona pellucida binding/penetration and fertilization were significantly reduced by the anti-SLXL1 polyclonal antiserum. SLXL1 is the first identified member of the XLR family that is associated with acrosome and is involved in zona pellucid binding/penetration and subsequent fertilization. These results, together with previous studies, suggest that Xlr family members participate in diverse processes from meiosis to fertilization during spermatogenesis.
THE GERMLINE STEM CELL NICHE UNIT IN MAMMALIAN TESTES
Oatley, Jon M.; Brinster, Ralph L.
2014-01-01
This review addresses current understanding of the germline stem cell niche unit in mammalian testes. Spermatogenesis is a classic model of tissue-specific stem cell function relying on self-renewal and differentiation of spermatogonial stem cells (SSCs). These fate decisions are influenced by a niche microenvironment composed of a growth factor milieu that is provided by several testis somatic support cell populations. Investigations over the last two decades have identified key determinants of the SSC niche including cytokines that regulate SSC functions and support cells providing these factors, adhesion molecules that influence SSC homing, and developmental heterogeneity of the niche during postnatal aging. Emerging evidence suggests that Sertoli cells are a key support cell population influencing the formation and function of niches by secreting soluble factors and possibly orchestrating contributions of other support cells. Investigations with mice have shown that niche influence on SSC proliferation differs during early postnatal development and adulthood. Moreover, there is mounting evidence of an age-related decline in niche function, which is likely influenced by systemic factors. Defining the attributes of stem cell niches is key to developing methods to utilize these cells for regenerative medicine. The SSC population and associated niche comprise a valuable model system for study that provides fundamental knowledge about the biology of tissue-specific stem cells and their capacity to sustain homeostasis of regenerating tissue lineages. While the stem cell is essential for maintenance of all self-renewing tissues and has received considerable attention, the role of niche cells is at least as important and may prove to be more receptive to modification in regenerative medicine. PMID:22535892
Sex Reversal in Zebrafish fancl Mutants Is Caused by Tp53-Mediated Germ Cell Apoptosis
Rodríguez-Marí, Adriana; Cañestro, Cristian; BreMiller, Ruth A.; Nguyen-Johnson, Alexandria; Asakawa, Kazuhide; Kawakami, Koichi; Postlethwait, John H.
2010-01-01
The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53) mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA–repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination. PMID:20661450
Bråte, Jon; Adamski, Marcin; Neumann, Ralf S; Shalchian-Tabrizi, Kamran; Adamska, Maja
2015-12-22
Long non-coding RNAs (lncRNAs) play important regulatory roles during animal development, and it has been hypothesized that an RNA-based gene regulation was important for the evolution of developmental complexity in animals. However, most studies of lncRNA gene regulation have been performed using model animal species, and very little is known about this type of gene regulation in non-bilaterians. We have therefore analysed RNA-Seq data derived from a comprehensive set of embryogenesis stages in the calcareous sponge Sycon ciliatum and identified hundreds of developmentally expressed intergenic lncRNAs (lincRNAs) in this species. In situ hybridization of selected lincRNAs revealed dynamic spatial and temporal expression during embryonic development. More than 600 lincRNAs constitute integral parts of differentially expressed gene modules, which also contain known developmental regulatory genes, e.g. transcription factors and signalling molecules. This study provides insights into the non-coding gene repertoire of one of the earliest evolved animal lineages, and suggests that RNA-based gene regulation was probably present in the last common ancestor of animals. © 2015 The Authors.
Unraveling the proteomic profile of mice testis during the initiation of meiosis.
Shao, Binbin; Guo, Yueshuai; Wang, Lei; Zhou, Quan; Gao, Tingting; Zheng, Bo; Zheng, Haoyu; Zhou, Tao; Zhou, Zuomin; Guo, Xuejiang; Huang, Xiaoyan; Sha, Jiahao
2015-04-29
In mice, once primordial germ cells (PGCs) are generated, they continue to proliferate and migrate to eventually reach the future gonads. They initiate sexual differentiation after their colonization of the gonads. During this process, retinoic acid (RA) induces meiosis in the female germ cells, which proceeds to the diplotene stage of meiotic prophase I, whereas the male germ cells initiate growth arrest. After birth, meiosis is initiated in mice spermatogonia by their conversion to preleptotene spermatocytes. There are evidences showing the roles of RA in the regulation of spermatogonial differentiation and meiosis initiation. However, it is still not well known on what responds to RA and how RA signaling engages meiosis. Thus, we constructed a proteomic profile of proteins associated with meiosis onset during testis development in mouse and identified 104 differentially expressed proteins (≥1.5 folds). Bioinformatic analysis showed proteins functioning in specific cell processes. The expression patterns of five selected proteins were verified via Western blot, of which we found that Tfrc gene was RA responsive, with a RA responsive element, and could be up regulated by RA in spermatogonial stem cell (SSC) line. Taken together, the results provide an important reference profile for further functional study of meiosis initiation. Spermatogenesis involves mitosis of spermatogonia, meiosis of spermatocytes and spermiogenesis, in which meiosis is a unique event to germ cells, and not in the somatic cells. Till now, the detailed molecular mechanisms of the transition from mitosis to meiosis are still not elucidated. With high-throughput proteomic technology, it is now possible to systemically identify proteins possibly involved. With TMT-6plex based quantification, we identified 104 proteins differentially between testes without meiosis (day 8.5) and those that were meiosis initiated (day 10.5). And a well-known protein essential for meiosis initiation, stra8, was identified to be differentially expressed in the study. And bioinformatic analysis and functional studies revealed several proteins regulated by retinoic acid, a chemical known to regulate the meiosis initiation. Thus, this quantitative proteomic approach can identify meiosis initiation regulating proteins, and further functional studies of these proteins will help elucidate the mechanisms of meiosis initiation. Copyright © 2015. Published by Elsevier B.V.
Emotion regulation: a theme in search of definition.
Thompson, R A
1994-01-01
Contemporary interest in emotion regulation promises to advance important new views of emotional development as well as offering applications to developmental psychopathology, but these potential contributions are contingent on developmentalists' attention to some basic definitional issues. This essay offers a perspective on these issues by considering how emotion regulation should be defined, the various components of the management of emotion, how emotion regulation strategies fit into the dynamics of social interaction, and how individual differences in emotion regulation should be conceptualized and measured. In the end, it seems clear that emotion regulation is a conceptual rubric for a remarkable range of developmental processes, each of which may have its own catalysts and control processes. Likewise, individual differences in emotion regulation skills likely have multifaceted origins and are also related in complex ways to the person's emotional goals and the immediate demands of the situation. Assessment approaches that focus on the dynamics of emotion are well suited to elucidating these complex developmental and individual differences. In sum, a challenging research agenda awaits those who enter this promising field of study.
Yolk protein is expressed in the insect testis and interacts with sperm
Bebas, Piotr; Kotwica, Joanna; Joachimiak, Ewa; Giebultowicz, Jadwiga M
2008-01-01
Background Male and female gametes follow diverse developmental pathways dictated by their distinct roles in fertilization. While oocytes of oviparous animals accumulate yolk in the cytoplasm, spermatozoa slough off most of their cytoplasm in the process of individualization. Mammalian spermatozoa released from the testis undergo extensive modifications in the seminal ducts involving a variety of glycoproteins. Ultrastructural studies suggest that glycoproteins are involved in sperm maturation in insects; however, their characterization at the molecular level is lacking. We reported previously that the circadian clock controls sperm release and maturation in several insect species. In the moth, Spodoptera littoralis, the secretion of glycoproteins into the seminal fluid occurs in a daily rhythmic pattern. The purpose of this study was to characterize seminal fluid glycoproteins in this species and elucidate their role in the process of sperm maturation. Results We collected seminal fluid proteins from males before and after daily sperm release. These samples were separated by 2-D gel electrophoresis, and gels were treated with a glycoprotein-detecting probe. We observed a group of abundant glycoproteins in the sample collected after sperm release, which was absent in the sample collected before sperm release. Sequencing of these glycoproteins by mass spectroscopy revealed peptides bearing homology with components of yolk, which is known to accumulate in developing oocytes. This unexpected result was confirmed by Western blotting demonstrating that seminal fluid contains protein immunoreactive to antibody against yolk protein YP2 produced in the follicle cells surrounding developing oocytes. We cloned the fragment of yp2 cDNA from S. littoralis and determined that it is expressed in both ovaries and testes. yp2 mRNA and YP2 protein were detected in the somatic cyst cells enveloping sperm inside the testis. During the period of sperm release, YP2 protein appears in the seminal fluid and forms an external coat on spermatozoa. Conclusion One of the yolk protein precursors YP2, which in females accumulate in the oocytes to provision developing embryos, appears to have a second male-specific role. It is produced in the testes and released into the seminal fluid where it interacts with sperm. These data reveal unexpected common factor in the maturation of insect eggs and sperm. PMID:18549506
Tanna, Rajiv N; Tetreault, Gerald R; Bennett, Charles J; Smith, Brendan M; Bragg, Leslie M; Oakes, Ken D; McMaster, Mark E; Servos, Mark R
2013-09-01
The variability and extent of the intersex condition (oocytes in testes, or testis-ova) was documented in fish along an urban gradient in the Grand River, Ontario, Canada, that included major wastewater treatment plant outfalls. A method for rapid enumeration of testis-ova was developed and applied that increased the capacity to quantify intersex prevalence and severity. Male rainbow darters (Etheostoma caeruleum) sampled downstream of the first major wastewater outfall (Waterloo) had a significant increase, relative to 4 upstream reference sites, in the mean proportion of fish with at least 1 testis-oocyte per lobe of testes (9-20% proportion with ≤ 1 testis-oocyte/lobe vs 32-53% and >1.4 testis-oocyte/lobe). A much higher mean incidence of intersex proportion and degree was observed immediately downstream of the second wastewater outfall (Kitchener; 73-100% and 8-70 testis-oocyte/lobe); but only 6.3 km downstream of the Kitchener outfall, the occurrence of intersex dropped to those of the reference sites. In contrast, downstream of a tertiary treated wastewater outfall on a small tributary, intersex was similar to reference sites. Estrogenicity, measured using a yeast estrogen screen, followed a similar pattern, increasing from 0.81 ± 0.02 ng/L 17b-estradiol equivalents (EEq) (Guelph), to 4.32 ± 0.07 ng/L (Waterloo), and 16.99 ± 0.40 ng/L (Kitchener). Female rainbow darter downstream of the Kitchener outfall showed significant decreases in gonadosomatic index and liver somatic index, and increases in condition factor (k) relative to corresponding reference sites. The prevalence of intersex and alterations in somatic indices suggest that exposure to municipal wastewater effluent discharges can impact endocrine function, energy use, and energy storage in wild fish. Copyright © 2013 SETAC.
Katsh, Seymour
1958-01-01
Female guinea pigs were injected with the following materials: homogenates of guinea pig testis in saline or in adjuvant; suspensions of washed guinea pig sperm in saline or in adjuvant; homogenates of rabbit testis in adjuvant; guinea pig sperm and rabbit sperm in adjuvant. Control animals were not injected or were injected with adjuvant alone. At various times between 15 and 39 days after injection, the animals were sacrificed. Their ilea and uterine horns were removed and tested in vitro for reaction to washed epididymal sperm of the guinea pig, rabbit, or bull. It was found that the animals which were injected with homologous testis or sperm in adjuvant possessed organs which responded strongly to the challenge with homologous sperm. The response was a contracture which began 10 to 30 seconds after the sperm were injected into the bath and lasted for 5 minutes to 4 hours, the longest period of observation. Responses which lasted for periods of 5 minutes to 30 minutes were obtained with the uteri of the animals injected with guinea pig testis in saline or with guinea pig sperm in saline. Animals which were injected with rabbit testis and adjuvant responded to rabbit sperm, and animals injected with guinea pig sperm and rabbit sperm in adjuvant reacted to both gametes. A large proportion of the control animals possessed organs which reacted weakly to the challenge with homologous sperm. Retesting the organ which had contracted following exposure to sperm indicated that desensitization had occurred. Testing with heterologous sperm indicated a species selectivity. The evidence is interpreted to mean that injections of sperm or testis induce a hypersensitivity which is similar in some respects but differs from true anaphylaxis. The findings are discussed from the point of view of the nature of the response and the implications regarding natural immunity to sperm. PMID:13481258
Sinha, Nilam; Puri, Pawan; Nairn, Angus C; Vijayaraghavan, Srinivasan
2013-11-01
The four isoforms of serine/threonine phosphoprotein phosphatase 1 (PP1), derived from three genes, are among the most conserved proteins known. The Ppp1cc gene encodes two alternatively spliced variants, PP1 gamma1 (PPP1CC1) and PP1 gamma2 (PPP1CC2). Global deletion of the Ppp1cc gene, which causes loss of both isoforms, results in male infertility due to impaired spermatogenesis. This phenotype was assumed to be due to the loss of PPP1CC2, which is abundant in testis. While PPP1CC2 is predominant, other PP1 isoforms are also expressed in testis. Given the significant homology between the four PP1 isoforms, the lack of compensation by the other PP1 isoforms for loss of one, only in testis, is surprising. Here we document, for the first time, expression patterns of the PP1 isoforms in postnatal developing and adult mouse testis. The timing and sites of testis expression of PPP1CC1 and PPP1CC2 in testis are nonoverlapping. PPP1CC2 is the only one of the four PP1 isoforms not detected in sertoli cells and spermatogonia. Conversely, PPP1CC2 may be the only PP1 isoform expressed in postmeiotic germ cells. Deletion of the Ppp1cc gene in germ cells at the differentiated spermatogonia stage of development and beyond in Stra8 promoter-driven Cre transgenic mice results in oligo-terato-asthenozoospermia and male infertility, thus phenocopying global Ppp1cc null (-/-) mice. Taken together, these results confirm that spermatogenic defects observed in the global Ppp1cc knockout mice and in mice expressing low levels of PPP1CC2 in testis are due to compromised functions of PPP1CC2 in meiotic and postmeiotic germ cells.
