Sample records for tests successfully demonstrated

  1. X-38 Bolt Retractor Subsystem Separation Demonstration

    NASA Technical Reports Server (NTRS)

    Rugless, Fedoria (Editor); Johnston, A. S.; Ahmed, R.; Garrison, J. C.; Gaines, J. L.; Waggoner, J. D.

    2002-01-01

    The Flight Robotics Laboratory FRL successfully demonstrated the X-38 bolt retractor subsystem (BRS). The BRS design was proven safe by testing in the Pyrotechnic Shock Facility (PSI) before being demonstrated in the FRL. This Technical Memorandum describes the BRS, FRL, PSF, and interface hardware. Bolt retraction time, spacecraft simulator acceleration, and a force analysis are also presented. The purpose of the demonstration was to show the FRL capability for spacecraft separation testing using pyrotechnics. Although a formal test was not performed due to schedule and budget constraints, the data will show that the BRS is a successful design concept and the FRL is suitable for future separation tests.

  2. Testing Strategies and Methodologies for the Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Schaible, Dawn M.; Yuchnovicz, Daniel E.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) was tasked to develop an alternate, tower-less launch abort system (LAS) as risk mitigation for the Orion Project. The successful pad abort flight demonstration test in July 2009 of the "Max" launch abort system (MLAS) provided data critical to the design of future LASs, while demonstrating the Agency s ability to rapidly design, build and fly full-scale hardware at minimal cost in a "virtual" work environment. Limited funding and an aggressive schedule presented a challenge for testing of the complex MLAS system. The successful pad abort flight demonstration test was attributed to the project s systems engineering and integration process, which included: a concise definition of, and an adherence to, flight test objectives; a solid operational concept; well defined performance requirements, and a test program tailored to reducing the highest flight test risks. The testing ranged from wind tunnel validation of computational fluid dynamic simulations to component ground tests of the highest risk subsystems. This paper provides an overview of the testing/risk management approach and methodologies used to understand and reduce the areas of highest risk - resulting in a successful flight demonstration test.

  3. 2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 1; Executive Summary

    NASA Technical Reports Server (NTRS)

    Alexander, Dennis

    1997-01-01

    The Solar Dynamic Ground Test Demonstration (SDGTD) successfully demonstrated a solar-powered closed Brayton cycle system in a relevant space thermal environment. In addition to meeting technical requirements the project was completed 4 months ahead of schedule and under budget. The following conclusions can be supported: 1. The component technology for solar dynamic closed Brayton cycle technology has clearly been demonstrated. 2. The thermal, optical, control, and electrical integration aspects of systems integration have also been successfully demonstrated. Physical integration aspects were not attempted as these tend to be driven primarily by mission-specific requirements. 3. System efficiency of greater than 15 percent (all losses fully accounted for) was demonstrated using equipment and designs which were not optimized. Some preexisting hardware was used to minimize cost and schedule. 4. Power generation of 2 kWe. 5. A NASA/industry team was developed that successfully worked together to accomplish project goals. The material presented in this report will show that the technology necessary to design and fabricate solar dynamic electrical power systems for space has been successfully developed and demonstrated. The data will further show that achieved results compare well with pretest predictions. The next step in the development of solar dynamic space power will be a flight test.

  4. High Efficiency Low Cost CO2 Compression Using Supersonic Shock Wave Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J; Aarnio, M; Grosvenor, A

    2010-12-31

    Development and testing results from a supersonic compressor are presented. The compressor achieved record pressure ratio for a fully-supersonic stage and successfully demonstrated the technology potential. Several tasks were performed in compliance with the DOE award objectives. A high-pressure ratio compressor was retrofitted to improve rotordynamics behavior and successfully tested. An outside review panel confirmed test results and design approach. A computational fluid dynamics code used to analyze the Ramgen supersonic flowpath was extensively and successfully modified to improve use on high-performance computing platforms. A comprehensive R&D implementation plan was developed and used to lay the groundwork for a futuremore » full-scale compressor demonstration. Conceptual design for a CO2 demonstration compressor was developed and reviewed.« less

  5. Coil-On-Plug Ignition for Oxygen/Methane Liquid Rocket Engines in Thermal-Vacuum Environments

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft.

  6. Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.

  7. Max Launch Abort System (MLAS) Landing Parachute Demonstrator (LPD) Drop Test

    NASA Technical Reports Server (NTRS)

    Shreves, Christopher M.

    2011-01-01

    The Landing Parachute Demonstrator (LPD) was conceived as a low-cost, rapidly-developed means of providing soft landing for the Max Launch Abort System (MLAS) crew module (CM). Its experimental main parachute cluster deployment technique and off-the-shelf hardware necessitated a full-scale drop test prior to the MLAS mission in order to reduce overall mission risk. This test was successfully conducted at Wallops Flight Facility on March 6, 2009, with all vehicle and parachute systems functioning as planned. The results of the drop test successfully qualified the LPD system for the MLAS flight test. This document captures the design, concept of operations and results of the drop test.

  8. Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Spray

    2007-09-30

    The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial newmore » technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.« less

  9. CECE: Expanding the Envelope of Deep Throttling Technology in Liquid Oxygen/Liquid Hydrogen Rocket Engines for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.

    2010-01-01

    As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in high-energy, cryogenic, in-space propulsion. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Four series of demonstrator engine tests have been successfully completed between April 2006 and April 2010, accumulating 7,436 seconds of hot fire time over 47 separate tests. While the first two test series explored low power combustion (chug) and system instabilities, the third test series investigated and was ultimately successful in demonstrating several mitigating technologies for these instabilities and achieved a stable throttling ratio of 13:1. The fourth test series significantly expanded the engine s operability envelope by successfully demonstrating a closed-loop control system and extensive transient modeling to enable lower power engine starting, faster throttle ramp rates, and mission-specific ignition testing. The final hot fire test demonstrated a chug-free, minimum power level of 5.9%, corresponding to an overall 17.6:1 throttling ratio achieved. In total, these tests have provided an early technology demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for future lander descent main engines.

  10. Hot Cell Installation and Demonstration of the Severe Accident Test Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linton, Kory D.; Burns, Zachary M.; Terrani, Kurt A.

    A Severe Accident Test Station (SATS) capable of examining the oxidation kinetics and accident response of irradiated fuel and cladding materials for design basis accident (DBA) and beyond design basis accident (BDBA) scenarios has been successfully installed and demonstrated in the Irradiated Fuels Examination Laboratory (IFEL), a hot cell facility at Oak Ridge National Laboratory. The two test station modules provide various temperature profiles, steam, and the thermal shock conditions necessary for integral loss of coolant accident (LOCA) testing, defueled oxidation quench testing and high temperature BDBA testing. The installation of the SATS system restores the domestic capability to examinemore » postulated and extended LOCA conditions on spent fuel and cladding and provides a platform for evaluation of advanced fuel and accident tolerant fuel (ATF) cladding concepts. This document reports on the successful in-cell demonstration testing of unirradiated Zircaloy-4. It also contains descriptions of the integral test facility capabilities, installation activities, and out-of-cell benchmark testing to calibrate and optimize the system.« less

  11. NSTAR Ion Thruster and Breadboard Power Processor Functional Integration Test Results

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Pinero, Luis R.; Rawlin, Vincent K.; Miller, John R.; Myers, Roger M.; Bowers, Glen E.

    1996-01-01

    A 2.3 kW Breadboard Power Processing Unit (BBPPU) was developed as part of the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) Program. The NSTAR program will deliver an electric propulsion system based on a 30 cm xenon ion thruster to the New Millennium (NM) program for use as the primary propulsion system for the initial NM flight. The final development test for the BBPPU, the Functional Integration Test, was carried out to demonstrate all aspects of BBPPU operation with an Engineering Model Thruster. Test objectives included: (1) demonstration and validation of automated thruster start procedures, (2) demonstration of stable closed loop control of the thruster beam current, (3) successful response and recovery to thruster faults, and (4) successful safing of the system during simulated spacecraft faults. These objectives were met over the specified 80-120 VDC input voltage range and 0.5-2.3 output power capability of the BBPPU. Two minor anomalies were noted in discharge and neutralizer keeper current. These anomalies did not affect the stability of the system and were successfully corrected.

  12. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janke, Chris; Yatsandra, Oyola; Mayes, Richard

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  13. Performance Enhancement of a Full-Scale Vertical Tail Model Equipped with Active Flow Control

    NASA Technical Reports Server (NTRS)

    Whalen, Edward A.; Lacy, Douglas; Lin, John C.; Andino, Marlyn Y.; Washburn, Anthony E.; Graff, Emilio; Wygnanski, Israel J.

    2015-01-01

    This paper describes wind tunnel test results from a joint NASA/Boeing research effort to advance active flow control (AFC) technology to enhance aerodynamic efficiency. A full-scale Boeing 757 vertical tail model equipped with sweeping jet actuators was tested at the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel (40x80) at NASA Ames Research Center. The model was tested at a nominal airspeed of 100 knots and across rudder deflections and sideslip angles that covered the vertical tail flight envelope. A successful demonstration of AFC-enhanced vertical tail technology was achieved. A 31- actuator configuration significantly increased side force (by greater than 20%) at a maximum rudder deflection of 30deg. The successful demonstration of this application has cleared the way for a flight demonstration on the Boeing 757 ecoDemonstrator in 2015.

  14. Electrically scanning microwave radiometer for Nimbus E

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An electronically scanning microwave radiometer system has been designed, developed, and tested for measurement of meteorological, geomorphological and oceanographic parameters from NASA/GSFC's Nimbus E satellite. The system is a completely integrated radiometer designed to measure the microwave brightness temperature of the earth and its atmosphere at a microwave frequency of 19.35 GHz. Calibration and environmental testing of the system have successfully demonstrated its ability to perform accurate measurements in a satellite environment. The successful launch and data acquisition of the Nimbus 5 (formerly Nimbus E) gives further demonstration to its achievement.

  15. 2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 3; Fabrication and Test Report

    NASA Technical Reports Server (NTRS)

    Alexander, Dennis

    1997-01-01

    The Solar Dynamic Ground Test Demonstration (SDGTD) project has successfully designed and fabricated a complete solar-powered closed Brayton electrical power generation system and tested it in a relevant thermal vacuum facility at NASA Lewis Research Center (LeRC). In addition to completing technical objectives, the project was completed 3-l/2 months early, and under budget.

  16. Ball Aerospace SBMD Coating Test Results

    NASA Technical Reports Server (NTRS)

    Brown, Robert; Lightsey, Paul; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The Sub-scale Beryllium Mirror Demonstrator that was successfully tested to demonstrate cryogenic figuring of a bare mirror has been coated with a protected gold reflective surface and retested at cryogenic temperatures. Results showing less than 9 nm rms surface distortion attributable to the added coating are presented.

  17. Demonstration of a Large-Scale Tank Assembly Via Circumferential Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Jones, Chip; Adams, Glynn; Colligan, Kevin; McCool, A. (Technical Monitor)

    2000-01-01

    Five (5) each 14-foot diameter circumferential FSWelds were conducted on the modified CWT, two (2) each pathfinder and three (3) each assembly welds Tapered circumferential welds were successfully demonstrated The use of a closeout anvil was successfully demonstrated during one of the pathfinder welds Considerable difficulty maintaining joint f it-up during the weld process Anvil deflections Hardware dimensional tolerances Inadequate clamping Variations in the heat sink characteristics of the circumferential anvil as compared to the test panel anvil

  18. Ceramic valve development for heavy-duty low heat rejection diesel engines

    NASA Technical Reports Server (NTRS)

    Weber, K. E.; Micu, C. J.

    1989-01-01

    Monolithic ceramic valves can be successfully operated in a heavy-duty diesel engine, even under extreme low heat rejection operating conditions. This paper describes the development of a silicon nitride valve from the initial design stage to actual engine testing. Supplier involvement, finite element analysis, and preliminary proof of concept demonstration testing played a significant role in this project's success.

  19. Reusable Solid Rocket Motor Nozzle Joint 5 Redesign

    NASA Technical Reports Server (NTRS)

    Lui, R. C.; Stratton, T. C.; LaMont, D. T.

    2003-01-01

    Torque tension testing of a newly designed Reusable Solid Rocket Motor nozzle bolted assembly was successfully completed. Test results showed that the 3-sigma preload variation was as expected at the required input torque level and the preload relaxation were within the engineering limits. A shim installation technique was demonstrated as a simple process to fill a shear lip gap between nozzle housings in the joint region. A new automated torque system was successfully demonstrated in this test. This torque control tool was found to be very precise and accurate. The bolted assembly performance was further evaluated using the Nozzle Structural Test Bed. Both current socket head cap screw and proposed multiphase alloy bolt configurations were tested. Results indicated that joint skip and bolt bending were significantly reduced with the new multiphase alloy bolt design. This paper summarizes all the test results completed to date.

  20. End-to-End System Test of the Relative Precision and Stability of the Photometric Method for Detecting Earth-Size Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Dunham, Edward W.

    2000-01-01

    We developed the CCD camera system for the laboratory test demonstration and designed the optical system for this test. The camera system was delivered to Ames in April, 1999 with continuing support mostly in the software area as the test progressed. The camera system has been operating successfully since delivery. The optical system performed well during the test. The laboratory demonstration activity is now nearly complete and is considered to be successful by the Technical Advisory Group, which met on 8 February, 2000 at the SETI Institute. A final report for the Technical Advisory Group and NASA Headquarters will be produced in the next few months. This report will be a comprehensive report on all facets of the test including those covered under this grant. A copy will be forwarded, if desired, when it is complete.

  1. Static Feed Water Electrolysis Subsystem Testing and Component Development

    NASA Technical Reports Server (NTRS)

    Koszenski, E. P.; Schubert, F. H.; Burke, K. A.

    1983-01-01

    A program was carried out to develop and test advanced electrochemical cells/modules and critical electromechanical components for a static feed (alkaline electrolyte) water electrolysis oxygen generation subsystem. The accomplishments were refurbishment of a previously developed subsystem and successful demonstration for a total of 2980 hours of normal operation; achievement of sustained one-person level oxygen generation performance with state-of-the-art cell voltages averaging 1.61 V at 191 ASF for an operating temperature of 128F (equivalent to 1.51V when normalized to 180F); endurance testing and demonstration of reliable performance of the three-fluid pressure controller for 8650 hours; design and development of a fluid control assembly for this subsystem and demonstration of its performance; development and demonstration at the single cell and module levels of a unitized core composite cell that provides expanded differential pressure tolerance capability; fabrication and evaluation of a feed water electrolyte elimination five-cell module; and successful demonstration of an electrolysis module pressurization technique that can be used in place of nitrogen gas during the standby mode of operation to maintain system pressure and differential pressures.

  2. Challenges of Cold Conditioning and Static Testing the Second Ares Demonstration Motor (DM-2)

    NASA Technical Reports Server (NTRS)

    Quinn, Shyla; Davis, Larry C.

    2011-01-01

    On August 31, 2010, a five-segment demonstration motor (DM) for the Ares program was successfully tested. A series of demonstration motors (DMs) will be tested in different conditioned environments to confirm they meet their design specifications. The second demonstration motor (DM-2) was the first cold motor. The motor needed to be subjected to sub-freezing temperatures for two months so that its internal propellant mean bulk temperature (PMBT) was approximately 40 F. Several challenges had to be overcome to make this a successful test. One challenge was to condition four field joints to get the O-rings approximately 32 F. This would be done by applying conditioning shrouds to externally cool each field joint after the test bay was pulled off. The purpose of this conditioning was to validate the new O-ring design and allow joint heaters to be eliminated. Another challenge was maintaining temperature requirements for components in the nozzle vectoring system. A separate heating system was used to warm these components during cold conditioning. There were 53 test objectives that required 764 channels of data to be recorded; 460 were specific to DM-2. This instrumentation had to be installed prior to conditioning, which meant the baseline process and timeline had to be modified to meet this time critical schedule.

  3. 2009 Navy ManTech Project Book

    DTIC Science & Technology

    2009-01-01

    pieces which are welded together, filled with syntactic foam , and welded to the sail and hull structure. The ManTech project was successful in...cladding has demonstrated the required performance characteristics . The testing demonstrated manufacturability of optical fibers with enhanced hard...using Liquid Injection Molding Simulation (LIMS) and Polyworx software tools for infusion set-up optimization. Test articles fabricated are

  4. Delivery of Colloid Micro-Newton Thrusters for the Space Technology 7 Mission

    NASA Technical Reports Server (NTRS)

    Ziemer, John K.; Randolph, Thomas M.; Franklin, Garth W.; Hruby, Vlad; Spence, Douglas; Demmons, Nathaniel; Roy, Thomas; Ehrbar, Eric; Zwahlen, Jurg; Martin, Roy; hide

    2008-01-01

    Two flight-qualified clusters of four Colloid Micro-Newton Thruster (CMNT) systems have been delivered to the Jet Propulsion Laboratory (JPL). The clusters will provide precise spacecraft control for the drag-free technology demonstration mission, Space Technology 7 (ST7). The ST7 mission is sponsored by the NASA New Millennium Program and will demonstrate precision formation flying technologies for future missions such as the Laser Interferometer Space Antenna (LISA) mission. The ST7 disturbance reduction system (DRS) will be on the ESA LISA Pathfinder spacecraft using the European gravitational reference sensor (GRS) as part of the ESA LISA Technology Package (LTP). Developed by Busek Co. Inc., with support from JPL in design and testing, the CMNT has been developed over the last six years into a flight-ready and flight-qualified microthruster system, the first of its kind. Recent flight-unit qualification tests have included vibration and thermal vacuum environmental testing, as well as performance verification and acceptance tests. All tests have been completed successfully prior to delivery to JPL. Delivery of the first flight unit occurred in February of 2008 with the second unit following in May of 2008. Since arrival at JPL, the units have successfully passed through mass distribution, magnetic, and EMI/EMC measurements and tests as part of the integration and test (I&T) activities including the integrated avionics unit (IAU). Flight software sequences have been tested and validated with the full flight DRS instrument successfully to the extent possible in ground testing, including full functional and 72 hour autonomous operations tests. Delivery of the cluster assemblies along with the IAU to ESA for integration into the LISA Pathfinder spacecraft is planned for the summer of 2008 with a planned launch and flight demonstration in late 2010.

  5. ETV/ESTCP Demonstration Plan - Demonstration and Verification of a Turbine Power Generation System Utilizing Renewable Fuel: Landfill Gas

    EPA Science Inventory

    This Test and Quality Assurance Plan (TQAP) provides data quality objections for the success factors that were validated during this demonstration include energy production, emissions and emission reductions compared to alternative systems, economics, and operability, including r...

  6. Hybrid Propulsion Demonstration Program 250K Hybrid Motor

    NASA Technical Reports Server (NTRS)

    Story, George; Zoladz, Tom; Arves, Joe; Kearney, Darren; Abel, Terry; Park, O.

    2003-01-01

    The Hybrid Propulsion Demonstration Program (HPDP) program was formed to mature hybrid propulsion technology to a readiness level sufficient to enable commercialization for various space launch applications. The goal of the HPDP was to develop and test a 250,000 pound vacuum thrust hybrid booster in order to demonstrate hybrid propulsion technology and enable manufacturing of large hybrid boosters for current and future space launch vehicles. The HPDP has successfully conducted four tests of the 250,000 pound thrust hybrid rocket motor at NASA's Stennis Space Center. This paper documents the test series.

  7. Demonstrating artificial intelligence for space systems - Integration and project management issues

    NASA Technical Reports Server (NTRS)

    Hack, Edmund C.; Difilippo, Denise M.

    1990-01-01

    As part of its Systems Autonomy Demonstration Project (SADP), NASA has recently demonstrated the Thermal Expert System (TEXSYS). Advanced real-time expert system and human interface technology was successfully developed and integrated with conventional controllers of prototype space hardware to provide intelligent fault detection, isolation, and recovery capability. Many specialized skills were required, and responsibility for the various phases of the project therefore spanned multiple NASA centers, internal departments and contractor organizations. The test environment required communication among many types of hardware and software as well as between many people. The integration, testing, and configuration management tools and methodologies which were applied to the TEXSYS project to assure its safe and successful completion are detailed. The project demonstrated that artificial intelligence technology, including model-based reasoning, is capable of the monitoring and control of a large, complex system in real time.

  8. FUEL CELL OPERATION ON LANDFILL GAS AT PENROSE POWER STATION

    EPA Science Inventory

    This demonstration test successfully demonstrated operation of a commercial phosphoric acid fuel cell (FC) on landfill gas (LG) at the Penrose Power Station in Sun Valley, CA. Demonstration output included operation up to 137 kW; 37.1% efficiency at 120 kW; exceptionally low sec...

  9. Development of a full-scale transmission testing procedure to evaluate advanced lubricants

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Decker, Harry J.; Shimski, John T.

    1992-01-01

    Experimental tests were performed on the OH-58A helicopter main rotor transmission in the NASA Lewis 500-hp Helicopter Transmission Test Stand. The testing was part of a joint Navy/NASA/Army lubrication program. The objective of the program was to develop a separate lubricant for gearboxes and demonstrate an improved performance in life and load-carrying capacity. The goal of the experiments was to develop a testing procedure to fail certain transmission components using a MIL-L-23699 base reference oil, then run identical tests with improved lubricants and demonstrate performance. The tests were directed at failing components that the Navy has had problems with due to marginal lubrication. These failures included mast shaft bearing micropitting, sun gear and planet bearing fatigue, and spiral bevel gear scoring. A variety of tests were performed and over 900 hours of total run time accumulated for these tests. Some success was achieved in developing a testing procedure to produce sun gear and planet bearing fatigue failures. Only marginal success was achieved in producing mast shaft bearing micropitting and spiral bevel gear scoring.

  10. Mobile and stationary laser weapon demonstrators of Rheinmetall Waffe Munition

    NASA Astrophysics Data System (ADS)

    Ludewigt, K.; Riesbeck, Th.; Baumgärtel, Th.; Schmitz, J.; Graf, A.; Jung, M.

    2014-10-01

    For some years Rheinmetall Waffe Munition has successfully developed, realised and tested a variety of versatile high energy laser (HEL) weapon systems for air- and ground-defence scenarios like C-RAM, UXO clearing. By employing beam superimposition technology and a modular laser weapon concept, the total optical power has been successively increased. Stationary weapon platforms and now military mobile vehicles were equipped with high energy laser effectors. Our contribution summarises the most recent development stages of Rheinmetalls high energy laser weapon program. We present three different vehicle based HEL demonstrators: the 5 kW class Mobile HEL Effector Track V integrated in an M113 tank, the 20 kW class Mobile HEL Effector Wheel XX integrated in a multirole armoured vehicle GTK Boxer 8x8 and the 50 kW class Mobile HEL Effector Container L integrated in a reinforced container carried by an 8x8 truck. As a highlight, a stationary 30 kW Laser Weapon Demonstrator shows the capability to defeat saturated attacks of RAM targets and unmanned aerial vehicles. 2013 all HEL demonstrators were tested in a firing campaign at the Rheinmetall testing centre in Switzerland. Major results of these tests are presented.

  11. Xenon Feed System Progress (Postprint)

    DTIC Science & Technology

    2006-06-13

    development, assembly and test of an electric propulsion xenon feed system for a flight technology demonstration program. Major accomplishments...pressure transducer feedback, the PFCV has successfully fed xenon to a 200 watt Hall Effect Thruster in a Technology Demonstration Program. The feed

  12. School Libraries and Innovation

    ERIC Educational Resources Information Center

    McGrath, Kevin G.

    2015-01-01

    School library programs have measured success by improved test scores. But how do next-generation school libraries demonstrate success as they strive to be centers of innovation and creativity? These libraries offer solutions for school leaders who struggle to restructure existing systems built around traditional silos of learning (subjects and…

  13. Phase 1 Space Fission Propulsion System Testing and Development Progress

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Godfroy, Tom; Dickens, Ricky; Poston, David; Kapernick, Rick; Reid, Bob; Salvail, Pat; Ring, Peter; Schafer, Charles (Technical Monitor)

    2001-01-01

    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. The Safe Affordable Fission Engine (SAFE) test series, whose ultimate goal is the demonstration of a 300 kW flight configuration system, has demonstrated that realistic testing can be performed using non-nuclear methods. This test series, carried out in collaboration with other NASA centers, other government agencies, industry, and universities, successfully completed a testing program with a 30 kWt core, Stirling engine, and ion engine configuration. Additionally, a 100 kWt core is in fabrication and appropriate test facilities are being reconfigured. This paper describes the current SAFE non-nuclear tests, which includes test article descriptions, test results and conclusions, and future test plans.

  14. Eclipse takeoff and flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system; and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft; validation of simulation models of the towed aircraft systems; and development of ground and flight procedures for towing and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes. The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable launch vehicles, in particular to gain experience towing delta-wing aircraft having high wing loading, and in general to demonstrate various operational procedures such as ground processing and abort scenarios. The first successful towed flight occurred on December 20, 1997. Prior to this first tow test flight, the C-141A and EXD-01 were used to conduct a series of tethered taxi tests that would validate the tow procedures. Before these tethered taxi tests, a successful joint flight test was conducted in late October 1996, by Dryden, AFFTC, and KST, in which one of the Dryden F-18 chase aircraft flew at various ranges and locations behind the C-141A to define the wake turbulence and wingtip vortex environment. This flight test was replicated in July 1997, with an unmodified QF-106 flight proficiency aircraft.

  15. Project Hermes 'Use of Smartphones for Receiving Telemetry and Commanding a Satellite'

    NASA Technical Reports Server (NTRS)

    Maharaja, Rishabh (Principal Investigator)

    2016-01-01

    TCPIP protocols can be applied for satellite command, control, and data transfer. Project Hermes was an experiment set-up to test the use of the TCPIP protocol for communicating with a space bound payload. The idea was successfully demonstrated on high altitude balloon flights and on a sub-orbital sounding rocket launched from NASAs Wallops Flight Facility. TCPIP protocols can be applied for satellite command, control, and data transfer. Project Hermes was an experiment set-up to test the use of the TCPIP protocol for communicating with a space bound payload. The idea was successfully demonstrated on high altitude balloon flights and on a sub-orbital sounding rocket launched from NASAs Wallops Flight Facility.

  16. The career success scale in nursing: psychometric evidence to support the Chinese version.

    PubMed

    Li, Ze-kai; You, Li-ming; Lin, Han-sheng; Chan, Sally Wai-chi

    2014-05-01

    The purpose of this study was to examine the psychometric properties of the 11-item Chinese version of the Career Success Scale. Nurses play an important role in the healthcare system. Opportunities to achieve success and satisfaction from one's career affect the retention and stability of the nursing workforce. The Career Success Scale was originally developed in English and has been translated into Chinese. Psychometric testing of the Chinese Career Success Scale for measuring career success in nurses has not been performed. A cross-sectional survey was conducted. A convenience sample of 1148 clinical nurses were recruited from 10 level-3 hospitals in Guangdong Province, mainland China, from December 2010-December 2011. Results indicated that the Chinese Career Success Scale demonstrated good internal consistency and test-retest reliability. Principal component analysis supported the three-factor structure of the original instrument: Career Satisfaction, Perceived within Organization Competitiveness and Perceived External Organization Competitiveness. There were significant correlations among the three factors, which demonstrated the good construct validity of the Chinese version of this scale. The Chinese Career Success Scale appears to be a reliable and valid instrument. It has the potential to be used to measure nurses' career success in mainland China. The findings will be useful for nurse leaders and policymakers in the evaluation of nurses' self-perceived career success and to develop strategies to promote nurse retention and career development. © 2013 John Wiley & Sons Ltd.

  17. Publication bias and the failure of replication in experimental psychology.

    PubMed

    Francis, Gregory

    2012-12-01

    Replication of empirical findings plays a fundamental role in science. Among experimental psychologists, successful replication enhances belief in a finding, while a failure to replicate is often interpreted to mean that one of the experiments is flawed. This view is wrong. Because experimental psychology uses statistics, empirical findings should appear with predictable probabilities. In a misguided effort to demonstrate successful replication of empirical findings and avoid failures to replicate, experimental psychologists sometimes report too many positive results. Rather than strengthen confidence in an effect, too much successful replication actually indicates publication bias, which invalidates entire sets of experimental findings. Researchers cannot judge the validity of a set of biased experiments because the experiment set may consist entirely of type I errors. This article shows how an investigation of the effect sizes from reported experiments can test for publication bias by looking for too much successful replication. Simulated experiments demonstrate that the publication bias test is able to discriminate biased experiment sets from unbiased experiment sets, but it is conservative about reporting bias. The test is then applied to several studies of prominent phenomena that highlight how publication bias contaminates some findings in experimental psychology. Additional simulated experiments demonstrate that using Bayesian methods of data analysis can reduce (and in some cases, eliminate) the occurrence of publication bias. Such methods should be part of a systematic process to remove publication bias from experimental psychology and reinstate the important role of replication as a final arbiter of scientific findings.

  18. Deep Throttle Turbopump Technology Testing

    NASA Technical Reports Server (NTRS)

    Ferguson, T. V.; Guinzburg, A.; McGlynn, R. D.; Williams, M.

    2002-01-01

    The objectives of this viewgraph presentation were to: (1) enhance and demonstrate critical technologies in support of planned RBCC flight test programs; and (2) obtain knowledge of wide flow range as it is applicable to liquid rocket engine turbopumps operating over extreme throttle ranges. This program was set up to demonstrate wide flow range diffuser technologies. The testing phase of the contract to provide data to anchor initial designs was partially successful. Data collected suggest flow phenomena exists at off-design flow rates.

  19. Reliability demonstration test for load-sharing systems with exponential and Weibull components

    PubMed Central

    Hu, Qingpei; Yu, Dan; Xie, Min

    2017-01-01

    Conducting a Reliability Demonstration Test (RDT) is a crucial step in production. Products are tested under certain schemes to demonstrate whether their reliability indices reach pre-specified thresholds. Test schemes for RDT have been studied in different situations, e.g., lifetime testing, degradation testing and accelerated testing. Systems designed with several structures are also investigated in many RDT plans. Despite the availability of a range of test plans for different systems, RDT planning for load-sharing systems hasn’t yet received the attention it deserves. In this paper, we propose a demonstration method for two specific types of load-sharing systems with components subject to two distributions: exponential and Weibull. Based on the assumptions and interpretations made in several previous works on such load-sharing systems, we set the mean time to failure (MTTF) of the total system as the demonstration target. We represent the MTTF as a summation of mean time between successive component failures. Next, we introduce generalized test statistics for both the underlying distributions. Finally, RDT plans for the two types of systems are established on the basis of these test statistics. PMID:29284030

  20. Reliability demonstration test for load-sharing systems with exponential and Weibull components.

    PubMed

    Xu, Jianyu; Hu, Qingpei; Yu, Dan; Xie, Min

    2017-01-01

    Conducting a Reliability Demonstration Test (RDT) is a crucial step in production. Products are tested under certain schemes to demonstrate whether their reliability indices reach pre-specified thresholds. Test schemes for RDT have been studied in different situations, e.g., lifetime testing, degradation testing and accelerated testing. Systems designed with several structures are also investigated in many RDT plans. Despite the availability of a range of test plans for different systems, RDT planning for load-sharing systems hasn't yet received the attention it deserves. In this paper, we propose a demonstration method for two specific types of load-sharing systems with components subject to two distributions: exponential and Weibull. Based on the assumptions and interpretations made in several previous works on such load-sharing systems, we set the mean time to failure (MTTF) of the total system as the demonstration target. We represent the MTTF as a summation of mean time between successive component failures. Next, we introduce generalized test statistics for both the underlying distributions. Finally, RDT plans for the two types of systems are established on the basis of these test statistics.

  1. Aeroservoelastic Testing of a Sidewall Mounted Free Flying Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Vetter, Travis K.; Penning, Kevin B.; Coulson, David A.; Heeg, Jennifer

    2008-01-01

    A team comprised of the Air Force Research Laboratory (AFRL), Northrop Grumman, Lockheed Martin, and the NASA Langley Research Center conducted three j wind-tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, exible vehicles. In the rst of these three tests, a semispan, aeroelastically scaled, wind-tunnel model of a ying wing SensorCraft vehi- cle was mounted to a force balance to demonstrate gust load alleviation. In the second and third tests, the same wing was mated to a new, multi-degree-of-freedom, sidewall mount. This mount allowed the half-span model to translate vertically and pitch at the wing root, allowing better simulation of the full span vehicle's rigid-body modes. Gust Load Alleviation (GLA) and Body Freedom Flutter (BFF) suppression were successfully demonstrated. The rigid body degrees-of-freedom required that the model be own in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort.

  2. CECE: Expanding the Envelope of Deep Throttling in Liquid Oxygen/Liquid Hydrogen Rocket Engines For NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.

    2010-01-01

    As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop technology and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy cryogenic engine. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Three series of demonstrator engine tests, the first in April-May 2006, the second in March-April 2007 and the third in November-December 2008, have demonstrated up to 13:1 throttling (104% to 8% thrust range) of the hydrogen/oxygen expander cycle engine. The first two test series explored a propellant feed system instability ("chug") environment at low throttled power levels. Lessons learned from these two tests were successfully applied to the third test series, resulting in stable operation throughout the 13:1 throttling range. The first three tests have provided an early demonstration of an enabling cryogenic propulsion concept, accumulating over 5,000 seconds of hot fire time over 27 hot fire tests, and have provided invaluable system-level technology data toward design and development risk mitigation for the NASA Altair and future lander propulsion system applications. This paper describes the results obtained from the highly successful third test series as well as the test objectives and early results obtained from a fourth test series conducted over March-May 2010

  3. An example of successful international cooperation in rocket motor technology

    NASA Astrophysics Data System (ADS)

    Ellis, Russell A.; Berdoyes, Michel

    2002-07-01

    The history of over 25 years of cooperation between Pratt & Whitney, San Jose, CA, USA and Snecma Moteurs, Le Haillan, France in solid rocket motor and, in one case, liquid rocket engine technology is presented. Cooperative efforts resulted in achievements that likely would not have been realized individually. The combination of resources and technologies resulted in synergistic benefits and advancement of the state of the art in rocket motors and components. Discussions begun between the two companies in the early 1970's led to the first cooperative project, demonstration of an advanced apogee motor nozzle, during the mid 1970's. Shortly thereafter advanced carboncarbon (CC) throat materials from Snecma were comparatively tested with other materials in a P&W program funded by the USAF. Use of Snecma throat materials in CSD Tomahawk boosters followed. Advanced space motors were jointly demonstrated in company-funded joint programs in the late 1970's and early 1980's: an advanced space motor with an extendible exit cone and an all-composite advanced space motor that included a composite chamber polar adapter. Eight integral-throat entrances (ITEs) of 4D and 6D construction were tested by P&W for Snecma in 1982. Other joint programs in the 1980's included test firing of a "membrane" CC exit cone, and integral throat and exit cone (ITEC) nozzle incorporating NOVOLTEX® SEPCARB® material. A variation of this same material was demonstrated as a chamber aft polar boss in motor firings that included demonstration of composite material hot gas valve thrust vector control (TVC). In the 1990's a supersonic splitline flexseal nozzle was successfully demonstrated by the two companies as part of a US Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program effort. Also in the mid-1990s the NOVOLTEX® SEPCARB® material, so successful in solid rocket motor application, was successfully applied to a liquid engine nozzle extension. The first cooperative effort for the new millennium, a scale-up of the supersonic splitline flexseal nozzle, was begun in 2001. Key details of the above numerous cooperative successes are presented.

  4. The CF6 jet engine performance improvement: New front mount

    NASA Technical Reports Server (NTRS)

    Fasching, W. A.

    1979-01-01

    The New Front Mount was evaluated in component tests including stress, deflection/distortion and fatigue tests. The test results demonstrated a performance improvement of 0.1% in cruise sfc, 16% in compressor stall margin and 10% in compressor stator angle margin. The New Front Mount hardware successfully completed 35,000 simulated flight cycles endurance testing.

  5. Analysis of 100-lb(sub f) (445-N) LO2-LCH4 Reaction Control Engine Impulse Bit Performance

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Klenhenz, Julie E.

    2012-01-01

    Recently, liquid oxygen-liquid methane (LO2-LCH4) has been considered as a potential green propellant alternative for future exploration missions. The Propulsion and Cryogenic Advanced Development (PCAD) project was tasked by NASA to develop this propulsion combination to enable safe and cost-effective exploration missions. To date, limited experience with such combinations exist, and as a result a comprehensive test program is critical to demonstrating with the viability of implementing such a system. The NASA Glenn Research Center conducted a test program of a 100-lbf (445-N) reaction control engine (RCE) at the Center s Altitude Combustion Stand (ACS), focusing on altitude testing over a wide variety of operational conditions. The ACS facility includes unique propellant conditioning feed systems (PCFS), which allow precise control of propellant inlet conditions to the engine. Engine performance as a result of these inlet conditions was examined extensively during the test program. This paper is a companion to the previous specific impulse testing paper, and discusses the pulsed-mode operation portion of testing, with a focus on minimum impulse bit (MIB) and repeatable pulse performance. The engine successfully demonstrated target MIB performance at all conditions, as well as successful demonstration of repeatable pulse widths. Some anomalous conditions experienced during testing are also discussed, including a double pulse phenomenon, which was not noted in previous test programs for this engine.

  6. Phase 1 Development Testing of the Advanced Manufacturing Demonstrator Engine

    NASA Technical Reports Server (NTRS)

    Case, Nicholas L.; Eddleman, David E.; Calvert, Marty R.; Bullard, David B.; Martin, Michael A.; Wall, Thomas R.

    2016-01-01

    The Additive Manufacturing Development Breadboard Engine (BBE) is a pressure-fed liquid oxygen/pump-fed liquid hydrogen (LOX/LH2) expander cycle engine that was built and operated by NASA at Marshall Space Flight Center's East Test Area. The breadboard engine was conceived as a technology demonstrator for the additive manufacturing technologies for an advanced upper stage prototype engine. The components tested on the breadboard engine included an ablative chamber, injector, main fuel valve, turbine bypass valve, a main oxidizer valve, a mixer and the fuel turbopump. All parts minus the ablative chamber were additively manufactured. The BBE was successfully hot fire tested seven times. Data collected from the test series will be used for follow on demonstration tests with a liquid oxygen turbopump and a regeneratively cooled chamber and nozzle.

  7. Centaur liquid oxygen boost pump vibration test

    NASA Technical Reports Server (NTRS)

    Tang, H. M.

    1975-01-01

    The Centaur LOX boost pump was subjected to both the simulated Titan Centaur proof flight and confidence demonstration vibration test levels. For each test level, both sinusoidal and random vibration tests were conducted along each of the three orthogonal axes of the pump and turbine assembly. In addition to these tests, low frequency longitudinal vibration tests for both levels were conducted. All tests were successfully completed without damage to the boost pump.

  8. NASA Advances Technologies for Additive Manufacturing of GRCop-84 Copper Alloy

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Protz, Chris

    2017-01-01

    The Low Cost Upper Stage Propulsion project has successfully developed and matured Selective Laser Melting (SLM) Fabrication of the NASA developed GRCop-84 copper alloy. Several parts have been printed in house and at a commercial vendor, and these parts have been successfully machined and have undergone further fabrication steps to allow hot-fire testing. Hot-fire testing has demonstrated parts manufactured with this technique can survive and perform well in the relevant environments for liquid rocket propulsion systems.

  9. Liquid-hydrogen rocket engine development at Aerojet, 1944 - 1950

    NASA Technical Reports Server (NTRS)

    Osborn, G. H.; Gordon, R.; Coplen, H. L.; James, G. S.

    1977-01-01

    This program demonstrated the feasibility of virtually all the components in present-day, high-energy, liquid-rocket engines. Transpiration and film-cooled thrust chambers were successfully operated. The first liquid-hydrogen tests of the coaxial injector was conducted and the first pump to successfully produce high pressures in pumping liquid hydrogen was tested. A 1,000-lb-thrust gaseous propellant and a 3,000-lb-thrust liquid-propellant thrust chamber were operated satisfactorily. Also, the first tests were conducted to evaluate the effects of jet overexpansion and separation on performance of rocket thrust chambers with hydrogen-oxygen propellants.

  10. Space Station propulsion - Advanced development testing of the water electrolysis concept at MSFC

    NASA Technical Reports Server (NTRS)

    Jones, Lee W.; Bagdigian, Deborah R.

    1989-01-01

    The successful demonstration at Marshall Space Flight Center (MSFC) that the water electrolysis concept is sufficiently mature to warrant adopting it as the baseline propulsion design for Space Station Freedom is described. In particular, the test results demonstrated that oxygen/hydrogen thruster, using gaseous propellants, can deliver more than two million lbf-seconds of total impulse at mixture ratios of 3:1 to 8:1 without significant degradation. The results alao demonstrated succcessful end-to-end operation of an integrated water electrolysis propulsion system.

  11. Pilot-scale tests of HEME and HEPA dissolution process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qureshi, Z.H.; Strege, D.K.

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME`s) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsedmore » with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump.« less

  12. An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2008-01-01

    An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.

  13. The Orion Pad Abort 1 (PA-1) Flight Test: A Propulsion Success

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.

    2015-01-01

    This poster provides a concise overview of the highly successful Orion Pad Abort 1 (PA-1) flight test, and the three rocket motors that contributed to this success. The primary purpose of the Orion PA-1 flight was to help certify the Orion Launch Abort System (LAS), which can be utilized in the unlikely event of an emergency on the launchpad or during mission vehicle ascent. The PA-1 test was the first fully integrated flight test of the Orion LAS, one of the primary systems within the Orion Multi-Purpose Crew Vehicle (MPCV). The Orion MPCV is part of the architecture within the Space Launch System (SLS), which is being designed to transport astronauts beyond low-Earth orbit for future exploration missions. Had the Orion PA-1 flight abort occurred during launch preparations for a real human spaceflight mission, the PA-1 LAS would have saved the lives of the crew. The PA-1 flight test was largely successful due to the three solid rocket motors of the LAS: the Attitude Control Motor (ACM); the Jettison Motor (JM); and the Abort Motor (AM). All three rocket motors successfully performed their required functions during the Orion PA-1 flight test, flown on May 6, 2010 at the White Sands Missile Range in New Mexico, culminating in a successful demonstration of an abort capability from the launchpad.

  14. Composite armored vehicle advanced technology demonstator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostberg, D.T.; Dunfee, R.S.; Thomas, G.E.

    1996-12-31

    Composite structures are a key technology needed to develop future lightweight combat vehicles that are both deployable and survivable. The Composite Armored Vehicle Advanced Technology Demonstrator Program that started in fiscal year 1994 will continue through 1998 to verily that composite structures are a viable solution for ground combat vehicles. Testing thus far includes material characterization, structural component tests and full scale quarter section tests. Material and manufacturing considerations, tests, results and changes, and the status of the program will be described. The structural component tests have been completed successfully, and quarter section testing is in progress. Upon completion ofmore » the critical design review, the vehicle demonstrator will be Fabricated and undergo government testing.« less

  15. Summary of Altitude Pulse Testing of a 100-lbf L02/LCH4 Reaction Control Engine

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Kleinhenz, Julie E.

    2011-01-01

    Recently, liquid oxygen-liquid methane (LO2/LCH4) has been considered as a potential "green" propellant alternative for future exploration missions. The Propulsion and Cryogenic Advanced Development (PCAD) project has been tasked by NASA to develop this propulsion combination to enable safe and cost effective exploration missions. To date, limited experience with such combinations exist, and as a result a comprehensive test program is critical to demonstrating the viability of implementing such a system. The NASA Glenn Research Center has conducted a test program of a 100-lbf (445-N) reaction control engine (RCE) at the center s Altitude Combustion Stand (ACS), focusing on altitude testing over a wide variety of operational conditions. The ACS facility includes a unique propellant conditioning feed system (PCFS) which allows precise control of propellant inlet conditions to the engine. Engine performance as a result of these inlet conditions was examined extensively during the test program. This paper is a companion to the previous specific impulse testing paper, and discusses the pulsed mode operation portion of testing, with a focus on minimum impulse bit (I-bit) and repeatable pulse performance. The engine successfully demonstrated target minimum impulse bit performance at all conditions, as well as successful demonstration of repeatable pulse widths. Some anomalous conditions experienced during testing are also discussed, including a double pulse phenomenon which was not noted in previous test programs for this engine.

  16. Aeroservoelastic Testing of Free Flying Wind Tunnel Models Part 1: A Sidewall Supported Semispan Model Tested for Gust Load Alleviation and Flutter Suppression

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Vetter, Travis K.; Penning, Kevin B.; Coulson, David A.; Heeg, Jennifer.

    2013-01-01

    of a two part document. Part 2 is titled: "Aeroservoelastic Testing of Free Flying Wind Tunnel Models, Part 2: A Centerline Supported Fullspan Model Tested for Gust Load Alleviation." A team comprised of the Air Force Research Laboratory (AFRL), Northrop Grumman, Lockheed Martin, and the NASA Langley Research Center conducted three aeroservoelastic wind tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, flexible vehicles. In the first of these three tests, a semispan, aeroelastically scaled, wind tunnel model of a flying wing SensorCraft vehicle was mounted to a force balance to demonstrate gust load alleviation. In the second and third tests, the same wing was mated to a new, multi-degree of freedom, sidewall mount. This mount allowed the half-span model to translate vertically and pitch at the wing root, allowing better simulation of the full span vehicle's rigid body modes. Gust load alleviation (GLA) and Body freedom flutter (BFF) suppression were successfully demonstrated. The rigid body degrees-of-freedom required that the model be flown in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort.

  17. Evaluation of coated columbium alloy heat shields for space shuttle thermal protection system application. Final report. [For us to 2400F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, W.E.

    1977-04-01

    A three-phase program to develop and demonstrate the feasibility of a metallic heat shield suitable for use on Space Shuttle Orbiter class vehicles at operating surface temperatures of up to 1590 K (2400 F) is summarized. An orderly progression of configuration studies, material screening tests, and subscale structural tests was performed. Scale-up feasibility was demonstrated in the final phase when a sizable nine-panel array was fabricated and successfully tested. The full-scale tests included cyclic testing at reduced air pressure to 1590 K (2400 F) and up to 158 dB overall sound pressure level. The selected structural configuration and design techniquesmore » succesfully eliminated thermal induced failures. The thermal/structural performance of the system was repeatedly demonstrated. Practical and effective field repair methods for coated columbium alloys were demonstrated. Major uncertainties of accessibility, refurbishability, and durability were eliminated.« less

  18. Evaluation of coated columbium alloy heat shields for space shuttle thermal protection system application

    NASA Technical Reports Server (NTRS)

    Black, W. E.

    1977-01-01

    A three-phase program to develop and demonstrate the feasibility of a metallic heat shield suitable for use on Space Shuttle Orbiter class vehicles at operating surface temperatures of up to 1590 K (2400 F) is summarized. An orderly progression of configuration studies, material screening tests, and subscale structural tests was performed. Scale-up feasibility was demonstrated in the final phase when a sizable nine-panel array was fabricated and successfully tested. The full-scale tests included cyclic testing at reduced air pressure to 1590 K (2400 F) and up to 158 dB overall sound pressure level. The selected structural configuration and design techniques succesfully eliminated thermal induced failures. The thermal/structural performance of the system was repeatedly demonstrated. Practical and effective field repair methods for coated columbium alloys were demonstrated. Major uncertainties of accessibility, refurbishability, and durability were eliminated.

  19. Success in the Urban Setting: Ohio's Urban Demonstration Projects.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus.

    The Urban Demonstration Projects (UDP) combined rehabilitative, preventive, and developmental services in a coordinated school and community effort to test the impact of a maximal educational program for disadvantaged students in Ohio's urban schools. This report, which was prepared by staff members from the various projects throughout the State,…

  20. Yes I can: Expected success promotes actual success in emotion regulation.

    PubMed

    Bigman, Yochanan E; Mauss, Iris B; Gross, James J; Tamir, Maya

    2016-11-01

    People who expect to be successful in regulating their emotions tend to experience less frequent negative emotions and are less likely to suffer from depression. It is not clear, however, whether beliefs about the likelihood of success in emotion regulation can shape actual emotion regulation success. To test this possibility, we manipulated participants' beliefs about the likelihood of success in emotion regulation and assessed their subsequent ability to regulate their emotions during a negative emotion induction. We found that participants who were led to expect emotion regulation to be more successful were subsequently more successful in regulating their emotional responses, compared to participants in the control condition. Our findings demonstrate that expected success can contribute to actual success in emotion regulation.

  1. Eclipse - tow flight closeup and release

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This clip, running 15 seconds in length, shows the QF-106 'Delta Dart' gear down, with the tow rope secured to the attachment point above the aircraft nose. First there is a view looking back from the C-141A, then looking forward from the nose of the QF-106, and finally a shot of the aircraft being released from the tow rope. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate a reusable tow launch vehicle concept developed by KST. Kelly Space and Technology hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight-measured values of tow rope tension were well within predictions made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system; and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft; validation of simulation models of the towed aircraft systems; and development of ground and flight procedures for towing and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes.The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable launch vehicles, in particular to gain experience towing delta-wing aircraft having high wing loading, and in general to demonstrate various operational procedures such as ground processing and abort scenarios. The first successful towed flight occurred on Dec. 20, 1997. Prior to this first tow test flight, the C-141A and EXD-01 were used to conduct a series of tethered taxi tests to validate the tow procedures. Before these tethered taxi tests, a successful joint flight test was conducted in late October 1996, by Dryden, AFFTC, and KST, in which one of the Dryden F-18 chase aircraft flew at various ranges and locations behind the C-141A to define the wake turbulence and wingtip vortex environment. This flight test was replicated in July 1997, with an unmodified QF-106 flight proficiency aircraft.

  2. The Expeditionary Test Set - A fresh approach to automatic testing

    NASA Astrophysics Data System (ADS)

    Williams, D. L.; Austin, W. J.

    This paper discusses the key design decisions and tradeoffs leading from the conceptual stage to the production version of the Expeditionary Test Set (ETS) for the USMC. This included a ten-month feasibility study program funded by the Naval Air Systems Command which culminated in the successful demonstration of a working tester model. The demonstration of the test set was preceded by a substantial re-thinking of conventional ATE test methods. Considerable discussion is devoted to the impact of test philosophy, both on the test set design and the overall effectiveness of avionic testing. Major architectural features of the test set are presented in some detail, and the many areas which break from traditional ATE design are emphasized.

  3. Demonstration of a Pyrotechnic Bolt-Retractor System

    NASA Technical Reports Server (NTRS)

    Johnston, Nick; Ahmed, Rafiq; Garrison, Craig; Gaines, Joseph; Waggoner, Jason

    2004-01-01

    A paper describes a demonstration of the X-38 bolt-retractor system (BRS) on a spacecraft-simulating apparatus, called the Large Mobility Base, in NASA's Flight Robotics Laboratory (FRL). The BRS design was proven safe by testing in NASA's Pyrotechnic Shock Facility (PSF) before being demonstrated in the FRL. The paper describes the BRS, FRL, PSF, and interface hardware. Information on the bolt-retraction time and spacecraft-simulator acceleration, and an analysis of forces, are presented. The purpose of the demonstration was to show the capability of the FRL for testing of the use of pyrotechnics to separate stages of a spacecraft. Although a formal test was not performed because of schedule and budget constraints, the data in the report show that the BRS is a successful design concept and the FRL is suitable for future separation tests.

  4. Fiber Optic Wing Shape Sensing on NASA's Ikhana UAV

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    Fiber Optic Wing Shape Sensing on Ikhana involves five major areas 1) Algorithm development: Local-strain-to-displacement algorithms have been developed for complex wing shapes for real-time implementation (NASA TP-2007-214612, patent application submitted) 2) FBG system development: Dryden advancements to fiber optic sensing technology have increased data sampling rates to levels suitable for monitoring structures in flight (patent application submitted) 3) Instrumentation: 2880 FBG strain sensors have been successfully installed on the Ikhana wings 4) Ground Testing: Fiber optic wing shape sensing methods for high aspect ratio UAVs have been validated through extensive ground testing in Dryden s Flight Loads Laboratory 5) Flight Testing: Real time fiber Bragg strain measurements successfully acquired and validated in flight (4/28/2008) Real-time fiber optic wing shape sensing successfully demonstrated in flight

  5. Upscaling transport of a reacting solute through a peridocially converging-diverging channel at pre-asymptotic times

    NASA Astrophysics Data System (ADS)

    Sund, Nicole L.; Bolster, Diogo; Dawson, Clint

    2015-11-01

    In this study we extend the Spatial Markov model, which has been successfully used to upscale conservative transport across a diverse range of porous media flows, to test if it can accurately upscale reactive transport, defined by a spatially heterogeneous first order degradation rate. We test the model in a well known highly simplified geometry, commonly considered as an idealized pore or fracture structure, a periodic channel with wavy boundaries. The edges of the flow domain have a layer through which there is no flow, but in which diffusion of a solute still occurs. Reactions are confined to this region. We demonstrate that the Spatial Markov model, an upscaled random walk model that enforces correlation between successive jumps, can reproduce breakthrough curves measured from microscale simulations that explicitly resolve all pertinent processes. We also demonstrate that a similar random walk model that does not enforce successive correlations is unable to reproduce all features of the measured breakthrough curves.

  6. Final technical report for ITS for voluntary emission reduction : an ITS operational test using real-time vehicle emissions detection

    DOT National Transportation Integrated Search

    1998-05-01

    The Smart Sign project has successfully demonstrated the merging of two separate technological disciplines of highway messaging and on-road vehicle emissions sensing into an advanced ITS public information system. This operational test has demonstrat...

  7. Validation of a Scalable Solar Sailcraft

    NASA Technical Reports Server (NTRS)

    Murphy, D. M.

    2006-01-01

    The NASA In-Space Propulsion (ISP) program sponsored intensive solar sail technology and systems design, development, and hardware demonstration activities over the past 3 years. Efforts to validate a scalable solar sail system by functional demonstration in relevant environments, together with test-analysis correlation activities on a scalable solar sail system have recently been successfully completed. A review of the program, with descriptions of the design, results of testing, and analytical model validations of component and assembly functional, strength, stiffness, shape, and dynamic behavior are discussed. The scaled performance of the validated system is projected to demonstrate the applicability to flight demonstration and important NASA road-map missions.

  8. GRC-2006-C-01252

    NASA Image and Video Library

    2002-08-09

    Performance Acceptance Test of a prototype-model NEXT (NASA Evolutionary Xenon Thruster) ion engine that was delivered to NASA Glenn Research Center by Aerojet. The test dates were May 10 - May 17, 2006. The test was conducted in the Vacuum Facility 6 test facility located in the Electric Power Laboratory. The test successfully demonstrated the PM manufacturing process carried out by Aerojet under the guidance of NASA Glenn Research Center and PM1 acceptable functionality

  9. Vibration Testing of the Pluto/New Horizons Radioisotope Thermoelectric Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles D. Griffin

    The Radioisotopic Thermal Generator (RTG) for the Pluto/New Horizons spacecraft was subjected to a flight dynamic acceptance test to demonstrate that it would perform successfully following launch. Seven RTGs of this type had been assembled and tested at Mound, Ohio from 1984 to 1997. This paper chronicles major events in establishing a new vibration test laboratory at the Idaho National Laboratory and the nineteen days of dynamic testing.

  10. Air Data Boom System Development for the Max Launch Abort System (MLAS) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Cox, Jeff; Bondurant, Robert; Dupont, Ron; ODonnell, Louise; Vellines, Wesley, IV; Johnston, William M.; Cagle, Christopher M.; Schuster, David M.; Elliott, Kenny B.; hide

    2010-01-01

    In 2007, the NASA Exploration Systems Mission Directorate (ESMD) chartered the NASA Engineering Safety Center (NESC) to demonstrate an alternate launch abort concept as risk mitigation for the Orion project's baseline "tower" design. On July 8, 2009, a full scale and passively, aerodynamically stabilized MLAS launch abort demonstrator was successfully launched from Wallops Flight Facility following nearly two years of development work on the launch abort concept: from a napkin sketch to a flight demonstration of the full-scale flight test vehicle. The MLAS flight test vehicle was instrumented with a suite of aerodynamic sensors. The purpose was to obtain sufficient data to demonstrate that the vehicle demonstrated the behavior predicted by Computational Fluid Dynamics (CFD) analysis and wind tunnel testing. This paper describes development of the Air Data Boom (ADB) component of the aerodynamic sensor suite.

  11. SMART Rotor Development and Wind Tunnel Test

    DTIC Science & Technology

    2009-09-01

    amplifier and control system , and data acquisition, processing, and display systems . Boeing�s LRTS (Fig. 2), consists of a sled structure that...Support Test Stand Sled Tail Sting Outrigger Arm Figure 2: System integration test at whirl tower Port Rotor Balance Main Strut Flap Tail...demonstrated. Finally, the reliability of the flap actuation system was successfully proven in more than 60 hours of wind tunnel testing

  12. Demonstration of a Non-Toxic Reaction Control Engine

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Turpin, Alicia A.; Veith, Eric M.

