Sample records for tetragonal space group

  1. On the Tetragonal Forms of KMo 4O 6

    NASA Astrophysics Data System (ADS)

    McCarroll, W. H.; Ramanujachary, K. V.; Greenblatt, M.; Marsh, Richard E.

    1995-06-01

    A reexamination of the X-ray diffraction data for the tetragonal form of KMo4O6 prepared by fused salt electrolysis leads to the conclusion that the crystal structure is better described by using space group P 4/mbm and not P4¯ as previously reported. However, refinement in the new space group does not result in any significant changes in the atomic arrangement. Possible reasons for the significant difference between the c lattice parameter of this form of KMo4O6 and that prepared at high pressures are also discussed.

  2. Grain size dependent phase stabilities and presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of (1-x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 piezoceramics

    NASA Astrophysics Data System (ADS)

    Upadhyay, Ashutosh; Singh, Akhilesh Kumar

    2015-04-01

    Results of the room temperature structural studies on (1-x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.

  3. Theoretical calculations of high-pressure phases of NiF2: An ab initio constant-pressure study

    NASA Astrophysics Data System (ADS)

    Kürkçü, Cihan; Merdan, Ziya; Öztürk, Hülya

    2016-12-01

    We have studied the structural properties of the antiferromagnetic NiF2 tetragonal structure with P42/ mnm symmetry using density functional theory (DFT) under rapid hydrostatic pressure up to 400 GPa. For the exchange correlation energy we used the local density approximation (LDA) of Ceperley and Alder (CA). Two phase transformations are successfully observed through the simulations. The structures of XF2-type compounds crystallize in rutile-type structure. NiF2 undergoes phase transformations from the tetragonal rutile-type structure with space group P42/ mnm to orthorhombic CaCl2-type structure with space group Pnnm and from this orthorhombic phase to monoclinic structure with space group C2/ m at 152 GPa and 360 GPa, respectively. These phase changes are also studied by total energy and enthalpy calculations. According to these calculations, we perdict these phase transformations at about 1.85 and 30 GPa.

  4. Grain size dependent phase stabilities and presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} piezoceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Ashutosh; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in

    2015-04-14

    Results of the room temperature structural studies on (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases inmore » the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.« less

  5. Crystallization of Chicken Egg White Lysozyme from Assorted Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1998-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Four different crystal morphologies have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed, Crystals grown at 15 C were generally tetragonal, with space group P43212. Crystallization at 20 C typically resulted in the formation of orthorhombic crystals, space group P21212 1. The tetragonal much less than orthorhombic morphology transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20 C and between 100 and 125 mg/ml protein concentration. Crystallization from 0.8 -1.2M magnesium sulfate at pH 7.6 - 8.0 gave a hexagonal (trigonal) crystal form, space group P3121, which diffracted to 2.8 A. Ammonium sulfate was also found to result in a monoclinic form, space group C2. Small twinned monoclinic crystals of approx. 0.2 mm on edge were grown by dialysis followed by seeded sitting drop crystallization.

  6. Structural investigation of cooperite (PtS) crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozhdestvina, V. I., E-mail: veronika@ascnet.ru; Udovenko, A. A.; Rubanov, S. V.

    2016-03-15

    The single-crystal structure of cooperite, a natural platinum sulfide PtS, is studied by X-ray diffraction supported by high-resolution scanning transmission electron microscopy and X-ray spectrum microanalysis. It is found that, in addition to the main reflections corresponding to the known tetragonal cell (a = 3.47 and c = 6.11 Å; space group P4{sub 2}/mmc), many weak reflections with intensities I ≤ 60σ(I) are clearly observed. These reflections fit the tetragonal cell (space group I4/mmm) with doubled parameters. In structures with small (P4{sub 2}/mmc) and large (I4/mmm) cells, the S atoms occupy statistically two special positions. It is shown that themore » chemical composition of the cooperite crystals deviates from the stoichiometric composition: sulfur-deficient specimens predominate.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Ken-ichi; Tanaka, Nobutada, E-mail: ntanaka@pharm.showa-u.ac.jp; Ishikura, Shuhei

    Pig heart carbonyl reductase has been crystallized in the presence of NADPH. Diffraction data have been collected using synchrotron radiation. Pig heart carbonyl reductase (PHCR), which belongs to the short-chain dehydrogenase/reductase (SDR) family, has been crystallized by the hanging-drop vapour-diffusion method. Two crystal forms (I and II) have been obtained in the presence of NADPH. Form I crystals belong to the tetragonal space group P4{sub 2}, with unit-cell parameters a = b = 109.61, c = 94.31 Å, and diffract to 1.5 Å resolution. Form II crystals belong to the tetragonal space group P4{sub 1}2{sub 1}2, with unit-cell parameters amore » = b = 120.10, c = 147.00 Å, and diffract to 2.2 Å resolution. Both crystal forms are suitable for X-ray structure analysis at high resolution.« less

  8. The Effect of Poling on the Properties of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Uršič, Hana; Tellier, Jenny; Hrovat, Marko; Holc, Janez; Drnovšek, Silvo; Bobnar, Vid; Alguero, Miguel; Kosec, Marija

    2011-03-01

    The effects of the poling field on the structural and electrical properties of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (0.65PMN-0.35PT) ceramics were investigated. The highest piezoelectric coefficient d33, coupling coefficients kp, kt, and mechanical quality factor Qm were achieved for ceramics poled at electric fields between 2 and 3.5 kV/mm, whereas the d33, kp, kt, and Qm of ceramics poled at higher electric fields, i.e., 4 and 4.5 kV/mm, were lower. The non-poled ceramics contained 86% of the monoclinic phase with the space group Pm and 14% of the tetragonal phase with the space group P4mm. However, the ceramics poled at 2.5 kV/mm contained 99% of the monoclinic phase and the rest is the tetragonal phase. The results show that the ratio of the monoclinic to the tetragonal phases can be changed by the application of a poling electric field and that the extent of this change is dependent on the field strength.

  9. Instability of the layered orthorhombic post-perovskite phase of SrTiO3 and other candidate orthorhombic phases under pressure

    NASA Astrophysics Data System (ADS)

    Bhandari, Churna; Lambrecht, Walter R. L.

    2018-06-01

    While the tetragonal antiferro-electrically distorted (AFD) phase with space group I 4 / mcm is well known for SrTiO3 to occur below 105 K, there are also some hints in the literature of an orthorhombic phase, either at the lower temperature or at high pressure. A previously proposed orthorhombic layered structure of SrTiO3, known as the post-perovskite or CaIrO3 structure with space group Cmcm is shown to have significantly higher energy than the cubic or tetragonal phase and to have its minimum volume at larger volume than cubic perovskite. The Cmcm structure is thus ruled out. We also study an alternative Pnma phase obtained by two octahedral rotations about different axes. This phase is found to have slightly lower energy than the I 4 / mcm phase in spite of the fact that its parent, in-phase tilted P 4 / mbm phase is not found to occur. Our calculated enthalpies of formation show that the I 4 / mcm phase occurs at slightly higher volume than the cubic phase and has a negative transition pressure relative to the cubic phase, which suggests that it does not correspond to the high-pressure tetragonal phase. The enthalpy of the Pnma phase is almost indistinguishable from the I 4 / mcm phase. Alternative ferro-electric tetragonal and orthorhombic structures previously suggested in literature are discussed.

  10. Superconductivity in YTE2Ge2 compounds (TE = d-electron transition metal)

    NASA Astrophysics Data System (ADS)

    Chajewski, G.; Samsel-Czekała, M.; Hackemer, A.; Wiśniewski, P.; Pikul, A. P.; Kaczorowski, D.

    2018-05-01

    Polycrystalline samples of YTE2Ge2 with TE = Co, Ni, Ru, Rh, Pd and Pt were synthesized and characterized by means of X-ray powder diffraction and low-temperature electrical resistivity and specific heat measurements, supplemented by fully relativistic full-potential local-orbital band structure calculations. We confirm that most of the compounds studied crystallize in a body-centered tetragonal ThCr2S2 -type structure (space group I 4 / mmm) and have three-dimensional Fermi surfaces, while only one of them (YPt2Ge2) forms with a primitive tetragonal CaBe2Ge2 -type unit cell (space group P 4 / nmm) and possesses quasi-two-dimensional Fermi surface sheets with some nesting. Physical properties data show conventional superconductivity in the phases with TE = Co, Pd and Pt, i.e. independently of the structure type (and hence the dimensionality of the Fermi surface).

  11. Local and average structures of BaTiO 3-Bi(Zn 1/2Ti 1/2)O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usher, Tedi-Marie; Iamsasri, Thanakorn; Forrester, Jennifer S.

    The complex crystallographic structures of (1-x)BaTiO 3-xBi(Zn 1/2Ti 1/2)O 3 (BT-xBZT) are examined using high resolution synchrotron X-ray diffraction, neutron diffraction, and neutron pair distribution function (PDF) analyses. The short-range structures are characterized from the PDFs, and a combined analysis of the X-ray and neutron diffraction patterns is used to determine the long-range structures. Our results demonstrate that the structure appears different when averaged over different length scales. In all compositions, the local structures determined from the PDFs show local tetragonal distortions (i.e., c/a > 1). But, a box-car fitting analysis of the PDFs reveals variations at different length scales.more » For 0.80BT-0.20BZT and 0.90BT-0.10BZT, the tetragonal distortions decrease at longer atom-atom distances (e.g., 30 vs. 5 ). When the longest distances are evaluated (r > 40 ), the lattice parameters approach cubic. Neutron and X-ray diffraction yield further information about the long-range structure. Compositions 0.80BT-0.20BZT and 0.90BT-0.10BZT appear cubic by Bragg diffraction (no peak splitting), consistent with the PDFs at long distances. However, these patterns cannot be adequately fit using a cubic lattice model; modeling their structures with the P4mm space group allows for a better fit to the patterns because the space group allows for c-axis atomic displacements that occur at the local scale. Furthermore, for the compositions 0.92BT-0.08BZT and 0.94BT-0.06BZT, strong tetragonal distortions are observed at the local scale and a less-distorted tetragonal structure is observed at longer length scales. In Rietveld refinements, the latter is modeled using a tetragonal phase. Since the peak overlap in these two-phase compositions limits the ability to model the local-scale structures as tetragonal, it is approximated in the refinements as a cubic phase. These results demonstrate that alloying BT with BZT results in increased disorder and disrupts the long-range ferroelectric symmetry present in BT, while the large tetragonal distortion present in BZT persists at the local scale.« less

  12. Local and average structures of BaTiO 3-Bi(Zn 1/2Ti 1/2)O 3

    DOE PAGES

    Usher, Tedi-Marie; Iamsasri, Thanakorn; Forrester, Jennifer S.; ...

    2016-11-11

    The complex crystallographic structures of (1-x)BaTiO 3-xBi(Zn 1/2Ti 1/2)O 3 (BT-xBZT) are examined using high resolution synchrotron X-ray diffraction, neutron diffraction, and neutron pair distribution function (PDF) analyses. The short-range structures are characterized from the PDFs, and a combined analysis of the X-ray and neutron diffraction patterns is used to determine the long-range structures. Our results demonstrate that the structure appears different when averaged over different length scales. In all compositions, the local structures determined from the PDFs show local tetragonal distortions (i.e., c/a > 1). But, a box-car fitting analysis of the PDFs reveals variations at different length scales.more » For 0.80BT-0.20BZT and 0.90BT-0.10BZT, the tetragonal distortions decrease at longer atom-atom distances (e.g., 30 vs. 5 ). When the longest distances are evaluated (r > 40 ), the lattice parameters approach cubic. Neutron and X-ray diffraction yield further information about the long-range structure. Compositions 0.80BT-0.20BZT and 0.90BT-0.10BZT appear cubic by Bragg diffraction (no peak splitting), consistent with the PDFs at long distances. However, these patterns cannot be adequately fit using a cubic lattice model; modeling their structures with the P4mm space group allows for a better fit to the patterns because the space group allows for c-axis atomic displacements that occur at the local scale. Furthermore, for the compositions 0.92BT-0.08BZT and 0.94BT-0.06BZT, strong tetragonal distortions are observed at the local scale and a less-distorted tetragonal structure is observed at longer length scales. In Rietveld refinements, the latter is modeled using a tetragonal phase. Since the peak overlap in these two-phase compositions limits the ability to model the local-scale structures as tetragonal, it is approximated in the refinements as a cubic phase. These results demonstrate that alloying BT with BZT results in increased disorder and disrupts the long-range ferroelectric symmetry present in BT, while the large tetragonal distortion present in BZT persists at the local scale.« less

  13. Structure Evolution of BaTiO3 on Co Doping: X-ray diffraction and Raman study

    NASA Astrophysics Data System (ADS)

    Mansuri, Amantulla; Mishra, Ashutosh

    2016-10-01

    In the present study, we have synthesize polycrystalline samples of BaTi1-xCoxO3 (x = 0, 0.05 and 0.1) with standard solid state reaction technique. The obtained samples are characterized by X-ray diffraction (XRD) and Raman spectroscopy. The detail structural analysis has been performed by Rietveld refinement using Fullprof program. The structural analysis reveal the samples are chemical pure and crystallize in tetragonal phase with space group Pm3m. We observe an increase in lattice parameters which results due to substitution of Co2+ with large ionic radii (0.9) for smaller ionic radii (0.6) Ti4+. Moreover peak at 45.5° shift to 45° on Co doping, which is due to structure phase transition from tetragonal to cubic. Raman study infers that the intensity of characteristic peaks decreases and linewidth increases with Co doping. The bands linked with the tetragonal structure (307 cm1) decreased due to the tetragonal-towards-cubic phase transition with Co doping. Our structural study reveals the expansion of BTO unit cell and tetragonal-to-cubic phase transformation takes place, results from different characterization techniques are conclusive and show structural evolution with Co doping.

  14. Crystallization of Chicken Egg-White Lysozyme from Ammonium Sulfate

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Pusey, Marc L.

    1997-01-01

    Chicken egg-white lysozyme was crystallized from ammonium sulfate over the pH range 4.0-7.8, with protein concentrations from 100 to 150 mg/ml. Crystals were obtained by vapor-diffusion or batch-crystallization methods. The protein crystallized in two morphologies with an apparent morphology dependence on temperature and protein concentration. In general, tetragonal crystals could be grown by lowering the protein concentration or temperature. Increasing the temperature or protein concentration resulted in the growth of orthorhombic crystals. Representative crystals of each morphology were selected for X-ray analysis. The tetragonal crystals belonged to the P4(sub 3)2(sub 1)2 space group with crystals grown at ph 4.4 having unit-cell dimensions of a = b = 78.7 1, c=38.6 A and diffracting to beyond 2.0 A. The orthorhombic crystals, grown at pH 4.8, were of space group P2(sub 1)2(sub 1)2 and had unit-cell dimensions of a = 30.51, b = 56.51 and c = 73.62 A.

  15. Ba0.06(Na,Bi)0.94Ti1-x(Ni1/3Nb2/3)xO3 ceramics: X-ray diffraction and infrared spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Prasad, Ashutosh; Chandra, K. P.; Prasad, K.

    2018-05-01

    Non-lead ceramic samples of Ba0.06(Na0.5Bi0.5)0.94Ti1-x(Ni1/3Nb2/3)xO3; 0 ≤ x ≤ 1.0 were prepared by standard high temperature ceramic synthesis method. Rietveld refinements of X-ray diffraction data of these ceramics were carried out using FullProf software and determined their crystal symmetry, space group and unit cell dimensions. Rietveld refinement revealed that Ba0.06(Na0.5Bi0.5)0.94TiO3 has a monoclinic structure with space group P4/m while B0.06(Na0.5Bi0.5)0.94(Ni1/3Nb2/3)O3 has tetragonal (pseudo-cubic) structure with space group P4/mmm. Partial replacement of Ti4+ ion by pseudo-cation (Ni1/33 +Nb2/3 5 +) 4 + resulted in the change of unit cell structure from monoclinic to tetragonal. SEM studies were carried out in order to access the quality of the prepared ceramics which showed a change in grain sizes with the increase of (Ni1/33 +Nb2/3 5 +) 4 + content. FTIR spectra confirmed the formation of perovskite type solid solutions.

  16. Crystallization of chicken egg white lysozyme from assorted sulfate salts

    NASA Astrophysics Data System (ADS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1999-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Crystals have also been grown at 4°C in the absence of any other added salts using isoionic lysozyme which was titrated to pH 4.6 with dilute sulfuric acid. Four different crystal forms have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed. Crystals grown at 15°C were generally tetragonal, with space group P4 32 12. Crystallization at 20°C typically resulted in the formation of orthorhombic crystals, space group P2 12 12 1. The tetragonal ↔ orthorhombic transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20°C and between 100 and 125 mg/ml protein concentration. Crystallization from 1.2 M magnesium sulfate at pH 7.8 gave a trigonal crystal, space group P3 12 1, a= b=87.4, c=73.7, γ=120°, which diffracted to 2.8 Å. Crystallization from ammonium sulfate at pH 4.6, generally at lower temperatures, was also found to result in a monoclinic form, space group C2, a=65.6, b=95.0, c=41.2, β=119.2°. A crystal of ˜0.2×0.2×0.5 mm grown from bulk solution diffracted to ˜3.5 Å.

  17. Identification and properties of the non-cubic phases of Mg 2Pb

    DOE PAGES

    Li, Yuwei; Bian, Guang; Singh, David J.

    2016-12-20

    Mg 2Pb occurs in the cubic fluorite structure and is a semimetal with a band structure strongly affected by spin-orbit interaction on the Pb p states. Its properties are therefore of interest in the context of topological materials. In addition a different phase of Mg 2Pb was experimentally reported, but its crystal structure and properties remain unknown. Here we determine the structure of this phase using ab initio evolutionary methods and report its properties. The energy of one tetragonal phase, space group P4/ nmm, is 2 meV per atom higher than that of the ground state structure supporting the experimentalmore » observation. We find this tetragonal phase to be a compenstated anisotropic metal with strong spin orbit effects. As a result, many other metastable structures have also been identified, especially one orthorhombic structure, space group Pnma, of which energy is 17 meV per atom higher than that of ground state structure and which perhaps could be the phase that was reported based on similarity of lattice parameters.« less

  18. Crystallization of Chicken Egg White Lysozyme from Assorted Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1999-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Crystals have also been grown at 4 C in the absence of any other added salts using isoionic lysozyme which was titrated to pH 4.6 with dilute sulfuric acid. Four different crystal forms have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed. Crystals grown at 15 C were generally tetragonal, with space group P4(sub 3)2(sub 1)2. Crystallization at 20 C typically resulted in the formation of orthorhombic crystals, space group P2(sub 1)2(sub 1)2(sub 1). The tetragonal reversible reaction orthorhombic transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20 C and between 100 and 125 mg/ml protein concentration. Crystallization from 1.2 M magnesium sulfate at pH 7.8 gave a trigonal crystal, space group P3(sub 1)2(sub 1), a = b = 87.4, c = 73.7, gamma = 120 deg, which diffracted to 2.8 A. Crystallization from ammonium sulfate at pH 4.6, generally at lower temperatures, was also found to result in a monoclinic form. space group C2, a = 65.6, b = 95.0, c = 41.2, beta = 119.2 deg. A crystal of approximately 0.2 x 0.2 x 0.5 mm grown from bulk solution diffracted to approximately 3.5 A.

  19. Electronic properties and structural phase transition in A4 [M4O4] (A=Li, Na, K and Rb; M=Ag and Cu): A first principles study

    NASA Astrophysics Data System (ADS)

    Umamaheswari, R.; Yogeswari, M.; Kalpana, G.

    2013-02-01

    Self-consistent scalar relativistic band structure calculations for AMO (A=Li, Na, K and Rb; M=Ag and Cu) compounds have been performed using the tight-binding linear muffin-tin orbital (TB-LMTO) method within the local density approximation (LDA). At ambient conditions, these compounds are found to crystallize in tetragonal KAgO-type structure with two different space group I-4m2 and I4/mmm. Nowadays, hypothetical structures are being considered to look for new functional materials. AMO compounds have stoichiometry similar to eight-electron half-Heusler materials of type I-I-VI which crystallizes in cubic (C1b) MgAgAs-type structure with space group F-43m. For all these compounds, by interchanging the positions of atoms in the hypothetical cubic structure, three phases (α, β and γ) are formed. The energy-volume relation for these compounds in tetragonal KAgO-type structure and cubic α, β and γ phases of related structure have been obtained. Under ambient conditions these compounds are more stable in tetragonal KAgO-type (I4/mmm) structure. The total energies calculated within the atomic sphere approximation (ASA) were used to determine the ground state properties such as equilibrium lattice parameters, c/a ratio, bulk modulus, cohesive energy and are compared with the available experimental results. The results of the electronic band structure calculations at ambient condition show that LiCuO and NaMO are indirect band gap semiconductors whereas KMO and RbMO are direct band gap semiconductors. At high pressure the band gap decreases and the phenomenon of band overlap metallization occur. Also these compounds undergo structural phase transition from tetragonal I-4m2 phase to cubic α-phase and transition pressures were calculated.

  20. Crystal structure refinements of tetragonal (OH,F)-rich spessartine and henritermierite garnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, Sytle M.; Cruickshank, Laura A.