A novel gene, RSD-3/HSD-3.1, encodes a meiotic-related protein expressed in rat and human testis.
Zhang, Xiaodong; Liu, Huixian; Zhang, Yan; Qiao, Yuan; Miao, Shiying; Wang, Linfang; Zhang, Jianchao; Zong, Shudong; Koide, S S
2003-06-01
The expression of stage-specific genes during spermatogenesis was determined by isolating two segments of rat seminiferous tubule at different stages of the germinal epithelium cycle delineated by transillumination-delineated microdissection, combined with differential display polymerase chain reaction to identify the differential transcripts formed. A total of 22 cDNAs were identified and accepted by GenBank as new expressed sequence tags. One of the expressed sequence tags was radiolabeled and used as a probe to screen a rat testis cDNA library. A novel full-length cDNA composed of 2228 bp, designated as RSD-3 (rat sperm DNA no.3, GenBank accession no. AF094609) was isolated and characterized. The reading frame encodes a polypeptide consisting of 526 amino acid residues, containing a number of DNA binding motifs and phosphorylation sites for PKC, CK-II, and p34cdc2. Northern blot of mRNA prepared from various tissues of adult rats showed that RSD-3 is expressed only in the testis. The initial expression of the RSD-3 gene was detected in the testis on the 30th postnatal day and attained adult level on the 60th postnatal day. Immunolocalization of RSD-3 in germ cells of rat testis showed that its expression is restricted to primary spermatocytes, undergoing meiosis division I. A human testis homologue of RSD-3 cDNA, designated as HSD-3.1 (GenBank accession no. AF144487) was isolated by screening the Human Testis Rapid-Screen arrayed cDNA library panels by RT-PCR. The exon-intron boundaries of HSD-3.1 gene were determined by aligning the cDNA sequence with the corresponding genome sequence. The cDNA consisted of 12 exons that span approximately 52.8 kb of the genome sequence and was mapped to chromosome 14q31.3.
Development of Civic Engagement: Theoretical and Methodological Issues
ERIC Educational Resources Information Center
Lerner, Richard M.; Wang, Jun; Champine, Robey B.; Warren, Daniel J. A.; Erickson, Karl
2014-01-01
Within contemporary developmental science, models derived from relational developmental systems (RDS) metatheory emphasize that the basic process of human development involves mutually-influential relations, termed developmental regulations, between the developing individual and his or her complex and changing physical, social, and cultural…
Virtual Embryo: Cell-Agent Based Modeling of Developmental Processes and Toxicities (CSS BOSC)
Spatial regulation of cellular dynamics is fundamental to morphological development. As such, chemical disruption of spatial dynamics is a determinant of developmental toxicity. Incorporating spatial dynamics into AOPs for developmental toxicity is desired but constrained by the ...
Gay, L; Hosken, D J; Vasudev, R; Tregenza, T; Eady, P E
2009-05-01
The evolutionary factors affecting testis size are well documented, with sperm competition being of major importance. However, the factors affecting sperm length are not well understood; there are no clear theoretical predictions and the empirical evidence is inconsistent. Recently, maternal effects have been implicated in sperm length variation, a finding that may offer insights into its evolution. We investigated potential proximate and microevolutionary factors influencing testis and sperm size in the bruchid beetle Callosobruchus maculatus using a combined approach of an artificial evolution experiment over 90 generations and an environmental effects study. We found that while polyandry seems to select for larger testes, it had no detectable effect on sperm length. Furthermore, population density, a proximate indicator of sperm competition risk, was not significantly associated with sperm length or testis size variation. However, there were strong maternal effects influencing sperm length.
Conditions in utero and cancer risk.
Grotmol, Tom; Weiderpass, Elisabete; Tretli, Steinar
2006-01-01
There is increasing recognition that conditions in utero are of importance for later cancer risk in several organs, particularly the testis and breast. A review of the most recent literature on this topic is therefore warranted. The PubMed database was searched for relevant recent literature on intrauterine conditions associated with cancer risk later in life, with particular emphasis on the testis, breast, but also studies pertaining to other organs were included. Epidemiological and experimental data support the hypothesis that factors acting in utero play a role in the development of cancer in the testis and breast. For other organs, such as the prostate, urinary system and colorectum, the results are inconclusive. While conditions during foetal life are associated with later cancer risk in the testis and breast, the biological mechanisms are for the most part elusive. They are, however, likely to involve hormonal disturbances, number of cells at risk, and genetic or epigenetic events.
The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals.
Decotto, Eva; Spradling, Allan C
2005-10-01
The stem cell niches at the apex of Drosophila ovaries and testes have been viewed as distinct in two major respects. While both contain germline stem cells, the testis niche also contains "cyst progenitor" stem cells, which divide to produce somatic cells that encase developing germ cells. Moreover, while both niches utilize BMP signaling, the testis niche requires a key JAK/STAT signal. We now show, by lineage marking, that the ovarian niche also contains a second type of stem cell. These "escort stem cells" morphologically resemble testis cyst progenitor cells and their daughters encase developing cysts before undergoing apoptosis at the time of follicle formation. In addition, we show that JAK/STAT signaling also plays a critical role in ovarian niche function, and acts within escort cells. These observations reveal striking similarities in the stem cell niches of male and female gonads, and suggest that they are largely governed by common mechanisms.
Xu, Chunxiang; Zhao, Lu; Pan, Xiao; Šamaj, Jozef
2011-01-01
Background The plant cell walls play an important role in somatic embryogenesis and plant development. Pectins are major chemical components of primary cell walls while homogalacturonan (HG) is the most abundant pectin polysaccharide. Developmental regulation of HG methyl-esterification degree is important for cell adhesion, division and expansion, and in general for proper organ and plant development. Methodology/Principal Findings Developmental localization of pectic homogalacturonan (HG) epitopes and the (1→4)-β-D-galactan epitope of rhamnogalacturonan I (RG-I) and degree of pectin methyl-esterification (DM) were studied during somatic embryogenesis of banana (Musa spp. AAA). Histological analysis documented all major developmental stages including embryogenic cells (ECs), pre-globular, globular, pear-shaped and cotyledonary somatic embryos. Histochemical staining of extracellularly secreted pectins with ruthenium red showed the most intense staining at the surface of pre-globular, globular and pear-shaped somatic embryos. Biochemical analysis revealed developmental regulation of galacturonic acid content and DM in diverse embryogenic stages. Immunodots and immunolabeling on tissue sections revealed developmental regulation of highly methyl-esterified HG epitopes recognized by JIM7 and LM20 antibodies during somatic embryogenesis. Cell walls of pre-globular/globular and late-stage embryos contained both low methyl-esterified HG epitopes as well as partially and highly methyl-esterified ones. Extracellular matrix which covered surface of early developing embryos contained pectin epitopes recognized by 2F4, LM18, JIM5, JIM7 and LM5 antibodies. De-esterification of cell wall pectins by NaOH caused a decrease or an elimination of immunolabeling in the case of highly methyl-esterified HG epitopes. However, immunolabeling of some low methyl-esterified epitopes appeared stronger after this base treatment. Conclusions/Significance These data suggest that both low- and highly-methyl-esterified HG epitopes are developmentally regulated in diverse embryogenic stages during somatic embryogenesis. This study provides new information about pectin composition, HG methyl-esterification and developmental localization of pectin epitopes during somatic embryogenesis of banana. PMID:21826225
Targeted Disruption of ALK Reveals a Potential Role in Hypogonadotropic Hypogonadism
Nord, Christoffer; Ahlgren, Ulf; Eriksson, Maria; Vernersson-Lindahl, Emma; Helland, Åslaug; Alexeyev, Oleg A.; Hallberg, Bengt; Palmer, Ruth H.
2015-01-01
Mice lacking ALK activity have previously been reported to exhibit subtle behavioral phenotypes. In this study of ALK of loss of function mice we present data supporting a role for ALK in hypogonadotropic hypogonadism in male mice. We observed lower level of serum testosterone at P40 in ALK knock-out males, accompanied by mild disorganization of seminiferous tubules exhibiting decreased numbers of GATA4 expressing cells. These observations highlight a role for ALK in testis function and are further supported by experiments in which chemical inhibition of ALK activity with the ALK TKI crizotinib was employed. Oral administration of crizotinib resulted in a decrease of serum testosterone levels in adult wild type male mice, which reverted to normal levels after cessation of treatment. Analysis of GnRH expression in neurons of the hypothalamus revealed a significant decrease in the number of GnRH positive neurons in ALK knock-out mice at P40 when compared with control littermates. Thus, ALK appears to be involved in hypogonadotropic hypogonadism by regulating the timing of pubertal onset and testis function at the upper levels of the hypothalamic-pituitary gonadal axis. PMID:25955180
Drug transporters, the blood–testis barrier, and spermatogenesis
Su, Linlin; Mruk, Dolores D; Cheng, C Yan
2015-01-01
The blood–testis barrier (BTB), which is created by adjacent Sertoli cells near the basement membrane, serves as a ‘gatekeeper’ to prohibit harmful substances from reaching developing germ cells, most notably postmeiotic spermatids. The BTB also divides the seminiferous epithelium into the basal and adluminal (apical) compartment so that postmeiotic spermatid development, namely spermiogenesis, can take place in a specialized microenvironment in the apical compartment behind the BTB. The BTB also contributes, at least in part, to the immune privilege status of the testis, so that anti-sperm antibodies are not developed against antigens that are expressed transiently during spermatogenesis. Recent studies have shown that numerous drug transporters are expressed by Sertoli cells. However, many of these same drug transporters are also expressed by spermatogonia, spermatocytes, round spermatids, elongating spermatids, and elongated spermatids, suggesting that the developing germ cells are also able to selectively pump drugs ‘in’ and/or ‘out’ via influx or efflux pumps. We review herein the latest developments regarding the role of drug transporters in spermatogenesis. We also propose a model utilized by the testis to protect germ cell development from ‘harmful’ environmental toxicants and xenobiotics and/or from ‘therapeutic’ substances (e.g. anticancer drugs). We also discuss how drug transporters that are supposed to protect spermatogenesis can work against the testis in some instances. For example, when drugs (e.g. male contraceptives) that can perturb germ cell adhesion and/or maturation are actively pumped out of the testis or are prevented from entering the apical compartment, such as by efflux pumps. PMID:21134990
Jalili, Cyrus; Salahshoor, Mohammad Reza; Naseri, Ali
2014-06-01
Nicotine consumption can decrease fertility drive in males by inducing oxidative stress and DNA damage. Urtica dioica L (U.dioica) is a multipurpose herb in traditional medicine for which some anti-oxidative and anti-inflammatory properties have been identified. The main goal is to investigate whether the U.dioica could inhibit nicotine adverse effects on sperm cells viability, count, motility, and testis histology and testosterone hormone. In this study, hydro-alcoholic extract of U.dioica was prepared and various doses of U.dioica (0, 10, 20, and 50 mg/kg) and U.dioica plus nicotine (0, 10, 20, and 50 mg/kg) were administered intraperitoneally to 56 male mice for 28 consequent days. These mice were randomly assigned to 8 groups (n=7) and sperm parameters (sperm cells viability, count, motility, and morphology), testis and prostate weight, testis histology and testosterone hormone were analyzed and compared. The results indicated that nicotine administration (0.5 mg/kg) significantly decreased testosterone level, count and motility of sperm cells, and testis weight compared to control group (p=0.00). However, increasing the dose of U.dioica significantly boosted motility, count, normal morphology of sperm cells, seminiferous tubules diameter, and testosterone in all groups compared to control (p=0.00) and testis weight in 20 and 50 mg/kg doses in comparison with control group (p=0.00). It seems that U.dioica hydro-alcoholic extract administration could increase the quality of spermatozoa and inhibits nicotine-induced adverse effects on sperm parameters.
Xu, Cui-Ping; Zhu, Qing-Jun; Song, Jie; Li, Zhen; Zhang, Dan
2013-02-01
To explore the effects of Jingui Shenqi Pill (JSP) on the testis telomerase activity in mice of Shen-yang deficiency syndrome (SYDS). The SYDS model was prepared in 30 mice by over-fatigue and sexual overstrain. They were randomly divided into the model group and the JSP group, 15 in each group. Another 15 normal male mice were selected as the normal group. Mice in the normal group were fed routinely, with distilled water administered intragastrically at the daily dose of 0.1 mL/10 g. Mice in the model group were also administered intragastrically with distilled water at the daily dose of 0.1 mL/10 g while modeling establishment. Mice in the treatment group were administered intragastrically with JSP suspension at 0.1 mL/10 g (the concentration was 0.241 g/mL). The intervention lasted for 4 weeks. Four weeks later, the testis telomerase activity was detected in the three groups by ELISA. The SYDS model was replicated successfully by over-fatigue and sexual overstrain. JSP could improve the signs of mice of SYDS. Compared with the normal group, the activity of testis telomerase decreased in the model group (P < 0.01). Compared with the model group, the testis telomerase activity markedly increased in the treatment group (P < 0.01). The testis telomerase activity in mice of SYDS caused by over-fatigue and sexual overstrain obviously decreased, when compared with that in mice of the normal group. JSP could recover its activity.