    2007-01-01

    T:hree non-toxic demonstration reaction control engines (RCE) were successfully tested at the Aerojet Sacramento facility under a technology contract sponsored by the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC). The goals of the NASA MSFC contract (NAS8-01109) were to develop and expand the technical maturity of a non-toxic, on-orbit auxiliary propulsion system (APS) thruster under the auspices of the Exploration Systems Mission Directorate. The demonstration engine utilized Liquid Oxygen (LOX) and Ethanol as propellants to produce 870 lbf thrust. The Aerojet RCE's were successfully acceptance tested over a broad range of operating conditions. Steady state tests evaluated engine response to varying chamber pressures and mixture ratios. In addition to the steady state tests, a variety of pulsing tests were conducted over a wide range of electrical pulse widths (EPW). Each EPW condition was also tested over a range of percent duty cycles (DC), and bit impulse and pulsing specific impulse were determined for each of these conditions. Subsequent to acceptance testing at Aerojet, these three engines were delivered to the NASA White Sands Test Facility (WSTF) in April 2005 for incorporation into a cryogenic Auxiliary Propulsion System Test Bed (APSTB). The APSTB is a test article that will be utilized in an altitude test cell to simulate anticipated mission applications. The objectives of this APSTB testing included evaluation of engine performance over an extended duty cycle map of propellant pressure and temperature, as well as engine and system performance at typical mission duty cycles over extended periods of time. This paper provides acceptance test results and a status of the engine performance as part of the system level testing.

  13. Demonstration of a Non-Toxic Reaction Control Engine

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Veith, Eric M.; Turpin, Alicia A.

    2006-01-01

    Three non-toxic demonstration reaction control engines (RCE) were successfully tested at the Aerojet Sacramento facility under a technology contract sponsored by the National Aeronautics and Space Administration s (NASA) Marshall Space Flight Center (MSFC). The goals of the NASA MSFC contract (NAS8-01109) were to develop and expand the technical maturity of a non-toxic, on-orbit auxiliary propulsion system (APS) thruster under the auspices of the Exploration Systems Mission Directorate. The demonstration engine utilized Liquid Oxygen (LOX) and Ethanol as propellants to produce 870 lbf thrust. The Aerojet RCE s were successfully acceptance tested over a broad range of operating conditions. Steady state tests evaluated engine response to varying chamber pressures and mixture ratios. In addition to the steady state tests, a variety of pulsing tests were conducted over a wide range of electrical pulse widths (EPW). Each EPW condition was also tested over a range of percent duty cycles (DC), and bit impulse and pulsing specific impulse were determined for each of these conditions. White Sands Test Facility (WSTF) in April 2005 for incorporation into a cryogenic Auxiliary Propulsion System Test Bed (APSTB). The APSTB is a test article that will be utilized in an altitude test cell to simulate anticipated mission applications. The objectives of this APSTB testing included evaluation of engine performance over an extended duty cycle map of propellant pressure and temperature, as well as engine and system performance at typical mission duty cycles over extended periods of time. This paper provides acceptance test results and a status of the engine performance as part of the system level testing. Subsequent to acceptance testing at Aerojet, these three engines were delivered to the NASA

  14. Effects of Subject Self-Esteem, Test Performance Feedback, and Counselor Attractiveness on Influence in Counseling

    ERIC Educational Resources Information Center

    Sell, John M.

    1974-01-01

    Counselor attractiveness, subject self-esteem, and subject receipt of test performance feedback were manipulated in a counseling analogue experiment. The results demonstrated no relationship between the independent variables and counselor influence, although the experimental induction of attractiveness was successful. Implications for a theory of…

  15. 14 CFR 25.562 - Emergency landing dynamic conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....562 Emergency landing dynamic conditions. (a) The seat and restraint system in the airplane must be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Emergency landing dynamic conditions. 25... successfully complete dynamic tests or be demonstrated by rational analysis based on dynamic tests of a similar...

  16. 14 CFR 27.562 - Emergency landing dynamic conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Emergency landing dynamic conditions. 27... Conditions § 27.562 Emergency landing dynamic conditions. (a) The rotorcraft, although it may be damaged in... must successfully complete dynamic tests or be demonstrated by rational analysis based on dynamic tests...

  17. Cold in-place recycling using solventless emulsion - phase IV (emulsion qualification and long-term field performance).

    DOT National Transportation Integrated Search

    2016-05-01

    This report looks into how a successful Cold In-Place solventless emulsion behaves and how the emulsion : break test developed in Phase III of this project demonstrates that behavior. Modifications to the test have been : made to improve the consiste...

  18. Summary of Rocketdyne Engine A5 Rocket Based Combined Cycle Testing

    NASA Technical Reports Server (NTRS)

    Ketchum. A.; Emanuel, Mark; Cramer, John

    1998-01-01

    Rocketdyne Propulsion and Power (RPP) has completed a highly successful experimental test program of an advanced rocket based combined cycle (RBCC) propulsion system. The test program was conducted as part of the Advanced Reusable Technology program directed by NASA-MSFC to demonstrate technologies for low-cost access to space. Testing was conducted in the new GASL Flight Acceleration Simulation Test (FAST) facility at sea level (Mach 0), Mach 3.0 - 4.0, and vacuum flight conditions. Significant achievements obtained during the test program include 1) demonstration of engine operation in air-augmented rocket mode (AAR), ramjet mode and rocket mode and 2) smooth transition from AAR to ramjet mode operation. Testing in the fourth mode (scramjet) is scheduled for November 1998.

  19. Facility Activation and Characterization for IPD Turbopump Testing at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; Pace, J. S.; Raines, N. G.; Meredith, T. O.; Taylor, S. A.; Ryan, H. M.

    2005-01-01

    The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is, in part, supported by NASA. IPD is also supported through the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today's state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The IPD Program recently achieved two major milestones. The first was the successful completion of the IPD Oxidizer Turbopump (OTP) hot-fire test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in June 2003. A total of nine IPD Workhorse Preburner tests were completed, and subsequently 12 IPD OTP hot-fire tests were completed. The second major milestone was the successful completion of the IPD Fuel Turbopump (FTP) cold-flow test project at the NASA SSC E-1 test facility in November 2003. A total of six IPD FTP cold-flow tests were completed. The next phase of development involves IPD integrated engine system testing also at the NASA SSC E-1 test facility scheduled to begin in early 2005. Following and overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and testing of the IPD oxidizer and fuel turbopumps. In addition, some of the facility challenges encountered and the lessons learned during the test projects shall be detailed.

  20. Energy efficient engine pin fin and ceramic composite segmented liner combustor sector rig test report

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.; Lohmann, R. P.; Tanrikut, S.; Morris, P. M.

    1986-01-01

    Under the NASA-sponsored Energy Efficient Engine program, Pratt and Whitney has successfully completed a comprehensive test program using a 90-degree sector combustor rig that featured an advanced two-stage combustor with a succession of advanced segmented liners. Building on the successful characteristics of the first generation counter-parallel Finwall cooled segmented liner, design features of an improved performance metallic segmented liner were substantiated through representative high pressure and temperature testing in a combustor atmosphere. This second generation liner was substantially lighter and lower in cost than the predecessor configuration. The final test in this series provided an evaluation of ceramic composite liner segments in a representative combustor environment. It was demonstrated that the unique properties of ceramic composites, low density, high fracture toughness, and thermal fatigue resistance can be advantageously exploited in high temperature components. Overall, this Combustor Section Rig Test program has provided a firm basis for the design of advanced combustor liners.

  1. Development and flight test evaluation of a pitch stability augmentation system for a relaxed stability L-1011

    NASA Technical Reports Server (NTRS)

    Rising, J. J.

    1982-01-01

    The L-1011 has been flight tested to demonstrate the relaxed static stability concept as a means of obtaining significant drag benefits to achieve a more energy efficient transport. Satisfactory handling qualities were maintained with the design of an active control horizontal tail for stability and control augmentation to allow operation of the L-1011 at centers of gravity close to the neutral point. Prior to flight test, a motion base visual flight simulator program was performed to optimize the augmentation system. The system was successfully demonstrated in a test program totaling forty-eight actual flight hours.

  2. Experimental investigation of elastic mode control on a model of a transport aircraft

    NASA Technical Reports Server (NTRS)

    Abramovitz, M.; Heimbaugh, R. M.; Nomura, J. K.; Pearson, R. M.; Shirley, W. A.; Stringham, R. H.; Tescher, E. L.; Zoock, I. E.

    1981-01-01

    A 4.5 percent DC-10 derivative flexible model with active controls is fabricated, developed, and tested to investigate the ability to suppress flutter and reduce gust loads with active controlled surfaces. The model is analyzed and tested in both semispan and complete model configuration. Analytical methods are refined and control laws are developed and successfully tested on both versions of the model. A 15 to 25 percent increase in flutter speed due to the active system is demonstrated. The capability of an active control system to significantly reduce wing bending moments due to turbulence is demonstrated. Good correlation is obtained between test and analytical prediction.

  3. B-52B-008/DTV (Drop Test Vehicle) configuration 1 (with and without fins) flight test results - captive flight and drop test missions

    NASA Technical Reports Server (NTRS)

    Quade, D. A.

    1978-01-01

    The B-52B-008 drop test consisted of one takeoff roll to 60 KCAS, two captive flights to accomplish limited safety of flight flutter and structural demonstration testing, and seven drop test flights. Of the seven drop test missions, one flight was aborted due to the failure of the hook mechanism to release the drop test vehicle (DTV); but the other six flights successfully dropped the DTV.

  4. Development of the Astrobee F sounding rocket system.

    NASA Technical Reports Server (NTRS)

    Jenkins, R. B.; Taylor, J. P.; Honecker, H. J., Jr.

    1973-01-01

    The development of the Astrobee F sounding rocket vehicle through the first flight test at NASA-Wallops Station is described. Design and development of a 15 in. diameter, dual thrust, solid propellant motor demonstrating several new technology features provided the basis for the flight vehicle. The 'F' motor test program described demonstrated the following advanced propulsion technology: tandem dual grain configuration, low burning rate HTPB case-bonded propellant, and molded plastic nozzle. The resultant motor integrated into a flight vehicle was successfully flown with extensive diagnostic instrumentation.-

  5. Eclipse project QF-106 and C-141A climbs out under tow on first tethered flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    TOW LAUNCH DEMONSTRATION - The Kelly Space & Technology (KST)/USAF/NASA Eclipse project's modified QF-106 climbs out under tow by a USAF C-141A on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  6. Experimental testing of prototype face gears for helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Handschuh, R.; Lewicki, D.; Bossler, R.

    1992-01-01

    An experimental program to test the feasibility of using face gears in a high-speed and high-power environment was conducted. Four face gear sets were tested, two sets at a time, in a closed-loop test stand at pinion rotational speeds to 19,100 rpm and to 271 kW. The test gear sets were one-half scale of the helicopter design gear set. Testing the gears at one-eighth power, the test gear set had slightly increased bending and compressive stresses when compared to the full scale design. The tests were performed in the LeRC spiral bevel gear test facility. All four sets of gears successfully ran at 100 percent of design torque and speed for 30 million pinion cycles, and two sets successfully ran at 200 percent of torque for an additional 30 million pinion cycles. The results, although limited, demonstrated the feasibility of using face gears for high-speed, high-load applications.

  7. Effectiveness of three just-in-time training modalities for N-95 mask fit testing.

    PubMed

    Jones, David; Stoler, Genevieve; Suyama, Joe

    2013-01-01

    To compare and contrast three different training modalities for fit testing N-95 respirator face masks. Block randomized interventional study. Urban university. Two hundred eighty-nine medical students. Students were randomly assigned to video, lecture, or slide show to evaluate the effectiveness of the methods for fit testing large groups of people. Ease of fit and success of fit for each instructional technique. Mask 1 was a Kimberly-Clark duckbill N-95 respirator mask, and mask 2 was a 3M™ carpenters N-95 respirator mask. "Ease of fit" was defined as the ability to successfully don a mask in less than 30 seconds. "Success of fit" was defined as the ability to correctly don a mask in one try. There were no statistical differences by training modality for either mask regarding ease of fit or success of fit. There were no differences among video presentation, small group demonstration, and self-directed slide show just-in-time training modalities for ease of fit or success of fit N-95 respirator mask fitting. Further study is needed to explore more effective fit training modalities.

  8. Manufacturing processes for fabricating graphite/PMR 15 polyimide structural elements

    NASA Technical Reports Server (NTRS)

    Sheppard, C. H.; Hoggatt, J. T.; Symonds, W. A.

    1979-01-01

    Investigations were conducted to obtain commercially available graphite/PMR-15 polyimide prepreg, develop an autoclave manufacturing process, and demonstrate the process by manufacturing structural elements. Controls were established on polymer, prepreg, composite fabrication, and quality assurance, Successful material quality control and processes were demonstrated by fabricating major structural elements including flat laminates, hat sections, I beam sections, honeycomb sandwich structures, and molded graphite reinforced fittings. Successful fabrication of structural elements and simulated section of the space shuttle aft body flap shows that the graphite/PMR-15 polyimide system and the developed processes are ready for further evaluation in flight test hardware.

  9. Durability testing of the AJ10-221 490 N high performance (321 sec Isp) engine

    NASA Technical Reports Server (NTRS)

    Jassowski, D. M.; Rosenberg, S. D.; Schoenman, L.

    1993-01-01

    The durability of the 490 N AJ10-221 engine is characterized on the basis of data from 93 tests and a total firing life of 6.3 hr. For the three Ir/Re chambers tested, no limiting conditions were encountered in the 43,379 sec and 229 test thermal cycles. A wide range of off nominal operating conditions was successfully demonstrated.

  10. The development of a non-cryogenic nitrogen/oxygen supply system. [using hydrazine/water electrolysis

    NASA Technical Reports Server (NTRS)

    Greenough, B. M.; Mahan, R. E.

    1974-01-01

    A hydrazine/water electrolysis process system module design was fabricated and tested to demonstrate component and module performance. This module is capable of providing both the metabolic oxygen for crew needs and the oxygen and nitrogen for spacecraft leak makeup. The component designs evolved through previous R and D efforts, and were fabricated and tested individually and then were assembled into a complete module which was successfully tested for 1000 hours to demonstrate integration of the individual components. A survey was made of hydrazine sensor technology and a cell math model was derived.

  11. High Temperature Electrolysis 4 kW Experiment Design, Operation, and Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.E. O'Brien; X. Zhang; K. DeWall

    2012-09-01

    This report provides results of long-term stack testing completed in the new high-temperature steam electrolysis multi-kW test facility recently developed at INL. The report includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This facility has provided a demonstration of high-temperature steam electrolysis operation at the 4 kW scale with advanced cell and stack technology. This successful large-scale demonstration of high-temperature steam electrolysis will help to advance the technology toward near-term commercialization.

  12. Evaluating learning and teaching using the Force Concept Inventory

    NASA Astrophysics Data System (ADS)

    Zitzewitz, Paul

    1997-04-01

    Teaching methods used in the calculus-based mechanics course for engineers and scientists (P150) at the University of Michigan-Dearborn were markedly changed in September, 1996. Lectures emphasize active learning with Mazur's ConcepTests, Sokoloff's Interactive Demonstrations, and Van Heuvelen's ALPS Kit worksheets. Students solve context-rich problems using Van Heuvelen's multiple representation format in cooperative groups in discussion sections. Labs were changed to use MBL emphasizing concepts and Experiment Problems to learn lab-based problem solving. Pre- and post-testing of 400 students with the Force Concept Inventory has demonstrated considerable success. The average increase in score has been 35-45methods as defined by Hake. The methods and results will be discussed. Detailed analyses of the FCI results will look at success in teaching specific concepts and the effect of student preparation in mathematics and high school physics.

  13. Operation of a solid oxide fuel cell on biodiesel with a partial oxidation reformer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siefert, N, Shekhawat, D.; Gemmen, R.; Berry, D.

    The National Energy Technology Laboratory’s Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, in–house patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, andmore » operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL. The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of biodiesel into mostly hydrogen and carbon monoxide (syngas.) The syngas was fed to the STF and fuel cell stack. The results presented in this experimental report document one of the first times a SOFC has been operated on syngas from reformed biodiesel.« less

  14. Orbital transfer vehicle oxygen turbopump technology. Volume 3: Hot oxygen testing

    NASA Technical Reports Server (NTRS)

    Urke, Robert L.

    1992-01-01

    This report covers the work done in preparation for a liquid oxygen rocket engine turbopump test utilizing high pressure hot oxygen gas for the turbine drive. The turbopump (TPA) is designed to operate with 400 F oxygen turbine drive gas. The goal of this test program was to demonstrate the successful operation of the TPA under simulated engine conditions including the hot oxygen turbine drive. This testing follows a highly successful series of tests pumping liquid oxygen with gaseous nitrogen as the turbine drive gas. That testing included starting of the TPA with no assist to the hydrostatic bearing. The bearing start entailed a rubbing start until the pump generated enough pressure to support the bearing. The articulating, self-centering hydrostatic bearing exhibited no bearing load or stability problems. The TPA was refurbished for the hot gas drive tests and facility work was begun, but unfortunately funding cuts prohibited the actual testing.

  15. Quarter Scale RLV Multi-Lobe LH2 Tank Test Program

    NASA Technical Reports Server (NTRS)

    Blum, Celia; Puissegur, Dennis; Tidwell, Zeb; Webber, Carol

    1998-01-01

    Thirty cryogenic pressure cycles have been completed on the Lockheed Martin Michoud Space Systems quarter scale RLV composite multi-lobe liquid hydrogen propellant tank assembly, completing the initial phases of testing and demonstrating technologies key to the success of large scale composite cryogenic tankage for X33, RLV, and other future launch vehicles.

  16. Performance of hybrid ball bearings in oil and jet fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrader, S.M.; Pfaffenberger, E.E.

    1992-07-01

    A 308-size hybrid ball bearing, with ceramic balls and steel rings, was tested using a diester oil and gas turbine fuel as lubricants at several speeds and loads. Heat generation data from this test work was then correlated with the heat generation model from a widely used computer code. The ability of this hybrid split inner ring bearing design to endure thrust reversals, which are expected in many turbine applications, was demonstrated. Finally, the bearing was successfully endurance tested in JP-10 fuel for 25 hours at 7560 N axial load and 36,000 rpm. This work has successfully demonstrated the technologymore » necessary to use fuel-lubricated hybrid bearings in limited-life gas turbine engine applications such as missiles, drones, and other unmanned air vehicles (UAVs). In addition, it has provided guidance for use in designing such bearing systems. As a result, the benefits of removing the conventional oil lubricant system, i.e., design simplification and reduced maintenance, can be realized. 6 refs.« less

  17. The X-43A (Hyper-X) Flies Into the Record Books

    NASA Technical Reports Server (NTRS)

    Grindle, Laurie; Bahm, Catherine

    2006-01-01

    The goal of the Hyper-X research program, conducted jointly by the NASA Dryden Flight Research Center and the NASA Langley Research Center, was to demonstrate and validate the technology, experimental techniques, and computation methods and tools for design and performance predictions of a hypersonic aircraft with an airframe-integrated, scramjet propulsion system. Three X-43A airframe-integrated, scramjet research vehicles were designed and fabricated to achieve that goal by flight test: two test flights at Mach 7 and one test flight at Mach 10. The first flight, conducted on June 2, 2001, experienced a launch vehicle failure and resulted in a 9-month mishap investigation. A two-year return-to-flight effort ensued and concluded when the second Mach 7 flight was successful on March 27, 2004. Just eight months later, on November 16, the X-43A successfully completed the third and final flight. These two flights were the first flight demonstrations, at Mach 7 and Mach 10 respectively, of an airframe-integrated, scramjet-powered, hypersonic vehicle.

  18. Ground test for vibration control demonstrator

    NASA Astrophysics Data System (ADS)

    Meyer, C.; Prodigue, J.; Broux, G.; Cantinaud, O.; Poussot-Vassal, C.

    2016-09-01

    In the objective of maximizing comfort in Falcon jets, Dassault Aviation is developing an innovative vibration control technology. Vibrations of the structure are measured at several locations and sent to a dedicated high performance vibration control computer. Control laws are implemented in this computer to analyse the vibrations in real time, and then elaborate orders sent to the existing control surfaces to counteract vibrations. After detailing the technology principles, this paper focuses on the vibration control ground demonstration that was performed by Dassault Aviation in May 2015 on Falcon 7X business jet. The goal of this test was to attenuate vibrations resulting from fixed forced excitation delivered by shakers. The ground test demonstrated the capability to implement an efficient closed-loop vibration control with a significant vibration level reduction and validated the vibration control law design methodology. This successful ground test was a prerequisite before the flight test demonstration that is now being prepared. This study has been partly supported by the JTI CleanSky SFWA-ITD.

  19. Parachute Testing for the NASA X-38 Crew Return Vehicle

    NASA Technical Reports Server (NTRS)

    Stein, Jenny M.

    2005-01-01

    NASA's X-38 program was an in-house technology demonstration program to develop a Crew Return Vehicle (CRV) for the International Space Station capable of returning seven crewmembers to Earth when the Space Shuttle was not present at the station. The program, managed out of NASA's Johnson Space Center, was started in 1995 and was cancelled in 2003. Eight flights with a prototype atmospheric vehicle were successfully flown at Edwards Air Force Base, demonstrating the feasibility of a parachute landing system for spacecraft. The intensive testing conducted by the program included testing of large ram-air parafoils. The flight test techniques, instrumentation, and simulation models developed during the parachute test program culminated in the successful demonstration of a guided parafoil system to land a 25,000 Ib spacecraft. The test program utilized parafoils of sizes ranging from 750 to 7500 p. The guidance, navigation, and control system (GN&C) consisted of winches, laser or radar altimeter, global positioning system (GPS), magnetic compass, barometric altimeter, flight computer, and modems for uplink commands and downlink data. The winches were used to steer the parafoil and to perform the dynamic flare maneuver for a soft landing. The laser or radar altimeter was used to initiate the flare. In the event of a GPS failure, the software navigated by dead reckoning using the compass and barometric altimeter data. The GN&C test beds included platforms dropped from cargo aircraft, atmospheric vehicles released from a 8-52, and a Buckeye powered parachute. This paper will describe the test program and significant results.

  20. Mobile phone based ELISA (MELISA).

    PubMed

    Zhdanov, Arsenii; Keefe, Jordan; Franco-Waite, Luis; Konnaiyan, Karthik Raj; Pyayt, Anna

    2018-04-30

    Enzyme-linked immunosorbent assay (ELISA) is one of the most important technologies for biochemical analysis critical for diagnosis and monitoring of many diseases. Traditional systems for ELISA incubation and reading are expensive and bulky, thus cannot be used at point-of-care or in the field. Here, we propose and demonstrate a new miniature mobile phone based system for ELISA (MELISA). This system can be used to complete all steps of the assay, including incubation and reading. It weighs just 1 pound, can be fabricated at low cost, portable, and can transfer test results via mobile phone. We successfully demonstrated how MELISA can be calibrated for accurate measurements of progesterone and demonstrated successful measurements with the calibrated system. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Feasibility of Turing-Style Tests for Autonomous Aerial Vehicle "Intelligence"

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    A new approach is suggested to define and evaluate key metrics as to autonomous aerial vehicle performance. This approach entails the conceptual definition of a "Turing Test" for UAVs. Such a "UAV Turing test" would be conducted by means of mission simulations and/or tailored flight demonstrations of vehicles under the guidance of their autonomous system software. These autonomous vehicle mission simulations and flight demonstrations would also have to be benchmarked against missions "flown" with pilots/human-operators in the loop. In turn, scoring criteria for such testing could be based upon both quantitative mission success metrics (unique to each mission) and by turning to analog "handling quality" metrics similar to the well-known Cooper-Harper pilot ratings used for manned aircraft. Autonomous aerial vehicles would be considered to have successfully passed this "UAV Turing Test" if the aggregate mission success metrics and handling qualities for the autonomous aerial vehicle matched or exceeded the equivalent metrics for missions conducted with pilots/human-operators in the loop. Alternatively, an independent, knowledgeable observer could provide the "UAV Turing Test" ratings of whether a vehicle is autonomous or "piloted." This observer ideally would, in the more sophisticated mission simulations, also have the enhanced capability of being able to override the scripted mission scenario and instigate failure modes and change of flight profile/plans. If a majority of mission tasks are rated as "piloted" by the observer, when in reality the vehicle/simulation is fully- or semi- autonomously controlled, then the vehicle/simulation "passes" the "UAV Turing Test." In this regards, this second "UAV Turing Test" approach is more consistent with Turing s original "imitation game" proposal. The overall feasibility, and important considerations and limitations, of such an approach for judging/evaluating autonomous aerial vehicle "intelligence" will be discussed from a theoretical perspective.

  2. SMART Rotor Development and Wind-Tunnel Test

    NASA Technical Reports Server (NTRS)

    Lau, Benton H.; Straub, Friedrich; Anand, V. R.; Birchette, Terry

    2009-01-01

    Boeing and a team from Air Force, NASA, Army, Massachusetts Institute of Technology, University of California at Los Angeles, and University of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center, figure 1. The SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing-edge flap on each blade. The development effort included design, fabrication, and component testing of the rotor blades, the trailing-edge flaps, the piezoelectric actuators, the switching power amplifiers, the actuator control system, and the data/power system. Development of the smart rotor culminated in a whirl-tower hover test which demonstrated the functionality, robustness, and required authority of the active flap system. The eleven-week wind tunnel test program evaluated the forward flight characteristics of the active-flap rotor, gathered data to validate state-of-the-art codes for rotor noise analysis, and quantified the effects of open- and closed-loop active-flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness and the reliability of the flap actuation system were successfully demonstrated in more than 60 hours of wind-tunnel testing. The data acquired and lessons learned will be instrumental in maturing this technology and transitioning it into production. The development effort, test hardware, wind-tunnel test program, and test results will be presented in the full paper.

  3. Early Flight Fission Test Facilities (EFF-TF) and Concepts That Support Near-Term Space Fission Missions

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Martin, James

    2003-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fusion propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will most likely occur if frequent, significant hardware-based milestones can be achieved throughout the program. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system pe$ormance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the Early Flight Fission Test Facilities (EFF-TF) at the Marshall Space Flight Center. The EFF-TF is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers.

  4. Heater Validation for the NEXT-C Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Soulas, George C.; Mackey, Jonathan Ar.

    2017-01-01

    Swaged cathode heaters whose design was successfully demonstrated under a prior flight project are to be provided by the NASA Glenn Research Center for the NEXT-C ion thruster being fabricated by Aerojet Rocketdyne. Extensive requalification activities were performed to validate process controls that had to be re-established or revised because systemic changes prevented reuse of the past approaches. A development batch of heaters was successfully fabricated based on the new process controls. Acceptance and cyclic life testing of multiple discharge and neutralizer sized heaters extracted from the development batch was initiated in August, 2016, with the last heater completing testing in April, 2017. Cyclic life testing results substantially exceeded the NEXT-C thruster requirement as well as all past experience for GRC fabricated units. The heaters demonstrated ultimate cyclic life capability of 19050 to 33500 cycles. A qualification batch of heaters is now being fabricated using the finalized process controls. A set of six heaters will be acceptance and cyclic tested to verify conformance to the behavior observed with the development heaters. The heaters for flight use will be then be provided to the contractor. This paper summarizes the fabrication process control activities and the acceptance and life testing of the development heater units.

  5. Flight Testing ALHAT Precision Landing Technologies Integrated Onboard the Morpheus Rocket Vehicle

    NASA Technical Reports Server (NTRS)

    Carson, John M. III; Robertson, Edward A.; Trawny, Nikolas; Amzajerdian, Farzin

    2015-01-01

    A suite of prototype sensors, software, and avionics developed within the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project were terrestrially demonstrated onboard the NASA Morpheus rocket-propelled Vertical Testbed (VTB) in 2014. The sensors included a LIDAR-based Hazard Detection System (HDS), a Navigation Doppler LIDAR (NDL) velocimeter, and a long-range Laser Altimeter (LAlt) that enable autonomous and safe precision landing of robotic or human vehicles on solid solar system bodies under varying terrain lighting conditions. The flight test campaign with the Morpheus vehicle involved a detailed integration and functional verification process, followed by tether testing and six successful free flights, including one night flight. The ALHAT sensor measurements were integrated into a common navigation solution through a specialized ALHAT Navigation filter that was employed in closed-loop flight testing within the Morpheus Guidance, Navigation and Control (GN&C) subsystem. Flight testing on Morpheus utilized ALHAT for safe landing site identification and ranking, followed by precise surface-relative navigation to the selected landing site. The successful autonomous, closed-loop flight demonstrations of the prototype ALHAT system have laid the foundation for the infusion of safe, precision landing capabilities into future planetary exploration missions.

  6. Orion Launch Abort System (LAS) Propulsion on Pad Abort 1 (PA-1)

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.

    2015-01-01

    This presentation provides a concise overview of the highly successful Orion Pad Abort 1 (PA-1) flight test, and the three rocket motors that contributed to this success. The primary purpose of the Orion PA-1 flight was to help certify the Orion Launch Abort System (LAS), which can be utilized in the unlikely event of an emergency on the launchpad or during mission vehicle ascent. The PA-1 test was the first fully integrated flight test of the Orion LAS, one of the primary systems within the Orion Multi-Purpose Crew Vehicle (MPCV). The Orion MPCV is part of the architecture within the Space Launch System (SLS), which is being designed to transport astronauts beyond low-Earth orbit for future exploration missions. Had the Orion PA-1 flight abort occurred during launch preparations for a real human spaceflight mission, the PA-1 LAS would have saved the lives of the crew. The PA-1 flight test was largely successful due to the three solid rocket motors of the LAS: the Attitude Control Motor (ACM); the Jettison Motor (JM); and the Abort Motor (AM). All three rocket motors successfully performed their required functions during the Orion PA-1 flight test, flown on May 6, 2010 at the White Sands Missile Range in New Mexico, culminating in a successful demonstration of an abort capability from the launchpad.

  7. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42%more » and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.« less

  8. Stirling Space Engine Program. Volume 1; Final Report

    NASA Technical Reports Server (NTRS)

    Dhar, Manmohan

    1999-01-01

    The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Hardware development focused on the Component Test Power Converter (CTPC), a single cylinder, 12.5-kWe engine. Design parameters for the CTPC were 150 bar operating pressure, 70 Hz frequency, and hot-and cold-end temperatures of 1050 K and 525 K, respectively. The CTPC was also designed for integration with an annular sodium heat pipe at the hot end, which incorporated a unique "Starfish" heater head that eliminated highly stressed brazed or weld joints exposed to liquid metal and used a shaped-tubed electrochemical milling process to achieve precise positional tolerances. Selection of materials that could withstand high operating temperatures with long life were another focus. Significant progress was made in the heater head (Udimet 700 and Inconel 718 and a sodium-filled heat pipe); the alternator (polyimide-coated wire with polyimide adhesive between turns and a polyimide-impregnated fiberglass overwrap and samarium cobalt magnets); and the hydrostatic gas bearings (carbon graphite and aluminum oxide for wear couple surfaces). Tests on the CTPC were performed in three phases: cold end testing (525 K), engine testing with slot radiant heaters, and integrated heat pipe engine system testing. Each test phase was successful, with the integrated engine system demonstrating a power level of 12.5 kWe and an overall efficiency of 22 percent in its maiden test. A 1500-hour endurance test was then successfully completed. These results indicate the significant achievements made by this program that demonstrate the viability of Stirling engine technology for space applications.

  9. Aluminum hydroxide coating thickness measurements and brushing tests on K West Basin fuel elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitner, A.L.

    1998-09-11

    Aluminum hydroxide coating thicknesses were measured on fuel elements stored in aluminum canisters in K West Basin using specially developed eddy current probes . The results were used to estimate coating inventories for MCO fuel,loading. Brushing tests successfully demonstrated the ability to remove the coating if deemed necessary prior to MCO loading.

  10. Helicopter Maritime Environment Trainer: Software Test Document

    DTIC Science & Technology

    2011-06-01

    Toronto was requested by CF to investigate the potential use of low cost, virtual reality technologies for this purpose, following a successful...demonstration of these technologies for training ship handling skills and reductions of sea time. 2 DRDC Toronto TM 2011-048 Landing on...Simulator Preliminary Specification (Updated) b. DRDC Toronto Report Helicopter Deck Landing Simulator: Technology Demonstrator by F.A

  11. Draft-camp predictors of subsequent career success in the Australian Football League.

    PubMed

    Burgess, Darren; Naughton, Geraldine; Hopkins, Will

    2012-11-01

    The National Draft Camp results are generally considered to be important for informing talent scouts about the physical performance capacities of talented young Australian Rules Football (AFL) players. The purpose of this project was to determine magnitude of associations between five year career success in the AFL and physical draft camp tests, final draft selection order and previous match physical performance. Physical testing data of 99 players from the National Under 18 (U 18) competition were retrospectively analysed across 2002 and 2003 National Draft Camps. Physical match data was collected on these players and links with subsequent early career success (AFL games played) were explored. TrakPerformance Software was used to quantify the movement of 92 players during competitive games of the National U 18 Championships. Linear modelling using results from draft camp data involving 95 U 18 players, along with final draft selection order, was used to predict five year career success in senior AFL. Multiple U 18 match variables demonstrated large associations (sprints/min=43% more games, % sprint=43% more games) with five year career success in AFL. Final draft order and single variable predictors had moderate associations with career success. Neither U 18 matches nor draft camp testing was predictive of injuries incurring over the five years. Variability in senior AFL career success had a large association with a combination of match physical variables and draft test results. The objective data available should be considered in the selection of prospective player success. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  12. DART AVGS Performance

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Bryan, Thomas C.

    2007-01-01

    The Advanced Video Guidance Sensor (AVGS) was designed to be the proximity operations sensor for the Demonstration of Autonomous Rendezvous Technologies (DART). The DART mission flew in April of2005 and was a partial success. The AVGS did not get the opportunity to operate in every mode in orbit, but those modes in which it did operate were completely successful. This paper will detail the development, testing, and on-orbit performance of the AVGS.

  13. Eclipse project QF-106 and C-141A takeoff on first tethered flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    TOW ROPE TAKEOFF - The Kelly Space & Technology (KST)/USAF Eclipse project's modified QF-106 and a USAF C-141A takeoff for the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  14. Eclipse project closeup of QF-106 under tow on takeoff on first flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    OFF THE GROUND - The Kelly Space & Technology (KST)/USAF/NASA Eclipse project's modified QF-106 lifts off under tow on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  15. Eclipse project closeup of QF-106 under tow on first tethered flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Kelly Space and Technology (KST)/USAF/NASA Eclipse project's modified QF-106 is shown under tow on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, is hosting the project, providing engineering and facility support as well as the project pilot, Mark Stucky. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  16. Reusable launch vehicle development research

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA has generated a program approach for a SSTO reusable launch vehicle technology (RLV) development which includes a follow-on to the Ballistic Missile Defense Organization's (BMDO) successful DC-X program, the DC-XA (Advanced). Also, a separate sub-scale flight demonstrator, designated the X-33, will be built and flight tested along with numerous ground based technologies programs. For this to be a successful effort, a balance between technical, schedule, and budgetary risks must be attained. The adoption of BMDO's 'fast track' management practices will be a key element in the eventual success of NASA's effort.

  17. LISA Pathfinder: An important first step towards a space-based gravitational wave observatory

    NASA Astrophysics Data System (ADS)

    Thorpe, James

    2017-08-01

    ESA's LISA Pathfinder mission was launched on Dec 3rd, 2015 and completed earlier this Summer. During this relatively short mission, Pathfinder at its two science payloads, Europe's LISA Technology Package and NASA's Disturbance Reduction System, demonstrated several techniques and technologies that enable development of a future space-based gravitational wave observatory. Most notably, Pathfinder demonstrated that the technique of drag-free flight could be utilized to place a test mass in near-perfect free-fall, with residual accelerations at the femto-g level in the milliHertz band. Additionally, technologies such as precision bonded optical structures for metrology, micropropulsion systems, and non-contact charge control, were successfully tested, retiring risk for LISA. In this talk, I will present an overview of Pathfinder's results to date and some perspective on how this success will be leveraged into realizing LISA.

  18. The Effect of Prior Task Success on Older Adults' Memory Performance: Examining the Influence of Different Types of Task Success.

    PubMed

    Geraci, Lisa; Hughes, Matthew L; Miller, Tyler M; De Forrest, Ross L

    2016-01-01

    Negative aging stereotypes can lead older adults to perform poorly on memory tests. Yet, memory performance can be improved if older adults have a single successful experience on a cognitive test prior to participating in a memory experiment (Geraci & Miller, 2013, Psychology and Aging, 28, 340-345). The current study examined the effects of different types of prior task experience on subsequent memory performance. Before participating in a verbal free recall experiment, older adults in Experiment 1 successfully completed either a verbal or a visual cognitive task or no task. In Experiment 2, they successfully completed either a motor task or no task before participating in the free recall experiment. Results from Experiment 1 showed that relative to control (no prior task), participants who had prior success, either on a verbal or a visual task, had better subsequent recall performance. Experiment 2 showed that prior success on a motor task, however, did not lead to a later memory advantage relative to control. These findings demonstrate that older adults' memory can be improved by a successful prior task experience so long as that experience is in a cognitive domain.

  19. Flight Testing the X-36: The Test Pilots Perspective

    NASA Technical Reports Server (NTRS)

    Walker, Laurence A.

    1997-01-01

    The X-36 is a 28% scale, remotely piloted research aircraft, designed to demonstrate tailless fighter agility. Powered by a modified Williams International F-112 jet engine, the X-36 uses thrust vectoring and a fly-by-wire control system. Although too small for an onboard pilot, a full-sized remote cockpit was designed to virtually place the test pilot into the aircraft using a variety of innovative techniques. To date, 22 flights have been flown, successfully completing the second phase of testing. Handling qualities have been matching predictions; the test operation is flown similarly to that for full sized manned aircraft. All takeoffs, test maneuvers and landings are flown by the test pilot, affording a greater degree of flexibility and the ability to handle the inevitable unknowns which may occur during highly experimental test programs. The cockpit environment, cues, and display techniques used in this effort have proven to enhance the 'virtual' test pilot's awareness and have helped ensure a successful RPV test program.

  20. Prepharmacy predictors of success in pharmacy school: grade point averages, pharmacy college admissions test, communication abilities, and critical thinking skills.

    PubMed

    Allen, D D; Bond, C A

    2001-07-01

    Good admissions decisions are essential for identifying successful students and good practitioners. Various parameters have been shown to have predictive power for academic success. Previous academic performance, the Pharmacy College Admissions Test (PCAT), and specific prepharmacy courses have been suggested as academic performance indicators. However, critical thinking abilities have not been evaluated. We evaluated the connection between academic success and each of the following predictive parameters: the California Critical Thinking Skills Test (CCTST) score, PCAT score, interview score, overall academic performance prior to admission at a pharmacy school, and performance in specific prepharmacy courses. We confirmed previous reports but demonstrated intriguing results in predicting practice-based skills. Critical thinking skills predict practice-based course success. Also, the CCTST and PCAT scores (Pearson correlation [pc] = 0.448, p < 0.001) were closely related in our students. The strongest predictors of practice-related courses and clerkship success were PCAT (pc=0.237, p<0.001) and CCTST (pc = 0.201, p < 0.001). These findings and other analyses suggest that PCAT may predict critical thinking skills in pharmacy practice courses and clerkships. Further study is needed to confirm this finding and determine which PCAT components predict critical thinking abilities.

  1. Structural strengthening of rocket nozzle extension by means of laser metal deposition

    NASA Astrophysics Data System (ADS)

    Honoré, M.; Brox, L.; Hallberg, M.

    2012-03-01

    Commercial space operations strive to maximize the payload per launch in order to minimize the costs of each kg launched into orbit; this yields demand for ever larger launchers with larger, more powerful rocket engines. Volvo Aero Corporation in collaboration with Snecma and Astrium has designed and tested a new, upgraded Nozzle extension for the Vulcain 2 engine configuration, denoted Vulcain 2+ NE Demonstrator The manufacturing process for the welding of the sandwich wall and the stiffening structure is developed in close cooperation with FORCE Technology. The upgrade is intended to be available for future development programs for the European Space Agency's (ESA) highly successful commercial launch vehicle, the ARIANE 5. The Vulcain 2+ Nozzle Extension Demonstrator [1] features a novel, thin-sheet laser-welded configuration, with laser metal deposition built-up 3D-features for the mounting of stiffening structure, flanges and for structural strengthening, in order to cope with the extreme load- and thermal conditions, to which the rocket nozzle extension is exposed during launch of the 750 ton ARIANE 5 launcher. Several millimeters of material thickness has been deposited by laser metal deposition without disturbing the intricate flow geometry of the nozzle cooling channels. The laser metal deposition process has been applied on a full-scale rocket nozzle demonstrator, and in excess of 15 kilometers of filler wire has been successfully applied to the rocket nozzle. The laser metal deposition has proven successful in two full-throttle, full-scale tests, firing the rocket engine and nozzle in the ESA test facility P5 by DLR in Lampoldshausen, Germany.

  2. Intelligent rover decision-making in response to exogenous events

    NASA Technical Reports Server (NTRS)

    Chouinard, C.; Estlin, T.; Gaines, D.; Fisher, F.

    2005-01-01

    This paper presents an introduction to the CLEAR system which performs rover command generation and re-planning, the challenges faced maintaining domain specific information in an uncertain environment, and the successes demonstrated with several methods of system testing.

  3. SERT 2 thruster space restart, 1974

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Finke, R. C.

    1975-01-01

    The results of testing the flight thrusters on the SERT spacecraft during the 1974 test period are presented. The most notable result was the clearing of the high voltage short from thruster 2 and the successful stable operation of its ion beam. Test periods were limited to 70 minutes or less by earth eclipse of the spacecraft solar array and by ground station coverage limitations. Thruster 2 was restarted 26 times with an ion beam produced 21 times. The high voltage short remains in thruster 1, but the cathodes were restarted 12 times to demonstrate continued restart capability. The propellant feed systems, power processors, and spacecraft ancillary equipment were demonstrated to be functional after 4 1/2 years in space. In addition to the thruster tests, a neutralizer cathode was operated separately to demonstrate that the potential level of a spacecraft could be controlled by the neutralizer alone.

  4. Overview of RICOR's reliability theoretical analysis, accelerated life demonstration test results and verification by field data

    NASA Astrophysics Data System (ADS)

    Vainshtein, Igor; Baruch, Shlomi; Regev, Itai; Segal, Victor; Filis, Avishai; Riabzev, Sergey

    2018-05-01

    The growing demand for EO applications that work around the clock 24hr/7days a week, such as in border surveillance systems, emphasizes the need for a highly reliable cryocooler having increased operational availability and optimized system's Integrated Logistic Support (ILS). In order to meet this need, RICOR developed linear and rotary cryocoolers which achieved successfully this goal. Cryocoolers MTTF was analyzed by theoretical reliability evaluation methods, demonstrated by normal and accelerated life tests at Cryocooler level and finally verified by field data analysis derived from Cryocoolers operating at system level. The following paper reviews theoretical reliability analysis methods together with analyzing reliability test results derived from standard and accelerated life demonstration tests performed at Ricor's advanced reliability laboratory. As a summary for the work process, reliability verification data will be presented as a feedback from fielded systems.

  5. Geoscience Laser Altimeter System (GLAS) Final Test Report of DM LHP TV Testing

    NASA Technical Reports Server (NTRS)

    Baker, Charles

    2000-01-01

    Two loop heat pipes (LHPs) are to be used for thermal control of the Geoscience Laser Altimeter System (GLAS), planned for flight in 2001. One LHP will be used to transport 100 W from a laser to the radiator, the other will transport 210 W from electronic boxes to the radiator. In order to verify the LHP design for the GLAS application, an LHP Development Model has been fabricated, and ambient and thermal vacuum tested. Two aluminum blocks of 15 kg and 30 kg, respectively, were attached to the LHP to simulate the thermal masses connected to the heat sources. A 20 W starter heater was installed on the evaporator to aid the loop startup. A new concept to thermally couple the vapor and liquid line was also incorporated in the LHP design. Such a thermal coupling would reduce the power requirement on the compensation chamber in order to maintain the loop set point temperature. To avoid freezing of the liquid in the condenser during cold cases, propylene was selected as the working fluid. The LHP was tested under reflux mode and with adverse elevation. Tests conducted included start-up, power cycle, steady state and transient operation during hot and cold cases, and heater power requirements for the set point temperature control of the LHP. Test results showed very successful operation of the LHP under all conditions. The 20 W starter heater proved necessary in order to start the loop when a large thermal mass was attached to the evaporator. The thermal coupling between the liquid line and the vapor line significantly reduced the heater power required for loop temperature control, which was less than 5 watts in all cases, including a cold radiator. The test also demonstrated successful operation with a propylene working fluid, with successful startups with condenser temperatures as low as 100 C. Furthermore, the test demonstrated accurate control of the loop operating temperature within +/- 0.2 C, and a successful shutdown of the loop during the survival mode of operation.

  6. NASA's Webb "Pathfinder Telescope" Successfully Completes First Super-Cold Optical Test

    NASA Image and Video Library

    2017-12-08

    Testing is crucial part of NASA's success on Earth and in space. So, as the actual flight components of NASA's James Webb Space Telescope come together, engineers are testing the non-flight equipment to ensure that tests on the real Webb telescope later goes safely and according to plan. Recently, the "pathfinder telescope," or just “Pathfinder,” completed its first super-cold optical test that resulted in many first-of-a-kind demonstrations. "This test is the first dry-run of the equipment and procedures we will use to conduct an end-to-end optical test of the flight telescope and instruments," said Mark Clampin, Webb telescope Observatory Project Scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "It provides confidence that once the flight telescope is ready, we are fully prepared for a successful test of the flight hardware." The Pathfinder is a non-flight replica of the Webb telescope’s center section backplane, or “backbone,” that includes mirrors. The flight backplane comes in three segments, a center section and two wing-like parts, all of which will support large hexagonal mirrors on the Webb telescope. The pathfinder only consists of the center part of the backplane. However, during the test, it held two full size spare primary mirror segments and a full size spare secondary mirror to demonstrate the ability to optically test and align the telescope at the planned operating temperatures of -400 degrees Fahrenheit (-240 Celsius). Read more: www.nasa.gov/feature/goddard/nasas-webb-pathfinder-telesc... Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Depth of processing effects on neural correlates of memory encoding: relationship between findings from across- and within-task comparisons.

    PubMed

    Otten, L J; Henson, R N; Rugg, M D

    2001-02-01

    Neuroimaging studies have implicated the prefrontal cortex and medial temporal areas in the successful encoding of verbal material into episodic memory. The present study used event-related functional MRI to investigate whether the brain areas associated with successful episodic encoding of words in a semantic study task are a subset of those demonstrating depth of processing effects. In addition, we tested whether the brain areas associated with successful episodic encoding differ depending on the nature of the study task. At study, 15 volunteers were cued to make either animacy or alphabetical decisions about words. A recognition memory test including confidence judgements followed after a delay of 15 min. Prefrontal and medial temporal regions showed greater functional MRI activations for semantically encoded words relative to alphabetically encoded words. Two of these regions (left anterior hippocampus and left ventral inferior frontal gyrus) showed greater activation for semantically encoded words that were subsequently recognized confidently. However, other regions (left posterior hippocampus and right inferior frontal cortex) demonstrated subsequent memory effects, but not effects of depth of processing. Successful memory for alphabetically encoded words was also associated with greater activation in the left anterior hippocampus and left ventral inferior frontal gyrus. The findings suggest that episodic encoding for words in a semantic study task involves a subset of the regions activated by deep relative to shallow processing. The data provide little evidence that successful episodic encoding during a shallow study task depends upon regions different from those that support the encoding of deeply studied words. Instead, the findings suggest that successful episodic encoding during a shallow study task relies on a subset of the regions engaged during successful encoding in a deep task.

  8. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  9. Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.

    2011-09-23

    To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are stillmore » too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.« less

  10. Test and evaluation of the HIDEC engine uptrim algorithm

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Myers, L. P.

    1986-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemented into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.

  11. [Overall design and proof-test of an integrated environmental control and life support system (ECLSS) for demonstration and verification].

    PubMed

    Rui, Jia-bai; Zheng, Chuan-xian; Zeng, Qing-tang

    2002-12-01

    Objective. To test and demonstrate embryonic form of our future space station ECLSS, which will also form an advanced research and test ground facility. Method. The following functions of the system were tested and demonstrated: integrated solid amine CO2 collection and concentration, Sabatier CO2 reduction, urine processing thermoelectric integrated membrane evaporation, solid polymer water electrolysis O2 generation, concentrated ventilation, temperature and humidity control, the measurement and control system, and other non-regenerative techniques. All of these were demonstrated in a sealed adiabatic module, and passed the proof-tests. Result. The principal technical requirements of the system and each regenerative subsystem were met. The integration of system general and each subsystem was successful, and the partial closed loop of the system's integration has been realized basically. Conclusion. The reasonableness of the project design was verified, and the major system technical requirements were satisfied. The suitability and harmonization among system general and each subsystem were good, the system operated normally, and the parameters measured were correct.

  12. The Utilization of Navy People-Related RDT&E (Research, Development, Test, and Evaluation): Fiscal Year 1983.

    DTIC Science & Technology

    1984-06-01

    emostraion. Tese eserch ool wee deignted and experimental demonstrations wre successfully con- for demonstrations. These research tools wre designated ...Topics 4.02 Instructional Systems Design Methodology Instructional Systems Development and Effectiveness Evaluation .................................... 1...6 53 0 0 67w Report Page 10.07 Human Performance Variables/Factors 10.08 Man-Machine Design Methodology Computer Assisted Methods for Human

  13. Real-time cartesian force feedback control of a teleoperated robot

    NASA Technical Reports Server (NTRS)

    Campbell, Perry

    1989-01-01

    Active cartesian force control of a teleoperated robot is investigated. An economical microcomputer based control method was tested. Limitations are discussed and methods of performance improvement suggested. To demonstrate the performance of this technique, a preliminary test was performed with success. A general purpose bilateral force reflecting hand controller is currently being constructed based on this control method.

  14. Aeroservoelastic Wind-Tunnel Tests of a Free-Flying, Joined-Wing SensorCraft Model for Gust Load Alleviation

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Castelluccio, Mark A.; Coulson, David A.; Heeg, Jennifer

    2011-01-01

    A team comprised of the Air Force Research Laboratory (AFRL), Boeing, and the NASA Langley Research Center conducted three aeroservoelastic wind-tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, exible vehicles. In the first of these three tests, a full-span, aeroelastically scaled, wind-tunnel model of a joined-wing SensorCraft vehicle was mounted to a force balance to acquire a basic aerodynamic data set. In the second and third tests, the same wind-tunnel model was mated to a new, two-degree-of-freedom, beam mount. This mount allowed the full-span model to translate vertically and pitch. Trimmed flight at -10% static margin and gust load alleviation were successfully demonstrated. The rigid body degrees of freedom required that the model be own in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort. The balance and free ying wind-tunnel tests will be summarized. The design of the trim and gust load alleviation control laws along with the associated results will also be discussed.

  15. The Integrated Airport: Building a Successful NextGen Testbed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick-Recascino, Christina; Sweigard, Doug; Lester, Wade

    2009-02-18

    This presentation will describe a unique public-private partnership - the Integrated Airport - that was created to engage in research and testing related to NextGen Technology deployment.  NextGen refers to the program that will be initiated to modernize the US National Airspace.  As with any major, multi-decade initiative, such as NextGen, integration of work efforts by multiple partners in the modernization is critical for success.  This talk will focus on the development of the consortium, how the consortium plans for NextGen initiatives, the series of technology demonstrations we have produced and plans for the future of NextGen testing and implementation. 

  16. Redesign and Test of an SSME Turbopump for the Large Throat Main Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Lunde, K. J.; Lee, G. A.; Eastland, A. H.; Rojas, L.

    1994-01-01

    The preburner oxidizer turbopump for the Space Shuttle Main Engine (SSME) was successfully redesigned for use with the Large Throat Main Combustion Chamber (LTMCC) and tested in air utilizing rapid prototyping. The redesign increases the SSME's operating range with the current Main Combustion Chamber (MCC) while achieving full operational range with the LTMCC. The use of rapid prototyping and air testing to validate the redesign demonstrated the ability to design, fabricate and test designs rapidly and at a very low cost.

  17. Hyper-X Mach 7 Scramjet Design, Ground Test and Flight Results

    NASA Technical Reports Server (NTRS)

    Ferlemann, Shelly M.; McClinton, Charles R.; Rock, Ken E.; Voland, Randy T.

    2005-01-01

    The successful Mach 7 flight test of the Hyper-X (X-43) research vehicle has provided the major, essential demonstration of the capability of the airframe integrated scramjet engine. This flight was a crucial first step toward realizing the potential for airbreathing hypersonic propulsion for application to space launch vehicles. However, it is not sufficient to have just achieved a successful flight. The more useful knowledge gained from the flight is how well the prediction methods matched the actual test results in order to have confidence that these methods can be applied to the design of other scramjet engines and powered vehicles. The propulsion predictions for the Mach 7 flight test were calculated using the computer code, SRGULL, with input from computational fluid dynamics (CFD) and wind tunnel tests. This paper will discuss the evolution of the Mach 7 Hyper-X engine, ground wind tunnel experiments, propulsion prediction methodology, flight results and validation of design methods.

  18. Demonstration of Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.

    2008-01-01

    The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.

  19. Heater Validation for the NEXT-C Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Soulas, George C.; Mackey, Jonathan A.

    2018-01-01

    Swaged cathode heaters whose design was successfully demonstrated under a prior flight project are to be provided by the NASA Glenn Research Center for the NEXT-C ion thruster being fabricated by Aerojet Rocketdyne. Extensive requalification activities were performed to validate process controls that had to be re-established or revised because systemic changes prevented reuse of the past approaches. A development batch of heaters was successfully fabricated based on the new process controls. Acceptance and cyclic life testing of multiple discharge and neutralizer sized heaters extracted from the development batch was initiated in August, 2016, with the last heater completing testing in April, 2017. Cyclic life testing results substantially exceeded the NEXT-C thruster requirement as well as all past experience for GRC-fabricated units. The heaters demonstrated ultimate cyclic life capability of 19050 to 33500 cycles. A qualification batch of heaters is now being fabricated using the finalized process controls. A set of six heaters will be acceptance and cyclic tested to verify conformance to the behavior observed with the development heaters. The heaters for flight use will be then be provided to the contractor from the remainder of the qualification batch. This paper summarizes the fabrication process control activities and the acceptance and life testing of the development heater units.

  20. Development of a high-temperature durable catalyst for use in catalytic combustors for advanced automotive gas turbine engines

    NASA Astrophysics Data System (ADS)

    Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.

    1981-09-01

    Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.

  1. Development of a high-temperature durable catalyst for use in catalytic combustors for advanced automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.

    1981-01-01

    Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.

  2. Fast Paced, Low Cost Projects at MSFC

    NASA Technical Reports Server (NTRS)

    Watson-Morgan, Lisa; Clinton, Raymond

    2012-01-01

    What does an orbiting microsatellite, a robotic lander and a ruggedized camera and telescope have in common? They are all fast paced, low cost projects managed by Marshall Space Flight Center (MSFC) teamed with successful industry partners. MSFC has long been synonymous with human space flight large propulsion programs, engineering acumen and risk intolerance. However, there is a growing portfolio/product line within MSFC that focuses on these smaller, fast paced projects. While launching anything into space is expensive, using a managed risk posture, holding to schedule and keeping costs low by stopping at egood enough f were key elements to their success. Risk is defined as the possibility of loss or failure per Merriam Webster. The National Aeronautics and Space Administration (NASA) defines risk using procedural requirement 8705.4 and establishes eclasses f to discern the acceptable risk per a project. It states a Class D risk has a medium to significant risk of not achieving mission success. MSFC, along with industry partners, has created a niche in Class D efforts. How did the big, cautious MSFC succeed on these projects that embodied the antithesis of its heritage in human space flight? A key factor toward these successful projects was innovative industry partners such as Dynetics Corporation, University of Alabama in Huntsville (UAHuntsville), Johns Hopkins Applied Physics Laboratory (JHU APL), Teledyne Brown Engineering (TBE), Von Braun Center for Science and Innovation (VCSI), SAIC, and Jacobs. Fast Affordable Satellite Technology (FastSat HSV01) is a low earth orbit microsatellite that houses six instruments with the primary scientific objective of earth observation and technology demonstration. The team was comprised of Dynetics, UAHuntsvile, SAIC, Goddard Space Flight Center (GSFC) and VCSI with the United States Air Force Space Test Program as the customer. The team completed design, development, manufacturing, environmental test and integration in one year. FastSat HSV01 also deployed a Poly Picosatellite Orbital Deployer (PPOD) for a separate nano ]satellite class spacecraft (Cubesat: Nano Sail Demonstration) in partnership with Ames Research Center. The Robotic lunar lander is a MSFC JHU APL partnership that led to the development of a flexible architecture for landers to support robotic missions to a wide range of lunar and asteroid destinations. The team started with the goal of meeting NASA agency directives that led to the creation of a test bed focusing on GN&C and software to demonstrate the descent and landing on any airless body for the final 30 to 60 meters. The team created a complex technology demonstration as well as Guidance Control and Navigation (GN&C) algorithms providing autonomous control of the lander. The team uses a green propellant of 90% hydrogen peroxide and has completed 18 successful test flights. The International Space Station (ISS) SERVIR Environmental Research and Visualization System (ISERV) is a technology demonstration payload to assist the SERVIR project with environmental monitoring for disaster relief and humanitarian efforts. The ISERV project was a partnership with TBE. The ISERV payload consists of a commercial off the shelf camera, telescope, and MSFC developed power distribution box and interfaces on ISS with the Window Observational Research Facility in the US Lab. MSFC has identified three key areas that enabled the low cost mission success to include culture, partnering, and cost/schedule control. This paper will briefly discuss these three Class D efforts, FastSat HSV-01, the Robotic Lunar Lander and the ISERV camera system, the lessons learned, their successes and challenges.