    Cubic garnet (space group Ia\\overline 3 d) has the general formulaX 3Y 2Z 3O 12, whereX,YandZare cation sites. In the tetragonal garnet (space groupI4 1/acd), the corresponding cation sites areX1 andX2,Y, andZ1 andZ2. In both space groups only theYsite is the same. The crystal chemistry of a tetragonal (OH,F)-rich spessartine sample from Tongbei, near Yunxiao, Fujian Province, China, with composition X(Mn 2.82Fe^{2+}_{0.14}Ca 0.04) Σ3 Y{Al 1.95Fe^{3+}_{0.05}} Σ2 Z[(SiO 4) 2.61(O 4H 4) 0.28(F 4) 0.11] Σ3(Sps 94Alm 5Grs 1) was studied with single-crystal X-ray diffraction and space groupI4 1/acd. The deviation of the unit-cell parameters from cubic symmetry is smallmore » [a= 11.64463(1),c= 11.65481 (2) Å,c/a= 1.0009]. Point analyses and back-scattered electron images, obtained by electron-probe microanalysis, indicate a homogeneous composition. TheZ2 site is fully occupied, but theZ1 site contains vacancies. The occupiedZ1 andZ2 sites with Si atoms are surrounded by four O atoms, as in anhydrous cubic garnets. Pairs of split sites are O1 with F11 and O2 with O22. When theZ1 site is vacant, a larger [(O 2H 2)F 2] tetrahedron is formed by two OH and two F anions in the O22 and F11 sites, respectively. This [(O 2H 2)F 2] tetrahedron is similar to the O 4H 4tetrahedron in hydrogarnets. These results indicate ^{X}{{\\rm Mn}^ {2+}_{3}}\\,^{Y}{\\rm Al}_{2}^{Z}[({\\rm SiO}_{4})_{2}({\\rm O}_{2}{\\rm H}_{2})_{0.5}({\\rm F}_{2})_{0.5}]_{\\Sigma3} as a possible end member, which is yet unknown. The H atom that is bonded to the O22 site is not located because of the small number of OH groups. In contrast, tetragonal henritermierite, ideally ^{X}{\\rm Ca}_{3}\\,^{Y}{\\rm Mn}^{3+}_{2}\\,^{Z}[({\\rm SiO}_{4})_{2}({\\rm O}_{4}{\\rm H}_{4})_1]_{\\Sigma3}, has a vacantZ2 site that contains the O 4H 4tetrahedron. The H atom is bonded to an O3 atom [O3—H3 = 0.73 (2) Å]. Because of O2—Mn 3+—O2 Jahn–Teller elongation of the Mn 3+O 6octahedron, a weak hydrogen bond is formed to the under-bonded O2 atom. This causes a large deviation from cubic symmetry (c/a= 0.9534).« less

  1. A pseudo-tetragonal tungsten bronze superstructure: a combined solution of the crystal structure of K6.4(Nb,Ta)(36.3)O94 with advanced transmission electron microscopy and neutron diffraction.

    PubMed

    Paria Sena, Robert; Babaryk, Artem A; Khainakov, Sergiy; Garcia-Granda, Santiago; Slobodyanik, Nikolay S; Van Tendeloo, Gustaaf; Abakumov, Artem M; Hadermann, Joke

    2016-01-21

    The crystal structure of the K6.4Nb28.2Ta8.1O94 pseudo-tetragonal tungsten bronze-type oxide was determined using a combination of X-ray powder diffraction, neutron diffraction and transmission electron microscopy techniques, including electron diffraction, high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), annular bright field STEM (ABF-STEM) and energy-dispersive X-ray compositional mapping (STEM-EDX). The compound crystallizes in the space group Pbam with unit cell parameters a = 37.468(9) Å, b = 12.493(3) Å, c = 3.95333(15) Å. The structure consists of corner sharing (Nb,Ta)O6 octahedra forming trigonal, tetragonal and pentagonal tunnels. All tetragonal tunnels are occupied by K(+) ions, while 1/3 of the pentagonal tunnels are preferentially occupied by Nb(5+)/Ta(5+) and 2/3 are occupied by K(+) in a regular pattern. A fractional substitution of K(+) in the pentagonal tunnels by Nb(5+)/Ta(5+) is suggested by the analysis of the HAADF-STEM images. In contrast to similar structures, such as K2Nb8O21, also parts of the trigonal tunnels are fractionally occupied by K(+) cations.

  2. Crystallization and preliminary crystallographic analysis of a family 43 β-d-xylosidase from Geobacillus stearothermophilus T-6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brüx, Christian; Niefind, Karsten; Ben-David, Alon

    2005-12-01

    The crystallization and preliminary X-ray analysis of a β-d-xylosidase from G. stearothermophilus T-6, a family 43 glycoside hydrolase, is described. Native and catalytic inactive mutants of the enzymes were crystallized in two different space groups, orthorhombic P2{sub 1}2{sub 1}2 and tetragonal P4{sub 1}2{sub 1}2 (or the enantiomorphic space group P4{sub 3}2{sub 1}2), using a sensitive cryoprotocol. The latter crystal form diffracted X-rays to a resolution of 2.2 Å. β-d-Xylosidases (EC 3.2.1.37) are hemicellulases that cleave single xylose units from the nonreducing end of xylooligomers. In this study, the crystallization and preliminary X-ray analysis of a β-d-xylosidase from Geobacillus stearothermophilus T-6more » (XynB3), a family 43 glycoside hydrolase, is described. XynB3 is a 535-amino-acid protein with a calculated molecular weight of 61 891 Da. Purified recombinant native and catalytic inactive mutant proteins were crystallized and cocrystallized with xylobiose in two different space groups, P2{sub 1}2{sub 1}2 (unit-cell parameters a = 98.32, b = 99.36, c = 258.64 Å) and P4{sub 1}2{sub 1}2 (or the enantiomorphic space group P4{sub 3}2{sub 1}2; unit-cell parameters a = b = 140.15, c = 233.11 Å), depending on the detergent. Transferring crystals to cryoconditions required a very careful protocol. Orthorhombic crystals diffract to 2.5 Å and tetragonal crystals to 2.2 Å.« less

  3. Crystal Growth and Optical Properties of Co2+ Doped SrLaGa3O7

    DTIC Science & Technology

    2001-01-01

    Electron Spin Resonance, absorption spectra, gallate crystals, thermal annealing. 1. INTRODUCTION SrLaGa307 (SLGO) belongs to the family of binary... gallates of alkaline and rare earth metals. Crystal of these compounds have the tetragonal gehlenite (Ca 2AS12SiO 7) structure (space group: P-421ml, D 3 2d

  4. Paramagnetic-to-nonmagnetic transition in antiperovskite nitride Cr3GeN studied by 14N-NMR and µSR

    NASA Astrophysics Data System (ADS)

    Takao, K.; Liu, Z.; Uji, K.; Waki, T.; Tabata, Y.; Watanabe, I.; Nakamura, H.

    2017-06-01

    The antiperovskite-related nitride Cr3GeN forms a tetragonal structure with the space group P\\bar{4}{2}1m at room temperature. It shows a tetragonal (P\\bar{4}{2}1m) to tetragonal (I4/mcm) structural transition with a large hysteresis at 300-400 K. The magnetic susceptibility of Cr3GeN shows Curie-Weiss type temperature dependence at high temperature, but is almost temperature-independent below room temperature. We carried out µSR and 14N-NMR microscopy measurements to reveal the magnetic ground state of Cr3GeN. Gradual muon spin relaxation, which is nearly temperature-independent below room temperature, was observed, indicating that Cr3GeN is magnetically inactive. In the 14N-NMR measurement, a quadrupole-split spectrum was obtained at around 14 K = 0. The temperature dependence of 14(1/T1) satisfies the Korringa relation. These experimental results indicate that the ground state of Cr3GeN is Pauli paramagnetic, without antiferromagnetic long-range order.

  5. Pressure-induced phase transitions in the CdC r2S e4 spinel

    NASA Astrophysics Data System (ADS)

    Efthimiopoulos, I.; Liu, Z. T. Y.; Kucway, M.; Khare, S. V.; Sarin, P.; Tsurkan, V.; Loidl, A.; Wang, Y.

    2016-11-01

    We have conducted high-pressure x-ray diffraction and Raman spectroscopic studies on the CdC r2S e4 spinel at room temperature up to 42 GPa. We have resolved three structural transitions up to 42 GPa, i.e., the starting F d 3 ¯m phase transforms at ˜11 GPa into a tetragonal I 41/a m d structure, an orthorhombic distortion was observed at ˜15 GPa , whereas structural disorder initiates beyond 25 GPa. Our ab initio density functional theory studies successfully reproduced the observed crystalline-to-crystalline structural transitions. In addition, our calculations propose an antiferromagnetic ordering as a potential magnetic ground state for the high-pressure tetragonal and orthorhombic modifications, compared with the starting ferromagnetic phase. Furthermore, the computational results indicate that all phases remain insulating in their stability pressure range, with a direct-to-indirect band gap transition for the F d 3 ¯m phase taking place at 5 GPa. We attempted also to offer an explanation behind the peculiar first-order character of the F d 3 ¯m (cubic ) →I 41/a m d (tetragonal) transition observed for several relevant Cr spinels, i.e., the sizeable volume change at the transition point, which is not expected from space group symmetry considerations. We detected a clear correlation between the cubic-tetragonal transition pressures and the next-nearest-neighbor magnetic exchange interactions for the Cr-bearing sulfide and selenide members, a strong indication that the cubic-tetragonal transitions in these systems are principally governed by magnetic effects.

  6. Thermodynamic theory of intrinsic finite-size effects in PbTiO3 nanocrystals. I. Nanoparticle size-dependent tetragonal phase stability

    NASA Astrophysics Data System (ADS)

    Akdogan, E. K.; Safari, A.

    2007-03-01

    We propose a phenomenological intrinsic finite-size effect model for single domain, mechanically free, and surface charge compensated ΔG-P ⃗s-ξ space, which describes the decrease in tetragonal phase stability with decreasing ξ rigorously.

  7. Crystallization and preliminary X-ray diffraction analysis of the peripheral light-harvesting complex LH2 from Marichromatium purpuratum.

    PubMed

    Cranston, Laura J; Roszak, Aleksander W; Cogdell, Richard J

    2014-06-01

    LH2 from the purple photosynthetic bacterium Marichromatium (formerly known as Chromatium) purpuratum is an integral membrane pigment-protein complex that is involved in harvesting light energy and transferring it to the LH1-RC `core' complex. The purified LH2 complex was crystallized using the sitting-drop vapour-diffusion method at 294 K. The crystals diffracted to a resolution of 6 Å using synchrotron radiation and belonged to the tetragonal space group I4, with unit-cell parameters a=b=109.36, c=80.45 Å. The data appeared to be twinned, producing apparent diffraction symmetry I422. The tetragonal symmetry of the unit cell and diffraction for the crystals of the LH2 complex from this species reveal that this complex is an octamer.

  8. Crystallization and preliminary X-ray diffraction analysis of the peripheral light-harvesting complex LH2 from Marichromatium purpuratum

    PubMed Central

    Cranston, Laura J.; Roszak, Aleksander W.; Cogdell, Richard J.

    2014-01-01

    LH2 from the purple photosynthetic bacterium Marichromatium (formerly known as Chromatium) purpuratum is an integral membrane pigment–protein complex that is involved in harvesting light energy and transferring it to the LH1–RC ‘core’ complex. The purified LH2 complex was crystallized using the sitting-drop vapour-diffusion method at 294 K. The crystals diffracted to a resolution of 6 Å using synchrotron radiation and belonged to the tetragonal space group I4, with unit-cell parameters a = b = 109.36, c = 80.45 Å. The data appeared to be twinned, producing apparent diffraction symmetry I422. The tetragonal symmetry of the unit cell and diffraction for the crystals of the LH2 complex from this species reveal that this complex is an octamer. PMID:24915099

  9. Structural distortion-induced magnetoelastic locking in Sr(2)IrO(4) revealed through nonlinear optical harmonic generation.

    PubMed

    Torchinsky, D H; Chu, H; Zhao, L; Perkins, N B; Sizyuk, Y; Qi, T; Cao, G; Hsieh, D

    2015-03-06

    We report a global structural distortion in Sr_{2}IrO_{4} using spatially resolved optical second and third harmonic generation rotational anisotropy measurements. A symmetry lowering from an I4_{1}/acd to I4_{1}/a space group is observed both above and below the Néel temperature that arises from a staggered tetragonal distortion of the oxygen octahedra. By studying an effective superexchange Hamiltonian that accounts for this lowered symmetry, we find that perfect locking between the octahedral rotation and magnetic moment canting angles can persist even in the presence of large noncubic local distortions. Our results explain the origin of the forbidden Bragg peaks recently observed in neutron diffraction experiments and reconcile the observations of strong tetragonal distortion and perfect magnetoelastic locking in Sr_{2}IrO_{4}.

  10. Corrigendum to: "Crystal growth and magnetic characterization of a tetragonal polymorph of NiNb2O6" [J. Solid State Chem. 236 (2016) 19-23

    NASA Astrophysics Data System (ADS)

    Munsie, T. J. S.; Millington, A.; Dube, P. A.; Dabkowska, H. A.; Britten, J.; Luke, G. M.; Greedan, J. E.

    2016-07-01

    We have become aware of an error in this published manuscript. In it we stated that the space group of NiNb2O6, P42/n, is not a subgroup of the tri-rutile space group, P42/mnm. This is not correct. While the two space groups are not directly related, i.e. by a single step, they are connected via the intermediate symmetry P42/m, as shown below and which can be determined from a careful perusal of the International Tables for Crystallography (Vol. A) and of course the Bilbao Server. P42/m (#86) is a maximal non-isomorphic subgroup of P42/mnm (#186) and a minimal non-isomorphic supergroup of P42/n (#84). We thank Prof. J.M. Perez-Mato for guiding our understanding of these relationships.

  11. Phase Transition and Structure of Silver Azide at High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D Hou; F Zhang; C Ji

    2011-12-31

    Silver azide (AgN{sub 3}) was compressed up to 51.3 GPa. The results reveal a reversible second-order orthorhombic-to-tetragonal phase transformation starting from ambient pressure and completing at 2.7 GPa. The phase transition is accompanied by a proximity of cell parameters a and b, a 3{sup o} rotation of azide anions, and a change of coordination number from 4-4 (four short, four long) to eight fold. The crystal structure of the high pressure phase is determined to be in I4/mcm space group, with Ag at 4a, N{sub 1} at 4d, and N{sub 2} at 8h Wyckoff positions. Both of the two phasesmore » have anisotropic compressibility: the orthorhombic phase exhibits an anomalous expansion under compression along a-axis and is more compressive along b-axis than c-axis; the tetragonal phase is more compressive along the interlayer direction than the intralayer directions. The bulk moduli of the orthorhombic and tetragonal phases are determined to be K{sub OT} = 39{+-}5 GPa with K{sub OT'} = 10{+-}7 and K{sub OT} = 57 {+-}2 GPa with K{sub OT'} = 6.6{+-}0.2, respectively.« less

  12. Evidence of tetragonal distortion as the origin of the ferromagnetic ground state in γ -Fe nanoparticles

    NASA Astrophysics Data System (ADS)

    Augustyns, V.; van Stiphout, K.; Joly, V.; Lima, T. A. L.; Lippertz, G.; Trekels, M.; Menéndez, E.; Kremer, F.; Wahl, U.; Costa, A. R. G.; Correia, J. G.; Banerjee, D.; Gunnlaugsson, H. P.; von Bardeleben, J.; Vickridge, I.; Van Bael, M. J.; Hadermann, J.; Araújo, J. P.; Temst, K.; Vantomme, A.; Pereira, L. M. C.

    2017-11-01

    γ -Fe and related alloys are model systems of the coupling between structure and magnetism in solids. Since different electronic states (with different volumes and magnetic ordering states) are closely spaced in energy, small perturbations can alter which one is the actual ground state. Here, we demonstrate that the ferromagnetic state of γ -Fe nanoparticles is associated with a tetragonal distortion of the fcc structure. Combining a wide range of complementary experimental techniques, including low-temperature Mössbauer spectroscopy, advanced transmission electron microscopy, and synchrotron radiation techniques, we unambiguously identify the tetragonally distorted ferromagnetic ground state, with lattice parameters a =3.76 (2 )Å and c =3.50 (2 )Å , and a magnetic moment of 2.45(5) μB per Fe atom. Our findings indicate that the ferromagnetic order in nanostructured γ -Fe is generally associated with a tetragonal distortion. This observation motivates a theoretical reassessment of the electronic structure of γ -Fe taking tetragonal distortion into account.

  13. Phase transitions in heated Sr{sub 2}MgTeO{sub 6} double perovskite oxide probed by X-ray diffraction and Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manoun, Bouchaib, E-mail: manounb@gmail.com; Tamraoui, Y.; Lazor, P.

    2013-12-23

    Double-perovskite oxide Sr{sub 2}MgTeO{sub 6} has been synthetized, and its crystal structure was probed by the technique of X-ray diffraction at room temperature. The structure is monoclinic, space group I2/m. Temperature-induced phase transitions in this compound were investigated by Raman spectroscopy up to 550 °C. Two low-wavenumber modes corresponding to external lattice vibrations merge at temperature of around 100 °C, indicating a phase transition from the monoclinic (I2/m) to the tetragonal (I4/m) structure. At 300 °C, changes in the slopes of temperature dependencies of external and O–Te–O bending modes are detected and interpreted as a second phase transition from the tetragonal (I4/m) tomore » the cubic (Fm-3m) structure.« less

  14. Structural phase transition of gold under uniaxial, tensile, and triaxial stresses: An ab initio study

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2007-07-01

    The behavior of gold crystal under uniaxial, tensile, and three different triaxial stresses is studied using an ab initio constant pressure technique within a generalized gradient approximation. Gold undergoes a phase transformation from the face-centered-cubic structure (fcc) to a body-centered-tetragonal (bct) structure having the space group of I4/mmm with the application of uniaxial stress, while it transforms to a face-centered-tetragonal (fct) phase within I4/mmm symmetry under uniaxial tensile loading. Further uniaxial compression of the bct phase results in a symmetry change from I4/mmm to P1 at high stresses and ultimately structural failure around 200.0GPa . For the case of triaxial stresses, gold also converts into a bct state. The critical stress for the fcc-to-bct transformation increases as the ratio of the triaxial stress increases. Both fct and bct phases are elastically unstable.

  15. Purification, crystallization and preliminary crystallographic studies of plant S-adenosyl-l-homocysteine hydrolase (Lupinus luteus)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brzezinski, Krzysztof; Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan; Bujacz, Grzegorz

    2008-07-01

    Single crystals of recombinant S-adenosyl-l-homocysteine hydrolase from L. luteus in complex with adenosine diffract X-rays to 1.17 Å resolution at 100 K. The crystals are tetragonal, space group P4{sub 3}2{sub 1}2, and contain one copy of the dimeric enzyme in the asymmetric unit. By degrading S-adenosyl-l-homocysteine, which is a byproduct of S-adenosyl-l-methionine-dependent methylation reactions, S-adenosyl-l-homocysteine hydrolase (SAHase) acts as a regulator of cellular methylation processes. S-Adenosyl-l-homocysteine hydrolase from the leguminose plant yellow lupin (Lupinus luteus), LlSAHase, which is composed of 485 amino acids and has a molecular weight of 55 kDa, has been cloned, expressed in Escherichia coli and purified.more » Crystals of LlSAHase in complex with adenosine were obtained by the hanging-drop vapour-diffusion method using 20%(w/v) PEG 4000 and 10%(v/v) 2-propanol as precipitants in 0.1 M Tris–HCl buffer pH 8.0. The crystals were tetragonal, space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = 122.4, c = 126.5 Å and contained two protein molecules in the asymmetric unit, corresponding to the functional dimeric form of the enzyme. Atomic resolution (1.17 Å) X-ray diffraction data have been collected using synchrotron radiation.« less

  16. Large structural modulations in the relaxor ferroelectric and intermediate state of strontium rich members (x>0.6) of the Sr{sub x}Ba{sub 1−x}Nb{sub 2}O{sub 6} (sbn) solid solution series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graetsch, H.A., E-mail: heribert.graetsch@rub.de

    The amplitudes of the positional, occupational and adp modulations of sbn mixed crystals are strongly enhanced for high strontium contents. The increase of structural modulations is accompanied by reduced spontaneous electric polarization largely due to smaller off-center shifts of the niobium atoms. Beyond the room temperature ferroelectric – intermediate transition near x=0.77, anomal large U{sub 33} atomic displacement parameters of the niobium atoms indicate static disorder caused by loss of orientational coupling between residual shifts of Nb atoms in neighboring NbO{sub 6} octahedra. Change of satellite intensities show a reduction from two-dimensional to one-dimensional modulation which is not consistent withmore » tetragonal symmetry. The pseudo-tetragonally twinned crystal structure of sbn82 was refined in the orthorhombic super-space group A2mm(½0γ)000. The apparent tetragonal symmetry of the other investigated sbn samples also seems to be due to pseudo tetragonal twinning with equal twin volumes. The modulations mainly consist of cooperatively tilted NbO{sub 6} octahedra and wave-like ordered incomplete occupation of the largest cation sites (Me2a and b) by Ba{sup 2+} and Sr{sup 2+}. Furthermore, the atomic displacement parameters of the Me2 sites are strongly modulated. - Graphical abstract: Satellite reflections and modulation coefficients in the solid solution series Sr{sub x}Ba{sub 1−x}Nb{sub 2}O{sub 6}. - Highlights: • The modulationed structures are refined for the whole composition range of sbn32–sbn82 in tetragonal and orthorhombic setting. • The amplitudes of positional, occupational and adp modulations increase strongly with the strontium content. • Evidence is presented that the sbn crystals are pseudo tetragonally twinned. • The ferroelectric–intermediate paraelectric transition is not accompanied by a change of symmetry. • Anomal adp of intermediate (non-ferroelectric) sbn82 indicate loss of coupling between off-center shifts of neighboring niobium.« less

  17. Switchable Ni–Mn–Ga Heusler nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zayak, Alexey T.; Beckman, Scott P.; Tiago, Murilo L.