Alrahel, Ahmad; Movahedin, Mansoureh; Mazaheri, Zohre; Amidi, Fardin
2018-07-01
In vitro spermatogenesis has a long research history beginning in the early 20th century. This organ culture method was therefore abandoned, and alternative cell culture methods were chosen by many researchers. Here, whether Tnp1, Tekt1, and Plzf, which play a crucial role in spermatogenesis, can be expressed during testis organ culture was assessed. Testes of 10 mouse pups were first removed, and the testis tissue was then separated into smaller pieces of seminiferous tubules. The size of the pieces was arbitrary; approximately 1 mg in weight or 1 mm3 in size when compacted. Afterwards, the testis tissue fragments (1–3) were transferred to the hexahedrons, incubated in a culture incubator and cultured for 12 weeks. Histological assessment and molecular evaluation were carried out at the end of the study. The results showed that the expression of Tekt1 as a mitotic gene in mouse pups decreased significantly (p ≤ 0.05) in comparison to adult mouse testis. Meanwhile, the expression of Tnp1 as a meiotic gene increased significantly (p ≤ 0.05) as compared to neonate mouse testis at the beginning of the culture. The expression of Plzf showed no significant difference during the 12 weeks of culture (p ≥ 0.05). Based on histological study, different types of spermatocytes and post-meiotic stages of germ cells could not be detected. This kind of three-dimensional culture can induce expression of post-meiotic gene, Tnp1, but only at the molecular level and not beyond meiosis.
Jalili, Cyrus; Salahshoor, Mohammad Reza; Naseri, Ali
2014-01-01
Background: Nicotine consumption can decrease fertility drive in males by inducing oxidative stress and DNA damage. Urtica dioica L (U.dioica) is a multipurpose herb in traditional medicine for which some anti-oxidative and anti-inflammatory properties have been identified. Objective: The main goal is to investigate whether the U.dioica could inhibit nicotine adverse effects on sperm cells viability, count, motility, and testis histology and testosterone hormone. Materials and Methods: In this study, hydro-alcoholic extract of U.dioica was prepared and various doses of U.dioica (0, 10, 20, and 50 mg/kg) and U.dioica plus nicotine (0, 10, 20, and 50 mg/kg) were administered intraperitoneally to 56 male mice for 28 consequent days. These mice were randomly assigned to 8 groups (n=7) and sperm parameters (sperm cells viability, count, motility, and morphology), testis and prostate weight, testis histology and testosterone hormone were analyzed and compared. Results: The results indicated that nicotine administration (0.5 mg/kg) significantly decreased testosterone level, count and motility of sperm cells, and testis weight compared to control group (p=0.00). However, increasing the dose of U.dioica significantly boosted motility, count, normal morphology of sperm cells, seminiferous tubules diameter, and testosterone in all groups compared to control (p=0.00) and testis weight in 20 and 50 mg/kg doses in comparison with control group (p=0.00). Conclusion: It seems that U.dioica hydro-alcoholic extract administration could increase the quality of spermatozoa and inhibits nicotine-induced adverse effects on sperm parameters. PMID:25071848
Whole-Genome Positive Selection and Habitat-Driven Evolution in a Shallow and a Deep-Sea Urchin
Oliver, Thomas A.; Garfield, David A.; Manier, Mollie K.; Haygood, Ralph; Wray, Gregory A.; Palumbi, Stephen R.
2010-01-01
Comparisons of genomic sequence between divergent species can provide insight into the action of natural selection across many distinct classes of proteins. Here, we examine the extent of positive selection as a function of tissue-specific and stage-specific gene expression in two closely-related sea urchins, the shallow-water Strongylocentrotus purpuratus and the deep-sea Allocentrotus fragilis, which have diverged greatly in their adult but not larval habitats. Genes that are expressed specifically in adult somatic tissue have significantly higher dN/dS ratios than the genome-wide average, whereas those in larvae are indistinguishable from the genome-wide average. Testis-specific genes have the highest dN/dS values, whereas ovary-specific have the lowest. Branch-site models involving the outgroup S. franciscanus indicate greater selection (ωFG) along the A. fragilis branch than along the S. purpuratus branch. The A. fragilis branch also shows a higher proportion of genes under positive selection, including those involved in skeletal development, endocytosis, and sulfur metabolism. Both lineages are approximately equal in enrichment for positive selection of genes involved in immunity, development, and cell–cell communication. The branch-site models further suggest that adult-specific genes have experienced greater positive selection than those expressed in larvae and that ovary-specific genes are more conserved (i.e., experienced greater negative selection) than those expressed specifically in adult somatic tissues and testis. Our results chart the patterns of protein change that have occurred after habitat divergence in these two species and show that the developmental or functional context in which a gene acts can play an important role in how divergent species adapt to new environments. PMID:20935062
Han, Kunhuang; Chen, Shihai; Cai, Mingyi; Jiang, Yonghua; Zhang, Ziping; Wang, Yilei
2018-04-01
In this study, three nanos gene subtypes (Lcnanos1, Lcnanos2 and Lcnanos3) from Larimichthys crocea, were cloned and characterized. We determined the spatio-temporal expression patterns of each subtype in tissues as well as the cellular localization of mRNA in embryos. Results showed that deduced Nanos proteins have two main homology domains: N-terminal CCR4/NOT1 deadenylase interaction domain and highly conserved carboxy-terminal region bearing two conserved CCHC zinc-finger motifs. The expression levels of Lcnanos1 in testis were significantly higher than other tissues, followed by heart, brain, eye, and ovary. Nevertheless, both Lcnanos2 and Lcnanos3 were restrictedly expressed in testis and ovary, respectively. No signals of Lcnanos1 and Lcnanos2 expression were detected at any developmental stages during embryogenesis. On the contrary, the signals of Lcnanos3 were detected in all stages examined. Lcnanos3 transcripts were firstly localized to the distal end of cleavage furrow at the 2-cell stage. Subsequently, mounting positive signals started to appear in a small number of cells as the embryo developed to blastula stage and early-gastrula stage. As development proceeded, positive signals were found in the primitive gonadal ridge. These cells of Lcnanos3 positive signals implied the specification of the future PGCs at this stage. It also suggested that PGCs of croaker originate from four clusters of cells which inherit maternal germ plasm at blastula stage. Furthermore, we preliminarily analyzed the migration route of PGCs in embryos of L. crocea. In short, this study laid the foundation for studies on specification and development of germ cell from L. crocea during embryogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.
Li, Shuyi; Shu, Feng-Jue; Li, Zhentian; Jaafar, Lahcen; Zhao, Shourong; Dynan, William S
2017-03-01
The tandem RNA recognition motif protein, NONO, was previously identified as a candidate DNA double-strand break (DSB) repair factor in a biochemical screen for proteins with end-joining stimulatory activity. Subsequent work showed that NONO and its binding partner, SFPQ, have many of the properties expected for bona fide repair factors in cell-based assays. Their contribution to the DNA damage response in intact tissue in vivo has not, however, been demonstrated. Here we compare DNA damage sensitivity in the testes of wild-type mice versus mice bearing a null allele of the NONO homologue (Nono gt ). In wild-type mice, NONO protein was present in Sertoli, peritubular myoid, and interstitial cells, with an increase in expression following induction of DNA damage. As expected for the product of an X-linked gene, NONO was not detected in germ cells. The Nono gt/0 mice had at most a mild testis developmental phenotype in the absence of genotoxic stress. However, following irradiation at sublethal, 2-4 Gy doses, Nono gt/0 mice displayed a number of indicators of radiosensitivity as compared to their wild-type counterparts. These included higher levels of persistent DSB repair foci, increased numbers of apoptotic cells in the seminiferous tubules, and partial degeneration of the blood-testis barrier. There was also an almost complete loss of germ cells at later times following irradiation, evidently arising as an indirect effect reflecting loss of stromal support. Results demonstrate a role for NONO protein in protection against direct and indirect biological effects of ionizing radiation in the whole animal. Copyright © 2017 Elsevier B.V. All rights reserved.
Miryounesi, Mohammad; Nayernia, Karim; Mobasheri, Maryam Beigom; Dianatpour, Mahdi; Oko, Richard; Savad, Shahram; Modarressi, Mohammad Hossein
2014-10-01
In vitro generation of germ cells introduces a novel approach to male infertility and provides an effective system in gene tracking studies, however many aspects of this process have remained unclear. We aimed to promote mouse embryonic stem cells (mESC) differentiation into germ cells and evaluate its effectiveness with tracking the expression of the Tsga10 during this process. mESCs were differentiated into germ cells in the presence of Retinoic Acid. Based on developmental schedule of the postnatal testis, samples were taken on the 7th, 12th, and 25th days of the culture and were subjected to expression analysis of a panel of germ cell specific genes. Expression of Tsga10 in RNA and protein levels was then analyzed. Transition from mitosis to meiosis occurred between 7th and 12th days of mESC culture and post-meiotic gene expression did not occur until the 25th day of the culture. Results showed low level of Tsga10expression in undifferentiated stem cells. During transition from meiotic to post-meiotic phase, Tsga10 expression increased in 6.6 folds. This finding is in concordance with in vivo changes during transition from pre-pubertal to pubertal stage. Localization of processed and unprocessed forms of the related protein was similar to those in vivo as well. Expression pattern of Tsga10, as a gene with critical function in spermatogenesis, is similar during in vitro and in vivo germ cell generation. The results suggest that in vitro derived germ cells could be a trusted model to study genes behavior during spermatogenesis.
29 CFR 1952.384 - Completed developmental steps.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 9 2010-07-01 2010-07-01 false Completed developmental steps. 1952.384 Section 1952.384 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION....384 Completed developmental steps. (a) In accordance with the requirements of § 1952.10, Puerto Rico's...
29 CFR 1902.33 - Developmental period.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... consideration of developmental changes by OSHA. Generally, whenever a State completes a developmental step, it must submit the resulting plan change as a supplement to its plan to OSHA for approval. OSHA's approval...
29 CFR 1902.33 - Developmental period.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... consideration of developmental changes by OSHA. Generally, whenever a State completes a developmental step, it must submit the resulting plan change as a supplement to its plan to OSHA for approval. OSHA's approval...
O’Brien, Emma D.; Krapf, Darío; Cabada, Marcelo O.; Visconti, Pablo E.; Arranz, Silvia E.
2014-01-01
Sperm motility is essential for achieving fertilization. In animals with external fertilization as amphibians, spermatozoa are stored in a quiescent state in the testis. Spermiation to hypotonic fertilization media triggers activation of sperm motility. Bufo arenarum sperm are immotile in artificial seminal plasma (ASP) but acquire in situ flagellar beating upon dilution. In addition to the effect of low osmolarity on sperm motility activation, we report that diffusible factors of the egg jelly coat (EW) regulate motility patterns, switching from in situ to progressive movement. The signal transduction pathway involved in amphibian sperm motility activation is mostly unknown. In the present study, we show a correlation between motility activation triggered by low osmotic pressure and activation of protein kinase A (PKA). Moreover, this is the first study to present strong evidences that point toward a role of a transmembrane adenyl-cyclase (tmAC) in the regulation of amphibian sperm motility through PKA activation. PMID:21126515
Graf, Philipp; Dolzblasz, Alicja; Würschum, Tobias; Lenhard, Michael; Pfreundt, Ulrike; Laux, Thomas
2010-03-01
Maintenance of stem cells in the Arabidopsis thaliana shoot meristem is regulated by signals from the underlying cells of the organizing center, provided through the transcription factor WUSCHEL (WUS). Here, we report the isolation of several independent mutants of MGOUN1 (MGO1) as genetic suppressors of ectopic WUS activity and enhancers of stem cell defects in hypomorphic wus alleles. mgo1 mutants have previously been reported to result in a delayed progression of meristem cells into differentiating organ primordia (Laufs et al., 1998). Genetic analyses indicate that MGO1 functions together with WUS in stem cell maintenance at all stages of shoot and floral meristems. Synergistic interactions of mgo1 with several chromatin mutants suggest that MGO1 affects gene expression together with chromatin remodeling pathways. In addition, the expression states of developmentally regulated genes are randomly switched in mgo1 in a mitotically inheritable way, indicating that MGO1 stabilizes epigenetic states against stochastically occurring changes. Positional cloning revealed that MGO1 encodes a putative type IB topoisomerase, which in animals and yeast has been shown to be required for regulation of DNA coiling during transcription and replication. The specific developmental defects in mgo1 mutants link topoisomerase IB function in Arabidopsis to stable propagation of developmentally regulated gene expression.
USDA-ARS?s Scientific Manuscript database
The SAND domain protein ULTRAPETALA1 (ULT1) functions as a trithorax group factor that regulates a variety of developmental processes in Arabidopsis. We have recently shown that ULT1 regulates developmental patterning in the gynoecia and leaves. ULT1 acts together with the KANADI1 (KAN1) transcripti...