  3. Final test results for the ground operations demonstration unit for liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-12-01

    Described herein is a comprehensive project-a large-scale test of an integrated refrigeration and storage system called the Ground Operations and Demonstration Unit for Liquid Hydrogen (GODU LH2), sponsored by the Advanced Exploration Systems Program and constructed at Kennedy Space Center. A commercial cryogenic refrigerator interfaced with a 125,000 l liquid hydrogen tank and auxiliary systems in a manner that enabled control of the propellant state by extracting heat via a closed loop Brayton cycle refrigerator coupled to a novel internal heat exchanger. Three primary objectives were demonstrating zero-loss storage and transfer, gaseous liquefaction, and propellant densification. Testing was performed at three different liquid hydrogen fill-levels. Data were collected on tank pressure, internal tank temperature profiles, mass flow in and out of the system, and refrigeration system performance. All test objectives were successfully achieved during approximately two years of testing. A summary of the final results is presented in this paper.

  4. Vibration Testing of Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Hughes, Bill; Goodnight, Thomas; McNelis, Mark E.; Suarez, Vicente J.; Schreiber, Jeff; Samorezov, Sergey

    2003-01-01

    The NASA John H. Glenn Research Center (GRC) and the U.S. Department of Energy (DOE) are currently developing a high efficient, long life, free piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC), developed by Stirling Technology Company (STC) for DOE, was vibration tested at GRC s Structural Dynamics Laboratory (SDU7735) in November- December 1999. This testing demonstrated that the Stirling TDC is able to withstand the harsh random vibration (20 to 2000 Hertz) seen during a typical spacecraft launch and survive with no structural damage or functional power performance degradation, thereby enabling its usage in future spacecraft power systems. The Stirling Vibration Test Team at NASA GRC and STC personnel conducted tests on a single 55 electric watt TDC. The purpose was to characterize the TDC s structural response to vibration and determine if the TDC could survive the vibration criteria established by the Jet Propulsion Laboratory (JPL) for launch environments. The TDC was operated at full-stroke and full power conditions during the vibration testing. The TDC was tested in two orientations, with the direction of vibration parallel and perpendicular to the TDC s moving components (displacer and piston). The TDC successfully passed a series of sine and random vibration tests. The most severe test was a 12.3 Grms random vibration test (peak vibration level of 0.2 g2/Hz from 50 to 250 Hertz) with test durations of 3 minutes per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. As a result of this very successful vibration testing and successful evaluations in other key technical readiness areas, the Stirling power system is now considered a viable technology for future application for NASA spacecraft missions. Possible usage of the Stirling power system would be to supply on- board electric spacecraft power for future NASA Deep-Space Missions, performing as an attractive alternative to Radioisotope Thermoelectric Generators (RTG). Usage of the Stirling technology is also being considered as the electric power source for future Mars rovers, whose mission profiles may exclude the use of photovoltaic power systems (such as exploring at high Martian latitudes or for missions of lengthy durations). GRC s Thermo-Mechanical Systems Branch (5490) provides Stirling technology expertise under a Space Act Agreement with the DOE. Additional vibration testing, by GRC s Structural Systems Dynamics Branch (7733, is planned to continue to demonstrate the Stirling power system s vibration capability as its technology and flight system designs progress.

  5. Ion Propulsion Development Projects in US: Space Electric Rocket Test I to Deep Space 1

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.

    2001-01-01

    The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations are reviewed. The results of the first successful ion engine flight in 1964, Space Electric Rocket Test (SERT) I, which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technologies employed on the early cesium engine flights, the applications technology satellite series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space 1 flight confirmed that these auxiliary and primary propulsion systems have advanced to a high level of flight readiness.

  6. Visual field defects may not affect safe driving.

    PubMed

    Dow, Jamie

    2011-10-01

    In Quebec a driver whose acquired visual field defect renders them ineligible for a driver's permit renewal may request an exemption from the visual field standard by demonstrating safe driving despite the defect. For safety reasons it was decided to attempt to identify predictors of failure on the road test in order to avoid placing driving evaluators in potentially dangerous situations when evaluating drivers with visual field defects. During a 4-month period in 2009 all requests for exemptions from the visual field standard were collected and analyzed. All available medical and visual field data were collated for 103 individuals, of whom 91 successfully completed the evaluation process and obtained a waiver. The collated data included age, sex, type of visual field defect, visual field characteristics, and concomitant medical problems. No single factor, or combination of factors, could predict failure of the road test. All 5 failures of the road test had cognitive problems but 6 of the successful drivers also had known cognitive problems. Thus, cognitive problems influence the risk of failure but do not predict certain failure. Most of the applicants for an exemption were able to complete the evaluation process successfully, thereby demonstrating safe driving despite their handicap. Consequently, jurisdictions that have visual field standards for their driving permit should implement procedures to evaluate drivers with visual field defects that render them unable to meet the standard but who wish to continue driving.

  7. Test Results of the RS-44 Integrated Component Evaluator Liquid Oxygen/Hydrogen Rocket Engine

    NASA Technical Reports Server (NTRS)

    Sutton, R. F.; Lariviere, B. W.

    1993-01-01

    An advanced LOX/LH2 expander cycle rocket engine, producing 15,000 lbf thrust for Orbital Transfer Vehicle missions, was tested to determine ignition, transition, and main stage characteristics. Detail design and fabrication of the pump fed RS44 integrated component evaluator (ICE) was accomplished using company discretionary resources and was tested under this contracted effort. Successful demonstrations were completed to about the 50 percent fuel turbopump power level (87,000 RPM), but during this last test, a high pressure fuel turbopump (HPFTP) bearing failed curtailing the test program. No other hardware were affected by the HPFTP premature shutdown. The ICE operations matched well with the predicted start transient simulations. The tests demonstrated the feasibility of a high performance advanced expander cycle engine. All engine components operated nominally, except for the HPFTP, during the engine hot-fire tests. A failure investigation was completed using company discretionary resources.

  8. Supersonic Retropropulsion Flight Test Concepts

    NASA Technical Reports Server (NTRS)

    Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.

    2011-01-01

    NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.

  9. Hanford’s Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witwer, Keith S.; Dysland, Eric J.; Garfield, J. S.

    2008-02-22

    The GeoMelt® In-Container Vitrification™ (ICV™) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanford’s low-activity waste (LAW). Also referred to as “bulk vitrification,” this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV™ technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection and administered by CH2M HILLmore » Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV™ process before operating the Hanford pilot-plant. In 2007, the project’s fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV™ melter with a 10,000-liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary test objectives, along with a dozen supporting objectives, were successfully met. Glass performance exceeded all disposal performance criteria. A previous issue with MIS containment was successfully resolved in FS-38D, and the ICV™ melter was integrated with a full-scale, 10,000-liter dryer. This paper describes the rationale for performing the test, the purpose and outcome of scale-up tests preceding it, and the performance and outcome of FS-38D.« less

  10. Space shuttle search and rescue experiment using synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.; Larson, R. W.; Zelenka, J. S.

    1977-01-01

    The feasibility of a synthetic aperture radar for search and rescue applications was demonstrated with aircraft experiments. One experiment was conducted using the ERIM four-channel radar and several test sites in the Michigan area. In this test simple corner-reflector targets were successfully imaged. Results from this investigation were positive and indicate that the concept can be used to investigate new approaches focused on the development of a global search and rescue system. An orbital experiment to demonstrate the application of synthetic aperture radar to search and rescue is proposed using the space shuttle.

  11. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  12. 14 CFR 61.43 - Practical tests: General procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS General § 61.43... consists of— (1) Performing the tasks specified in the areas of operation for the airman certificate or... performing each task successfully; (3) Demonstrating proficiency and competency within the approved standards...

  13. DESIGN AND TESTING OF SECOND GENERATION BIOREMEDIATION TECHNOLOGIES FOR CHLORINATED SOLVENT CONTAMINATED SITES

    EPA Science Inventory

    The contamination of ground water at industrial and military facilities by chlorinated solvents remains a significant environmental challenge. In the 1990's several successful demonstrations of in situ biodegradation processes, targeted for chloroethenes, occurred. While these tr...

  14. Incident Management : Successful Practices : A Cross-Cutting Study : Improving Mobility And Saving Lives

    DOT National Transportation Integrated Search

    2012-08-01

    This report presents the test plan for conducting the Traveler Response Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the Dallas U.S. 75 Integrated Corridor Management (ICM) Initiative Demonstration. The ICM pro...

  15. Post-test evaluation of the geology, geochemistry, microbiology, and hydrology of the in situ air stripping demonstration site at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eddy Dilek, C.A.; Looney, B.B.; Hazen, T.C.

    A full-scale demonstration of the use of horizontal wells for in situ air stripping for environment restoration was completed as part of the Savannah River Integrated Demonstration Program. The demonstration of in situ air stripping was the first in a series of demonstrations of innovative remediation technologies for the cleanup of sites contaminated with volatile organic contaminants. The in situ air stripping system consisted of two directionally drilled wells that delivered gases to and extract contamination from the subsurface. The demonstration was designed to remediate soils and sediments in the unsaturated and saturated zones as well as groundwater contaminated withmore » volatile organic compounds. The demonstration successfully removed significant quantities of solvent from the subsurface. The field site and horizontal wells were subsequently used for an in situ bioremediation demonstration during which methane was added to the injected air. The field conditions documented herein represent the baseline status of the site for evaluating the in situ bioremediation as well as the post-test conditions for the in situ air stripping demonstration. Characterization activities focused on documenting the nature and distribution of contamination in the subsurface. The post-test characterization activities discussed herein include results from the analysis of sediment samples, three-dimensional images of the pretest and post-test data, contaminant inventories estimated from pretest and post-test models, a detailed lithologic cross sections of the site, results of aquifer testing, and measurements of geotechnical parameters of undisturbed core sediments.« less

  16. ADEPT Heat Shield Testing

    NASA Image and Video Library

    2015-10-16

    NASA is developing the next generation of heat shield to enable astronauts to go to Mars and other deep space destinations. Called the Adaptive Deployable Entry and Placement Technology or ADEPT, the heat shield is mechanically deployable and uses a flexible woven carbon fabric as its skin. Recently, engineers successfully completed a series of tests in the Ames Arc Jet facility. Other tests conducted in wind tunnels at Ames demonstrated that the ADEPT materials and system perform well under planetary re-entry conditions.

  17. Biomedical Research, Development, and Engineering at the Johns Hopkins University Applied Physics Laboratory Annual Report, October 1, 1975-September 30, 1976

    DTIC Science & Technology

    1976-09-01

    Holographic Stress Testing of the surgicai. cornea, B. F. Hochheimer (APL) and J. .. Calkins (JHMI) §37 Constant Pressure Tonography, L. J. Viernatein...September 1976 HOLOGRAPHIC STRESS TESTING OF SUMMARY AND DISCUSSION THE SURGICAL CORNEA We have successfully demonstrated that holographic interferometry is...recording me- stress testing of corneal wounds in several thodology suitable for performing do sle-pulsed postoperative patients. The only stress used

  18. A TASER conducted electrical weapon with cardiac biomonitoring capability: Proof of concept and initial human trial.

    PubMed

    Stopyra, Jason P; Ritter, Samuel I; Beatty, Jennifer; Johnson, James C; Kleiner, Douglas M; Winslow, James E; Gardner, Alison R; Bozeman, William P

    2016-10-01

    Despite research demonstrating the overall safety of Conducted Electrical Weapons (CEWs), commonly known by the brand name TASER(®), concerns remain regarding cardiac safety. The addition of cardiac biomonitoring capability to a CEW could prove useful and even lifesaving in the rare event of a medical crisis by detecting and analyzing cardiac rhythms during the period immediately after CEW discharge. To combine an electrocardiogram (ECG) device with a CEW to detect and store ECG signals while still allowing the CEW to perform its primary function of delivering an incapacitating electrical discharge. This work was performed in three phases. In Phase 1 standard law enforcement issue CEW cartridges were modified to demonstrate transmission of ECG signals. In Phase 2, a miniaturized ECG recorder was combined with a standard issue CEW and tested. In Phase 3, a prototype CEW with on-board cardiac biomonitoring was tested on human volunteers to assess its ability to perform its primary function of electrical incapacitation. Bench testing demonstrated that slightly modified CEW cartridge wires transmitted simulated ECG signals produced by an ECG rhythm generator and from a human volunteer. Ultimately, a modified CEW incorporating ECG monitoring successfully delivered incapacitating current to human volunteers and successfully recorded ECG signals from subcutaneous CEW probes after firing. An ECG recording device was successfully incorporated into a standard issue CEW without impeding the functioning of the device. This serves as proof-of-concept that safety measures such as cardiac biomonitoring can be incorporated into CEWs and possibly other law enforcement devices. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  19. Ground Demonstration on the Autonomous Docking of Two 3U CubeSats Using a Novel Permanent-Magnet Docking Mechanism

    NASA Technical Reports Server (NTRS)

    Pei, Jing; Murchison, Luke; BenShabat, Adam; Stewart, Victor; Rosenthal, James; Follman, Jacob; Branchy, Mark; Sellers, Drew; Elandt, Ryan; Elliott, Sawyer; hide

    2017-01-01

    Small spacecraft autonomous rendezvous and docking is an essential technology for future space structure assembly missions. A novel magnetic capture and latching mechanism is analyzed that allows for docking of two CubeSats without precise sensors and actuators. The proposed magnetic docking hardware not only provides the means to latch the CubeSats but it also significantly increases the likelihood of successful docking in the presence of relative attitude and position errors. The simplicity of the design allows it to be implemented on many CubeSat rendezvous missions. A CubeSat 3-DOF ground demonstration effort is on-going at NASA Langley Research Center that enables hardware-in-the loop testing of the autonomous approach and docking of a follower CubeSat to an identical leader CubeSat. The test setup consists of a 3 meter by 4 meter granite table and two nearly frictionless air bearing systems that support the two CubeSats. Four cold-gas on-off thrusters are used to translate the follower towards the leader, while a single reaction wheel is used to control the attitude of each CubeSat. An innovative modified pseudo inverse control allocation scheme was developed to address interactions between control effectors. The docking procedure requires relatively high actuator precision, a novel minimal impulse bit mitigation algorithm was developed to minimize the undesirable deadzone effects of the thrusters. Simulation of the ground demonstration shows that the Guidance, Navigation, and Control system along with the docking subsystem leads to successful docking under 3-sigma dispersions for all key system parameters. Extensive simulation and ground testing will provide sufficient confidence that the proposed docking mechanism along with the choosen suite of sensors and actuators will perform successful docking in the space environment.

  20. Initial Development and Pilot Study Design of Interactive Lecture Demonstrations for ASTRO 101

    NASA Astrophysics Data System (ADS)

    Schwortz, Andria C.; French, D. A; Gutierrez, Joseph V; Sanchez, Richard L; Slater, Timothy F.; Tatge, Coty

    2014-06-01

    Interactive lecture demonstrations (ILDs) have repeatedly shown to be effective tools for improving student achievement in the context of learning physics. As a first step toward systematic development of interactive lecture demonstrations in ASTRO 101, the introductory astronomy survey course, a systematic review of education research, describing educational computer simulations (ECSs) reveals that initial development requires a targeted study of how ASTRO 101 students respond to ECSs in the non-science majoring undergraduate lecture setting. In this project we have adopted the process by which ILDs were designed, pilot-tested, and successfully implemented in the context of physics teaching (Sokoloff & Thornton, 1997; Sokoloff & Thornton, 2004). We have designed the initial pilot-test set of ASTRO 101 ILD instructional materials relying heavily on ECSs. Both an instructor’s manual and a preliminary classroom-ready student workbook have been developed, and we are implementing a pilot study to explore their effectiveness in communicating scientific content, and the extent to which they might enhance students’ knowledge of and perception about astronomy and science in general. The study design uses a pre-/post-test quasi-experimental study design measuring students’ normalized gain scores, calculated as per Hake (1998) and Prather (2009), using a slightly modified version of S. Slater’s (2011) Test Of Astronomy STandards TOAST combined with other instruments. The results of this initial study will guide the iterative development of ASTRO 101 ILDs that are intended to both be effective at enhancing student achievement and easy for instructors to successfully implement.

  1. Anesthetic efficacy of the supplemental intraosseous injection of 2% lidocaine with 1:100,000 epinephrine in irreversible pulpitis.

    PubMed

    Nusstein, J; Reader, A; Nist, R; Beck, M; Meyers, W J

    1998-07-01

    The purpose of this study was to determine the anesthetic efficacy of a supplemental intraosseous injection of 2% lidocaine with 1:100,000 epinephrine in teeth diagnosed with irreversible pulpitis. Fifty-one patients with symptomatic, vital maxillary, and mandibular posterior teeth diagnosed with irreversible pulpitis received conventional infiltrations or inferior alveolar nerve blocks. Pulp testing was used to determine pulpal anesthesia after "clinically successful" injections. Patients who were positive to the pulp tests, or were negative to the pulp tests but felt pain during endodontic access, received an intraosseous injection using 1.8 ml of 2% lidocaine with 1:100,000 epinephrine. The results demonstrated that 42% of the patients who tested negative to the pulp tests reported pain during treatment and required supplemental anesthesia. Eighty-one percent of the mandibular teeth and 12% of maxillary teeth required an intraosseous injection due to failure to gain pulpal anesthesia. Overall, the Stabident intraosseous injection was found to be 88% successful in gaining total pulpal anesthesia for endodontic therapy. We concluded that, for posterior teeth diagnosed with irreversible pulpitis, the supplemental intraosseous injection of 2% lidocaine (1:100,000 epinephrine) was successful when conventional techniques failed.

  2. Test and evaluation of the HIDEC engine uptrim algorithm. [Highly Integrated Digital Electronic Control for aircraft

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Myers, L. P.

    1986-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.

  3. Full-Scale Crash Test of a MD-500 Helicopter with Deployable Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Karen E.; Littell, Justin D.

    2010-01-01

    A new externally deployable energy absorbing system was demonstrated during a full-scale crash test of an MD-500 helicopter. The deployable system is a honeycomb structure and utilizes composite materials in its construction. A set of two Deployable Energy Absorbers (DEAs) were fitted on the MD-500 helicopter for the full-scale crash demonstration. Four anthropomorphic dummy occupants were also used to assess human survivability. A demonstration test was performed at NASA Langley's Landing and Impact Research Facility (LandIR). The test involved impacting the helicopter on a concrete surface with combined forward and vertical velocity components of 40-ft/s and 26-ft/s, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of dynamic finite element simulations. Descriptions of this test as well as other component and full-scale tests leading to the helicopter test are discussed. Acceleration data from the anthropomorphic dummies showed that dynamic loads were successfully attenuated to within non-injurious levels. Moreover, the airframe itself survived the relatively severe impact and was retested to provide baseline data for comparison for cases with and without DEAs.

  4. Fiber Optic System Test Results In A Tactical Military Aircraft

    NASA Astrophysics Data System (ADS)

    Uhlhorn, Roger W.; Greenwell, Roger A.

    1980-09-01

    The YAV-8B Electromagnetic Immunity and Flight-Test Program was established to evaluate the susceptibility of wire and optical fiber signal transmission lines to electromagnetic interference when these lines are installed in a graphite/epoxy composite wing and to demonstrate the flightworthiness of fiber optics interconnects in the vertical/ short takeoff and landing aircraft environment. In response, two fiber optic systems were designed, fabricated, and flight tested by McDonnell Aircraft Co. (MCAIR), a division of the McDonnell Douglas Corporation, on the two YAV-8B V/STOL flight test aircraft. The program successfully demonstrated that fiber optics are compatible with the attack aircraft environment. As a result, the full scale development AV-8B will incorporate fiber optics in a point-to-point data link. We describe here the fiber optic systems designs, test equipment development, cabling and connection requirements, fabrication and installation experience, and flight test program results.

  5. Full power level development of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Colbo, H. I.

    1982-01-01

    Development of the Space Shuttle main engine for nominal operation at full power level (109 percent rated power) is continuing in parallel with the successful flight testing of the Space Transportation System. Verification of changes made to the rated power level configuration currently being flown on the Orbiter Columbia is in progress and the certification testing of the full power level configuration has begun. The certification test plan includes the accumulation of 10,000 seconds on each of two engines by early 1983. Certification testing includes the simulation of nominal mission duty cycles as well as the two abort thrust profiles: abort to orbit and return to launch site. Several of the certification tests are conducted at 111 percent power to demonstrate additional safety margins. In addition to the flight test and development program results, future plans for life demonstration and engine uprating will be discussed.

  6. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    NASA Technical Reports Server (NTRS)

    Young, Roy M.; Adams, Charles L.

    2010-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.

  7. Development and Application of a Portable Health Algorithms Test System

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Fulton, Christopher E.; Maul, William A.; Sowers, T. Shane

    2007-01-01

    This paper describes the development and initial demonstration of a Portable Health Algorithms Test (PHALT) System that is being developed by researchers at the NASA Glenn Research Center (GRC). The PHALT System was conceived as a means of evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT System allows systems health management algorithms to be developed in a graphical programming environment; to be tested and refined using system simulation or test data playback; and finally, to be evaluated in a real-time hardware-in-the-loop mode with a live test article. In this paper, PHALT System development is described through the presentation of a functional architecture, followed by the selection and integration of hardware and software. Also described is an initial real-time hardware-in-the-loop demonstration that used sensor data qualification algorithms to diagnose and isolate simulated sensor failures in a prototype Power Distribution Unit test-bed. Success of the initial demonstration is highlighted by the correct detection of all sensor failures and the absence of any real-time constraint violations.

  8. Integrated corridor management initiative : demonstration phase evaluation, Dallas benefit-cost analysis test plan.

    DOT National Transportation Integrated Search

    2000-12-01

    The focus of this paper is on advanced public transportation systems (APTS) technologies. It assesses the extent of their deployment and judges their degree of success. It covers APTS technologies in use only by bus and demand responsive service oper...

  9. FogEye UV Sensor System : Low Visibility Landing Test (Phase IV Report)

    DOT National Transportation Integrated Search

    2004-03-01

    The potential of FogEye solar blind UV technology to contribute to safe and swift throughput operations at airports has been demonstrated. One application, use of FogEye (Safety Sentry), as an aircraft surface detection sensor has been successfully o...

  10. Joint Test Protocol for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2005-01-01

    The primary objective of this effort is to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes. Successful completion of this project will result in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project.

  11. Enhanced Flight Termination System (EFTS): Flight Demonstration and Results

    NASA Technical Reports Server (NTRS)

    Tow, David; Arce, Dennis

    2008-01-01

    The Enhanced Flight Termination System (EFTS) program was initiated and propelled due to the inadvertent terminations of Global Hawk and the Strategic Target System and the NASA Inspector General's assessment letter and recommendations regarding the exploration of low-cost, lightweight space COMSEC for FTS. Additionally, the standard analog and high alphabet systems most commonly used in FTS are secure, but not encrypted. A study group was initiated to select and document a robust, affordable, reliable technology that provides encrypted FTS capability. A flight demonstration was conducted to gain experience using EFTS in an operational environment, provide confidence in the use of the EFTS components, integrate EFTS into an existing range infrastructure to demonstrate the scalability of system components, to provide a command controller that generated the EFTS waveform using an existing range infrastructure, and to provide a report documenting the results of the demonstration. The primary goal of the demonstration was to obtain operational experience with EFTS. Areas of operational experience include: mission planning, pre-flight configuration and testing, mission monitoring and recording, vehicle termination, developing mission procedures. and post mission data reduction and other post mission activities. An Advanced Medium-Range Air-to-Air Missile (AMRAAM) was selected to support the EFTS demonstration due to interest in future use of EFTS by the AMRAAM program, familiarity of EFTS by range personnel, and the availability of existing operational environment to support EFTS testing with available program funding. For demonstration purposes, the AMRAAM was successfully terminated using an EFTS receiver and successfully demonstrating EFTS. The EFTS monitoring software with spectrum analyzer and digital graphical display of aircraft, missile, and target were also demonstrated.

  12. Flight Control Laws for NASA's Hyper-X Research Vehicle

    NASA Technical Reports Server (NTRS)

    Davidson, J.; Lallman, F.; McMinn, J. D.; Martin, J.; Pahle, J.; Stephenson, M.; Selmon, J.; Bose, D.

    1999-01-01

    The goal of the Hyper-X program is to demonstrate and validate technology for design and performance predictions of hypersonic aircraft with an airframe-integrated supersonic-combustion ramjet propulsion system. Accomplishing this goal requires flight demonstration of a hydrogen-fueled scramjet powered hypersonic aircraft. A key enabling technology for this flight demonstration is flight controls. Closed-loop flight control is required to enable a successful stage separation, to achieve and maintain the design condition during the engine test, and to provide a controlled descent. Before the contract award, NASA developed preliminary flight control laws for the Hyper-X to evaluate the feasibility of the proposed scramjet test sequence and descent trajectory. After the contract award, a Boeing/NASA partnership worked to develop the current control laws. This paper presents a description of the Hyper-X Research Vehicle control law architectures with performance and robustness analyses. Assessments of simulated flight trajectories and stability margin analyses demonstrate that these control laws meet the flight test requirements.

  13. Fluid Acquisition and Resupply Experiment (FARE-I) flight results

    NASA Astrophysics Data System (ADS)

    Dominick, Sam M.; Driscoll, Susan L.

    1993-06-01

    The Fluid Acquisition and Resupply Experiment, (FARE) is a Shuttle middeck-mounted experiment to demonstrate techniques for handling liquids in zero gravity for operations such as refueling spacecraft in orbit. The first flight took place on STS 53 launched December 2, 1992. Eight tests were performed during the mission and the experiment achieved 100 percent mission success. The second flight will be on STS 57, scheduled for launch in June 1993. The objective of FARE I was to demonstrate techniques for controlling the position of the liquid and gas within a tank during refilling and to better understand the operation of screen-type surface tension devices used to drain tanks in zero gravity. Tests were performed to demonstrate tank refilling, low gravity propellant slosh, and expulsion efficiency of the screen device. Expulsion efficiencies of 97 percent - 98 percent were demonstrated under a variety of flowrates and accelerations. Final fill levels of 60 percent to 80 percent were achieved during the vented fill tests.

  14. Sweep-twist adaptive rotor blade : final project report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashwill, Thomas D.

    2010-02-01

    Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercialmore » development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.« less

  15. Validation of the Lockheed Martin Morphing Concept with Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.; Scott, Robert C.; Love, Michael H.; Zink Scott; Weisshaar, Terrence A.

    2007-01-01

    The Morphing Aircraft Structures (MAS) program is a Defense Advanced Research Projects Agency (DARPA) led effort to develop morphing flight vehicles capable of radical shape change in flight. Two performance parameters of interest are loiter time and dash speed as these define the persistence and responsiveness of an aircraft. The geometrical characteristics that optimize loiter time and dash speed require different geometrical planforms. Therefore, radical shape change, usually involving wing area and sweep, allows vehicle optimization across many flight regimes. The second phase of the MAS program consisted of wind tunnel tests conducted at the NASA Langley Transonic Dynamics Tunnel to demonstrate two morphing concepts and their enabling technologies with large-scale semi-span models. This paper will focus upon one of those wind tunnel tests that utilized a model developed by Lockheed Martin Aeronautics Company (LM). Wind tunnel success criteria were developed by NASA to support the DARPA program objectives. The primary focus of this paper will be the demonstration of the DARPA objectives by systematic evaluation of the wind tunnel model performance relative to the defined success criteria. This paper will also provide a description of the LM model and instrumentation, and document pertinent lessons learned. Finally, as part of the success criteria, aeroelastic characteristics of the LM derived MAS vehicle are also addressed. Evaluation of aeroelastic characteristics is the most detailed criterion investigated in this paper. While no aeroelastic instabilities were encountered as a direct result of the morphing design or components, several interesting and unexpected aeroelastic phenomenon arose during testing.

  16. Am(VI) Extraction Final Report: FY16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mincher, Bruce Jay; Grimes, Travis Shane; Tillotson, Richard Dean

    This report summarizes activities related to hexavalent Am extraction for FY16, in completion of FCR&D Milestone M3FT-16IN030103027. Activities concentrated on three areas of research: 1) centrifugal contactor hot testing, 2) Am(VI) stability studies, and 3) alternative oxidant studies. A brief summary of each task follows. Hot Testing: A new engineering-scale oxidation and solvent extraction test bed was built at Idaho National Laboratory to allow for solvent extraction testing of minor actinide separation concepts. The test bed consists of an oxidation vessel, filtration apparatus, four, 3D printed, 2-cm diameter centrifugal contactors, feed/product vessels, and sample ports. This system replaced the previousmore » 3 stage, 5-cm contactor test bed that was used for the initial testing in FY14. In the FY16 hot test, a feed simulant was spiked with 243Am and 139Ce and treated with 60 g/L sodium bismuthate for two hours to oxidize the Am(III) to Am(VI). This solution was then pumped through a filter and into the four-stage centrifugal contactor setup. The organic phase solvent formulation was 1 M diethylhexylbutyramide (DEHBA)/dodecane. The test showed that Am(VI) was produced by bismuthate oxidation and the residual oxidant was successfully filtered without back pressure buildup. Sixty-four percent of Am was extracted in the contactors using DEHBA. Both Am and Ce were quantitatively stripped by 0.1 M H2O2. Successful demonstration of the utility of small, printable contactors suggests that hot testing of separations concepts can now be conducted more often, since it is cheaper, generates less waste, and entails much less radcon risk than previous testing. Am(VI) stability: A rigorous examination of reagents was conducted to determine if contaminants could interfere with Am oxidation and extraction. An series of DAm measurements showed that bismuthate particle size, water source, acid quality, and DAAP batch or pre-treatment had little effect on extraction efficiency, with a mean distribution ratio of 3.74 ± 0.5, using 1 M DAAP extraction. Additionally, the purposeful addition of millimolar amounts of nitrite or H2O2 to bismuthate-treated Am solutions did not prevent oxidation, as long as residual solid bismuthate was present. Finally, a series of irradiation experiments using a Nordion Gammacell 220E 60Co source was performed, and kinetic data for the radiolytic reduction of Am(VI) were obtained. Unsurprisingly, it was found that radiolysis reduces Am(VI), but that the presence of Ce(IV) acts as a radioprotection agent, to scavenge radiolytically-produced reducing agents, thereby enhancing the stability of the higher Am oxidation state. Alternative oxidants: To date, sodium bismuthate is the only practical oxidant for Am with utility in solvent extraction. While successful oxidation has been demonstrated with sodium peroxydisulfate, it is impractical for solvent extraction because it is only useful in dilute acid and it introduces sulfate into the process. Oxidation has been demonstrated using silver and cobalt catalyzed ozone, however, reduction upon contact with an organic phase is instantaneous. Oxidation is successful using Cu(III) periodate, and marginally successful in initial testing using DAAP extraction. However, the distribution ratios for the oxidized Am are marginal, because Cu(III) is also rapidly reduced by the organic phase. The possibility may exist that this can be optimized.« less

  17. Development of Infrared Phase Closure Capability in the Infrared-Optical Telescope Array (IOTA)

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.

    2002-01-01

    We completed all major fabrication and testing for the third telescope and phase-closure operation at the Infrared-Optical Telescope Array (IOTA) during this period. In particular we successfully tested the phase-closure operation, using a laboratory light source illuminating the full delay-line optical paths, and using an integrated-optic beam combiner coupled to our Picnic-detector camera. This demonstration is an important and near-final milestone achievement. As of this writing, however, several tasks yet remain, owing to development snags and weather, so the final proof of success, phase-closure observation of a star, is now expected to occur in early 2002, soon after this report has been submitted.

  18. The Integrated Airport: Building a Successful NextGen Testbed

    ScienceCinema

    Frederick-Recascino, Christina; Sweigard, Doug; Lester, Wade

    2018-01-24

    This presentation will describe a unique public-private partnership - the Integrated Airport - that was created to engage in research and testing related to NextGen Technology deployment.  NextGen refers to the program that will be initiated to modernize the US National Airspace.  As with any major, multi-decade initiative, such as NextGen, integration of work efforts by multiple partners in the modernization is critical for success.  This talk will focus on the development of the consortium, how the consortium plans for NextGen initiatives, the series of technology demonstrations we have produced and plans for the future of NextGen testing and implementation. 

  19. Redesigned rotor for a highly loaded, 1800 ft/sec tip speed compressor fan stage 1: Aerodynamic and mechanical design

    NASA Technical Reports Server (NTRS)

    Halle, J. E.; Ruschak, J. T.

    1975-01-01

    A highly loaded, high tip-speed fan rotor was designed with multiple-circular-arc airfoil sections as a replacement for a marginally successful rotor which had precompression airfoil sections. The substitution of airfoil sections was the only aerodynamic change. Structural design of the redesigned rotor blade was guided by successful experience with the original blade. Calculated stress levels and stability parameters for the redesigned rotor are within limits demonstrated in tests of the original rotor.

  20. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesely, Charles John-Paul; Fuchs, Benjamin S.; Booten, Chuck W.

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APUmore » system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.« less

  1. Satellite Test of the Equivalence Principle, Overview and Progress

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffery

    2006-01-01

    An overview of STEP, the Satellite test of the Equivalence Principle will be presented. This space-based experiment will test the Universality of free fall and is designed to advance the present state of knowledge by over 5 orders of magnitude. The international STEP collaboration is pursuing a development plan to improve and verify the technology readiness of key systems. We will discuss recent advances with an emphasis on accelerometer fabrication and test. The transfer of critical technologies successfully demonstrated in flight by the Gravity Probe B mission will be described.

  2. Test results of a resonant integrated microbeam sensor (RIMS) for acoustic emission monitoring

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Zook, J. David

    1998-07-01

    An acoustic emission (AE) sensor has been developed by Honeywell Technology Center for avionics, industrial control, and military applications. The AE sensor design is based on an integrated silicon microstructure, a resonant microbeam with micron-level feature size, and frequency sensitivity up to 500 kHz. The AE sensor has been demonstrated successfully in the laboratory test environment to sense and characterize a simulated AE even for structural fatigue crack monitoring applications. The technical design approach and laboratory test results are presented.

  3. Addressing EO-1 Spacecraft Pulsed Plasma Thruster EMI Concerns

    NASA Technical Reports Server (NTRS)

    Zakrzwski, C. M.; Davis, Mitch; Sarmiento, Charles; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing One (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. Results from PPT unit level radiated electromagnetic interference (EMI) tests led to concerns about potential interference problems with other spacecraft subsystems. Initial plans to address these concerns included firing the PPT at the spacecraft level both in atmosphere, with special ground support equipment. and in vacuum. During the spacecraft level tests, additional concerns where raised about potential harm to the Advanced Land Imager (ALI). The inadequacy of standard radiated emission test protocol to address pulsed electromagnetic discharges and the lack of resources required to perform compatibility tests between the PPT and an ALI test unit led to changes in the spacecraft level validation plan. An EMI shield box for the PPT was constructed and validated for spacecraft level ambient testing. Spacecraft level vacuum tests of the PPT were deleted. Implementation of the shield box allowed for successful spacecraft level testing of the PPT while eliminating any risk to the ALI. The ALI demonstration will precede the PPT demonstration to eliminate any possible risk of damage of ALI from PPT operation.

  4. 2017-04-28_W88 ALT 370 Program Overview(OUO).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, Vonceil

    2017-04-01

    All major program milestones have been met and the program is executing within budget. The ALT 370 program achieved Phase 6.4 authorization in February of this year. Five component Final Design Reviews (FDRs) have been completed, indicating progress in finalizing the design and development phase of the program. A series of ground-based qualification activities have demonstrated that designs are meeting functional requirements. The first fully functional flight test, FCET-53, demonstrated end-to-end performance in normal flight environments in February. Similarly, groundbased nuclear safety and hostile environments testing indicates that the design meets requirements in these stringent environments. The first in amore » series of hostile blast tests was successfully conducted in April.« less

  5. Investigation of a catalytic gas generator for the Space Shuttle APU. [hydrazine Auxiliary Propulsion Unit

    NASA Technical Reports Server (NTRS)

    Emmons, D. L.; Huxtable, D. D.; Blevins, D. R.

    1974-01-01

    An investigation was conducted to establish the capability of a monopropellant hydrazine catalytic gas generator to meet the requirements specified for the Space Shuttle APU. Detailed analytical and experimental studies were conducted on potential problem areas including long-term nitriding effects on materials, design variables affecting catalyst life, vehicle vibration effects, and catalyst oxidation/contamination. A full-scale gas generator, designed to operate at a chamber pressure of 750 psia and a flow rate of 0.36 lbm/sec, was fabricated and subjected to three separate life test series. The objective of the first test series was to demonstrate the capability of the gas generator to successfully complete 20 simulated Space Shuttle missions in steady-state operation. The gas generator was then refurbished and subjected to a second series of tests to demonstrate the pulse-mode capability of the gas generator during 20 simulated missions. The third series of tests was conducted with a refurbished reactor to further demonstrate pulse-mode capability with a modified catalyst bed.

  6. High temperature acoustic and hybrid microwave/acoustic levitators for materials processing

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin

    1990-01-01

    The physical acoustics group at the Jet Propulsion Laboratory developed a single mode acoustic levitator technique for advanced containerless materials processing. The technique was successfully demonstrated in ground based studies to temperatures of about 1000 C in a uniform temperature furnace environment and to temperatures of about 1500 C using laser beams to locally heat the sample. Researchers are evaluating microwaves as a more efficient means than lasers for locally heating a positioned sample. Recent tests of a prototype single mode hybrid microwave/acoustic levitator successfully demonstrated the feasibility of using microwave power as a heating source. The potential advantages of combining acoustic positioning forces and microwave heating for containerless processing investigations are presented in outline form.

  7. Successful acquisition of an olfactory discrimination test by Asian elephants, Elephas maximus.

    PubMed

    Arvidsson, Josefin; Amundin, Mats; Laska, Matthias

    2012-02-01

    The present study demonstrates that Asian elephants, Elephas maximus, can successfully be trained to cooperate in an olfactory discrimination test based on a food-rewarded two-alternative instrumental conditioning procedure. The animals learned the basic principle of the test within only 60 trials and readily mastered intramodal stimulus transfer tasks. Further, they were capable of distinguishing between structurally related odor stimuli and remembered the reward value of previously learned odor stimuli after 2, 4, 8, and 16 weeks of recess without any signs of forgetting. The precision and consistency of the elephants' performance in tests of odor discrimination ability and long-term odor memory demonstrate the suitability of this method for assessing olfactory function in this proboscid species. An across-species comparison of several measures of olfactory learning capabilities such as speed of initial task acquisition and ability to master intramodal stimulus transfer tasks shows that Asian elephants are at least as good in their performance as mice, rats, and dogs, and clearly superior to nonhuman primates and fur seals. The results support the notion that Asian elephants may use olfactory cues for social communication and food selection and that the sense of smell may play an important role in the control of their behavior. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NEIL K. MCDOUGALD

    Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this projectmore » was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.« less

  9. Desert Research and Technology Studies 2008 Report

    NASA Technical Reports Server (NTRS)

    Romig, Barbara; Kosmo, Joseph; Gernhardt, Michael; Abercromby, Andrew

    2009-01-01

    During the last two weeks of October 2008, the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Advanced Extravehicular Activity (AEVA) team led the field test portion of the 2008 Desert Research and Technology Studies (D-RATS) near Flagstaff, AZ. The Desert RATS field test activity is the year-long culmination of various individual science and advanced engineering discipline areas technology and operations development efforts into a coordinated field test demonstration under representative (analog) planetary surface terrain conditions. The 2008 Desert RATS was the eleventh RATS field test and was the most focused and successful test to date with participants from six NASA field centers, three research organizations, one university, and one other government agency. The main test objective was to collect Unpressurized Rover (UPR) and Lunar Electric Rover (LER) engineering performance and human factors metrics while under extended periods of representative mission-based scenario test operations involving long drive distances, night-time driving, Extravehicular Activity (EVA) operations, and overnight campover periods. The test was extremely successful with all teams meeting the primary test objective. This paper summarizes Desert RATS 2008 test hardware, detailed test objectives, test operations, and test results.

  10. Centaur Standard Shroud (CSS) Heated Altitude Jettison Tests

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Altitude jettison tests, at a pressure of 20 torr (0.39 psia), were performed on the Centaur Standard Shroud (CSS) in a 100-foot diameter vacuum chamber. These jettison tests were part of a series of flight qualification tests which were performed on the new CSS system in preparation for the Helios and Viking missions. The first two tests subjected the CSS to a thermal cycle which simulated aerodynamic heating during ascent flight and the third test was performed at altitude pressure and in ambient temperature conditions. The purpose of the ambient temperature test was to provide base line data by which the separate machanical and thermal factors that influence jettison performance could be evaluated individually. The CSS was successfully jettisoned in each of the three tests. Also, thermal, stress, and structural deflection data were obtained which verified the analytical predictions of CSS response to flight environmental conditions and performance during jettison. In addition, much important information was obtained on critical CSS-to-payload clearance losses due to shell motions prior to and during jettison. The effectiveness of the separation system was successfully demonstrated at maximum flight temperatures.

  11. DEVELOPMENT AND DEMONSTRATION OF A BIDIRECTIONAL ADVECTIVE FLUX METER FOR SEDIMENT-WATER INTERFACE

    EPA Science Inventory

    A bidirectional advective flux meter for measuring water transport across the sediment-water interface has been successfully developed and field tested. The flow sensor employs a heat-pulse technique combined with a flow collection funnel for the flow measurement. Because the dir...

  12. Automatic control of a liquid nitrogen cooled, closed-circuit, cryogenic pressure tunnel

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Goglia, G. L.

    1980-01-01

    The control system design, performance analysis, microprocesser based controller software development, and specifications for the Transonic Cryogenic Tunnel (TCT) are discussed. The control laws for the single-input single-output controllers were tested on the TCT simulator, and successfully demonstrated on the TCT.

  13. A Teaching Model for Truss Structures

    ERIC Educational Resources Information Center

    Bigoni, Davide; Dal Corso, Francesco; Misseroni, Diego; Tommasini, Mirko

    2012-01-01

    A classroom demonstration model has been designed, machined and successfully tested in different learning environments to facilitate understanding of the mechanics of truss structures, in which struts are subject to purely axial load and deformation. Gaining confidence with these structures is crucial for the development of lattice models, which…

  14. CTEPP STANDARD OPERATING PROCEDURE FOR TRANSLATING VIDEOTAPES OF CHILD ACTIVITIES (SOP-4.13)

    EPA Science Inventory

    The EPA will conduct a two-day video translation workshop to demonstrate to coders the procedures for translating the activity patterns of preschool children on videotape. The coders will be required to pass reliability tests to successfully complete the training requirements of ...

  15. The Successful Development of an Automated Rendezvous and Capture (AR&C) System for the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Roe, Fred D.; Howard, Richard T.

    2003-01-01

    During the 1990's, the Marshall Space Flight Center (MSFC) conducted pioneering research in the development of an automated rendezvous and capture/docking (AR&C) system for U.S. space vehicles. Development and demonstration of a rendezvous sensor was identified early in the AR&C Program as the critical enabling technology that allows automated proximity operations and docking. A first generation rendezvous sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on STS-87 and STS-95, proving the concept of a video- based sensor. A ground demonstration of the entire system and software was successfully tested. Advances in both video and signal processing technologies and the lessons learned from the two successful flight experiments provided a baseline for the development, by the MSFC, of a new generation of video based rendezvous sensor. The Advanced Video Guidance Sensor (AGS) has greatly increased performance and additional capability for longer-range operation with a new target designed as a direct replacement for existing ISS hemispherical reflectors.

  16. Solid Polymer Electrolyte Fuel Cell Technology Program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Work is reported on phase 5 of the Solid Polymer Electrolyte (SPE) Fuel Cell Technology Development program. The SPE fuel cell life and performance was established at temperatures, pressures, and current densities significantly higher than those previously demonstrated in sub-scale hardware. Operation of single-cell Buildup No. 1 to establish life capabilities of the full-scale hardware was continued. A multi-cell full-scale unit (Buildup No. 2) was designed, fabricated, and test evaluated laying the groundwork for the construction of a reactor stack. A reactor stack was then designed, fabricated, and successfully test-evaluated to demonstrate the readiness of SPE fuel cell technology for future space applications.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The NOXSO Process uses a regenerable sorbent that removes SO{sub 2} and NO{sub x} simultaneously from flue gas. The sorbent is a stabilized {gamma}-alumina bed impregnated with sodium carbonate. The process was successfully tested at three different scales, equivalent to 0.017, 0.06 and 0.75 MW of flue gas generated from a coal-fired power plant. The Proof-of-Concept (POC) Test is the last test prior to a full-scale demonstration. A slip stream of flue gas equivalent to a 5 MW coal-fired power plant was used for the POC test. This paper summarizes the NOXSO POC plant and its test results.

  18. Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current Good Manufacture Practice regulations

    PubMed Central

    Lai, Huafang; Chen, Qiang

    2012-01-01

    Despite the success in expressing a variety of subunit vaccine proteins in plants and the recent stride in improving vaccine accumulation levels by transient expression systems, there is still no plant-derived vaccine that has been licensed for human use. The lack of commercial success of plant-made vaccines lies in several technical and regulatory barriers that remain to be overcome. These challenges include the lack of scalable downstream processing procedures, the uncertainty of regulatory compliance of production processes, and the lack of demonstration of plant-derived products that meet the required standards of regulatory agencies in identity, purity, potency and safety. In this study, we addressed these remaining challenges and successfully demonstrate the ability of using plants to produce a pharmaceutical grade Norwalk virus (NV) vaccine under current Good Manufacture Practice (cGMP) guidelines at multiple gram scales. Our results demonstrate that an efficient and scalable extraction and purification scheme can established for processing virus-like particles (VLP) of NV capsid protein (NVCP). We successfully operated the upstream and downstream NVCP production processes under cGMP regulations. Furthermore, plant-derived NVCP VLP demonstrates the identity, purity, potency and safety that meet the preset release specifications. This material is being tested in a Phase I human clinical trial. This research provides the first report of producing a plant-derived vaccine at scale under cGMP regulations in an academic setting and an important step for plant-produced vaccines to become a commercial reality. PMID:22134876

  19. Dynamic Capability of an Operating Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Goodnight, Thomas W.; Hughes, William O.; McNelis, Mark E.

    2000-01-01

    The NASA John H. Glenn Research Center and the US Department of Energy are currently developing a Stirling convertor for use as an advanced spacecraft power system for future NASA deep-space missions. NASA Headquarters has recently identified the Stirling technology generator for potential use as the spacecraft power system for two of NASA's new missions, the Europa Orbiter and the Solar Probe missions (planned for launch in 2006 and 2007 respectively). As part of the development of this power system, a Stirling Technology Demonstration Convertor was vibration tested at NASA John H. Glenn Research Center to verify its survivability and capability of withstanding the harsh dynamic environment typically seen by the spacecraft when it is launched by an expendable launch vehicle. The Technology Demonstration Convertor was fully operational (producing power) during the random vibration testing. The output power of the convertor and other convertor performance indicators were measured during the testing, and these results are discussed in this paper. Numerous accelerometers and force gauges also were used to provide information on the dynamic characteristics of the Technology Demonstration Convertor and as an indication of any possible damage due to the vibration. These measurements will also be discussed in this paper. The vibration testing of the Stirling Technology Demonstration Convertor was extremely successful. The Technology Demonstration Convertor survived all its vibration testing with no structural damage or functional performance degradation. As a result of this testing, the Stirling convertor's capability to withstand vibration has been demonstrated, enabling its usage in future spacecraft power systems.

  20. Physically scarce (vs. enriched) environments decrease the ability to tell lies successfully.

    PubMed

    Ten Brinke, Leanne; Khambatta, Poruz; Carney, Dana R

    2015-10-01

    The successful detection of deception is of critical importance to adaptive social relationships and organizations, and perhaps even national security. However, research in forensic, legal, and social psychology demonstrates that people are generally very successful deceivers. The goal of the current research was to test an intervention with the potential to decrease the likelihood of successful deception. We applied findings in the architectural, engineering, and environmental sciences that has demonstrated that enriched environments (vs. scarce ones) promote the experience of comfort, positive emotion, feelings of power and control, and increase productivity. We hypothesized that sparse, impoverished, scarcely endowed environments (vs. enriched ones) would decrease the ability to lie successfully by making liars feel uncomfortable and powerless. Study 1 examined archival footage of an international sample of criminal suspects (N = 59), including innocent relatives (n = 33) and convicted murderers (n = 26) emotionally pleading to the public for the return of a missing person. Liars in scarce environments (vs. enriched) were significantly more likely to reveal their lies through behavioral cues to deception. Study 2 (N = 79) demonstrated that the discomfort and subsequent powerlessness caused by scarce (vs. enriched) environments lead people to reveal behavioral cues to deception. Liars in scarce environments also experienced greater neuroendocrine stress reactivity and were more accurately detected by a sample of 66 naïve observers (Study 3). Taken together, data suggest that scarce environments increase difficulty, and decrease success, of deception. Further, we make available videotaped stimuli of Study 2 liars and truth-tellers. (c) 2015 APA, all rights reserved).

  1. Compensations for Weight Loss in Successful and Unsuccessful Dieters.

    PubMed

    Hume, David J; Kroff, Jacolene; Clamp, Louise D; Lambert, Estelle V

    2015-09-01

    To explore for the presence of behavioral compensation for weight loss in successful and unsuccessful dieters. Successful dieters (women maintaining a weight loss ≥ 10% body weight for ≥ 1 year) and unsuccessful dieters (women who had lost and regained ≥ 10% body weight) were compared to age- and BMI-matched controls for measures obtained from self-report surveys, an online dietary recall, indirect calorimetry, a submaximal treadmill test, and accelerometry. Compared to their controls, successful dieters reported lower carbohydrate intake, greater protein intake, greater eating restraint, and more vigorous intensity physical activity. Accelerometry data reflected more moderate-to-vigorous intensity physical activity, but more energy expenditure over-report in successful dieters than their comparators. Unsuccessful dieters were indistinguishable from their controls. Successful dieters show behavioral vigilance but over-report total daily energy expenditure, whereas unsuccessful dieters do not demonstrate measurable compensations in health behavior.

  2. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janke, Christopher James; Das, Sadananda; Oyola, Yatsandra

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent wasmore » synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.« less

  3. Early Results from Solar Dynamic Space Power System Testing

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Mason, Lee S.

    1996-01-01

    A government/industry team designed, built and tested a 2-kWe solar dynamic space power system in a large thermal vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum and solar flux as encountered in low-Earth orbit. The solar dynamic system includes a Brayton power conversion unit integrated with a solar receiver which is designed to store energy for continuous power operation during the eclipse phase of the orbit. This paper reviews the goals and status of the Solar Dynamic Ground Test Demonstration project and describes the initial testing, including both operational and performance data. System testing to date has accumulated over 365 hours of power operation (ranging from 400 watts to 2.0-W(sub e)), including 187 simulated orbits, 16 ambient starts and 2 hot restarts. Data are shown for an orbital startup, transient and steady-state orbital operation and shutdown. System testing with varying insolation levels and operating speeds is discussed. The solar dynamic ground test demonstration is providing the experience and confidence toward a successful flight demonstration of the solar dynamic technologies on the Space Station Mir in 1997.

  4. EGFR T790M mutation testing of non-small cell lung cancer tissue and blood samples artificially spiked with circulating cell-free tumor DNA: results of a round robin trial.

    PubMed

    Fassunke, Jana; Ihle, Michaela Angelika; Lenze, Dido; Lehmann, Annika; Hummel, Michael; Vollbrecht, Claudia; Penzel, Roland; Volckmar, Anna-Lena; Stenzinger, Albrecht; Endris, Volker; Jung, Andreas; Lehmann, Ulrich; Zeugner, Silke; Baretton, Gustavo; Kreipe, Hans; Schirmacher, Peter; Kirchner, Thomas; Dietel, Manfred; Büttner, Reinhard; Merkelbach-Bruse, Sabine

    2017-10-01

    The European Commision (EC) recently approved osimertinib for the treatment of adult patients with locally advanced or metastatic non-small-cell lung cancer (NSCLC) harboring EGFR T790M mutations. Besides tissue-based testing, blood samples containing cell-free circulating tumor DNA (ctDNA) can be used to interrogate T790M status. Herein, we describe the conditions and results of a round robin trial (RRT) for T790M mutation testing in NSCLC tissue specimens and peripheral blood samples spiked with cell line DNA mimicking tumor-derived ctDNA. The underlying objectives of this two-staged external quality assessment (EQA) approach were (a) to evaluate the accuracy of T790M mutations testing across multiple centers and (b) to investigate if a liquid biopsy-based testing for T790M mutations in spiked blood samples is feasible in routine diagnostic. Based on a successfully completed internal phase I RRT, an open RRT for EGFR T790M mutation testing in tumor tissue and blood samples was initiated. In total, 48 pathology centers participated in the EQA. Of these, 47 (97.9%) centers submitted their analyses within the pre-defined time frame and 44 (tissue), respectively, 40 (plasma) successfully passed the test. The overall success rates in the RRT phase II were 91.7% (tissue) and 83.3% (blood), respectively. Thirty-eight out of 48 participants (79.2%) successfully passed both parts of the RRT. The RRT for blood-based EGFR testing initiated in Germany is, to the best of our knowledge, the first of his kind in Europe. In summary, our results demonstrate that blood-based genotyping for EGFR resistance mutations can be successfully integrated in routine molecular diagnostics complementing the array of molecular methods already available at pathology centers in Germany.

  5. Comprehensive validation scheme for in situ fiber optics dissolution method for pharmaceutical drug product testing.

    PubMed

    Mirza, Tahseen; Liu, Qian Julie; Vivilecchia, Richard; Joshi, Yatindra

    2009-03-01

    There has been a growing interest during the past decade in the use of fiber optics dissolution testing. Use of this novel technology is mainly confined to research and development laboratories. It has not yet emerged as a tool for end product release testing despite its ability to generate in situ results and efficiency improvement. One potential reason may be the lack of clear validation guidelines that can be applied for the assessment of suitability of fiber optics. This article describes a comprehensive validation scheme and development of a reliable, robust, reproducible and cost-effective dissolution test using fiber optics technology. The test was successfully applied for characterizing the dissolution behavior of a 40-mg immediate-release tablet dosage form that is under development at Novartis Pharmaceuticals, East Hanover, New Jersey. The method was validated for the following parameters: linearity, precision, accuracy, specificity, and robustness. In particular, robustness was evaluated in terms of probe sampling depth and probe orientation. The in situ fiber optic method was found to be comparable to the existing manual sampling dissolution method. Finally, the fiber optic dissolution test was successfully performed by different operators on different days, to further enhance the validity of the method. The results demonstrate that the fiber optics technology can be successfully validated for end product dissolution/release testing. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  6. Explaining Errors in Children's Questions

    ERIC Educational Resources Information Center

    Rowland, Caroline F.

    2007-01-01

    The ability to explain the occurrence of errors in children's speech is an essential component of successful theories of language acquisition. The present study tested some generativist and constructivist predictions about error on the questions produced by ten English-learning children between 2 and 5 years of age. The analyses demonstrated that,…

  7. 14 CFR 29.562 - Emergency landing dynamic conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Emergency landing dynamic conditions. 29... Conditions § 29.562 Emergency landing dynamic conditions. (a) The rotorcraft, although it may be damaged in a... landing must successfully complete dynamic tests or be demonstrated by rational analysis based on dynamic...