    2008-10-02

    Here, we examined bulk-like Heusler nanocrystals using real-space pseudopotentials constructed within density functional theory. The nanocrystals were made of various compositions of Ni-Mn-Ga in the size range from 15 up to 169 atoms. Among these compositions, the closest to the stoichiometric Ni 2MnGa were found to be the most stable. The Ni-based nanocrystals retained a tendency for tetragonal distortion, which is inherited from the bulk properties. Surface effects suppress the tetragonal structure in the smaller Ni-based nanocrystals, while bigger nanocrystals develop a bulk-like tetragonal distortion. We suggest the possibility of switchable Ni-Mn-Ga nanocrystals, which could be utilized for magnetic nano-shape-memorymore » applications.« less

  18. Temperature controlled evolution of monoclinic to super-tetragonal phase of epitaxial BiFeO3 thin films on La0.67Sr0.33MnO3 buffered SrTiO3 substrate

    NASA Astrophysics Data System (ADS)

    Singh, Anar; Kaifeng, Dong; Chen, Jing-Sheng

    2018-03-01

    Epitaxial BiFeO3 thin films of 130nm were deposited by pulsed laser deposition (PLD) technique on La0.67Sr0.33MnO3 buffered SrTiO3 (001) substrate at various temperatures under different ambient oxygen pressures. Reciprocal space mapping reveals that, with decreasing temperature and oxygen pressure, the broadly reported monoclinic phase (MA) of BiFeO3 thin film initially transforms to a tetragonal phase (T1) with c/a =1.05 (1) in a narrow girth of deposition condition and then to a super-tetragonal phase (T2) with giant c/a = 1.24 (1), as confirmed by reciprocal space mapping using high resolution x-ray diffraction. The surface morphology of the films reveals the island growth of the BiFeO3 films deposited at low temperatures. We propose that the transformation from monoclinic to the super-tetragonal phase is essentially due to the manifestation of excess local strain as a result of the island growth. This study offers a recipe to grow the super-tetragonal phase of BiFeO3, with giant c/a =1.24 (1) which exhibits exceptionally large ferroelectric polarization, on ferromagnetic layer La0.67Sr0.33MnO3. This phase of BiFeO3 can be utilized for the ferroelectric control of magnetism at the interface of BiFeO3 and La0.67Sr0.33MnO3.

  19. Pressure-induced phase transitions of β-type pyrochlore CsTaWO 6

    DOE PAGES

    Zhang, F. X.; Tracy, C. L.; Shamblin, J.; ...

    2016-09-30

    The β-type pyrochlore CsTaWO 6 was studied by synchrotron X-ray diffraction (XRD) and Raman scattering methods up to pressures of 43 GPa using a diamond anvil cell (DAC). With increasing pressure, the cubic pyrochlore in space group of Fd-3¯m with combining macron]m transforms to an orthorhombic structure (space group: Pnma) at 5.9 GPa and then to a monoclinic structure (space group: P2 1/c) at ~18 GPa. The structural evolution in CsTaWO 6 is a continuous process and experimental results suggest that the initial cubic phase has a tetragonal distortion at ambient conditions. Both XRD and Raman measurements indicate that themore » pressure-induced phase transitions in CsTaWO 6 are reversible. Lastly, these results may provide a structural explanation of previous experimental resistivity measurement results for the isostructural superconductor K(Cs)Os 2O 6 at high pressure conditions.« less

  20. Pressure-induced phase transitions of β-type pyrochlore CsTaWO 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, F. X.; Tracy, C. L.; Shamblin, J.

    The β-type pyrochlore CsTaWO 6 was studied by synchrotron X-ray diffraction (XRD) and Raman scattering methods up to pressures of 43 GPa using a diamond anvil cell (DAC). With increasing pressure, the cubic pyrochlore in space group of Fd-3¯m with combining macron]m transforms to an orthorhombic structure (space group: Pnma) at 5.9 GPa and then to a monoclinic structure (space group: P2 1/c) at ~18 GPa. The structural evolution in CsTaWO 6 is a continuous process and experimental results suggest that the initial cubic phase has a tetragonal distortion at ambient conditions. Both XRD and Raman measurements indicate that themore » pressure-induced phase transitions in CsTaWO 6 are reversible. Lastly, these results may provide a structural explanation of previous experimental resistivity measurement results for the isostructural superconductor K(Cs)Os 2O 6 at high pressure conditions.« less

  1. Ab initio study of the structural phase transitions of the double perovskites Sr2MWO6 (M=Zn, Ca, Mg)

    NASA Astrophysics Data System (ADS)

    Petralanda, U.; Etxebarria, I.

    2014-02-01

    We study the interplay of structural distortions in double perovskites Sr2MWO6 (M = Zn, Ca, Mg) by means of first-principles calculations and group theoretical analysis. Structure relaxations of the cubic, tetragonal, and monoclinic phases show that the ground states of the three compounds are monoclinic, although the energy difference between the monoclinic and tetragonal structures is very small in the case of Sr2MgWO6. The symmetry analysis of the distortions involved in the experimental and calculated low-temperature structures shows that the amplitude of two primary distortions associated to rigid rotations of the MX6 and WO6 octahedra are dominant, although the amplitude of a third mode related to deformations of the MX6 groups can not be neglected. The energy maps of the space spanned by the three relevant modes are calculated, and the couplings among the modes are evaluated, showing that the role of a hard secondary mode (in the Landau sense) coupled trilinearly to the two primary instabilities is crucial to stabilize the monoclinic ground state. Results suggest that the key role of the trilinear coupling among three modes could be rather common. A phenomenological theory including the effects of the chemical pressure is also developed. We find that the evolution of the stiffness constants in terms of the atomic substitution follows an accurate linear dependence and that the influence of quantum saturation of the order parameters could stabilize the tetragonal phase of Sr2MgWO6.

  2. Structural analysis and ferroelectric properties of Fe doped BaTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Ashutosh, E-mail: a.mansuri14@gmail.com, E-mail: amishra1960@yahoo.co.in; Mansuri, Amantulla, E-mail: a.mansuri14@gmail.com, E-mail: amishra1960@yahoo.co.in; Dwivedi, J. P.

    2016-05-23

    The polycrystalline samples of Fe doped BaTiO{sub 3} (BTO) with compositional formula BaTi{sub 1-x}Fe{sub x}O{sub 3} (x = 0, 0.03, 0.04 and 0.05) were prepared by solid-state reaction route. The influence of the Fe content on the structural, vibrational and electric properties of BaTiO{sub 3} was investigated using X-ray powder diffraction (XRD), Raman spectroscopy and Polarization techniques. XRD analysis indicates the formation of single-phase tetragonal structure for all the prepared samples. Tetragonal cubic structure with space group P4mm of all samples is further approved by Rietveld refinement. Room temperature Raman spectra of pure BaTiO{sub 3} show four active modes ofmore » vibration whose intensity decreases with increasing Fe doping. Small shift in Raman modes and increment in the line width has been observed with the doping ions. The hysteresis loop is very well performed with regular sharp characteristic of ferroelectric materials.« less

  3. Purification, crystallization and preliminary X-ray diffraction analysis of the kinase domain of human tousled-like kinase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrote, Ana M.; Redondo, Pilar; Montoya, Guillermo, E-mail: gmontoya@cnio.es

    2014-02-19

    The C-terminal kinase domain of TLK2 (a human tousled-like kinase) has been cloned and overexpressed in Escherichia coli followed by purification to homogeneity. Crystallization experiments in the presence of ATP-γ-S yielded crystals suitable for X-ray diffraction analysis belonging to two different space groups: tetragonal I4{sub 1}22 and cubic P2{sub 1}3. Tousled-like kinases (TLKs) are an evolutionarily conserved family of serine/threonine protein kinases involved in chromatin dynamics, including DNA replication and repair, transcription and chromosome segregation. The two members of the family reported in humans, namely TLK1 and TLK2, localize to the cell nucleus and are capable of forming homo- ormore » hetero-oligomers by themselves. To characterize the role of TLK2, its C-terminal kinase domain was cloned and overexpressed in Escherichia coli followed by purification to homogeneity. Crystallization experiments in the presence of ATP-γ-S yielded crystals suitable for X-ray diffraction analysis belonging to two different space groups: tetragonal I4{sub 1}22 and cubic P2{sub 1}3. The latter produced the best diffracting crystal (3.4 Å resolution using synchrotron radiation), with unit-cell parameters a = b = c = 126.05 Å, α = β = γ = 90°. The asymmetric unit contained one protein molecule, with a Matthews coefficient of 4.59 Å{sup 3} Da{sup −1} and a solvent content of 73.23%.« less

  4. Electronic structures and superconductivity in LuTE2Si2 phases (TE = d-electron transition metal)

    NASA Astrophysics Data System (ADS)

    Samsel-Czekała, M.; Chajewski, G.; Wiśniewski, P.; Romanova, T.; Hackemer, A.; Gorzelniak, R.; Pikul, A. P.; Kaczorowski, D.

    2018-05-01

    In the course of our search for unconventional superconductors amidst the 1:2:2 phases, we have re-investigated the LuTE2Si2 compounds with TE = Fe, Co, Ni, Ru, Pd and Pt. In this paper, we present the results of our fully relativistic ab initio calculations of the band structures, performed using the full-potential local-orbital code. The theoretical data are supplemented by the results of low-temperature electrical transport and specific heat measurements performed down to 0.35 K. All the materials studied but LuPt2Si2 crystallize with the body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm). Their Fermi surfaces exhibit a three-dimensional multi-band character. In turn, the Pt-bearing compound adopts the primitive tetragonal CaBe2Ge2-type structure (space group P4/nmm), and its Fermi surface consists of predominantly quasi-two-dimensional sheets. Bulk superconductivity was found only in LuPd2Si2 and LuPt2Si2 (independent of the structure type and dimensionality of the Fermi surface). The key superconducting characteristics indicate a fully-gapped BCS type character. Though the electronic structure of LuFe2Si2 closely resembles that of the unconventional superconductor YFe2Ge2, this Lu-based silicide exhibits neither superconductivity nor spin fluctuations at least down to 0.35 K.

  5. Crystal structure and properties of tetragonal EuAg{sub 4}In{sub 8} grown by metal flux technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subbarao, Udumula; Sarkar, Sumanta; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in

    The compound EuAg{sub 4}In{sub 8} has been obtained as single crystals in high yield from reactions run in liquid indium. X-ray diffraction on single crystals suggests that EuAg{sub 4}In{sub 8} crystallizes in the CeMn{sub 4}Al{sub 8} structure type, tetragonal space group I4/mmm with lattice constants a=b=9.7937(2) Å and c=5.7492(2) Å. Crystal structure of EuAg{sub 4}In{sub 8} is composed of pseudo Frank–Kasper cages occupied by one europium atom in each ring, which are shared through the corner along the ab plane resulting in a three dimensional network. The magnetic susceptibility of EuAg{sub 4}In{sub 8} was measured in the temperature range 2–300more » K, which obeyed Curie–Weiss law above 50 K. Magnetic moment value calculated from the fitting indicates the presence of divalent europium, which was confirmed by X-ray absorption near edge spectroscopy. Electrical resistivity measurements suggest that EuAg{sub 4}In{sub 8} is metallic in nature with a probable Fermi liquid behavior at low temperature. - Graphical abstract: The tetragonal EuAg{sub 4}In{sub 8} has been grown as single crystals from reactions run in liquid indium. Magnetic and XANES measurements suggest divalent nature of Eu and resistivity measurements suggest metallic nature. - Highlights: • EuAg{sub 4}In{sub 8} phase having tetragonal phase is grown by metal flux technique. • Magnetic and XANES measurements exhibit divalent nature of Eu in EuAg{sub 4}In{sub 8}. • Resistivity measurement suggests metallic nature and probable Fermi liquid behavior.« less

  6. Crystallization of the Fab from a human monoclonal antibody against gp 41 of human immunodeficiency virus type I

    NASA Technical Reports Server (NTRS)

    Casale, Elena; He, Xiao-Min; Snyder, Robert S.; Carter, Daniel C.; Wenisch, Elisabeth; Jungbauer, Alois; Tauer, Christa; Ruker, Florian; Righetti, Pier Giorgio

    1990-01-01

    A monoclonal IgG antibody directed against gp 41 from the human immunodeficiency virus (HIV-1) has been crystallized in both intact and Fab forms. Crystals of the intact antibody grow as tetragonal-like prisms too small for conventional X-ray analysis. However, the Fab portion of the antibody produces suitable platelike crystals which belong to the space group P2(1)2(1)2(1) with unit cell constants of a = 66.5 A, b = 74.3 A, and c = 105.3 A. There is one molecule of Fab in the asymmetric unit. The Fab crystals show diffraction to d-spacings less than 3.0 A.

  7. Investigation of phase segregation using Rietveld refinement in Mg doped BaTiO3 solid solutions and their ferroelectric properties

    NASA Astrophysics Data System (ADS)

    Aanchal, Kaur, Kiranpreet; Singh, Anupinder; Singh, Mandeep

    2018-05-01

    Ba(1-x) Mgx Ti O3 (BMT) samples were synthesised using solid state reaction route with `x' varying from 0.025 to 0.10. The structural and ferroelectric properties of the bulk samples were investigated. The XRD analysis shows the presence of two phases, the first phase being magnesium doped BT (space group P4mm) and the second phase being Ba2TiO4 (space group Pna21). The tetragonal phase was found to be the major phase in the samples. The double phase Rietveld refinement was done and the weight percentage of orthorhombic phase was found to vary from 3.43% to 6.96% for x varying from 0.025≤x≤0.10. The P - E measurements reveal that all the samples exhibit lossy behaviour.

  8. Y-TZP zirconia regeneration firing: Microstructural and crystallographic changes after grinding.

    PubMed

    Ryan, Daniel Patrick Obelenis; Fais, Laiza Maria Grassi; Antonio, Selma Gutierrez; Hatanaka, Gabriel Rodrigues; Candido, Lucas Miguel; Pinelli, Ligia Antunes Pereira

    2017-07-26

    This study evaluated microstructural and crystallographic phase changes after grinding (G) and regeneration firing/anneling (R) of Y-TZP ceramics. Thirty five bars (Lava TM and Ice Zirkon) were divided: Y-TZP pre-sintered, control (C), regeneration firing (R), dry grinding (DG), dry grinding+regeneration firing (DGR), wet grinding (WG) and wet grinding+regeneration firing (WGR). Grinding was conducted using a diamond bur and annealing at 1,000°C. The microstructure was analyzed by SEM and the crystalline phases by X-ray diffraction (XRD). XRD showed that pre-sintered specimens contained tetragonal and monoclinic phases, while groups C and R showed tetragonal, cubic and monoclinic phases. After grinding, the cubic phase was eliminated in all groups. Annealing (DGR and WGR) resulted in only tetragonal phase. SEM showed semi-circular cracks after grinding and homogenization of particles after annealing. After grinding, surfaces show tetragonal and monoclinic phases and R can be assumed to be necessary prior to porcelain layering when grinding is performed.

  9. Reflection of thermoelastic wave on the interface of isotropic half-space and tetragonal syngony anisotropic medium of classes 4, 4/m with thermomechanical effect

    NASA Astrophysics Data System (ADS)

    Nurlybek, A. Ispulov; Abdul, Qadir; M, A. Shah; Ainur, K. Seythanova; Tanat, G. Kissikov; Erkin, Arinov

    2016-03-01

    The thermoelastic wave propagation in a tetragonal syngony anisotropic medium of classes 4, 4/m having heterogeneity along z axis has been investigated by employing matrizant method. This medium has an axis of second-order symmetry parallel to z axis. In the case of the fourth-order matrix coefficients, the problems of wave refraction and reflection on the interface of homogeneous anisotropic thermoelastic mediums are solved analytically.

  10. Antiferromagnetism in EuCu 2As 2 and EuCu 1.82Sb 2 single crystals

    DOE PAGES

    Anand, V. K.; Johnston, D. C.

    2015-05-07

    Single crystals of EuCu 2As 2 and EuCu 2Sb 2 were grown from CuAs and CuSb self-flux, respectively. The crystallographic, magnetic, thermal, and electronic transport properties of the single crystals were investigated by room-temperature x-ray diffraction (XRD), magnetic susceptibility χ versus temperature T, isothermal magnetization M versus magnetic field H, specific heat C p(T), and electrical resistivity ρ(T) measurements. EuCu 2As 2 crystallizes in the body-centered tetragonal ThCr 2Si 2-type structure (space group I4/mmm), whereas EuCu 2Sb 2 crystallizes in the related primitive tetragonal CaBe 2Ge 2-type structure (space group P4/nmm). The energy-dispersive x-ray spectroscopy and XRD data for themore » EuCu 2Sb 2 crystals showed the presence of vacancies on the Cu sites, yielding the actual composition EuCu 1.82Sb 2. The ρ(T) and C p(T) data reveal metallic character for both EuCu 2As 2 and EuCu 1.82Sb 2. Antiferromagnetic (AFM) ordering is indicated from the χ(T),C p(T), and ρ(T) data for both EuCu 2As 2 (T N = 17.5 K) and EuCu 1.82Sb 2 (T N = 5.1 K). In EuCu 1.82Sb 2, the ordered-state χ(T) and M(H) data suggest either a collinear A-type AFM ordering of Eu +2 spins S = 7/2 or a planar noncollinear AFM structure, with the ordered moments oriented in the tetragonal ab plane in either case. This ordered-moment orientation for the A-type AFM is consistent with calculations with magnetic dipole interactions. As a result, the anisotropic χ(T) and isothermal M(H) data for EuCu 2As 2, also containing Eu +2 spins S = 7/2, strongly deviate from the predictions of molecular field theory for collinear AFM ordering and the AFM structure appears to be both noncollinear and noncoplanar.« less

  11. Revised Space Groups for Three Molybdenum(V) Phosphate Compounds

    NASA Astrophysics Data System (ADS)

    Leclaire, A.; Borel, M. M.; Guesdon, A.; Marsh, Richard E.

    2001-06-01

    The space groups of three previously described Mo(V) phosphate structures are revised. (1) δ-KMo2P3O13, originally reported as triclinic, Poverline1, is revised to monoclinic, C2/c; it is identical to the compound previously identified as K4Mo8P12O52. (2) The compound formulated as [Mo12CdP8O50(OH)12]Cd [N(CH3)4]2(H3O)6·5H2O, originally described as monoclinic, Pn, is revised to P21/n (also monoclinic). (3) Rb3O2(MoO)4(PO4)4, originally reported as orthorhombic, C2221, is revised to tetragonal, P43212. The general descriptions of the structures are unchanged; however, for compound 2 the revision involves the addition of a center of symmetry and, as a result, there are significant changes in the interatomic distances and angles.

  12. Crystal structures of the double perovskites Ba{sub 2}Sr{sub 1-} {sub x} Ca {sub x} WO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, W.T.; Akerboom, S.; IJdo, D.J.W.

    2007-05-15

    Structures of the double perovskites Ba{sub 2}Sr{sub 1-} {sub x} Ca {sub x} WO{sub 6} have been studied by the profile analysis of X-ray diffraction data. The end members, Ba{sub 2}SrWO{sub 6} and Ba{sub 2}CaWO{sub 6}, have the space group I2/m (tilt system a {sup 0} b {sup -} b {sup -}) and Fm3-barm (tilt system a {sup 0} a {sup 0} a {sup 0}), respectively. By increasing the Ca concentration, the monoclinic structure transforms to the cubic one via the rhombohedral R3-bar phase (tilt system a {sup -} a {sup -} a {sup -}) instead of the tetragonal I4/mmore » phase (tilt system a {sup 0} a {sup 0} c {sup -}). This observation supports the idea that the rhombohedral structure is favoured by increasing the covalency of the octahedral cations in Ba{sub 2} MM'O{sub 6}-type double perovskites, and disagrees with a recent proposal that the formation of the {pi}-bonding, e.g., d {sup 0}-ion, determines the tetragonal symmetry in preference to the rhombohedral one. - Graphical abstract: Enlarged sections showing the evolution of the basic (222) and (400) reflections in Ba{sub 2}Sr{sub 1-} {sub x} Ca {sub x} WO{sub 6}. Tick marks below are the positions of Bragg's reflections calculated using the space groups I2/m (x=0), R3-bar (x=0.25, 0.5 and 0.75) and Fm3-barm (x=1), respectively.« less

  13. Crystallization and preliminary X-ray diffraction analysis of mouse galectin-4 N-terminal carbohydrate recognition domain in complex with lactose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krejčiříková, Veronika; Fábry, Milan; Marková, Vladimíra

    2008-07-01

    Mouse galectin-4 carbohydrate binding domain was overexpressed in E. coli and crystallized in the presence of lactose. The crystals belong to tetragonal space group P42{sub 1}2 and diffraction data were collected to 2.1 Å resolution. Galectin-4 is thought to play a role in the process of tumour conversion of cells of the alimentary tract and the breast tissue; however, its exact function remains unknown. With the aim of elucidating the structural basis of mouse galectin-4 (mGal-4) binding specificity, we have undertaken X-ray analysis of the N-terminal domain, CRD1, of mGal-4 in complex with lactose (the basic building block of knownmore » galectin-4 carbohydrate ligands). Crystals of CRD1 in complex with lactose were obtained using vapour-diffusion techniques. The crystals belong to tetragonal space group P42{sub 1}2 with unit-cell parameters a = 91.1, b = 91.16, c = 57.10 Å and preliminary X-ray diffraction data were collected to 3.2 Å resolution. An optimized crystallization procedure and cryocooling protocol allowed us to extend resolution to 2.1 Å. Structure refinement is currently under way; the initial electron-density maps clearly show non-protein electron density in the vicinity of the carbohydrate binding site, indicating the presence of one lactose molecule. The structure will help to improve understanding of the binding specificity and function of the potential colon cancer marker galectin-4.« less

  14. The magnetic structure of EuCu 2Sb 2

    DOE PAGES

    Ryan, D. H.; Cadogan, J. M.; Anand, V. K.; ...

    2015-05-06

    Antiferromagnetic ordering of EuCu 2Sb 2 which forms in the tetragonal CaBe 2Ge 2-type structure (space group P4/nmm #129) has been studied using neutron powder diffraction and 151Eu Mössbauer spectroscopy. The room temperature 151Eu isomer shift of –12.8(1) mm/s shows the Eu to be divalent, while the 151Eu hyperfine magnetic field (B hf) reaches 28.7(2) T at 2.1 K, indicating a full Eu 2+ magnetic moment. B hf(T) follows a smoothmore » $$S=\\frac{7}{2}$$ Brillouin function and yields an ordering temperature of 5.1(1) K. Refinement of the neutron diffraction data reveals a collinear A-type antiferromagnetic arrangement with the Eu moments perpendicular to the tetragonal c-axis. As a result, the refined Eu magnetic moment at 0.4 K is 7.08(15) μ B which is the full free-ion moment expected for the Eu 2+ ion with $$S=\\frac{7}{2}$$ and a spectroscopic splitting factor of g = 2.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Chen; Pinkerton, Frederick E.; Herbst, Jan F.