ERIC Educational Resources Information Center
Hudesman, John; Crosby, Sara; Ziehmke, Niesha; Everson, Howard; Issac, Sharlene; Flugman, Bert; Zimmerman, Barry; Moylan, Adam
2014-01-01
The authors describe an Enhanced Formative Assessment and Self-Regulated Learning (EFA-SRL) program designed to improve the achievement of community college students enrolled in developmental mathematics courses. Their model includes the use of specially formatted quizzes designed to assess both the students' mathematics and metacognitive skill…
ERIC Educational Resources Information Center
Schilling, Oliver K.; Wahl, Hans-Werner; Boerner, Kathrin; Horowitz, Amy; Reinhardt, Joann P.; Cimarolli, Verena R.; Brennan-Ing, Mark; Heckhausen, Jutta
2016-01-01
The present study addresses older adults' developmental regulation when faced with progressive and irreversible vision loss. We used the motivational theory of life span development as a conceptual framework and examined changes in older adults' striving for control over everyday goal achievement, and their association with affective well-being,…
ERIC Educational Resources Information Center
Bol, Linda; Campbell, Karen D. Y.; Perez, Tony; Yen, Cherng-Jyh
2016-01-01
The effects of training in self-regulation on metacognition and math achievement were investigated. The participants were 116 community college students enrolled in developmental math courses. Students enrolled in 16 classrooms were randomly assigned to the treatment and control groups. Participants in the treatment group completed four…
USDA-ARS?s Scientific Manuscript database
Previously, we demonstrated that the insulin and amino acid–induced activation of the mammalian target of rapamycin complex 1 (mTORC1), is developmentally regulated in neonatal pigs. Recent studies have indicated an important role of the System A transporters (SNAT2 and SLC1A5) and the L transporter...
Conscientiousness: Origins in Childhood?
Eisenberg, Nancy; Duckworth, Angela L.; Spinrad, Tracy L.; Valiente, Carlos
2012-01-01
In this review, we evaluate developmental and personality research with the aim of determining if the personality trait of conscientiousness can be identified in children and adolescents. After concluding that conscientiousness does emerge in childhood, we discuss the developmental origins of conscientiousness with a specific focus on self-regulation, academic motivation, and internalized compliance/internalization of standards. Based on the accumulated body of evidence, we conclude that self-regulation fosters conscientiousness later in life, both directly and via academic motivation and internalized compliance with norms. We argue that elements of conscientiousness are evident by early childhood, self-regulation skills are likely a core developmental component of conscientiousness, and despite the contribution of heredity to the aforementioned aspects of functioning, environmental factors likely contribute to conscientiousness. PMID:23244405
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovacik, Meric A.; Sen, Banalata; Euling, Susan Y.
Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significancemore » analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data.« less
Yu, Da-Hai; Ware, Carol; Waterland, Robert A.; Zhang, Jiexin; Chen, Miao-Hsueh; Gadkari, Manasi; Kunde-Ramamoorthy, Govindarajan; Nosavanh, Lagina M.
2013-01-01
During development, a small but significant number of CpG islands (CGIs) become methylated. The timing of developmentally programmed CGI methylation and associated mechanisms of transcriptional regulation during cellular differentiation, however, remain poorly characterized. Here, we used genome-wide DNA methylation microarrays to identify epigenetic changes during human embryonic stem cell (hESC) differentiation. We discovered a group of CGIs associated with developmental genes that gain methylation after hESCs differentiate. Conversely, erasure of methylation was observed at the identified CGIs during subsequent reprogramming to induced pluripotent stem cells (iPSCs), further supporting a functional role for the CGI methylation. Both global gene expression profiling and quantitative reverse transcription-PCR (RT-PCR) validation indicated opposing effects of CGI methylation in transcriptional regulation during differentiation, with promoter CGI methylation repressing and 3′ CGI methylation activating transcription. By studying diverse human tissues and mouse models, we further confirmed that developmentally programmed 3′ CGI methylation confers tissue- and cell-type-specific gene activation in vivo. Importantly, luciferase reporter assays provided evidence that 3′ CGI methylation regulates transcriptional activation via a CTCF-dependent enhancer-blocking mechanism. These findings expand the classic view of mammalian CGI methylation as a mechanism for transcriptional silencing and indicate a functional role for 3′ CGI methylation in developmental gene regulation. PMID:23459939
Cyber "Pokes": Motivational Antidote for Developmental College Readers
ERIC Educational Resources Information Center
Bowers-Campbell, Joy
2008-01-01
Difficulties characterizing developmental college students are reviewed within the context of motivational theories of learning. The author highlights problems of low self-efficacy and inadequate self-regulated learning for developmental college students. The author argues that the use of Facebook, a widely-used social networking technology, may…
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Industrial mobilization, engineering, developmental, or research capability, or expert services. 206.302-3 Section 206.302-3 Federal..., engineering, developmental, or research capability, or expert services. ...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Industrial mobilization, engineering, developmental, or research capability, or expert services. 206.302-3 Section 206.302-3 Federal..., engineering, developmental, or research capability, or expert services. ...
Localization of S-100 proteins in the testis and epididymis of poultry and rabbits
Abd-Elmaksoud, Ahmed; Marei, Hany E. S.
2014-01-01
The present investigation was conducted to demonstrate S-100 protein in the testis and epididymis of adult chickens, Sudani ducks, pigeons, and rabbits. This study may represent the first indication for the presence of S-100 in the male reproductive organs of these species and might therefore serve as a milestone for further reports. In the testis of chickens, pigeons and rabbits, intense S-100 was seen in Sertoli cells. S-100 was also seen in the endothelial lining of blood vessels in rabbit testis. On the contrary, no S-100 reaction was detected in the Sertoli cells of Sudani ducks. In epididymis, the localization of S-100 had varied according to species studied; it was seen in the basal cells (BC) of epididymal duct in duck, non-ciliated cells of the distal efferent ductules in pigeons and ciliated cells of the efferent ductules and BC of rabbit epididymis. Conversely, S-100 specific staining was not detected in the epithelial lining of the rooster and pigeon epididymal duct as well as the principal cells of the rabbit epididymis. In conclusion, the distribution of the S-100 proteins in the testis and epididymis might point out to its roles in the male reproduction. PMID:25276477
Zhao, Jian; Zhai, Lingling; Liu, Zheng; Wu, Shuang; Xu, Liping
2014-01-01
Objective. This study evaluated the effects of obesity on the function of reproductive organs in male mice and the possible mechanism of male secondary hypogonadism (SH) in obesity. Methods. Ninety-six mice were randomly assigned to three groups: the control group, diet-induced obesity group, and diet-induced obesity resistant group for 8 weeks and 19 weeks. The effects of short- and long-term high-fat diet on the reproductive organs were determined by measuring sperm count and motility, relative testis weight, testosterone level, pathological changes and apoptosis of Leydig cells. Oxidative stress was evaluated by determining malondialdehyde, H2O2, NO levels, and GSH in testis tissues. CAT, SOD, GSH-Px and Nrf2 mRNA were measured by real-time PCR. Results. Short- and long-term high-fat diet decreased sperm count and motility, relative testis weight, testosterone level; decreased CAT, SOD, GSH-Px and Nrf2 mRNA expression; increased MDA, H2O2, NO and leptin levels; inhibited the activity of CAT and GSH-Px enzymes. Pathological injury and apoptosis of Leydig cells were found in testis tissue. Conclusions. Pathological damage of Leydig cells, oxidative stress in testis tissue, and high level of leptin may provide some evidence to clarify the mechanisms of male SH in obesity. PMID:24829619
Schoeller, Erica L.; Albanna, Gabriella; Frolova, Antonina I.; Moley, Kelle H.
2012-01-01
The mechanism responsible for poor reproductive outcomes in type 1 diabetic males is not well understood. In light of new evidence that the Sertoli cells of the testis secrete insulin, it is currently unclear whether diabetic subfertility is the result of deficiency of pancreatic insulin, testicular insulin, or both. In this study, the Akita mouse diabetic model, which expresses a mutant, nonfunctional form of ins2 in testes and pancreas, was used to distinguish between systemic and local effects of insulin deficiency on the process of spermatogenesis and fertility. We determined that Akita homozygous male mice are infertile and have reduced testis size and abnormal morphology. Spermatogonial germ cells are still present but are unable to mature into spermatocytes and spermatids. Exogenous insulin treatment regenerates testes and restores fertility, but this plasma insulin cannot pass through the blood-testis barrier. We conclude that insulin does not rescue fertility through direct interaction with the testis; instead, it restores function of the hypothalamic-pituitary-gonadal axis and, thus, normalizes hormone levels of luteinizing hormone and testosterone. Although we show that the Sertoli cells of the testis secrete insulin protein, this insulin does not appear to be critical for fertility. PMID:22522616
Odacı, E; Hancı, H; Yuluğ, E; Türedi, S; Aliyazıcıoğlu, Y; Kaya, H; Çolakoğlu, S
2016-01-01
We investigated the effects of exposure in utero to a 900 megahertz (MHz) electromagnetic field (EMF) on 60-day-old rat testis and epididymis. Pregnant rats were divided into control (CG; no treatment) and EMF (EMFG) groups. The EMFG was exposed to 900 MHz EMF for 1 h each day during days 13 - 21 of pregnancy. Newborn rats were either newborn CG (NCG) or newborn EMF groups (NEMFG). On postnatal day 60, a testis and epididymis were removed from each animal. Epididymal semen quality, and lipid and DNA oxidation levels, apoptotic index and histopathological damage to the testis were compared. We found a higher apoptotic index, greater DNA oxidation levels and lower sperm motility and vitality in the NEMFG compared to controls. Immature germ cells in the seminiferous tubule lumen, and altered seminiferous tubule epithelium and seminiferous tubule structure also were observed in hematoxylin and eosin stained sections of NEMFG testis. Nuclear changes that indicated apoptosis were identified in TUNEL stained sections and large numbers of apoptotic cells were observed in most of the seminiferous tubule epithelium in the NEMFG. Sixty-day-old rat testes exposed to 900 MHz EMF exhibited altered sperm quality and biochemical characteristics.
Lysophosphatidic acid acts as a nutrient-derived developmental cue to regulate early hematopoiesis
Li, Haisen; Yue, Rui; Wei, Bin; Gao, Ge; Du, Jiulin; Pei, Gang
2014-01-01
Primitive hematopoiesis occurs in the yolk sac blood islands during vertebrate embryogenesis, where abundant phosphatidylcholines (PC) are available as important nutrients for the developing embryo. However, whether these phospholipids also generate developmental cues to promote hematopoiesis is largely unknown. Here, we show that lysophosphatidic acid (LPA), a signaling molecule derived from PC, regulated hemangioblast formation and primitive hematopoiesis. Pharmacological and genetic blockage of LPA receptor 1 (LPAR1) or autotoxin (ATX), a secretory lysophospholipase that catalyzes LPA production, inhibited hematopoietic differentiation of mouse embryonic stem cells and impaired the formation of hemangioblasts. Mechanistic experiments revealed that the regulatory effect of ATX-LPA signaling was mediated by PI3K/Akt-Smad pathway. Furthermore, during in vivo embryogenesis in zebrafish, LPA functioned as a developmental cue for hemangioblast formation and primitive hematopoiesis. Taken together, we identified LPA as an important nutrient-derived developmental cue for primitive hematopoiesis as well as a novel mechanism of hemangioblast regulation. PMID:24829209
Lysophosphatidic acid acts as a nutrient-derived developmental cue to regulate early hematopoiesis.
Li, Haisen; Yue, Rui; Wei, Bin; Gao, Ge; Du, Jiulin; Pei, Gang
2014-06-17
Primitive hematopoiesis occurs in the yolk sac blood islands during vertebrate embryogenesis, where abundant phosphatidylcholines (PC) are available as important nutrients for the developing embryo. However, whether these phospholipids also generate developmental cues to promote hematopoiesis is largely unknown. Here, we show that lysophosphatidic acid (LPA), a signaling molecule derived from PC, regulated hemangioblast formation and primitive hematopoiesis. Pharmacological and genetic blockage of LPA receptor 1 (LPAR1) or autotoxin (ATX), a secretory lysophospholipase that catalyzes LPA production, inhibited hematopoietic differentiation of mouse embryonic stem cells and impaired the formation of hemangioblasts. Mechanistic experiments revealed that the regulatory effect of ATX-LPA signaling was mediated by PI3K/Akt-Smad pathway. Furthermore, during in vivo embryogenesis in zebrafish, LPA functioned as a developmental cue for hemangioblast formation and primitive hematopoiesis. Taken together, we identified LPA as an important nutrient-derived developmental cue for primitive hematopoiesis as well as a novel mechanism of hemangioblast regulation. © 2014 The Authors.
Effects of dietary soybean isoflavones (SI) on reproduction in the young breeder rooster.