  8. Hanford's Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witwer, K.S.; Dysland, E.J.; Garfield, J.S.

    2008-07-01

    The GeoMelt{sup R} In-Container Vitrification{sup TM} (ICV{sup TM}) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanford's low-activity waste (LAW). Also referred to as 'bulk vitrification', this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV{sup TM} technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection andmore » administered by CH2M HILL Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV{sup TM} process before operating the Hanford pilot-plant. In 2007, the project's fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV{sup TM} melter with a 10,000- liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary test objectives, along with a dozen supporting objectives, were successfully met. Glass performance exceeded all disposal performance criteria. A previous issue with MIS containment was successfully resolved in FS-38D, and the ICV{sup TM} melter was integrated with a full-scale, 10,000-liter dryer. This paper describes the rationale for performing the test, the purpose and outcome of scale-up tests preceding it, and the performance and outcome of FS-38D. (authors)« less

  9. Deep Stimulation at Newberry Volcano EGS Demonstration

    NASA Astrophysics Data System (ADS)

    Grasso, K.; Cladouhos, T. T.; Petty, S.; Garrison, G. H.; Nordin, Y.; Uddenberg, M.; Swyer, M.

    2014-12-01

    The Newberry Volcano EGS Demonstration is a 5 year field project designed to demonstrate recent technological advances for engineered geothermal systems (EGS) development. Advances in reservoir stimulation, diverter, and monitoring are being tested in a hot (>300 C), dry well (NWG 55-29) drilled in 2008. These technologies could reduce the cost of electrical power generation. The project began in 2010 with two years of permitting, technical planning, and development of a project-specific Induced Seismicity Mitigation Plan (ISMP), and is funded in part by the Department of Energy. In 2012, the well was hydraulically stimulated with water at pressures below the principle stress for 7 weeks, resulting in hydroshearing. The depth of stimulation was successfully shifted by injection of two pills of Thermally-degradable Zonal Isolation Materials (TZIMs). Injectivity changes, thermal profiles and seismicity indicate that fracture permeability in well NWG 55-29 was enhanced during stimulation. This work successfully demonstrated the viability of large-volume (40,000 m3), low-pressure stimulation coupled with non-mechanical diverter technology, and microseismic monitoring for reservoir mapping. Further analysis and field testing in 2013 indicates further stimulation will be required in order to develop an economically viable reservoir, and is scheduled in 2014. The 2014 stimulation will use improved stimulation and monitoring equipment, better knowledge based on 2012 outcomes, and create a deep EGS reservoir in the hottest part of the wellbore.

  10. Testing the Replicability of a Successful Care Management Program: Results from a Randomized Trial and Likely Explanations for Why Impacts Did Not Replicate.

    PubMed

    Peterson, G Greg; Zurovac, Jelena; Brown, Randall S; Coburn, Kenneth D; Markovich, Patricia A; Marcantonio, Sherry A; Clark, William D; Mutti, Anne; Stepanczuk, Cara

    2016-12-01

    To test whether a care management program could replicate its success in an earlier trial and determine likely explanations for why it did not. Medicare claims and nurse contact data for Medicare fee-for-service beneficiaries with chronic illnesses enrolled in the trial in eastern Pennsylvania (N = 483). A randomized trial with half of enrollees receiving intensive care management services and half receiving usual care. We developed and tested hypotheses for why impacts declined. All outcomes and covariates were derived from claims and the nurse contact data. From 2010 to 2014, the program did not reduce hospitalizations or generate Medicare savings to offset program fees that averaged $260 per beneficiary per month. These estimates are statistically different (p < .05) from the large reductions in hospitalizations and spending in the first trial (2002-2010). The treatment-control differences in the second trial disappeared because the control group's risk-adjusted hospitalization rate improved, not because the treatment group's outcomes worsened. Even if demonstrated in a randomized trial, successful results from one test may not replicate in other settings or time periods. Assessing whether gaps in care that the original program filled exist in other settings can help identify where earlier success is likely to replicate. © Health Research and Educational Trust.

  11. Engine Component Retirement for Cause. Volume 1. Executive Summary

    DTIC Science & Technology

    1987-08-01

    components of all future engines. A mejor factor in the success of this progrm in taking Retirement for Cause from a concept to reality was the high level of...engine was chosen as the demonstration/validation vehicle for the Retirement for Cause (RCF) program. It is an augmented turbofan engine in the...inspections using surface replication; aspect ratios were determined from post test fractography . The crack size observed from the testing was compared to

  12. Medical ultrasonic tomographic system

    NASA Technical Reports Server (NTRS)

    Heyser, R. C.; Lecroissette, D. H.; Nathan, R.; Wilson, R. L.

    1977-01-01

    An electro-mechanical scanning assembly was designed and fabricated for the purpose of generating an ultrasound tomogram. A low cost modality was demonstrated in which analog instrumentation methods formed a tomogram on photographic film. Successful tomogram reconstructions were obtained on in vitro test objects by using the attenuation of the fist path ultrasound signal as it passed through the test object. The nearly half century tomographic methods of X-ray analysis were verified as being useful for ultrasound imaging.

  13. Advanced Concept

    NASA Image and Video Library

    2003-12-01

    This photo gives an overhead look at an RS-88 development rocket engine being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.

  14. Advanced Concept

    NASA Image and Video Library

    2003-12-01

    In this photo, an RS-88 development rocket engine is being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.

  15. Aeroservoelastic Testing of Free Flying Wind Tunnel Models Part 2: A Centerline Supported Fullspan Model Tested for Gust Load Alleviation

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Vetter, Travis K.; Penning, Kevin B.; Coulson, David A.; Heeg, Jennifer

    2014-01-01

    This is part 2 of a two part document. Part 1 is titled: "Aeroservoelastic Testing of Free Flying Wind Tunnel Models Part 1: A Sidewall Supported Semispan Model Tested for Gust Load Alleviation and Flutter Suppression." A team comprised of the Air Force Research Laboratory (AFRL), Boeing, and the NASA Langley Research Center conducted three aeroservoelastic wind tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, flexible vehicles. In the first of these three tests, a full-span, aeroelastically scaled, wind tunnel model of a joined wing SensorCraft vehicle was mounted to a force balance to acquire a basic aerodynamic data set. In the second and third tests, the same wind tunnel model was mated to a new, two degree of freedom, beam mount. This mount allowed the full-span model to translate vertically and pitch. Trimmed flight at10 percent static margin and gust load alleviation were successfully demonstrated. The rigid body degrees of freedom required that the model be flown in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort. The balance and free flying wind tunnel tests will be summarized. The design of the trim and gust load alleviation control laws along with the associated results will also be discussed.

  16. Fiberoptic characteristics for extreme operating environments

    NASA Technical Reports Server (NTRS)

    Delcher, R. C.

    1992-01-01

    Fiberoptics could offer several major benefits for cryogenic liquid-fueled rocket engines, including lightning immunity, weight reduction, and the possibility of implementing a number of new measurements for engine condition monitoring. The technical feasibility of using fiberoptics in the severe environments posed by cryogenic liquid-fueled rocket engines was determined. The issues of importance and subsequent requirements for this use of fiberoptics were compiled. These included temperature ranges, moisture embrittlement succeptability, and the ability to withstand extreme shock and vibration levels. Different types of optical fibers were evaluated and several types of optical fibers' ability to withstand use in cryogenic liquid-fueled rocket engines was demonstrated through environmental testing of samples. This testing included: cold-bend testing, moisture embrittlement testing, temperature cycling, temperature extremes testing, vibration testing, and shock testing. Three of five fiber samples withstood the tests to a level proving feasibility, and two of these remained intact in all six of the tests. A fiberoptic bundle was also tested, and completed testing without breakage. Preliminary cabling and harnessing for fiber protection was also demonstrated. According to cable manufacturers, the successful -300 F cold bend, vibration, and shock tests are the first instance of any major fiberoptic cable testing below roughly -55 F. This program has demonstrated the basic technical feasibility of implementing optical fibers on cryogenic liquid-fueled rocket engines, and a development plan is included highlighting requirements and issues for such an implementation.

  17. Student nurse selection and predictability of academic success: The Multiple Mini Interview project.

    PubMed

    Gale, Julia; Ooms, Ann; Grant, Robert; Paget, Kris; Marks-Maran, Di

    2016-05-01

    With recent reports of public enquiries into failure to care, universities are under pressure to ensure that candidates selected for undergraduate nursing programmes demonstrate academic potential as well as characteristics and values such as compassion, empathy and integrity. The Multiple Mini Interview (MMI) was used in one university as a way of ensuring that candidates had the appropriate numeracy and literacy skills as well as a range of communication, empathy, decision-making and problem-solving skills as well as ethical insights and integrity, initiative and team-work. To ascertain whether there is evidence of bias in MMIs (gender, age, nationality and location of secondary education) and to determine the extent to which the MMI is predictive of academic success in nursing. A longitudinal retrospective analysis of student demographics, MMI data and the assessment marks for years 1, 2 and 3. One university in southwest London. One cohort of students who commenced their programme in September 2011, including students in all four fields of nursing (adult, child, mental health and learning disability). Inferential statistics and a Bayesian Multilevel Model. MMI in conjunction with MMI numeracy test and MMI literacy test shows little or no bias in terms of ages, gender, nationality or location of secondary school education. Although MMI in conjunction with numeracy and literacy testing is predictive of academic success, it is only weakly predictive. The MMI used in conjunction with literacy and numeracy testing appears to be a successful technique for selecting candidates for nursing. However, other selection methods such as psychological profiling or testing of emotional intelligence may add to the extent to which selection methods are predictive of academic success on nursing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes

    NASA Astrophysics Data System (ADS)

    Miyamoto, Akihito; Lee, Sungwon; Cooray, Nawalage Florence; Lee, Sunghoon; Mori, Mami; Matsuhisa, Naoji; Jin, Hanbit; Yoda, Leona; Yokota, Tomoyuki; Itoh, Akira; Sekino, Masaki; Kawasaki, Hiroshi; Ebihara, Tamotsu; Amagai, Masayuki; Someya, Takao

    2017-09-01

    Thin-film electronic devices can be integrated with skin for health monitoring and/or for interfacing with machines. Minimal invasiveness is highly desirable when applying wearable electronics directly onto human skin. However, manufacturing such on-skin electronics on planar substrates results in limited gas permeability. Therefore, it is necessary to systematically investigate their long-term physiological and psychological effects. As a demonstration of substrate-free electronics, here we show the successful fabrication of inflammation-free, highly gas-permeable, ultrathin, lightweight and stretchable sensors that can be directly laminated onto human skin for long periods of time, realized with a conductive nanomesh structure. A one-week skin patch test revealed that the risk of inflammation caused by on-skin sensors can be significantly suppressed by using the nanomesh sensors. Furthermore, a wireless system that can detect touch, temperature and pressure is successfully demonstrated using a nanomesh with excellent mechanical durability. In addition, electromyogram recordings were successfully taken with minimal discomfort to the user.

  19. Full scale technology demonstration of a modern counterrotating unducted fan engine concept. Engine test

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Unducted Fan (UDF) engine is an innovative aircraft engine concept based on an ungeared, counterrotating, unducted, ultra-high-bypass turbofan configuration. This engine is being developed to provide a high thrust-to-weight ratio power plant with exceptional fuel efficiency for subsonic aircraft application. This report covers the successful ground testing of this engine. A test program exceeding 100-hr duration was completed, in which all the major goals were achieved. The following accomplishments were demonstrated: (1) full thrust (25,000 lb); (2) full counterrotating rotor speeds (1393+ rpm); (3) low specific fuel consumption (less than 0.24 lb/hr/lb); (4) new composite fan design; (5) counterrotation of structures, turbines, and fan blades; (6) control system; (7) actuation system; and (8) reverse thrust.

  20. Assessment of statistical significance and clinical relevance.

    PubMed

    Kieser, Meinhard; Friede, Tim; Gondan, Matthias

    2013-05-10

    In drug development, it is well accepted that a successful study will demonstrate not only a statistically significant result but also a clinically relevant effect size. Whereas standard hypothesis tests are used to demonstrate the former, it is less clear how the latter should be established. In the first part of this paper, we consider the responder analysis approach and study the performance of locally optimal rank tests when the outcome distribution is a mixture of responder and non-responder distributions. We find that these tests are quite sensitive to their planning assumptions and have therefore not really any advantage over standard tests such as the t-test and the Wilcoxon-Mann-Whitney test, which perform overall well and can be recommended for applications. In the second part, we present a new approach to the assessment of clinical relevance based on the so-called relative effect (or probabilistic index) and derive appropriate sample size formulae for the design of studies aiming at demonstrating both a statistically significant and clinically relevant effect. Referring to recent studies in multiple sclerosis, we discuss potential issues in the application of this approach. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Flight Tests of N.A.C.A. Nose-slot Cowlings on the BFC-1 Airplane

    NASA Technical Reports Server (NTRS)

    Stickle, George W

    1939-01-01

    The results of flight tests of four nose-slot cowling designs with several variations in each design are presented. The tests were made in the process of developing the nose-slot cowling. The results demonstrate that a nose-slot cowling may be successfully applied to an airplane and that it utilizes the increased slipstream velocity of low-speed operation to produce increased cooling pressure across the engine. A sample design calculation using results from wind-tunnel, flight, and ground tests is given in an appendix to illustrate the design procedure.

  2. Techniques utilized in the simulated altitude testing of a 2D-CD vectoring and reversing nozzle

    NASA Technical Reports Server (NTRS)

    Block, H. Bruce; Bryant, Lively; Dicus, John H.; Moore, Allan S.; Burns, Maureen E.; Solomon, Robert F.; Sheer, Irving

    1988-01-01

    Simulated altitude testing of a two-dimensional, convergent-divergent, thrust vectoring and reversing exhaust nozzle was accomplished. An important objective of this test was to develop test hardware and techniques to properly operate a vectoring and reversing nozzle within the confines of an altitude test facility. This report presents detailed information on the major test support systems utilized, the operational performance of the systems and the problems encountered, and test equipment improvements recommended for future tests. The most challenging support systems included the multi-axis thrust measurement system, vectored and reverse exhaust gas collection systems, and infrared temperature measurement systems used to evaluate and monitor the nozzle. The feasibility of testing a vectoring and reversing nozzle of this type in an altitude chamber was successfully demonstrated. Supporting systems performed as required. During reverser operation, engine exhaust gases were successfully captured and turned downstream. However, a small amount of exhaust gas spilled out the collector ducts' inlet openings when the reverser was opened more than 60 percent. The spillage did not affect engine or nozzle performance. The three infrared systems which viewed the nozzle through the exhaust collection system worked remarkably well considering the harsh environment.

  3. Revalidation of the NASA Ames 11-by 11-Foot Transonic Wind Tunnel with a Commercial Airplane Model

    NASA Technical Reports Server (NTRS)

    Kmak, Frank J.; Hudgins, M.; Hergert, D.; George, Michael W. (Technical Monitor)

    2001-01-01

    The 11-By 11-Foot Transonic leg of the Unitary Plan Wind Tunnel (UPWT) was modernized to improve tunnel performance, capability, productivity, and reliability. Wind tunnel tests to demonstrate the readiness of the tunnel for a return to production operations included an Integrated Systems Test (IST), calibration tests, and airplane validation tests. One of the two validation tests was a 0.037-scale Boeing 777 model that was previously tested in the 11-By 11-Foot tunnel in 1991. The objective of the validation tests was to compare pre-modernization and post-modernization results from the same airplane model in order to substantiate the operational readiness of the facility. Evaluation of within-test, test-to-test, and tunnel-to-tunnel data repeatability were made to study the effects of the tunnel modifications. Tunnel productivity was also evaluated to determine the readiness of the facility for production operations. The operation of the facility, including model installation, tunnel operations, and the performance of tunnel systems, was observed and facility deficiency findings generated. The data repeatability studies and tunnel-to-tunnel comparisons demonstrated outstanding data repeatability and a high overall level of data quality. Despite some operational and facility problems, the validation test was successful in demonstrating the readiness of the facility to perform production airplane wind tunnel%, tests.

  4. Attitude sensor package

    NASA Technical Reports Server (NTRS)

    Aceti, R.; Trischberger, M.; Underwood, P. J.; Pomilia, A.; Cosi, M.; Boldrini, F.

    1993-01-01

    This paper describes the design, construction, testing, and successful flight of the Attitude Sensor Package. The payload was assembled on a standard HITCHHIKER experiment mounting plate, and made extensive use of the carrier's power and data handling capabilities. The side mounted HITCHHIKER version was chosen, since this configuration provided the best viewing conditions for the instruments. The combustion was successfully flown on board Space Shuttle Columbia (STS-52), in October 1992. The payload was one of the 14 experiments of the In-Orbit Technology Demonstration Program (Phase 1) of the European Space Agency.

  5. Developing a Learning Algorithm-Generated Empirical Relaxer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Wayne; Kallman, Josh; Toreja, Allen

    2016-03-30

    One of the main difficulties when running Arbitrary Lagrangian-Eulerian (ALE) simulations is determining how much to relax the mesh during the Eulerian step. This determination is currently made by the user on a simulation-by-simulation basis. We present a Learning Algorithm-Generated Empirical Relaxer (LAGER) which uses a regressive random forest algorithm to automate this decision process. We also demonstrate that LAGER successfully relaxes a variety of test problems, maintains simulation accuracy, and has the potential to significantly decrease both the person-hours and computational hours needed to run a successful ALE simulation.

  6. Consolidating NASA's Arc Jets

    NASA Technical Reports Server (NTRS)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  7. Development of an Ion Thruster and Power Processor for New Millennium's Deep Space 1 Mission

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Hamley, John A.; Haag, Thomas W.; Patterson, Michael J.; Pencil, Eric J.; Peterson, Todd T.; Pinero, Luis R.; Power, John L.; Rawlin, Vincent K.; Sarmiento, Charles J.; hide

    1997-01-01

    The NASA Solar Electric Propulsion Technology Applications Readiness Program (NSTAR) will provide a single-string primary propulsion system to NASA's New Millennium Deep Space 1 Mission which will perform comet and asteroid flybys in the years 1999 and 2000. The propulsion system includes a 30-cm diameter ion thruster, a xenon feed system, a power processing unit, and a digital control and interface unit. A total of four engineering model ion thrusters, three breadboard power processors, and a controller have been built, integrated, and tested. An extensive set of development tests has been completed along with thruster design verification tests of 2000 h and 1000 h. An 8000 h Life Demonstration Test is ongoing and has successfully demonstrated more than 6000 h of operation. In situ measurements of accelerator grid wear are consistent with grid lifetimes well in excess of the 12,000 h qualification test requirement. Flight hardware is now being assembled in preparation for integration, functional, and acceptance tests.

  8. A rule-based software test data generator

    NASA Technical Reports Server (NTRS)

    Deason, William H.; Brown, David B.; Chang, Kai-Hsiung; Cross, James H., II

    1991-01-01

    Rule-based software test data generation is proposed as an alternative to either path/predicate analysis or random data generation. A prototype rule-based test data generator for Ada programs is constructed and compared to a random test data generator. Four Ada procedures are used in the comparison. Approximately 2000 rule-based test cases and 100,000 randomly generated test cases are automatically generated and executed. The success of the two methods is compared using standard coverage metrics. Simple statistical tests showing that even the primitive rule-based test data generation prototype is significantly better than random data generation are performed. This result demonstrates that rule-based test data generation is feasible and shows great promise in assisting test engineers, especially when the rule base is developed further.

  9. Power Hardware-in-the-Loop Testing of a Smart Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendoza Carrillo, Ismael; Breaden, Craig; Medley, Paige

    This paper presents the results of the third and final phase of the National Renewable Energy Lab (NREL) INTEGRATE demonstration: Smart Distribution. For this demonstration, high penetrations of solar PV and wind energy systems were simulated in a power hardware-in-the-loop set-up using a smart distribution test feeder. Simulated and real DERs were controlled by a real-time control platform, which manages grid constraints under high clean energy deployment levels. The power HIL testing, conducted at NREL's ESIF smart power lab, demonstrated how dynamically managing DER increases the grid's hosting capacity by leveraging active network management's (ANM) safe and reliable control framework.more » Results are presented for how ANM's real-time monitoring, automation, and control can be used to manage multiple DERs and multiple constraints associated with high penetrations of DER on a distribution grid. The project also successfully demonstrated the importance of escalating control actions given how ANM enables operation of grid equipment closer to their actual physical limit in the presence of very high levels of intermittent DER.« less

  10. High-Melt Carbon-Carbon Coating for Nozzle Extensions

    NASA Technical Reports Server (NTRS)

    Thompson, James

    2015-01-01

    Carbon-Carbon Advanced Technologies, Inc. (C-CAT), has developed a high-melt coating for use in nozzle extensions in next-generation spacecraft. The coating is composed primarily of carbon-carbon, a carbon-fiber and carbon-matrix composite material that has gained a spaceworthy reputation due to its ability to withstand ultrahigh temperatures. C-CAT's high-melt coating embeds hafnium carbide (HfC) and zirconium diboride (ZrB2) within the outer layers of a carbon-carbon structure. The coating demonstrated enhanced high-temperature durability and suffered no erosion during a test in NASA's Arc Jet Complex. (Test parameters: stagnation heat flux=198 BTD/sq ft-sec; pressure=.265 atm; temperature=3,100 F; four cycles totaling 28 minutes) In Phase I of the project, C-CAT successfully demonstrated large-scale manufacturability with a 40-inch cylinder representing the end of a nozzle extension and a 16-inch flanged cylinder representing the attach flange of a nozzle extension. These demonstrators were manufactured without spalling or delaminations. In Phase II, C-CAT worked with engine designers to develop a nozzle extension stub skirt interfaced with an Aerojet Rocketdyne RL10 engine. All objectives for Phase II were successfully met. Additional nonengine applications for the coating include thermal protection systems (TPS) for next-generation spacecraft and hypersonic aircraft.

  11. Advance Power Technology Demonstration on Starshine 3

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas

    2002-01-01

    The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IMPS) for evaluation.

  12. Hierarchical multistage MCMC follow-up of continuous gravitational wave candidates

    NASA Astrophysics Data System (ADS)

    Ashton, G.; Prix, R.

    2018-05-01

    Leveraging Markov chain Monte Carlo optimization of the F statistic, we introduce a method for the hierarchical follow-up of continuous gravitational wave candidates identified by wide-parameter space semicoherent searches. We demonstrate parameter estimation for continuous wave sources and develop a framework and tools to understand and control the effective size of the parameter space, critical to the success of the method. Monte Carlo tests of simulated signals in noise demonstrate that this method is close to the theoretical optimal performance.

  13. Training in multiple breath washout testing for respiratory physiotherapists.

    PubMed

    O'Neill, Katherine; Elborn, J Stuart; Tunney, Michael M; O'Neill, Philip; Rowan, Stephen; Martin, Susan; Bradley, Judy M

    2018-03-01

    The development of multiple breath washout (MBW) testing in respiratory disease highlights the need for increased awareness amongst respiratory physiotherapists and a potential opportunity for professional development in the use of an important outcome measure for clinical trials. To rationalise how MBW may be a useful assessment tool for respiratory physiotherapists and to describe a local MBW training and certification programme for physiotherapists. The respiratory Multidisciplinary Team in the Belfast Health and Social Care Trust (BHSCT) identified a need for MBW testing to be available to facilitate clinical research and assessment. A 2day training programme consisting of prereading preparation, self-directed learning, theory presentations, practical demonstrations and hands-on practice was developed and delivered. All participants underwent a certification process. We have demonstrated the successful training and certification of clinical and research physiotherapists and encourage other respiratory physiotherapists to consider MBW test training. Copyright © 2017 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  14. Cold Helium Pressurization for Liquid Oxygen/Liquid Methane Propulsion Systems: Fully-Integrated Hot-Fire Test Results

    NASA Technical Reports Server (NTRS)

    Morehead, R. L.; Atwell, M. J.; Melcher, J. C.; Hurlbert, E. A.

    2016-01-01

    Hot-fire test demonstrations were successfully conducted using a cold helium pressurization system fully integrated into a liquid oxygen (LOX) / liquid methane (LCH4) propulsion system (Figure 1). Cold helium pressurant storage at near liquid nitrogen (LN2) temperatures (-275 F and colder) and used as a heated tank pressurant provides a substantial density advantage compared to ambient temperature storage. The increased storage density reduces helium pressurant tank size and mass, creating payload increases of 35% for small lunar-lander sized applications. This degree of mass reduction also enables pressure-fed propulsion systems for human-rated Mars ascent vehicle designs. Hot-fire test results from the highly-instrumented test bed will be used to demonstrate system performance and validate integrated models of the helium and propulsion systems. A pressurization performance metric will also be developed as a means to compare different active pressurization schemes.

  15. Eclipse program F-106 aircraft in flight, front view

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Shot of the QF-106 aircraft in flight with the landing gear deployed. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  16. Development and Testing of The Lunar Resource Prospector Drill

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Paulsen, G.; Kleinhenz, J.; Smith, J. T.; Quinn, J.

    2017-12-01

    The goal of the Lunar Resource Prospector (RP) mission is to capture and identify volatiles species within the top one meter layer of the lunar surface. The RP drill has been designed to 1. Generate cuttings and place them on the surface for analysis by the Near InfraRed Volatiles Spectrometer Subsystem (NIRVSS), and 2. Capture cuttings and transfer them to the Oxygen and Volatile Extraction Node (OVEN) coupled with the Lunar Advanced Volatiles Analysis (LAVA) subsystem. The RP drill is based on the TRL4 Mars Icebreaker drill and TRL5 LITA drill developed for capturing samples of ice and ice cemented ground on Mars, and represents over a decade of technology development effort. The TRL6 RP drill weighs approximately 15 kg and is rated at just over 500 Watt. The drill consists of: 1. Rotary-Percussive Drill Head, 2. Sampling Auger, 3. Brushing Station, 4. Feed Stage, and 5. Deployment Stage. To reduce sample handling complexity, the drill auger is designed to capture cuttings as opposed to cores. High sampling efficiency is possible through a dual design of the auger. The lower section has deep and low pitch flutes for retaining of cuttings. The upper section has been designed to efficiently move the cuttings out of the hole. The drill uses a "bite" sampling approach where samples are captured in 10 cm depth intervals. The first generation, TRL4 Icebreaker drill was tested in Mars chamber as well as in Antarctica and the Arctic. It demonstrated drilling at 1-1-100-100 level (1 meter in 1 hour with 100 Watt and 100 N Weight on Bit) in ice, ice cemented ground, soil, and rocks. The second generation, TRL5 LITA drill was deployed on a Carnegie Mellon University rover, called Zoe, and tested in Atacama, Antarctica, the Arctic, and Greenland. The tests demonstrated fully autonomous sample acquisition and delivery to a carousel. The modified LITA drill was tested in NASA GRC's lunar vacuum chamber at <10^-5 torr and <200 K. It demonstrated successful capture and transfer of volatile rich frozen samples to a crucible for analysis. The modified LITA drill has also been successfully vibration tested at NASA KSC. The drill was integrated with RP rover at NASA JSC and successfully tested in a lab and in the field, as well as on a large vibration table and steep slope. The latest TRL6 RP drill is currently undergoing testing at NASA GRC lunar chamber facilities.

  17. Latino High School Students' Perceptions of Caring: Keys to Success

    ERIC Educational Resources Information Center

    Garza, Rubén; Soto Huerta, Mary Esther

    2014-01-01

    This mixed methods investigation specifically examined Latino high school adolescents' perceptions of teacher behaviors that demonstrate caring. A chi-square test was conducted to analyze the frequency of responses, and focus group interviews were conducted to expand on the results. The data indicated that although Latino male students were as…

  18. Ohio's At-Risk Student Population: A Decade of Rising Risk

    ERIC Educational Resources Information Center

    Vesely, Randall S.

    2013-01-01

    Educators face increasing demands to raise student achievement, to improve classroom instruction, and to demonstrate accountability in an environment of high stakes testing. However, meeting these demands is challenging in the face of numerous risk factors that jeopardize the academic success of elementary and secondary students. To that end, the…

  19. An Examination of the Feasibility of Integrating Motivational Interviewing Techniques into FCS Cooperative Extension Programming

    ERIC Educational Resources Information Center

    Radunovich, Heidi Liss; Ellis, Sarah; Spangler, Taylor

    2017-01-01

    Demonstrating program impact through behavior change is critical for the continued success of Family and Consumer Sciences (FCS) Cooperative Extension programming. However, the literature suggests that simply providing information to participants does not necessarily lead to behavior change. This study pilot tested the integration of Motivational…

  20. Mathematical Instructional Practices and Self-Efficacy of Kindergarten Teachers

    ERIC Educational Resources Information Center

    Schillinger, Tammy

    2016-01-01

    A local urban school district recently reported that 86% of third graders did not demonstrate proficiency on the Math Standardized Test, which challenges students to solve problems and justify solutions. It is beneficial if these skills are developed prior to third grade. Students may be more academically successful if kindergarten teachers have…

  1. Cultivating Common Ground: Integrating Standards-Based Visual Arts, Math and Literacy in High-Poverty Urban Classrooms

    ERIC Educational Resources Information Center

    Cunnington, Marisol; Kantrowitz, Andrea; Harnett, Susanne; Hill-Ries, Aline

    2014-01-01

    The "Framing Student Success: Connecting Rigorous Visual Arts, Math and Literacy Learning" experimental demonstration project was designed to develop and test an instructional program integrating high-quality, standards-based instruction in the visual arts, math, and literacy. Developed and implemented by arts-in-education organization…

  2. Assessment and Mission Planning Capability For Quantitative Aerothermodynamic Flight Measurements Using Remote Imaging

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas; Splinter, Scott; Daryabeigi, Kamran; Wood, William; Schwartz, Richard; Ross, Martin

    2008-01-01

    High resolution calibrated infrared imagery of vehicles during hypervelocity atmospheric entry or sustained hypersonic cruise has the potential to provide flight data on the distribution of surface temperature and the state of the airflow over the vehicle. In the early 1980 s NASA sought to obtain high spatial resolution infrared imagery of the Shuttle during entry. Despite mission execution with a technically rigorous pre-planning capability, the single airborne optical system for this attempt was considered developmental and the scientific return was marginal. In 2005 the Space Shuttle Program again sponsored an effort to obtain imagery of the Orbiter. Imaging requirements were targeted towards Shuttle ascent; companion requirements for entry did not exist. The engineering community was allowed to define observation goals and incrementally demonstrate key elements of a quantitative spatially resolved measurement capability over a series of flights. These imaging opportunities were extremely beneficial and clearly demonstrated capability to capture infrared imagery with mature and operational assets of the US Navy and the Missile Defense Agency. While successful, the usefulness of the imagery was, from an engineering perspective, limited. These limitations were mainly associated with uncertainties regarding operational aspects of data acquisition. These uncertainties, in turn, came about because of limited pre-flight mission planning capability, a poor understanding of several factors including the infrared signature of the Shuttle, optical hardware limitations, atmospheric effects and detector response characteristics. Operational details of sensor configuration such as detector integration time and tracking system algorithms were carried out ad hoc (best practices) which led to low probability of target acquisition and detector saturation. Leveraging from the qualified success during Return-to-Flight, the NASA Engineering and Safety Center sponsored an assessment study focused on increasing the probability of returning spatially resolved scientific/engineering thermal imagery. This paper provides an overview of the assessment task and the systematic approach designed to establish confidence in the ability of existing assets to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. A discussion of capability demonstration in support of a potential Shuttle boundary layer transition flight test is presented. Successful demonstration of a quantitative, spatially resolved, global temperature measurement on the proposed Shuttle boundary layer transition flight test could lead to potential future applications with hypersonic flight test programs within the USAF and DARPA along with flight test opportunities supporting NASA s project Constellation.

  3. NASA's Space Launch System: Systems Engineering Approach for Affordability and Mission Success

    NASA Technical Reports Server (NTRS)

    Hutt, John J.; Whitehead, Josh; Hanson, John

    2017-01-01

    NASA is working toward the first launch of a new, unmatched capability for deep space exploration, with launch readiness planned for 2018. The initial Block 1 configuration of the Space Launch System will more than double the mass and volume to Low Earth Orbit (LEO) of any launch vehicle currently in operation - with a path to evolve to the greatest capability ever developed. The program formally began in 2011. The vehicle successfully passed Preliminary Design Review (PDR) in 2013, Key Decision Point C (KDPC) in 2014 and Critical Design Review (CDR) in October 2015 - nearly 40 years since the last CDR of a NASA human-rated rocket. Every major SLS element has completed components of test and flight hardware. Flight software has completed several development cycles. RS-25 hotfire testing at NASA Stennis Space Center (SSC) has successfully demonstrated the space shuttle-heritage engine can perform to SLS requirements and environments. The five-segment solid rocket booster design has successfully completed two full-size motor firing tests in Utah. Stage and component test facilities at Stennis and NASA Marshall Space Flight Center are nearing completion. Launch and test facilities, as well as transportation and other ground support equipment are largely complete at NASA's Kennedy, Stennis and Marshall field centers. Work is also underway on the more powerful Block 1 B variant with successful completion of the Exploration Upper Stage (EUS) PDR in January 2017. NASA's approach is to develop this heavy lift launch vehicle with limited resources by building on existing subsystem designs and existing hardware where available. The systems engineering and integration (SE&I) of existing and new designs introduces unique challenges and opportunities. The SLS approach was designed with three objectives in mind: 1) Design the vehicle around the capability of existing systems; 2) Reduce work hours for nonhardware/ software activities; 3) Increase the probability of mission success by focusing effort on more critical activities.

  4. First on-sun test of NaK pool-boiler solar receiver

    NASA Astrophysics Data System (ADS)

    Moreno, J. B.; Andraka, C. E.; Moss, T. A.; Cordeiro, P. G.; Dudley, V. E.; Rawlinson, K. S.

    During 1989-1990, a refluxing liquid-metal pool-boiler solar receiver designed for dish/Stirling application at 75 kW(sub t) throughput was successfully demonstrated at Sandia National Laboratories. Significant features of this receiver included (1) boiling sodium as the heat transfer medium, and (2) electric-discharge-machined (EDM) cavities as artificial nucleation sites to stabilize boiling. Following this first demonstration, a second-generation pool-boiler receiver that brings the concept closer to commercialization has been designed, constructed, and successfully tested. For long life, the new receiver is built from Haynes Alloy 230. For increased safety factors against film boiling and flooding, the absorber area and vapor-flow passages have been enlarged. To eliminate the need for trace heating, sodium has been replaced by the sodium-potassium alloy NaK-78. To reduce manufacturing costs, the receiver has a powdered-metal coating instead of EDM cavities for stabilization of boiling. To control incipient-boiling superheats, especially during hot restarts, it contains a small amount of xenon. In this paper, we present the receiver design and report the results of on-sun tests using a nominal 75 kW(sub t) test-bed concentrator to characterize boiling stability, hot-restart behavior, and thermal efficiency at temperatures up to 750 C. We also report briefly on late results from an advanced-concepts pool-boiler receiver.

  5. CECE: A Deep Throttling Demonstrator Cryogenic Engine for NASA's Lunar Lander

    NASA Technical Reports Server (NTRS)

    Giuliano, Victor J.; Leonard, Timothy G.; Adamski, Walter M.; Kim, Tony S.

    2007-01-01

    As one of the first technology development programs awarded under NASA's Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic Lunar Lander engine for use across multiple human and robotic lunar exploration mission segments with extensibility to Mars. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. NASA Marshall Space Flight Center and NASA Glenn Research Center personnel were integral design and analysis team members throughout the requirements assessment, propellant studies and the deep throttling demonstrator elements of the program. The testbed selected for the initial deep throttling demonstration phase of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. In just nine months from technical program start, CECE Demonstrator No. 1 engine testing in April/May 2006 at PWR's E06 test stand successfully demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. This test provided an early demonstration of a viable, enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for both the subsequent CECE Demonstrator No. 2 program and to the future Lunar Lander Design, Development, Test and Evaluation effort.

  6. Four-point bending as a method for quantitatively evaluating spinal arthrodesis in a rat model.

    PubMed

    Robinson, Samuel T; Svet, Mark T; Kanim, Linda A; Metzger, Melodie F

    2015-02-01

    The most common method of evaluating the success (or failure) of rat spinal fusion procedures is manual palpation testing. Whereas manual palpation provides only a subjective binary answer (fused or not fused) regarding the success of a fusion surgery, mechanical testing can provide more quantitative data by assessing variations in strength among treatment groups. We here describe a mechanical testing method to quantitatively assess single-level spinal fusion in a rat model, to improve on the binary and subjective nature of manual palpation as an end point for fusion-related studies. We tested explanted lumbar segments from Sprague-Dawley rat spines after single-level posterolateral fusion procedures at L4-L5. Segments were classified as 'not fused,' 'restricted motion,' or 'fused' by using manual palpation testing. After thorough dissection and potting of the spine, 4-point bending in flexion then was applied to the L4-L5 motion segment, and stiffness was measured as the slope of the moment-displacement curve. Results demonstrated statistically significant differences in stiffness among all groups, which were consistent with preliminary grading according to manual palpation. In addition, the 4-point bending results provided quantitative information regarding the quality of the bony union formed and therefore enabled the comparison of fused specimens. Our results demonstrate that 4-point bending is a simple, reliable, and effective way to describe and compare results among rat spines after fusion surgery.

  7. Untrained Chimpanzees (Pan troglodytes schweinfurthii) Fail to Imitate Novel Actions

    PubMed Central

    Tennie, Claudio; Call, Josep; Tomasello, Michael

    2012-01-01

    Background Social learning research in apes has focused on social learning in the technical (problem solving) domain - an approach that confounds action and physical information. Successful subjects in such studies may have been able to perform target actions not as a result of imitation learning but because they had learnt some technical aspect, for example, copying the movements of an apparatus (i.e., different forms of emulation learning). Methods Here we present data on action copying by non-enculturated and untrained chimpanzees when physical information is removed from demonstrations. To date, only one such study (on gesture copying in a begging context) has been conducted – with negative results. Here we have improved this methodology and have also added non-begging test situations (a possible confound of the earlier study). Both familiar and novel actions were used as targets. Prior to testing, a trained conspecific demonstrator was rewarded for performing target actions in view of observers. All but one of the tested chimpanzees already failed to copy familiar actions. When retested with a novel target action, also the previously successful subject failed to copy – and he did so across several contexts. Conclusion Chimpanzees do not seem to copy novel actions, and only some ever copy familiar ones. Due to our having tested only non-enculturated and untrained chimpanzees, the performance of our test subjects speak more than most other studies of the general (dis-)ability of chimpanzees to copy actions, and especially novel actions. PMID:22905102

  8. Boeing's STAR-FODB test results

    NASA Astrophysics Data System (ADS)

    Fritz, Martin E.; de la Chapelle, Michael; Van Ausdal, Arthur W.

    1995-05-01

    Boeing has successfully concluded a 2 1/2 year, two phase developmental contract for the STAR-Fiber Optic Data Bus (FODB) that is intended for future space-based applications. The first phase included system analysis, trade studies, behavior modeling, and architecture and protocal selection. During this phase we selected AS4074 Linear Token Passing Bus (LTPB) protocol operating at 200 Mbps, along with the passive, star-coupled fiber media. The second phase involved design, build, integration, and performance and environmental test of brassboard hardware. The resulting brassboard hardware successfully passed performance testing, providing 200 Mbps operation with a 32 X 32 star-coupled medium. This hardware is suitable for a spaceflight experiment to validate ground testing and analysis and to demonstrate performace in the intended environment. The fiber bus interface unit (FBIU) is a multichip module containing transceiver, protocol, and data formatting chips, buffer memory, and a station management controller. The FBIU has been designed for low power, high reliability, and radiation tolerance. Nine FBIUs were built and integrated with the fiber optic physical layer consisting of the fiber cable plant (FCP) and star coupler assembly (SCA). Performance and environmental testing, including radiation exposure, was performed on selected FBIUs and the physical layer. The integrated system was demonstrated with a full motion color video image transfer across the bus while simultaneously performing utility functions with a fiber bus control module (FBCM) over a telemetry and control (T&C) bus, in this case AS1773.

  9. Eco-evolutionary processes affecting plant-herbivore interactions during early community succession.

    PubMed

    Howard, Mia M; Kalske, Aino; Kessler, André

    2018-06-01

    The quality and outcome of organismal interactions are not only a function of genotypic composition of the interacting species, but also the surrounding environment. Both the strength and direction of natural selection on interacting populations vary with the community context, which itself is changed by these interactions. Here, we test for the role of interacting evolutionary and ecological processes in plant-herbivore interactions during early community succession in the tall goldenrod, Solidago altissima. We use surveys in a large-scale field experiment with repeated plots representing 6 years of early oldfield succession and reciprocal transplant common garden experiments to test for the relative importance of rapid evolution (genetic) and environmental changes (soil quality) in affecting mean plant resistance and growth phenotypes during community succession. While plant growth varied strongly with soil quality over the first 5 years of agricultural abandonment, plant secondary metabolism, and herbivore resistance varied minimally with the soil environment. Instead, mean composition and abundance of plant secondary compound bouquets differed between S. altissima plants from populations collected in communities in the first ("early") and sixth ("intermediate") years of oldfield succession, which was reflected in the feeding preference of the specialist herbivore, Trirhabda virgata, for early succession lines. Moreover, this preference was most pronounced on poorer quality, early succession soils. Overall, our data demonstrate that plant quality varies for insect herbivores during the course of early succession and this change is a combination of altered genotypic composition of the population and phenotypic plasticity in different soil environments.

  10. Effects Investigated of Ambient High-Temperature Exposure on Alumina-Titania High-Emittance Surfaces for Solar Dynamic Systems

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Smith, Daniela C.

    1999-01-01

    Solar-dynamic space power systems require durable, high-emittance surfaces on a number of critical components, such as heat receiver interior surfaces and parasitic load radiator (PLR) elements. An alumina-titania coating, which has been evaluated for solar-dynamic heat receiver canister applications, has been chosen for a PLR application (an electrical sink for excess power from the turboalternator/compressor) because of its demonstrated high emittance and high-temperature durability in vacuum. Under high vacuum conditions (+/- 10(exp -6) torr), the alumina-titania coating was found to be durable at temperatures of 1520 F (827 C) for approx. 2700 hours with no degradation in optical properties. This coating has been successfully applied to the 2-kW solar-dynamic ground test demonstrator at the NASA Lewis Research Center, to the 500 thermal-energy-storage containment canisters inside the heat receiver and to the PLR radiator. The solar-dynamic demonstrator has successfully operated for over 800 hours in Lewis large thermal/vacuum space environment facility, demonstrating the feasibility of solar-dynamic power generation for space applications.

  11. Flight test results of the strapdown ring laser gyro tetrad inertial navigation system

    NASA Technical Reports Server (NTRS)

    Carestia, R. A.; Hruby, R. J.; Bjorkman, W. S.

    1983-01-01

    A helicopter flight test program undertaken to evaluate the performance of Tetrad (a strap down, laser gyro, inertial navigation system) is described. The results of 34 flights show a mean final navigational velocity error of 5.06 knots, with a standard deviation of 3.84 knots; a corresponding mean final position error of 2.66 n. mi., with a standard deviation of 1.48 n. mi.; and a modeled mean position error growth rate for the 34 tests of 1.96 knots, with a standard deviation of 1.09 knots. No laser gyro or accelerometer failures were detected during the flight tests. Off line parity residual studies used simulated failures with the prerecorded flight test and laboratory test data. The airborne Tetrad system's failure--detection logic, exercised during the tests, successfully demonstrated the detection of simulated ""hard'' failures and the system's ability to continue successfully to navigate by removing the simulated faulted sensor from the computations. Tetrad's four ring laser gyros provided reliable and accurate angular rate sensing during the 4 yr of the test program, and no sensor failures were detected during the evaluation of free inertial navigation performance.

  12. Full-Scale Transport controlled Impact Demonstration

    NASA Technical Reports Server (NTRS)

    Hayduk, R. J. (Compiler)

    1986-01-01

    The controlled impact demonstration (CID) test of a transport aircraft took place on December 1, 1984, crashing at a prepared site on Rogers Dry Lakebed, Edwards Air Force Base, California. The demonstration was a setback for the antimisting kerosene (AMK) researchers. The impact conditions, considerably different from the planned scenario, exposed large quantities of degraded AMK and hydraulic fluid and caused unexpectedly hot ignition sources, bulk loss of fuel from the right wing, airflow patterns over the wings and fuselage that were untested on AMK, and fuel intrusion into the lower fuselage. The test was much more severe than planned and is generally considered to be unrepresentative of the type of survivable crash that would benefit from AMK. Ninety-seven percent of the sensors on the fuselage and wing structure, seats, dummies, restraint systems, galley, and bins were active at impact. A wealth of sensor data was collected from this once-in-a-lifetime research test. The flight data recorder experiments on board were also generally successful.

  13. Hyper-X Research Vehicle (HXRV) Experimental Aerodynamics Test Program Overview

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.; Woods, William C.; Engelund, Walter C.

    2000-01-01

    This paper provides an overview of the experimental aerodynamics test program to ensure mission success for the autonomous flight of the Hyper-X Research Vehicle (HXRV). The HXRV is a 12-ft long, 2700 lb lifting body technology demonstrator designed to flight demonstrate for the first time a fully airframe integrated scramjet propulsion system. Three flights are currently planned, two at Mach 7 and one at Mach 10, beginning in the fall of 2000. The research vehicles will be boosted to the prescribed scramjet engine test point where they will separate from the booster, stabilize. and initiate engine test. Following 5+ seconds of powered flight and 15 seconds of cowl-open tares, the cowl will close and the vehicle will fly a controlled deceleration trajectory which includes numerous control doublets for in-flight aerodynamic parameter identification. This paper reviews the preflight testing activities, wind tunnel models, test rationale. risk reduction activities, and sample results from wind tunnel tests supporting the flight trajectory of the HXRV from hypersonic engine test point through subsonic flight termination.

  14. Overview of Non-nuclear Testing of the Safe, Affordable 30-kW Fission Engine, Including End-to-End Demonstrator Testing

    NASA Technical Reports Server (NTRS)

    VanDyke, M. K.; Martin, J. J.; Houts, M. G.

    2003-01-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. At the power levels under consideration (3-300 kW electric power), almost all technical issues are thermal or stress related and will not be strongly affected by the radiation environment. These issues can be resolved more thoroughly, less expensively, and in a more timely fashing with nonnuclear testing, provided it is prototypic of the system in question. This approach was used for the safe, affordable fission engine test article development program and accomplished viz cooperative efforts with Department of Energy labs, industry, universiites, and other NASA centers. This Technical Memorandum covers the analysis, testing, and data reduction of a 30-kW simulated reactor as well as an end-to-end demonstrator, including a power conversion system and an electric propulsion engine, the first of its kind in the United States.

  15. Test Facilities in Support of High Power Electric Propulsion Systems

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Dickens, Ricky; Martin, James J.; Salvail, Patrick; Carter, Robert

    2002-01-01

    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the High Power Propulsion Thermal Simulator (HPPTS). The HPPTS is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the HPPTS is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. Through hardware based design and testing, the HPPTS investigates High Power Electric Propulsion (HPEP) component, subsystem, and integrated system design and performance.

  16. Hyper-X Research Vehicle (HXRV) Experimental Aerodynamics Test Program Overview

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.; Woods, William C.; Engelund, Walter C.

    2000-01-01

    This paper provides an overview of the experimental aerodynamics test program to ensure mission success for the autonomous flight of the Hyper-X Research Vehicle (HXRV). The HXRV is a 12-ft long, 2700 lb lifting body technology demonstrator designed to flight demonstrate for the first time a fully airframe integrated scramjet propulsion system. Three flights are currently planned, two at Mach 7 and one at Mach 10, beginning in the fall of 2000. The research vehicles will be boosted to the prescribed scramjet engine test point where they will separate from the booster, stabilize, and initiate engine test. Following 5+ seconds of powered flight and 15 seconds of cow-open tares, the cowl will close and the vehicle will fly a controlled deceleration trajectory which includes numerous control doublets for in-flight aerodynamic parameter identification. This paper reviews the preflight testing activities, wind tunnel models, test rationale, risk reduction activities, and sample results from wind tunnel tests supporting the flight trajectory of the HXRV from hypersonic engine test point through subsonic flight termination.

  17. Introduction to the in orbit test and its performance of the first meteorological imager of the Communication, Ocean, and Meteorological Satellite

    NASA Astrophysics Data System (ADS)

    Kim, D.; Ahn, M. H.

    2013-12-01

    The first geostationary earth observation satellite of Korea, named Communication, Ocean, and Meteorological Satellite (COMS), is successfully launched on 27 June 2010 in Korea Standard Time. After arrival of its operational orbit, the satellite underwent in orbit test (IOT) lasting for about 8 months. During the IOT period, the meteorological imager went through tests for its functional and performance demonstration. With the successful acquisition of the first visible channel image, signal chain from the payload to satellite bus and to the ground is also verified. While waiting for the outgassing operation, several functional tests for the payload are also performed. By taking an observation of different sizes of image, of various object targets such as the Sun, moon, and internal calibration target, it has been demonstrated that the payload performs as commanded, satisfying its functional requirements. After successful operation of outgassing which lasted about 40 days, the first set of infrared images is also successfully acquired and the full performance test started. The radiometric performance of the meteorological imager is tested by signal to noise ratio (SNR) for the visible channel, noise equivalent differential temperature (NEdT) for the infrared channels, and pixel to pixel non-uniformity. In case of the visible channel, SNR of all 8 detectors are obtained using the ground measured parameters and background signals obtained in orbit and are larger than 26 at 5% albedo, exceeding the user requirement value of 10 with a significant margin. The values at 100% albedo also meet the user requirements. Also, the relative variability of detector responsivity among the 8 visible channels meets the user requirement, showing values of about 10% of the user requrirement. For the infrared channels, the NEdT of each detector is well within the user requirement and is comparable with or better than the legacy instruments, except the water vapor channel which is slightly noisier than the legacy instruments. The variability of detector responsivity of infrared channels is also below the user requirement, within 40% of the requirement except shortwave infrared channel. The improved performance result is partly due to the stable and low detector temperature obtained with the spacecraft design, by installing a single solar panel to the opposite side of the meteorological imager.

  18. An Overview of Long Duration Sodium Heat Pipe Tests

    NASA Astrophysics Data System (ADS)

    Rosenfeld, John H.; Ernst, Donald M.; Lindemuth, James E.; Sanzi, James L.; Geng, Steven M.; Zuo, Jon

    2004-02-01

    High temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, and Stirling cycle heat sources; with the resurgence of space nuclear power, additional applications include reactor heat removal elements and radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly long-term materials compatibility is being evaluated through the use of high temperature life test heat pipes. Thermacore, Inc. has carried out several sodium heat pipe life tests to establish long term operating reliability. Four sodium heat pipes have recently demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A 316L stainless steel heat pipe with a sintered porous nickel wick structure and an integral brazed cartridge heater has successfully operated at 650C to 700C for over 115,000 hours without signs of failure. A second 316L stainless steel heat pipe with a specially-designed Inconel 601 rupture disk and a sintered nickel powder wick has demonstrated over 83,000 hours at 600C to 650C with similar success. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 41,000 hours at nearly 700C. A hybrid (i.e. gas-fired and solar) heat pipe with a Haynes 230 envelope and a sintered porous nickel wick structure was operated for about 20,000 hours at nearly 700C without signs of degradation. These life test results collectively have demonstrated the potential for high temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability. Detailed design specifications, operating history, and test results are described for each of these sodium heat pipes. Lessons learned and future life test plans are also discussed.

  19. An Overview of Long Duration Sodium Heat Pipe Tests

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Ernst, Donald M.; Lindemuth, James E.; Sanzi, James L.; Geng, Steven M.; Zuo, Jon

    2004-01-01

    High temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, and Stirling cycle heat sources; with the resurgence of space nuclear power, additional applications include reactor heat removal elements and radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly long-term materials compatibility is being evaluated through the use of high temperature life test heat pipes. Thermacore International, Inc., has carried out several sodium heat pipe life tests to establish long term operating reliability. Four sodium heat pipes have recently demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A 3l6L stainless steel heat pipe with a sintered porous nickel wick structure and an integral brazed cartridge heater has successfully operated at 650 to 700 C for over 115,000 hours without signs of failure. A second 3l6L stainless steel heat pipe with a specially-designed Inconel 60 I rupture disk and a sintered nickel powder wick has demonstrated over 83,000 hours at 600 to 650 C with similar success. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 41 ,000 hours at nearly 700 0c. A hybrid (i.e. gas-fired and solar) heat pipe with a Haynes 230 envelope and a sintered porous nickel wick structure was operated for about 20,000 hours at nearly 700 C without signs of degradation. These life test results collectively have demonstrated the potential for high temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability, Detailed design specifications, operating hi story, and test results are described for each of these sodium heat pipes. Lessons learned and future life test plans are also discussed.

  20. Damage suppression system using embedded SMA (shape memory alloy) foils in CFRP laminate structures

    NASA Astrophysics Data System (ADS)

    Ogisu, Toshimichi; Shimanuki, Masakazu; Kiyoshima, Satoshi; Takaki, Junji; Takeda, Nobuo

    2003-08-01

    This paper presents an overview of the demonstrator program with respect to the damage growth suppression effects using embedded SMA foils in CFRP laminates. The damage growth suppression effects were demonstrated for the technical verification in order to apply to aircraft structure. In our previous studies, the authors already confirmed the damage growth suppression effects of CFRP laminates with embedded pre-strained SMA foils through both coupon and structural element tests. It was founded that these effects were obtained by the suppression of the strain energy release rate based on the suppression of the crack opening displacement due to the recovery stress of SMA foils through the detail observation of the damage behavior. In this study, these results were verified using the demonstrator test article, which was 1/3-scaled model of commercial airliner fuselage structure. For the demonstration of damage growth suppression effects, the evaluation area was located in the lower panel, which was dominated in tension load during demonstration. The evaluation area is the integrated stiffened panel including both "smart area" (CFRP laminate with embedded pre-strained SMA foils) and "conventional area" (standard CFRP laminate) for the direct comparison. The demonstration was conducted at 80 degree Celsius in smart area and room temperature (RT) in conventional area during quasi-static load-unload test method. As the test results, the demonstrator test article presented that the damage onset strain in the smart area was improved by 30% for compared with the conventional area. Therefore, the successful technical verification of the damage onset/growth suppression effect using the demonstrator presented the feasibility of the application of smart material and structural system to aircraft structures.

  1. VIS-IR transmitting BGG glass windows

    NASA Astrophysics Data System (ADS)

    Bayya, Shyam S.; Chin, Geoff D.; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.

    2003-09-01

    BaO-Ga2O3-GeO2 (BGG) glasses have the desired properties for various window applications in the 0.5-5 μm wavelength region. These glasses are low cost alternatives to the currently used window materials. Fabrication of a high optical quality 18" diameter BGG glass window has been demonstrated with a transmitted wave front error of λ/10 at 632 nm. BGG substrates have also been successfully tested for environmental weatherability (MIL-F-48616) and rain erosion durability up to 300 mph. Preliminary EMI grids have been successfully applied on BGG glasses demonstrating attenuation of 20dB in X and Ku bands. Although the mechanical properties of BGG glasses are acceptable for various window applications, it is demonstrated here that the properties can be further improved significantly by the glassceramization process. The ceramization process does not add any significant cost to the final window material. The crystallite size in the present glass-ceramic limits its transmission to the 2-5 μm region.

  2. A Review of the NASA MLAS Flight Demonstration

    NASA Technical Reports Server (NTRS)

    Taylor, Anthony P.; Kelley, Christopher; Manger, Eldred; Peterson, David; Hahn, Jeffrey; Yuchnovicz, Daniel

    2011-01-01

    The NASA Engineering and Safety Center (NESC) has tested the Max Launch Abort System (MLAS) as a risk-mitigation design should problems arise with the baseline Orion spacecraft launch abort design. The Max in MLAS is not Maximum, but rather dedicated to Max Faget, the renowned NASA Spacecraft designer. In July 2009, the mission was flown, with great success, from the NASA Wallops Flight Facility. The MLAS flight test vehicle prototype consists of a boost skirt, coast skirt, and the MLAS fairing itself, which houses an Orion Command Module (CM) boilerplate. The objective of the MLAS flight test is to reorient the fairing with the CM, weighing approximately 29,000 lbs and traveling 290 fps, 180 degrees to an orientation suitable for the release of the CM during a pad abort or low altitude abort. The boost and coast skirts provide the necessary thrust and stability to establish the flight test conditions and are released prior to the reorientation of the fairing. A secondary test objective after successful release of the CM from the fairing is to demonstrate the removal of the CM forward bay cover (FBC) with the CM drogue parachutes, and subsequent deployment of the CM main parachutes attached to the FBC. Although multiple parachute deployments are used in the MLAS flight test vehicle to complete its objective, there are only two parachute types employed in the flight test. Five of the nine parachutes used for MLAS are 27.6 ft DO ribbon parachutes already proven as a spin/stall parachute for military aircraft, and the remaining four are G-12 cargo parachutes modified for increased strength and reefing. This paper presents an overview of the 27.6 ft DO ribbon parachute system employed on the MLAS flight test vehicle for coast skirt separation, fairing reorientation, and as CM drogue parachutes. Discussion will include: the process used to select this design; descriptions of all components of the parachute system; the minor modifications necessary to adapt the parachute to the MLAS program; the techniques used to analyze the parachute for the multiple roles it performs including discussions of how the evolution of the program affected parachute usage and analysis; a summary of the results of the highly successful flight test, including video of the flight test; and an overview of the subsequent post-test analysis.