    New magnetic materials containing cerium, iron, and small additions of a third element are disclosed. These materials comprise compounds Ce(Fe.sub.12-xM.sub.x) where x=1-4, having the ThMn.sub.12 tetragonal crystal structure (space group I4/mmm, #139). Compounds with M=B, Al, Si, P, S, Sc, Co, Ni, Zn, Ga, Ge, Zr, Nb, Hf, Ta, and W are identified theoretically, and one class of compounds based on M=Si has been synthesized. The Si cognates are characterized by large magnetic moments (4.pi.M.sub.s greater than 1.27 Tesla) and high Curie temperatures (264.ltoreq.T.sub.c.ltoreq.305.degree. C.). The Ce(Fe.sub.12-xM.sub.x) compound may contain one or more of Ti, V, Cr, and Mo inmore » combination with an M element. Further enhancement in T.sub.c is obtained by nitriding the Ce compounds through heat treatment in N.sub.2 gas while retaining the ThMn.sub.12 tetragonal crystal structure; for example CeFe.sub.10Si.sub.2N.sub.1.29 has T.sub.c=426.degree. C.« less

  16. Variation of oxygen content in selected potassium fluorido-oxido-tantalate phases

    NASA Astrophysics Data System (ADS)

    Boča, Miroslav; Moncoĺ, Ján; Netriová, Zuzana; Velič, Dušan; Jerigová, Monika; Nunney, Tim S.; Baily, Christopher J.; Kubíková, Blanka; Šimko, František; Janderka, Pavel

    2011-12-01

    The compound K 3[TaO 4]•K 3[TaF 4O 2] crystallises in a tetragonal system (space group I-4) with cell parameters a = 6.2220(3) Å and c = 8.7625(34) Å, respectively. The crystal structure consists of two anions, [TaO 4] 3- and [TaF 4O 2] 3- and cations K +. The tantalum atoms lie in special positions and serve as centres of both anions, which are substitution disorders. XPS measurements confirmed the existence of different binding energies corresponding to the different bonds of Ta sbnd O and Ta sbnd F. Oxygen is bound more strongly in [TaF 4O 2] 3-. By combination of single crystal analysis, XRD, SIMS and XPS it was suggested that previously reported cubic phase K 3TaOF 6 is in fact K 3TaO 2F 4 and previously reported tetragonal phase K 3TaO 2F 4 is in fact K 3[TaO 4]•K 3[TaF 4O 2].

  17. Enhanced piezoelectricity in A B O3 ferroelectrics via intrinsic stress-driven flattening of the free-energy profile

    NASA Astrophysics Data System (ADS)

    Feng, Yu; Li, Wei-Li; Yu, Yang; Jia, He-Nan; Qiao, Yu-Long; Fei, Wei-Dong

    2017-11-01

    An approach to greatly enhance the piezoelectric properties (˜4 00 pC/N) of the tetragonal BaTi O3 polycrystal using a small number of A -site acceptor-donor substitutions [D. Xu et al., Acta Mater. 79, 84 (2014), 10.1016/j.actamat.2014.07.023] has been proposed. In this study, Pb (ZrTi ) O3 (PZT) based polycrystals with various crystal symmetries (tetragonal, rhombohedral, and so on) were chosen to investigate the piezoelectricity enhancement mechanism. X-ray diffraction results show that doping generates an intrinsic uniaxial compressive stress along the [001] pc direction in the A B O3 lattices. Piezoelectric maps in the parameter space of temperature and Ti concentration in the PZT and doped system show a more significant enhancement effect of L i+-A l3 + codoping in tetragonal PZT than in the rhombohedral phase. Phenomenological thermodynamic analysis indicates that the compressive stress results in more serious flattening of the free-energy profile in tetragonal PZT, compared with that in the rhombohedral phase. The chemical stress obtained by this acceptor-donor codoping can be utilized to optimize the piezoelectric performance on the tetragonal-phase site of the morphotropic phase boundary in the PZT system. The present study provides a promising route to the large piezoelectric effect induced by chemical-stress-driven flattening of the free-energy profile.

  18. Polymorphism of the hydroxide perovskite Ga(OH)3 and possible proton-driven transformational behaviour

    NASA Astrophysics Data System (ADS)

    Welch, M. D.; Kleppe, A. K.

    2016-07-01

    The crystal structure of hydroxide perovskite Ga(OH)3, the mineral söhngeite, has been determined for a natural sample by single-crystal XRD in space group P42/ nmc to R 1 = 0.031, wR 2 = 0.071, GoF = 1.208, and for comparison also in space group P42/ n to R 1 = 0.031, wR 2 = 0.073, GoF = 1.076. Unit cell parameters are a = 7.4546(2) Å, c = 7.3915(2) Å, V = 410.75(2) Å3. The two structures are very similar and both have tilt system a + a + c -. The approximate positions of all H atoms in each structure have been refined. In the P42/ nmc structure all five H sites are half-occupied, whereas in the P42/ n structure four sites are half-occupied and one is fully occupied. The presence of five non-equivalent OH groups in söhngeite is confirmed by single-crystal Raman spectroscopy, but does not allow a choice between these two space groups to be made. There is only a single very weak violator of the c-glide of P42/ nmc and the two refined structures are essentially the same, but are significantly different from that of the original description in which orthorhombic space group Pmn21 was reported with corresponding tilt system a 0 a 0 c +. It is argued here that such a structure is very implausible for a hydroxide perovskite. On heating söhngeite to 423 K, transformation to a cubic structure with Imbar{3} symmetry ( a + a + a +) of the aristotype occurs. This cubic phase was recovered on cooling to 293 K without back-transformation to the tetragonal polymorph. As there is no continuous group/subgroup pathway from P42/ nmc (or P42/ n) to Imbar{3}, the transformation must be first-order, which is consistent with the large hysteresis observed. The change from the tetragonal to cubic structures involves a change in tilt system a + a + c - → a + a + a +, with a significant reconfiguration of hydrogen-bonding topology. The very different tilt systems and hydrogen-bonding configurations of the two polymorphs are responsible for hysteresis and metastable preservation of the cubic phase at 293 K. As the Ga(OH)6 octahedra of the low- and high- T polymorphs are very similar it is inferred that the transformation is driven by proton behaviour, presumably involving proton re-ordering.

  19. Ba 2TeO: A new layered oxytelluride

    DOE PAGES

    Besara, T.; Ramirez, D.; Sun, J.; ...

    2015-02-01

    For single crystals of the new semiconducting oxytelluride phase, Ba 2TeO, we synthesized from barium oxide powder and elemental tellurium in a molten barium metal flux. Ba 2TeO crystallizes in tetragonal symmetry with space group P4/nmm (#129), a=5.0337(1) Å, c=9.9437(4) Å, Z=2. The crystals were characterized by single crystal x-ray diffraction, heat capacity and optical measurements. Moreover, the optical measurements along with electronic band structure calculations indicate semiconductor behavior with a band gap of 2.93 eV. Resistivity measurements show that Ba 2TeO is highly insulating.

  20. Crystallization of SHARPIN using an automated two-dimensional grid screen for optimization.

    PubMed

    Stieglitz, Benjamin; Rittinger, Katrin; Haire, Lesley F

    2012-07-01

    An N-terminal fragment of human SHARPIN was recombinantly expressed in Escherichia coli, purified and crystallized. Crystals suitable for X-ray diffraction were obtained by a one-step optimization of seed dilution and protein concentration using a two-dimensional grid screen. The crystals belonged to the primitive tetragonal space group P4(3)2(1)2, with unit-cell parameters a = b = 61.55, c = 222.81 Å. Complete data sets were collected from native and selenomethionine-substituted protein crystals at 100 K to 2.6 and 2.0 Å resolution, respectively.

  1. Purification, crystallization and preliminary crystallographic analysis of biotin protein ligase from Staphylococcus aureus.

    PubMed

    Pendini, Nicole R; Polyak, Steve W; Booker, Grant W; Wallace, John C; Wilce, Matthew C J

    2008-06-01

    Biotin protein ligase from Staphylococcus aureus catalyses the biotinylation of acetyl-CoA carboxylase and pyruvate carboxylase. Recombinant biotin protein ligase from S. aureus has been cloned, expressed and purified. Crystals were grown using the hanging-drop vapour-diffusion method using PEG 8000 as the precipitant at 295 K. X-ray diffraction data were collected to 2.3 A resolution from crystals using synchrotron X-ray radiation at 100 K. The diffraction was consistent with the tetragonal space group P4(2)2(1)2, with unit-cell parameters a = b = 93.665, c = 131.95.

  2. Diffraction studies of the high pressure phases of GaAs and GaP

    NASA Technical Reports Server (NTRS)

    Baublitz, M., Jr.; Ruoff, A. L.

    1982-01-01

    High pressure structural phase transitions of GaAs and GaP have been studied by energy dispersive X-ray diffraction with the radiation from the Cornell High Energy Synchrotron Source. GaAs began to transform at 172 + or - 7 kbar to an orthorhombic structure possibly belonging to space group Fmmm. GaP transformed to a tetragonal beta-Sn type phase at 215 + or - 8 kbar. Although pressure transmitting media were used to minimize shear stresses in the specimens, the high pressure diffraction results were interpreted as showing evidence for planar defects in the specimens.

  3. Template assisted strain tuning and phase stabilization in epitaxial BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Saj Mohan M., M.; Ramadurai, Ranjith

    2018-04-01

    Strain engineering is a key to develop novel properties in functional materials. We report a strain mediated phase stabilization and epitaxial growth of bismuth ferrite(BiFeO3) thin films on LaAlO3 (LAO) substrates. The strain in the epitaxial layer is controlled by controlling the thickness of bottom electrode where the thickness of the BFO is kept constant. The thickness of La0.7Sr0.3MnO3(LSMO) template layer was optimized to grow completely strained tetragonal, tetragonal/rhombohedral mixed phase and fully relaxed rhombohedral phase of BFO layers. The results were confirmed with coupled-θ-2θ scan, and small area reciprocal space mapping. The piezoelectric d33 (˜ 45-48 pm/V) coefficient of the mixed phase was relatively larger than the strained tetragonal and relaxed rhombohedral phase for a given thickness.

  4. High-pressure investigations of yttrium(III) oxoarsenate(V): Crystal structure and luminescence properties of Eu3+-doped scheelite-type Y[AsO4] from xenotime-type precursors

    NASA Astrophysics Data System (ADS)

    Ledderboge, Florian; Nowak, Jan; Massonne, Hans-Joachim; Förg, Katharina; Höppe, Henning A.; Schleid, Thomas

    2018-07-01

    Colourless, water- and air-stable single crystals of yttrium(III) oxoarsenate(V) Y[AsO4] in the xenotime-type crystal structure were prepared by the reaction of yttrium sesquioxide (Y2O3) dissolved in aqueous nitric acid (13%) with a solution of arsenic(V) oxide hydrate (As2O5·3H2O) and subsequent neutralization with 1 M caustic soda. Y[AsO4] crystallizes tetragonally in the space group I41/amd with the lattice parameters a = 704.63(6) and c = 628.94(5) pm for Z = 4 and is isotypic to the minerals xenotime RE[PO4] (RE: mainly Y and Yb) and chernovite RE[AsO4] (RE: mainly Y and Ce). This xenotime-type yttrium compound was used as precursor in a high-pressure experiment (20 kbar) at 700 °C to create a new tetragonal modification of Y[AsO4]. It shows the scheelite-type structure (space group: I41/a) with the lattice parameters a = 498.23(4) and c = 1120.71(9) pm for Z = 4, named after the mineral scheelite (Ca[WO4]). Both tetragonal structures are characterized by only one crystallographically unique position for each of the Y3+, As5+ and O2- ions with distances of d(Y-O) = 232 and 241 pm (C.N. = 8) as well as d(As-O) = 169 pm (C.N. = 4) in the case of the scheelite-type structure. The xenotime-type compound shows an unexpected slight decrease in average bond lengths for the yttrium to oxygen (d(Y-O) = 230 and 241 pm, C.N. = 8) as well as for the arsenic to oxygen distances (d(As-O) = 168 pm, C.N. = 4), accompanied by a drastic density increase from Dx = 4.85 (xenotime type) to Dx = 5.44 g • cm-3 (scheelite type). Luminescence spectroscopic measurements of the Eu3+-doped Y[AsO4] samples, obtained in experiments at similar conditions as for the pure compounds, show a bright, reddish lighting for the scheelite type, which does not occur for the xenotime type of yttrium(III) oxoarsenate(V).

  5. Effect of off-center ion substitution in morphotropic lead zirconate titanate composition

    NASA Astrophysics Data System (ADS)

    Bhattarai, Mohan K.; Pavunny, Shojan P.; Instan, Alvaro A.; Scott, James F.; Katiyar, Ram S.

    2017-05-01

    A detailed study of the effect of off-center donor ion (Sc3+) substitution on structural, microstructural, optical, dielectric, electrical, and ferroelectric properties of morphotropic composition of lead zirconate titanate electroceramics with the stoichiometric formula Pb0.85Sc0.10Zr0.53Ti0.47O3 (PSZT) and synthesized using a high energy solid-state reaction technique was carried out. Powder x-ray diffractometry was used to identify the stabilized tetragonal phase (space group P 4 m m ) with considerably reduced tetragonal strain, c /a = 1.005. An analysis of the thermal dependence of the Raman results indicated a smooth displacive (ferroelectric-paraelectric) phase transition as revealed by the observed disappearance of the soft modes A1 (1TO) and A1 (2TO) above 460 K. The dielectric response of Pt/PSZT/Pt metal-ferroelectric-metal capacitors was probed over a wide range of thermal excursions (85-600 K) and ac signal frequencies (102-106 Hz). Thermally activated dynamic and static conduction processes indicate hopping conduction mechanism ( Ea c t ≤ 0.015 eV) and the formation of small polarons caused by the electron and/or hole-lattice (phonon) interaction ( Ea c t ≥ 0.1 eV) at low (100-300 K) and high temperatures (300-600 K), respectively. The reduction in remnant polarization obtained is in good agreement with the largely reduced tetragonal strain observed in this sample, ( Pr ∝ √{c /a -1 } ). DC conduction is dominated by Poole-Frenkel mechanism that assumes a Coulombic attraction between detrapped electrons and positively charged stationary defect species in the polycrystalline matrix.

  6. The influence of thermal stresses on the phase composition of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 thick films

    NASA Astrophysics Data System (ADS)

    Uršič, Hana; Zarnik, Marina Santo; Tellier, Jenny; Hrovat, Marko; Holc, Janez; Kosec, Marija

    2011-01-01

    The influence of thermal stresses versus the phase composition for 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (0.65PMN-0.35PT) thick films is being reported. The thermal residual stresses in the films have been calculated using the finite-element method. It has been observed that in 0.65PMN-0.35PT films a compressive stress enhances the thermodynamic stability of the tetragonal phase with the space group P4mm.

  7. Purification, crystallization and preliminary crystallographic analysis of biotin protein ligase from Staphylococcus aureus

    PubMed Central

    Pendini, Nicole R.; Polyak, Steve W.; Booker, Grant W.; Wallace, John C.; Wilce, Matthew C. J.

    2008-01-01

    Biotin protein ligase from Staphylococcus aureus catalyses the biotinylation of acetyl-CoA carboxylase and pyruvate carboxylase. Recombinant biotin protein ligase from S. aureus has been cloned, expressed and purified. Crystals were grown using the hanging-drop vapour-diffusion method using PEG 8000 as the precipitant at 295 K. X-ray diffraction data were collected to 2.3 Å resolution from crystals using synchrotron X-ray radiation at 100 K. The diffraction was consistent with the tetragonal space group P42212, with unit-cell parameters a = b = 93.665, c = 131.95. PMID:18540065

  8. The intra-annular acylamide chelate-coordinated compound: The keto-tautomer of metal (II) milrinone complex

    NASA Astrophysics Data System (ADS)

    Gong, Yun; Liu, Jinzhi; Tang, Wang; Hu, Changwen

    2008-03-01

    In the presence of N, N'-dimethyllformamide (DMF), two isostructural metal (II)-milrinone complexes formulated as M(C 12H 8N 3O) 2 (M = Co 1 and Ni 2) have been synthesized and characterized by elemental analysis, IR, TG and single crystal X-ray diffraction. The two compounds crystallize in the tetragonal system, chiral space group P4 32 12. They exhibit similar two dimensional (2D) square grid-like framework, in which milrinone acts as a ditopic ligand with its terminal pyridine and intra-annular acylamide groups covalently bridging different metal centers. The intra-annular acylamide ligand shows a chelate-coordinated mode. Compounds 1 and 2 are stable under 200 °C. Compound 3 formulated as (C 12H 9N 3O) 4·H 2O was obtained in the presence of water, the water molecule in the structure leads to the racemization of compound 3 and it crystallizes in the monoclinic system, non-chiral space group P2 1/ c. Milrinone exhibits a keto-form in the three compounds and compounds 1- 3 exhibit different photoluminescence properties.

  9. Building Materials from Colloidal Nanocrystal Assemblies: Molecular Control of Solid/Solid Interfaces in Nanostructured Tetragonal ZrO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Santosh; Silva, Tiago F.; Bobbitt, Jonathan M.

    We describe in this paper a bottom-up approach to control the composition of solid/solid interfaces in nanostructured materials, and we test its effectiveness on tetragonal ZrO 2, an inorganic phase of great technological significance. Colloidal nanocrystals capped with trioctylphosphine oxide (TOPO) or oleic acid (OA) are deposited, and the organic fraction of the ligands is selectively etched with O 2 plasma. The interfaces in the resulting all-inorganic colloidal nanocrystal assemblies are either nearly bare (for OA-capped nanocrystals) or terminated with phosphate groups (for TOPO-capped nanocrystals) resulting from the reaction of phosphine oxide groups with plasma species. The chemical modification ofmore » the interfaces has extensive effects on the thermodynamics and kinetics of the material. Different growth kinetics indicate different rate limiting processes of growth (surface diffusion for the phosphate-terminated surfaces and dissolution for the “bare” surfaces). Phosphate termination led to a higher activation energy of growth, and a 3-fold reduction in interfacial energy, and facilitated significantly the conversion of the tetragonal phase into the monoclinic phase. Finally, films devoid of residual ligands persisted in the tetragonal phase at temperatures as high as 900 °C for 24 h.« less

  10. Building Materials from Colloidal Nanocrystal Assemblies: Molecular Control of Solid/Solid Interfaces in Nanostructured Tetragonal ZrO 2

    DOE PAGES

    Shaw, Santosh; Silva, Tiago F.; Bobbitt, Jonathan M.; ...

    2017-08-28

    We describe in this paper a bottom-up approach to control the composition of solid/solid interfaces in nanostructured materials, and we test its effectiveness on tetragonal ZrO 2, an inorganic phase of great technological significance. Colloidal nanocrystals capped with trioctylphosphine oxide (TOPO) or oleic acid (OA) are deposited, and the organic fraction of the ligands is selectively etched with O 2 plasma. The interfaces in the resulting all-inorganic colloidal nanocrystal assemblies are either nearly bare (for OA-capped nanocrystals) or terminated with phosphate groups (for TOPO-capped nanocrystals) resulting from the reaction of phosphine oxide groups with plasma species. The chemical modification ofmore » the interfaces has extensive effects on the thermodynamics and kinetics of the material. Different growth kinetics indicate different rate limiting processes of growth (surface diffusion for the phosphate-terminated surfaces and dissolution for the “bare” surfaces). Phosphate termination led to a higher activation energy of growth, and a 3-fold reduction in interfacial energy, and facilitated significantly the conversion of the tetragonal phase into the monoclinic phase. Finally, films devoid of residual ligands persisted in the tetragonal phase at temperatures as high as 900 °C for 24 h.« less

  11. The crystal structure and morphology of NiO-YSZ composite that prepared from local zircon concentrate of Bangka Island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahmawati, F., E-mail: fitria@mipa.uns.ac.id; Apriyani, K.; Heraldy, E.

    2016-03-29

    In order to increase the economic value of local zircon concentrate from Bangka Island, NiO-YSZ was synthesized from Zirconia, ZrO{sub 2} that was prepared from local zircon concentrate. The NiO-YSZ composite was synthesized by solid state reaction method. XRD analysis equipped with Le Bail refinement was carried out to analyze the crystal structure and cell parameters of the prepared materials. The result showed that zirconia was crystallized in tetragonal structure with a space group of P42/NMC. Yttria-Stabilized-Zirconia (YSZ) was prepared by doping 8% mol yttrium oxide into zirconia and then sintered at 1250°C for 3 hours. Doping of 8% molmore » Yttria allowed phase transformation of zirconia from tetragonal into the cubic structure. Meanwhile, the composite of NiO-YSZ consists of two crystalline phases, i.e. the NiO with cubic structure and the YSZ with cubic structure. SEM analysis of the prepared materials shows that the addition of NiO into YSZ allows the morphology to become more roughness with larger grain size.« less

  12. Synthesis, molecular structure and physicochemical properties of bis(3‧-azido-3‧-deoxythymidin-5‧-yl) carbonate

    NASA Astrophysics Data System (ADS)

    Raviolo, Mónica A.; Williams, Patricia A. M.; Etcheverry, Susana B.; Piro, Oscar E.; Castellano, Eduardo E.; Gualdesi, Maria S.; Briñón, Margarita C.

    2010-04-01

    3'-Azido-3'-deoxythymidine (zidovudine, AZT), a synthetic analog of natural nucleoside thymidine, has been used extensively in AIDS treatments. We report here the synthesis, X-ray crystal and molecular structure, NMR, IR and Raman spectra and the thermal behavior of a novel carbonate of AZT [(AZT-O) 2C dbnd O], prepared by the reaction of zidovudine with carbonyldiimidazole. The carbonate compound, C 21H 24N 10O 9, crystallizes in the tetragonal space group P4 12 12 with a = b = 15.284(1), c = 21.695(1) Å, and Z = 8 molecules per unit cell. It consists of two AZT moieties of closely related conformations which are bridged by a carbonyl group to adopt a folded Z-like shape.

  13. Load Deflection of Dow Corning SE 1700 Face Centered Tetragonal Direct Ink Write Materials: Effect of Thickness and Filament Spacing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, Ward; Pearson, Mark A.; Metz, Tom R.