Heng, Dai; Zhang, Tao; Tian, Ye; Yu, Shangyu; Liu, Wenbo; Xu, Kaili; Liu, Juan; Ding, Yu; Zhu, Baochang; Yang, Yanzhou; Zhang, Cheng
2017-02-01
Soybean isoflavones (SIs) are phytoestrogens that competitive with estrogens in body. Although SIs play an important role in reproduction, their role in testicular development in roosters is unknown. This study was conducted to investigate the effect of SIs on testicular development and serum reproductive hormone profiles in young breeder roosters (70-133days old). Gene expression of steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase (3β-HSD), which are related to testosterone synthesis, in rooster testis were also evaluated after treatment with different SI doses. Although SIs had no significant effect on body weight, 5mg/kg SIs significantly increased the testis index and serum levels of reproductive hormones (gonadotropin releasing hormone, follicle- stimulating hormone, luteinizing hormone, and testosterone).To further investigate whether SIs regulate hormone synthesis via StAR, p450scc, 3β-HSD, real time-PCR was performed to measure the mRNA levels of the corresponding genes. The results showed that 5mg/kg of SIs significantly increased StAR mRNA levels. However, there were no significant effects on p450scc or 3β-HSD mRNA levels. Moreover, the spermatogonial development and the number of germ cell layers were increased by treatment with 5mg/kg of SIs. These results suggest that SIs promote testicular growth by increasing reproductive hormone secretion, which is closely related to StAR expression, to positively regulate reproduction in young roosters. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Nan; Cheng, C. Yan
2016-01-01
mTOR (mammalian target of rapamycin) is one of the most important signaling molecules in mammalian cells which regulates an array of cellular events, ranging from cell metabolism to cell proliferation. Based on the association of mTOR with the core component proteins, such as Raptor or Rictor, mTOR can become the mTORC1 (mammalian target of rapamycin complex 1) or mTORC2, respectively. Studies have shown that during the epithelial cycle of spermatogenesis, mTORC1 promotes remodeling and restructuring of the blood-testis barrier (BTB) in vitro and in vivo, making the Sertoli cell tight junction (TJ)-permeability barrier “leaky”; whereas mTORC2 promotes BTB integrity, making the Sertoli cell TJ-barrier “tighter”. These contrasting effects, coupled with the spatiotemporal expression of the core signaling proteins at the BTB that confer the respective functions of mTORC1 vs. mTORC2 thus provide a unique mechanism to modulate BTB dynamics, allowing or disallowing the transport of biomolecules and also preleptotene spermatocytes across the immunological barrier. More importantly, studies have shown that these changes to BTB dynamics conferred by mTORC1 and mTORC2 are mediated by changes in the organization of the actin microfilament networks at the BTB, and involve gap junction (GJ) intercellular communication. Since GJ has recently been shown to be crucial to reboot spermatogenesis and meiosis following toxicant-induced aspermatogenesis, these findings thus provide new insightful information regarding the integration of mTOR and GJ to regulate spermatogenesis. PMID:26957088
Hou, Jie; Su, Yujing; Lin, Wang; Guo, Honghui; Li, Li; Anderson, Donald M; Li, Dapeng; Tang, Rong; Chi, Wei; Zhang, Xi
2018-05-14
Waterborne microcystin-LR (MC-LR) has been reported to disrupt sex hormones, while its estrogenic potency remains controversial. We hypothesized that MC-LR could induce estrogenic effects via disrupting sex hormone synthesis, and verified this hypothesis by in vitro and in vivo assays. Effects of MC-LR (1, 10, 100, 500, 1000 and 5000 μg/L) on steroidogenesis were assessed in the H295R cells after 48 h. The contents of 17β-estradiol (E2) and testosterone (T) increased in a non-dose-dependent manner, which showed positive correlations with the expression of steroidogenic genes. In the in vivo assay, adult male zebrafish were exposed to 0.3, 1, 3, 10 and 30 μg/L MC-LR for 30 d. Similarly, E2 and T contents in the testis were increased, accompanied by extensive up-regulation of steroidogenic genes, especially cyp19a. Meanwhile, the percentage of spermatid in the testis declined. In the liver, the vtg1 gene was significantly up-regulated while both the transcriptional and protein levels of the estrogenic receptor (ER) declined. These results indicate that MC-LR induced non-dose-dependent estrogenic effects at environmental concentrations, which may result from steroidogenesis stimulation via a non-ER-mediated pathway. Our findings support a paradigm shift in the risk assessment of MC-LR from traditional toxicity to estrogenic risk, particularly at low concentrations, and emphasize the potential threat to the male reproductive capacity of wildlife in bloom areas. Copyright © 2018 Elsevier Ltd. All rights reserved.
Reyes-Bermudez, Alejandro; Villar-Briones, Alejandro; Ramirez-Portilla, Catalina; Hidaka, Michio; Mikheyev, Alexander S.
2016-01-01
Corals belong to the most basal class of the Phylum Cnidaria, which is considered the sister group of bilaterian animals, and thus have become an emerging model to study the evolution of developmental mechanisms. Although cell renewal, differentiation, and maintenance of pluripotency are cellular events shared by multicellular animals, the cellular basis of these fundamental biological processes are still poorly understood. To understand how changes in gene expression regulate morphogenetic transitions at the base of the eumetazoa, we performed quantitative RNA-seq analysis during Acropora digitifera’s development. We collected embryonic, larval, and adult samples to characterize stage-specific transcription profiles, as well as broad expression patterns. Transcription profiles reconstructed development revealing two main expression clusters. The first cluster grouped blastula and gastrula and the second grouped subsequent developmental time points. Consistently, we observed clear differences in gene expression between early and late developmental transitions, with higher numbers of differentially expressed genes and fold changes around gastrulation. Furthermore, we identified three coexpression clusters that represented discrete gene expression patterns. During early transitions, transcriptional networks seemed to regulate cellular fate and morphogenesis of the larval body. In late transitions, these networks seemed to play important roles preparing planulae for switch in lifestyle and regulation of adult processes. Although developmental progression in A. digitifera is regulated to some extent by differential coexpression of well-defined gene networks, stage-specific transcription profiles appear to be independent entities. While negative regulation of transcription is predominant in early development, cell differentiation was upregulated in larval and adult stages. PMID:26941230
Liarte, Sergio; Chaves-Pozo, Elena; García-Alcazar, Alicia; Mulero, Victoriano; Meseguer, José; García-Ayala, Alfonsa
2007-01-01
Background Leukocytes are found within the testis of most, if not all, mammals and are involved in immunological surveillance, physiological regulation and tissue remodelling. The testis of seasonal breeding fish undergoes a regression process. In the present study, the second reproductive cycle (RC) of the protandrous seasonal teleost fish, gilthead seabream, was investigated and the presence of leukocytes analysed. Special attention has been paid to the testicular degenerative process which is particularly active in the last stage of the second RC probably due to the immediacy of the sex change process. Methods Sexually mature specimens (n = 10–18 fish/month) were sampled during the second RC. Some specimens were intraperitoneally injected with bromodeoxyuridin (BrdU) before sampling. Light and electron microscopy was used to determine the different stages of gonadal development and the presence of leukocytes and PCR was used to analyse the gene expression of a testis-differentiating gene and of specific markers for macrophages and B and T lymphocytes. Immunocytochemistry and flow cytometry were performed using a specific antibody against acidophilic granulocytes from the gilthead seabream. Cell proliferation was detected by immunocytochemistry using an anti-BrdU antibody and apoptotic cells by in situ detection of DNA fragmentation. Results The fish in the western Mediterranean area developed as males during the first two RCs. The testis of all the specimens during the second RC underwent a degenerative process, which started at post-spawning and was enhanced during the testicular involution stage, when vitellogenic oocytes appeared in the ovary accompanied by a progressive increase in the ovarian index. However, only 40% of specimens were females in the third RC. Leukocytes (acidophilic granulocytes, macrophages and lymphocytes) were present in the gonad and acidophilic granulocyte infiltration occurred during the last two stages. At the same time DMRT1 gene expression decreased. Conclusions The results demonstrate that innate and adaptive immune cells are present in the gonads of gilthead seabream. Moreover, the whole fish population underwent a testicular degenerative process prior to sex change, characterized by high rates of apoptosis and necrosis and accompanied by an infiltration of acidophilic granulocytes and a decrease in DMRT1 levels. PMID:17547755
29 CFR 1956.62 - Completion of developmental steps and certification. [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 9 2010-07-01 2010-07-01 false Completion of developmental steps and certification. [Reserved] 1956.62 Section 1956.62 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND... EMPLOYEE PLANS New Jersey § 1956.62 Completion of developmental steps and certification. [Reserved] ...
ERIC Educational Resources Information Center
Zimmermann, Peter; Thompson, Ross A.
2014-01-01
Research on the development of emotion regulation has become a prominent topic in developmental science covering a broad age range from infancy to old age because of its theoretical importance and practical implications. This introductory essay of this special section includes reflections on some of the conceptual themes of this research field and…
USDA-ARS?s Scientific Manuscript database
Previously we demonstrated that the insulinand amino acid-induced activation of the mammalian target of rapamycin complex 1 (mTORC1) is developmentally regulated in neonatal pigs. Recent studies have indicated that members of the System A transporter (SNAT2), the System N transporter (SNAT3), the Sy...
1983-02-23
We propose to amend the 1978 Medicaid regulations on intermediate care facility services for the mentally retarded and persons with related conditions to correct the definition of "persons with related conditions". This definition, because of an inadvertent error in 1978, is currently tied to the definition of developmental disability in the Developmental Disabilities Assistance and Bill of Rights Act (DDABRA) as amended in 1978. The DDABRA, as amended, covers the mentally ill. The 1978 regulations intended to make "no substantive change" to prior Medicaid regulations which did not cover the mentally ill. The cross-reference to the DDABRA produced the unintended result of incorporating into Medicaid regulations the revision to the definition of the developmentally disabled created by the 1978 amendments to the DDABRA and may tend to cause confusion about the kind of care that is covered by the Medicaid program. Therefore, a correction of this drafting error is necessary. To avoid results of this kind in the future this proposal would establish a Medicaid definition of conditions related to mental retardation that would meet specific needs of the Medicaid program and would be independent of the definition of developmental disability in the DDABRA.
Developmental instability: measures of resistance and resilience using pumpkin (Cucurbita pepo L.)
Freeman, D. Carl; Brown, Michelle L.; Dobson, Melissa; Jordan, Yolanda; Kizy, Anne; Micallef, Chris; Hancock, Leandria C.; Graham, John H.; Emlen, John M.
2003-01-01
Fluctuating asymmetry measures random deviations from bilateral symmetry, and thus estimates developmental instability, the loss of ability by an organism to regulate its development. There have been few rigorous tests of this proposition. Regulation of bilateral symmetry must involve either feedback between the sides or independent regulation toward a symmetric set point. Either kind of regulation should decrease asymmetry over time, but only right–left feedback produces compensatory growth across sides, seen as antipersistent growth following perturbation. Here, we describe the developmental trajectories of perturbed and unperturbed leaves of pumpkin, Cucurbita pepoL., grown at three densities. Covering one side of a leaf with aluminium foil for 24 h perturbed leaf growth. Reduced growth on the perturbed side caused leaves to become more asymmetrical than unperturbed controls. After the treatment the size-corrected asymmetry decreased over time. In addition, rescaled range analysis showed that asymmetry was antipersistent rather than random, i.e. fluctuation in one direction was likely to be followed by fluctuations in the opposite direction. Development involves right–left feedback. This feedback reduced size-corrected asymmetry over time most strongly in the lowest density treatment suggesting that developmental instability results from a lack of resilience rather than resistance.
Developmental model of static allometry in holometabolous insects.
Shingleton, Alexander W; Mirth, Christen K; Bates, Peter W
2008-08-22
The regulation of static allometry is a fundamental developmental process, yet little is understood of the mechanisms that ensure organs scale correctly across a range of body sizes. Recent studies have revealed the physiological and genetic mechanisms that control nutritional variation in the final body and organ size in holometabolous insects. The implications these mechanisms have for the regulation of static allometry is, however, unknown. Here, we formulate a mathematical description of the nutritional control of body and organ size in Drosophila melanogaster and use it to explore how the developmental regulators of size influence static allometry. The model suggests that the slope of nutritional static allometries, the 'allometric coefficient', is controlled by the relative sensitivity of an organ's growth rate to changes in nutrition, and the relative duration of development when nutrition affects an organ's final size. The model also predicts that, in order to maintain correct scaling, sensitivity to changes in nutrition varies among organs, and within organs through time. We present experimental data that support these predictions. By revealing how specific physiological and genetic regulators of size influence allometry, the model serves to identify developmental processes upon which evolution may act to alter scaling relationships.
Wong, Elissa WP; Lie, Pearl PY; Li, Michelle WM; Mruk, Dolores D; Yan, Helen HN; Mok, Ka-Wai; Mannu, Jayakanthan; Mathur, Premendu P; Lui, Wing-yee; Lee, Will M; Bonanomi, Michele; Silvestrini, Bruno
2011-01-01
The blood-testis barrier (BTB) is a unique ultrastructure in the mammalian testis. Unlike other blood-tissue barriers, such as the blood-brain barrier and the blood-ocular (or blood-retina) barrier which formed by tight junctions (TJ) between endothelial cells of the microvessels, the BTB is constituted by coexisting TJ, basal ectoplasmic specialization (basal ES), desmosomes and gap junctions between adjacent Sertoli cells near the basement membrane of the seminiferous tubule. The BTB also divides the seminiferous epithelium into the apical (or adluminal) and basal compartments so that meiosis I and II and post-meiotic germ cell development can all take place in a specialized microenvironment in the apical compartment behind the BTB. While the unusual anatomical features of the BTB have been known for decades, the physiological function of the coexisting junctions, in particular the desmosome and gap junction, that constitute the BTB was unknown until recently. Based on recently published findings, we critically evaluate the role of the desmosome and gap junction that serve as a signaling platform to coordinate the “opening” and “closing” of the TJ-permeability barrier conferred by TJ and basal ES during the seminiferous epithelial cycle of spermatogenesis. This is made possible by polarity proteins working in concert with nonreceptor protein tyrosine kinases, such as focal adhesion kinase (FAK) and c-Src, at the site to regulate endosome-mediated protein trafficking events (e.g., endocytosis, transcytosis, recycling or protein degradation). These events not only serve to destabilize the existing “old” BTB above preleptotene spermatocytes in transit in “clones” at the BTB, but also contribute to the assembly of “new” BTB below the transiting spermatocytes. Furthermore, hemidesmosomes at the Sertoli cell-basement membrane interface also contribute to the BTB restructuring events at stage VIII of the epithelial cycle. Additionally, the findings that a gap junction at the BTB provides a possible route for the passage of toxicants [e.g., bisphenol A (BPA)] and potential male contraceptives (e.g., adjudin) across the BTB also illustrate that these coexisting junctions, while helpful to maintain the immunological barrier integrity during the transit of spermatocytes, can be the “gateway” to making the BTB so vulnerable to toxicants and/or chemicals, causing male reproductive dysfunction. PMID:22319658
Gonadal Identity in the Absence of Pro-Testis Factor SOX9 and Pro-Ovary Factor Beta-Catenin in Mice1
Nicol, Barbara; Yao, Humphrey H.-C.