  3. Comparison of the neural correlates of retrieval success in tests of cued recall and recognition memory.

    PubMed

    Okada, Kayoko; Vilberg, Kaia L; Rugg, Michael D

    2012-03-01

    The neural correlates of successful retrieval on tests of word stem recall and recognition memory were compared. In the recall test, subjects viewed word stems, half of which were associated with studied items and half with unstudied items, and for each stem attempted to recall a corresponding study word. In the recognition test, old/new judgments were made on old and new words. The neural correlates of successful retrieval were identified by contrasting activity elicited by correctly endorsed test items. Old > new effects common to the two tasks were found in medial and lateral parietal and right entorhinal cortex. Common new > old effects were identified in medial and left frontal cortex, and left anterior intra-parietal sulcus. Greater old > new effects were evident for cued recall in inferior parietal regions abutting those demonstrating common effects, whereas larger new > old effects were found for recall in left frontal cortex and the anterior cingulate. New > old effects were also found for the recall task in right lateral anterior prefrontal cortex, where they were accompanied by old > new effects during recognition. It is concluded that successful recall and recognition are associated with enhanced activity in a common set of recollection-sensitive parietal regions, and that the greater activation in these regions during recall reflects the greater dependence of that task on recollection. Larger new > old effects during recall are interpreted as reflections of the greater opportunity for iterative retrieval attempts when retrieval cues are partial rather than copy cues. Copyright © 2011 Wiley Periodicals, Inc.

  4. Comparison of the neural correlates of retrieval success in tests of cued recall and recognition memory

    PubMed Central

    Okada, Kayoko; Vilberg, Kaia L.; Rugg, Michael D.

    2011-01-01

    The neural correlates of successful retrieval on tests of word stem recall and recognition memory were compared. In the recall test, subjects viewed word stems, half of which were associated with studied items and half with unstudied items, and for each stem attempted to recall a corresponding study word. In the recognition test, old/new judgments were made on old and new words. The neural correlates of successful retrieval were identified by contrasting activity elicited by correctly endorsed test items. Old > new effects common to the two tasks were found in medial and lateral parietal, and right entorhinal cortex. Common new > old effects were identified in medial and left frontal cortex, and left anterior intra-parietal sulcus. Greater old > new effects were evident for cued recall in inferior parietal regions abutting those demonstrating common effects, whereas larger new > old effects were found for recall in left frontal cortex and the anterior cingulate. New > old effects were also found for the recall task in right lateral anterior prefrontal cortex, where they were accompanied by old > new effects during recognition. It is concluded that successful recall and recognition are associated with enhanced activity in a common set of recollection-sensitive parietal regions, and that the greater activation in these regions during recall reflects the greater dependence of that task on recollection. Larger new > old effects during recall are interpreted as reflections of the greater opportunity for iterative retrieval attempts when retrieval cues are partial rather than copy cues. PMID:21455941

  5. Pattern recognition of satellite cloud imagery for improved weather prediction

    NASA Technical Reports Server (NTRS)

    Gautier, Catherine; Somerville, Richard C. J.; Volfson, Leonid B.

    1986-01-01

    The major accomplishment was the successful development of a method for extracting time derivative information from geostationary meteorological satellite imagery. This research is a proof-of-concept study which demonstrates the feasibility of using pattern recognition techniques and a statistical cloud classification method to estimate time rate of change of large-scale meteorological fields from remote sensing data. The cloud classification methodology is based on typical shape function analysis of parameter sets characterizing the cloud fields. The three specific technical objectives, all of which were successfully achieved, are as follows: develop and test a cloud classification technique based on pattern recognition methods, suitable for the analysis of visible and infrared geostationary satellite VISSR imagery; develop and test a methodology for intercomparing successive images using the cloud classification technique, so as to obtain estimates of the time rate of change of meteorological fields; and implement this technique in a testbed system incorporating an interactive graphics terminal to determine the feasibility of extracting time derivative information suitable for comparison with numerical weather prediction products.

  6. An Evaluation of the Additional Acoustic Power Needed to Overcome the Effects of a Test-Articles Absorption During Reverberant Chamber Acoustic Testing of Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Hozman, Aron D.; Hughes, William O.

    2014-01-01

    It is important to realize that some test-articles may have significant sound absorption that may challenge the acoustic power capabilities of a test facility. Therefore, to mitigate this risk of not being able to meet the customers target spectrum, it is prudent to demonstrate early-on an increased acoustic power capability which compensates for this test-article absorption. This paper describes a concise method to reduce this risk when testing aerospace test-articles which have significant absorption. This method was successfully applied during the SpaceX Falcon 9 Payload Fairing acoustic test program at the NASA Glenn Research Center Plum Brook Stations RATF.

  7. Space Fission Propulsion Testing and Development Progress. Phase 1

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems we expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified. MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans.

  8. Phase 1 space fission propulsion system testing and development progress

    NASA Astrophysics Data System (ADS)

    van Dyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter

    2001-02-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems are expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified, MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired, they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans. .

  9. Quantitative and empirical demonstration of the Matthew effect in a study of career longevity

    PubMed Central

    Petersen, Alexander M.; Jung, Woo-Sung; Yang, Jae-Suk; Stanley, H. Eugene

    2011-01-01

    The Matthew effect refers to the adage written some two-thousand years ago in the Gospel of St. Matthew: “For to all those who have, more will be given.” Even two millennia later, this idiom is used by sociologists to qualitatively describe the dynamics of individual progress and the interplay between status and reward. Quantitative studies of professional careers are traditionally limited by the difficulty in measuring progress and the lack of data on individual careers. However, in some professions, there are well-defined metrics that quantify career longevity, success, and prowess, which together contribute to the overall success rating for an individual employee. Here we demonstrate testable evidence of the age-old Matthew “rich get richer” effect, wherein the longevity and past success of an individual lead to a cumulative advantage in further developing his or her career. We develop an exactly solvable stochastic career progress model that quantitatively incorporates the Matthew effect and validate our model predictions for several competitive professions. We test our model on the careers of 400,000 scientists using data from six high-impact journals and further confirm our findings by testing the model on the careers of more than 20,000 athletes in four sports leagues. Our model highlights the importance of early career development, showing that many careers are stunted by the relative disadvantage associated with inexperience. PMID:21173276

  10. Orbital transfer vehicle oxygen turbopump technology. Volume 2: Nitrogen and ambient oxygen testing

    NASA Technical Reports Server (NTRS)

    Brannam, R. J.; Buckmann, P. S.; Chen, B. H.; Church, S. J.; Sabiers, R. L.

    1990-01-01

    The testing of a rocket engine oxygen turbopump using high pressure ambient temperature nitrogen and oxygen as the turbine drive gas in separate test series is discussed. The pumped fluid was liquid nitrogen or liquid oxygen. The turbopump (TPA) is designed to operate with 400 F oxygen turbine drive gas which will be demonstrated in a subsequent test series. Following bearing tests, the TPA was finish machined (impeller blading and inlet/outlet ports). Testing started on 15 February 1989 and was successfully concluded on 21 March 1989. Testing started using nitrogen to reduce the ignition hazard during initial TPA checkout. The Hydrostatic Bearing System requires a Bearing Pressurization System. Initial testing used a separate bearing supply to prevent a rubbing start. Two test series were successfully completed with the bearing assist supplied only by the pump second stage output which entailed a rubbing start until pump pressure builds up. The final test series used ambient oxygen drive and no external bearing assist. Total operating time was 2268 seconds. There were 14 starts without bearing assist and operating speeds up to 80,000 rpm were logged. Teardown examination showed some smearing of silverplated bearing surfaces but no exposure of the underlying monel material. There was no evidence of melting or oxidation due to the oxygen exposure. The articulating, self-centering hydrostatic bearing exhibited no bearing load or stability problems. The only anomaly was higher than predicted flow losses which were attributed to a faulty ring seal. The TPA will be refurbished prior to the 400 F oxygen test series but its condition is acceptable, as is, for continued operating. This was a highly successful test program.

  11. Spacelab Life Sciences 1, development towards successive life sciences flights

    NASA Technical Reports Server (NTRS)

    Dalton, B. P.; Jahns, G.; Hogan, R.

    1992-01-01

    A general review is presented of flight data and related hardware developments for Spacelab Life Sciences (SLS) 1 with an eye toward applying this knowledge to projected flight planning. Specific attention is given to the Research Animal Holding Facility (RAHF), the General Purpose Work Station (GPWS), the Small Mass Measuring Instrument (SMMI), and the Animal Enclosure Module (AEM). Preflight and in-flight testing methods are detailed including biocompatibility tests, parametric engineering sensitivity analyses, measurements of environmental parameters, and studies of operational interfaces. Particulate containment is demonstrated for some of the equipment, and successful use of the GPWS, RAHF, AEM, and SMMI are reported. The in-flight data are useful for developing more advanced hardware such as the AEM for SLS flight 2 and the modified RAHF for SLS flight 3.

  12. Summary of LOX/CH4 Thruster Technology Development at NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Greene, Sandra Elam

    2015-01-01

    In recent years, a variety of injectors for liquid oxygen (LOX) and methane (CH4) propellant systems have been designed, fabricated, and demonstrated with hot-fire testing at Marshall Space Flight Center (MSFC). Successful designs for liquid methane (LCH4) and gaseous methane (GCH4) have been developed. A variety of chambers, including a transpiration cooled design, along with uncooled ablatives and refractory metals, have also been hot-fire tested by MSFC for use with LOX/LCH4 injectors. Hot-fire testing has also demonstrated multiple ignition source options. Heat flux data for selected injectors has been gathered by testing with a calorimeter chamber. High performance and stable combustion have been demonstrated, along with designs for thrust levels ranging from 500 to 7,000 lbf. The newest LOX/CH4 injector and chamber developed by MSFC have been fabricated with additive manufacturing techniques and include unique design features to investigate regenerative cooling with methane. This low cost and versatile hardware offers a design for 4,000 lbf thrust and will be hot-fire tested at MSFC in 2015. Its design and operation can easily be scaled for use in systems with thrust levels up to 25,000 lbf.

  13. Integration and Testing Challenges of Small Satellite Missions: Experiences from the Space Technology 5 Project

    NASA Technical Reports Server (NTRS)

    Sauerwein, Timothy A.; Gostomski, Tom

    2007-01-01

    The Space Technology 5(ST5) payload was successfully carried into orbit on an OSC Pegasus XL launch vehicle, which was carried aloft and dropped from the OSC Lockheed L-1011 from Vandenberg Air Force Base March 22,2006, at 9:03 am Eastern time, 6:03 am Pacific time. In order to reach the completion of the development and successful launch of ST 5, the systems integration and test(I&T) team determined that a different approach was required to meet the project requirements rather than the standard I&T approach used for single, room-sized satellites. The ST5 payload, part of NASA's New Millennium Program headquartered at JPL, consisted of three micro satellites (approximately 30 kg each) and the Pegasus Support Structure (PSS), the system that connected the spacecrafts to the launch vehicle and deployed the spacecrafts into orbit from the Pegasus XL launch vehicle. ST5 was a technology demonstration payload, intended to test six (6) new technologies for potential use for future space flights along with demonstrating the ability of small satellites to perform quality science. The main technology was a science grade magnetometer designed to take measurements of the earth's magnetic field. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center with integration and environmental testing occurring in the Bldg. 7-1 0-15-29. The three spacecraft were integrated and tested by the same I&T team. The I&T Manager determined that there was insufficient time in the schedule to perform the three I&T spacecraft activities in series used standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all three spacecraft, learning and gaining knowledge and efficiency as spacecraft #1 integration and testing progressed. They became acutely familiar with the hardware, operation and processes for I&T, thus each team member had the experience and knowledge to safely execute I&T for spacecraft #2 and #3 together. The integration team was very versatile and each member could perform many different activities or work any spacecraft, when needed. Daily meetings between the three Lead TCs and technician team allowed the team to plan and implement activities efficiently. The three (3) spacecraft and PSS were successfully integrated and tested, shipped to the launch site, and ready for launch per the I&T schedule that was planned three years previously.

  14. The X-43A Hyper-X Mach 7 Flight 2 Guidance, Navigation, and Control Overview and Flight Test Results

    NASA Technical Reports Server (NTRS)

    Bahm, Catherine; Baumann, Ethan; Martin, John; Bose, David; Beck, Roger E.; Strovers, Brian

    2005-01-01

    The objective of the Hyper-X program was to flight demonstrate an airframe-integrated hypersonic vehicle. On March 27, 2004, the Hyper-X program team successfully conducted flight 2 and achieved all of the research objectives. The Hyper-X research vehicle successfully separated from the Hyper-X launch vehicle and achieved the desired engine test conditions before the experiment began. The research vehicle rejected the disturbances caused by the cowl door opening and the fuel turning on and off and maintained the engine test conditions throughout the experiment. After the engine test was complete, the vehicle recovered and descended along a trajectory while performing research maneuvers. The last data acquired showed that the vehicle maintained control to the water. This report will provide an overview of the research vehicle guidance and control systems and the performance of the vehicle during the separation event and engine test. The research maneuvers were performed to collect data for aerodynamics and flight controls research. This report also will provide an overview of the flight controls related research and results.

  15. Component improvement of free-piston Stirling engine key technology for space power

    NASA Technical Reports Server (NTRS)

    Alger, Donald L.

    1988-01-01

    The successful performance of the 25 kW Space Power Demonstrator (SPD) engine during an extensive testing period has provided a baseline of free piston Stirling engine technology from which future space Stirling engines may evolve. Much of the success of the engine was due to the initial careful selection of engine materials, fabrication and joining processes, and inspection procedures. Resolution of the few SPD engine problem areas that did occur has resulted in the technological advancement of certain key free piston Stirling engine components. Derivation of two half-SPD, single piston engines from the axially opposed piston SPD engine, designated as Space Power Research (SPR) engines, has made possible the continued improvement of these engine components. The two SPR engines serve as test bed engines for testing of engine components. Some important fabrication and joining processes are reviewed. Also, some component deficiencies that were discovered during SPD engine testing are described and approaches that were taken to correct these deficiencies are discussed. Potential component design modifications, based upon the SPD and SPR engine testing, are also reported.

  16. Interactive Book Reading to Accelerate Word Learning by Kindergarten Children With Specific Language Impairment: Identifying Adequate Progress and Successful Learning Patterns.

    PubMed

    Storkel, Holly L; Komesidou, Rouzana; Fleming, Kandace K; Romine, Rebecca Swinburne

    2017-04-20

    The goal of this study was to provide guidance to clinicians on early benchmarks of successful word learning in an interactive book reading treatment and to examine how encoding and memory evolution during treatment contribute to word learning outcomes by kindergarten children with specific language impairment (SLI). Twenty-seven kindergarten children with SLI participated in a preliminary clinical trial using interactive book reading to teach 30 new words. Word learning was assessed at 4 points during treatment through a picture naming test. The results indicate that the following performance during treatment was cause for concern, indicating a need to modify the treatment: naming 0-1 treated words correctly at Naming Test 1; naming 0-2 treated words correctly at Naming Test 2; naming 0-3 treated words correctly at Naming Test 3. In addition, the results showed that encoding was the primary limiting factor in word learning, but rmemory evolution also contributed (albeit to a lesser degree) to word learning success. Case illustrations demonstrate how a clinician's understanding of a child's word learning strengths and weaknesses develop over the course of treatment, substantiating the importance of regular data collection and clinical decision-making to ensure the best possible outcomes for each individual child.

  17. Elephants know when their bodies are obstacles to success in a novel transfer task

    PubMed Central

    Dale, Rachel; Plotnik, Joshua M.

    2017-01-01

    The capacity to recognise oneself as separate from other individuals and objects is difficult to investigate in non-human animals. The hallmark empirical assessment, the mirror self-recognition test, focuses on an animal’s ability to recognise itself in a mirror and success has thus far been demonstrated in only a small number of species with a keen interest in their own visual reflection. Adapting a recent study done with children, we designed a new body-awareness paradigm for testing an animal’s understanding of its place in its environment. In this task, Asian elephants (Elephas maximus) were required to step onto a mat and pick up a stick attached to it by rope, and then pass the stick forward to an experimenter. In order to do the latter, the elephants had to see their body as an obstacle to success and first remove their weight from the mat before attempting to transfer the stick. The elephants got off the mat in the test significantly more often than in controls, where getting off the mat was unnecessary. This task helps level the playing field for non-visual species tested on cognition tasks and may help better define the continuum on which body- and self-awareness lie. PMID:28402335

  18. Analysis and Ground Testing for Validation of the Inflatable Sunshield in Space (ISIS) Experiment

    NASA Technical Reports Server (NTRS)

    Lienard, Sebastien; Johnston, John; Adams, Mike; Stanley, Diane; Alfano, Jean-Pierre; Romanacci, Paolo

    2000-01-01

    The Next Generation Space Telescope (NGST) design requires a large sunshield to protect the large aperture mirror and instrument module from constant solar exposure at its L2 orbit. The structural dynamics of the sunshield must be modeled in order to predict disturbances to the observatory attitude control system and gauge effects on the line of site jitter. Models of large, non-linear membrane systems are not well understood and have not been successfully demonstrated. To answer questions about sunshield dynamic behavior and demonstrate controlled deployment, the NGST project is flying a Pathfinder experiment, the Inflatable Sunshield in Space (ISIS). This paper discusses in detail the modeling and ground-testing efforts performed at the Goddard Space Flight Center to: validate analytical tools for characterizing the dynamic behavior of the deployed sunshield, qualify the experiment for the Space Shuttle, and verify the functionality of the system. Included in the discussion will be test parameters, test setups, problems encountered, and test results.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkataraman, M.; Natarajan, R.; Raj, Baldev

    The reprocessing of spent fuel from Fast Breeder Test Reactor (FBTR) has been successfully demonstrated in the pilot plant, CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell). Since commissioning in 2003, spent mixed carbide fuel from FBTR of different burnups and varying cooling period, have been reprocessed in this facility. Reprocessing of the spent fuel with a maximum burnup of 100 GWd/t has been successfully carried out so far. The feed backs from these campaigns with progressively increasing specific activities, have been useful in establishing a viable process flowsheet for reprocessing the Prototype Fast Breeder Reactor (PFBR)more » spent fuel. Also, the design of various equipments and processes for the future plants, which are either under design for construction, namely, the Demonstration Fast Reactor Fuel Reprocessing Plant (DFRP) and the Fast reactor fuel Reprocessing Plant (FRP) could be finalized. (authors)« less

  20. Using microstructure observations to quantify fracture properties and improve reservoir simulations. Final report, September 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laubach, S.E.; Marrett, R.; Rossen, W.

    The research for this project provides new technology to understand and successfully characterize, predict, and simulate reservoir-scale fractures. Such fractures have worldwide importance because of their influence on successful extraction of resources. The scope of this project includes creation and testing of new methods to measure, interpret, and simulate reservoir fractures that overcome the challenge of inadequate sampling. The key to these methods is the use of microstructures as guides to the attributes of the large fractures that control reservoir behavior. One accomplishment of the project research is a demonstration that these microstructures can be reliably and inexpensively sampled. Specificmore » goals of this project were to: create and test new methods of measuring attributes of reservoir-scale fractures, particularly as fluid conduits, and test the methods on samples from reservoirs; extrapolate structural attributes to the reservoir scale through rigorous mathematical techniques and help build accurate and useful 3-D models of the interwell region; and design new ways to incorporate geological and geophysical information into reservoir simulation and verify the accuracy by comparison with production data. New analytical methods developed in the project are leading to a more realistic characterization of fractured reservoir rocks. Testing diagnostic and predictive approaches was an integral part of the research, and several tests were successfully completed.« less

  1. Microwave transmission system for space power

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1976-01-01

    A small total system model and a large subsystem element similar to those that could be eventually used for wireless power transmission experiments in space have been successfully demonstrated by NASA. The short range, relatively low-power laboratory system achieved a dc-to-dc transmission efficiency of 54%. A separate high-power-level receiving subsystem, tested over a 1.54-km range at Goldstone, California, has achieved the transportation of over 30 kW of dc output power. Both tests used 12-cm wavelength microwaves.

  2. Top Down Implementation Plan for system performance test software

    NASA Technical Reports Server (NTRS)

    Jacobson, G. N.; Spinak, A.

    1982-01-01

    The top down implementation plan used for the development of system performance test software during the Mark IV-A era is described. The plan is based upon the identification of the hierarchical relationship of the individual elements of the software design, the development of a sequence of functionally oriented demonstrable steps, the allocation of subroutines to the specific step where they are first required, and objective status reporting. The results are: determination of milestones, improved managerial visibility, better project control, and a successful software development.

  3. Birth of healthy twins after intracytoplasmic sperm injection using ejaculated immotile spermatozoa from a patient with Kartagener's syndrome.

    PubMed

    Geber, S; Lemgruber, M; Taitson, P F; Valle, M; Sampaio, M

    2012-05-01

    This case report demonstrates a successful pregnancy after ICSI combined with hypo-osmotic swelling test in a couple with Kartagener's syndrome with complete immotile ejaculated spermatozoa. Our result suggests that even for complete immotile spermatozoa, the use of hypo-osmotic swelling test is a good alternative to identify viable spermatozoa. When associated with ICSI, it can be a valuable tool to get fertilisation and pregnancy. © 2011 Blackwell Verlag GmbH.

  4. Development of a metallic bellows expulsion device for fluorine service

    NASA Technical Reports Server (NTRS)

    Fearn, R. F.

    1971-01-01

    A complete expulsion device was designed, fabricated, and tested in accordance with requirements specified by NASA to demonstrate the feasibility of using metallic bellows to expel liquid fluorine. Difficulties were experienced in obtaining leaktight welds at the bellows end terminals, but eventually three assemblies were successfully fabricted and cycle tested, one in LN2, two in LF2. The bellows performed well, except that they failed prematurely in LF2, apparently the result of small initiator cracks in the seam welds of the bellows.

  5. Vibration Testing of an Operating Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; Goodnight, Thomas W.

    2000-01-01

    The NASA John H. Glenn Research Center and the U.S. Department of Energy are currently developing a Stirling convertor for use as an advanced spacecraft power system for future NASA deep-space missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC) was recently tested to verify its survivability and capability of withstanding its expected launch random vibration environment. The TDC was fully operational (producing power) during the random vibration testing. The output power of the convertor was measured during the testing, and these results are discussed in this paper. Numerous accelerometers and force gauges were also present which provided information on the dynamic characteristics of the TDC and an indication of any possible damage due to vibration. These measurements will also be discussed in this paper. The vibration testing of the Stirling TDC was extremely successful. The TDC survived all its vibration testing with no structural damage or functional performance degradation. As a result of this testing, the Stirling convertor's capability to withstand vibration has been demonstrated, enabling its usage in future spacecraft power systems.

  6. Titanium Aluminide Scramjet Inlet Flap Subelement Benchmark Tested

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Draper, Susan L.

    2005-01-01

    A subelement-level ultimate strength test was completed successfully at the NASA Glenn Research Center (http://www.nasa.gov/glenn/) on a large gamma titanium aluminide (TiAl) inlet flap demonstration piece. The test subjected the part to prototypical stress conditions by using unique fixtures that allowed both loading and support points to be located remote to the part itself (see the photograph). The resulting configuration produced shear, moment, and the consequent stress topology proportional to the design point. The test was conducted at room temperature, a harsh condition for the material because of reduced available ductility. Still, the peak experimental load-carrying capability exceeded original predictions.

  7. Development of a wideband pulse quaternary modulation system. [for an operational 400 Mbps baseband laser communication system

    NASA Technical Reports Server (NTRS)

    Federhofer, J. A.

    1974-01-01

    Laboratory data verifying the pulse quaternary modulation (PQM) theoretical predictions is presented. The first laboratory PQM laser communication system was successfully fabricated, integrated, tested and demonstrated. System bit error rate tests were performed and, in general, indicated approximately a 2 db degradation from the theoretically predicted results. These tests indicated that no gross errors were made in the initial theoretical analysis of PQM. The relative ease with which the entire PQM laboratory system was integrated and tested indicates that PQM is a viable candidate modulation scheme for an operational 400 Mbps baseband laser communication system.

  8. Utilisation of real-scale renewable energy test facility for validation of generic wind turbine and wind power plant controller models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeni, Lorenzo; Hesselbæk, Bo; Bech, John

    This article presents an example of application of a modern test facility conceived for experiments regarding the integration of renewable energy in the power system. The capabilities of the test facility are used to validate dynamic simulation models of wind power plants and their controllers. The models are based on standard and generic blocks. The successful validation of events related to the control of active power (control phenomena in <10 Hz range, including frequency control and power oscillation damping) is described, demonstrating the capabilities of the test facility and drawing the track for future work and improvements.

  9. Efficient Testing Combining Design of Experiment and Learn-to-Fly Strategies

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Brandon, Jay M.

    2017-01-01

    Rapid modeling and efficient testing methods are important in a number of aerospace applications. In this study efficient testing strategies were evaluated in a wind tunnel test environment and combined to suggest a promising approach for both ground-based and flight-based experiments. Benefits of using Design of Experiment techniques, well established in scientific, military, and manufacturing applications are evaluated in combination with newly developing methods for global nonlinear modeling. The nonlinear modeling methods, referred to as Learn-to-Fly methods, utilize fuzzy logic and multivariate orthogonal function techniques that have been successfully demonstrated in flight test. The blended approach presented has a focus on experiment design and identifies a sequential testing process with clearly defined completion metrics that produce increased testing efficiency.

  10. Do We See through Their Eyes? Testing a Bilingual Questionnaire in Education Research Using Cognitive Interviews

    ERIC Educational Resources Information Center

    Sopromadze, Natia; Moorosi, Pontso

    2017-01-01

    The paper aims to demonstrate the value of cognitive interviewing (CI) as a survey pretesting method in comparative education research. Although rarely used by education researchers, CI has been successfully applied in different disciplines to evaluate and improve question performance. The method assumes that observing people's thought processes…

  11. From Poor Performance to Success under Stress: Working Memory, Strategy Selection, and Mathematical Problem Solving under Pressure

    ERIC Educational Resources Information Center

    Beilock, Sian L.; DeCaro, Marci S.

    2007-01-01

    Two experiments demonstrate how individual differences in working memory (WM) impact the strategies used to solve complex math problems and how consequential testing situations alter strategy use. In Experiment 1, individuals performed multistep math problems under low- or high-pressure conditions and reported their problem-solving strategies.…

  12. Testing Times: Careers Market Policies and Practices in England and the Netherlands

    ERIC Educational Resources Information Center

    Hughes, Deirdre; Meijers, Frans; Kuijpers, Marinka

    2015-01-01

    Careers work is a very political business. Since the early 1990s, successive governments in England and the Netherlands have persistently challenged those working in the careers sector to demonstrate the educational, social and economic value and impact of their work. In this context, the marketisation of career guidance policies and practices has…

  13. The Relationship of High School Students in Inclusive Settings: Emotional Health and Academic Achievement

    ERIC Educational Resources Information Center

    Wilson, Carolyn H.; Stith-Russell, Lafawndra S.

    2010-01-01

    Academic success has become increasingly important in determining future quality of life. Many educational programs and institutions at various levels stress the need for students to score well on standardized tests and other methods of evaluation, in order to demonstrate their knowledge of various concepts and skills. The relationship between…

  14. The roles of vocal and visual interactions in social learning zebra finches: A video playback experiment.

    PubMed

    Guillette, Lauren M; Healy, Susan D

    2017-06-01

    The transmission of information from an experienced demonstrator to a naïve observer often depends on characteristics of the demonstrator, such as familiarity, success or dominance status. Whether or not the demonstrator pays attention to and/or interacts with the observer may also affect social information acquisition or use by the observer. Here we used a video-demonstrator paradigm first to test whether video demonstrators have the same effect as using live demonstrators in zebra finches, and second, to test the importance of visual and vocal interactions between the demonstrator and observer on social information use by the observer. We found that female zebra finches copied novel food choices of male demonstrators they saw via live-streaming video while they did not consistently copy from the demonstrators when they were seen in playbacks of the same videos. Although naive observers copied in the absence of vocalizations by the demonstrator, as they copied from playback of videos with the sound off, females did not copy where there was a mis-match between the visual information provided by the video and vocal information from a live male that was out of sight. Taken together these results suggest that video demonstration is a useful methodology for testing social information transfer, at least in a foraging context, but more importantly, that social information use varies according to the vocal interactions, or lack thereof, between the observer and the demonstrator. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Recent Progress on the Stretched Lens Array (SLA)

    NASA Technical Reports Server (NTRS)

    O'Neill, Markl; McDanal, A. J.; Piszczor, Michael; George, Patrick; Eskenazi, Michael; Botke, Matthew; Edwards, David; Hoppe, David; Brandhorst, Henry

    2005-01-01

    At the last Space Photovoltaic Research and Technology Conference, SPRAT XVII, held during the fateful week of 9/11/01, our team presented a paper on the early developments related to the new Stretched Lens Array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Within the past two years, the SLA team has made significant progress in the SLA technology, including the successful fabrication and testing of a complete four-panel prototype solar array wing (Fig. 1). The prototype wing verified the mechanical and structural design of the rigid-panel SLA approach, including multiple successful demonstrations of automatic wing deployment. One panel in the prototype wing included four fully functional photovoltaic receivers, employing triple-junction solar cells.

  16. Overview of the IFMIF/EVEDA project

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Garin, P.; Matsumoto, H.; Okumura, Y.; Sugimoto, M.; Arbeiter, F.; Cara, P.; Chel, S.; Facco, A.; Favuzza, P.; Furukawa, T.; Heidinger, R.; Ibarra, A.; Kanemura, T.; Kasugai, A.; Kondo, H.; Massaut, V.; Molla, J.; Micciche, G.; O'hira, S.; Sakamoto, K.; Yokomine, T.; Wakai, E.; the IFMIF/EVEDA Integrated Project Team

    2017-10-01

    IFMIF, the International Fusion Materials Irradiation Facility, is presently in its engineering validation and engineering design activities (EVEDA) phase under the Broader Approach Agreement. The engineering design activity (EDA) phase was successfully accomplished within the allocated time. The engineering validation activity (EVA) phase has focused on validating the Accelerator Facility (AF), the Target Facility and the Test Facility (TF) by constructing prototypes. The ELTL at JAEAc, Oarai successfully demonstrated the long-term stability of a Li flow under the IFMIF’s nominal operational conditions keeping the specified free-surface fluctuations below  ±1 mm in a continuous manner for 25 d. A full-scale prototype of the high flux test module (HFTM) was successfully tested in the HELOKA loop (KIT, Karlsruhe), where it was demonstrated that the irradiation temperature can be set individually and kept uniform. LIPAc, designed and constructed in European labs under the coordination of F4E, presently under installation and commissioning in the Rokkasho Fusion Institute, aims at validating the concept of IFMIF accelerators with a D+ beam of 125 mA continuous wave (CW) and 9 MeV. The commissioning phases of the H+/D+ beams at 100 keV are progressing and should be concluded in 2017; in turn, the commissioning of the 5 MeV beam is due to start during 2017. The D+ beam through the superconducting cavities is expected to be achieved within the Broader Approach Agreement time frame with the superconducting cryomodule being assembled in Rokkasho. The realisation of a fusion-relevant neutron source is a necessary step for the successful development of fusion. The ongoing success of the IFMIF/EVEDA involves ruling out concerns about potential technical showstoppers which were raised in the past. Thus, a situation has emerged where soon steps towards constructing a Li(d,xn) fusion-relevant neutron source could be taken, which is also justified in the light of costs which are marginal to those of a fusion plant. In Memoriam Yoshikazu Okumura who passed away on 6 March 2017.

  17. Short Duration Base Heating Test Improvements

    NASA Technical Reports Server (NTRS)

    Bender, Robert L.; Dagostino, Mark G.; Engel, Bradley A.; Engel, Carl D.

    1999-01-01

    Significant improvements have been made to a short duration space launch vehicle base heating test technique. This technique was first developed during the 1960's to investigate launch vehicle plume induced convective environments. Recent improvements include the use of coiled nitrogen buffer gas lines upstream of the hydrogen / oxygen propellant charge tubes, fast acting solenoid valves, stand alone gas delivery and data acquisition systems, and an integrated model design code. Technique improvements were successfully demonstrated during a 2.25% scale X-33 base heating test conducted in the NASA/MSFC Nozzle Test Facility in early 1999. Cost savings of approximately an order of magnitude over previous tests were realized due in large part to these improvements.

  18. Haloperidol, a Novel Treatment for Cannabinoid Hyperemesis Syndrome.

    PubMed

    Witsil, Joanne C; Mycyk, Mark B

    Cannabinoid hyperemesis syndrome (CHS) is typically unresponsive to conventional pharmacologic antiemetics, and patients often require excessive laboratory and radiographic testing and hospital admission. We report 4 cases of CHS that failed standard emergency department therapy but improved significantly after treatment with haloperidol. Although the exact mechanism for CHS remains unclear, dysregulation at cannabinoid type 1 seems to play a role. Recent animal data demonstrate complex interactions between dopamine and cannabinoid type 1 signaling, a potential mechanism for haloperidol success in patients with CHS. Our success with haloperidol in these 4 patients warrants further investigation of haloperidol as an emergency department treatment for CHS.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omet, M.; Michizono, S.; Matsumoto, T.

    We report the development and implementation of four FPGA-based predistortion-type klystron linearization algorithms. Klystron linearization is essential for the realization of ILC, since it is required to operate the klystrons 7% in power below their saturation. The work presented was performed in international collaborations at the Fermi National Accelerator Laboratory (FNAL), USA and the Deutsches Elektronen Synchrotron (DESY), Germany. With the newly developed algorithms, the generation of correction factors on the FPGA was improved compared to past algorithms, avoiding quantization and decreasing memory requirements. At FNAL, three algorithms were tested at the Advanced Superconducting Test Accelerator (ASTA), demonstrating a successfulmore » implementation for one algorithm and a proof of principle for two algorithms. Furthermore, the functionality of the algorithm implemented at DESY was demonstrated successfully in a simulation.« less

  20. Laser-induced contamination control for high-power lasers in space-based LIDAR missions

    NASA Astrophysics Data System (ADS)

    Alves, Jorge; Pettazzi, Federico; Tighe, Adrian; Wernham, Denny

    2017-11-01

    In the framework of the ADM-Aeolus satellite mission, successful test campaigns have been performed in ESTEC's laser laboratory, and the efficiency of several mitigation techniques against Laser-Induced Contamination (LIC) have been demonstrated for the ALADIN laser. These techniques include the standard contamination control methods of materials identification with particular tendency to cause LIC, reduction of the outgassing of organic materials by vacuum bake-out and shielding of optical surfaces from the contamination sources. Also novel mitigation methods such as in-situ cleaning via partial pressures, or the usage of molecular absorbers were demonstrated. In this context, a number of highly sensitive optical measurement techniques have been developed and tested to detect and monitor LIC deposits at nanometre level.

  1. Ceramic applications in turbine engines

    NASA Technical Reports Server (NTRS)

    Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.

    1984-01-01

    The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.

  2. Biomass power for rural development: Phase 2. Technical progress report, April 1--June 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.

    1998-11-01

    The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase-1 focused on initial development and testing of the technology and agreements necessary to demonstrate commercial willow production in Phase-2. The Phase-1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boilers, developing fuel supply plans for the project, obtaining power production commitments from the power companies for Phase-2, obtaining construction and environmental permits, and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introductionmore » of the willow energy system. Beyond those Phase-1 requirements the Consortium has already successfully demonstrated cofiring at Greenidge Station and developed the required nursery capacity for acreage scale-up. This past summer 105 acres were prepared in advance for the spring planting in 1998. Having completed the above tasks, the Consortium is well positioned to begin Phase-2. In phase-2 every aspect of willow production and power generation from willow will be demonstrated. The ultimate objective of Phase-2 is to transition the work performed under the Rural Energy for the Future project into a thriving, self-supported energy crop enterprise.« less

  3. Status of 30 cm mercury ion thruster development

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.; King, H. J.

    1974-01-01

    Two engineering model 30-cm ion thrusters were assembled, calibrated, and qualification tested. This paper discusses the thruster design, performance, and power system. Test results include documentation of thrust losses due to doubly charged mercury ions and beam divergence by both direct thrust measurements and beam probes. Diagnostic vibration tests have led to improved designs of the thruster backplate structure, feed system, and harness. Thruster durability is being demonstrated over a thrust range of 97 to 113 mN at a specific impulse of about 2900 seconds. As of August 15, 1974, the thruster has successfully operated for over 4000 hours.

  4. Test Results From a Simulated High-Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was modified to simulate high-voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high-frequency ac power to a lunar facility located at a distance.

  5. Test Results from a Simulated High Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was modified to simulate high voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high frequency AC power to a lunar facility located at a distance.

  6. Cartridge output testing - Methods to overcome closed-bomb shortcomings

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Schimmel, Morry L.

    1991-01-01

    Although the closed-bomb test has achieved virtually universal acceptance for measuring the output performance of pyrotechnic cartridges, there are serious shortcomings in its ability to quantify the performance of cartridges used as energy sources for pyrotechnic-activated mechanical devices. This paper presents several examples of cartridges (including the NASA Standard Initiator NSI) that successfully met closed-bomb performance requirements, but resulted in functional failures in mechanisms. To resolve these failures, test methods were developed to demonstrate a functional margin, based on comparing energy required to accomplish the function to energy deliverable by the cartridge.

  7. A Profilometry-Based Dentifrice Abrasion Method for V8 Brushing Machines Part III: Multi-Laboratory Validation Testing of RDA-PE.

    PubMed

    Schneiderman, Eva; Colón, Ellen L; White, Donald J; Schemehorn, Bruce; Ganovsky, Tara; Haider, Amir; Garcia-Godoy, Franklin; Morrow, Brian R; Srimaneepong, Viritpon; Chumprasert, Sujin

    2017-09-01

    We have previously reported on progress toward the refinement of profilometry-based abrasivity testing of dentifrices using a V8 brushing machine and tactile or optical measurement of dentin wear. The general application of this technique may be advanced by demonstration of successful inter-laboratory confirmation of the method. The objective of this study was to explore the capability of different laboratories in the assessment of dentifrice abrasivity using a profilometry-based evaluation technique developed in our Mason laboratories. In addition, we wanted to assess the interchangeability of human and bovine specimens. Participating laboratories were instructed in methods associated with Radioactive Dentin Abrasivity-Profilometry Equivalent (RDA-PE) evaluation, including site visits to discuss critical elements of specimen preparation, masking, profilometry scanning, and procedures. Laboratories were likewise instructed on the requirement for demonstration of proportional linearity as a key condition for validation of the technique. Laboratories were provided with four test dentifrices, blinded for testing, with a broad range of abrasivity. In each laboratory, a calibration curve was developed for varying V8 brushing strokes (0, 4,000, and 10,000 strokes) with the ISO abrasive standard. Proportional linearity was determined as the ratio of standard abrasion mean depths created with 4,000 and 10,000 strokes (2.5 fold differences). Criteria for successful calibration within the method (established in our Mason laboratory) was set at proportional linearity = 2.5 ± 0.3. RDA-PE was compared to Radiotracer RDA for the four test dentifrices, with the latter obtained by averages from three independent Radiotracer RDA sites. Individual laboratories and their results were compared by 1) proportional linearity and 2) acquired RDA-PE values for test pastes. Five sites participated in the study. One site did not pass proportional linearity objectives. Data for this site are not reported at the request of the researchers. Three of the remaining four sites reported herein tested human dentin and all three met proportional linearity objectives for human dentin. Three of four sites participated in testing bovine dentin and all three met the proportional linearity objectives for bovine dentin. RDA-PE values for test dentifrices were similar between sites. All four sites that met proportional linearity requirement successfully identified the dentifrice formulated above the industry standard 250 RDA (as RDA-PE). The profilometry method showed at least as good reproducibility and differentiation as Radiotracer assessments. It was demonstrated that human and bovine specimens could be used interchangeably. The standardized RDA-PE method was reproduced in multiple laboratories in this inter-laboratory study. Evidence supports that this method is a suitable technique for ISO method 11609 Annex B.

  8. Eclipse program C-141A aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the Air Force C-141A that was used in the Eclipse project as a tow vehicle. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wind loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  9. Eclipse program QF-106 aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows one of the QF-106s used in the Eclipse project in flight. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  10. Space station auxiliary thrust chamber technology

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1987-01-01

    A program to design, fabricate, and test a 50 lb sub f (222 N) thruster was undertaken to demonstrate the applicability of the reverse flow concept as an item of auxillary propulsion for the Space Station. The thruster was to operate at a mixture ratio (O/F) of 4, be capable of operating for 2 million lb sub f-seconds (8.896 million N-seconds) impulse with a chamber pressure of 75 psia (52N/sq cm) and a nozzle area ratio of 40. A successful demonstration of an (0/F) of 4 thruster, was followed by the design objective of operating at (O/F) of 8. The demonstration of this thruster resulted in the order of and additional (O/F) of 8 thruster chamber under the present NAS 3-24883 contract. The effort to fabricate and test the second (0/F) of 8 thruster is documented.

  11. Milestone Report - Demonstrate Braided Material with 3.5 g U/kg Sorption Capacity under Seawater Testing Condition (Milestone M2FT-15OR0310041 - 1/30/2015)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janke, Christopher James; Das, Sadananda; Oyola, Yatsandra

    This report describes work on the successful completion of Milestone M2FT-15OR0310041 (1/30/2015) entitled, Demonstrate braided material with 3.5 g U/kg sorption capacity under seawater testing condition . This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent braided materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed four braided fiber adsorbents that have demonstrated uranium adsorption capacities greater than 3.5 g U/kg adsorbent after marine testing at PNNL. Themore » braided adsorbents were synthesized by braiding or leno weaving high surface area polyethylene fibers and conducting radiation-induced graft polymerization of itaconic acid and acrylonitrile monomers onto the braided materials followed by amidoximation and base conditioning. The four braided adsorbents demonstrated capacity values ranging from 3.7 to 4.2 g U/kg adsorbent after 56 days of exposure in natural coastal seawater at 20 oC. All data are normalized to a salinity of 35 psu.« less

  12. Quarterly Research Performance Progress Report (2015 Q3). Ultrasonic Phased Arrays and Interactive Reflectivity Tomography for Nondestructive Inspection of Injection and Production Wells in Geothermal Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos-Villalobos, Hector J; Polsky, Yarom; Kisner, Roger A

    2015-09-01

    For the past quarter, we have placed our effort in implementing the first version of the ModelBased Iterative Reconstruction (MBIR) algorithm, assembling and testing the electronics, designing transducers mounts, and defining our laboratory test samples. We have successfully developed the first implementation of MBIR for ultrasound imaging. The current algorithm was tested with synthetic data and we are currently making new modifications for the reconstruction of real ultrasound data. Beside assembling and testing the electronics, we developed a LabView graphic user interface (GUI) to fully control the ultrasonic phased array, adjust the time-delays of the transducers, and store the measuredmore » reflections. As part of preparing for a laboratory-scale demonstration, the design and fabrication of the laboratory samples has begun. Three cement blocks with embedded objects will be fabricated, characterized, and used to demonstrate the capabilities of the system. During the next quarter, we will continue to improve the current MBIR forward model and integrate the reconstruction code with the LabView GUI. In addition, we will define focal laws for the ultrasonic phased array and perform the laboratory demonstration. We expect to perform laboratory demonstration by the end of October 2015.« less

  13. Nuclear Systems Kilopower Overview

    NASA Technical Reports Server (NTRS)

    Palac, Don; Gibson, Marc; Mason, Lee; Houts, Michael; McClure, Patrick; Robinson, Ross

    2016-01-01

    The Nuclear Systems Kilopower Project was initiated by NASAs Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project consists of two elements. The primary element is the Kilopower Prototype Test, also called the Kilopower Reactor Using Stirling Technology(KRUSTY) Test. This element consists of the development and testing of a fission ground technology demonstrator of a 1 kWe fission power system. A 1 kWe system matches requirements for some robotic precursor exploration systems and future potential deep space science missions, and also allows a nuclear ground technology demonstration in existing nuclear test facilities at low cost. The second element, the Mars Kilopower Scalability Study, consists of the analysis and design of a scaled-up version of the 1 kWe reference concept to 10 kWe for Mars surface power projected requirements, and validation of the applicability of the KRUSTY experiment to key technology challenges for a 10 kWe system. If successful, these two elements will lead to initiation of planning for a technology demonstration of a 10 kWe fission power capability for Mars surface outpost power.

  14. Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deli, Martin, E-mail: martin.deli@web.de; Fritz, Jan, E-mail: jfritz9@jhmi.edu; Mateiescu, Serban, E-mail: mateiescu@microtherapy.de

    Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 withmore » gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 {+-} 9 min in the gadolinium-enhanced saline solution group and 22 {+-} 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.« less

  15. Design and Analysis of Outer Mold Line Close-outs for the Max Launch Abort System (MLAS) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Knutson, Jeffrey R.; Schuster, David M.; Tyler, Erik D.

    2010-01-01

    In 2007, the NASA Exploration Systems Mission Directorate (ESMD) chartered the NASA Engineering Safety Center (NESC) to demonstrate an alternate launch abort concept as risk mitigation for the Orion project's baseline "tower" design. On July 8, 2009, a full scale, passive aerodynamically stabilized Max Launch Abort System (MLAS) pad abort demonstrator was successfully launched from NASA Goddard Space Flight Center's Wallops Flight Facility. Aerodynamic close-outs were required to cover openings on the MLAS fairing to prevent aerodynamic flow-through and to maintain the MLAS OML surface shape. Two-ply duct tape covers were designed to meet these needs. The duct tape used was a high strength fiber reinforced duct tape with a rubberized adhesive that demonstrated 4.6 lb/in adhesion strength to the unpainted fiberglass fairing. Adhesion strength was observed to increase as a function of time. The covers were analyzed and experimentally tested to demonstrate their ability to maintain integrity under anticipated vehicle ascent pressure loads and to not impede firing of the drogue chute mortars. Testing included vacuum testing and a mortar fire test. Tape covers were layed-up on thin Teflon sheets to facilitate installation on the vehicle. Custom cut foam insulation board was used to fill mortar hole and separation joint cavities and provide support to the applied tape covers. Flight test results showed that the tape covers remained adhered during flight.

  16. Ares I-X: Lessons for a New Era of Spaceflight

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.

    2010-01-01

    Since 2005, the Ares Projects at Marshall Space Flight Center (MSFC) have been developing the Ares I crew launch vehicle and Ares V cargo launch vehicle. On October 28, 2009, the first development flight test of the Ares I crew launch vehicle, Ares I-X, lifted off from a launch pad at Kennedy Space Center (KSC) on successful suborbital flight. Despite the President s intention to cancel the Constellation Program of which Ares is a part, this historic flight has produced a great amount of data and numerous lessons learned for any future launch vehicles. This paper will describe the accomplishments of Ares I-X and the lessons that other programs can glean from this successful mission. Ares I was designed to carry up to four astronauts to the International Space Station (ISS). It also was designed to be used with the Ares V cargo launch vehicle for a variety of missions beyond low-Earth orbit (LEO). The Ares I-X development flight test was conceived in 2006 to acquire early engineering and environment data during liftoff, ascent, and first stage recovery. The test achieved the following primary objectives: Demonstrated control of a dynamically similar, integrated Ares I/Orion, using Ares I relevant ascent control algorithms. Performed an in-flight separation/staging event between a Ares I-similar First Stage and a representative Upper Stage. Demonstrated assembly and recovery of a new Ares I-like First Stage element at KSC. Demonstrated First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics, and parachute performance. Characterized the magnitude of integrated vehicle roll torque throughout First Stage flight.

  17. Thermal Vacuum Testing of a Helium Loop Heat Pipe for Large Area Cryocooling

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Robinson, Franklin

    2016-01-01

    Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and to verify its ability to cool large areas or components in the 3 degrees Kelvin temperature range. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully by simply applying power to both the capillary pump and the evaporator plate without pre-conditioning. It could adapt to a rapid heat load change and quickly reach a new steady state. Heat removal between 10 megawatts and 140 megawatts was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.

  18. Space station auxiliary thrust chamber technology

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1986-01-01

    A program to design, fabricate and test a 50 lb sub f (222 N) thruster was undertaken (Contract NAS 3-24656) to demonstrate the applicability of the reverse flow concept as an item of auxiliary propulsion for the space station. The thruster was to operate at a mixture ratio (O/F) of 4, be capable of operating for 2 million lb sub f- seconds (8.896 million N-seconds) impulse with a chamber pressure of 75 psia (52 N/square cm) and a nozzle area ratio of 40. Superimposed was also the objective of operating with a strainless steel spherical combustion chamber, which limited the wall temperature to 1700 F (1200 K), an objective specific impulse of 400 lb sub f sec/lbm (3923 N-seconds/Kg), and a demonstration of 500,000 lb sub f-seconds (2,224,000 N-seconds) of impulse. The demonstration of these objectives required a number of design iterations which eventually culminated in a very successful 1000 second demonstration, almost immediately followed by a changed program objective imposed to redesign and demonstrate at a mixture ratio (O/F) of 8. This change was made and more then 250,000 lb sub f seconds (1,112,000 N-seconds) of impulse was successfully demonstrated at a mixture ratio of 8. This document contains a description of the effort conducted during the program to design and demonstrate the thrusters involved.

  19. Design and evaluation of an electrohydraulic servoactuator using active standby redundancy

    NASA Technical Reports Server (NTRS)

    Anderson, R. L.; Cover, W. E.

    1972-01-01

    The application is described of active standby redundancy techniques to a large electrohydraulic servoactuator. The advantages and limitations of active standby redundancy are identified. Special areas of investigation during the development test phase of the program were the evaluation of output transients as a function of channel switching and the nuisance switching characteristics of the system. The feasibility of constructing large electrohydraulic servoactuators using active standby redundancy was successfully demonstrated. In particular the stability and predictability of a properly designed hydromechanical failure detector was demonstrated.

  20. SpaceX Dragon Parachute Test

    NASA Image and Video Library

    2018-03-04

    SpaceX performed its fourteenth overall parachute test supporting Crew Dragon development. This most recent exercise was the first of several planned parachute system qualification tests ahead of the spacecraft’s first crewed flight and resulted in the successful touchdown of Crew Dragon’s parachute system. During this test, a C-130 aircraft transported the parachute test vehicle, designed to achieve the maximum speeds that Crew Dragon could experience on re-entry, over the Mojave Desert in Southern California and dropped the vehicle from an altitude of 25,000 feet. The test demonstrated an off-nominal situation, deploying only one of the two drogue chutes and intentionally skipping a reefing stage on one of the four main parachutes, proving a safe landing in such a contingency scenario.

  1. The Herschel Data Processing System — HIPE and Pipelines — Up and Running Since the Start of the Mission

    NASA Astrophysics Data System (ADS)

    Ott, S.

    2010-12-01

    The Herschel Space Observatory is the fourth cornerstone mission in the ESA science programme and performs photometry and spectroscopy in the 55 - 672 micron range. The development of the Herschel Data Processing System started in 2002 to support the data analysis for Instrument Level Tests. The Herschel Data Processing System was used for the pre-flight characterisation of the instruments, and during various ground segment test campaigns. Following the successful launch of Herschel 14th of May 2009 the Herschel Data Processing System demonstrated its maturity when the first PACS preview observation of M51 was processed within 30 minutes of reception of the first science data after launch. Also the first HIFI observations on DR21 were successfully reduced to high quality spectra, followed by SPIRE observations on M66 and M74. A fast turn-around cycle between data retrieval and the production of science-ready products was demonstrated during the Herschel Science Demonstration Phase Initial Results Workshop held 7 months after launch, which is a clear proof that the system has reached a good level of maturity. We will summarise the scope, the management and development methodology of the Herschel Data Processing system, present some key software elements and give an overview about the current status and future development milestones.

  2. Elastomer liners for geothermal tubulars Y267 EPDM Liner Program:

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirasuna, A.R.; Davis, D.L.; Flickinger, J.E.

    1987-12-01

    The elastomer, Y267 EPDM, has been identified as a hydrothermally stable material which can operate at temperatures in excess of 320/sup 0/C. The goal of the Y267 Liner Program was to demonstrate the feasibility of using this material as a liner for mild steel tubulars to prevent or mitigate corrosion. If successful, the usage of EPDM lined pipe by the geothermal community may have a significant impact on operating costs and serve as a viable alternative to the use of alloyed tubulars. Tooling procedures were developed under this program to mold a 0.64 cm (0.25'') thick Y267 EPDM liner intomore » a tubular test section 61 cm (2') in length and 19.1 cm (7.5'') in diameter (ID). A successful effort was made to identify a potential coupling agent to be used to bond the elastomer to the steel tubular wall. This agent was found to withstand the processing conditions associated with curing the elastomer at 288/sup 0/C and to retain a significant level of adhesive strength following hydrothermal testing in a synthetic brine at 260/sup 0/C for a period of 166 hours. Bonding tests were conducted on specimens of mild carbon steel and several alloys including Hastelloy C-276. An objective of the program was to field test the lined section of pipe mentioned above at a geothermal facility in the Imperial Valley. Though a test was conducted, problems encountered during the lining operation precluded an encouraging outcome. The results of the field demonstration were inconclusive. 6 refs., 13 figs., 13 tabs« less

  3. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.A. Ebadian

    1999-09-30

    The Princeton Plasma Physics Laboratory (PPPL) demonstration of the diamond wire cutting technology on the surrogate of the Tokamak Fusion Test Reactor (TFTR), Figure 1, was performed from August 23-September 3, 1999. The plated diamond wire, Figure 2, was successful in cutting through all components of the TFTR surrogate including stainless steel, inconel and graphite. The demonstration tested three different void fill materials (mortar with sand, Rheocell-15, and foam) and three cooling systems (water, air, and liquid nitrogen). The optimum combination was determined to be the use of the low-density concrete void fill, Rheocell-15 with an average density of 52more » lbs/ft{sup 3}, using a water coolant. However, the liquid nitrogen performed better than expected with only minor problems and was considered to be a successful demonstration of the Bluegrass Concrete Cutting, Inc. proprietary liquid-nitrogen coolant system. Data from the demonstration is being calculated and a summary of the technology demonstration will be included in the October monthly report. An ITSR will be written comparing the diamond wire saw to the plasma arc (baseline) technology. The MTR Chemical Protective Suit, a proprietary new suit from Kimberly Clark, was evaluated from 8/9/99 to 8/12/99 at Beaver, WV. This particular suit was tested on subjects performing three different tasks: climbing through a horizontal confined space, vertical confined space (pit), and loading and unloading material using a wheel barrow. Multiple test subjects performed each task for 20 minutes each. Performance of the innovative suit was compared to two commonly used types of protective clothing. Vital statistics, including body temperature and heart rate, were continuously monitored and recorded by an authorized physician. A summary of the demonstration will be included in the October monthly report. Along with the MTR Chemical Protective Suit, the VitalSense{trademark} Telemetric Monitoring System from Mini Mitter Co., Inc. was evaluated. A summary of the demonstration will be included in the October monthly report. A Kool-Vest from MicroClimate Systems, Inc. was evaluated during assessment at Beaver, WV from 8/16/99 to 8/17/99. The evaluation was performed in the same manner as the MTR Chemical Protective Suit described above. A summary of the demonstration will be included in the October monthly report. A brochure announcing the new Gateway to Environmental Technology (GET) website was produced by FIU-HCET and is being distributed to the D&D community by FETC-DDFA. The website provides links to the TIS and other decision support systems developed at FIU-HCET.« less

  4. Passive Magnetic Bearing With Ferrofluid Stabilization

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph; DiRusso, Eliseo

    1996-01-01

    A new class of magnetic bearings is shown to exist analytically and is demonstrated experimentally. The class of magnetic bearings utilize a ferrofluid/solid magnet interaction to stabilize the axial degree of freedom of a permanent magnet radial bearing. Twenty six permanent magnet bearing designs and twenty two ferrofluid stabilizer designs are evaluated. Two types of radial bearing designs are tested to determine their force and stiffness utilizing two methods. The first method is based on the use of frequency measurements to determine stiffness by utilizing an analytical model. The second method consisted of loading the system and measuring displacement in order to measure stiffness. Two ferrofluid stabilizers are tested and force displacement curves are measured. Two experimental test fixtures are designed and constructed in order to conduct the stiffness testing. Polynomial models of the data are generated and used to design the bearing prototype. The prototype was constructed and tested and shown to be stable. Further testing shows the possibility of using this technology for vibration isolation. The project successfully demonstrated the viability of the passive magnetic bearing with ferrofluid stabilization both experimentally and analytically.