    Dow Corning SE 1700 (reinforced polydimethylsiloxane) porous structures were made by direct ink writing (DIW) in a face centered tetragonal (FCT) configuration. The filament diameter was 250 μm. Structures consisting of 4, 8, or 12 layers were fabricated with center-to-center filament spacing (“road width” (RW)) of 475, 500, 525, 550, or 575 μm. Three compressive load-unload cycles to 2000 kPa were performed on four separate areas of each sample; three samples of each thickness and filament spacing were tested. At a given strain during the third loading phase, stress varied inversely with porosity. At 10% strain, the stress was nearlymore » independent of the number of layers (i.e., thickness). At higher strains (20- 40%), the stress was highest for the 4-layer structure; the 8- and 12-layer structures were nearly equivalent suggesting that the load deflection is independent of number of layers above 8 layers. Intra-and inter-sample variability of the load deflection response was higher for thinner and less porous structures.« less

  14. Presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of multiferroic (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} solid solution: A Rietveld study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Rishikesh, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in

    2014-07-28

    We present here the results of structural studies on multiferroic (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} solid solution using Rietveld analysis on powder x-ray diffraction data in the composition range 0.35 ≤ x ≤ 0.55. The stability region of various crystallographic phases at room temperature for (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} is determined precisely. Structural transformation from pseudo-cubic (x ≤ 0.40) to tetragonal (x ≥ 0.50) phase is observed via phase coexistence region demarcating the morphotropic phase boundary. The morphotropic phase boundary region consists of coexisting tetragonal and monoclinic structures with space group P4mm and Pm, respectively, stable in composition range 0.41 ≤ x ≤ 0.49 as confirmed by Rietveld analysis. The resultsmore » of Rietveld analysis completely rule out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier workers. A comparison between the bond lengths for “B-site cations-oxygen anions” obtained after Rietveld refinement, with the bond length calculated using Shannon-Prewitt ionic radii, reveals the ionic nature of B-O (Ni/Ti-O) bonds for the cubic phase and partial covalent character for the other crystallographic phases.« less

  15. Formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation

    DOE PAGES

    Sun, Cheng; Sprouster, David J.; Hattar, K.; ...

    2018-02-09

    In this paper, we report the formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation at 573 K. The transmission electron microscopy study shows that the helium bubble lattice constant measured from the in-plane d-spacing is ~4.5 nm, while it is ~3.9 nm from the out-of-plane measurement. The results of synchrotron-based small-angle x-ray scattering agree well with the transmission electron microscopy results in terms of the measurement of bubble lattice constant and bubble size. The coupling of transmission electron microscopy and synchrotron high-energy X-ray scattering provides an effective approach to study defect superlattices in irradiated materials.

  16. Formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Cheng; Sprouster, David J.; Hattar, K.

    In this paper, we report the formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation at 573 K. The transmission electron microscopy study shows that the helium bubble lattice constant measured from the in-plane d-spacing is ~4.5 nm, while it is ~3.9 nm from the out-of-plane measurement. The results of synchrotron-based small-angle x-ray scattering agree well with the transmission electron microscopy results in terms of the measurement of bubble lattice constant and bubble size. The coupling of transmission electron microscopy and synchrotron high-energy X-ray scattering provides an effective approach to study defect superlattices in irradiated materials.

  17. Investigation of transport properties of FeTe compound

    NASA Astrophysics Data System (ADS)

    Lodhi, Pavitra Devi; Solanki, Neha; Choudhary, K. K.; Kaurav, Netram

    2018-05-01

    Transport properties of FeTe parent compound has been investigated by measurements of electrical resistivity, magnetic susceptibility and Seebeck coefficient. The sample was synthesized through a standard solid state reaction route via vacuum encapsulation and characterized by x-ray diffraction, which indicated a tetragonal phase with space group P4/nmm. The parent FeTe compound does not exhibit superconductivity but shows an anomaly in the resistivity measurement at around 67 K, which corresponds to a structural phase transition along with in the vicinity of a magnetic phase transition. In the low temperature regime, Seebeck coefficient, S(T), exhibited an anomalous dip feature and negative throughout the temperature range, indicating electron-like charge carrier conduction mechanism.

  18. Ordered structure of FeGe2 formed during solid-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Jenichen, B.; Hanke, M.; Gaucher, S.; Trampert, A.; Herfort, J.; Kirmse, H.; Haas, B.; Willinger, E.; Huang, X.; Erwin, S. C.

    2018-05-01

    Fe3Si /Ge (Fe ,Si ) /Fe3Si thin-film stacks were grown by a combination of molecular beam epitaxy and solid-phase epitaxy (Ge on Fe3Si ). The stacks were analyzed using electron microscopy, electron diffraction, and synchrotron x-ray diffraction. The Ge(Fe,Si) films crystallize in the well-oriented, layered tetragonal structure FeGe2 with space group P 4 m m . This kind of structure does not exist as a bulk material and is stabilized by the solid-phase epitaxy of Ge on Fe3Si . We interpret this as an ordering phenomenon induced by minimization of the elastic energy of the epitaxial film.

  19. Structure and magnetic properties of ScFe 10Si 2

    NASA Astrophysics Data System (ADS)

    Bodak, O. I.; Stȩpień-Damm, J.; Drulis, H.; Kotur, B.; Suski, W.; Vagizov, F. G.; Wochowski, K.; Mydlarz, T.

    1995-02-01

    ScFe 10Si 2 crystallizes in the ThMn 12-type tetragonal structure with the space group I4/mmm and the lattice parameters: a = 0.8280 (1) nm, c = 0.4706 (1) nm and c/ a = 0.57. In the refinement performed for 317 independent reflections and 10 variable parameters, a final discrepancy factor R = 4.69% has been reached. The compound is ferromagnetic below 506 K ( 57Fe ME) and 560 K (magnetic). The distribution of the Fe atoms in the 8( i), 8( j) and 8( f) positions corresponds to 40, 31 and 29%, respectively. The Debye temperature determined from the temperature dependence of the isomer shift is 340 K.

  20. Tetragonal (K, Na)NbO3 based lead-free single crystal: Growth, full tensor properties, and their orientation dependence

    NASA Astrophysics Data System (ADS)

    Zheng, Limei; Wang, Junjun; Liu, Xuedong; Yang, Liya; Lu, Xiaoyan; Li, Yanran; Huo, Da; Lü, Weiming; Yang, Bin; Cao, Wenwu

    2017-10-01

    A Li and Ta modified (K, Na)NbO3 lead-free single crystal with a large size (13 × 10 × 20 mm3) has been grown by using the top-seeded solution growth method. The large size allows us to carry out an extensive study on this tetragonal crystal. We have measured a complete set of elastic, dielectric, and piezoelectric constants for the [001]C poled crystal with the single domain state. The crystal exhibits high shear piezoelectricity with d15 = 518 pC/N and k15 = 0.733, showing excellent potential in shear electro-sonic energy transformation devices. It is found that the high shear piezoelectricity originates from the vicinity of orthorhombic-tetragonal phase transition, which favors polarization rotation greatly. The orientation dependence of longitudinal dielectric, piezoelectric, and elastic constants and electromechanical coupling factor in the 3-dimentional space were calculated based on the single domain dataset. We believe that this work is of great importance for both fundamental studies and device designs for lead-free materials.

  1. Determining the structure of tetragonal Y 2WO 6 and the site occupation of Eu 3+ dopant

    NASA Astrophysics Data System (ADS)

    Huang, Jinping; Xu, Jun; Li, Hexing; Luo, Hongshan; Yu, Xibin; Li, Yikang

    2011-04-01

    The compound Y 2WO 6 is prepared by solid state reaction at 750 °C using sodium chloride as mineralizer. Its structure is solved by ab-initio methods from X-ray powder diffraction data. This low temperature phase of yttrium tungstate crystallizes in tetragonal space group P4/ nmm (No. 129), Z=2, a=5.2596(2) Å, c=8.4158(4) Å. The tungsten atoms in the structure adopt an unusual [WO 6] distorted cubes coordination, connecting [YO 6] distorted cubes with oxygen vacancies at the O 2 layers while other yttrium ions Y 2 form [YO 8] cube coordination. Y 3+ ions occupy two crystallographic sites of 2 c ( C4v symmetry) and 2 a ( D2d symmetry) in the Y 2WO 6 host lattice. With Eu 3+ ions doped, the high resolution emission spectrum of Y 2WO 6:Eu 3+ suggests that Eu 3+ partly substituted for Y 3+ in these two sites. The result of the Rietveld structure refinement shows that the Eu 3+ dopants preferentially enter the 2 a site. The uniform cube coordination environment of Eu 3+ ions with the identical eight Eu-O bond lengths is proposed to be responsible for the intense excitation of long wavelength ultraviolet at 466-535 nm.

  2. Cross-Linking Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    2000-01-01

    Tetragonal chicken egg white crystals consist of 4(sub 3) helices running in alternating directions, the helix rows having a two fold symmetry with each other. The unit cell consists of one complete tetrameric turn from each of two adjacent helices (an octamer). PBC analysis indicates that the helix intermolecular bonds are the strongest in the crystal, therefore likely formed first. AFM analysis of the (110) surface shows only complete helices, no half steps or bisected helices being found, while AFM line scans to measure the growth step increments show that they are multiples of the 4(sub 3) helix tetramer dimensions. This supports our thesis that the growth units are in fact multiples of the four molecule 4(sub 3) helix unit, the "average" growth unit size for the (110) face being an octamer (two turns about the helix) and the (101) growth unit averaging about the size of a hexamer. In an effort to better understand the species involved in the crystal nucleation and growth process, we have initiated an experimental program to study the species formed in solution compared to what is found in the crystal through covalent cross-linking studies. These experiments use the heterobifunctional cross-linking agent aminoethyl-4-azidonitroanaline (AEANA). An aliphatic amine at one end is covalently attached to the protein by a carbodiimide-mediated reaction, and a photo reactive group at the other can be used to initiate crosslinking. Modifications to the parent structure can be used to alter the distance between the two reactive groups and thus the cross-linking agents "reach". In practice, the cross-linking agent is first coupled to the asp101 side chain through the amine group. Asp101 lies within the active site cleft, and previous work with fluorescent probes had shown that derivatives at this site still crystallize in the tetragonal space group. This was also found to be the case with the AEANA derivative, which gave red tetragonal crystals. The protein now has a reactive group that can be photoactivated at a specific point in the nucleation or crystal growth process to "capture" protein molecules bound within reach of the crosslinking agent. If those bound protein molecules have a defined geometric relationship with the capturing molecule, such as would be found in a crystal, then the photoreacted cross-linking site should be consistent. Random protein interactions, typical of an amorphous precipitate or interaction, would show a random cross-linking reaction. The results of these and other experiments will be presented.

  3. Anagostic interactions in chiral separation. Polymorphism in a [Co(II)(L)] complex: Crystallographic and theoretical studies

    NASA Astrophysics Data System (ADS)

    Awwadi, Firas F.; Hodali, Hamdallah A.

    2018-02-01

    Syntheses and crystal structures of two polymorphs of the complex [Co(II)(L)], where H2L = 2,2'-[cis-1,2-diaminocyclohexanediylbis (nitrilo-methylidyne)]bis (5-dimethyl-amino]phenol, have been studied. The two polymorphs concomitantly crystallized by vapour diffusion of solvent. The first polymorph (I) crystallized as a racemate in the centrosymmetric tetragonal I41/a space group. The second polymorph (II) crystallized in the chiral orthorhombic space group P212121. The chiral conformers of symmetrical cis-1,2-disubstituted cyclohexane molecules cannot be resolved in the liquid or gas phases, due to the rapid ring inversion. In the present study, the two chiral conformers are present in crystals of polymorph I, whereas, only one chiral conformer is present in crystals of polymorph II. Crystal structure analysis indicated that the formation of two different polymorphs of [Co(II)(L)] complex can be rationalized based on Csbnd H⋯Co anagostic interactions. Density Functional Theory (DFT) calculations indicated that Csbnd H⋯Co interactions are due to HOMO-LUMO interactions.

  4. Purification, crystallization and preliminary X-ray structural studies of a 7.2 kDa cytotoxin isolated from the venom of Daboia russelli russelli of the Viperidae family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy Choudhury, Subhasree; Gomes, Aparna; Gomes, Antony

    2006-03-01

    A cytotoxin from Indian Russell’s viper (D. russelli russelli) venom having multifunctional activity has been crystallized in space group P4{sub 1}. Larger crystals diffracted to 1.5 Å but were found to be twinned; preliminary data were therefore collected (2.93 Å) from a smaller crystal. A cytotoxin (MW 7.2 kDa) from Indian Russell’s viper (Daboia russelli russelli) venom possessing antiproliferative activity, cardiotoxicity, neurotoxicity and myotoxicity has been purified, characterized and crystallized. The crystals belong to the tetragonal space group P4{sub 1}, with unit-cell parameters a = b = 47.94, c = 50.2 Å. Larger crystals, which diffracted to 1.5 Å, weremore » found to be twinned; diffraction data were therefore collected to 2.93 Å resolution using a smaller crystal. Molecular-replacement calculations identified two molecules of the protein in the asymmetric unit, which is in accordance with the calculated V{sub M} value.« less

  5. New tetragonal derivatives of cubic NaZn13-type structure: RNi6Si6 compounds, crystal structure and magnetic ordering (R=Y, La, Ce, Sm, Gd-Yb)

    NASA Astrophysics Data System (ADS)

    Pani, M.; Manfrinetti, P.; Provino, A.; Yuan, Fang; Mozharivskyj, Y.; Morozkin, A. V.; Knotko, A. V.; Garshev, A. V.; Yapaskurt, V. O.; Isnard, O.

    2014-02-01

    Novel RNi6Si6 compounds adopt the new CeNi6Si6-type structure for R=La-Ce (tP52, space group P4/nbm N 125-1) and new YNi6Si6-type structure for R=Y, Sm, Gd-Yb (tP52, space group P4barb2N 117) that are tetragonal derivative of NaZn13-type structure, like LaCo9Si4-type. The CeNi6Si6, GdNi6Si6, TbNi6Si6, DyNi6Si6 and HoNi6Si6 compounds are Curie-Weiss paramagnets down to ~30 K, and do not order magnetically down to 5 K. However, the inverse paramagnetic susceptibility of LaNi6Si6 does not follow Curie-Weiss law. The DyNi6Si6 shows ferromagnetic-like saturation behaviour at 5 K in applied fields of 50 kOe, giving rise to a magnetic moment value of 6.5 μB/f.u. in 50 kOe. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi6Si6 with K=[±1/4, ±1/4, 0] wave vector below ~10 K. The CeNi6Si6, GdNi6Si6, TbNi6Si6, DyNi6Si6 and HoNi6Si6 compounds are Curie-Weiss paramagnets down to ~30 K, and do not order magnetically down to 4.2 K. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi6Si6 with K=[±1/4, ±1/4, 0] wave vector below ~10 K.

  6. Preparation and Single-Crystal X-Ray Structures of Four Related Mixed-Ligand 4-Methylpyridine Indium Halide Complexes

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Clark, Eric B.; Schupp, John D.; Williams, Jennifer N.; Duraj, Stan A.; Fanwick, Philip E.

    2013-01-01

    We describe the structures of four related indium complexes obtained during synthesis of solid-state materials precursors. Indium adducts of halides and 4-methylpyridine, InX3(pic)3 (X = Cl, Br; pic = 4-methylpyridine) consist of octahedral molecules with meridional (mer) geometry. Crystals of mer-InCl3(pic)3 (1) are triclinic, space group P1(bar) (No. 2), with a = 9.3240(3), b = 13.9580(6), c = 16.7268 (7) A, alpha = 84.323(2), beta = 80.938(2), gamma = 78.274(3)Z = 4, R = 0.035 for 8820 unique reflections. Crystals of mer-InBr3(pic)3 (2) are monoclinic, space group P21/n (No. 14), with a = 15.010(2), b = 19.938(2), c = 16.593(3), beta = 116.44(1)Z = 8, R = 0.053 for 4174 unique reflections. The synthesis and structures of related compounds with phenylsulfide (chloride) (3) and a dimeric complex with bridging hydroxide (bromide) (4) coordination is also described. Crystals of trans-In(SC6H5)Cl2(pic)3 (3) are monoclinic, space group P21/n (No. 14), with a = 9.5265(2), b = 17.8729(6), c = 13.8296(4), beta = 99.7640(15)Z = 4, R = 0.048 for 5511 unique reflections. Crystals of [In(mu-OH)Br2(pic)22 (4) are tetragonal, space group = I41cd (No. 110) with a = 19.8560(4), b = 19.8560(4), c = 25.9528(6), Z = 8, R = 0.039 for 5982 unique reflections.

  7. X-ray diffraction and infrared spectroscopy studies of Ba(Fe1/2Nb1/2)O3-(Na1/2Bi1/2)TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Chandra, K. P.; Yadav, Anjana; Prasad, K.

    2018-05-01

    Ceramics (1-x)Ba(Fe1/2Nb1/2)O3-x(Na1/2Bi1/2)TiO3; 0≤x≤1.0 were prepared by conventional ceramic synthesis technique. Rietveld refinements of X-ray diffraction data of these ceramics were carried out using FullProf software and determined their crystal symmetry, space group and unit cell dimensions. Rietveld refinement revealed that Ba(Fe1/2Nb1/2)O3 has cubic structure with space group Pm 3 ¯ m and Na1/2Bi1/2)TiO3 has rhombohedral structure with space group R3c. Addition of (Na1/2Bi1/2)TiO3 to Ba(Fe1/2Nb1/2)O3 resulted in the change of unit cell structure from cubic to tetragonal (P4/mmm) for x = 0.75 and the X-Ray diffraction peaks slightly shift towards higher Bragg's angle, suggesting slight decrease in unit cell volume. SEM studies were carried out in order to access the quality of the prepared ceramics which showed a change in grain shapes with the increase of (Na1/2Bi1/2)TiO3 content. FTIR spectra confirmed the formation of perovskite type solid solutions.

  8. Crystallization and preliminary crystallographic analysis of an Enterococcus faecalis repressor protein, CylR2, involved in regulating cytolysin production through quorum-sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Shuisong; McAteer, Kathleen; Bussiere, Dirksen E.

    2004-06-01

    CylR2 is one of the two regulatory proteins associated with the quorum-sensing-dependent synthesis of cytolysin for the common pathogen Enterococcus faecalis. The protein was expressed with a C-terminal 6-histidine tag and purified to homogeneity with a cobalt affinity column followed by another size exclusion column. Both native and SeMet proteins were crystallized. A complete X-ray diffraction data set from the native crystal was collected to 2.3 resolution. The crystal was tetragonal, belonging to space group P41/43, with unit-cell dimensions a=b=66.2 , c=40.9 and a=b=g=90. The asymmetric unit contained two molecules of CylR2.

  9. Enhancement of electrical properties in polycrystalline BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Yun, Kwi Young; Ricinschi, Dan; Kanashima, Takeshi; Okuyama, Masanori

    2006-11-01

    Ferroelectric BiFeO3 thin films were grown on Pt /TiO2/SiO2/Si substrates by pulsed-laser deposition. From the x-ray diffraction analysis, the BiFeO3 thin films consist of perovskite single phase, and the crystal structure shows the tetragonal structure with a space group P4mm. The BiFeO3 thin films show enhanced electrical properties with low leakage current density value of ˜10-4A /cm2 at a maximum applied voltage of 31V. This enhanced electrical resistivity allowed the authors to obtain giant ferroelectric polarization values such as saturation polarizations of 110 and 166μC/cm2 at room temperature and 80K, respectively.

  10. Magnetic properties of rare-earth sulfide YbAgS2

    NASA Astrophysics Data System (ADS)

    Iizuka, Ryosuke; Numakura, Ryosuke; Michimura, Shinji; Katano, Susumu; Kosaka, Masashi

    2018-05-01

    We have succeeded in synthesizing single-phase polycrystalline samples of YbAgS2 belonging to the tetragonal system with space group I41 md . YbAgS2 shows an antiferromagnetic transition at TN = 6.6 K . The effective magnetic moment is in good agreement with the theoretical value for Yb3+ free ion. A broad anomaly is observed just above TN in the temperature dependence of magnetic susceptibility. The entropy released at TN is only about half of Rln2 expected for a Kramers doublet ground state. We consider that these phenomena are due to the existence of short-range magnetic correlations rather than the partial screening of the Yb moments by conduction electrons via the Kondo effect.

  11. Adsorption of methane on Zn(bdc)(ted)0.5 microporous metal-organic framework

    NASA Astrophysics Data System (ADS)

    Krungleviciute, Vaiva; Pramanik, Sanhita; Migone, Aldo; Li, Jing

    2011-03-01

    Zn(bdc)(ted)0.5 is metal-organic framework crystallized in a tetragonal space group with a 3D porous structure containing intersecting channels of two different sizes. The larger channels are parallel to the c axis and have a cross section 7.5 × 7.5 AA. The smaller channels are along both the a- and b-axes and have a cross section of 4.8 × 3.2 AA. We measured methane adsorption isotherms at several different temperatures between 82 and 102 K. We calculated the effective specific surface area, isosteric heat and binding energy values. Two distinct substeps were observed in the isotherms corresponding to two different adsorption sites. The origin of the substeps will be discussed.

  12. Impedance spectroscopy studies on lead free Ba1-xMgx(Ti0.9Zr0.1)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Ben Moumen, S.; Neqali, A.; Asbani, B.; Mezzane, D.; Amjoud, M.; Choukri, E.; Gagou, Y.; El Marssi, M.; Luk'yanchuk, Igor A.

    2018-06-01

    Ba1-xMgx(Ti0.9Zr0.1)O3 (x = 0.01 and 0.02) ceramics were prepared using the conventional solid state reaction. Rietveld refinement performed on X-ray diffraction patterns indicates that the samples are tetragonal crystal structure with P4mm space group. By increasing Mg content from 1 to 2% the unit cell volume decreased. Likewise, the grains size is greatly reduced from 10 μm to 4 μm. The temperature dependence of dielectric constants at different frequencies exhibited typical relaxor ferroelectric characteristic, with sensitive dependence in frequency and temperature for ac conductivity. The obtained activation energy values were correlated to the proposed conduction mechanisms.