2015-01-01
Sex-reversal cases in humans and genetic models in mice have revealed that the fate of the bipotential gonad hinges upon the balance between pro-testis SOX9 and pro-ovary beta-catenin pathways. Our central query was: if SOX9 and beta-catenin define the gonad's identity, then what do the gonads become when both factors are absent? To answer this question, we developed mouse models that lack either Sox9, beta-catenin, or both in the somatic cells of the fetal gonads and examined the morphological outcomes and transcriptome profiles. In the absence of Sox9 and beta-catenin, both XX and XY gonads progressively lean toward the testis fate, indicating that expression of certain pro-testis genes requires the repression of the beta-catenin pathway, rather than a direct activation by SOX9. We also observed that XY double knockout gonads were more masculinized than their XX counterpart. To identify the genes responsible for the initial events of masculinization and to determine how the genetic context (XX vs. XY) affects this process, we compared the transcriptomes of Sox9/beta-catenin mutant gonads and found that early molecular changes underlying the XY-specific masculinization involve the expression of Sry and 21 SRY direct target genes, such as Sox8 and Cyp26b1. These results imply that when both Sox9 and beta-catenin are absent, Sry is capable of activating other pro-testis genes and drive testis differentiation. Our findings not only provide insight into the mechanism of sex determination, but also identify candidate genes that are potentially involved in disorders of sex development. PMID:26108792
Chen, Haiqi; Mruk, Dolores D.; Xia, Weiliang; Bonanomi, Michele; Silvestrini, Bruno; Cheng, Chuen-Yan
2016-01-01
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. It divides the seminiferous epithelium of the seminiferous tubule, the functional unit of the testis, where spermatogenesis takes place, into the basal and the adluminal (apical) compartments. Functionally, the BTB provides a unique microenvironment for meiosis I/II and post-meiotic spermatid development which take place exclusively in the apical compartment, away from the host immune system, and it contributes to the immune privilege status of testis. However, the BTB also poses major obstacles in developing male contraceptives (e.g., adjudin) that exert their effects on germ cells in the apical compartment, such as by disrupting spermatid adhesion to the Sertoli cell, causing germ cell exfoliation from the testis. Besides the tight junction (TJ) between adjacent Sertoli cells at the BTB that restricts the entry of contraceptives from the microvessels in the interstitium to the adluminal compartment, drug transporters, such as P-glycoprotein and multidrug resistance-associated protein 1 (MRP1), are also present that actively pump drugs out of the testis, limiting drug bioavailability. Recent advances in drug formulations, such as drug particle micronization (<50 μm) and co-grinding of drug particles with ß-cyclodextrin have improved bioavailability of contraceptives via considerable increase in solubility. Herein, we discuss development in drug formulations using adjudin as an example. We also put emphasis on the possible use of nanotechnology to deliver adjudin to the apical compartment with multidrug magnetic mesoporous silica nanoparticles. These advances in technology will significantly enhance our ability to develop effective non-hormonal male contraceptives for men. PMID:26758796
Chen, Haiqi; Mruk, Dolores D; Xia, Weiliang; Bonanomi, Michele; Silvestrini, Bruno; Cheng, Chuen-Yan
2016-01-01
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. It divides the seminiferous epithelium of the seminiferous tubule, the functional unit of the testis, where spermatogenesis takes place, into the basal and the adluminal (apical) compartments. Functionally, the BTB provides a unique microenvironment for meiosis I/II and post-meiotic spermatid development which take place exclusively in the apical compartment, away from the host immune system, and it contributes to the immune privilege status of testis. However, the BTB also poses major obstacles in developing male contraceptives (e.g., adjudin) that exert their effects on germ cells in the apical compartment, such as by disrupting spermatid adhesion to the Sertoli cell, causing germ cell exfoliation from the testis. Besides the tight junction (TJ) between adjacent Sertoli cells at the BTB that restricts the entry of contraceptives from the microvessels in the interstitium to the adluminal compartment, drug transporters, such as P-glycoprotein and multidrug resistance-associated protein 1 (MRP1), are also present that actively pump drugs out of the testis, limiting drug bioavailability. Recent advances in drug formulations, such as drug particle micronization (<50 μm) and co-grinding of drug particles with ß-cyclodextrin have improved bioavailability of contraceptives via considerable increase in solubility. Herein, we discuss development in drug formulations using adjudin as an example. We also put emphasis on the possible use of nanotechnology to deliver adjudin to the apical compartment with multidrug magnetic mesoporous silica nanoparticles. These advances in technology will significantly enhance our ability to develop effective non-hormonal male contraceptives for men.
Borghesi, M; Brunocilla, E; Schiavina, R; Gentile, G; Dababneh, H; Della Mora, L; del Prete, C; Franceschelli, A; Colombo, F; Martorana, G
2015-01-01
Radical orchiectomy (RO) is still considered the standard of care for malignant germ cell tumours, which represent the vast majority of the palpable testicular masses. In those patients diagnosed with small testicular masses (STMs), testis-sparing surgery (TSS) could be an alternative treatment to RO. The aim of this updated review is to evaluate the current indications for TSS, and discuss the oncological and functional results of patients who had undergone organ-sparing surgery for STMs. A non-systematic review of the Literature using the Medline database has been performed, including a free-text protocol using the terms "testis-sparing surgery", "testicular sparing surgery", "partial orchiectomy", "testis tumour", "sex cord tumour", and "testis function". Other significant studies cited in the reference lists of the selected papers were also evaluated. No randomized controlled trials comparing TSS with radical orchiectomy have been reported yet. In those patients with normal contra-lateral testis, the use of TSS is still controversial. In selected cases of gonadal masses < 2 cm, TSS seems to be a safe and feasible treatment option. Frozen section examination allows us to discriminate between benign and malignant neoplasms during TSS. Intermediate and long-term follow-up results showed no significant risk of local and distant recurrences in the main series reported in the literature. TSS is an effective treatment for STMs in selected patients, limiting the unnecessary surgical over-treatments, without compromising the oncological and functional outcomes. Further studies are needed in order to confirm the oncological safety. Copyright © 2013 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
Orchiopexy for intra-abdominal testes: factors predicting success.
Stec, Andrew A; Tanaka, Stacy T; Adams, Mark C; Pope, John C; Thomas, John C; Brock, John W
2009-10-01
Intra-abdominal testes can be treated with several surgical procedures. We evaluated factors influencing the outcome of orchiopexy for intra-abdominal testis. We retrospectively reviewed 156 consecutive orchiopexies performed for intra-abdominal testis, defined as a nonpalpable testis on examination and located in the abdomen at surgery. All surgical approaches were included in the study. Primary outcome was the overall success rate and secondary outcomes were success based on surgical approach, age and a patent processus vaginalis. Success was considered a testis with normal texture and size compared to the contralateral testis at followup. Multivariate analysis was performed to determine factors predictive of success. The overall success rate of all orchiopexies was 79.5%. Median patient age at orchiopexy was 12 months and mean followup was 16 months. Of the patients 117 had a patent processus vaginalis at surgery. One-stage abdominal orchiopexy was performed in 92 testes with 89.1% success. Of these cases 32 were performed laparoscopically with 96.9% success. One-stage Fowler-Stephens orchiopexy was performed in 27 testes and 2-stage Fowler-Stephens orchiopexy was performed in 37 with success in 63.0% and 67.6%, respectively. Multivariate analysis revealed that 1-stage orchiopexy without vessel division had more successful outcomes than 1 and 2-stage Fowler-Stephens orchiopexy (OR 0.24, p = 0.007 and 0.29, p = 0.19, respectively). Neither age at surgery nor an open internal ring was significant (p = 0.49 and 0.12, respectively). The overall success of orchiopexy for intra-abdominal testis is 79.5%. While patient selection remains a critical factor, 1-stage orchiopexy without vessel division was significantly more successful and a laparoscopic approach was associated with the fewest failures for intra-abdominal testes.
Hess, Rex A
2014-01-01
Abstract: Seminiferous tubular atrophy may involve indirectly the disruption of estrogen receptor-α (ESR1) function in efferent ductules of the testis. ESR1 helps to maintain fluid resorption by the ductal epithelium and the inhibition or stimulation of this activity in rodent species will lead to fluid accumulation in the lumen. If not resolved, the abnormal buildup of fluid in the head of the epididymis and efferent ductules becomes a serious problem for the testis, as it leads to an increase in testis weight, tubular dilation and seminiferous epithelial degeneration, as well as testicular atrophy. The same sequence of pathogenesis occurs if the efferent ductule lumen becomes occluded. This review provides an introduction to the role of estrogen in the male reproductive tract but focuses on the various overlapping mechanisms that could induce efferent ductule dysfunction and fluid backpressure histopathology. Although efferent ductules are difficult to find, their inclusion in routine histological evaluations is recommended, as morphological images of these delicate tubules may be essential for understanding the mechanism of testicular injury, especially if dilations are observed in the rete testis and/or seminiferous tubules. Signature Lesion: The rete testis and efferent ductules can appear dilated, as if the lumens were greatly expanded with excess fluid or the accumulation of sperm. Because the efferent ductules resorb most of the fluid arriving from the rete testis lumen, one of two mechanisms is likely to be involved: a) reduced fluid uptake, which has been caused by the disruption in estrogen receptor signaling or associated pathways; or b) an increased rate of fluid resorption, which results in luminal occlusion. Both mechanisms can lead to a temporary increase in testicular weight, tubular dilation and atrophy of the seminiferous tubules. PMID:26413389
Hess, Rex A
2014-01-01
Seminiferous tubular atrophy may involve indirectly the disruption of estrogen receptor-α (ESR1) function in efferent ductules of the testis. ESR1 helps to maintain fluid resorption by the ductal epithelium and the inhibition or stimulation of this activity in rodent species will lead to fluid accumulation in the lumen. If not resolved, the abnormal buildup of fluid in the head of the epididymis and efferent ductules becomes a serious problem for the testis, as it leads to an increase in testis weight, tubular dilation and seminiferous epithelial degeneration, as well as testicular atrophy. The same sequence of pathogenesis occurs if the efferent ductule lumen becomes occluded. This review provides an introduction to the role of estrogen in the male reproductive tract but focuses on the various overlapping mechanisms that could induce efferent ductule dysfunction and fluid backpressure histopathology. Although efferent ductules are difficult to find, their inclusion in routine histological evaluations is recommended, as morphological images of these delicate tubules may be essential for understanding the mechanism of testicular injury, especially if dilations are observed in the rete testis and/or seminiferous tubules. Signature Lesion : The rete testis and efferent ductules can appear dilated, as if the lumens were greatly expanded with excess fluid or the accumulation of sperm. Because the efferent ductules resorb most of the fluid arriving from the rete testis lumen, one of two mechanisms is likely to be involved: a) reduced fluid uptake, which has been caused by the disruption in estrogen receptor signaling or associated pathways; or b) an increased rate of fluid resorption, which results in luminal occlusion. Both mechanisms can lead to a temporary increase in testicular weight, tubular dilation and atrophy of the seminiferous tubules.
McClusky, Leon M
2006-09-01
Naturally occurring heavy metals and synthetic compounds are potentially harmful for testicular function but evidence linking heavy metal exposure to reduced semen parameters is inconclusive. Elucidation of the exact stage at which the toxicant interferes with spermatogenesis is difficult because the various germ cell stages may have different sensitivities to any given toxicant, germ cell development is influenced by supporting testicular somatic cells and the presence of inter-Sertoli cell tight junctions create a blood-testis barrier, sequestering meiotic and postmeiotic germ cells in a special microenvironment. Sharks such as Squalus acanthias provide a suitable model for studying aspects of vertebrate spermatogenosis because of their unique features: spermatogenesis takes place within spermatocysts and relies mainly on Sertoli cells for somatic cell support; spermatocysts are linearly arranged in a maturational order across the diameter of the elongated testis; spermatocysts containing germ cells at different stages of development are topographically separated, resulting in visible zonation in testicular cross sections. We have used the vital dye acridine orange and a novel fluorescence staining technique to study this model to determine (1) the efficacy of these methods in assays of apoptosis and blood-testis barrier function, (2) the sensitivity of the various spermatogonial generations in Squalus to cadmium (as an illustrative spermatotoxicant) and (3) the way that cadmium might affect more mature spermatogenic stages and other physiological processes in the testis. Our results show that cadmium targets early spermatogenic stages, where it specifically activates a cell death program in susceptible (mature) spermatogonial clones, and negatively affects blood-testis barrier function. Since other parameters are relatively unaffected by cadmium, the effects of this toxicant on apoptosis are presumably process-specific and not attributable to general toxicity.