  5. Comparison of a percutaneous device and the bougie-assisted surgical technique for emergency cricothyrotomy: an experimental study on a porcine model performed by air ambulance anaesthesiologists.

    PubMed

    Nakstad, Anders R; Bredmose, Per P; Sandberg, Mårten

    2013-07-26

    A large number of techniques and devices for cricothyroidotomy have been developed. In this study, the Portex™ Cricothyroidotomy Kit (PCK, Smiths Medical Ltd, Hythe, UK) was compared with the bougie assisted emergency surgical cricothyrotomy technique (BACT). Twenty air ambulance anaesthesiologists performed emergency cricothyrotomy on a cadaveric porcine airway model using both PCK and BACT. Baseline performance and performance after the intensive training package were recorded. Success rate, time to secured airway and tracheal damage were the primary endpoints, and confidence rating was a secondary endpoint. During baseline testing, success rates for PCK and BACT were 60% and 95%, respectively. Tracheal injury rate with PCK was 60% while no such injury was found in BACT. A lecture was given and skills were trained until the participants were able to perform five consecutive successful procedures with both techniques. In the post-training test, all participants were successful with either technique. The mean time to successful insertion was reduced by 15.7 seconds (from 36.3 seconds to 20.6 seconds, p< 0.001) for PCK and by 7.8 seconds (from 44.9 seconds to 37.1 seconds, p=0.021) for BACT. In the post-training scenario, securing the airway with PCK was significantly faster than with BACT (p<0.001). Post-training tracheal laceration occurred in six (30%) of the PCK procedures and in none of the BACT procedures (p=0.028). Testing the base-line PCK skills of prehospital anaesthesiologists revealed low confidence, sub-optimal performance and a very high failure rate. The BACT technique demonstrated a significantly higher success rate and no tracheal damage. In spite of PCK being a significantly faster technique in the post-training test, the anaesthesiologists still reported a higher confidence in BACT. Limitations of the cadaveric porcine airway may have influenced this study because the airway did not challenge the clinicians with realistic tissue bleeding.

  6. Active Control of High Frequency Combustion Instability in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    Corrigan, Bob (Technical Monitor); DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    Active control of high-frequency (greater than 500 Hz) combustion instability has been demonstrated in the NASA single-nozzle combustor rig at United Technologies Research Center. The combustor rig emulates an actual engine instability and has many of the complexities of a real engine combustor (i.e. actual fuel nozzle and swirler, dilution cooling, etc.) In order to demonstrate control, a high-frequency fuel valve capable of modulating the fuel flow at up to 1kHz was developed. Characterization of the fuel delivery system was accomplished in a custom dynamic flow rig developed for that purpose. Two instability control methods, one model-based and one based on adaptive phase-shifting, were developed and evaluated against reduced order models and a Sectored-1-dimensional model of the combustor rig. Open-loop fuel modulation testing in the rig demonstrated sufficient fuel modulation authority to proceed with closed-loop testing. During closed-loop testing, both control methods were able to identify the instability from the background noise and were shown to reduce the pressure oscillations at the instability frequency by 30%. This is the first known successful demonstration of high-frequency combustion instability suppression in a realistic aero-engine environment. Future plans are to carry these technologies forward to demonstration on an advanced low-emission combustor.

  7. Integration and Testing Challenges of Small, Multiple Satellite Missions: Experiences from the Space Technology 5 Project

    NASA Technical Reports Server (NTRS)

    Sauerwein, Timothy A.; Gostomski, Thomas

    2008-01-01

    The ST5 technology demonstration mission led by GSFC of NASA's New Millennium Program managed by JPL consisted of three micro satellites (approximately 30 kg each) deployed into orbit from the Pegasus XL launch vehicle. In order to meet the launch date schedule of ST5, a different approach was required rather than the standard I&T approach used for single, room-sized satellites. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center. It was determined that there was insufficient time in the schedule to perform three spacecraft I&T activities in series using standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all three spacecraft, learning and gaining knowledge and efficiency as spacecraft #1 integration and testing progressed. They became acutely familiar with the hardware, operation and processes for I&T, thus had the experience and knowledge to safely execute I&T for spacecraft #2 and #3. The integration team was extremely versatile; each member could perform many different activities or work any spacecraft, when needed. ST5 was successfully integrated, tested and shipped to the launch site per the I&T schedule that was planned three years previously. The I&T campaign was completed with ST5's successful launch on March 22, 2006.

  8. Design and Testing of a Percutaneously Implantable Fetal Pacemaker

    PubMed Central

    Loeb, Gerald E.; Zhou, Li; Zheng, Kaihui; Nicholson, Adriana; Peck, Raymond A.; Krishnan, Anjana; Silka, Michael; Pruetz, Jay; Chmait, Ramen; Bar-Cohen, Yaniv

    2012-01-01

    We are developing a cardiac pacemaker with a small, cylindrical shape that permits percutaneous implantation into a fetus to treat complete heart block and consequent hydrops fetalis, which can otherwise be fatal. The device uses off-the-shelf components including a rechargeable lithium cell and a highly efficient relaxation oscillator encapsulated in epoxy and glass. A corkscrew electrode made from activated iridium can be screwed into the myocardium, followed by release of the pacemaker and a short, flexible lead entirely within the chest of the fetus to avoid dislodgement from fetal movement. Acute tests in adult rabbits demonstrated the range of electrical parameters required for successful pacing and the feasibility of successfully implanting the device percutaneously under ultrasonic imaging guidance. The lithium cell can be recharged inductively as needed, as indicated by a small decline in the pulsing rate. PMID:22855119

  9. Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover

    NASA Technical Reports Server (NTRS)

    Scheidegger, Brianne; Burke, Kenneth; Jakupca, Ian

    2012-01-01

    This presentation describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover at the NASA Glenn Research Center. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the SCARAB rover s hotel loads. The power system, including the non-flow-through fuel cell technology, successfully demonstrated its goal as a range extender by powering hotel loads on the SCARAB rover, making this demonstration the first to use the non-flow-through fuel cell technology on a mobile platform.

  10. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorgian, Vahan; O'Neill, Barbara

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Officemore » selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls.« less

  11. SBIR Phase II Final Report: Low cost Autonomous NMR and Multi-sensor Soil Monitoring Instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, David O.

    In this 32-month SBIR Phase 2 program, Vista Clara designed, assembled and successfully tested four new NMR instruments for soil moisture measurement and monitoring: An enhanced performance man-portable Dart NMR logging probe and control unit for rapid, mobile measurement in core holes and 2” PVC access wells; A prototype 4-level Dart NMR monitoring probe and prototype multi-sensor soil monitoring control unit for long-term unattended monitoring of soil moisture and other measurements in-situ; A non-invasive 1m x 1m Discus NMR soil moisture sensor with surface based magnet/coil array for rapid measurement of soil moisture in the top 50 cm of themore » subsurface; A non-invasive, ultra-lightweight Earth’s field surface NMR instrument for non-invasive measurement and mapping of soil moisture in the top 3 meters of the subsurface. The Phase 2 research and development achieved most, but not all of our technical objectives. The single-coil Dart in-situ sensor and control unit were fully developed, demonstrated and successfully commercialized within the Phase 2 period of performance. The multi-level version of the Dart probe was designed, assembled and demonstrated in Phase 2, but its final assembly and testing were delayed until close to the end of the Phase 2 performance period, which limited our opportunities for demonstration in field settings. Likewise, the multi-sensor version of the Dart control unit was designed and assembled, but not in time for it to be deployed for any long-term monitoring demonstrations. The prototype ultra-lightweight surface NMR instrument was developed and demonstrated, and this result will be carried forward into the development of a new flexible surface NMR instrument and commercial product in 2018.« less

  12. Half of the European fruit fly species barcoded (Diptera, Tephritidae); a feasibility test for molecular identification

    PubMed Central

    Smit, John; Reijnen, Bastian; Stokvis, Frank

    2013-01-01

    Abstract A feasibility test of molecular identification of European fruit flies (Diptera: Tephritidae) based on COI barcode sequences has been executed. A dataset containing 555 sequences of 135 ingroup species from three subfamilies and 42 genera and one single outgroup species has been analysed. 73.3% of all included species could be identified based on their COI barcode gene, based on similarity and distances. The low success rate is caused by singletons as well as some problematic groups: several species groups within the genus Terellia and especially the genus Urophora. With slightly more than 100 sequences – almost 20% of the total – this genus alone constitutes the larger part of the failure for molecular identification for this dataset. Deleting the singletons and Urophora results in a success-rate of 87.1% of all queries and 93.23% of the not discarded queries as correctly identified. Urophora is of special interest due to its economic importance as beneficial species for weed control, therefore it is desirable to have alternative markers for molecular identification. We demonstrate that the success of DNA barcoding for identification purposes strongly depends on the contents of the database used to BLAST against. Especially the necessity of including multiple specimens per species of geographically distinct populations and different ecologies for the understanding of the intra- versus interspecific variation is demonstrated. Furthermore thresholds and the distinction between true and false positives and negatives should not only be used to increase the reliability of the success of molecular identification but also to point out problematic groups, which should then be flagged in the reference database suggesting alternative methods for identification. PMID:24453563

  13. Change blindness and visual memory: visual representations get rich and act poor.

    PubMed

    Varakin, D Alexander; Levin, Daniel T

    2006-02-01

    Change blindness is often taken as evidence that visual representations are impoverished, while successful recognition of specific objects is taken as evidence that they are richly detailed. In the current experiments, participants performed cover tasks that required each object in a display to be attended. Change detection trials were unexpectedly introduced and surprise recognition tests were given for nonchanging displays. For both change detection and recognition, participants had to distinguish objects from the same basic-level category, making it likely that specific visual information had to be used for successful performance. Although recognition was above chance, incidental change detection usually remained at floor. These results help reconcile demonstrations of poor change detection with demonstrations of good memory because they suggest that the capability to store visual information in memory is not reflected by the visual system's tendency to utilize these representations for purposes of detecting unexpected changes.

  14. CID overview

    NASA Technical Reports Server (NTRS)

    Hayduk, R. J.

    1986-01-01

    On December 1, 1984, NASA and the Federal Aviation Administration (FAA) conducted the first remotely piloted air-to-ground crash test of a transport category aircraft. The Full-Scale Transport Controlled Impact Demonstration (CID) was the culmination of 4 years of effort by the two agencies. NASA and the FAA had many objectives during the joint planning and execution of the Controlled Impact Demonstration. The structural loads experiment was very successful. Ninety-seven percent of the channels were active at impact. The data is still being assessed. Only a portion of the data is presented here; approximately 80 channels of data are available. Analysis of the remaining data is in progress. Interior photography was also very successful. One hundred percent of the cameras functioned. The film contains unique information on the development of fire and smoke in the interior of the aircraft. From a human tolerance point of view, the CID was simulation of a survivable crash.

  15. Vocabulary Learning in a Yorkshire Terrier: Slow Mapping of Spoken Words

    PubMed Central

    Griebel, Ulrike; Oller, D. Kimbrough

    2012-01-01

    Rapid vocabulary learning in children has been attributed to “fast mapping”, with new words often claimed to be learned through a single presentation. As reported in 2004 in Science a border collie (Rico) not only learned to identify more than 200 words, but fast mapped the new words, remembering meanings after just one presentation. Our research tests the fast mapping interpretation of the Science paper based on Rico's results, while extending the demonstration of large vocabulary recognition to a lap dog. We tested a Yorkshire terrier (Bailey) with the same procedures as Rico, illustrating that Bailey accurately retrieved randomly selected toys from a set of 117 on voice command of the owner. Second we tested her retrieval based on two additional voices, one male, one female, with different accents that had never been involved in her training, again showing she was capable of recognition by voice command. Third, we did both exclusion-based training of new items (toys she had never seen before with names she had never heard before) embedded in a set of known items, with subsequent retention tests designed as in the Rico experiment. After Bailey succeeded on exclusion and retention tests, a crucial evaluation of true mapping tested items previously successfully retrieved in exclusion and retention, but now pitted against each other in a two-choice task. Bailey failed on the true mapping task repeatedly, illustrating that the claim of fast mapping in Rico had not been proven, because no true mapping task had ever been conducted with him. It appears that the task called retention in the Rico study only demonstrated success in retrieval by a process of extended exclusion. PMID:22363421

  16. Defense Acquisitions: Assessments of Selected Weapon Programs

    DTIC Science & Technology

    2009-03-01

    a field experiment , but program officials report that it will take additional efforts to transition the waveform to an operational platform. The...successfully demonstrated during a field experiment ending in October 2008 that included a multi-subnet test by Future Combat Systems personnel. The...Individual Programs 29 Advanced Extremely High Frequency (AEHF) Satellites 31 Advanced Threat Infrared Countermeasure/Common Missile Warning System

  17. Resin transfer molding for advanced composite primary wing and fuselage structures

    NASA Technical Reports Server (NTRS)

    Markus, Alan

    1992-01-01

    The stitching and resin transfer molding (RTM) processes developed at Douglas Aircraft Co. are successfully demonstrating significant cost reductions with good damage tolerance properties. These attributes were identified as critical to application of advanced composite materials to commercial aircraft primary structures. The RTM/stitching developments, cost analyses, and test results are discussed of the NASA Advanced Composites Technology program.

  18. Facility Activation and Characterization for IPD Oxidizer Turbopump Cold-Flow Testing at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; Raines, N. G.; Farner, B. R.; Ryan, H. M.

    2004-01-01

    The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is part of NASA's Next Generation Launch Technology (NGLT) program, which seeks to provide safe, dependable, cost-cutting technologies for future space launch systems. The project also is part of the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today s state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The intended full flow engine cycle is a key component in achieving all of the aforementioned goals. The IPD Program achieved a major milestone with the successful completion of the IPD Oxidizer Turbopump (OTP) cold-flow test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in November 2001. A total of 11 IPD OTP cold-flow tests were completed. Following an overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and the cold-flow testing of the IPD OTP. In addition, some of the facility challenges encountered during the test project are addressed.

  19. Nevada Test Site-Directed Research, Development, and Demonstration. FY2005 report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Will

    2006-09-01

    The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did anmore » exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R&D projects, as presented in this report.« less

  20. A Hexapod Robot to Demonstrate Mesh Walking in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Foor, David C.

    2005-01-01

    The JPL Micro-Robot Explorer (MRE) Spiderbot is a robot that takes advantage of its small size to perform precision tasks suitable for space applications. The Spiderbot is a legged robot that can traverse harsh terrain otherwise inaccessible to wheeled robots. A team of Spiderbots can network and can exhibit collaborative efforts to SUCCeSSfUlly complete a set of tasks. The Spiderbot is designed and developed to demonstrate hexapods that can walk on flat surfaces, crawl on meshes, and assemble simple structures. The robot has six legs consisting of two spring-compliant joints and a gripping actuator. A hard-coded set of gaits allows the robot to move smoothly in a zero-gravity environment along the mesh. The primary objective of this project is to create a Spiderbot that traverses a flexible, deployable mesh, for use in space repair. Verification of this task will take place aboard a zero-gravity test flight. The secondary objective of this project is to adapt feedback from the joints to allow the robot to test each arm for a successful grip of the mesh. The end result of this research lends itself to a fault-tolerant robot suitable for a wide variety of space applications.

  1. Integrated Liquid Bismuth Propellant Feed System

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.

    2006-01-01

    A prototype bismuth propellant feed and control system was constructed and tested. An electromagnetic pump was used in this system to provide fine control of the hydrostatic pressure, and a new type of in-line flow sensor was developed to provide an accurate, real-time measurement of the mass flow rate. High-temperature material compatibility was a driving design requirement for the pump and flow sensor, leading to the selection of macor for the main body of both components. Post-test inspections of both components revealed no cracks or leaking in either. In separate proof-of-concept experiments, the pump produced a linear pressure rise as a function of current that compared favorably with theoretical pump pressure predictions, with a pressure of 10 kPa at 30 A. Flow sensing was successfully demonstrated in a bench-top test using gallium as a substitute liquid metal. A real-time controller was successfully used to control the entire system, simultaneously monitoring all power supplies and performing data acquisition duties.

  2. Diagnosis of Misalignment in Overhung Rotor using the K-S Statistic and A2 Test

    NASA Astrophysics Data System (ADS)

    Garikapati, Diwakar; Pacharu, RaviKumar; Munukurthi, Rama Satya Satyanarayana

    2018-02-01

    Vibration measurement at the bearings of rotating machinery has become a useful technique for diagnosing incipient fault conditions. In particular, vibration measurement can be used to detect unbalance in rotor, bearing failure, gear problems or misalignment between a motor shaft and coupled shaft. This is a particular problem encountered in turbines, ID fans and FD fans used for power generation. For successful fault diagnosis, it is important to adopt motor current signature analysis (MCSA) techniques capable of identifying the faults. It is also useful to develop techniques for inferring information such as the severity of fault. It is proposed that modeling the cumulative distribution function of motor current signals with respect to appropriate theoretical distributions, and quantifying the goodness of fit with the Kolmogorov-Smirnov (KS) statistic and A2 test offers a suitable signal feature for diagnosis. This paper demonstrates the successful comparison of the K-S feature and A2 test for discriminating the misalignment fault from normal function.

  3. Associative symmetry in a spatial sample-response paradigm

    PubMed Central

    Vasconcelos, Marco; Urcuioli, Peter J.

    2011-01-01

    Symmetry has been difficult to observe in nonhumans mainly because they seem to perceive stimuli as a conjunction of visual, spatial, and temporal characteristics. When such characteristics are controlled, symmetry does emerge in nonhumans (cf. Frank and Wasserman 2005; Urcuioli 2008). Recently, however, Garcia and Benjumea (2006) reported symmetry in pigeons without controlling for temporal order. The present experiments explored their paradigm and the ingredients for their success. Experiments 1 and 2 sought to replicate their findings and to examine different symmetry measures. We found evidence for symmetry using non-reinforced choice probe tests, a latency-based test, and a reinforced consistent versus inconsistent manipulation. Experiment 3 adapted their procedure to successive matching to evaluate their contention that a choice between at least two comparisons is necessary for symmetry to emerge. Contrary to their prediction, symmetry was observed following go/no-go training. Our results confirm Garcia and Benjumea’s findings, extend them to other test and training procedures, and once again demonstrate symmetry in the absence of language. PMID:21238554

  4. Al-based anti-corrosion and T-permeation barrier development for future DEMO blankets

    NASA Astrophysics Data System (ADS)

    Krauss, W.; Konys, J.; Holstein, N.; Zimmermann, H.

    2011-10-01

    In the Helium-Cooled-Liquid-Lead (HCLL) design of Test-Blanket-Modules (TBM's) for a future fusion power plant Pb-15.7Li is used as liquid breeder which is in direct contact with the structure material, e.g. EUROFER steel. Compatibility testing showed that high corrosion attack appears and that the dissolved steel components form precipitates with a high risk of system blockages. A reliable operation needs coatings as corrosion barriers. The earlier developed Hot-Dip Aluminisation (HDA) process has shown that Al-based scales can act as anti-corrosion as well as T-permeation barriers. Meanwhile two advanced electro-chemically based processes for deposition of Al-scales were successfully developed. The first (ECA = Electro-Chemical Al-deposition) is working with an organic electrolyte and the second one (ECX = Electro-Chemical-X-metal-deposition) is based on ionic liquids. Coatings in the μm-range were deposited homogeneously with exact controllable thicknesses. Metallurgical investigations showed the successful generation of protective scales and compatibility testing demonstrated the barrier function.

  5. Multi-Gas Monitor (MGM)

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeff; Limero, Thomas

    2015-01-01

    Multi-Gas Monitor is a flight experiment, a technology demonstration to test the ability of tunable diode laser spectroscopy based instrument to stay in calibration long term and follow events and dynamics occurring with the cabin atmosphere. MGM measures 4 gases: oxygen, carbon monoxide, ammonia and water vapor, as well as temperature and pressure. This month marked one year of successful and continuous MGM operation on ISS. The crew successfully tested the ammonia channel using a commercially available inhalant. MGM has detected some interesting dynamics inside Japanese Experiment Module (JEM) as a result of CO2 thruster firings from the SPHERES/RINGS payload and water spikes from dry out cycling of the JEM heat exchangers. Results to date have given us high confidence in the technology such that we believe this could have applications in the energy and medical sectors. This presentation will summarize the testing and results of the unit on ISS and suggest areas of use within the energy and medical arenas.

  6. X-33 Reusable Launch Vehicle Demonstrator, Spaceport and Range

    NASA Technical Reports Server (NTRS)

    Letchworth, Gary F.

    2011-01-01

    The X-33 was a suborbital reusable spaceplane demonstrator, in development from 1996 to early 2001. The intent of the demonstrator was to lower the risk of building and operating a full-scale reusable vehicle fleet. Reusable spaceplanes offered the potential to lower the cost of access to space by an order of magnitude, compared with conventional expendable launch vehicles. Although a cryogenic tank failure during testing ultimately led to the end of the effort, the X-33 team celebrated many successes during the development. This paper summarizes some of the accomplishments and milestones of this X-vehicle program, from the perspective of an engineer who was a member of the team throughout the development. X-33 Program accomplishments include rapid, flight hardware design, subsystem testing and fabrication, aerospike engine development and testing, Flight Operations Center and Operations Control Center ground systems design and construction, rapid Environmental Impact Statement NEPA process approval, Range development and flight plan approval for test flights, and full-scale system concept design and refinement. Lessons from the X-33 Program may have potential application to new RLV and other aerospace systems being developed a decade later.

  7. Pressurized fluidized bed combustion of coal for electric power generation the AEP approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markowsky J.J.; Wickstrom, B.

    1982-08-01

    American Electric Power (AEP), STAL-LAVAL Turbine A.B. (SL), and Deutsche Babcock Anlagen AG (DBA) are working on a program estimated to cost $250 million that will lead toward the construction of a large (170,000 KW) commercial demonstration of an advanced electric power plant incorporating Pressurized Fluidized Bed Combustion (PFBC) of coal. A pilot plant test program carried out during 1977-1980 verified combustor performance and demonstrated long gas turbine blade life. Parallel efforts during this period involved the design of the 170,000 kW Commercial Demonstration Plant (CDP) and a 500,000 kW Commercial Plant which essentially consists of two CDP combustors-gas turbinemore » modules and a larger capacity steam cycle. These efforts showed considerable economic advantages of PFBC-combined cycle power generation over other alternative technologies. A 15,000 KW (thermal) component test facility (CTF) is presently under construction in Sweden. Extensive testing is scheduled to begin in early 1982. Upon successful completion of these tests, AEP intends to start construction of the CDP in 1983; the plant is expected to supply power to the AEP network by 1986.« less

  8. Testing of a Miniature Loop Heat Pipe with Multiple Evaporators and Multiple Condensers for Space Applications

    NASA Technical Reports Server (NTRS)

    Nagano, Hosei; Ku, Jentung

    2006-01-01

    Thermal performance of a miniature loop heat pipe (MLHP) with two evaporators and two condensers is described. A comprehensive test program, including start-up, high power, low power, power cycle, and sink temperature cycle tests, has been executed at NASA Goddard Space Flight Center for potential space applications. Experimental data showed that the loop could start with heat loads as low as 2W. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of l00W to 120W, and could recover from a dry-out by reducing the heat load to evaporators. Low power test results showed the loop could work stably for heat loads as low as 1 W to each evaporator. Excellent adaptability of the MLHP to rapid changes of evaporator power and sink temperature were also demonstrated.

  9. Aeroservoelastic Wind-Tunnel Test of the SUGAR Truss Braced Wing Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Allen, Timothy J.; Funk, Christie J.; Castelluccio, Mark A.; Sexton, Bradley W.; Claggett, Scott; Dykman, John; Coulson, David A.; Bartels, Robert E.

    2015-01-01

    The Subsonic Ultra Green Aircraft Research (SUGAR) Truss-Braced Wing (TBW) aeroservoelastic (ASE) wind-tunnel test was conducted in the NASA Langley Transonic Dynamics Tunnel (TDT) and was completed in April, 2014. The primary goals of the test were to identify the open-loop flutter boundary and then demonstrate flutter suppression. A secondary goal was to demonstrate gust load alleviation (GLA). Open-loop flutter and limit cycle oscillation onset boundaries were identified for a range of Mach numbers and various angles of attack. Two sets of control laws were designed for the model and both sets of control laws were successful in suppressing flutter. Control laws optimized for GLA were not designed; however, the flutter suppression control laws were assessed using the TDT Airstream Oscillation System. This paper describes the experimental apparatus, procedures, and results of the TBW wind-tunnel test. Acquired system ID data used to generate ASE models is also discussed.2 study.

  10. Lions (Panthera leo) solve, learn, and remember a novel resource acquisition problem.

    PubMed

    Borrego, Natalia; Dowling, Brian

    2016-09-01

    The social intelligence hypothesis proposes that the challenges of complex social life bolster the evolution of intelligence, and accordingly, advanced cognition has convergently evolved in several social lineages. Lions (Panthera leo) offer an ideal model system for cognitive research in a highly social species with an egalitarian social structure. We investigated cognition in lions using a novel resource task: the suspended puzzle box. The task required lions (n = 12) to solve a novel problem, learn the techniques used to solve the problem, and remember techniques for use in future trials. The majority of lions demonstrated novel problem-solving and learning; lions (11/12) solved the task, repeated success in multiple trials, and significantly reduced the latency to success across trials. Lions also demonstrated cognitive abilities associated with memory and solved the task after up to a 7-month testing interval. We also observed limited evidence for social facilitation of the task solution. Four of five initially unsuccessful lions achieved success after being partnered with a successful lion. Overall, our results support the presence of cognition associated with novel problem-solving, learning, and memory in lions. To date, our study is only the second experimental investigation of cognition in lions and further supports expanding cognitive research to lions.

  11. Nonlinear Analysis and Preliminary Testing Results of a Hybrid Wing Body Center Section Test Article

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.; Wu, Hsi-Yung T.

    2015-01-01

    A large test article was recently designed, analyzed, fabricated, and successfully tested up to the representative design ultimate loads to demonstrate that stiffened composite panels with through-the-thickness reinforcement are a viable option for the next generation large transport category aircraft, including non-conventional configurations such as the hybrid wing body. This paper focuses on finite element analysis and test data correlation of the hybrid wing body center section test article under mechanical, pressure and combined load conditions. Good agreement between predictive nonlinear finite element analysis and test data is found. Results indicate that a geometrically nonlinear analysis is needed to accurately capture the behavior of the non-circular pressurized and highly-stressed structure when the design approach permits local buckling.

  12. Reduced-gravity environment hardware demonstrations of a prototype miniaturized flow cytometer and companion microfluidic mixing technology.

    PubMed

    Phipps, William S; Yin, Zhizhong; Bae, Candice; Sharpe, Julia Z; Bishara, Andrew M; Nelson, Emily S; Weaver, Aaron S; Brown, Daniel; McKay, Terri L; Griffin, DeVon; Chan, Eugene Y

    2014-11-13

    Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described.

  13. Reduced-gravity Environment Hardware Demonstrations of a Prototype Miniaturized Flow Cytometer and Companion Microfluidic Mixing Technology

    PubMed Central

    Bae, Candice; Sharpe, Julia Z.; Bishara, Andrew M.; Nelson, Emily S.; Weaver, Aaron S.; Brown, Daniel; McKay, Terri L.; Griffin, DeVon; Chan, Eugene Y.

    2014-01-01

    Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described. PMID:25490614

  14. Experiments and simulation of a net closing mechanism for tether-net capture of space debris

    NASA Astrophysics Data System (ADS)

    Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.

    2017-10-01

    This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.

  15. A Resonant Pulse Detonation Actuator for High-Speed Boundary Layer Separation Control

    NASA Technical Reports Server (NTRS)

    Beck, B. T.; Cutler, A. D.; Drummond, J. P.; Jones, S. B.

    2004-01-01

    A variety of different types of actuators have been previously investigated as flow control devices. Potential applications include the control of boundary layer separation in external flows, as well as jet engine inlet and diffuser flow control. The operating principles for such devices are typically based on either mechanical deflection of control surfaces (which include MEMS flap devices), mass injection (which includes combustion driven jet actuators), or through the use of synthetic jets (diaphragm devices which produce a pulsating jet with no net mass flow). This paper introduces some of the initial flow visualization work related to the development of a relatively new type of combustion-driven jet actuator that has been proposed based on a pulse detonation principle. The device is designed to utilize localized detonation of a premixed fuel (Hydrogen)-air mixture to periodically inject a jet of gas transversely into the primary flow. Initial testing with airflow successfully demonstrated resonant conditions within the range of acoustic frequencies expected for the design. Schlieren visualization of the pulsating air jet structure revealed axially symmetric vortex flow, along with the formation of shocks. Flow visualization of the first successful sustained oscillation condition is also demonstrated for one configuration of the current test section. Future testing will explore in more detail the onset of resonant combustion and the approach to conditions of sustained resonant detonation.

  16. Testing of a Neon Loop Heat Pipe for Large Area Cryocooling

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Robinson, Franklin Lee

    2014-01-01

    Cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks is required for future NASA missions. A cryogenic loop heat pipe (CLHP) can provide a closed-loop cooling system for this purpose and has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A neon CLHP was tested extensively in a thermal vacuum chamber using a cryopump as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components. Tests conducted included loop cool-down from the ambient temperature, startup, power cycle, heat removal capability, loop capillary limit and recovery from a dry-out, low power operation, and long duration steady state operation. The neon CLHP demonstrated robust operation. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully by applying power to both the pump and evaporator without any pre-conditioning. It could adapt to changes in the pump power andor evaporator power, and reach a new steady state very quickly. The evaporator could remove heat loads between 0.25W and 4W. When the pump capillary limit was exceeded, the loop could resume its normal function by reducing the pump power. Steady state operations were demonstrated for up to 6 hours. The ability of the neon loop to cool large areas was therefore successfully verified.

  17. Electric utility acid fuel cell stack technology advancement

    NASA Astrophysics Data System (ADS)

    Congdon, J. V.; Goller, G. J.; Greising, G. J.; Obrien, J. J.; Randall, S. A.; Sandelli, G. J.; Breault, R. D.; Austin, G. W.; Bopse, S.; Coykendall, R. D.

    1984-11-01

    The principal effort under this program was directed at the fuel cell stack technology required to accomplish the initial feasibility demonstrations of increased cell stack operating pressures and temperatures, increased cell active area, incorporation of the ribbed substrate cell configuration at the bove conditions, and the introduction of higher performance electrocatalysts. The program results were successful with the primary accomplishments being: (1) fabrication of 10 sq ft ribbed substrate, cell components including higher performing electrocatalysts; (2) assembly of a 10 sq ft, 30-cell short stack; and (3) initial test of this stack at 120 psia and 405 F. These accomplishments demonstrate the feasibility of fabricating and handling large area cells using materials and processes that are oriented to low cost manufacture. An additional accomplishment under the program was the testing of two 3.7 sq ft short stacks at 12 psia/405 F to 5400 and 4500 hours respectively. These tests demonstrate the durability of the components and the cell stack configuration to a nominal 5000 hours at the higher pressure and temperature condition planned for the next electric utility power plant.

  18. Boeing's variable geometry chevron: morphing aerospace structures for jet noise reduction

    NASA Astrophysics Data System (ADS)

    Calkins, Frederick T.; Mabe, James H.; Butler, George W.

    2006-03-01

    Boeing is applying cutting edge smart material actuators to the next generation morphing technologies for aircraft. This effort has led to the Variable Geometry Chevrons (VGC), which utilize compact, light weight, and robust shape memory alloy (SMA) actuators. These actuators morph the shape of chevrons on the trailing edge of a jet engine in order to optimize acoustic and performance objectives at multiple flight conditions. We have demonstrated a technical readiness level of 7 by successfully flight testing the VGCs on a Boeing 777-300ER with GE-115B engines. In this paper we describe the VGC design, development and performance during flight test. Autonomous operation of the VGCs, which did not require a control system or aircraft power, was demonstrated. A parametric study was conducted showing the influence of VGC configurations on shockcell generated cabin noise reduction during cruise. The VGC system provided a robust test vehicle to explore chevron configurations for community and shockcell noise reduction. Most importantly, the VGC concept demonstrated an exciting capability to optimize jet nozzle performance at multiple flight conditions.

  19. Development and Lab-Scale Testing of a Gas Generator Hybrid Fuel in Support of the Hydrogen Peroxide Hybrid Upper Stage Program

    NASA Technical Reports Server (NTRS)

    Lund, Gary K.; Starrett, William David; Jensen, Kent C.; McNeal, Curtis (Technical Monitor)

    2001-01-01

    As part of a NASA funded contract to develop and demonstrate a gas generator cycle hybrid rocket motor for upper stage space motor applications, the development and demonstration of a low sensitivity, high performance fuel composition was undertaken. The ultimate goal of the development program was to demonstrate successful hybrid operation (start, stop, throttling) of the fuel with high concentration (90+%) hydrogen peroxide. The formulation development and lab-scale testing of a simple DOT Class 1.4c gas generator propellant is described. Both forward injected center perforated and aft injected end burner hybrid combustion behavior were evaluated with gaseous oxygen and catalytically decomposed 90% hydrogen peroxide. Cross flow and static environments were found to yield profoundly different combustion behaviors, which were further governed by binder type, oxidizer level and, significantly, oxidizer particle size. Primary extinguishment was accomplished via manipulation of PDL behavior and oxidizer turndown, which is enhanced with the hydrogen peroxide system. Laboratory scale combustor results compared very well with 11-inch and 24-inch sub-scale test results with 90% hydrogen peroxide.

  20. Electric utility acid fuel cell stack technology advancement

    NASA Technical Reports Server (NTRS)

    Congdon, J. V.; Goller, G. J.; Greising, G. J.; Obrien, J. J.; Randall, S. A.; Sandelli, G. J.; Breault, R. D.; Austin, G. W.; Bopse, S.; Coykendall, R. D.

    1984-01-01

    The principal effort under this program was directed at the fuel cell stack technology required to accomplish the initial feasibility demonstrations of increased cell stack operating pressures and temperatures, increased cell active area, incorporation of the ribbed substrate cell configuration at the bove conditions, and the introduction of higher performance electrocatalysts. The program results were successful with the primary accomplishments being: (1) fabrication of 10 sq ft ribbed substrate, cell components including higher performing electrocatalysts; (2) assembly of a 10 sq ft, 30-cell short stack; and (3) initial test of this stack at 120 psia and 405 F. These accomplishments demonstrate the feasibility of fabricating and handling large area cells using materials and processes that are oriented to low cost manufacture. An additional accomplishment under the program was the testing of two 3.7 sq ft short stacks at 12 psia/405 F to 5400 and 4500 hours respectively. These tests demonstrate the durability of the components and the cell stack configuration to a nominal 5000 hours at the higher pressure and temperature condition planned for the next electric utility power plant.

  1. Lateral stability and control derivatives of a jet fighter airplane extracted from flight test data by utilizing maximum likelihood estimation

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Steinmetz, G. G.

    1972-01-01

    A method of parameter extraction for stability and control derivatives of aircraft from flight test data, implementing maximum likelihood estimation, has been developed and successfully applied to actual lateral flight test data from a modern sophisticated jet fighter. This application demonstrates the important role played by the analyst in combining engineering judgment and estimator statistics to yield meaningful results. During the analysis, the problems of uniqueness of the extracted set of parameters and of longitudinal coupling effects were encountered and resolved. The results for all flight runs are presented in tabular form and as time history comparisons between the estimated states and the actual flight test data.

  2. A 20000-hour endurance test of a structurally and thermally integrated 5-cm diameter ion thruster main cathode

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1975-01-01

    A 5-cm diameter mercury ion thruster main cathode has completed over 20,000 hours of operation in an ongoing lifetime endurance test. The cathode operating parameters remained at acceptable performance levels throughout the test, the first 9175 hours of which were part of a thruster endurance test. After 20,000 hours, the cathode discharge was easily restarted, the tip orifice indicated negligible erosion and the tip heater showed no degradation. The cathode-isolator- vaporizer assembly, a major thruster subsystem, has thus successfully demonstrated an operational lifetime capability of 20,000 hours, which is the lifetime goal of the 8-cm diameter auxiliary propulsion ion thruster.

  3. Station to instrumented aircraft L-band telemetry system and RF signal controller for spacecraft simulations and station calibration

    NASA Technical Reports Server (NTRS)

    Scaffidi, C. A.; Stocklin, F. J.; Feldman, M. B.

    1971-01-01

    An L-band telemetry system designed to provide the capability of near-real-time processing of calibration data is described. The system also provides the capability of performing computerized spacecraft simulations, with the aircraft as a data source, and evaluating the network response. The salient characteristics of a telemetry analysis and simulation program (TASP) are discussed, together with the results of TASP testing. The results of the L-band system testing have successfully demonstrated the capability of near-real-time processing of telemetry test data, the control of the ground-received signal to within + or - 0.5 db, and the computer generation of test signals.

  4. Interactive Book Reading to Accelerate Word Learning by Kindergarten Children With Specific Language Impairment: Identifying Adequate Progress and Successful Learning Patterns

    PubMed Central

    Komesidou, Rouzana; Fleming, Kandace K.; Romine, Rebecca Swinburne

    2017-01-01

    Purpose The goal of this study was to provide guidance to clinicians on early benchmarks of successful word learning in an interactive book reading treatment and to examine how encoding and memory evolution during treatment contribute to word learning outcomes by kindergarten children with specific language impairment (SLI). Method Twenty-seven kindergarten children with SLI participated in a preliminary clinical trial using interactive book reading to teach 30 new words. Word learning was assessed at 4 points during treatment through a picture naming test. Results The results indicate that the following performance during treatment was cause for concern, indicating a need to modify the treatment: naming 0–1 treated words correctly at Naming Test 1; naming 0–2 treated words correctly at Naming Test 2; naming 0–3 treated words correctly at Naming Test 3. In addition, the results showed that encoding was the primary limiting factor in word learning, but rmemory evolution also contributed (albeit to a lesser degree) to word learning success. Conclusion Case illustrations demonstrate how a clinician's understanding of a child's word learning strengths and weaknesses develop over the course of treatment, substantiating the importance of regular data collection and clinical decision-making to ensure the best possible outcomes for each individual child. PMID:28419188

  5. Flight Testing of the Capillary Pumped Loop 3 Experiment

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; Butler, Dan; Ku, Jentung; Cheung, Kwok; Baldauff, Robert; Hoang, Triem

    2002-01-01

    The Capillary Pumped Loop 3 (CAPL 3) experiment was a multiple evaporator capillary pumped loop experiment that flew in the Space Shuttle payload bay in December 2001 (STS-108). The main objective of CAPL 3 was to demonstrate in micro-gravity a multiple evaporator capillary pumped loop system, capable of reliable start-up, reliable continuous operation, and heat load sharing, with hardware for a deployable radiator. Tests performed on orbit included start-ups, power cycles, low power tests (100 W total), high power tests (up to 1447 W total), heat load sharing, variable/fixed conductance transition tests, and saturation temperature change tests. The majority of the tests were completed successfully, although the experiment did exhibit an unexpected sensitivity to shuttle maneuvers. This paper describes the experiment, the tests performed during the mission, and the test results.

  6. Challenges and solutions for high-volume testing of silicon photonics

    NASA Astrophysics Data System (ADS)

    Polster, Robert; Dai, Liang Yuan; Oikonomou, Michail; Cheng, Qixiang; Rumley, Sebastien; Bergman, Keren

    2018-02-01

    The first generation of silicon photonic products is now commercially available. While silicon photonics possesses key economic advantages over classical photonic platforms, it has yet to become a commercial success because these advantages can be fully realized only when high-volume testing of silicon photonic devices is made possible. We discuss the costs, challenges, and solutions of photonic chip testing as reported in the recent research literature. We define and propose three underlying paradigms that should be considered when creating photonic test structures: Design for Fast Coupling, Design for Minimal Taps, and Design for Parallel Testing. We underline that a coherent test methodology must be established prior to the design of test structures, and demonstrate how an optimized methodology dramatically reduces the burden when designing for test, by reducing the needed complexity of test structures.

  7. CFD to Flight: Some Recent Success Stories of X-Plane Design to Flight Test at the NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2007-01-01

    Several examples from the past decade of success stories involving the design and flight test of three true X-planes will be described: in particular, X-plane design techniques that relied heavily upon computational fluid dynamics (CFD). Three specific examples chosen from the author s personal experience are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and, most recently, the X-48B Blended Wing Body Demonstrator Aircraft. An overview will be presented of the uses of CFD analysis, comparisons and contrasts with wind tunnel testing, and information derived from the CFD analysis that directly related to successful flight test. Some lessons learned on the proper application, and misapplication, of CFD are illustrated. Finally, some highlights of the flight-test results of the three example X-planes will be presented. This overview paper will discuss some of the author s experience with taking an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further refined CFD analysis, and, finally, flight. An overview of the key roles in which CFD plays well during this process, and some other roles in which it does not, are discussed. How wind tunnel testing complements, calibrates, and verifies CFD analysis is also covered. Lessons learned on where CFD results can be misleading are also given. Strengths and weaknesses of the various types of flow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed. The paper concludes with the three specific examples, including some flight test video footage of the X-36, the X-45A, and the X-48B.

  8. CFD to Flight: Some Recent Success Stories of X-plane Design to Flight Test at the NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2007-01-01

    Several examples from the past decade of success stories involving the design and ight test of three true X-planes will be described: in particular, X-plane design techniques that relied heavily upon computational fluid dynamics (CFD). Three specific examples chosen from the authors personal experience are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and, most recently, the X-48B Blended Wing Body Demonstrator Aircraft. An overview will be presented of the uses of CFD analysis, comparisons and contrasts with wind tunnel testing, and information derived from the CFD analysis that directly related to successful flight test. Some lessons learned on the proper application, and misapplication, of CFD are illustrated. Finally, some highlights of the flight-test results of the three example X-planes will be presented. This overview paper will discuss some of the authors experience with taking an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further re ned CFD analysis, and, finally, flight. An overview of the key roles in which CFD plays well during this process, and some other roles in which it does not, are discussed. How wind tunnel testing complements, calibrates, and verifies CFD analysis is also covered. Lessons learned on where CFD results can be misleading are also given. Strengths and weaknesses of the various types of ow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed. The paper concludes with the three specific examples, including some flight test video footage of the X-36, the X-45A, and the X-48B.

  9. Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich Ciora; Paul KT Liu

    2012-06-27

    In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings ofmore » $$2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $$750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the inorganic membrane field. Further, this newly developed full scale bundle concept can be extended to other thin film inorganic membrane technology (Pd, zeolite, etc), providing a potential commercialization pathway for these membrane materials that demonstrate high potential in a variety of separation applications yet remain a laboratory 'novelty' for lack of a full scale support. Overall, the project has been highly successful and all of the project objectives have been met. We have developed the first of its kind commercial scale carbon molecular sieve membrane and demonstrated its performance in field testing under aggressive operating conditions and in the presence of chemical contaminants that would rapidly destroy alternative organic and inorganic membranes. This innovative membrane permits H{sub 2} recovery from gas streams that up until now have not been successfully treated with membrane or conventional technology. Our end user participant is currently pursuing the field demonstration of this membrane for hydrogen recovery at its refinery site.« less

  10. Final Report: CNC Micromachines LDRD No.10793

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JOKIEL JR., BERNHARD; BENAVIDES, GILBERT L.; BIEG, LOTHAR F.

    2003-04-01

    The three-year LDRD ''CNC Micromachines'' was successfully completed at the end of FY02. The project had four major breakthroughs in spatial motion control in MEMS: (1) A unified method for designing scalable planar and spatial on-chip motion control systems was developed. The method relies on the use of parallel kinematic mechanisms (PKMs) that when properly designed provide different types of motion on-chip without the need for post-fabrication assembly, (2) A new type of actuator was developed--the linear stepping track drive (LSTD) that provides open loop linear position control that is scalable in displacement, output force and step size. Several versionsmore » of this actuator were designed, fabricated and successfully tested. (3) Different versions of XYZ translation only and PTT motion stages were designed, successfully fabricated and successfully tested demonstrating absolutely that on-chip spatial motion control systems are not only possible, but are a reality. (4) Control algorithms, software and infrastructure based on MATLAB were created and successfully implemented to drive the XYZ and PTT motion platforms in a controlled manner. The control software is capable of reading an M/G code machine tool language file, decode the instructions and correctly calculate and apply position and velocity trajectories to the motion devices linear drive inputs to position the device platform along the trajectory as specified by the input file. A full and detailed account of design methodology, theory and experimental results (failures and successes) is provided.« less

  11. Hot section viewing system

    NASA Technical Reports Server (NTRS)

    Morey, W. W.

    1984-01-01

    This report covers the development and testing of a prototype combustor viewing system. The system allows one to see and record images from the inside of an operating gas turbine combustor. The program proceeded through planned phases of conceptual design, preliminary testing to resolve problem areas, prototype design and fabrication, and rig testing. Successful tests were completed with the viewing system in the laboratory, in a high pressure combustor rig, and on a Pratt and Whitney PW20307 jet engine. Both film and video recordings were made during the tests. Digital image analysis techniques were used to enhance images and bring out special effects. The use of pulsed laser illumination was also demonstrated as a means for observing liner surfaces in the presence of luminous flame.

  12. Acquisition/expulsion system for earth orbital propulsion system study. Volume 3: Cryogenic test

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A ground test program was conducted to verify several of the design methods and techniques that were used in designing cryogenic acquisition/expulsion systems. The testing of a 63.5-cm diameter DSL subscale model was particularly significant. Under these tests, the operational characteristics of the DSL concept were verified using LH2 and LN2. Demonstration of the gas free liquid expulsion characteristics was accomplished by expelling LH2 under -1 g using both GH2 and GHe pressurization. Loading of the acquisition/expulsion device was successfully accomplished using LH2 and LN2. The liquid free vapor venting performance of the model was limited because of the thermal stratification under the -1 g test conditions.

  13. Computational Fluid Dynamics Analysis Success Stories of X-Plane Design to Flight Test

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2008-01-01

    Examples of the design and flight test of three true X-planes are described, particularly X-plane design techniques that relied heavily on computational fluid dynamics(CFD) analysis. Three examples are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and the X-48B Blended Wing Body Demonstrator Aircraft. An overview is presented of the uses of CFD analysis, comparison and contrast with wind tunnel testing, and information derived from CFD analysis that directly related to successful flight test. Lessons learned on the proper and improper application of CFD analysis are presented. Highlights of the flight-test results of the three example X-planes are presented. This report discusses developing an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further refined CFD analysis, and, finally, flight. An overview of the areas in which CFD analysis does and does not perform well during this process is presented. How wind tunnel testing complements, calibrates, and verifies CFD analysis is discussed. Lessons learned revealing circumstances under which CFD analysis results can be misleading are given. Strengths and weaknesses of the various flow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed.

  14. High energy laser demonstrators for defense applications

    NASA Astrophysics Data System (ADS)

    Jung, M.; Riesbeck, Th.; Schmitz, J.; Baumgärtel, Th.; Ludewigt, K.; Graf, A.

    2017-01-01

    Rheinmetall Waffe Munition has worked since 30 years in the area of High Energy Laser (HEL) for defence applications, starting from pulsed CO2 to pulsed glass rods lasers. In the last decade Rheinmetall Waffe Munition changed to diode pumped solid state laser (DPSSL) technology and has successfully developed, realised and tested a variety of versatile HEL weapon demonstrators for air- and ground defence scenarios like countering rocket, artillery, mortar, missile (RAMM), unmanned aerial systems (UAS) and unexploded ordnances clearing. By employing beam superimposing technology and a modular laser weapon concept, the total optical power has been successively increased. Stationary weapon platforms, military vehicles and naval platforms have been equipped with high energy laser effectors. The contribution gives a summary of the most recent development stages of Rheinmetalls HEL weapon program. In addition to the stationary 30 kW laser weapon demonstrator, we present vehicle based HEL demonstrators: the 5 kW class Mobile HEL Effector Track V, the 20 kW class Mobile HEL Effector Wheel XX and the 50 kW class Mobile HEL Effector Container L and the latest 10 kW HEL effector integrated in the naval weapon platform MLG 27. We describe the capabilities of these demonstrators against different potential targets. Furthermore, we will show the capability of the 30 kW stationary Laser Weapon Demonstrator integrated into an existing ground based air defence system to defeat saturated attacks of RAMM and UAS targets.

  15. Design and operating experience on the US Department of Energy experimental Mod-0 100-kW wind turbine

    NASA Technical Reports Server (NTRS)

    Glasgow, J. C.; Birchenough, A. G.

    1978-01-01

    The experimental wind turbine was designed and fabricated to assess technology requirements and engineering problems of large wind turbines. The machine has demonstrated successful operation in all of its design modes and served as a prototype developmental test bed for the Mod-0A operational wind turbines which are currently used on utility networks. The mechanical and control system are described as they evolved in operational tests and some of the experience with various systems in the downwind rotor configurations are elaborated.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Fieldbus technology has completed beta plant testing at Monsanto Co.`s Chocolate Bayou petrochemical complex at Alvin, Texas. The trial took place in a steam condensate recovery section of the Chocolate Bayou plant, which produces acrylonitrile, linear alkylbenzene, and a number of other petrochemical derivatives. Fieldbus is a plant communications network, or bus, that enables digital instruments to communicate with one another and with supervisory control systems. The fieldbus specification, written by the nonprofit organization Fieldbus Foundation, Austin, Texas, is called Foundation fieldbus. The beta tests at Chocolate Bayou successfully demonstrated fieldbus performance in a process control application.

  17. Influence of manufacturing parameters on the strength of PLA parts using Layered Manufacturing technique: A statistical approach

    NASA Astrophysics Data System (ADS)

    Jaya Christiyan, K. G.; Chandrasekhar, U.; Mathivanan, N. Rajesh; Venkateswarlu, K.

    2018-02-01

    A 3D printing was successfully used to fabricate samples of Polylactic Acid (PLA). Processing parameters such as Lay-up speed, Lay-up thickness, and printing nozzle were varied. All samples were tested for flexural strength using three point load test. A statistical mathematical model was developed to correlate the processing parameters with flexural strength. The result clearly demonstrated that the lay-up thickness and nozzle diameter influenced flexural strength significantly, whereas lay-up speed hardly influenced the flexural strength.

  18. Magnetic Suspension for Dynamic Spin Rig

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter

    1998-01-01

    NASA Lewis Research Center's Dynamic Spin Rig, located in Building 5, Test Cell CW-18, is used to test turbomachinery blades and components by rotating them in a vacuum chamber. A team from Lewis' Machine Dynamics Branch successfully integrated a magnetic bearing and control system into the Dynamic Spin Rig. The magnetic bearing worked very well both to support and shake the shaft. It was demonstrated that the magnetic bearing can transmit more vibrational energy into the shaft and excite some blade modes to larger amplitudes than the existing electromagnetic shakers can.

  19. Department of the Air Force Supporting Data For Fiscal Year 1984 Budget Estimates Submitted to Congress, January 31, 1983. Descriptive Summaries, Research, Development, Test and Evaluation

    DTIC Science & Technology

    1983-01-01

    formulated to achieve weight savings, successfully completed a 100 hour pump test with no loss of fluid viscosity. Initial synthetic approaches to...acquisition cost savings in one concept and 51 percent weight savings in another. (9) (U) Advanced 3D Materials: Demonstrated the feasibility of using...in the gas phase. This research will provide the basis for future laser weapons that are more efficient, powerful, and lighter weight than infrared

  20. OPALS: Mission System Operations Architecture for an Optical Communications Demonstration on the ISS

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matthew J.; Sindiy, Oleg V.; Oaida, Bogdan V.; Fregoso, Santos; Bowles-Martinez, Jessica N.; Kokorowski, Michael; Wilkerson, Marcus W.; Konyha, Alexander L.

    2014-01-01

    In spring 2014, the Optical PAyload for Lasercomm Science (OPALS) will launch to the International Space Station (ISS) to demonstrate space-to-ground optical communications. During a 90-day baseline mission, OPALS will downlink high quality, short duration videos to the Optical Communications Telescope Laboratory (OCTL) in Wrightwood, California. To achieve mission success, interfaces to the ISS payload operations infrastructure are established. For OPALS, the interfaces facilitate activity planning, hazardous laser operations, commanding, and telemetry transmission. In addition, internal processes such as pointing prediction and data processing satisfy the technical requirements of the mission. The OPALS operations team participates in Operational Readiness Tests (ORTs) with external partners to exercise coordination processes and train for the overall mission. The tests have provided valuable insight into operational considerations on the ISS.

  1. FPGA-based Klystron linearization implementations in scope of ILC

    DOE PAGES

    Omet, M.; Michizono, S.; Matsumoto, T.; ...

    2015-01-23

    We report the development and implementation of four FPGA-based predistortion-type klystron linearization algorithms. Klystron linearization is essential for the realization of ILC, since it is required to operate the klystrons 7% in power below their saturation. The work presented was performed in international collaborations at the Fermi National Accelerator Laboratory (FNAL), USA and the Deutsches Elektronen Synchrotron (DESY), Germany. With the newly developed algorithms, the generation of correction factors on the FPGA was improved compared to past algorithms, avoiding quantization and decreasing memory requirements. At FNAL, three algorithms were tested at the Advanced Superconducting Test Accelerator (ASTA), demonstrating a successfulmore » implementation for one algorithm and a proof of principle for two algorithms. Furthermore, the functionality of the algorithm implemented at DESY was demonstrated successfully in a simulation.« less

  2. Fiber-Optic Defect and Damage Locator System for Wind Turbine Blades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Vahid Sotoudeh; Dr. Richard J. Black; Dr. Behzad Moslehi

    2010-10-30

    IFOS in collaboration with Auburn University demonstrated the feasibility of a Fiber Bragg Grating (FBG) integrated sensor system capable of providing real time in-situ defect detection, localization and quantification of damage. In addition, the system is capable of validating wind turbine blade structural models, using recent advances in non-contact, non-destructive dynamic testing of composite structures. This new generation method makes it possible to analyze wind turbine blades not only non-destructively, but also without physically contacting or implanting intrusive electrical elements and transducers into the structure. Phase I successfully demonstrated the feasibility of the technology with the construction of a 1.5more » kHz sensor interrogator and preliminary instrumentation and testing of both composite material coupons and a wind turbine blade.« less

  3. Engineering evaluation of magma cooling-tower demonstration at Nevada Power Company's Sunrise Station

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The Magma Cooling Tower (MCT) process utilizes a falling film heat exchanger integrated into an induced draft cooling tower to evaporate waste water. A hot water source such as return cooling water provides the energy for evaporation. Water quality control is maintained by removing potential scaling constituents to make concentrations of the waste water possible without scaling heat transfer surfaces. A pilot-scale demonstration test of the MCT process was performed from March 1979 through June 1979 at Nevada Power Company's Sunrise Station in Las Vegas, Nevada. The pilot unit extracted heat from the powerplant cooling system to evaporate cooling tower blowdown. Two water quality control methods were employed: makeup/sidestream softening and fluidized bed crystallization. The 11 week softening mode test was successful.

  4. Flight Testing of Terrain-Relative Navigation and Large-Divert Guidance on a VTVL Rocket

    NASA Technical Reports Server (NTRS)

    Trawny, Nikolas; Benito, Joel; Tweddle, Brent; Bergh, Charles F.; Khanoyan, Garen; Vaughan, Geoffrey M.; Zheng, Jason X.; Villalpando, Carlos Y.; Cheng, Yang; Scharf, Daniel P.; hide

    2015-01-01

    Since 2011, the Autonomous Descent and Ascent Powered-Flight Testbed (ADAPT) has been used to demonstrate advanced descent and landing technologies onboard the Masten Space Systems (MSS) Xombie vertical-takeoff, vertical-landing suborbital rocket. The current instantiation of ADAPT is a stand-alone payload comprising sensing and avionics for terrain-relative navigation and fuel-optimal onboard planning of large divert trajectories, thus providing complete pin-point landing capabilities needed for planetary landers. To this end, ADAPT combines two technologies developed at JPL, the Lander Vision System (LVS), and the Guidance for Fuel Optimal Large Diverts (G-FOLD) software. This paper describes the integration and testing of LVS and G-FOLD in the ADAPT payload, culminating in two successful free flight demonstrations on the Xombie vehicle conducted in December 2014.