  13. Purification, crystallization and preliminary X-ray structural studies of a 7.2 kDa cytotoxin isolated from the venom of Daboia russelli russelli of the Viperidae family

    PubMed Central

    Roy Choudhury, Subhasree; Gomes, Aparna; Gomes, Antony; Dattagupta, Jiban K.; Sen, Udayaditya

    2006-01-01

    A cytotoxin (MW 7.2 kDa) from Indian Russell’s viper (Daboia russelli russelli) venom possessing antiproliferative activity, cardiotoxicity, neurotoxicity and myotoxicity has been purified, characterized and crystallized. The crystals belong to the tetragonal space group P41, with unit-cell parameters a = b = 47.94, c = 50.2 Å. Larger crystals, which diffracted to 1.5 Å, were found to be twinned; diffraction data were therefore collected to 2.93 Å resolution using a smaller crystal. Molecular-replacement calculations identified two molecules of the protein in the asymmetric unit, which is in accordance with the calculated V M value. PMID:16511326

  14. High pressure synthesis, crystal growth and magnetic properties of TiOF

    NASA Astrophysics Data System (ADS)

    Cumby, J.; Burchell, M. B.; Attfield, J. P.

    2018-06-01

    Polycrystalline samples of TiOF have been prepared at 1300 °C and 8 GPa, with small single crystals grown at the same conditions. The crystal structure remains tetragonal rutile-type down to at least 90 K (space group P42/mnm, a = 4.6533 (2) Å and c = 3.0143 (2) Å at 90 K) and the Ti(O,F)6 octahedra are slightly compressed, consistent with Jahn-Teller distortion of 3d1 Ti3+. Diffuse scattering reveals disordered structural correlations that may arise from local cis-order of oxide anions driven by covalency. TiOF is paramagnetic down to 5 K and observation of a small paramagnetic moment and a substantial Pauli term indicates that the d-electrons are partially delocalised.

  15. Spiral chain structure of high pressure selenium-II{sup '} and sulfur-II from powder x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujihisa, Hiroshi; Yamawaki, Hiroshi; Sakashita, Mami

    2004-10-01

    The structure of high pressure phases, selenium-II{sup '} (Se-II{sup '}) and sulfur-II (S-II), for {alpha}-Se{sub 8} (monoclinic Se-I) and {alpha}-S{sub 8} (orthorhombic S-I) was studied by powder x-ray diffraction experiments. Se-II{sup '} and S-II were found to be isostructural and to belong to the tetragonal space group I4{sub 1}/acd, which is made up of 16 atoms in the unit cell. The structure consisted of unique spiral chains with both 4{sub 1} and 4{sub 3} screws. The results confirmed that the structure sequence of the pressure-induced phase transitions for the group VIb elements depended on the initial molecular form. The chemicalmore » bonds of the phases are also discussed from the interatomic distances that were obtained.« less

  16. Electronic properties of two-dimensional zinc oxide in hexagonal, (4,4)-tetragonal, and (4,8)-tetragonal structures by using Hybrid Functional calculation

    NASA Astrophysics Data System (ADS)

    Supatutkul, C.; Pramchu, S.; Jaroenjittichai, A. P.; Laosiritaworn, Y.

    2017-09-01

    This work reports the structures and electronic properties of two-dimensional (2D) ZnO in hexagonal, (4,8)-tetragonal, and (4,4)-tetragonal monolayer using GGA and HSE-hybrid functional. The calculated results show that the band gaps of 2D ZnO sheets are wider than those of the bulk ZnO. The hexagonal and (4,8)-tetragonal phases yield direct band gaps, which are 4.20 eV, and 4.59 eV respectively, while the (4,4)-tetragonal structure has an indirect band gap of 3.02 eV. The shrunken Zn-O bond lengths in the hexagonal and (4,8)-tetragonal indicate that they become more ionic in comparison with the bulk ZnO. In addition, the hexagonal ZnO sheet is the most energetically favourable. The total energy differences of (4,8)-tetragonal and (4,4)-tetragonal sheets from that of hexagonal monolayer (per formula unit) are 197 meV and 318 meV respectively.

  17. Expanding the remarkable structural diversity of uranyl tellurites: hydrothermal preparation and structures of K[UO(2)Te(2)O(5)(OH)], Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O, beta-Tl(2)[UO(2)(TeO(3))(2)], and Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2).

    PubMed

    Almond, Philip M; Albrecht-Schmitt, Thomas E

    2002-10-21

    The reactions of UO(2)(C(2)H(3)O(2))(2).2H(2)O with K(2)TeO(3).H(2)O, Na(2)TeO(3) and TlCl, or Na(2)TeO(3) and Sr(OH)(2).8H(2)O under mild hydrothermal conditions yield K[UO(2)Te(2)O(5)(OH)] (1), Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O (2) and beta-Tl(2)[UO(2)(TeO(3))(2)] (3), or Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2) (4), respectively. The structure of 1 consists of tetragonal bipyramidal U(VI) centers that are bound by terminal oxo groups and tellurite anions. These UO(6) units span between one-dimensional chains of corner-sharing, square pyramidal TeO(4) polyhedra to create two-dimensional layers. Alternating corner-shared oxygen atoms in the tellurium oxide chains are protonated to create short/long bonding patterns. The one-dimensional chains of corner-sharing TeO(4) units found in 1 are also present in 2. However, in 2 there are two distinct chains present, one where alternating corner-shared oxygen atoms are protonated, and one where the chains are unprotonated. The uranyl moieties in 2 are bound by five oxygen atoms from the tellurite chains to create seven-coordinate pentagonal bipyramidal U(VI). The structures of 3 and 4 both contain one-dimensional [UO(2)(TeO(3))(2)](2-) chains constructed from tetragonal bipyramidal U(VI) centers that are bridged by tellurite anions. The chains differ between 3 and 4 in that all of the pyramidal tellurite anions in 3 have the same orientation, whereas the tellurite anions in 4 have opposite orientations on each side of the chain. In 4, there are also additional isolated TeO(3)(2-) anions present. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 7.9993(5) A, b = 8.7416(6) A, c = 11.4413(8) A, Z = 4; 2, orthorhombic, space group Pbam, a = 10.0623(8) A, b = 23.024(2) A, c = 7.9389(6) A, Z = 4; 3, monoclinic, space group P2(1)/n, a = 5.4766(4) A, b = 8.2348(6) A, c = 20.849(3) A, beta = 92.329(1) degrees, Z = 4; 4, monoclinic, space group C2/c, a = 20.546(1) A, b = 5.6571(3) A, c = 13.0979(8) A, beta = 94.416(1) degrees, Z = 4.

  18. Accelerated aging characteristics of three yttria-stabilized tetragonal zirconia polycrystalline dental materials.

    PubMed

    Flinn, Brian D; deGroot, Dirk A; Mancl, Lloyd A; Raigrodski, Ariel J

    2012-10-01

    Concerns have been expressed about the effect of aging on the mechanical properties of zirconia. The purpose of this study was to assess the accelerated aging characteristics of 3 commercially available yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) materials by exposing specimens to hydrothermal treatments at 134°C, 0.2 MPa and 180°C, 1.0 MPa in steam. Thin bars of Y-TZP from 3 manufacturers, Lava, Zirkonzahn, and Zirprime, n=30 for each brand (22 × 3 × 0.2 mm), were cut and ground from blocks and sintered according to the manufacturer's specifications. Control specimens (n=10) for each brand were evaluated in the as-received condition. Experimental specimens were artificially aged at standard autoclave sterilization conditions,134°C at 0.2 MPa (n=5 per group at 50, 100, 150, and 200 hours) and standard industrial ceramic aging conditions, 180°C at 1.0 MPa (n=5 per group at 8, 16, 24, 28, and 48 hours). Tetragonal to monoclinic transformation was measured by using X-ray diffraction (XRD) for all groups. Flexural strength was measured in 4-point bending (ASTM1161-B) for all groups. Fracture surfaces were examined by scanning electron microscopy (SEM). Data were analyzed as a function of aging time. The statistical comparisons were based on the log value and 2-way ANOVA with heteroscedasticity-consistent standard errors used to compare mean strength among conditions (α=.05). After 200 hours at 134°C and 0.2 MPa, flexural strength (SD) decreased significantly from 1156 (87.6) MPa to 829.5 (71) MPa for Lava; 1406 (243) MPa to 882.7 (91) MPa for Zirkonzahn; and 1126 (92.4) MPa to 976 (36.4) MPa for Zirprime with P<.001 for all 3 comparisons. After 200 hours at 134°C and 0.2 MPa, some tetragonal crystals transformed to the monoclinic phase. The relative XRD peak intensity of the monoclinic to tetragonal crystal phases increased from 0.07 to 1.82 for Lava, from 0.06 to 2.43 for Zirkonzahn, and from 0.05 to 0.53 for Zirprime. After 28 hours at 180°C and 1.0 MPa, all Lava and Zirkonzahn specimens spontaneously fractured during aging. The Noritake specimens were intact after 48 hours, and the flexural strength showed no significant change, 1156 (87.6) MPa to 1122 (108) MPa. The flexural strength decreased with an increase in the monoclinic phase. SEM micrographs revealed a transformed layer on the fracture surfaces. Hydrothermal aging of Y-TZP can cause significant transformation from tetragonal to monoclinic crystal structure, which results in a statistically significant decrease in the flexural strength of thin bars. Although the strengths of all 3 Y-TZP materials are higher than other materials used for ceramic restorations, there are notable differences among them. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  19. [Effects of colorants on yttria stabilized tetragonal zirconia polycrystals powder].

    PubMed

    Wang, Bo; Chen, Jianfeng; Zhang, Yanchun; Wang, Ru

    2015-10-01

    To evaluate the effect of Fe2O3 and CeO2 as colorants on yttria stabilized tetragonal zirconia poly-crystals (Y-TZP) powder. The spray granulation slurry of colored zirconia was prepared with different concentrations of Fe2O3 (0.15%) and CeO2 (4%), which were added in Y-TZP. Zirconia powder was made by spray granulation. The powder specimens were divided into three groups: uncolored zirconia, Fe2O3 (0.15%) zirconia, and CeO2 (4%) zirconia. The particle morphologies of the powder specimens were measured with a laser particle size analyzer and an optical microscope. The differences in D50 among the three groups were statistically significant (P<0.05). Group Fe2O3 showed a significant difference from groups CeO2 and uncolored zirconia (P<0.05). Group uncolored zirconia showed no significant difference from group CeO2 (P>0.05). Mostly spherical powder was observed in the three groups. Fe2O3 as a colorant can affect particles, whereas CeO2 has no effect.

  20. Structural phase transitions in Bi2Se3 under high pressure

    PubMed Central

    Yu, Zhenhai; Wang, Lin; Hu, Qingyang; Zhao, Jinggeng; Yan, Shuai; Yang, Ke; Sinogeikin, Stanislav; Gu, Genda; Mao, Ho-kwang

    2015-01-01

    Raman spectroscopy and angle dispersive X-ray diffraction (XRD) experiments of bismuth selenide (Bi2Se3) have been carried out to pressures of 35.6 and 81.2 GPa, respectively, to explore its pressure-induced phase transformation. The experiments indicate that a progressive structural evolution occurs from an ambient rhombohedra phase (Space group (SG): R-3m) to monoclinic phase (SG: C2/m) and eventually to a high pressure body-centered tetragonal phase (SG: I4/mmm). Evidenced by our XRD data up to 81.2 GPa, the Bi2Se3 crystallizes into body-centered tetragonal structures rather than the recently reported disordered body-centered cubic (BCC) phase. Furthermore, first principles theoretical calculations favor the viewpoint that the I4/mmm phase Bi2Se3 can be stabilized under high pressure (>30 GPa). Remarkably, the Raman spectra of Bi2Se3 from this work (two independent runs) are still Raman active up to ~35 GPa. It is worthy to note that the disordered BCC phase at 27.8 GPa is not observed here. The remarkable difference in atomic radii of Bi and Se in Bi2Se3 may explain why Bi2Se3 shows different structural behavior than isocompounds Bi2Te3 and Sb2Te3. PMID:26522818

  1. Tetragonal-antiprismatic coordination of transition metals in intermetallic compounds: ω1-Mn6Ga29 and its structuralrelationships

    NASA Astrophysics Data System (ADS)

    Antonyshyn, Iryna; Prots, Yurii; Margiolaki, Irene; Schmidt, Marcus Peter; Zhak, Olga; Oryshchyn, Stepan; Grin, Yuri

    2013-03-01

    The new phase ω1-Mn6Ga29 was synthesised in single-crystal form from the elements applying the high-temperature centrifugation-aided filtration technique. The crystal structure was determined using diffraction data collected from a twinned specimen: a new prototype, space group P1¯; a=6.3114(2) Å, b=9.9557(3) Å, c=18.920(1) Å, α=90.473(1)°, β=90.847(1)°, γ=90.396(1)°; R1=0.047, wR2=0.117 for 317 variable parameters and 7346 observed reflections; twinning matrix 0 0 -1/3, 0 -1 0, -3 0 0; twin domains ratio 0.830(3):0.170. All manganese atoms in the crystal structure of ω1-Mn6Ga29 are coordinated exclusively by Ga forming distorted tetragonal antiprisms. The monocapped [MnGa8+1] antiprisms condense into pairs by sharing their pseudo-quadratic faces and are interconnected via common apexes and edges to form a 3D framework. The relationship between the crystal structures of ω1-Mn6Ga29 and CuAl2, α-, β-CoSn3, PtSn4, Ti4MnBi2, PdGa5, Rh3Ga16, Rh4Ga21, Al7FeCu2, Co2Al9, and RhBi4 is discussed.

  2. Structural phase transitions in Bi 2Se 3 under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhenhai; Gu, Genda; Wang, Lin

    2015-11-02

    Raman spectroscopy and angle dispersive X-ray diffraction (XRD) experiments of bismuth selenide (Bi 2Se 3) have been carried out to pressures of 35.6 and 81.2 GPa, respectively, to explore its pressure-induced phase transformation. The experiments indicate that a progressive structural evolution occurs from an ambient rhombohedra phase (Space group (SG): R-3m) to monoclinic phase (SG: C2/m) and eventually to a high pressure body-centered tetragonal phase (SG: I4/mmm). Evidenced by our XRD data up to 81.2 GPa, the Bi 2Se 3 crystallizes into body-centered tetragonal structures rather than the recently reported disordered body-centered cubic (BCC) phase. Furthermore, first principles theoretical calculationsmore » favor the viewpoint that the I4/mmm phase Bi 2Se 3 can be stabilized under high pressure (>30 GPa). Remarkably, the Raman spectra of Bi 2Se 3 from this work (two independent runs) are still Raman active up to ~35 GPa. Furthermore, it is worthy to note that the disordered BCC phase at 27.8 GPa is not observed here. The remarkable difference in atomic radii of Bi and Se in Bi 2Se 3 may explain why Bi 2Se 3 shows different structural behavior than isocompounds Bi 2Te 3 and Sb 2Te 3.« less

  3. Sigma-phase packing of icosahedral clusters in 780-atom tetragonal crystals of Cr5Ni3Si2 and V15Ni10Si that by twinning achieve 8-fold rotational point-group symmetry

    PubMed Central

    Pauling, Linus

    1988-01-01

    A 780-atom primitive tetragonal unit with edges 27.3, 27.3, and 12.6 Å is assigned to rapidly solidified Cu5Ni3Si2 and V15Ni10Si by analysis of electron diffraction photographs with the assumption that the crystals contain icosahedral clusters. There are thirty 26-atom clusters at the sigma-phase positions. Apparent 8-fold symmetry results from 45° twinning on the basal plane. PMID:16593915

  4. Sigma-phase packing of icosahedral clusters in 780-atom tetragonal crystals of Cr(5)Ni(3)Si(2) and V(15)Ni(10)Si that by twinning achieve 8-fold rotational point-group symmetry.

    PubMed

    Pauling, L

    1988-04-01

    A 780-atom primitive tetragonal unit with edges 27.3, 27.3, and 12.6 A is assigned to rapidly solidified Cu(5)Ni(3)Si(2) and V(15)Ni(10)Si by analysis of electron diffraction photographs with the assumption that the crystals contain icosahedral clusters. There are thirty 26-atom clusters at the sigma-phase positions. Apparent 8-fold symmetry results from 45 degrees twinning on the basal plane.

  5. Neutron diffraction studies of some rare earth-transition metal deuterides

    NASA Astrophysics Data System (ADS)

    James, W. J.

    1984-04-01

    Neutron diffraction studies of the ternary alloy system Y6(Fel-xMnx)23 reveal that the unusual magnetic behavior upon substitution of Mn or Fe into the end members, is a consequence of atomic ordering wherein there is strong site preference of Mn for the f sub 2 sites and of Fe for the f sub 1 sites. In the Mn-rich compositions, Fe is found to have no spontaneous moments. Therefore, the long range magnetic ordering arises solely from Mn-Mn interactions. Upon substitution of Mn into the Fe-rich ternaries, the Fe moments are considerably reduced. Neutron diffraction studies of Y6Mn23D23 show that a transition occurs below 180K from a fcc structure to a primitive tetragonal structure, space group P4/mmm with the onset of antiferromagnetic ordering. The Mn moments are directed along the c-axis. The transition probably results from atomic ordering of the D atoms at low temperature which induces c axis magnetic ordering. The question of the appropriate space group of LaNi4.5Al0.5D4.5, P6/mmm or P3/m has been resolved by a careful refinement and analysis of neutron diffraction data. The preferred space group is P6/mmm. Neutron powder diffraction and thermal magnetization measurements on small single crystals of ErNi3, ErCo3, and ErFe3 (space group R3m) show that the magnetocrystalline properties are a consequence of competing local site anisotropies between the two non-equivalent crystallographic sites of Er and two of the three non-equivalent sites of the 3d-transition metal.

  6. Theoretical studies of the local structures and spin Hamiltonian parameters for Cu2+ in alkaline earth alumino borate glasses

    NASA Astrophysics Data System (ADS)

    Guo, Jia-Xing; Wu, Shao-Yi; Kuang, Min-Quan; Peng, Li; Wu, Li-Na

    2018-01-01

    The local structures and spin Hamiltonian parameters are theoretically studied for Cu2+ in alkaline earth alumino borate (XAB, X = Mg, Ca and Sr) glasses by using the perturbation calculations for tetragonally elongated octahedral 3d9 groups. The [CuO6]10- groups are subject to the large relative tetragonal elongation ratios of 15.4%, 13.4% and 13.0% for MgAB, CaAB and SrAB glasses, respectively, arising from the Jahn-Teller effect. The decreasing cubic field parameter Dq, orbital reduction factor k and relative elongation ratio with the increase of the radius of alkaline earth ion X from Mg to Ca or Sr are analyzed for the studied systems in a uniform way.

  7. Nb2OsB2, with a new twofold superstructure of the U3Si2 type: Synthesis, crystal chemistry and chemical bonding

    NASA Astrophysics Data System (ADS)

    Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P. T.

    2013-07-01

    The new ternary metal-rich boride, Nb2OsB2, was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U3Si2-structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B2 dumbbells with B-B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB-LMTO-ASA), the homoatomic B-B interactions are optimized and very strong, but relatively strong heteroatomic Os-B, Nb-B and Nb-Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride.

  8. La 3+ doping of the Sr 2CoWO 6 double perovskite: A structural and magnetic study

    NASA Astrophysics Data System (ADS)

    López, C. A.; Viola, M. C.; Pedregosa, J. C.; Carbonio, R. E.; Sánchez, R. D.; Fernández-Díaz, M. T.

    2008-11-01

    La-doped Sr 2CoWO 6 double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, λ=1.594 Å). At room temperature, the replacement of Sr 2+ by La 3+ induces a change of the tetragonal structure, space group I4/ m of the undoped Sr 2CoWO 6 into the distorted monoclinic crystal structure, space group P2 1/ n, Z=2. The structure of La-doped phases contains alternating CoO 6 and (Co/W)O 6 octahedra, almost fully ordered. On the other hand, the replacement of Sr 2+ by La 3+ induces a partial replacement of W 6+ by Co 2+ into the B sites, i.e. Sr 2-xLa xCoW 1-yCo yO 6 ( y= x/4) with segregation of SrWO 4. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below TN=24 K independently of the La-substitution.

  9. Observation of multiple dielectric relaxations in BaTiO3-Bi(Li1/3Ti2/3)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Zhou, Changrong; Feteira, Antonio

    2017-11-01

    Dense (1 - x)BaTiO3- xBi(Li1/3Ti2/3)O3 ceramics were fabricated by the solid state reaction route. Powder X-ray diffraction analyses revealed an increase in the unit cell volume with increasing x and a change on the average crystal structure from tetragonal (space group P4mm) to cubic ( Pm\\bar{3}m ) at x > 0.10. Raman spectroscopy analyses corroborated a change of symmetry, but also showed the local structure for x > 0.10 to be inconsistent with the centrosymmetric ( Pm\\bar{3}m ) space group. The dielectric measurements revealed for the first time, to our knowledge, a double relaxor behaviour in a BaTiO3-based solid solution. Basically, with increasing x, the sharp ferroelectric anomaly at the Curie temperature ( T c) shifts towards lower temperatures until a relaxor-type response is observed, but simultaneously, another relaxation emerges above T c. The first arises from poor coupling between polar nanoregions, whereas the later obeys the Arrhenius Law and may be associated either with a defect-dipole reorientation or a Skanavi-type mechanism.

  10. Effect of Nd Doping on Dielectric and Impedance Properties of PZT Nanoceramics

    NASA Astrophysics Data System (ADS)

    Kour, P.; Pradhan, S. K.; Kumar, Pawan; Sinha, S. K.; Kar, Manoranjan

    2018-02-01

    Neodymium-doped lead zirconate tianate, i.e. Pb1-x Nd x Zr0.52Ti0.48O3 (PNZT) ceramics, with x = 0-10 mol.% has been prepared by the sol-gel process. X-ray diffraction pattern at room temperature shows the pyrochlore free phase for all samples. The structural analysis suggests the coexistence of both rhombohedral (R3m space group) and tetragonal (P4 mm space group) crystal symmetries. Scanning electron micrographs of the samples show uniform distribution of grain and grain boundaries. Dielectric constant increases with the increase in neodymium concentration in the crystal lattice. Degree of diffuse phase transition increases with the increase in Nd3+ concentration in the sample. Nd3+ incorporation into the lead zirconatetitanate (PZT) lattice enhances the spreading factor. Interaction between neighbouring dipoles decreases with the increase of Nd3+ in PZT lattice. The conduction mechanism of the sample can be attributed to the overlapping large polar tunnelling. Second-order dielectric phase transition has been observed at the Curie temperature. The electrical properties of the sample can be explained by considering grain and grain boundaries contributions. All the samples show the poly-dispersive non-Debye type relaxation.