Chaturapanich, G; Chaiyakul, S; Verawatnapakul, V; Pholpramool, C
2008-10-01
Krachaidum (KD, Kaempferia parviflora Wall. Ex. Baker), a native plant of Southeast Asia, is traditionally used to enhance male sexual function. However, only few scientific data in support of this anecdote have been reported. The present study investigated the effects of feeding three different extracts of KD (alcohol, hexane, and water extracts) for 3-5 weeks on the reproductive organs, the aphrodisiac activity, fertility, sperm motility, and blood flow to the testis of male rats. Sexual performances (mount latency, mount frequency, ejaculatory latency, post-ejaculatory latency) and sperm motility were assessed by a video camera and computer-assisted sperm analysis respectively, while blood flow to the testis was measured by a directional pulsed Doppler flowmeter. The results showed that all extracts of KD had virtually no effect on the reproductive organ weights even after 5 weeks. However, administration of the alcohol extract at a dose of 70 mg/kg body weight (BW)/day for 4 weeks significantly decreased mount and ejaculatory latencies when compared with the control. By contrast, hexane and water extracts had no influence on any sexual behavior parameters. All types of extracts of KD had no effect on fertility or sperm motility. On the other hand, alcohol extract produced a significant increase in blood flow to the testis without affecting the heart rate and mean arterial blood pressure. In a separate study, an acute effect of alcohol extract of KD on blood flow to the testis was investigated. Intravenous injection of KD at doses of 10, 20, and 40 mg/kg BW caused dose-dependent increases in blood flow to the testis. The results indicate that alcohol extract of KD had an aphrodisiac activity probably via a marked increase in blood flow to the testis.
Banerjee, Arnab; Anuradha; Mukherjee, Kaustab; Krishna, Amitabh
2014-11-01
The present study evaluates the hypothesis, that glucose is essential for steroidogenesis and inadequate supply of glucose to the testis may be responsible for decline in steroidogenesis in mice during aging. Mice of different age groups (birth, weaning, puberty, reproductively active, and senescence) were utilized for this study. The changes in glucose, glucose transporter (GLUT), and insulin receptor (IR) level in the testis were evaluated and compared with the testicular steroidogenic parameters such as steroidogenic acute regulatory protein (StAR), 3β-hydroxy steroid dehydrogenase (3β-HSD) and circulating testosterone levels. The result showed significant correlation between changes in GLUT 8 and glucose levels with changes in StAR level in the testis and circulating testosterone level in the mice from birth to senescence. Immunohistochemical analysis showed intense immunostaining of GLUT 8 and IR in the interstitial cells, most likely Leydig cells, in testis of pubertal and reproductively active mice suggesting their relevance in steroidogenesis. The in vitro study showed a significant positive correlation between luteinizing hormone (LH)-induced increase in GLUT 8 and StAR (r = 0.82; P < 0.05) proteins level in the testes with increase in testosterone (r = 0.97; P < 0.05) synthesis of reproductively active mice. This study also showed increased release of lactate with increased uptake of glucose by the testis. Further, intra-testicular treatment of 2-deoxy glucose, to reproductively active mice caused a significant decrease in 3β-HSD enzyme activity in the testis. Based on these findings, it may be concluded that the changes in glucose level either directly or indirectly lead to changes in testicular steroidogenesis during aging. © 2014 Wiley Periodicals, Inc.
Impact of 5'-amp-activated Protein Kinase on Male Gonad and Spermatozoa Functions.
Nguyen, Thi Mong Diep
2017-01-01
As we already know, the male reproductive system requires less energetic investment than the female one. Nevertheless, energy balance is an important feature for spermatozoa production in the testis and for spermatozoa properties after ejaculation. The 5'-AMP-activated protein kinase, AMPK, is a sensor of cell energy, that regulates many metabolic pathways and that has been recently shown to control spermatozoa quality and functions. It is indeed involved in the regulation of spermatozoa quality through its action on the proliferation of testicular somatic cells (Sertoli and Leydig), on spermatozoa motility and acrosome reaction. It also favors spermatozoa quality through the management of lipid peroxidation and antioxidant enzymes. I review here the most recent data available on the roles of AMPK in vertebrate spermatozoa functions.
Development and regulation of chloride homeostasis in the central nervous system.
Watanabe, Miho; Fukuda, Atsuo
2015-01-01
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter of the mature central nervous system (CNS). The developmental switch of GABAergic transmission from excitation to inhibition is induced by changes in Cl(-) gradients, which are generated by cation-Cl(-) co-transporters. An accumulation of Cl(-) by the Na(+)-K(+)-2Cl(-) co-transporter (NKCC1) increases the intracellular Cl(-) concentration ([Cl(-)]i) such that GABA depolarizes neuronal precursors and immature neurons. The subsequent ontogenetic switch, i.e., upregulation of the Cl(-)-extruder KCC2, which is a neuron-specific K(+)-Cl(-) co-transporter, with or without downregulation of NKCC1, results in low [Cl(-)]i levels and the hyperpolarizing action of GABA in mature neurons. Development of Cl(-) homeostasis depends on developmental changes in NKCC1 and KCC2 expression. Generally, developmental shifts (decreases) in [Cl(-)]i parallel the maturation of the nervous system, e.g., early in the spinal cord, hypothalamus and thalamus, followed by the limbic system, and last in the neocortex. There are several regulators of KCC2 and/or NKCC1 expression, including brain-derived neurotrophic factor (BDNF), insulin-like growth factor (IGF), and cystic fibrosis transmembrane conductance regulator (CFTR). Therefore, regionally different expression of these regulators may also contribute to the regional developmental shifts of Cl(-) homeostasis. KCC2 and NKCC1 functions are also regulated by phosphorylation by enzymes such as PKC, Src-family tyrosine kinases, and WNK1-4 and their downstream effectors STE20/SPS1-related proline/alanine-rich kinase (SPAK)-oxidative stress responsive kinase-1 (OSR1). In addition, activation of these kinases is modulated by humoral factors such as estrogen and taurine. Because these transporters use the electrochemical driving force of Na(+) and K(+) ions, topographical interaction with the Na(+)-K(+) ATPase and its modulators such as creatine kinase (CK) should modulate functions of Cl(-) transporters. Therefore, regional developmental regulation of these regulators and modulators of Cl(-) transporters may also play a pivotal role in the development of Cl(-) homeostasis.
Epigenetic mechanisms in heart development and disease.
Martinez, Shannalee R; Gay, Maresha S; Zhang, Lubo
2015-07-01
Suboptimal intrauterine development has been linked to predisposition to cardiovascular disease in adulthood, a concept termed 'developmental origins of health and disease'. Although the exact mechanisms underlying this developmental programming are unknown, a growing body of evidence supports the involvement of epigenetic regulation. Epigenetic mechanisms such as DNA methylation, histone modifications and micro-RNA confer added levels of gene regulation without altering DNA sequences. These modifications are relatively stable signals, offering possible insight into the mechanisms underlying developmental origins of health and disease. This review will discuss the role of epigenetic mechanisms in heart development as well as aberrant epigenetic regulation contributing to cardiovascular disease. Additionally, we will address recent advances targeting epigenetic mechanisms as potential therapeutic approaches to cardiovascular disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
Role of Axumin PET Scan in Germ Cell Tumor
2018-05-01
Testis Cancer; Germ Cell Tumor; Testicular Cancer; Germ Cell Tumor of Testis; Germ Cell Tumor, Testicular, Childhood; Testicular Neoplasms; Testicular Germ Cell Tumor; Testicular Yolk Sac Tumor; Testicular Choriocarcinoma; Testicular Diseases; Germ Cell Cancer Metastatic; Germ Cell Neoplasm of Retroperitoneum; Germ Cell Cancer, Nos
Long-term preservation of eri and ailanthus silkworms using frozen gonads.
Fukumori, Hisayoshi; Lee, Jung; Fujii, Tsuguru; Kajiura, Zenta; Banno, Yutaka
2017-08-01
Cryopreservation of eri and ailanthus silkworms using frozen gonads was investigated. First, we evaluated the freeze tolerance of ovary and testis in the eri silkworm, which showed high tolerance. Mating between frozen ovary-transplanted females and frozen testis-transplanted males produced 163.0 eggs, yielding 105.7 larvae per moth. In a second experiment, we tested the use of the eri silkworm as a host insect for gonad transplantation from ailanthus silkworm donors. A high success ratio for laid and hatched eggs was demonstrated for ovary transplantation (97.8 and 51.3 eggs per moth, respectively). For testis transplantation, however, the average number of hatched larvae was low (12.0). Mating between host eri females and males in which both frozen ovary and testis of the ailanthus silkworm had been transplanted produced 6.4 fertilized eggs per host moth. Our success in using cross subspecies cryopreservation between these wild silkworms could lead to the alternative use of hosts between species in other insects. Copyright © 2017 Elsevier Inc. All rights reserved.
Serum immunoreactivity of cancer/testis antigen OY-TES-1 and its tissues expression in glioma.
Li, Xisheng; Yan, Jun; Fan, Rong; Luo, Bin; Zhang, Qingmei; Lin, Yongda; Zhou, Sufang; Luo, Guorong; Xie, Xiaoxun; Xiao, Shaowen
2017-05-01
OY-TES-1 is a member of the cancer/testis antigen family that is expressed in healthy testis tissue and certain types of cancerous tissue. The present study aimed to analyze the expression pattern of OY-TES-1 and serum anti-OY-TES-1 antibody concentration in patients with glioma. OY-TES-1 mRNA was detected in 28/36 (78%) of glioma cases using conventional reverse transcription polymerase chain reaction (RT-PCR) analysis. RT-quantitative-PCR revealed that OY-TES-1 was expressed at a higher level in glioma tissues compared with normal adult tissues (with the exception of testis tissue). Anti-OY-TES-1 antibodies were present in the serum of 5/36 (14%) of patients with glioma, but absent in all the serum samples from 107 healthy donors. Immunohistochemical analysis demonstrated that OY-TES-1 protein was expressed in all glioma tissues from patients with anti-OY-TES-1 antibody seropositivity. These results suggest that OY-TES-1 is a novel candidate for glioma immunotherapy.
Wajda, A; Łapczuk, J; Grabowska, M; Pius-Sadowska, E; Słojewski, M; Laszczynska, M; Urasinska, E; Machalinski, B; Drozdzik, M
2017-04-01
Aryl hydrocarbon receptor (AhR) plays multiple important functions in adaptive responses. Exposure to AhR ligands may produce an altered metabolic activity controlled by the AhR pathways, and consequently affect drug/toxin responses, hormonal status and cellular homeostasis. This research revealed species-, cell- and region-specific pattern of the AhR system expression in the rat and human testis and epididymis, complementing the existing knowledge, especially within the epididymal segments. The study showed that AhR level in the rat and human epididymis is higher than in the testis. The downregulation of AhR expression after TCDD treatment was revealed in the spermatogenic cells at different stages and the epididymal epithelial cells, but not in the Sertoli and Leydig cells. Hence, this basic research provides information about the AhR function in the testis and epididymis, which may provide an insight into deleterious effects of drugs, hormones and environmental pollutants on male fertility. Copyright © 2017 Elsevier Inc. All rights reserved.
Iamsaard, Sitthichai; Prabsattroo, Thawatchai; Sukhorum, Wannisa; Muchimapura, Supaporn; Srisaard, Panee; Uabundit, Nongnut; Thukhammee, Wipawee; Wattanathorn, Jintanaporn
2013-01-01
Objective: To investigate the effect of Anethum graveolens (AG) extracts on the mounting frequency, histology of testis and epididymis, and sperm physiology. Methods: Male rats induced by cold immobilization before treating with vehicle or AG extracts [50, 150, and 450 mg/kg body weight (BW)] via gastric tube for consecutive 1, 7, and 14 d were examined for mounting frequency, testicular phosphorylation level by immunoblotting, sperm concentration, sperm acrosome reaction, and histological structures of testis and epididymis, respectively. Results: AG (50 mg/kg BW) significantly increased the mounting frequency on Days 1 and 7 compared to the control group. Additionally, rat testis treated with 50 mg/kg BW AG showed high levels of phosphorylated proteins as compared with the control group. In histological analyses, AG extract did not affect the sperm concentration, acrosome reaction, and histological structures of testis and epididymis. Conclusions: AG extract enhances the aphrodisiac activity and is not harmful to sperm and male reproductive organs. PMID:23463768
Iamsaard, Sitthichai; Prabsattroo, Thawatchai; Sukhorum, Wannisa; Muchimapura, Supaporn; Srisaard, Panee; Uabundit, Nongnut; Thukhammee, Wipawee; Wattanathorn, Jintanaporn
2013-03-01
To investigate the effect of Anethum graveolens (AG) extracts on the mounting frequency, histology of testis and epididymis, and sperm physiology. Male rats induced by cold immobilization before treating with vehicle or AG extracts [50, 150, and 450 mg/kg body weight (BW)] via gastric tube for consecutive 1, 7, and 14 d were examined for mounting frequency, testicular phosphorylation level by immunoblotting, sperm concentration, sperm acrosome reaction, and histological structures of testis and epididymis, respectively. AG (50 mg/kg BW) significantly increased the mounting frequency on Days 1 and 7 compared to the control group. Additionally, rat testis treated with 50 mg/kg BW AG showed high levels of phosphorylated proteins as compared with the control group. In histological analyses, AG extract did not affect the sperm concentration, acrosome reaction, and histological structures of testis and epididymis. AG extract enhances the aphrodisiac activity and is not harmful to sperm and male reproductive organs.