  5. The Astro-H High Resolution Soft X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Kelley, Richard L.; Akamatsu, Hiroki; Azzarell, Phillip; Bialas, Tom; Boyce, Kevin R.; Brown, Gregory V.; Canavan, Edgar; Chiao, Meng P.; Costantini, Elisa; DiPirro, Michael J.; hide

    2016-01-01

    We present the overall design and performance of the Astro-H (Hitomi) Soft X-Ray Spectrometer (SXS). The instrument uses a 36-pixel array of x-ray microcalorimeters at the focus of a grazing-incidence x-ray mirror Soft X-Ray Telescope (SXT) for high-resolution spectroscopy of celestial x-ray sources. The instrument was designed to achieve an energy resolution better than 7 eV over the 0.3-12 keV energy range and operate for more than 3 years in orbit. The actual energy resolution of the instrument is 4-5 eV as demonstrated during extensive ground testing prior to launch and in orbit. The measured mass flow rate of the liquid helium cryogen and initial fill level at launch predict a lifetime of more than 4 years assuming steady mechanical cooler performance. Cryogen-free operation was successfully demonstrated prior to launch. The successful operation of the SXS in orbit, including the first observations of the velocity structure of the Perseus cluster of galaxies, demonstrates the viability and power of this technology as a tool for astrophysics.

  6. The Astro-H high resolution soft x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Kelley, Richard L.; Akamatsu, Hiroki; Azzarello, Phillipp; Bialas, Tom; Boyce, Kevin R.; Brown, Gregory V.; Canavan, Edgar; Chiao, Meng P.; Costantini, Elisa; DiPirro, Michael J.; Eckart, Megan E.; Ezoe, Yuichiro; Fujimoto, Ryuichi; Haas, Daniel; den Herder, Jan-Willem; Hoshino, Akio; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iyomoto, Naoko; Kilbourne, Caroline A.; Kimball, Mark O.; Kitamoto, Shunji; Konami, Saori; Koyama, Shu; Leutenegger, Maurice A.; McCammon, Dan; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Moseley, Harvey; Murakami, Hiroshi; Murakami, Masahide; Noda, Hirofumi; Ogawa, Mina; Ohashi, Takaya; Okamoto, Atsushi; Ota, Naomi; Paltani, Stéphane; Porter, F. S.; Sakai, Kazuhiro; Sato, Kosuke; Sato, Yohichi; Sawada, Makoto; Seta, Hiromi; Shinozaki, Keisuke; Shirron, Peter J.; Sneiderman, Gary A.; Sugita, Hiroyuki; Szymkowiak, Andrew E.; Takei, Yoh; Tamagawa, Toru; Tashiro, Makoto; Terada, Yukikatsu; Tsujimoto, Masahiro; de Vries, Cor P.; Yamada, Shinya; Yamasaki, Noriko Y.; Yatsu, Yoichi

    2016-07-01

    We present the overall design and performance of the Astro-H (Hitomi) Soft X-Ray Spectrometer (SXS). The instrument uses a 36-pixel array of x-ray microcalorimeters at the focus of a grazing-incidence x-ray mirror Soft X-Ray Telescope (SXT) for high-resolution spectroscopy of celestial x-ray sources. The instrument was designed to achieve an energy resolution better than 7 eV over the 0.3-12 keV energy range and operate for more than 3 years in orbit. The actual energy resolution of the instrument is 4-5 eV as demonstrated during extensive ground testing prior to launch and in orbit. The measured mass flow rate of the liquid helium cryogen and initial fill level at launch predict a lifetime of more than 4 years assuming steady mechanical cooler performance. Cryogen-free operation was successfully demonstrated prior to launch. The successful operation of the SXS in orbit, including the first observations of the velocity structure of the Perseus cluster of galaxies, demonstrates the viability and power of this technology as a tool for astrophysics.

  7. Developmental stress increases reproductive success in male zebra finches.

    PubMed

    Crino, Ondi L; Prather, Colin T; Driscoll, Stephanie C; Good, Jeffrey M; Breuner, Creagh W

    2014-11-22

    There is increasing evidence that exposure to stress during development can have sustained effects on animal phenotype and performance across life-history stages. For example, developmental stress has been shown to decrease the quality of sexually selected traits (e.g. bird song), and therefore is thought to decrease reproductive success. However, animals exposed to developmental stress may compensate for poor quality sexually selected traits by pursuing alternative reproductive tactics. Here, we examine the effects of developmental stress on adult male reproductive investment and success in the zebra finch (Taeniopygia guttata). We tested the hypothesis that males exposed to developmental stress sire fewer offspring through extra-pair copulations (EPCs), but invest more in parental care. To test this hypothesis, we fed nestlings corticosterone (CORT; the dominant avian stress hormone) during the nestling period and measured their adult reproductive success using common garden breeding experiments. We found that nestlings reared by CORT-fed fathers received more parental care compared with nestlings reared by control fathers. Consequently, males fed CORT during development reared nestlings in better condition compared with control males. Contrary to the prediction that developmental stress decreases male reproductive success, we found that CORT-fed males also sired more offspring and were less likely to rear non-genetic offspring compared with control males, and thus had greater overall reproductive success. These data are the first to demonstrate that developmental stress can have a positive effect on fitness via changes in reproductive success and provide support for an adaptive role of developmental stress in shaping animal phenotype. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. The HYTHIRM Project: Flight Thermography of the Space Shuttle During the Hypersonic Re-entry

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Tomek, Deborah M.; Berger, Karen T.; Zalameda, Joseph N.; Splinter, Scott C.; Krasa, Paul W.; Schwartz, Richard J.; Gibson, David M.; Tietjen, Alan B.; Tack, Steve

    2010-01-01

    This report describes a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. A background and an overview of several multidisciplinary efforts that culminated in the acquisition of high resolution calibrated infrared imagery of the Space Shuttle during hypervelocity atmospheric entry is presented. The successful collection of thermal data has demonstrated the feasibility of obtaining remote high-resolution infrared imagery during hypersonic flight for the accurate measurement of surface temperature. To maximize science and engineering return, the acquisition of quantitative thermal imagery and capability demonstration was targeted towards three recent Shuttle flights - two of which involved flight experiments flown on Discovery. In coordination with these two Shuttle flight experiments, a US Navy NP-3D aircraft was flown between 26-41 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 (STS-119) and Mach 14.7 (STS-128) using a long-range infrared optical package referred to as Cast Glance. This same Navy aircraft successfully monitored the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission (STS-125). The purpose of this paper is to describe the systematic approach used by the Hypersonic Thermodynamic Infrared Measurements team to develop and implement a set of mission planning tools designed to establish confidence in the ability of an imaging platform to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. The mission planning tools included a pre-flight capability to predict the infrared signature of the Shuttle. Such tools permitted optimization of the hardware configuration to increase signal-to-noise and to maximize the available dynamic range while mitigating the potential for saturation. Post flight, analysis tools were used to assess atmospheric effects and to convert the 2-D intensity images to 3-D temperature maps of the windward surface. Comparison of the spatially resolved global thermal measurements to surface thermocouples and CFD prediction is made. Successful demonstration of a quantitative, spatially resolved, global temperature measurement on the Shuttle suggests future applications towards hypersonic flight test programs within NASA, DoD and DARPA along with flight test opportunities supporting NASA's project Constellation.

  9. Successful Demonstration of New Isolated Bridge System at UCB Shaking Table

    Science.gov Websites

    other events Successful Demonstration of New Isolated Bridge System at UCB Shaking Table PEER Events Successful Demonstration of New Isolated Bridge System at UCB Shaking Table On May 26, 2010 over 100 demonstration of a new isolated bridge system at the PEER Earthquake Simulator Laboratory at UC Berkeley’s

  10. F-106 tow cable attachment and release mechanism for Eclipse program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    View of the tow cable attachment and release mechanism forward of the cockpit on the QF-106 Eclipse aircraft. This mechanism held and then released the Vectran rope used to tow the QF-106 behind an Air Force C-141A. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  11. Closeup of QF-106 release hook for Eclipse program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    View of the release hook on the QF-106 that allowed the pilot to release the tow rope extending from the C-141A tow plane in the Eclipse project. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  12. Eclipse program C-141A aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the Air Force C-141A that was used in the Eclipse project as a tow vehicle. The project used a QF-106 interceptor aircraft to simulate a future orbiter, which would be towed to a high altitude and released to fire its own engines and carry a payload into space. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  13. Two Cases of Refractory Cardiogenic Shock Secondary to Bupropion Successfully Treated with Veno-Arterial Extracorporeal Membrane Oxygenation.

    PubMed

    Heise, C William; Skolnik, Aaron B; Raschke, Robert A; Owen-Reece, Huw; Graeme, Kimberlie A

    2016-09-01

    Bupropion inhibits the uptake of dopamine and norepinephrine. Clinical effects in overdose include seizure, status epilepticus, tachycardia, arrhythmias, and cardiogenic shock. We report two cases of severe bupropion toxicity resulting in refractory cardiogenic shock, cardiac arrest, and repeated seizures treated successfully. Patients with cardiovascular failure related to poisoning may particularly benefit from extracorporeal membrane oxygenation (ECMO). These are the first cases of bupropion toxicity treated with veno-arterial EMCO (VA-ECMO) in which bupropion toxicity is supported by confirmatory testing. Both cases demonstrate the effectiveness of VA-ECMO in poisoned patients with severe cardiogenic shock or cardiopulmonary failure.

  14. Forensic applications of chemical imaging: latent fingerprint detection using visible absorption and luminescence.

    PubMed

    Exline, David L; Wallace, Christie; Roux, Claude; Lennard, Chris; Nelson, Matthew P; Treado, Patrick J

    2003-09-01

    Chemical imaging technology is a rapid examination technique that combines molecular spectroscopy and digital imaging, providing information on morphology, composition, structure, and concentration of a material. Among many other applications, chemical imaging offers an array of novel analytical testing methods, which limits sample preparation and provides high-quality imaging data essential in the detection of latent fingerprints. Luminescence chemical imaging and visible absorbance chemical imaging have been successfully applied to ninhydrin, DFO, cyanoacrylate, and luminescent dye-treated latent fingerprints, demonstrating the potential of this technology to aid forensic investigations. In addition, visible absorption chemical imaging has been applied successfully to visualize untreated latent fingerprints.

  15. Controls of Fluid Chemistry on Fracture Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruton, C; Knauss, K; Viani, B

    2007-02-26

    During this two year project (the original proposal requested 3 years funding) we developed and tested a new design for a mini-bending jig for the hydrothermal atomic force microscope (HAFM) and a modified design for the HAFM itself. These new capabilities now permit study of the connection between stress and mineral dissolution and growth, as well as sub-critical crack growth (SCG). We demonstrated the successful design by imaging SCG of glass in situ, in real time in the HAFM, as a function of changing solution pH. We generated a movie of the SCG process. We successfully accomplished our project objectivesmore » through year 2.« less

  16. Flight Test of Propulsion Monitoring and Diagnostic System

    NASA Technical Reports Server (NTRS)

    Gabel, Steve; Elgersma, Mike

    2002-01-01

    The objective of this program was to perform flight tests of the propulsion monitoring and diagnostic system (PMDS) technology concept developed by Honeywell under the NASA Advanced General Aviation Transport Experiment (AGATE) program. The PMDS concept is intended to independently monitor the performance of the engine, providing continuous status to the pilot along with warnings if necessary as well as making the data available to ground maintenance personnel via a special interface. These flight tests were intended to demonstrate the ability of the PMDS concept to detect a class of selected sensor hardware failures, and the ability to successfully model the engine for the purpose of engine diagnosis.

  17. Development of an intelligent hypertext system for wind tunnel testing

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Shi, George Z.; Steinle, Frank W.; Wu, Y. C. L. Susan; Hoyt, W. Andes

    1991-01-01

    This paper summarizes the results of a system utilizing artificial intelligence technology to improve the productivity of project engineers who conduct wind tunnel tests. The objective was to create an intelligent hypertext system which integrates a hypertext manual and expert system that stores experts' knowledge and experience. The preliminary (Phase I) effort implemented a prototype IHS module encompassing a portion of the manuals and knowledge used for wind tunnel testing. The effort successfully demonstrated the feasibility of the intelligent hypertext system concept. A module for the internal strain gage balance, implemented on both IBM-PC and Macintosh computers, is presented. A description of the Phase II effort is included.

  18. Use of the Global Test Statistic as a Performance Measurement in a Reananlysis of Environmental Health Data

    PubMed Central

    Dymova, Natalya; Hanumara, R. Choudary; Gagnon, Ronald N.

    2009-01-01

    Performance measurement is increasingly viewed as an essential component of environmental and public health protection programs. In characterizing program performance over time, investigators often observe multiple changes resulting from a single intervention across a range of categories. Although a variety of statistical tools allow evaluation of data one variable at a time, the global test statistic is uniquely suited for analyses of categories or groups of interrelated variables. Here we demonstrate how the global test statistic can be applied to environmental and occupational health data for the purpose of making overall statements on the success of targeted intervention strategies. PMID:19696393

  19. Near-space flight of a correlated photon system

    PubMed Central

    Tang, Zhongkan; Chandrasekara, Rakhitha; Sean, Yau Yong; Cheng, Cliff; Wildfeuer, Christoph; Ling, Alexander

    2014-01-01

    We report the successful test flight of a device for generating and monitoring correlated photon pairs under near-space conditions up to 35.5 km altitude. Data from ground based qualification tests and the high altitude experiment demonstrate that the device continues to operate even under harsh environmental conditions. The design of the rugged, compact and power-efficient photon pair system is presented. This design enables autonomous photon pair systems to be deployed on low-resource platforms such as nanosatellites hosting remote nodes of a quantum key distribution network. These results pave the way for tests of entangled photon technology in low earth orbit. PMID:25219935

  20. An Analysis of the Speed Commands from an Interval Management Algorithm during the ATD-1 Flight Test

    NASA Technical Reports Server (NTRS)

    Watters, Christine; Wilson, Sara R.; Swieringa, Kurt A.

    2017-01-01

    NASA's first Air Traffic Management Technology Demonstration (ATD-1) successfully completed a nineteen-day flight test under a NASA contract with Boeing, with Honeywell and United Airlines as sub-contractors. An Interval Management (IM) avionics prototype was built based on international IM standards, integrated into two test aircraft, and then flown in real-world conditions to determine if the goals of improving aircraft efficiency and airport throughput during high-density arrival operations could be met. This paper describes the speed behavior of the IM avionics prototype, focusing on the speed command rate and the number of speed increases.

  1. Engineering quadrupole magnetic flow sorting for the isolation of pancreatic islets

    NASA Astrophysics Data System (ADS)

    Kennedy, David J.; Todd, Paul; Logan, Sam; Becker, Matthew; Papas, Klearchos K.; Moore, Lee R.

    2007-04-01

    Quadrupole magnetic flow sorting (QMS) is being adapted from the separation of suspensions of single cells (<15 μm) to the isolation of pancreatic islets (150-350 μm) for transplant. To achieve this goal, the critical QMS components have been modeled and engineered to optimize the separation process. A flow channel has been designed, manufactured, and tested. The quadrupole magnet assembly has been designed and verified by finite element analysis. Pumps have been selected and verified by test. Test data generated from the pumps and flow channel demonstrate that the fabricated channel and peristaltic pumps fulfill the requirements of successful QMS separation.

  2. Use of the global test statistic as a performance measurement in a reanalysis of environmental health data.

    PubMed

    Dymova, Natalya; Hanumara, R Choudary; Enander, Richard T; Gagnon, Ronald N

    2009-10-01

    Performance measurement is increasingly viewed as an essential component of environmental and public health protection programs. In characterizing program performance over time, investigators often observe multiple changes resulting from a single intervention across a range of categories. Although a variety of statistical tools allow evaluation of data one variable at a time, the global test statistic is uniquely suited for analyses of categories or groups of interrelated variables. Here we demonstrate how the global test statistic can be applied to environmental and occupational health data for the purpose of making overall statements on the success of targeted intervention strategies.

  3. AGT101 automotive gas turbine system development

    NASA Technical Reports Server (NTRS)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    The AGT101 automotive gas turbine system consisting of a 74.6 kw regenerated single-shaft gas turbine engine, is presented. The development and testing of the system is reviewed, and results for aerothermodynamic components indicate that compressor and turbine performance levels are within one percent of projected levels. Ceramic turbine rotor development is encouraging with successful cold spin testing of simulated rotors to speeds over 12,043 rad/sec. Spin test results demonstrate that ceramic materials having the required strength levels can be fabricated by net shape techniques to the thick hub cross section, which verifies the feasibility of the single-stage radial rotor in single-shaft engines.

  4. Space station propulsion technology

    NASA Technical Reports Server (NTRS)

    Briley, G. L.

    1986-01-01

    The progress on the Space Station Propulsion Technology Program is described. The objectives are to provide a demonstration of hydrogen/oxygen propulsion technology readiness for the Initial Operating Capability (IOC) space station application, specifically gaseous hydrogen/oxygen and warm hydrogen thruster concepts, and to establish a means for evolving from the IOC space station propulsion to that required to support and interface with advanced station functions. The evaluation of concepts was completed. The accumulator module of the test bed was completed and, with the microprocessor controller, delivered to NASA-MSFC. An oxygen/hydrogen thruster was modified for use with the test bed and successfully tested at mixture ratios from 4:1 to 8:1.

  5. NASA HERMeS Hall Thruster Electrical Configuration Characterization

    NASA Technical Reports Server (NTRS)

    Peterson, Peter; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This presentation will cover the electrical configuration testing of the TDU-1 HERMeS Hall thruster in NASA Glenn Research Centers Vacuum Facility 5. The three electrical configurations examined are the thruster body tied to facility ground, thruster floating, and finally the thruster body electrically tied to cathode common. The TDU-1 HERMeS was configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.

  6. NASA HERMeS Hall Thruster Electrical Configuration Characterization

    NASA Technical Reports Server (NTRS)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard

    2015-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in-space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This paper describes the electrical configuration testing of the HERMeS TDU-1 Hall thruster in NASA Glenn Research Center's Vacuum Facility 5. The three electrical configurations examined were 1) thruster body tied to facility ground, 2) thruster floating, and 3) thruster body electrically tied to cathode common. The HERMeS TDU-1 Hall thruster was also configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.

  7. An Overview of Flight Test Results for a Formation Flight Autopilot

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.; Ryan, Jack; Allen, Michael J.; Jacobson, Steven R.

    2002-01-01

    The first flight test phase of the NASA Dryden Flight Research Center Autonomous Formation Flight project has successfully demonstrated precision autonomous station-keeping of an F/A-18 research airplane with a second F/A-18 airplane. Blended inertial navigation system (INS) and global positioning system (GPS) measurements have been communicated across an air-to-air telemetry link and used to compute relative-position estimates. A precision research formation autopilot onboard the trailing airplane controls lateral and vertical spacing while the leading airplane operates under production autopilot control. Four research autopilot gain sets have been designed and flight-tested, and each exceeds the project design requirement of steady-state tracking accuracy within 1 standard deviation of 10 ft. Performance also has been demonstrated using single- and multiple-axis inputs such as step commands and frequency sweeps. This report briefly describes the experimental formation flight systems employed and discusses the navigation, guidance, and control algorithms that have been flight-tested. An overview of the flight test results of the formation autopilot during steady-state tracking and maneuvering flight is presented.

  8. Aircraft components structural health monitoring using flexible ultrasonic transducer arrays

    NASA Astrophysics Data System (ADS)

    Liu, W.-L.; Jen, C.-K.; Kobayashi, M.; Mrad, N.

    2011-04-01

    A damage detection capability based on a flexible ultrasonic transducer (FUT) array bonded onto a planar and a curved surface is presented. The FUT array was fabricated on a 75 μm titanium substrate using sol-gel spray technique. Room temperature curable adhesive is used as the bonding agent and ultrasonic couplant between the transducer and the test article. The bonding agent was successfully tested for aircraft environmental temperatures between -80 °C and 100 °C. For a planar test article, selected FUT arrays were able to detect fasteners damage within a planar distance of 176 mm, when used in the pulse-echo mode. Such results illustrate the effectiveness of the developed FUT transducer as compared to commercial 10MHz ultrasonic transducer (UT). These FUT arrays were further demonstrated on a curved test article. Pulse-echo measurements confirmed the reflected echoes from the specimen. Such measurement was not possible with commercial UTs due to the curved nature of the test article and its accessibility, thus demonstrating the suitability and superiority of the developed flexible ultrasonic transducer capability.

  9. CID-720 aircraft Langley Research Center preflight hardware tests: Development, flight acceptance and qualification

    NASA Technical Reports Server (NTRS)

    Pride, J. D.

    1986-01-01

    The testing conducted on LaRC-developed hardware for the controlled impact demonstration transport aircraft is discussed. To properly develop flight qualified crash systems, two environments were considered: the aircraft flight environment with the focus on vibration and temperature effects, and the crash environment with the long pulse shock effects. Also with the large quantity of fuel in the wing tanks the possibility of fire was considered to be a threat to data retrieval and thus fire tests were included in the development test process. The aircraft test successfully demonstrated the performance of the LaRC developed heat shields. Good telemetered data (S-band) was received during the impact and slide-out phase, and even after the aircraft came to rest. The two onboard DAS tape recorders were protected from the intense fire and high quality tape data was recovered. The complete photographic system performed as planned throughout the 40.0 sec of film supply. The four photo power distribution pallets remained in good condition and all ten onboard 16 mm high speed (400 frames/sec) cameras produced good film data.

  10. CRADA Final Report For CRADA NO. CR-12-006 [Operation and Testing of an SO 2-depolarized Electrolyzer (SDE) for the Purpose of Hydrogen and Sulfuric Acid Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, W. A.; Colon-Mercado, H. R.; Steimke, J. L.

    2014-02-24

    Over the past several years, Savannah River National Laboratory (SRNL) has led a team of collaborators under the Department of Energy’s (DOE) nuclear hydrogen production program to develop the Hybrid Sulfur (HyS) Process. HyS is a 2-step water-splitting process consisting of high temperature decomposition of sulfuric acid to generate SO 2, followed by the electrolysis of aqueous SO 2 to generate hydrogen and sulfuric acid. The latter is fed back into the high temperature reactor. SRNL designed and built an SO 2-depolarized electrolyzer (SDE) and a test facility. Over 40 SDE’s were tested using different catalysts, membranes and other components.more » SRNL demonstrated that an SDE could be operated continuously for approximately 200 hours under certain conditions without buildup of sulfur at the SDE’s cathode, thus solving a key technical problem with SDE technology. Air Products and Chemicals, Inc. (APCI) is a major supplier of hydrogen production systems, and they have proprietary technology that could benefit from the SDE developed by SRNS, or some improved version thereof. However, to demonstrate that SRNL’s SDE is a truly viable approach to the electrolyzer design, continuous operation for far greater periods of time than 200 hours must be demonstrated, and the electrolyzer must be scaled up to greater hydrogen production capacities. SRNL and Air Products entered into a Cooperative Research and Development Agreement with the objective of demonstrating the effectiveness of the SDE for hydrogen and sulfuric acid production and to demonstrate long-term continuous operation so as to dramatically increase the confidence in the SDE design for commercial operation. SRNL prepared a detailed technical report documenting previous SDE development, including the current SDE design and operating conditions that led to the 200-hour sulfurfree testing. SRNL refurbished its single cell SDE test facility and qualified the equipment for continuous operation. A new membrane electrode assembly (MEA) was fabricated and installed in the single cell electrolyzer (60 cm 2 active cell area). Shakedown testing was conducted, and several modifications were made to the test facility equipment. Seven different MEAs were used during testing. Beginning on May 20, 2013, SRNL was able to test the SDE continuously for 1200 hours, including 1000 hours under power to generate hydrogen at an average rate of 10.8 liters per hour. The SDE was not removed or repaired during the 50-day test and was successfully restarted after each shutdown. The test was intentionally stopped after 1200 hours (1000 hours of hydrogen production) due to funding constraints. Post-test examination of the MEA using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Microanalysis (EDAX) showed no elemental sulfur deposits or sulfur layer inside the cell, thus successfully achieving the test goals. The results demonstrated that the SDE could be operated for extended periods without major performance degradation or the buildup of sulfur inside the MEA. Air Products conducted an assessment of the economic viability of the SDE based on the “as tested” design. The results indicated that the SDE faces significant economic obstacles in its current state. Further development and scale-up are necessary before the SDE is ready for commercialization.« less

  11. Comparison of success rate and onset time of two different anesthesia techniques

    PubMed Central

    Haghighat, Abbas; Hasheminia, Dariush; Samandari, Mohammad-Hasan; Safarian, Vajihe; Davoudi, Amin

    2015-01-01

    Background Using local anesthetic is common to control the pain through blocking the nerve reversibly in dental procedures. Gow-Gates (GG) technique has a high success rate but less common. This study aimed to compare the onset time and success rate in GG and standard technique of inferior alveolar nerve block (IANB). Material and Methods This descriptive, single blind study was consisted of 136 patients (59 males and 77 females) who were randomly received GG or IANB for extraction of mandibular molar teeth. Comparisons between the successes of two anesthetic injection techniques were analyzed with Chi-square test. Incidence of pulpal anesthesia and soft tissue anesthesia were analyzed with Kaplan-Meier method. Mean onset times of pulpal anesthesia, soft tissue and lip numbness were analyzed with Log-Rank test. Comparisons were considered significant at P≤0.05 by using SPSS software ver.15. Results The incidence of pulpal anesthesia in the IANB group (canine 49.3%, premolar 60.3%) were not significantly different from the GG group (canine 41.3%, premolar 74.6%) (P=0.200 and P=0.723). The success rate in the IANB group (80.82%) was not significantly different from the GG group (92.02%) (P=0.123). Furthermore, onset time of lip and buccal soft tissue numbness in GG group (3.25, 4.96 minutes) was quite similar to IANB group (3.22, 4.89 minutes) (all Pvalues >0.05). Conclusions Although this study demonstrated higher clinical success rate for GG than IANB technique, no significant differences in success rates and onset time were observed between two techniques. Key words: Anesthesia, Inferior alveolar nerve, nerve block, success rate. PMID:25858085

  12. Space Shuttle SRM development. [Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Brinton, B. C.; Kilminster, J. C.

    1979-01-01

    The successful static test of the fourth Development Space Shuttle Solid Rocket Motor (SRM) in February 1979 concluded the development testing phase of the SRM Project. Qualification and flight motors are currently being fabricated, with the first qualification motor to be static tested. Delivered thrust-time traces on all development motors were very close to predicted values, and both specific and total impulse exceeded specification requirements. 'All-up' static tests conducted with a solid rocket booster equipment on development motors achieved all test objectives. Transportation and support equipment concepts have been proven, baselining is complete, and component reusability has been demonstrated. Evolution of the SRM transportation support equipment, and special test equipment designs are reviewed, and development activities discussed. Handling and processing aspects of large, heavy components are described.

  13. Fielding An Amphibious UAV: Development, Results, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Morris, Stephen

    2002-01-01

    This report summarizes the work completed on the design and flight-testing of a small, unmanned, amphibious demonstrator aircraft that flies autonomously. The aircraft named ACAT (Autonomous Cargo Amphibious Transport) is intended to be a large cargo carrying unmanned aircraft that operates from water to avoid airspace and airfield conflict issues between manned and unmanned aircraft. To demonstrate the feasibility of this concept, a demonstrator ACAT was designed, built, and flown that has a six-foot wingspan and can fly autonomously from land or water airfield. The demonstrator was designed for a 1-hour duration and 1-mile telemetry range. A sizing code was used to design the smallest demonstrator UAV to achieve these goals. The final design was a six-foot wingspan, twin hull configuration that distributes the cargo weight across the span, reducing the wing structural weight. The demonstrator airframe was constructed from balsa wood, fiberglass, and plywood. A 4-stroke model airplane engine powered by methanol fuel was mounted in a pylon above the wing and powers the ACAT UAV. Initial flight tests from land and water were conducted under manual radio control and confirmed the amphibious capability of the design. Flight avionics that were developed by MLB for production UAVs were installed in the ACAT demonstrator. The flight software was also enhanced to permit autonomous takeoff and landing from water. A complete autonomous flight from ahard runway was successfully completed on July 5, 2001 and consisted of a take-off, rectangular flight pattern, and landing under complete computer control. A completely autonomous flight that featured a water takeoff and landing was completed on October 4, 2001. This report describes these activities in detail and highlights the challenges encountered and solved during the development of the ACAT demonstrator. hard runway was successfully completed on July 5, 2001 and consisted of a take-off, rectangular flight pattern, and landing under complete computer control. A completely autonomous flight that featured a water takeoff and landing was completed on October 4, 2001. This report describes these activities in detail and highlights the challenges encountered and solved during the development of the ACAT demonstrator.

  14. The further development of the active urine collection device: a novel continence management system.

    PubMed

    Tinnion, E; Jowitt, F; Clarke-O'Neill, S; Cottenden, A M; Fader, M; Sutherland, I

    2003-01-01

    Continence difficulties affect the lives of a substantial minority of the population. Women are far more likely than men to be affected by urinary incontinence but the range of management options for them is limited. There has been considerable interest in developing an external urine collection system for women but without success to date. This paper describes the development and preliminary clinical testing of an active urine collection device (AUCD), which could provide a solution for sufferers. The device uses stored vacuum, protected by a high bubble point filter, to remove urine as quickly as it is produced. This allows a small battery-operated pump to provide the required vacuum, enabling the device to be portable. Two different types of non-invasive patient/device interface were developed, and tested by volunteers: urinal and small pad. The slimline urinal was popular with users although liquid noise was a problem. The pad interface was successful on occasions but further work is necessary to produce a reliable pad. This study has successfully demonstrated that a prototype AUCD liquid handling system can remove urine at clinically relevant flowrates. While further development is required, volunteer tests have shown that the AUCD could be a useful advance in continence management.

  15. Does the generation effect occur for pictures?

    PubMed

    Kinjo, H; Snodgrass, J G

    2000-01-01

    The generation effect is the finding that self-generated stimuli are recalled and recognized better than read stimuli. The effect has been demonstrated primarily with words. This article examines the effect for pictures in two experiments: Subjects named complete pictures (name condition) and fragmented pictures (generation condition). In Experiment 1, memory was tested in 3 explicit tasks: free recall, yes/no recognition, and a source-monitoring task on whether each picture was complete or fragmented (the complete/incomplete task). The generation effect was found for all 3 tasks. However, in the recognition and source-monitoring tasks, the generation effect was observed only in the generation condition. We hypothesized that absence of the effect in the name condition was due to the sensory or process match effect between study and test pictures and the superior identification of pictures in the name condition. Therefore, stimuli were changed from pictures to their names in Experiment 2. Memory was tested in the recognition task, complete/incomplete task, and second source-monitoring task (success/failure) on whether each picture had been identified successfully. The generation effect was observed for all 3 tasks. These results suggest that memory of structural and semantic characteristics and of success in identification of generated pictures may contribute to the generation effect.

  16. Gossamer-1: Mission concept and technology for a controlled deployment of gossamer spacecraft

    NASA Astrophysics Data System (ADS)

    Seefeldt, Patric; Spietz, Peter; Sproewitz, Tom; Grundmann, Jan Thimo; Hillebrandt, Martin; Hobbie, Catherin; Ruffer, Michael; Straubel, Marco; Tóth, Norbert; Zander, Martin

    2017-01-01

    Gossamer structures for innovative space applications, such as solar sails, require technology that allows their controlled and thereby safe deployment. Before employing such technology for a dedicated science mission, it is desirable, if not necessary, to demonstrate its reliability with a Technology Readiness Level (TRL) of six or higher. The aim of the work presented here is to provide reliable technology that enables the controlled deployment and verification of its functionality with various laboratory tests, thereby qualifying the hardware for a first demonstration in low Earth orbit (LEO). The development was made in the Gossamer-1 project of the German Aerospace Center (DLR). This paper provides an overview of the Gossamer-1 mission and hardware development. The system is designed based on the requirements of a technology demonstration mission. The design rests on a crossed boom configuration with triangular sail segments. Employing engineering models, all aspects of the deployment were tested under ambient environment. Several components were also subjected to environmental qualification testing. An innovative stowing and deployment strategy for a controlled deployment, as well as the designs of the bus system, mechanisms and electronics are described. The tests conducted provide insights into the deployment process and allow a mechanical characterization of that deployment process, in particular the measurement of the deployment forces. Deployment on system level could be successfully demonstrated to be robust and controllable. The deployment technology is on TRL four approaching level five, with a qualification model for environmental testing currently being built.

  17. Liquid Oxygen Thermodynamic Vent System Testing with Helium Pressurization

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.

    2014-01-01

    This report presents the results of several thermodynamic vent system (TVS) tests with liquid oxygen plus a test with liquid nitrogen. In all tests, the liquid was heated above its normal boiling point to 111 K for oxygen and 100 K for nitrogen. The elevated temperature was representative of tank conditions for a candidate lunar lander ascent stage. An initial test series was conducted with saturated oxygen liquid and vapor at 0.6 MPa. The initial series was followed by tests where the test tank was pressurized with gaseous helium to 1.4 to 1.6 MPa. For these tests, the helium mole fraction in the ullage was quite high, about 0.57 to 0.62. TVS behavior is different when helium is present than when helium is absent. The tank pressure becomes the sum of the vapor pressure and the partial pressure of helium. Therefore, tank pressure depends not only on temperature, as is the case for a pure liquid-vapor system, but also on helium density (i.e., the mass of helium divided by the ullage volume). Thus, properly controlling TVS operation is more challenging with helium pressurization than without helium pressurization. When helium was present, the liquid temperature would rise with each successive TVS cycle if tank pressure was kept within a constant control band. Alternatively, if the liquid temperature was maintained within a constant TVS control band, the tank pressure would drop with each TVS cycle. The final test series, which was conducted with liquid nitrogen pressurized with helium, demonstrated simultaneous pressure and temperature control during TVS operation. The simultaneous control was achieved by systematic injection of additional helium during each TVS cycle. Adding helium maintained the helium partial pressure as the liquid volume decreased because of TVS operation. The TVS demonstrations with liquid oxygen pressurized with helium were conducted with three different fluid-mixer configurations-a submerged axial jet mixer, a pair of spray hoops in the tank ullage, and combined use of the axial jet and spray hoops. A submerged liquid pump and compact heat exchanger located inside the test tank were used with all the mixer configurations. The initial series without helium and the final series with liquid nitrogen both used the axial jet mixer. The axial jet configuration successfully demonstrated the ability to control tank pressure; but in the normal-gravity environment, the temperature in the upper tank region (ullage and unwetted wall) was not controlled. The spray hoops and axial jet combination also successfully demonstrated pressure control as well as temperature control of the entire tank and contents. The spray-hoops-only configuration was not expected to be a reliable means of tank mixing because there was no direct means to produce liquid circulation. However, surprisingly good results also were obtained with the sprayhoops- only configuration (i.e., performance metrics such as cycle-averaged vent flowrate were similar to those obtained with the other configurations). A simple thermodynamic model was developed that correctly predicted the TVS behavior (temperature rise or pressure drop per TVS cycle) when helium was present in the ullage. The model predictions were correlated over a range of input parameters. The correlations show that temperature rise or pressure drop per cycle was proportional to both helium mole fraction and tank heat input. The response also depended on the tank fill fraction: the temperature rise or pressure drop (per TVS cycle) increased as the ullage volume decreased.

  18. Flight Test of an Adaptive Controller and Simulated Failure/Damage on the NASA NF-15B

    NASA Technical Reports Server (NTRS)

    Buschbacher, Mark; Maliska, Heather

    2006-01-01

    The method of flight-testing the Intelligent Flight Control System (IFCS) Second Generation (Gen-2) project on the NASA NF-15B is herein described. The Gen-2 project objective includes flight-testing a dynamic inversion controller augmented by a direct adaptive neural network to demonstrate performance improvements in the presence of simulated failure/damage. The Gen-2 objectives as implemented on the NASA NF-15B created challenges for software design, structural loading limitations, and flight test operations. Simulated failure/damage is introduced by modifying control surface commands, therefore requiring structural loads measurements. Flight-testing began with the validation of a structural loads model. Flight-testing of the Gen-2 controller continued, using test maneuvers designed in a sequenced approach. Success would clear the new controller with respect to dynamic response, simulated failure/damage, and with adaptation on and off. A handling qualities evaluation was conducted on the capability of the Gen-2 controller to restore aircraft response in the presence of a simulated failure/damage. Control room monitoring of loads sensors, flight dynamics, and controller adaptation, in addition to postflight data comparison to the simulation, ensured a safe methodology of buildup testing. Flight-testing continued without major incident to accomplish the project objectives, successfully uncovering strengths and weaknesses of the Gen-2 control approach in flight.

  19. Field testing of a next generation pointer/tracker for IRCM

    NASA Astrophysics Data System (ADS)

    Chapman, Stuart; Wildgoose, Iain; McDonald, Eric; Duncan, Stuart

    2008-10-01

    SELEX Galileo has been involved in the development, manufacture and support of high performance electro-optic pointing and stabilisation systems for over forty years. The Company currently supplies the pointer/trackers for the AN/AAQ-24(V) NEMESIS DIRCM system, for which over 1,000 combat-proven units have been produced and deployed in the US, the UK and other nations. In 2007, SELEX Galileo embarked on an internally funded programme to develop ECLIPSE, a new advanced, lightweight, low-cost IRCM pointer/tracker, exploiting the extensive knowledge and experience gained from previous targeting and IRCM programmes. The ECLIPSE design is centred on a low inertia, two-axis servo mechanism with a strap-down inertial sensor and advanced sightline control algorithms, allowing effective tracking through the nadir and providing superior sightline performance. The programme involved the production of three demonstrator units in 2007, and two pre-production units in 2008. The demonstrator units were first trialled as part of a NEMESIS DIRCM system in late 2007, and in April 2008 100% success was achieved in jamming live-fire demonstrations. Helicopter installation and ground testing of a UK only trials system is complete, initial flight testing has just begun, and the airborne test and evaluation scheduled for late summer 2008 will bring the ECLIPSE System to technology readiness to level 7 (TRL7). This paper describes the Eclipse performance demonstrated to date.

  20. Testing of a Helium Loop Heat Pipe for Large Area Cryocooling

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Robinson, Franklin

    2016-01-01

    Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components in the 3K temperature range. A copper plate with attached electrical heaters was used to simulate the heat source, and heat was collected by the CLHP evaporator and transferred to the cryocooler for ultimate heat rejection. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully without pre-conditioning by simply applying power to both the capillary pump and the evaporator plate. It could adapt to rapid changes in the heat load, and reach a new steady state very quickly. Heat removal between 10mW and 140mW was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.

  1. Testing of a Helium Loop Heat Pipe for Large Area Cryocooling

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Robinson, Franklin Lee

    2015-01-01

    Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components in the 3K temperature range. A copper plate with attached electrical heters was used to simulate the heat source, and heat was collected by the CLHP evaporator and transferred to the cryocooler for ultimate heat rejection. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully without pre-conditioning by simply applying power to both the capillary pump and the evaporator plate. It could adapt to rapid changes in the heat load, and reach a new steady state very quickly. Heat removal between 10mW and 140mW was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.

  2. Standardized Sample Preparation Using a Drop-on-Demand Printing Platform

    DTIC Science & Technology

    2013-05-07

    successful and robust methodology for energetic sample preparation. Keywords: drop-on-demand; inkjet printing; sample preparation OPEN ACCESS...on a similar length scale. Recently, drop-on-demand inkjet printing technology has emerged as an effective approach to produce test materials to...which most of the material is concentrated along the edges, samples prepared using drop-on-demand inkjet technology demonstrate excellent uniform

  3. High Power Silicon Carbide (SiC) Power Processing Unit Development

    NASA Technical Reports Server (NTRS)

    Scheidegger, Robert J.; Santiago, Walter; Bozak, Karin E.; Pinero, Luis R.; Birchenough, Arthur G.

    2015-01-01

    NASA GRC successfully designed, built and tested a technology-push power processing unit for electric propulsion applications that utilizes high voltage silicon carbide (SiC) technology. The development specifically addresses the need for high power electronics to enable electric propulsion systems in the 100s of kilowatts. This unit demonstrated how high voltage combined with superior semiconductor components resulted in exceptional converter performance.

  4. Dynamics of high-bypass-engine thrust reversal using a variable-pitch fan

    NASA Technical Reports Server (NTRS)

    Schaefer, J. W.; Sagerser, D. R.; Stakolich, E. G.

    1977-01-01

    The test program demonstrated that successful and rapid forward-to reverse-thrust transients can be performed without any significant engine operational limitations for fan blade pitch changes through either feather pitch or flat pitch. For through-feather-pitch operation with a flight inlet, fan stall problems were encountered, and a fan blade overshoot technique was used to establish reverse thrust.

  5. Smart and Green Energy (SAGE) for Base Camps Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engels, Matthias; Boyd, Paul A.; Koehler, Theresa M.

    2014-02-11

    The U.S. Army Logistics Innovation Agency’s (LIA’s) Smart and Green Energy (SAGE) for Base Camps project was to investigate how base camps’ fuel consumption can be reduced by 30% to 60% using commercial off-the-shelf (COTS) technologies for power generation, renewables, and energy efficient building systems. Field tests and calibrated energy models successfully demonstrated that the fuel reductions are achievable.

  6. Advanced Design and Optimization of High Performance Combatant Craft: Material Testing and Computational Tools

    DTIC Science & Technology

    2012-05-31

    inherently shock-absorbent, and more durable than conventional materials. Despite these initial demonstration successes, there are still barriers that need...to deliver boats that are stronger, lighter, inherently shock‐absorbent, and more durable than those manufactured with conventional materials...and more durable than conventional materials (e.g. aluminum). Further, prior research by the University of Maine, Virginia Tech, and others has

  7. Antibody labeling with Remazol Brilliant Violet 5R, a vinylsulphonic reactive dye.

    PubMed

    Ferrari, Alejandro; Friedrich, Adrián; Weill, Federico; Wolman, Federico; Leoni, Juliana

    2013-01-01

    Colloidal gold is the first choice for labeling antibodies to be used in Point Of Care Testing. However, there are some recent reports on a family of textile dyes-named "reactive dyes"-being suitable for protein labeling. In the present article, protein labeling conditions were optimized for Remazol Brilliant Violet 5R, and the sensitivity of the labeled antibodies was assessed and compared with that of colloidal-gold labeled antibodies. Also, the accelerated stability was explored. Optimal conditions were pH 10.95, dye:Ab molar ratio of 264 and an incubation time of 132 min. Labeled antibodies were stable, and could be successfully used in a slot blot assay, detecting as low as 400 ng/mL. Therefore, the present work demonstrates that vinylsulphonic reactive dyes can be successfully used to label antibodies, and are excellent candidates for the construction of a new generation of Point of Care Testing kits.

  8. Cryogenic Photogrammetry and Radiometry for the James Webb Space Telescope Microshutters

    NASA Technical Reports Server (NTRS)

    Chambers, Victor J.; Morey, Peter A.; Zukowski, Barbara J.; Kutyrev, Alexander S.; Collins, Nicholas R.

    2012-01-01

    The James Webb Space Telescope (JWST) relies on several innovations to complete its five year mission. One vital technology is microshutters, the programmable field selectors that enable the Near Infrared Spectrometer (NIRSpec) to perform multi-object spectroscopy. Mission success depends on acquiring spectra from large numbers of galaxies by positioning shutter slits over faint targets. Precise selection of faint targets requires field selectors that are both high in contrast and stable in position. We have developed test facilities to evaluate microshutter contrast and alignment stability at their 35K operating temperature. These facilities used a novel application of image registration algorithms to obtain non-contact, sub-micron measurements in cryogenic conditions. The cryogenic motion of the shutters was successfully characterized. Optical results also demonstrated that shutter contrast far exceeds the NIRSpec requirements. Our test program has concluded with the delivery of a flight-qualified field selection subsystem to the NIRSpec bench.

  9. Development of superconductor magnetic suspension and balance prototype facility for studying the feasibility of applying this technique to large scale aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    The unique design and operational characteristics of a prototype magnetic suspension and balance facility which utilizes superconductor technology are described and discussed from the point of view of scalability to large sizes. The successful experimental demonstration of the feasibility of this new magnetic suspension concept of the University of Virginia, together with the success of the cryogenic wind-tunnel concept developed at Langley Research Center, appear to have finally opened the way to clean-tunnel, high-Re aerodynamic testing. Results of calculations corresponding to a two-step design extrapolation from the observed performance of the prototype magnetic suspension system to a system compatible with the projected cryogenic transonic research tunnel are presented to give an order-of-magnitude estimate of expected performance characteristics. Research areas where progress should lead to improved design and performance of large facilities are discussed.

  10. REVEAL: Software Documentation and Platform Migration

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Veibell, Victoir T.; Freudinger, Lawrence C.

    2008-01-01

    The Research Environment for Vehicle Embedded Analysis on Linux (REVEAL) is reconfigurable data acquisition software designed for network-distributed test and measurement applications. In development since 2001, it has been successfully demonstrated in support of a number of actual missions within NASA s Suborbital Science Program. Improvements to software configuration control were needed to properly support both an ongoing transition to operational status and continued evolution of REVEAL capabilities. For this reason the project described in this report targets REVEAL software source documentation and deployment of the software on a small set of hardware platforms different from what is currently used in the baseline system implementation. This report specifically describes the actions taken over a ten week period by two undergraduate student interns and serves as a final report for that internship. The topics discussed include: the documentation of REVEAL source code; the migration of REVEAL to other platforms; and an end-to-end field test that successfully validates the efforts.

  11. Design and test of a high performance off-axis TMA telescope

    NASA Astrophysics Data System (ADS)

    Fan, Bin; Cai, Wei-jun; Huang, Ying

    2017-11-01

    A new complete Optical Demonstration Model (ODM) of high performance off-axis Three Mirror Anastigmatic (TMA) telescope has been successfully developed in BISME. This 1.75-m focal length, 1/9 relative aperture, 6.2°×1.0°field of view visible telescope, which uses the TDICCD detectors of 7μm pixel size, can provide 2.0-m ground sampling distance and 51-km swath from an altitude of 500 km. With some significant efforts, the main goals of the ODM have been reached: a compact lightweight design while realizing high performance and high stability. The optical system and key technologies have been applied in the multispectral camera of ZY-3 Satellite (the first high resolution stereo mapping satellite of China), which was successfully launched on January 9th, 2012. The main technology of ODM was described. The test results and applications were outlined.

  12. The measure and significance of Bateman's principles

    PubMed Central

    Collet, Julie M.; Dean, Rebecca F.; Worley, Kirsty; Richardson, David S.; Pizzari, Tommaso

    2014-01-01

    Bateman's principles explain sex roles and sexual dimorphism through sex-specific variance in mating success, reproductive success and their relationships within sexes (Bateman gradients). Empirical tests of these principles, however, have come under intense scrutiny. Here, we experimentally show that in replicate groups of red junglefowl, Gallus gallus, mating and reproductive successes were more variable in males than in females, resulting in a steeper male Bateman gradient, consistent with Bateman's principles. However, we use novel quantitative techniques to reveal that current methods typically overestimate Bateman's principles because they (i) infer mating success indirectly from offspring parentage, and thus miss matings that fail to result in fertilization, and (ii) measure Bateman gradients through the univariate regression of reproductive over mating success, without considering the substantial influence of other components of male reproductive success, namely female fecundity and paternity share. We also find a significant female Bateman gradient but show that this likely emerges as spurious consequences of male preference for fecund females, emphasizing the need for experimental approaches to establish the causal relationship between reproductive and mating success. While providing qualitative support for Bateman's principles, our study demonstrates how current approaches can generate a misleading view of sex differences and roles. PMID:24648220

  13. Recovery Act. Demonstration of a Pilot Integrated Biorefinery for the Efficient, Direct Conversion of Biomass to Diesel Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuetzle, Dennis; Tamblyn, Greg; Caldwell, Matt

    2015-05-12

    The Renewable Energy Institute International, in collaboration with Greyrock Energy and Red Lion Bio-Energy (RLB) has successfully demonstrated operation of a 25 ton per day (tpd) nameplate capacity, pilot, pre-commercial-scale integrated biorefinery (IBR) plant for the direct production of premium, “drop-in”, synthetic fuels from agriculture and forest waste feedstocks using next-generation thermochemical and catalytic conversion technologies. The IBR plant was built and tested at the Energy Center, which is located in the University of Toledo Medical Campus in Toledo, Ohio.

  14. New techniques for test development for tactical auto-pilots using microprocessors

    NASA Astrophysics Data System (ADS)

    Shemeta, E. H.

    1980-07-01

    This paper reports on a demonstration of the application of the method to generate system level tests for a typical tactical missile autopilot. The test algorithms are based on the autopilot control law. When loaded on the tester with appropriate control information, the complete autopilot is tested to establish if the specified control law requirements are met. Thus, the test procedure not only checks to see if the hardware is functional, but also checks the operational software. The technique also uses a 'learning' mode to allow minor timing or functional deviations from the expected responses to be incorporated in the test procedures. A potential application of this test development technique is the extraction of production test data for the various subassemblies. The technique will 'learn' the input-output patterns forming the basis for developement and production tests. If successful, these new techniques should allow the test development process to keep pace with semiconductor progress.

  15. Effects of resource variation during early life and adult social environment on contest outcomes in burying beetles: a context-dependent silver spoon strategy?

    PubMed

    Hopwood, Paul E; Moore, Allen J; Royle, Nick J

    2014-06-22

    Good early nutritional conditions may confer a lasting fitness advantage over individuals suffering poor early conditions (a 'silver spoon' effect). Alternatively, if early conditions predict the likely adult environment, adaptive plastic responses might maximize individual performance when developmental and adult conditions match (environmental-matching effect). Here, we test for silver spoon and environmental-matching effects by manipulating the early nutritional environment of Nicrophorus vespilloides burying beetles. We manipulated nutrition during two specific early developmental windows: the larval environment and the post-eclosion environment. We then tested contest success in relation to variation in adult social environmental quality experienced (defined according to whether contest opponents were smaller (good environment) or larger (poor environment) than the focal individual). Variation in the larval environment influenced adult body size but not contest success per se for a given adult social environment experienced (an 'indirect' silver spoon effect). Variation in post-eclosion environment affected contest success dependent on the quality of the adult environment experienced (a context-dependent 'direct' silver spoon effect). By contrast, there was no evidence for environmental-matching. The results demonstrate the importance of social environmental context in determining how variation in nutrition in early life affects success as an adult.

  16. X-43A Fluid and Environmental Systems: Ground and Flight Operation and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Vachon, Michael Jacob; Grindle, Thomas J.; St.John, Clinton W.; Dowdell, David B.

    2005-01-01

    The X-43A Hyper-X program demonstrated the first successful flights of an airframe integrated scramjet powered hypersonic vehicle. The X-43A vehicles established successive world records for jet-powered vehicles at speeds of Mach 7 and Mach 10. The X-43A vehicle is a subscale version of proposed hypersonic reconnaissance strike aircraft. Scaled down to a length of 12 ft (3.66 m), the lifting body design with high fineness ratio resulted in very small internal space available for fluid systems and their corresponding environmental conditioning systems. Safe testing and operation of the X-43A fluid and environmental systems was critical for mission success, not only for the safety of the flight crew in the NASA B-52B carrier aircraft, but also to maintain the reliability of vehicle systems while exposed to dynamics and hostile conditions encountered during the boost trajectory. The X-43A fluid and environmental systems successfully managed explosive, pyrophoric, inert, and very high pressure gases without incident. This report presents a summary of the checkout and flight validation of the X-43A fluid systems. The testing used for mission assurance is summarized. System performance during captive carry and launch flights is presented. The lessons learned are also discussed.

  17. Spray Bar Zero-Gravity Vent System for On-Orbit Liquid Hydrogen Storage

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Flachbart, R. H.; Martin, J. J.; Hedayat, A.; Fazah, M.; Lak, T.; Nguyen, H.; Bailey, J. W.

    2003-01-01

    During zero-gravity orbital cryogenic propulsion operations, a thermodynamic vent system (TVS) concept is expected to maintain tank pressure control without propellant resettling. In this case, a longitudinal spray bar mixer system, coupled with a Joule-Thompson (J-T) valve and heat exchanger, was evaluated in a series of TVS tests using the 18 cu m multipurpose hydrogen test bed. Tests performed at fill levels of 90, 50, and 25 percent, coupled with heat tank leaks of about 20 and 50 W, successfully demonstrated tank pressure control within a 7-kPa band. Based on limited testing, the presence of helium constrained the energy exchange between the gaseous and liquid hydrogen (LH2) during the mixing cycles. A transient analytical model, formulated to characterize TVS performance, was used to correlate the test data. During self-pressurization cycles following tank lockup, the model predicted faster pressure rise rates than were measured; however, once the system entered the cyclic self-pressurization/mixing/venting operational mode, the modeled and measured data were quite similar. During a special test at the 25-percent fill level, the J-T valve was allowed to remain open and successfully reduced the bulk LH2 saturation pressure from 133 to 70 kPa in 188 min.

  18. Advanced gearbox technology

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Cedoz, R. W.; Salama, E. E.; Wagner, D. A.

    1987-01-01

    An advanced 13,000 HP, counterrotating (CR) gearbox was designed and successfully tested to provide a technology base for future designs of geared propfan propulsion systems for both commercial and military aircraft. The advanced technology CR gearbox was designed for high efficiency, low weight, long life, and improved maintainability. The differential planetary CR gearbox features double helical gears, double row cylindrical roller bearings integral with planet gears, tapered roller prop support bearings, and a flexible ring gear and diaphragm to provide load sharing. A new Allison propfan back-to-back gearbox test facility was constructed. Extensive rotating and stationary instrumentation was used to measure temperature, strain, vibration, deflection and efficiency under representative flight operating conditions. The tests verified smooth, efficient gearbox operation. The highly-instrumented advanced CR gearbox was successfully tested to design speed and power (13,000 HP), and to a 115 percent overspeed condition. Measured CR gearbox efficiency was 99.3 percent at the design point based on heat loss to the oil. Tests demonstrated low vibration characteristics of double helical gearing, proper gear tooth load sharing, low stress levels, and the high load capacity of the prop tapered roller bearings. Applied external prop loads did not significantly affect gearbox temperature, vibration, or stress levels. Gearbox hardware was in excellent condition after the tests with no indication of distress.

  19. Thermal cycle testing of Space Station Freedom solar array blanket coupons

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Schieman, David A.

    1991-01-01

    Lewis Research Center is presently conducting thermal cycle testing of solar array blanket coupons that represent the baseline design for Space Station Freedom. Four coupons were fabricated as part of the Photovoltaic Array Environment Protection (PAEP) Program, NAS 3-25079, at Lockheed Missile and Space Company. The objective of the testing is to demonstrate the durability or operational lifetime of the solar array welded interconnect design within the durability or operational lifetime of the solar array welded interconnect design within a low earth orbit (LEO) thermal cycling environment. Secondary objectives include the observation and identification of potential failure modes and effects that may occur within the solar array blanket coupons as a result of thermal cycling. The objectives, test articles, test chamber, performance evaluation, test requirements, and test results are presented for the successful completion of 60,000 thermal cycles.

  20. Aeroelastic Optimization Study Based on the X-56A Model

    NASA Technical Reports Server (NTRS)

    Li, Wesley W.; Pak, Chan-Gi

    2014-01-01

    One way to increase the aircraft fuel efficiency is to reduce structural weight while maintaining adequate structural airworthiness, both statically and aeroelastically. A design process which incorporates the object-oriented multidisciplinary design, analysis, and optimization (MDAO) tool and the aeroelastic effects of high fidelity finite element models to characterize the design space was successfully developed and established. This paper presents two multidisciplinary design optimization studies using an object-oriented MDAO tool developed at NASA Armstrong Flight Research Center. The first study demonstrates the use of aeroelastic tailoring concepts to minimize the structural weight while meeting the design requirements including strength, buckling, and flutter. Such an approach exploits the anisotropic capabilities of the fiber composite materials chosen for this analytical exercise with ply stacking sequence. A hybrid and discretization optimization approach improves accuracy and computational efficiency of a global optimization algorithm. The second study presents a flutter mass balancing optimization study for the fabricated flexible wing of the X-56A model since a desired flutter speed band is required for the active flutter suppression demonstration during flight testing. The results of the second study provide guidance to modify the wing design and move the design flutter speeds back into the flight envelope so that the original objective of X-56A flight test can be accomplished successfully. The second case also demonstrates that the object-oriented MDAO tool can handle multiple analytical configurations in a single optimization run.

  1. Aerodynamic Models for the Low Density Supersonic Decelerator (LDSD) Test Vehicles

    NASA Technical Reports Server (NTRS)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2016-01-01

    An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.