  11. Purification, crystallization and preliminary X-ray analysis of a thermostable glycoside hydrolase family 43 β-xylosidase from Geobacillus thermoleovorans IT-08

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohman, Ali; Oosterwijk, Niels van; Kralj, Slavko

    2007-11-01

    The β-xylosidase was crystallized using PEG 6000 as precipitant. 5% PEG 6000 yielded bipyramid-shaped tetragonal crystals diffracting to 1.55 Å resolution, and 13% PEG 6000 gave rectangular monoclinic crystals diffracting to 1.80 Å resolution. The main enzymes involved in xylan-backbone hydrolysis are endo-1,4-β-xylanase and β-xylosidase. β-Xylosidase converts the xylo-oligosaccharides produced by endo-1,4-β-xylanase into xylose monomers. The β-xylosidase from the thermophilic Geobacillus thermoleovorans IT-08, a member of glycoside hydrolase family 43, was crystallized at room temperature using the hanging-drop vapour-diffusion method. Two crystal forms were observed. Bipyramid-shaped crystals belonging to space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = bmore » = 62.53, c = 277.4 Å diffracted to 1.55 Å resolution. The rectangular crystals belonged to space group P2{sub 1}, with unit-cell parameters a = 57.94, b = 142.1, c = 153.9 Å, β = 90.5°, and diffracted to 1.80 Å resolution.« less

  12. Crystal structure of ilyukhinite, a new mineral of the eudialyte group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastsvetaeva, R. K., E-mail: rast@crys.ras.ru; Rozenberg, K. A.; Chukanov, N. V.

    The crystal structure of ilyukhinite, a new mineral of the eudialyte group, is studied by X-ray diffraction. The mineral found in pegmatite bodies of the Kukisvumchorr Mountain (Khibiny alkaline complex) is characterized by low sodium content, high degree of hydration, and predominance of manganese over iron. The trigonal cell has the following parameters: a = 14.1695(6) and c = 31.026(1) Å; space group R3m. The structure is refined to final R = 0.046 in the anisotropic approximation of atomic displacements using 1527F > 3σF. The idealized formula of ilyukhinite (Z = 3) is written as (H{sub 3}O,Na){sub 14}Ca{sub 6}Mn{sub 2}Zr{submore » 3}Si{sub 26}O{sub 72}(OH){sub 2} · 3H{sub 2}O. The new mineral differs from other representatives of the eudialyte group by the predominance of both oxonium in the N positions of extra-framework cations and manganese in the М2 position centering the tetragonal pyramid.« less

  13. Unusual structural phase transition in [N(C2H5)4][N(CH3)4][ZnBr4

    NASA Astrophysics Data System (ADS)

    Krawczyk, Monika K.; Ingram, Adam; Cach, Ryszard; Czapla, Zbigniew; Czupiński, Olaf; Dacko, Sławomir; Staniorowski, Piotr

    2018-04-01

    The new hybrid organic-inorganic crystal [N(C2H5)4][N(CH3)4][ZnBr4] was grown and its physical properties and structural phase transition are presented. On the basis of thermal analysis (DSC (differential scanning calorimetry), DTA (differential thermal analysis), DTG), X-ray structural, dilatometric and dielectric studies as well as optical observation, the reversible first-order phase transition at 490/488 K on heating and cooling run, respectively, has been found. An appearance of domain structure of ferroelastic type gives evidence for an untypical lowering of crystal symmetry during the phase transition. At room temperature, the satisfying crystal structure solution was found in the tetragonal system, in the P?21m space group.

  14. Crystallization and preliminary X-ray diffraction analysis of the small laccase from Streptomyces coelicolor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skálová, Tereza, E-mail: skalova@imc.cas.cz; Dohnálek, Jan; Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53 Praha 6

    2007-12-01

    The expression, purification and crystallization of the small laccase from S. coelicolor are reported. Diffraction data were collected to 3 Å resolution. The small bacterial laccase from the actinobacterium Streptomyces coelicolor which lacks the second of the three domains of the laccases structurally characterized to date was crystallized. This multi-copper phenol oxidase crystallizes in a primitive tetragonal lattice, with unit-cell parameters a = b = 179.8, c = 175.3 Å. The crystals belong to either space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2. The self-rotation function shows the presence of a noncrystallographic threefold axis in the structure. Phases willmore » be determined from the anomalous signal of the natively present copper ions.« less

  15. TEM study on a new Zr-(Fe, Cu) phase in furnace-cooled Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cu alloy

    NASA Astrophysics Data System (ADS)

    Liu, Yushun; Qiu, Risheng; Luan, Baifeng; Hao, Longlong; Tan, Xinu; Tao, Boran; Zhao, Yifan; Li, Feitao; Liu, Qing

    2018-06-01

    A new Zr-(Fe, Cu) phase was found in furnace-cooled Zr-1.0Sn-0.3Nb-0.3Fe- 0.1Cu alloy and alloys aged at 580 °C for 10min, 2 h and 10 h. Electron diffraction experiment shows the crystal structure of this phase to be body-centered tetragonal with unit cell dimensions determined to be a = b = 6.49 Å, c = 5.37 Å. Its possible space groups have been discussed and the reason accounting for its formation is believed to be the addition of Cu according to the atom-level images. In addition, no crystal structural or chemical composition changes were observed throughout the aging process.

  16. Spontaneous electric polarization in the B-site magnetic spinel GeCu2O4

    NASA Astrophysics Data System (ADS)

    Yanda, Premakumar; Ghara, Somnath; Sundaresan, A.

    2018-04-01

    We report the observation of a spontaneous electric polarization at the antiferromagnetic ordering temperature (TN ∼ 33 K) of Cu2+ ions in the B-site magnetic spinel GeCu2O4, synthesized at high pressure and high temperature. This compound is known to crystallize in a tetragonal structure (space group I41/amd) due to Jahn-Teller distortion of Cu2+ ions and exhibit a collinear up-up-down-down (↑↑↓↓) antiferromagnetic spin configuration below TN. We found a clear dielectric anomaly at TN, where an electric polarization appears in the absence of applied magnetic field. The electric polarization is suppressed by applied magnetic fields, which demonstrates that the compound GeCu2O4 is a type-II multiferroic.

  17. Effect of grain size on structural and dielectric properties of barium titanate piezoceramics synthesized by high energy ball milling

    NASA Astrophysics Data System (ADS)

    Verma, Narendra Kumar; Patel, Sandeep Kumar Singh; Kumar, Dinesh; Singh, Chandra Bhal; Singh, Akhilesh Kumar

    2018-05-01

    We have investigated the effect of sintering temperature on the densification behaviour, grain size, structural and dielectric properties of BaTiO3 ceramics, prepared by high energy ball milling method. The Powder x-ray diffraction reveals the tetragonal structure with space group P4mm for all the samples. The samples were sintered at four different temperatures, (T = 900°C, 1000°C, 1100°C, 1200°C and 1300°C). Density increased with increasing sintering temperature, reaching up to 97% at 1300°C. A grain growth was observed with increasing sintering temperature. Impedance analyses of the sintered samples at various temperatures were performed. Increase in dielectric constant and Curie temperature is observed with increasing sintering temperature.

  18. Transition to collapsed tetragonal phase in CaFe2As2 single crystals as seen by 57Fe Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan; Ran, Sheng; Valentí, Roser; Canfield, Paul C.

    2016-01-01

    Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe2As2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ˜25 % on cooling from room temperature to ˜100 K in the tetragonal phase and is only weakly temperature dependent at low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe2As2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.

  19. Triggering Incipient Ferroelectricity in Calcium Copper Titanate (CaCu3Ti4O12) ceramics through partial B-site substitution with Te4+ ion

    NASA Astrophysics Data System (ADS)

    Barman, Nabadyuti; Varma, K. B. R.

    Double perovskite structured dielectric ceramic CaCu3Ti4- x TexO12 (CCTTO) (x = 0, 0.05, 0.1, 0.15, 0.2) was fabricated from the powder obtained by conventional solid state synthetic route. The room temperature XRD patterns for the x = 0, 0.05, 0.075 modified samples were confirmed to possess a single phase with cubic space group Im3by Rietveld refinement. But, the Rietveld refinement performed on XRD patterns recorded for the compositions corresponding to x = 0.1, 0.15, 0.2 shows the coexistence of the cubic phase (space group Im3; a = 7.4065Å) and tetragonal phase (space group I4/mcm; a = 7.369 Å and c = 6.967 Å). The dielectric properties of these ceramics were studied over a wide frequency (40Hz-2MHz) and temperature range (30-400K). The Te4+ doped samples (CCTTO) exhibited dielectric permittivity (?r) value of ~23-33X103 which is more than twice that of undoped CCTO (~11x103) at 1kHz. A decreasing trend in dielectric permittivity with increasing temperature, a signature of incipient ferroelectricity, was observed for all the samples. Barrett's formula was invoked to rationalize the dielectric permittivity variation as a function of temperature. The incipient ferroelectric behavior is correlated with soft phonon mode observed in temperature dependent Raman Spectroscopic studies. .

  20. Pseudo-merohedral twinning and noncrystallographic symmetry in orthorhombic crystals of SIVmac239 Nef core domain bound to different-length TCRζ fragments

    PubMed Central

    Kim, Walter M.; Sigalov, Alexander B.; Stern, Lawrence J.

    2010-01-01

    HIV/SIV Nef mediates many cellular processes through interactions with various cytoplasmic and membrane-associated host proteins, including the signalling ζ subunit of the T-­cell receptor (TCRζ). Here, the crystallization strategy, methods and refinement procedures used to solve the structures of the core domain of the SIVmac239 isolate of Nef (Nefcore) in complex with two different TCRζ fragments are described. The structure of SIVmac239 Nefcore bound to the longer TCRζ polypeptide (Leu51–Asp93) was determined to 3.7 Å resolution (R work = 28.7%) in the tetragonal space group P43212. The structure of SIVmac239 Nefcore in complex with the shorter TCRζ polypeptide (Ala63–Arg80) was determined to 2.05 Å resolution (R work = 17.0%), but only after the detection of nearly perfect pseudo-merohedral crystal twinning and proper assignment of the orthorhombic space group P212121. The reduction in crystal space-group symmetry induced by the truncated TCRζ polypeptide appears to be caused by the rearrangement of crystal-contact hydrogen-bonding networks and the substitution of crystallographic symmetry operations by similar noncrystallographic symmetry (NCS) operations. The combination of NCS rotations that were nearly parallel to the twin operation (k, h, −l) and a and b unit-cell parameters that were nearly identical predisposed the P212121 crystal form to pseudo-merohedral twinning. PMID:20124696

  1. Transition to collapsed tetragonal phase in CaFe 2As 2 single crystals as seen by 57Fe Mössbauer spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan

    Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe 2As 2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ~25% on cooling from room temperature to ~100 K in the tetragonal phase and is only weakly temperature dependent atmore » low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe 2As 2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Furthermore, based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.« less

  2. Structure, upconversion photoluminescence, and dielectric properties of Ho{sup 3+}- and Yb{sup 3+}-codoped tetragonal tungsten bronze Sr{sub 4}La{sub 2}Ti{sub 4}Nb{sub 6}O{sub 30}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, T., E-mail: weitong.nju@gmail.com; Li, C.P.; Zhou, Q.J.

    2015-04-15

    Highlights: • TTB-type SLTN: Ho-Ybx with space group P4/mbm was determined. • UC photoluminescence of SLTN: Ho-Ybx ceramics was first reported. • Bright UC green emission was observed at room temperature. • Two-photon energy transfer process was confirmed for the UC processes. • Temperature stability of dielectric permittivity was improved for SLTN: Ho-Ybx. - Abstract: Ho{sup 3+}- and Yb{sup 3+}-codoped Sr{sub 4}La{sub 2}Ti{sub 4}Nb{sub 6}O{sub 30} (Sr{sub 4}La{sub 1.94–x}Ho{sub 0.06}Yb{sub x}Ti{sub 4}Nb{sub 6}O{sub 30}, abbreviated as SLTN: Ho-Ybx) ceramics have been synthesized, and their structural, up-conversion (UC) photoluminescence, and dielectric properties have been carefully investigated. Through Rietveld structural refinement, SLTN:more » Ho-Ybx samples are determined as single tetragonal tungsten bronze (TTB) phase with space group P4/mbm in which larger Sr{sup 2+} ions fill the A{sub 2}-sites, relative smaller La{sup 3+}, Ho{sup 3+}, and Yb{sup 3+} ions occupy the A{sub 1}-sites, while Ti{sup 4+} and Nb{sup 4+} ions fill the B-sites. Under 980 nm near infrared (NIR) excitation, bright UC green emission, relatively weak red and near-infrared (NIR) emissions, originating from {sup 5}F{sub 4}/{sup 5}S{sub 2} → {sup 5}I{sub 8}, {sup 5}F{sub 5} → {sup 5}I{sub 8}, and {sup 5}F{sub 4}/{sup 5}S{sub 2} → {sup 5}I{sub 7} transitions of Ho{sup 3+} ions, are confirmed for SLTN: Ho-Ybx. Two-photon energy transfer process is proved through pumping laser power dependence of emission intensity measurement. Furthermore, the influence of Ho{sup 3+}- and Yb{sup 3+}- ions on the dielectric properties of SLTN: Ho-Ybx is also investigated and the temperature stability of dielectric permittivity is improved.« less

  3. Liquid Crystalline Assembly of Coil-Rod-Coil Molecules with Lateral Methyl Groups into 3-D Hexagonal and Tetragonal Assemblies

    PubMed Central

    Wang, Zhuoshi; Lan, Yu; Zhong, Keli; Liang, Yongri; Chen, Tie; Jin, Long Yi

    2014-01-01

    In this paper, we report the synthesis and self-assembly behavior of coil-rod-coil molecules, consisting of three biphenyls linked through a vinylene unit as a conjugated rod segment and poly(ethylene oxide) (PEO) with a degree of polymerization (DP) of 7, 12 and 17, incorporating lateral methyl groups between the rod and coil segments as the coil segment. Self-organized investigation of these molecules by means of differential scanning calorimetry (DSC), thermal polarized optical microscopy (POM) and X-ray diffraction (XRD) reveals that the lateral methyl groups attached to the surface of rod and coil segments, dramatically influence the self-assembling behavior in the liquid-crystalline mesophase. Molecule 1 with a relatively short PEO coil length (DP = 7) self-assembles into rectangular and oblique 2-dimensional columnar assemblies, whereas molecules 2 and 3 with DP of 12 and 17 respectively, spontaneously self-organize into unusual 3-dimensional hexagonal close-packed or body-centered tetragonal assemblies. PMID:24699045

  4. Synthesis and structural characterisation of iron(II) and copper(II) diphosphates containing flattened metal oxotetrahedra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keates, Adam C.; Wang, Qianlong; Weller, Mark T., E-mail: m.t.weller@bath.ac.uk

    2014-02-15

    Single crystal and bulk polycrystalline forms of K{sub 2}MP{sub 2}O{sub 7} (M=Fe(II), Cu(II)) have been synthesised and their structures determined from single crystal X-ray diffraction data. Both compounds crystallize in the tetragonal system, space group P-42{sub 1}m. Their structures are formed from infinite sheets of linked oxopolyhedra of the stoichiometry [MP{sub 2}O{sub 7}]{sup 2−} with potassium cations situated between the layers. The MO{sub 4} tetrahedra share oxygen atoms with [P{sub 2}O{sub 7}]{sup 4−} diphosphate groups and the potassium ions have KO{sub 8} square prismatic geometry. In both compounds the M(II) centre has an unusual strongly flattened, tetrahedral coordination to oxygen,more » as a result of the Jahn–Teller (JT) effect for the high spin d{sup 6} Fe(II) and p-orbital mixing or a second order JT effect for d{sup 9} Cu(II) centres in four fold coordination. The uncommon transition metal ion environments found in these materials are reflected in their optical absorption spectra and magnetism data. - Graphical abstract: The structures of the tetragonal polymorphs of K{sub 2}MP{sub 2}O{sub 7}, M=Cu(II), Fe(II), consist of infinite sheets of stoichiometry [MP{sub 2}O{sub 7}]{sup 2−}, formed from linked pyrophosphate groups and MO{sub 4} tetrahedra, separated by potassium ions. In both compounds the unusual tetrahedral coordination of the M(II) centre is strongly flattened as a result of Jahn–Teller (JT) effects for high spin, d{sup 6} Fe(II) and p-orbital mixing and second-order JT effects for d{sup 9} Cu(II). Display Omitted - Highlights: • Tetrahedral copper and iron(II) coordinated by oxygen. • New layered phosphate structure. • Jahn–Teller and d{sup 10} distorted coordinations.« less

  5. Liebermannite, KAlSi3O8, a new shock-metamorphic, high-pressure mineral from the Zagami Martian meteorite

    NASA Astrophysics Data System (ADS)

    Ma, Chi; Tschauner, Oliver; Beckett, John R.; Rossman, George R.; Prescher, Clemens; Prakapenka, Vitali B.; Bechtel, Hans A.; MacDowell, Alastair

    2018-01-01

    In this paper, we discuss the occurrence of liebermannite (IMA 2013-128), KAlSi3O8, a new, shock-generated, high-pressure tetragonal hollandite-type structure silicate mineral, in the Zagami basaltic shergottite meteorite. Liebermannite crystallizes in space group I4/m with Z = 2, cell dimensions of a = 9.15 ± 0.14 (1σ) Å, c = 2.74 ± 0.13 Å, and a cell volume of 229 ± 19 Å3 (for the type material), as revealed by synchrotron diffraction. In Zagami, liebermannite likely formed via solid-state transformation of primary igneous K-feldspar during an impact event that achieved pressures of 20 GPa or more. The mineral name is in honor of Robert C. Liebermann, a high-pressure mineral physicist at Stony Brook University, New York, USA.

  6. Ba 2TeO as an optoelectronic material: First-principles study

    DOE PAGES

    Sun, Jifeng; Shi, Hongliang; Du, Mao-Hua; ...

    2015-05-21

    The band structure, optical and defects properties of Ba 2TeO are systematically investigated using density functional theory with a view to understanding its potential as an optoelectronic or transparent conducting material. Ba 2TeO crystallizes with tetragonal structure (space group P4/nmm) and with a 2.93 eV optical band gap1. We find relatively modest band masses for both electrons and holes suggesting applications. Optical properties show a infrared-red absorption when doped. This could potentially be useful for combining wavelength filtering and transparent conducting functions. Furthermore, our defect calculations show that Ba 2TeO is intrinsically p-type conducting under Ba-poor condition. However, the spontaneousmore » formation of the donor defects may constrain the p-type transport properties and would need to be addressed to enable applications.« less

  7. Crystal structure and magnetism of layered perovskites compound EuBaCuFeO5

    NASA Astrophysics Data System (ADS)

    Lal, Surender; Mukherjee, K.; Yadav, C. S.

    2018-04-01

    Layered perovskite compounds have interesting multiferroic properties.YBaCuFeO5 is one of the layered perovskite compounds which have magnetic and dielectric transition above 200 K. The multiferroic properties can be tuned with the replacement of Y with some other rare earth ions. In this manuscript, structural and magnetic properties of layered perovskite compound EuBaCuFeO5 have been investigated. This compound crystallizes in the tetragonal structure with P4mm space group and is iso-structural with YBaCuFeO5. The magnetic transition has been found to shift to 120 K as compared to YBaCuFeO5 which has the transition at 200 K. This shift in the magnetic transition has been ascribed to the decrease in the chemical pressure that relaxes the magnetic moments.

  8. An open-framework thorium sulfate hydrate with 11.5 A voids.

    PubMed

    Wilson, Richard E; Skanthakumar, S; Knope, Karah E; Cahill, Christopher L; Soderholm, L

    2008-10-20

    We report the synthesis of a thorium sulfate hydrate with 11.5 A open channels that propagate through the structure. The compound crystallizes in the tetragonal space group P4(2)/nmc, a = b = 25.890(4) A, c = 9.080(2) A, Z = 8, V = 6086.3(2) A(3). The thermal stability of the compound was investigated using thermogravimetric analysis and high-energy X-ray scattering (HEXS) revealing that the compound begins to undergo decomposition near 200 degrees C with an accompanied loss in crystallinity. The immediate coordination environment about the thorium atoms remains intact through heating to 500 degrees C as demonstrated by HEXS. Further heating reveals the formation of at least two crystalline phases, Th(SO4)2 and ThO2, which ultimately decompose to ThO2.

  9. Crystallographic and magnetic structure of UCu{sub 1.5}Sn{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwanto, A.; Robinson, R.A.; Nakotte, H.

    1996-04-01

    We report on the crystallographic and magnetic structures of the antiferromagnet UCu{sub 1.5}Sn{sub 2}, as determined by x-ray and neutron powder diffraction. It crystallizes in the tetragonal CaBe{sub 2}Ge{sub 2} structure type, with space group P/4nmm, and we find no site disorder between two different Sn2{ital c} sites, in contrast with a previous report. UCu{sub 1.5}Sn{sub 2} orders antiferromagnetically with a N{acute e}el temperature of about 110 K. This is unusually high among uranium intermetallics. The uranium moments align along the {ital c} axis in a collinear arrangement but alternating along the {ital c} axis. The low-temperature uranium moment ismore » 2.01{mu}{sub {ital B}}. {copyright} {ital 1996 American Institute of Physics.}« less

  10. Probing mixed tetragonal/rhombohedral-like monoclinic phases in strained bismuth ferrite films by optical second harmonic generation

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Denev, Sava; Zeches, Robert J.; Vlahos, Eftihia; Podraza, Nikolas J.; Melville, Alexander; Schlom, Darrell G.; Ramesh, R.; Gopalan, Venkatraman

    2010-09-01

    Epitaxial strain can induce the formation of morphotropic phase boundary in lead free ferroelectrics like bismuth ferrite, thereby enabling the coexistence of tetragonal and rhombohedral phases in the same film. The relative ratio of these phases is governed by the film thickness and theoretical studies suggest that there exists a monoclinic distortion of both the tetragonal as well as the rhombohedral unit cells due to imposed epitaxial strain. In this work we show that optical second harmonic generation can distinguish the tetragonal-like phase from the rhombohedral-like phase and enable detection of monoclinic distortion in only a pure tetragonal-like phase.