Adenocarcinoma of the rete testis - a rare case of testicular malignancy.
Chovanec, M; Mego, M; Sycova-Mila, Z; Obertova, J; Rajec, J; Palacka, P; Mardiak, J
2014-01-01
Adenocarcinoma of rete testis is an extremely rare dia-gnosis described in around 70 patients worldwide. The prognosis of the disease in metastatic stage is very poor and there is no standard systemic treatment available. Herein we present a unique case report of a 47-year- old man with metastatic adenocarcinoma of rete testis who achieved substantial disease response after four cycles of paclitaxel, ifosfamide and cisplatin. The chemotherapy was administered in five -day regimen, which comprised 250 mg/ m2 of paclitaxel on day one, 20 mg/ m2 of cisplatin on day one to five and 1,2 g/ m2 of ifosfamide on day one to five, in a three-week interval. The patient received prophylactic pegfilgrastim after each cycle of TIP. The treatment was well tolerated - without any significant toxicity. Patient achieved a partial 14- month remission. On basis of this experience we suggest that paclitaxel, ifosfamide and cisplatin might be adopted as novel agents in treatment of rete testis adenocarcinoma.
Claes, Filip; Vodnala, Suman K.; van Reet, Nick; Boucher, Nathalie; Lunden-Miguel, Hilda; Baltz, Theo; Goddeeris, Bruno Maria; Büscher, Philippe; Rottenberg, Martin E.
2009-01-01
Monitoring Trypanosoma spread using real-time imaging in vivo provides a fast method to evaluate parasite distribution especially in immunoprivileged locations. Here, we generated monomorphic and pleomorphic recombinant Trypanosoma brucei expressing the Renilla luciferase. In vitro luciferase activity measurements confirmed the uptake of the coelenterazine substrate by live parasites and light emission. We further validated the use of Renilla luciferase-tagged trypanosomes for real-time bioluminescent in vivo analysis. Interestingly, a preferential testis tropism was observed with both the monomorphic and pleomorphic recombinants. This is of importance when considering trypanocidal drug development, since parasites might be protected from many drugs by the blood-testis barrier. This hypothesis was supported by our final study of the efficacy of treatment with trypanocidal drugs in T. brucei-infected mice. We showed that parasites located in the testis, as compared to those located in the abdominal cavity, were not readily cleared by the drugs. PMID:19621071
The Treatment of the Incompletely Descended Testis
Wilson, D. S. Poole
1939-01-01
(1) Under three years of age the diagnosis of the incompletely descended testis is uncertain. (2) The policy of awaiting spontaneous descent may be pursued until 10 years of age but, unless the testis lies in the superior scrotal position, this policy should not be persisted in thereafter. (3) Hormonal therapy may be employed before operative treatment as a means of determining testes which will descend spontaneously. It should only be used in the prepuberty period. (4) Operative treatment may be safely carried out at any age after 3 years and should be completed before puberty. The optimum period is between 8 and 11 years. The Bevan operation may be successful when the testis is very mobile but the most consistent results are obtained by the septal transposition or Keetley-Torek operations. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 8Fig. 9Fig. 10Fig. 13Fig. 14Fig. 15Fig. 16Fig. 18Fig. 19Fig. 20Fig. 21Fig. 22 PMID:19991991
Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi Xiongjie; Graduate School of the Chinese Academy of Sciences, Beijing 100039; Du Yongbing
2008-07-01
Perfluorooctanesulfonate (PFOS) is a persistent organic pollutant, the potential toxicity of which is causing great concern. In the present study, we employed zebrafish embryos to investigate the developmental toxicity of this compound. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to 0.1, 0.5, 1, 3 and 5 mg/L PFOS. Hatching was delayed and hatching rates as well as larval survivorship were significantly reduced after the embryos were exposed to 1, 3 and 5 mg/L PFOS until 132 hpf. The fry displayed gross developmental malformations, including epiboly deformities, hypopigmentation, yolk sac edema, tail and heart malformations and spinal curvature upon exposure tomore » PFOS concentrations of 1 mg/L or greater. Growth (body length) was significantly reduced in the 3 and 5 mg/L PFOS-treated groups. To test whether developmental malformation was mediated via apoptosis, flow cytometry analysis of DNA content, acridine orange staining and TUNEL assay was used. These techniques indicated that more apoptotic cells were present in the PFOS-treated embryos than in the control embryos. Certain genes related to cell apoptosis, p53 and Bax, were both significantly up-regulated upon exposure to all the concentrations tested. In addition, we investigated the effects of PFOS on marker genes related to early thyroid development (hhex and pax8) and genes regulating the balance of androgens and estrogens (cyp19a and cyp19b). For thyroid development, the expression of hhex was significantly up-regulated at all concentrations tested, whereas pax8 expression was significantly up-regulated only upon exposure to lower concentrations of PFOS (0.1, 0.5, 1 mg/L). The expression of cyp19a and of cyp19b was significantly down-regulated at all exposure concentrations. The overall results indicated that zebrafish embryos constitute a reliable model for testing the developmental toxicity of PFOS, and the gene expression patterns in the embryos were able to reveal some potential mechanisms of developmental toxicity.« less
Özorak, Alper; Nazıroğlu, Mustafa; Çelik, Ömer; Yüksel, Murat; Özçelik, Derviş; Özkaya, Mehmet Okan; Çetin, Hasan; Kahya, Mehmet Cemal; Kose, Seyit Ali
2013-12-01
The present study was designed to determine the effects of both Wi-Fi (2.45 GHz)- and mobile phone (900 and 1800 MHz)-induced electromagnetic radiation (EMR) on oxidative stress and trace element levels in the kidney and testis of growing rats from pregnancy to 6 weeks of age. Thirty-two rats and their 96 newborn offspring were equally divided into four different groups, namely, control, 2.45 GHz, 900 MHz, and 1800 MHz groups. The 2.45 GHz, 900 MHz, and 1,800 MHz groups were exposed to EMR for 60 min/day during pregnancy and growth. During the fourth, fifth, and sixth weeks of the experiment, kidney and testis samples were taken from decapitated rats. Results from the fourth week showed that the level of lipid peroxidation in the kidney and testis and the copper, zinc, reduced glutathione (GSH), glutathione peroxidase (GSH-Px), and total antioxidant status (TAS) values in the kidney decreased in the EMR groups, while iron concentrations in the kidney as well as vitamin A and vitamin E concentrations in the testis increased in the EMR groups. Results for fifth-week samples showed that iron, vitamin A, and β-carotene concentrations in the kidney increased in the EMR groups, while the GSH and TAS levels decreased. The sixth week results showed that iron concentrations in the kidney and the extent of lipid peroxidation in the kidney and testis increased in the EMR groups, while copper, TAS, and GSH concentrations decreased. There were no statistically significant differences in kidney chromium, magnesium, and manganese concentrations among the four groups. In conclusion, Wi-Fi- and mobile phone-induced EMR caused oxidative damage by increasing the extent of lipid peroxidation and the iron level, while decreasing total antioxidant status, copper, and GSH values. Wi-Fi- and mobile phone-induced EMR may cause precocious puberty and oxidative kidney and testis injury in growing rats.
Huang, Y; Dou, W; Liu, B; Wei, D; Liao, C Y; Smagghe, G; Wang, J-J
2014-10-01
In eukaryotes, microRNAs (miRNAs) are small, conserved, noncoding RNAs that have emerged as critical regulators of gene expression. The oriental fruit fly Bactrocera dorsalis is one of the most economically important fruit fly pests in East Asia and the Pacific. Although transcriptome analyses have greatly enriched our knowledge of its structural genes, little is known about post-transcriptional regulation by miRNAs in this dipteran species. In this study, small RNA libraries corresponding to four B. dorsalis developmental stages (eggs, larvae, pupae and adults) were constructed and sequenced. Approximately 30.7 million reads of 18-30 nucleotides were obtained, with 123 known miRNAs and 60 novel miRNAs identified amongst these libraries. More than half of the miRNAs were stage-specific during the four developmental stages. A set of miRNAs was found to be up- or down-regulated during development by comparison of their reads at different developmental stages. Moreover, a small part of miRNAs owned both miR-#-3p and miR-#-5p types, with enormously variable miR-#-3p/miR-#-5p ratios in the same library and amongst different developmental stages for each miRNA. Taking these findings together, the current study has uncovered a number of miRNAs and provided insights into their possible involvement in developmental regulation by expression profiling of miRNAs. Further analyses of the expression and function of these miRNAs could increase our understanding of regulatory networks in this insect and lead to novel approaches for its control. © 2014 The Royal Entomological Society.
Schramm, Andreas; Lee, Bongsoo; Higgs, Penelope I.
2012-01-01
Histidine-aspartate phosphorelay signaling systems are used to couple stimuli to cellular responses. A hallmark feature is the highly modular signal transmission modules that can form both simple “two-component” systems and sophisticated multicomponent systems that integrate stimuli over time and space to generate coordinated and fine-tuned responses. The deltaproteobacterium Myxococcus xanthus contains a large repertoire of signaling proteins, many of which regulate its multicellular developmental program. Here, we assign an orphan hybrid histidine protein kinase, EspC, to the Esp signaling system that negatively regulates progression through the M. xanthus developmental program. The Esp signal system consists of the hybrid histidine protein kinase, EspA, two serine/threonine protein kinases, and a putative transport protein. We demonstrate that EspC is an essential component of this system because ΔespA, ΔespC, and ΔespA ΔespC double mutants share an identical developmental phenotype. Neither substitution of the phosphoaccepting histidine residue nor deletion of the entire catalytic ATPase domain in EspC produces an in vivo mutant developmental phenotype. In contrast, substitution of the receiver phosphoaccepting residue yields the null phenotype. Although the EspC histidine kinase can efficiently autophosphorylate in vitro, it does not act as a phosphodonor to its own receiver domain. Our in vitro and in vivo analyses suggest the phosphodonor is instead the EspA histidine kinase. We propose EspA and EspC participate in a novel hybrid histidine protein kinase signaling mechanism involving both inter- and intraprotein phosphotransfer. The output of this signaling system appears to be the combined phosphorylated state of the EspA and EspC receiver modules. This system regulates the proteolytic turnover of MrpC, an important regulator of the developmental program. PMID:22661709
Oestrogens and spermatogenesis
Carreau, Serge; Hess, Rex A.
2010-01-01
The role of oestrogens in male reproductive tract physiology has for a long time been a subject of debate. The testis produces significant amounts of oestrogenic hormones, via aromatase, and oestrogen receptors (ERs)α (ESR1) and ERβ (ESR2) are selectively expressed in cells of the testis as well as the epididymal epithelium, depending upon species. This review summarizes the current knowledge concerning the presence and activity of aromatase and ERs in testis and sperm and the potential roles that oestrogens may have in mammalian spermatogenesis. Data show that physiology of the male gonad is in part under the control of a balance of androgens and oestrogens, with aromatase serving as a modulator. PMID:20403867
Danylov, Iu V; Motkov, K V; Shevchenko, T I
2013-01-01
Problem of a diagnostic of Chernobyl factor influences on different organs and systems of Chernobyl accident liquidators are remain actually until now. Though morbidly background which development at unfavorable work conditions in underground coalminers prevents from objective identification features of Chernobyl factor influences. The qualitative and quantitative histological and immunohistochemical law of morphogenesis changes in testis of Donbas's coalminer - non-liquidators Chernobyl accident in comparison with the group of Donbas's coalminers-liquidators Chernobyl accident, which we were stationed non determined problem. This reason stipulates to development and practical use of mathematical model of morphogenesis of a testis changes.
Ambiguous genitalia in a fertile, unilaterally cryptorchid male miniature schnauzer dog.
Breshears, M A; Peters, J L
2011-09-01
A 7-year-old male miniature schnauzer dog with unilateral cryptorchidism was presented for elective orchiectomy. Surgery to remove the cryptorchid testis revealed a fully formed uterus with horns attached to both testis and the body and cervix terminating at the prostate gland. The gross and microscopic diagnosis for the genital tract was persistent Müllerian duct syndrome with unilateral cryptorchidism. Additional associated lesions included cystic endometrial hyperplasia and a solitary, intratubular seminoma within the undescended testis. Persistent Müllerian duct syndrome is rare among domestic animals but is more common in miniature schnauzer dogs because of inheritance as an autosomal recessive trait.
Chloroma of the testis in a patient with a history of acute myeloid leukemia
Sanei, Mohammad Hossein; Shariati, Matin
2017-01-01
Chloroma, or granulocytic sarcoma, is a rare extramedullary solid hematologic cancer, found concomitant with acute myeloid leukemia. It is infrequently associated with other myeloproliferative disorders or chronic myelogenous leukemia. Chloroma of the testis after allogeneic bone marrow transplantation is particularly sparsely represented in the literature. It is suggested that an appropriate panel of marker studies be performed along with clinical correlation and circumspection to avoid misleading conclusions. We report an interesting case of a 32-year-old male with a clinical history of acute myelogenous leukemia, postallogeneic peripheral blood stem cell transplantation that was found to have chloroma of the right testis. PMID:28919910