  2. 3D-LZ helicopter ladar imaging system

    NASA Astrophysics Data System (ADS)

    Savage, James; Harrington, Walter; McKinley, R. Andrew; Burns, H. N.; Braddom, Steven; Szoboszlay, Zoltan

    2010-04-01

    A joint-service team led by the Air Force Research Laboratory's Munitions and Sensors Directorates completed a successful flight test demonstration of the 3D-LZ Helicopter LADAR Imaging System. This was a milestone demonstration in the development of technology solutions for a problem known as "helicopter brownout", the loss of situational awareness caused by swirling sand during approach and landing. The 3D-LZ LADAR was developed by H.N. Burns Engineering and integrated with the US Army Aeroflightdynamics Directorate's Brown-Out Symbology System aircraft state symbology aboard a US Army EH-60 Black Hawk helicopter. The combination of these systems provided an integrated degraded visual environment landing solution with landing zone situational awareness as well as aircraft guidance and obstacle avoidance information. Pilots from the U.S. Army, Air Force, Navy, and Marine Corps achieved a 77% landing rate in full brownout conditions at a test range at Yuma Proving Ground, Arizona. This paper will focus on the LADAR technology used in 3D-LZ and the results of this milestone demonstration.

  3. Online Oxide Contamination Measurement and Purification Demonstration

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Godfroy, T. J.; Webster, K. L.; Garber, A. E.; Polzin, K. A.; Childers, D. J.

    2011-01-01

    Liquid metal sodium-potassium (NaK) has advantageous thermodynamic properties indicating its use as a fission reactor coolant for a surface (lunar, martian) power system. A major area of concern for fission reactor cooling systems is system corrosion due to oxygen contaminants at the high operating temperatures experienced. A small-scale, approximately 4-L capacity, simulated fission reactor cooling system employing NaK as a coolant was fabricated and tested with the goal of demonstrating a noninvasive oxygen detection and purification system. In order to generate prototypical conditions in the simulated cooling system, several system components were designed, fabricated, and tested. These major components were a fully-sealed, magnetically-coupled mechanical NaK pump, a graphite element heated reservoir, a plugging indicator system, and a cold trap. All system components were successfully demonstrated at a maximum system flow rate of approximately 150 cc/s at temperatures up to 550 C. Coolant purification was accomplished using a cold trap before and after plugging operations which showed a relative reduction in oxygen content.

  4. Scenario for Hollow Cathode End-Of-Life

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    2000-01-01

    Recent successful hollow cathode life tests have demonstrated that lifetimes can meet the requirements of several space applications. However, there are no methods for assessing cathode lifetime short of demonstrating the requirement. Previous attempts to estimate or predict cathode lifetime were based on relatively simple chemical depletion models derived from the dispenser cathode community. To address this lack of predicative capability, a scenario for hollow cathode lifetime under steady-state operating conditions is proposed. This scenario has been derived primarily from the operating behavior and post-test condition of a hollow cathode that was operated for 28,000 hours. In this scenario, the insert chemistry evolves through three relatively distinct phases over the course of the cathode lifetime. These phases are believed to correspond to demonstrable changes in cathode operation. The implications for cathode lifetime limits resulting from this scenario are examined, including methods to assess cathode lifetime without operating to End-of- Life and methods to extend the cathode lifetime.

  5. Monodispersed Li 4Ti 5O 12 with Controlled Morphology as High Power Lithium Ion Battery Anodes

    DOE PAGES

    Li, Yunchao; Fu, Guoyi; Watson, Mark; ...

    2016-05-31

    Monodispersed Li 4Ti 5O 12 (LTO) nanoparticles with controlled microstructure were successfully synthesized by a combination of hydrolysis and hydrothermal method followed by a post-annealing process. The scanning electron microscopy images showed that particles with a size of 30-40 nm were precisely controlled throughout the synthesis process. The electrochemical tests of the as-prepared LTO electrodes in a half-cell proved its high rate performance and outstanding cyclability which benefits from the preserved well-controlled nanoparticle size and morphology. LTO electrodes were also tested in a full cell configuration in pairing with LiFePO 4 cathodes, which demonstrated a capacity of 147.3 mAh gmore » -1. In addition, we have also demonstrated that LTO materials prepared using lithium salts separated from geothermal brine solutions had good cyclability. These demonstrations provide a promising way for making low-cost, large-scale LTO electrode materials for energy storage applications.« less

  6. Control of Fan Blade Vibrations Using Piezoelectrics and Bi-Directional Telemetry

    NASA Technical Reports Server (NTRS)

    Provenza, Andrew J.; Morrison, Carlos R.

    2011-01-01

    A novel wireless device which transfers supply power through induction to rotating operational amplifiers and transmits low voltage AC signals to and from a rotating body by way of radio telemetry has been successfully demonstrated in the NASA Glenn Research Center (GRC) Dynamic Spin Test Facility. In the demonstration described herein, a rotating operational amplifier provides controllable AC power to a piezoelectric patch epoxied to the surface of a rotating Ti plate. The amplitude and phase of the sinusoidal voltage command signal, transmitted wirelessly to the amplifier, was tuned to completely suppress the 3rd bending resonant vibration of the plate. The plate's 3rd bending resonance was excited using rotating magnetic bearing excitation while it spun at slow speed in a vacuum chamber. A second patch on the opposite side of the plate was used as a sensor. This paper discusses the characteristics of this novel device, the details of a spin test, results from a preliminary demonstration, and future plans.

  7. Demonstration of a High-Order Mode Input Coupler for a 220-GHz Confocal Gyrotron Traveling Wave Tube

    NASA Astrophysics Data System (ADS)

    Guan, Xiaotong; Fu, Wenjie; Yan, Yang

    2018-02-01

    A design of high-order mode input coupler for 220-GHz confocal gyrotron travelling wave tube is proposed, simulated, and demonstrated by experimental tests. This input coupler is designed to excite confocal TE 06 mode from rectangle waveguide TE 10 mode over a broadband frequency range. Simulation results predict that the optimized conversion loss is about 2.72 dB with a mode purity excess of 99%. Considering of the gyrotron interaction theory, an effective bandwidth of 5 GHz is obtained, in which the beam-wave coupling efficiency is higher than half of maximum. The field pattern under low power demonstrates that TE 06 mode is successfully excited in confocal waveguide at 220 GHz. Cold test results from the vector network analyzer perform good agreements with simulation results. Both simulation and experimental results illustrate that the reflection at input port S11 is sensitive to the perpendicular separation of two mirrors. It provides an engineering possibility for estimating the assembly precision.

  8. RHETT/EPDM Flight Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Manzella, David; Patterson, Michael; Pastel, Michael

    1997-01-01

    Under the sponsorship of the BMDO Russian Hall Electric Thruster Technology program two xenon hollow cathodes, a flight unit and a flight spare were fabricated, acceptance tested and delivered to the Naval Research Laboratory for use on the Electric Propulsion Demonstration Module. These hollow cathodes, based on the International Space Station plasma contactor design, were fabricated at the NASA Lewis Research Center for use with a D-55 anode layer thruster in the first on-orbit operational application of this technology. The 2.2 Ampere nominal emission current of this device was obtained with a xenon flow rate of 0.6 mg/s. Ignition of the cathode discharge was accomplished through preheating the active electron emitter with a resistive heating element before application of a 650 volt ignition pulse between the emitter and an external starting electrode. The successful acceptance testing of the Electric Propulsion Demonstration Module utilizing these cathodes demonstrated the suitability of cathodes based on barium impregnated inserts in an enclosed keeper configuration for use with Hall thruster propulsion systems.

  9. Wind tunnel test of a variable-diameter tiltrotor (VDTR) model

    NASA Technical Reports Server (NTRS)

    Matuska, David; Dale, Allen; Lorber, Peter

    1994-01-01

    This report documents the results from a wind tunnel test of a 1/6th scale Variable Diameter Tiltrotor (VDTR). This test was a joint effort of NASA Ames and Sikorsky Aircraft. The objective was to evaluate the aeroelastic and performance characteristics of the VDTR in conversion, hover, and cruise. The rotor diameter and nacelle angle of the model were remotely changed to represent tiltrotor operating conditions. Data is presented showing the propulsive force required in conversion, blade loads, angle of attack stability and simulated gust response, and hover and cruise performance. This test represents the first wind tunnel test of a variable diameter rotor applied to a tiltrotor concept. The results confirm some of the potential advantages of the VDTR and establish the variable diameter rotor a viable candidate for an advanced tiltrotor. This wind tunnel test successfully demonstrated the feasibility of the Variable Diameter rotor for tilt rotor aircraft. A wide range of test points were taken in hover, conversion, and cruise modes. The concept was shown to have a number of advantages over conventional tiltrotors such as reduced hover downwash with lower disk loading and significantly reduced longitudinal gust response in cruise. In the conversion regime, a high propulsive force was demonstrated for sustained flight with acceptable blade loads. The VDTR demonstrated excellent gust response capabilities. The horizontal gust response correlated well with predictions revealing only half the response to turbulence of the conventional civil tiltrotor.

  10. Final payload test results for the RemoveDebris active debris removal mission

    NASA Astrophysics Data System (ADS)

    Forshaw, Jason L.; Aglietti, Guglielmo S.; Salmon, Thierry; Retat, Ingo; Roe, Mark; Burgess, Christopher; Chabot, Thomas; Pisseloup, Aurélien; Phipps, Andy; Bernal, Cesar; Chaumette, François; Pollini, Alexandre; Steyn, Willem H.

    2017-09-01

    Since the beginning of the space era, a significant amount of debris has progressively been generated in space. Active Debris Removal (ADR) missions have been suggested as a way of limiting and controlling future growth in orbital space debris by actively deploying vehicles to remove debris. The European Commission FP7-sponsored RemoveDebris mission, which started in 2013, draws on the expertise of some of Europe's most prominent space institutions in order to demonstrate key ADR technologies in a cost effective ambitious manner: net capture, harpoon capture, vision-based navigation, dragsail de-orbiting. This paper provides an overview of some of the final payload test results before launch. A comprehensive test campaign is underway on both payloads and platform. The tests aim to demonstrate both functional success of the experiments and that the experiments can survive the space environment. Space environmental tests (EVT) include vibration, thermal, vacuum or thermal-vacuum (TVAC) and in some cases EMC and shock. The test flow differs for each payload and depends on the heritage of the constituent payload parts. The paper will also provide an update to the launch, expected in 2017 from the International Space Station (ISS), and test philosophy that has been influenced from the launch and prerequisite NASA safety review for the mission. The RemoveDebris mission aims to be one of the world's first in-orbit demonstrations of key technologies for active debris removal and is a vital prerequisite to achieving the ultimate goal of a cleaner Earth orbital environment.

  11. Solar Airplanes and Regenerative Fuel Cells

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    2007-01-01

    A solar electric aircraft with the potential to "fly forever" has captured NASA's interest, and the concept for such an aircraft was pursued under Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project. Feasibility of this aircraft happens to depend on the successful development of solar power technologies critical to NASA's Exploration Initiatives; hence, there was widespread interest throughout NASA to bring these technologies to a flight demonstration. The most critical is an energy storage system to sustain mission power during night periods. For the solar airplane, whose flight capability is already limited by the diffuse nature of solar flux and subject to latitude and time of year constraints, the feasibility of long endurance flight depends on a storage density figure of merit better than 400-600 watt-hr per kilogram. This figure of merit is beyond the capability of present day storage technologies (other than nuclear) but may be achievable in the hydrogen-oxygen regenerative fuel cell (RFC). This potential has led NASA to undertake the practical development of a hydrogen-oxygen regenerative fuel cell, initially as solar energy storage for a high altitude UAV science platform but eventually to serve as the primary power source for NASAs lunar base and other planet surface installations. Potentially the highest storage capacity and lowest weight of any non-nuclear device, a flight-weight RFC aboard a solar-electric aircraft that is flown continuously through several successive day-night cycles will provide the most convincing demonstration that this technology's widespread potential has been realized. In 1998 NASA began development of a closed cycle hydrogen oxygen PEM RFC under the Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project and continued its development, originally for a solar electric airplane flight, through FY2005 under the Low Emissions Alternative Power (LEAP) project. Construction of the closed loop system began in 2002 at the NASA Glenn Research Center in Cleveland, Ohio. System checkout was completed, and testing began, in July of 2003. The initial test sequences were done with only a fuel cell or electrolyzer in the test rig. Those tests were used to verify the test apparatus, procedures, and software. The first complete cycles of the fully closed loop, regenerative fuel cell system were successfully completed in the following September. Following some hardware upgrades to increase reactant recirculation flow, the test rig was operated at full power in December 2003 and again in January 2004. In March 2004 a newer generation of fuel cell and electrolyzer stacks was substituted for the original hardware and these stacks were successfully tested at full power under cyclic operation in June of 2004.

  12. Oral acute toxic class method: a successful alternative to the oral LD50 test.

    PubMed

    Schlede, Eva; Genschow, Elke; Spielmann, Horst; Stropp, Gisela; Kayser, Detlev

    2005-06-01

    The oral acute toxic class method (ATC method) was developed as an alternative to replace the oral LD50 test. The ATC method is a sequential testing procedure using only three animals of one sex per step at any of the defined dose levels. Depending on the mortality rate three but never more than six animals are used per dose level. This approach results in the reduction of numbers of animals used in comparison to the LD50 test by 40-70%. The principle of the oral ATC method is based on the Probit model and it was first evaluated on a biometric basis before a national and subsequently an international ring study were conducted. The results demonstrated an excellent agreement between the toxicity and the animal numbers predicted biometrically and observed in the validation studies. The oral ATC method was adopted as an official test guideline by OECD in 1996 and was slightly amended in 2001. The ATC method has been successfully used in Germany and in 2003 >85% of all tests on acute oral toxicity testing was conducted as oral ATC tests. In member states of the European Union the ATC method is used in the range of 50% of all tests conducted. Meanwhile the oral LD50 test has been deleted by OECD, by the European Union and by the USA, making the use of alternatives to the oral LD50 test mandatory.

  13. The impact of maternal body mass index on external cephalic version success.

    PubMed

    Chaudhary, Shahrukh; Contag, Stephen; Yao, Ruofan

    2018-01-21

    The purpose of this study is to determine the association between body mass index (BMI) and success of ECV. This is a cross-sectional analysis of singleton live births in the USA from 2010 to 2014 using birth certificate data. Patients were assigned a BMI category according to standard WHO classification. Comparisons of success of ECV between the BMI categories were made using chi-square analysis with normal BMI as the reference group. Cochran-Armitage test was performed to look for a trend of decreasing success of ECV as BMI increased. The odds for successful ECV were estimated using multivariate logistic regression analysis, adjusting for possible confounders. A total of 51,002 patients with documented ECV were available for analysis. There was a decreased success rate for ECV as BMI increased (p < .01). Women with a BMI of 40 kg/m 2 or greater had a 58.5% success rate of ECV; women with a normal BMI had 65.0% success rate of ECV. Multivariate analyses demonstrated significant decrease in success of ECV in women with BMI of 40 kg/m 2 or greater (OR 0.621, CI 0.542-0.712). Among women with BMI of 40 kg/m 2 or greater with successful ECV, 59.5% delivered vaginally. In contrast, 81.0% of women with normal BMI and successful ECV delivered vaginally. Morbidly obese women have decreased success rate of ECV as BMI increases and decreased vaginal delivery rates after successful ECV.

  14. Current status and some future test directions for the U.S. National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Gloss, Blair B.

    1992-01-01

    The construction of the National Transonic Facility was completed in September 1982 and the start-up and checkout of the tunnel systems were performed over the following two years. In August 1984, the facility was declared operational for final checkout of cryogenic instrumentation and control systems, and for the aerodynamics calibration and testing to commence. Since 1984 several operational problems have been identified and successfully solved which is demonstrated by the fact that the facility has operated the last year with no significant facility down times. Also during this time period, development of test techniques and instrumentation has continued. This paper will review some of the recent test techniques and instrumentation developments, and will briefly review the status of the facility.

  15. Update of the NEXT Ion Thruster Service Life Assessment with Post-Test Correlation to the Long Duration Test

    NASA Technical Reports Server (NTRS)

    Yim, John T.; Soulas, George C.; Shastry, Rohit; Choi, Maria; Mackey, Jonathan A.; Sarver-Verhey, Timothy R.

    2017-01-01

    The service life assessment for NASA's Evolutionary Xenon Thruster is updated to incorporate the results from the successful and voluntarily early completion of the 51,184 hour long duration test which demonstrated 918 kg of total xenon throughput. The results of the numerous post-test investigations including destructive interrogations have been assessed against all of the critical known and suspected failure mechanisms to update the life and throughput expectations for each major component. Analysis results of two of the most acute failure mechanisms, namely pit-and-groove erosion and aperture enlargement of the accelerator grid, are not updated in this work but will be published at a future time after analysis completion.

  16. Operational Results From a High Power Alternator Test Bed

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2007-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was used to simulate the operating conditions and evaluate the performance of the ATU and its interaction with various LPSF components in accordance with the current Fission Surface Power System (FSPS) requirements. The testing was carried out at the breadboard development level. These results successfully demonstrated excellent ATU power bus characteristics and rectified user load power quality during steady state and transient conditions. Information gained from this work could be used to assist the design and primary power quality considerations for a possible future FSPS. This paper describes the LPSF components and some preliminary test results.

  17. Application of fiber grating-based acoustic sensor in progressive failure testing of e-glass/vinylester curve composites

    NASA Astrophysics Data System (ADS)

    Azmi, Asrul Izam; Raju, Raju; Peng, Gang-Ding

    2012-02-01

    This paper reports an application of phase shifted fiber Bragg grating (PS-FBG) intensity-type acoustic sensor in a continuous and in-situ failure testing of an E-glass/vinylester top hat stiffener (THS). The narrow transmission channel of the PS-FBG is highly sensitive to small perturbation, hence suitable to be used in an effective acoustic emission (AE) assessment technique. The progressive failure of THS was tested under transverse loading to experimentally simulate the actual loading in practice. Our experimental tests have demonstrated, in good agreement with the commercial piezoelectric sensors, that the important failures information of the THS was successfully recorded by the simple intensity-type PS-FBG sensor.

  18. Icebreaker-3 Drill Integration and Testing at Two Mars-Analog Sites

    NASA Technical Reports Server (NTRS)

    Glass, B.; Bergman, D.; Yaggi, B.; Dave, A.; Zacny, K.

    2016-01-01

    A decade of evolutionary development of integrated automated drilling and sample handling at analog sites and in test chambers has made it possible to go 1 meter through hard rocks and ice layers on Mars. The latest Icebreaker-3 drill has been field tested in 2014 at the Haughton Crater Marsanalog site in the Arctic and in 2015 with a Mars lander mockup in Rio Tinto, Spain, (with sample transfer arm and with a prototype life-detection instrument). Tests in Rio Tinto in 2015 successfully demonstrated that the drill sample (cuttings) was handed-off from the drill to the sample transfer arm and thence to the on-deck instrument inlet where it was taken in and analyzed ("dirt-to-data").

  19. Energy efficient engine high-pressure turbine component rig performance test report

    NASA Technical Reports Server (NTRS)

    Leach, K. P.

    1983-01-01

    A rig test of the cooled high-pressure turbine component for the Energy Efficient Engine was successfully completed. The principal objective of this test was to substantiate the turbine design point performance as well as determine off-design performance with the interaction of the secondary flow system. The measured efficiency of the cooled turbine component was 88.5 percent, which surpassed the rig design goal of 86.5 percent. The secondary flow system in the turbine performed according to the design intent. Characterization studies showed that secondary flow system performance is insensitive to flow and pressure variations. Overall, this test has demonstrated that a highly-loaded, transonic, single-stage turbine can achieve a high level of operating efficiency.

  20. The Parachute System Recovery of the Orion Pad Abort Test 1

    NASA Technical Reports Server (NTRS)

    Machin, Ricardo; Evans, Carol; Madsen, Chris; Morris, Aaron

    2011-01-01

    The Orion Pad Abort Test 1 was conducted at the US Army White Sands Missile range in May 2010. The capsule was successfully recovered using the original design for the parachute recovery system, referred to as the CEV Parachute Assembly System (CPAS). The CPAS was designed to a set of requirements identified prior to the development of the PA-1 test; these requirements were not entirely consistent with the design of the PA-1 test. This presentation will describe the original CPAS design, how the system was modified to accommodate the PA-1 requirements, and what special analysis had to be performed to demonstrate positive margins for the CPAS. The presentation will also discuss the post test analysis and how it compares to the models that were used to design the system.

  1. Superconducting homopolar motor and conductor development

    NASA Astrophysics Data System (ADS)

    Gubser, Donald U.

    1996-10-01

    The U.S. Navy has been developing superconducting homopolar motors for ship applications since 1969; a successful at-sea demonstration of the first motor, using NbTi wire for the magnet, was achieved in the early 1980s. Recently, this same motor was used as a test bed to demonstrate progress in high-critical-temperature superconducting magnet technology using bismuth-strontium- calcium-copper-oxide (BSCCO) compounds. In the fall of 1995, this motor achieved a performance of 124 kW operating at a temperature of 4.2 K and 91 kW while operating at 28 K. Future tests are scheduled using new magnets with conductors of both the 2223 and the 2212 BSCCO phases. This article describes the advantages of superconducting propulsion and recent progress in the development of BSCCO conductors for use in Navy power systems.

  2. Model Test of the Aerospace Laser Propulsion Engine

    NASA Astrophysics Data System (ADS)

    Ageichik, Alexander A.; Egorov, Maxim S.; Ostapenko, Svetlana V.; Rezunkov, Yuri A.; Safronov, Alexander L.; Stepanov, Vladimir V.

    2005-04-01

    One of the main results of the experimental and theoretical investigations made under the ISTC Project ♯ 1801 is the original design of Aerospace Laser Propulsion Engine (ASLPE) developed. The designed characteristics of the ASLPE flight model are experimentally approved, including the test experiments with a solid propellant. The obtained momentum coupling coefficient is rather high and comparable one with respect to the coefficient obtained by other researchers. Moreover, it is experimentally demonstrated that the thrust characteristics of the ASLPE flight model does not depend on angular aberrations of the beam coming onto the beam concentrator of the model with the incident angle of 0.01 radian. The experiments also demonstrated that successful launching of the vehicle with the ASLPE under the laser characteristics is possible also if the vehicle mass will be decreased and the thermal blooming effect will be eliminated.

  3. Experimental Investigations from the Operation of a 2 Kw Brayton Power Conversion Unit and a Xenon Ion Thruster

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Birchenough, Arthur; Pinero, Luis

    2004-01-01

    A 2 kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton converters and ion thrusters are potential candidates for use on future high power NEP missions such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of existing lower power test hardware provided a cost-effective means to investigate the critical electrical interface between the power conversion system and ion propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  4. Experimental Investigation from the Operation of a 2 kW Brayton Power Conversion Unit and a Xenon Ion Thruster

    NASA Technical Reports Server (NTRS)

    Hervol, David; Mason, Lee; Birchenough, Art; Pinero, Luis

    2004-01-01

    A 2kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton Converters and ion thrusters are potential candidates for use on future high power NEP mission such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of a existing lower power test hardware provided a cost effective means to investigate the critical electrical interface between the power conversion system and the propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  5. Aerofoil testing in a self-streamlining flexible walled wind tunnel. Ph.D. Thesis - Jul. 1987

    NASA Technical Reports Server (NTRS)

    Lewis, Mark Charles

    1988-01-01

    Two-dimensional self-streamlining flexible walled test sections eliminate, as far as experimentally possible, the top and bottom wall interference effects in transonic airfoil testing. The test section sidewalls are rigid, while the impervious top and bottom walls are flexible and contoured to streamline shapes by a system of jacks, without reference to the airfoil model. The concept of wall contouring to eliminate or minimize test section boundary interference in 2-D testing was first demonstrated by NPL in England during the early 40's. The transonic streamlining strategy proposed, developed and used by NPL has been compared with several modern strategies. The NPL strategy has proved to be surprisingly good at providing a wall interference-free test environment, giving model performance indistinguishable from that obtained using the modern strategies over a wide range of test conditions. In all previous investigations the achievement of wall streamlining in flexible walled test sections has been limited to test sections up to those resulting in the model's shock just extending to a streamlined wall. This work however, has also successfully demonstrated the feasibility of 2-D wall streamlining at test conditions where both model shocks have reached and penetrated through their respective flexible walls. Appropriate streamlining procedures have been established and are uncomplicated, enabling flexible walled test sections to cope easily with these high transonic flows.

  6. Lunar Simulants, Analogues, and Standards: Needs and Realities for Mission Technologies Development

    NASA Technical Reports Server (NTRS)

    Sibille, Laurent

    2013-01-01

    Integration of In-Situ Resource Utilization (ISRU) capabilities into missions present both challenges as well as benefits for future missions to the Moon and Mars. However, since ISRU systems and capabilities have not flown, mission planners have been hesitant to include ISRU capabilities in mission critical roles, thereby significantly reducing the benefits that ISRU can provide in mission mass and cost reductions. For ISRU systems to provide products and services to 'customers' such as life support, propulsion, and power systems, close development of requirements, hardware, and operations between ISRU and these systems are required. To address these development and incorporation challenges, NASA and csA initiated a series of analog field test demonstrations at sites in Hawaii. Two tests completed in November of 2008 and February of 2010 have demonstrate all the critical steps in operating ISRU systems on the lunar surface at relevant mission scales as well as integration with power and propulsion systems. The third field test planned for July 2012 will demonstrate that a mission to the lunar poles to locate and characterize ice and other volatiles is possible in a highly integrated mission with multiple space agencies. These analog field tests have shown that not only are ISRU systems feasible at relevant mission scales, that they can be successfully integrated into mission architectures.

  7. Testing Iodine as a New Fuel for Cathodes

    NASA Astrophysics Data System (ADS)

    Glad, Harley; Branam, Richard; Rogers, Jim; Warren, Matthew; Burleson, Connor; Siy, Grace

    2017-11-01

    The objective of this research is to demonstrate the viability of using iodine as an alternative space propulsion propellant. The demonstration requires the testing of a cathode with xenon and then the desired element iodine. Currently, cathodes run on noble gases such as xenon which must be stored in high pressure canisters and is very expensive. These shortcomings have led to researching possible substitutes. Iodine was decided as a suitable candidate because it's cheaper, can be stored as a solid, and has similar mass properties as xenon. In this research, cathodes will be placed in a vacuum chamber and operated on both gases to observe their performance, allowing us to gain a better understanding of iodine's behavior. Several planned projects depend on the knowledge gained from this project, such as larger scaled tests and iodine fed hall thrusters. The tasks of this project included protecting the stainless-steel vacuum chamber by gold plating and Teflon® coating, building a stand to hold the cathode, creating an anode resistant to iodine, and testing the cathode once setup was complete. The successful operation of the cathode was demonstrated. However, the experimental setup proved ineffective at controlling the iodine flow. Current efforts are focused on this problem. REU Site: Fluid Mechanics with Analysis using Computations and Experiments NSF Grant EEC 1659710.

  8. Subsonic Glideback Rocket Demonstrator Flight Testing

    NASA Technical Reports Server (NTRS)

    DeTurris, Dianne J.; Foster, Trevor J.; Barthel, Paul E.; Macy, Daniel J.; Droney, Christopher K.; Talay, Theodore A. (Technical Monitor)

    2001-01-01

    For the past two years, Cal Poly's rocket program has been aggressively exploring the concept of remotely controlled, fixed wing, flyable rocket boosters. This program, embodied by a group of student engineers known as Cal Poly Space Systems, has successfully demonstrated the idea of a rocket design that incorporates a vertical launch pattern followed by a horizontal return flight and landing. Though the design is meant for supersonic flight, CPSS demonstrators are deployed at a subsonic speed. Many steps have been taken by the club that allowed the evolution of the StarBooster prototype to reach its current size: a ten-foot tall, one-foot diameter, composite material rocket. Progress is currently being made that involves multiple boosters along with a second stage, third rocket.

  9. Composite embedded fiber optic data links in Standard Electronic Modules

    NASA Astrophysics Data System (ADS)

    Ehlers, S. L.; Jones, K. J.; Morgan, R. E.; Hixson, Jay

    1990-12-01

    The goal of this project is to fabricate a chassis/circuit card demonstration entirely 'wired' with embedded and interconnected optical fibers. Graphite/epoxy Standard Electronic Module E (SEM-E) configured panels have been successfully fabricated. Fiber-embedded SEM-E configured panels have been subjected to simultaneous signal transmission and vibration testing. Packaging constraints will require tapping composite-embedded optical fibers at right angles to the direction of optical transmission.

  10. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.; Wusk, Mary E.; Hughes, Monica F.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future.

  11. Weapon System Requirements: Detailed Systems Engineering Prior to Product Development Positions Programs for Success

    DTIC Science & Technology

    2016-11-01

    systems engineering had better outcomes. For example, the Small Diameter Bomb Increment I program, which delivered within cost and schedule estimates ...its current portfolio. This portfolio has experienced cost growth of 48 percent since first full estimates and average delays in delivering initial...stable design, building and testing of prototypes, and demonstration of mature production processes. • Realistic cost estimate : Sound cost estimates

  12. Ultraviolet Communication for Medical Applications

    DTIC Science & Technology

    2012-06-01

    battlefield casualty care. UVC Plasma-shells were fabricated and tested as optical emitter components in the solar blind 200-280 nm UVC region, and were... solar -blind (SB) UVC region (200–280 nm). IST’s proprietary UVC-emitting Plasma-shells are successfully demonstrated in a breadboard system. At this...enclosure and removable filter. Single-crystal solar blind filters provide exceptional rejection but are extremely expensive, ruling out the Ofil filters SB

  13. Advanced Developments for Low Temperature Turbo-Brayton Cryocoolers

    NASA Technical Reports Server (NTRS)

    Nellis, G. F.; McCormick, J. A.; Sixsmith, H.; Zagarola, M. V.; Swift, W. L.; Gibbon, J. A.; Reilly, J. P.; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    Turbo-Brayton cryocooler technology that has been space qualified and demonstrated on the NICMOS cryocooler is being adapted for applications with lower cooling loads at lower telqoeratures. The applications include sensor cooling for space platforms and telescopes at temperatures between 4 K and 35 K, where long life and reliable, vibration-free operation are important. This paper presents recent advances in the miniaturization of components that are critical to these systems. Key issues addressed in adapting the NICMOS cryocooler technology to lower temperatures involve reducing parasitic losses when scaling to smaller size machines. Recent advances include the successful design and testing of a small, permanent magnet driven compressor that operates at up to 10,000 rev/sec and the successful demonstration of self acting gas bearings supporting a I mm. diameter shaft. The compressor is important for cryocoolers with input powers between 50 W and 100 W. The miniature shaft and bearing system has applications in compressors and turbines at temperatures from 300 K to 6 K. These two technology milestones are fundamental to achieving exceptional thermodynamic performance from the turboBrayton system in low temperature systems. The paper discusses the development of these components and test results, and presents the implications of their performance on cryocooler systems.

  14. Evaluation of pilot-scale pulse-corona-induced plasma device to remove NO{sub x} from combustion exhausts from a subscale combustor and from a hush house at Nellis AFB, Nevada. Final report, August 1994--January 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haythornthwaite, S.M.; Durham, M.D.; Anderson, G.L.

    1997-05-01

    Jet engine test cells (JETCs) are used to test-fire new, installed, and reworked jet engines. Because JETCs have been classified as stationary sources of pollutant emissions, they are subject to possible regulation under Title 1 of the Clean Air Act (CAA) as amended in 1990. In Phase 1 of the Small Business Innovation Research (SBIR) program, a novel NOx-control approach utilizing pulsed-corona-induced plasma successfully showed 90% removal of NOx in the laboratory. The objective of Phase 2 was to reproduce the laboratory-scale results in a pilot-scale system. The technology was successfully demonstrated at pilot scale in the field, on amore » slipstream of JETC flue gas at Nellis Air Force Base. Based on the field data, cost projections were made for a system to treat the full JETC exhaust. The technology efficiently converted NO into ONO, and a wet scrubber was required to achieve the treatment goal of 50-percent removal and destruction of NOx. The plasma simultaneously removes hydrocarbons from the flue gas stream. This project demonstrated that pulse-corona-induced plasma technology is scalable to practical industrial dimensions.« less

  15. Corneal Confocal Microscopy Detects Early Nerve Regeneration in Diabetic Neuropathy After Simultaneous Pancreas and Kidney Transplantation

    PubMed Central

    Tavakoli, Mitra; Mitu-Pretorian, Maria; Petropoulos, Ioannis N.; Fadavi, Hassan; Asghar, Omar; Alam, Uazman; Ponirakis, Georgios; Jeziorska, Maria; Marshall, Andy; Efron, Nathan; Boulton, Andrew J.; Augustine, Titus; Malik, Rayaz A.

    2013-01-01

    Diabetic neuropathy is associated with increased morbidity and mortality. To date, limited data in subjects with impaired glucose tolerance and diabetes demonstrate nerve fiber repair after intervention. This may reflect a lack of efficacy of the interventions but may also reflect difficulty of the tests currently deployed to adequately assess nerve fiber repair, particularly in short-term studies. Corneal confocal microscopy (CCM) represents a novel noninvasive means to quantify nerve fiber damage and repair. Fifteen type 1 diabetic patients undergoing simultaneous pancreas–kidney transplantation (SPK) underwent detailed assessment of neurologic deficits, quantitative sensory testing (QST), electrophysiology, skin biopsy, corneal sensitivity, and CCM at baseline and at 6 and 12 months after successful SPK. At baseline, diabetic patients had a significant neuropathy compared with control subjects. After successful SPK there was no significant change in neurologic impairment, neurophysiology, QST, corneal sensitivity, and intraepidermal nerve fiber density (IENFD). However, CCM demonstrated significant improvements in corneal nerve fiber density, branch density, and length at 12 months. Normalization of glycemia after SPK shows no significant improvement in neuropathy assessed by the neurologic deficits, QST, electrophysiology, and IENFD. However, CCM shows a significant improvement in nerve morphology, providing a novel noninvasive means to establish early nerve repair that is missed by currently advocated assessment techniques. PMID:23002037

  16. Low-enriched uranium high-density target project. Compendium report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandegrift, George; Brown, M. Alex; Jerden, James L.

    2016-09-01

    At present, most 99Mo is produced in research, test, or isotope production reactors by irradiation of highly enriched uranium targets. To achieve the denser form of uranium needed for switching from high to low enriched uranium (LEU), targets in the form of a metal foil (~125-150 µm thick) are being developed. The LEU High Density Target Project successfully demonstrated several iterations of an LEU-fission-based Mo-99 technology that has the potential to provide the world’s supply of Mo-99, should major producers choose to utilize the technology. Over 50 annular high density targets have been successfully tested, and the assembly and disassemblymore » of targets have been improved and optimized. Two target front-end processes (acidic and electrochemical) have been scaled up and demonstrated to allow for the high-density target technology to mate up to the existing producer technology for target processing. In the event that a new target processing line is started, the chemical processing of the targets is greatly simplified. Extensive modeling and safety analysis has been conducted, and the target has been qualified to be inserted into the High Flux Isotope Reactor, which is considered above and beyond the requirements for the typical use of this target due to high fluence and irradiation duration.« less

  17. Demonstration of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  18. Mismatching between nest volume and clutch volume reduces egg survival and fledgling success in black-tailed gulls

    PubMed Central

    Yoo, Jeong-Chil

    2016-01-01

    Abstract A longstanding suggestion posits that parents prefer to match nest volume and clutch size (clutch volume), but few studies have tested this in colonial seabirds that nest in the open. Here, we demonstrate the effects of nest–clutch volume matching on egg survival, hatching, and fledgling success in black-tailed gulls Larus crassirostris on Hongdo Island, Korea. We show that the volume mismatch, defined as the difference between nest volume and total egg volume (the sum of all eggs’ volume in the clutch), was positively related to egg and chick mortality caused by predation, but was not significantly related to hatching success incurred by insulation during the incubation period. Although nest volume was negatively related to laying date, we found that the mismatch was positively related to laying date. Our results support the claim that well-matched nest–clutch volume may contribute to survival of eggs and chicks, and ultimately breeding success. PMID:29491934

  19. Bill Kerslake Preparing a Test in the Rocket Laboratory

    NASA Image and Video Library

    1952-10-21

    William Kerslake, a combustion researcher at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory, examines the setup of a transparent rocket in a Rocket Laboratory test cell. Kerslake joined NACA Lewis the previous summer after graduating from the Case Institute of Technology with a chemistry degree. His earliest professional research concentrated on combustion instability in small rocket engines. While at Case the quiet, 250-pound Kerslake also demonstrated his athletic prowess on the wrestling team. He continued wrestling for roughly a decade afterwards while conducting his research with the NACA. Kerslake participated in Olympic competitions in Helsinki (1952), Melbourne (1956), and Rome (1960). He won 30 national championships in three different weight classes and captured the gold at the 1955 Pan American Games in Mexico City. Kerslake accomplished all this while maintaining his research career, raising a family, and paying his own expenses. As his wrestling career was winding down in the early 1960s, Kerslake’s professional career changed, as well. He was transferred to Harold Kaufman’s Electrostatic Propulsion Systems Section in the new Electromagnetic Propulsion Division. Kaufman was developing the first successful ion engine at the time, and Kerslake spent the remainder of his career working in the electric propulsion field. He was heavily involved in the two Space Electric Rocket Test (SERT) missions which demonstrated that the ion thrusters could successfully operate in space. Kerslake retired in 1985 with over 30 years of service.

  20. The computer-based Symbol Digit Modalities Test: establishing age-expected performance in healthy controls and evaluation of pediatric MS patients.

    PubMed

    Bigi, Sandra; Marrie, R A; Till, C; Yeh, E A; Akbar, N; Feinstein, A; Banwell, B L

    2017-04-01

    Decreased information processing speed (IPS) is frequently reported in pediatric multiple sclerosis (MS) patients. The computerized version of the Symbol Digit Modalities Test (c-SDMT) measures IPS over eight consecutive trials per session and additionally captures changes in performance within the session. Here, we establish normative c-SDMT performance and test-retest reliability in healthy children (HC) and explore differences in the overall c-SDMT-performance between HC and MS patients. This cross-sectional study included 478 HC (237 female, 49.5%) divided into five age groups (2 years each), and 27 MS patients (22 female, 81.5%) aged 8-18 years. The average time to complete the c-SDMT increased with age (|r| 0.70, 95% CI -0.74, -0.64). Test-retest reliability was high (ICC = 0.91) in HC. The total time to complete the c-SDMT did not differ between children with MS and sex- and age- matched HC (p = 0.23). However, MS patients were less likely to show faster performance across all the successive eight trials compared to HC (p = 0.0001). Healthy children demonstrate faster IPS with increasing age, as well as during successive trials of the c-SDMT. The inability of pediatric MS patients to maintain the increase in processing speed over successive trials suggests a reduced capacity for procedural learning, possibly resulting from cognitive fatigue.

  1. Nano-ADEPT Aeroloads Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Smith, Brandon; Cassell, A.; Yount, B.; Kruger, C.; Brivkalns, C.; Makino, A.; Zarchi, K.; McDaniel, R.; Venkatapathy, E.; Swanson, G.

    2015-01-01

    Analysis completed since the test suggests that all test objectives were met– This claim will be verified in the coming weeks as the data is examined further– Final disposition of test objective success will be documented in a final reportsubmitted to NASA stakeholders (early August 2015)– Expect conference paper in early 2016• Data products and observations made during testing will be used to refinecomputational models of Nano-ADEPT• Carbon fabric relaxed from its pre-test state during the test– System-level tolerance for relaxation will be driven by destination-specific andmission-specific aerothermal and aerodynamic requirements• Bonus experiment of asymmetric shape demonstrates that an asymmetricdeployable blunt body can be used to generate measureable lift– With a strut actuation system and a robust GN&C algorithm, this effect could beused to steer a blunt body at hypersonic speeds to aid precision landing

  2. Cooperative Collision Avoidance Step 1 - Technology Demonstration Flight Test Report. Revision 1

    NASA Technical Reports Server (NTRS)

    Trongale, Nicholas A.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) Access 5 Project Office sponsored a cooperative collision avoidance flight demonstration program for unmanned aircraft systems (UAS). This flight test was accomplished between September 21st and September 27th 2005 from the Mojave Airport, Mojave, California. The objective of these flights was to collect data for the Access 5 Cooperative Collision Avoidance (CCA) Work Package simulation effort, i.e., to gather data under select conditions to allow validation of the CCA simulation. Subsequent simulation to be verified were: Demonstrate the ability to detect cooperative traffic and provide situational awareness to the ROA pilot; Demonstrate the ability to track the detected cooperative traffic and provide position information to the ROA pilot; Demonstrate the ability to determine collision potential with detected cooperative traffic and provide notification to the ROA pilot; Demonstrate that the CCA subsystem provides information in sufficient time for the ROA pilot to initiate an evasive maneuver to avoid collision; Demonstrate an evasive maneuver that avoids collision with the threat aircraft; and lastly, Demonstrate the ability to assess the adequacy of the maneuver and determine that the collision potential has been avoided. The Scaled Composites, LLC Proteus Optionally Piloted Vehicle (OPV) was chosen as the test platform. Proteus was manned by two on-board pilots but was also capable of being controlled from an Air Vehicle Control Station (AVCS) located on the ground. For this demonstration, Proteus was equipped with cooperative collision sensors and the required hardware and software to place the data on the downlink. Prior to the flight phase, a detailed set of flight test scenarios were developed to address the flight test objectives. Two cooperative collision avoidance sensors were utilized for detecting aircraft in the evaluation: Traffic Alert and Collision Avoidance System-II (TCAS-II) and Automatic Dependent Surveillance Broadcast (ADS-B). A single intruder aircraft was used during all the flight testing, a NASA Gulfstream III (G-III). During the course of the testing, six geometrically different near-collision scenarios were evaluated. These six scenarios were each tested using various combinations of sensors and collision avoidance software. Of the 54 planned test points 49 were accomplished successfully. Proteus flew a total of 21.5 hours during the testing and the G-III flew 19.8 hours. The testing fully achieved all flight test objectives. The Flight IPT performed an analysis to determine the accuracy of the simulation model used to predict the location of the host aircraft downstream during an avoidance maneuver. The data collected by this flight program was delivered to the Access 5 Cooperative Collision Avoidance (CCA) Work Package Team who was responsible for reporting on their analysis of this flight data.

  3. Topical application of probiotics in skin: adhesion, antimicrobial and antibiofilm in vitro assays.

    PubMed

    Lopes, E G; Moreira, D A; Gullón, P; Gullón, B; Cardelle-Cobas, A; Tavaria, F K

    2017-02-01

    When skin dysbiosis occurs as a result of skin disorders, probiotics can act as modulators, restoring microbial balance. Several properties of selected probiotics were evaluated so that their topical application could be considered. Adhesion, antimicrobial, quorum sensing and antibiofilm assays were carried out with several probiotic strains and tested against selected skin pathogens. All tested strains displayed significant adhesion to keratin. All lactobacilli with the exception of Lactobacillus delbrueckii, showed antimicrobial activity against skin pathogens, mainly due to organic acid production. Most of them also prevented biofilm formation, but only Propioniferax innocua was able to break down mature biofilms. This study demonstrates that although all tested probiotics adhered to human keratin, they showed limited ability to prevent adhesion of some potential skin pathogens. Most of the tested probiotics successfully prevented biofilm formation, suggesting that they may be successfully used in the future as a complement to conventional therapies in the treatment of a range of skin disorders. The topically used probiotics may be a natural, targeted treatment approach to several skin disorders and a complement to conventional therapies which present many undesirable side effects. © 2016 The Society for Applied Microbiology.

  4. Video-based eye tracking for neuropsychiatric assessment.

    PubMed

    Adhikari, Sam; Stark, David E

    2017-01-01

    This paper presents a video-based eye-tracking method, ideally deployed via a mobile device or laptop-based webcam, as a tool for measuring brain function. Eye movements and pupillary motility are tightly regulated by brain circuits, are subtly perturbed by many disease states, and are measurable using video-based methods. Quantitative measurement of eye movement by readily available webcams may enable early detection and diagnosis, as well as remote/serial monitoring, of neurological and neuropsychiatric disorders. We successfully extracted computational and semantic features for 14 testing sessions, comprising 42 individual video blocks and approximately 17,000 image frames generated across several days of testing. Here, we demonstrate the feasibility of collecting video-based eye-tracking data from a standard webcam in order to assess psychomotor function. Furthermore, we were able to demonstrate through systematic analysis of this data set that eye-tracking features (in particular, radial and tangential variance on a circular visual-tracking paradigm) predict performance on well-validated psychomotor tests. © 2017 New York Academy of Sciences.

  5. Radiation-hardened microwave communications system

    NASA Astrophysics Data System (ADS)

    Smith, S. F.; Bible, D. W.; Crutcher, R. I.; Hannah, J. H.; Moore, J. A.; Nowlin, C. H.; Vandermolen, R. I.; Chagnot, D.; Leroy, A.

    1993-03-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10(exp 7) rads and at elevated ambient temperatures.

  6. Aniracetam reverses memory impairment in rats.

    PubMed

    Martin, J R; Moreau, J L; Jenck, F

    1995-02-01

    The pyrrolidinone derivative aniracetam given orally immediately after acquisition of an inhibitory avoidance response reproducibly ameliorated scopolamine-induced amnesia in female rats in an extensive series of test sessions conducted over a 1-year period. In a dose-response experiment it was demonstrated that 50 mg kg-1 was the lowest oral dose of aniracetam to significantly ameliorate scopolamine-induced amnesia. Combined results from these numerous test sessions demonstrated that 50 mg kg-1 aniracetam administered to scopolamine-treated rats resulted in 53% of the animals exhibiting correct passive avoidance responding in the retention evaluation versus 9% of the scopolamine-treated rats given vehicle (in comparison, 64% of the rats injected with vehicle rather than scopolamine in this experimental situation exhibited correct responding in the retention test). There was minimal variation in this pattern of results over the successive 1-month blocks constituting the complete experimental period. Thus, the nootropic compound aniracetam replicably exhibited memory enhancing effects in this animal model of reduced cholinergic function.

  7. A baroclinic quasigeostrophic open ocean model

    NASA Technical Reports Server (NTRS)

    Miller, R. N.; Robinson, A. R.; Haidvogel, D. B.

    1983-01-01

    A baroclinic quasigeostrophic open ocean model is presented, calibrated by a series of test problems, and demonstrated to be feasible and efficient for application to realistic mid-oceanic mesoscale eddy flow regimes. Two methods of treating the depth dependence of the flow, a finite difference method and a collocation method, are tested and intercompared. Sample Rossby wave calculations with and without advection are performed with constant stratification and two levels of nonlinearity, one weaker than and one typical of real ocean flows. Using exact analytical solutions for comparison, the accuracy and efficiency of the model is tabulated as a function of the computational parameters and stability limits set; typically, errors were controlled between 1 percent and 10 percent RMS after two wave periods. Further Rossby wave tests with realistic stratification and wave parameters chosen to mimic real ocean conditions were performed to determine computational parameters for use with real and simulated data. Finally, a prototype calculation with quasiturbulent simulated data was performed successfully, which demonstrates the practicality of the model for scientific use.

  8. Experimental design, operation, and results of a 4 kW high temperature steam electrolysis experiment

    DOE PAGES

    Zhang, Xiaoyu; O'Brien, James E.; Tao, Greg; ...

    2015-08-06

    High temperature steam electrolysis (HTSE) is a promising technology for large-scale hydrogen production. However, research on HTSE performance above the kW level is limited. This paper presents the results of 4 kW HTSE long-term test completed in a multi-kW test facility recently developed at the Idaho National Laboratory (INL). The 4 kW HTSE unit included two solid oxide electrolysis stacks operating in parallel, each of which included 40 electrode-supported planar cells. A current density of 0.41 A/cm2 was used for the long-term operation, resulting in a hydrogen production rate about 25 slpm. A demonstration of 920 hours stable operation wasmore » achieved. The paper also includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. As a result, this successful demonstration of multi-kW scale HTSE unit will help to advance the technology toward near-term commercialization.« less

  9. Lunar mass spectrometer test program

    NASA Technical Reports Server (NTRS)

    Torney, F. L.; Dobrott, J. R.

    1972-01-01

    The procedures are described along with results obtained in a test program conducted to demonstrate the performance of a candidate lunar mass spectrometer. The instrument was designed to sample and measure gases believed to exist in the lunar atmosphere at the surface. The subject instrument consists of a cold cathode ion source, a small quadrupole mass analyzer and an off axis electron multiplier ion counting detector. The major program emphasis was placed on demonstrating instrument resolution, sensitivity and S/N ratio over the mass range 0-150 amu and over a partial pressure range from 10 to the minus 9th power to 10 to the minus 13th power torr. Ultrahigh vacuum tests were conducted and the minimum detectable partial pressure for neon, argon, krypton and xenon was successfully determined for the spectrometer using isotopes of these gases. With the exception of neon, the minimum detectable partial pressure is approximately 4 x 10 to the minus 14th power torr for the above gases.

  10. Rhenium Rocket Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center's On-Board Propulsion Branch has a research and technology program to develop high-temperature (2200 C), iridium-coated rhenium rocket chamber materials for radiation-cooled rockets in satellite propulsion systems. Although successful material demonstrations have gained much industry interest, acceptance of the technology has been hindered by a lack of demonstrated joining technologies and a sparse materials property data base. To alleviate these concerns, we fabricated rhenium to C-103 alloy joints by three methods: explosive bonding, diffusion bonding, and brazing. The joints were tested by simulating their incorporation into a structure by welding and by simulating high-temperature operation. Test results show that the shear strength of the joints degrades with welding and elevated temperature operation but that it is adequate for the application. Rhenium is known to form brittle intermetallics with a number of elements, and this phenomena is suspected to cause the strength degradation. Further bonding tests with a tantalum diffusion barrier between the rhenium and C-103 is planned to prevent the formation of brittle intermetallics.

  11. Serological Relationships Among Feline Caliciviruses

    PubMed Central

    Povey, R. C.

    1974-01-01

    A total of 46 strains of feline calicivirus isolates from the United Kingdom, United States, Australia, and New Zealand were used in an investigation of their serological relationships based on the serum neutralization test. Although demonstrable antigenic variation exists between these isolates, it is shown that significant in vitro cross-activity exists between all these isolates to greater or lesser extent. All isolates tested may be regarded as serological variants of a single serotype of feline calicivirus. It is postulated that this relationship would provide for considerable cross-protection during successive exposures of cats to various feline caliciviruses. PMID:4435957

  12. Verification and Demonstration for Transition of Nonhexavalent Chromium, Low-Volatile Organic Compound (VOC) Alternative Technologies to Replace DOD-P-15328 Wash Primer for Multimetal Applications

    DTIC Science & Technology

    2017-09-28

    DTL-53030 at 1008 h Aluminum panels were run out to 1008 h of exposure in ASTM B117 testing. The results obtained can be seen in Table 13. At 1008...were scraped with a 2-inch flat blade putty knife after rating to unveil any previously unseen corrosion or delamination issues between the coating and...CRS primed with MIL-DTL-53022 after 80 cycles Although success is established at 40 cycles, the aluminum test panels were also run out to 80 cycles

  13. Implementation of stimulated Raman scattering microscopy for single cell analysis

    NASA Astrophysics Data System (ADS)

    D'Arco, Annalisa; Ferrara, Maria Antonietta; Indolfi, Maurizio; Tufano, Vitaliano; Sirleto, Luigi

    2017-05-01

    In this work, we present successfully realization of a nonlinear microscope, not purchasable in commerce, based on stimulated Raman scattering. It is obtained by the integration of a femtosecond SRS spectroscopic setup with an inverted research microscope equipped with a scanning unit. Taking account of strength of vibrational contrast of SRS, it provides label-free imaging of single cell analysis. Validation tests on images of polystyrene beads are reported to demonstrate the feasibility of the approach. In order to test the microscope on biological structures, we report and discuss the label-free images of lipid droplets inside fixed adipocyte cells.

  14. Reserve Li/SOC12 Battery Safety Testing

    NASA Technical Reports Server (NTRS)

    Dils, C. T.; Garoutte, K. F.

    1984-01-01

    A reserve Lithium/Thionyl Chloride Battery concept is developed and undergoing feasibility testing in terms of performance, safety and abusive conditions. The feasibility of employing a battery of this type to replace thermal batteries in certain applications is demonstrated. Excellent performance of a Li/SOCl2 reserve battery is obtained across the temperature range from 0 C to +44 C. Performance improvement over the thermal battery usage is greater by a factor of 3 when discharge time and energy density are compared. Performance over an expanded temperature range is also possible. Safety and abusive testing is accomplished successfully on a series of five units. Further performance improvements can be achieved with regard to battery weight and volume reductions.

  15. Development of advanced lightweight containment systems

    NASA Technical Reports Server (NTRS)

    Stotler, C.

    1981-01-01

    Parametric type data were obtained on advanced lightweight containment systems. These data were used to generate design methods and procedures necessary for the successful development of such systems. The methods were then demonstrated through the design of a lightweight containment system for a CF6 size engine. The containment concept evaluated consisted basically of a lightweight structural sandwich shell wrapped with dry Kevlar cloth. The initial testing was directed towards the determination of the amount of Kevlar required to result in threshold containment for a specific set of test conditions. A relationship was then developed between the thickness required and the energy of the released blade so that the data could be used to design for conditions other than those tested.

  16. A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Subsequent to the design review, a series of tests was conducted on simulated modules to demonstrate that all environmental specifications (wind loading, hailstone impact, thermal cycling, and humidity cycling) are satisfied by the design. All tests, except hailstone impact, were successfully completed. The assembly sequence was simplified by virtue of eliminating the frame components and assembly steps. Performance was improved by reducing the module edge border required to accommodate the frame of the preliminary design module. An ultrasonic rolling spot bonding technique was selected for use in the machine to perform the aluminum interconnect to cell metallization electrical joints required in the MEPSDU module configuration. This selection was based on extensive experimental tests and economic analyses.

  17. PRDA-2 and 3 Brush Seal Development Programs at EG and G

    NASA Technical Reports Server (NTRS)

    Loewenthal, Robert G.

    1996-01-01

    EG&G Mechanical Components Technology Group R&D completed a Brush Seal Development Program under PRDA-2 in late 1992. We started the Advanced Brush Seal Development program, under PRDA-3, in 1993 and will complete it in 1996. Both programs have been funded by the United States Air Force. In the first program, we made significant gains in the area of tribopairs (bristle materials vs. shaft coatings) and the 'Low Hysteresis' design for brush seals. These were reported in two AIAA Propulsion Conference papers, and the 'Low Hysteresis' design has been patented. Seals were delivered for test in an Air Force demonstrator at Allison. In PRDA-3, goals are to increase the pressure sealing capability, and the surface speeds and temperatures at which brush seals can be used. We have conducted part of the design and testing and have tested brush seals successfully at more severe conditions than in the previous program. We are continuing with the program, and will complete it in time to furnish brush seals for an Air Force Demonstrator test in 1997.

  18. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEDESCHI AR; CORBETT JE; WILSON RA

    2012-01-26

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactivemore » species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.« less

  19. Advanced Antenna Design for NASA's EcoSAR Instrument

    NASA Technical Reports Server (NTRS)

    Du Toit, Cornelis F.; Deshpande, Manohar; Rincon, Rafael F.

    2016-01-01

    Advanced antenna arrays were designed for NASA's EcoSAR airborne radar instrument. EcoSAR is a beamforming synthetic aperture radar instrument designed to make polarimetric and "single pass" interferometric measurements of Earth surface parameters. EcoSAR's operational requirements of a 435MHz center frequency with up to 200MHz bandwidth, dual polarization, high cross-polarization isolation (> 30 dB), +/- 45deg beam scan range and antenna form-factor constraints imposed stringent requirements on the antenna design. The EcoSAR project successfully developed, characterized, and tested two array antennas in an anechoic chamber. EcoSAR's first airborne campaign conducted in the spring of 2014 generated rich data sets of scientific and engineering value, demonstrating the successful operation of the antennas.

  20. Pulsed EMAT (Electromagnetic Acoustic Transducer) acoustic measurements on a horizontal continuous caster for internal temperature determination

    NASA Astrophysics Data System (ADS)

    Boyd, Donald M.

    1989-10-01

    Development of a Pulsed Electromagnetic Acoustic Transducer (EMAT) through transmission system for acoustic measurements on steel billets up to 1300 C was completed. Laboratory measurements of acoustic velocity were made, and used to determine the average internal temperature of hot stainless and carbon steel billets. Following the success of the laboratory system development, the laboratory EMAT system was subsequently tested successfully at the Baltimore Specialty Steel Co. on a horizontal continuous caster. Details of the sensor system development and the steel plant demonstration results are presented. Future directions for the high temperature pulsed EMAT internal temperature concept are discussed for potential material processing applications.

Top