  11. Modeling the SHG activities of diverse protein crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupert, Levi M.; DeWalt, Emma L.; Simpson, Garth J.

    2012-10-18

    A symmetry-additiveab initiomodel for second-harmonic generation (SHG) activity of protein crystals was applied to assess the likely protein-crystal coverage of SHG microscopy. Calculations were performed for 250 proteins in nine point-group symmetries: a total of 2250 crystals. The model suggests that the crystal symmetry and the limit of detection of the instrument are expected to be the strongest predictors of coverage of the factors considered, which also included secondary-structural content and protein size. Much of the diversity in SHG activity is expected to arise primarily from the variability in the intrinsic protein response as well as the orientation within themore » crystal lattice. Two or more orders-of-magnitude variation in intensity are expected even within protein crystals of the same symmetry. SHG measurements of tetragonal lysozyme crystals confirmed detection, from which a protein coverage of ~84% was estimated based on the proportion of proteins calculated to produce SHG responses greater than that of tetragonal lysozyme. Good agreement was observed between the measured and calculated ratios of the SHG intensity from lysozyme in tetragonal and monoclinic lattices.« less

  12. Synthesis, structure and optical properties of two isotypic crystals, Na{sub 3}MO{sub 4}Cl (M=W, Mo)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Shujuan; Bai, Chunyan; Zhang, Bingbing

    Two isotypic compounds, Na{sub 3}MO{sub 4}Cl (M = W, Mo) have been obtained from the high temperature solution, and their structures were determined by single-crystal X-ray diffraction. Both of them crystallize in the space group P4/nmm of tetragonal system with the unit cells: a=7.5181(15), c=5.360(2) for Na{sub 3}WO{sub 4}Cl and a=7.4942(12), c=5.3409(18) for Na{sub 3}MoO{sub 4}Cl. The structure exhibits a 3D network built up by the ClNa{sub 6} groups, and the MO{sub 4} groups reside in the tunnels of the 3D network. The structural similarities and differences between Na{sub 3}MO{sub 4}Cl (M=W, Mo) and Sr{sub 3}MO{sub 4}F (M=Al, Ga) havemore » been discussed. Meanwhile, detailed structure comparison analyses between Na{sub 3}MO{sub 4}Cl (M=W, Mo) and Na{sub 3}MO{sub 4}F (M=W, Mo) indicate that the different connection modes of ClNa{sub 6} and FNa{sub 6} make Na{sub 3}MO{sub 4}Cl and Na{sub 3}MO{sub 4}F crystallize in different structures. The IR spectra were used to verify the validity of the structure. The diffuse reflectance spectra show that the UV absorption edges are about 249 nm (4.99 eV) and 265 nm (4.69 eV) for Na{sub 3}WO{sub 4}Cl and Na{sub 3}MoO{sub 4}Cl, respectively. In addition, the first-principles theoretical studies are also carried out to aid the understanding of electronic structures and linear optical properties. - Graphical abstract: Two isotypic compounds, Na{sub 3}MO{sub 4}Cl (M=W, Mo) have been obtained from the high temperature solution. Both of them crystallize in the space group P4/nmm of tetragonal system. The structure exhibits a 3D network built up by the ClNa{sub 6} groups, and the MO{sub 4} groups reside in the tunnels of the 3D network. - Highlights: • Structure and properties of Na{sub 3}MO{sub 4}Cl (M=W, Mo) are reported for the first time. • They show a 3D network built by ClNa{sub 6}, and WO{sub 4} lies in the tunnels of the network. • IR spectra were used to verify the validity of the structure. • Band structures and density of states have been calculated.« less

  13. Investigation of structural, ferroelectric, piezoelectric and dielectric properties of Ba0.92Ca0.08TiO3-BaTi0.96Zr0.04O3 lead-free electroceramics

    NASA Astrophysics Data System (ADS)

    Keswani, Bhavna C.; Patil, S. I.; Kolekar, Y. D.

    2018-04-01

    Lead free ferroelectric with composition 0.55Ba0.92Ca0.08TiO3-0.45BaTi0.96Zr0.04O3 (BCT8-BZT4) was synthesized by solid state reaction method and investigated their structural, ferroelectric, piezoelectric and dielectric properties. X-ray diffraction analysis shows that BCT8-BZT4 ceramic possess both tetragonal (space group P4mm) and orthorhombic (space group Amm2) crystal structure which was further confirmed from Raman spectra spectroscopy. The micronized grains were observed from scanning electron micrographs while the presence of polarization-electric field hysteresis loop confirms ferroelectric nature of BCT8-BZT4 ceramic. Higher values of maximum polarization (Pmax = 22.27 μC/cm2), remnant polarization (Pr = 11.61 μC/cm2), coercive electric field (Ec = 4.77 kV/cm) and direct piezoelectric coefficient (d33) approximately 185 pC/N were observed. The real part of dielectric constant with frequency shows the usual dielectric dispersion behaviour at RT. The observed properties show that the lead free BCT8-BZT4 ceramic is suitable for ferroelectric memory device, piezoelectric sensor, capacitor, etc. applications.

  14. Electron microscope studies of nano-domain structures in Ru-based magneto-superconductors: RuSr(2)Gd(1.5)Ce(0.5)Cu(2)O(10-delta) (Ru-1222) and RuSr(2)GdCu(2)O(8) (Ru-1212).

    PubMed

    Yokosawa, Tadahiro; Awana, V P S Veer Pal Singh; Kimoto, Koji; Takayama-Muromachi, Eiji; Karppinen, Maarit; Yamauchi, Hisao; Matsui, Yoshio

    2004-01-01

    Microstructures of the RuSr(2)Gd(1.5)Ce(0.5)Cu(2)O(10-delta) (Ru-1222) and RuSr(2)GdCu(2)O(8) (Ru-1212) magneto-superconductors have been investigated by using selected-area electron diffraction, convergent-beam electron diffraction, dark-field electron microscopy and high-resolution electron microscopy at room temperature. Both Ru-1212 and Ru-1222 consist of nm-size domains stacked along the [Formula: see text] direction, where the domains are formed by two types of superstructures due to ordering of rotated RuO(6) octahedra about the c-axis. In Ru-1212, both primitive-and body-centered tetragonal superstructures (the possible space groups: P4/mbm and I4/mcm) are derived to form the corresponding nm-domains. It is of great interest that Ru-1212 consists of domains of two crystallographically different superstructures, while the similar domains observed in Ru-1222 have crystallographically identical superstructure with an orthorhombic symmetry (possible space group: Aeam), related by 90 degrees rotation around the c-axis (Yokosawa et al., 2003, submitted for publication).

  15. Four crystal forms of a Bence-Jones protein

    PubMed Central

    Makino, Debora L.; Henschen-Edman, Agnes H.; McPherson, Alexander

    2005-01-01

    Four crystal forms have been grown and characterized by X-ray diffraction of a Bence-Jones protein collected from the urine of a multiple myeloma patient more than 40 years ago. Closely related tetragonal and orthorhombic forms belonging to space groups P43212 and P212121, with unit-cell parameters a = b = 68.7, c = 182.1 and a = 67.7, b = 69.4, c = 87.3 Å, diffract to 1.5 and 1.9 Å, respectively. Two closely related trigonal forms, both belonging to space group P3121 with unit-cell parameters a = b = 154.3 Å but differing by a doubling of the c axis, one 46.9 Å and the other 94.0 Å, diffract to 2.9 and 2.6 Å resolution, respectively. The trigonal crystal of short c-axis length shows a positive indication of twinning. The trigonal crystal of longer c axis, which appeared only after eight months of incubation at room temperature, is likely to be composed of proteolytically degraded molecules and unlike the other crystal forms contains two entire Bence-Jones dimers in the asymmetric unit. This latter crystal form may shed some light on the formation of fibrils common to certain storage diseases. PMID:16508097

  16. Phase transition of a cobalt-free perovskite as a high-performance cathode for intermediate-temperature solid oxide fuel cells.

    PubMed

    Jiang, Shanshan; Zhou, Wei; Niu, Yingjie; Zhu, Zhonghua; Shao, Zongping

    2012-10-01

    It is generally recognized that the phase transition of a perovskite may be detrimental to the connection between cathode and electrolyte. Moreover, certain phase transitions may induce the formation of poor electronic and ionic conducting phase(s), thereby lowering the electrochemical performance of the cathode. Here, we present a study on the phase transition of a cobalt-free perovskite (SrNb(0.1)Fe(0.9)O(3-δ), SNF) and evaluate its effect on the electrochemical performance of the fuel cell. SNF exists as a primitive perovskite structure with space group P4mm (99) at room temperature. As evidenced by in situ high-temperature X-ray diffraction measurements over the temperature range of 600 to 1000 °C, SNF undergoes a transformation to a tetragonal structure with a space group I4/m (87). This phase transition is accompanied by a moderate change in the volume, allowing a good cathode/electrolyte interface on thermal cycling. According to the electrochemical impedance spectroscopy evaluation, the I4/m phase exhibits positive effects on the cathode's performance, showing the highest oxygen reduction reaction activity of cobalt-free cathodes reported so far. This activity improvement is attributed to enhanced oxygen surface processes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Observation of Superconductivity in Tetragonal FeS.

    PubMed

    Lai, Xiaofang; Zhang, Hui; Wang, Yingqi; Wang, Xin; Zhang, Xian; Lin, Jianhua; Huang, Fuqiang

    2015-08-19

    The possibility of superconductivity in tetragonal FeS has attracted considerable interest because of its similarities to the FeSe superconductor. However, all efforts made to pursue superconductivity in tetragonal FeS have failed so far, and it remains controversial whether tetragonal FeS is metallic or semiconducting. Here we report the observation of superconductivity at 5 K in tetragonal FeS that is synthesized by the hydrothermal reaction of iron powder with sulfide solution. The obtained samples are highly crystalline and less air-sensitive, in contrast to those reported in the literature, which are meta-stable and air-sensitive. Magnetic and electrical properties measurements show that the samples behave as a paramagnetic metal in the normal state and exhibit superconductivity below 5 K. The high crystallinity and the stoichiometry of the samples play important roles in the observation of superconductivity. The present results demonstrate that tetragonal FeS is a promising new platform to realize high-temperature superconductors.

  18. Crystal growth and physical properties of SrCu2As2, SrCu2Sb2, and BaCu2Sb2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, V.K.; Perera, P. Kanchana; Pandey, Abhishek

    2012-06-25

    We report the growth of single crystals of SrCu2As2, SrCu2Sb2, SrCu2(As0.84Sb0.16)2, and BaCu2Sb2 using the self-flux technique and their structural, magnetic, thermal, and transport properties that were investigated by powder x-ray diffraction (XRD), magnetic susceptibility χ, specific heat Cp, and electrical resistivity ρ measurements versus temperature T from 1.8 to 350 K. Rietveld refinements of XRD patterns for crushed crystals confirm that SrCu2As2 crystallizes in the ThCr2Si2-type body-centered tetragonal structure (space group I4/mmm) and SrCu2Sb2 crystallizes in the CaBe2Ge2-type primitive tetragonal structure (space group P4/nmm). However, as reported previously, BaCu2Sb2 is found to have a large unit cell consisting ofmore » three blocks. Here a ThCr2Si2-type block is sandwiched between two CaBe2Ge2-type blocks along the c axis with an overall symmetry of I4/mmm, as reported, but likely with a monoclinic distortion. The χ data of all these compounds are diamagnetic and reveal nearly T-independent anisotropic behavior. The χ of SrCu2As2 is found to be larger in the ab plane than along the c axis, as also previously reported for pure and doped BaFe2As2, whereas the χ values of SrCu2Sb2 and BaCu2Sb2 are larger along the c axis. This difference in anisotropy appears to arise from the differences between the crystal structures. The finite values of the Sommerfeld linear specific heat coefficients γ and the T dependences of ρ reveal metallic character of all four compounds. The electronic and magnetic properties indicate that these compounds are sp metals with Cu in the nonmagnetic 3d10 electronic configuration corresponding to the oxidation state Cu+1, as previously predicted theoretically for SrCu2As2 by Singh [ Phys. Rev. B 79 153102 (2009)]. We present a brief review of theoretical and experimental work on the doping character of transition metals for Fe in BaFe2As2. The As–As covalent interlayer bond distances in the collapsed-tetragonal (Ca,Sr,Ba)Cu2As2 compounds are much shorter than the nonbonding As–As distances in BaFe2As2. Thus, the electronic character of the Cu and the strength of the As–As interlayer bonding are both expected to drastically change between weakly Cu-substituted BaFe2As2 and pure BaCu2As2, perhaps via a first-order lattice instability such as a miscibility gap in the Ba(Fe1−xCux)2As2 system.« less

  19. Thickness-modulated anisotropic ferromagnetism in Fe-doped epitaxial HfO2 thin films

    NASA Astrophysics Data System (ADS)

    Liu, Wenlong; Liu, Ming; Zhang, Ruyi; Ma, Rong; Wang, Hong

    2017-10-01

    Epitaxial tetragonal Fe-doped Hf0.95Fe0.05O2 (FHO) thin films with various thicknesses were deposited on (001)-oriented NdCaAlO4 (NCAO) substrates by using a pulsed laser deposition (PLD) system. The crystal structure and epitaxial nature of the FHO thin films were confirmed by typical x-ray diffraction (XRD) θ-2θ scan and reciprocal space mapping (RSM). The results indicate that two sets of lattice sites exist with two different crystal orientations [(001) and (100)] in the thicker FHO thin films. Further, the intensity of the (100) direction increases with the increase in thicknesses, which should have a significant effect on the anisotropic magnetization of the FHO thin films. Meanwhile, all the FHO thin films possess a tetragonal phase structure. An anisotropy behavior in magnetization has been observed in the FHO thin films. The anisotropic magnetization of the FHO thin films is slowly weakened as the thickness increases. Meanwhile, the saturation magnetization (Ms) of both in-plane and out-of-plane decreases with the increase in the thickness. The change in the anisotropic magnetization and Ms is attributed to the crystal lattice and the variation in the valence of Fe ions. These results indicate that the thickness-modulated anisotropic ferromagnetism of the tetragonal FHO epitaxial thin films is of potential use for the integration of metal-oxide semiconductors with spintronics.

  20. Phase Transitions and Domain Structure in Mixed Tetragonal-Rhombohedral BiFeO3 thin films using Raman Spectroscopy and Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Vlahos, E.; Kumar, A.; Denev, S.; Melville, A.; Adamo, C.; Ihlefeld, J. F.; Sheng, G.; Zeches, R. J.; Zhang, J. X.; He, Q.; Yang, C. H.; Erni, R.; Rossell, M. D.; J, A.; Hatt; Chu, Y.-H.; Wang, C. H.; Ederer, C.; Gopalan, V.; Chen, L. Q.; Schlom, D. G.; Spaldin, N. A.; Martin, L. W.; Ramesh, R.; Tenne, Dmitri

    2010-03-01

    We have shown that biaxially strained BiFeO3 thin films can undergo an isosymmetric phase transition from a rhombohedral-like to a tetragonal-like phase. This talk discusses the evolution of the tetragonal and the mixed phases in BiFeO3/YAlO3 thin films with varying film thickness using optical second harmonic generation (SHG) and Raman spectroscopy. 25nm, 75nm, and 225 nm thick films were studied; thinner films are dominated by the tetragonal phase, whereas thicker films exhibit both tetragonal and rhombohedral phases. The evolution of these phases as function of film thickness and temperature was experimentally determined.

  1. Tetragonal and collapsed-tetragonal phases of CaFe2As2 : A view from angle-resolved photoemission and dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong

    2016-06-01

    We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.

  2. Complete titanium substitution by boron in a tetragonal prism: exploring the complex boride series Ti(3-x)Ru(5-y)Ir(y)B(2+x) (0 ≤ x ≤ 1 and 1 < y < 3) by experiment and theory.

    PubMed

    Fokwa, Boniface P T; Hermus, Martin

    2011-04-18

    Polycrystalline samples and single crystals of four members of the new complex boride series Ti(3-x)Ru(5-y)Ir(y)B(2+x) (0 ≤ x ≤ 1 and 1 < y < 3) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The new silvery phases were structurally characterized by powder and single-crystal X-ray diffraction as well as energy- and wavelength-dispersive X-ray spectroscopy analyses. They crystallize with the tetragonal Ti(3)Co(5)B(2) structure type in space group P4/mbm (No. 127). Tetragonal prisms of Ru/Ir atoms are filled with titanium in the boron-poorest phase (Ti(3)Ru(2.9)Ir(2.1)B(2)). Gradual substitution of titanium by boron then results in the successive filling of this site by a Ti/B mixture en route to the complete boron occupation, leading to the boron-richest phase (Ti(2)Ru(2.8)Ir(2.2)B(3)). Furthermore, both ruthenium and iridium share two sites in these structures, but a clear Ru/Ir site preference is found. First-principles density functional theory calculations (Vienna ab initio simulation package) on appropriate structural models (using a supercell approach) have provided more evidence on the stability of the boron-richest and -poorest phases, and the calculated lattice parameters corroborate very well with the experimentally found ones. Linear muffin-tin orbital atomic sphere approximation calculations further supported these findings through crystal orbital Hamilton population bonding analyses, which also show that the Ru/Ir-B and Ru/Ir-Ti heteroatomic interactions are mainly responsible for the structural stability of these compounds. Furthermore, some stable and unstable phases of this complex series could be predicted using the rigid-band model. According to the density of states analyses, all phases should be metallic conductors, as was expected from these metal-rich borides.

  3. Swinging Symmetry, Multiple Structural Phase Transitions, and Versatile Physical Properties in RECuGa3 (RE = La-Nd, Sm-Gd).

    PubMed

    Subbarao, Udumula; Rayaprol, Sudhindra; Dally, Rebecca; Graf, Michael J; Peter, Sebastian C

    2016-01-19

    The compounds RECuGa3 (RE = La-Nd, Sm-Gd) were synthesized by various techniques. Preliminary X-ray diffraction (XRD) analyses at room temperature suggested that the compounds crystallize in the tetragonal system with either the centrosymmetric space group I4/mmm (BaAl4 type) or the non-centrosymmetric space group I4mm (BaNiSn3 type). Detailed single-crystal XRD, neutron diffraction, and synchrotron XRD studies of selected compounds confirmed the non-centrosymmetric BaNiSn3 structure type at room temperature with space group I4mm. Temperature-dependent single-crystal XRD, powder XRD, and synchrotron beamline measurements showed a structural transition between centro- and non-centrosymmetry followed by a phase transition to the Rb5Hg19 type (space group I4/m) above 400 K and another transition to the Cu3Au structure type (space group Pm3̅m) above 700 K. Combined single-crystal and synchrotron powder XRD studies of PrCuGa3 at high temperatures revealed structural transitions at higher temperatures, highlighting the closeness of the BaNiSn3 structure to other structure types not known to the RECuGa3 family. The crystal structure of RECuGa3 is composed of eight capped hexagonal prism cages [RE4Cu4Ga12] occupying one rare-earth atom in each ring, which are shared through the edge of Cu and Ga atoms along the ab plane, resulting in a three-dimensional network. Resistivity and magnetization measurements demonstrated that all of these compounds undergo magnetic ordering at temperatures between 1.8 and 80 K, apart from the Pr and La compounds: the former remains paramagnetic down to 0.3 K, while superconductivity was observed in the La compound at T = 1 K. It is not clear whether this is intrinsic or due to filamentary Ga present in the sample. The divalent nature of Eu in EuCuGa3 was confirmed by magnetization measurements and X-ray absorption near edge spectroscopy and is further supported by the crystal structure analysis.

  4. Pseudomorphic to orthomorphic growth of Fe films on Cu3Au(001)

    NASA Astrophysics Data System (ADS)

    Bruno, F.; Terreni, S.; Floreano, L.; Cossaro, A.; Cvetko, D.; Luches, P.; Mattera, L.; Morgante, A.; Moroni, R.; Repetto, M.; Verdini, A.; Canepa, M.

    2002-06-01

    The structure of Fe films grown on the (001) surface of a Cu3Au single crystal at room temperature has been investigated by means of grazing incidence x-ray diffraction (GIXRD) and photo/Auger-electron diffraction (ED) as a function of thickness in the (3-36)-Å range. The combination of GIXRD and ED allows one to obtain quantitative information on the in-plane spacing a from the former technique, and the ratio between the vertical spacing c and a, from the latter one. At low coverage the film grows pseudomorphic to the face-centered-cubic substrate. The experimental results obtained on a film of 8 Å thickness clearly indicate the overcoming of the limit for pseudomorphic growth. Above this limit the film is characterized by the coexistence of the pseudomorphic phase with another tetragonally strained phase γ, which falls on the epitaxial line of ferromagnetic face-centered cubic Fe. Finally, the development of a body-centered phase α, whose unit cell is rotated by 45° with respect to the substrate one, has been clearly observed at ~17 Å. α is the dominating phase for film thickness above ~25 Å and its lattice constant evolves towards the orthomorphic phase in strict quantitative agreement with epitaxial curves calculated for body-centered tetragonal iron phases.

  5. Effect of pressure on the tetragonal distortion in TiH2: a first-principles study

    NASA Astrophysics Data System (ADS)

    de Coss, R.; Quijano, R.; Singh, D. J.

    2009-03-01

    The transition metal dihydride TiH2 present the fluorite structure (CaF2) at high temperature but undergoes a tetragonal distortion with c/a<1 at low temperature. Early electronic band structure calculations have shown that TiH2 in the cubic phase display a nearly flat double degenerated band at the Fermi level. Thus the low temperature tetragonal distortion has been associated to a Jahn-Teller effect. Nevertheless, recently we have show that the instability of fcc-TiH2 is likely to be related with a van Hove singularity. In the present work, we have performed ab-initio calculations of the electronic structure and the tetragonal distortion for TiH2 under pressure (0-30 GPa). We found that the fcc-fct energy barrier and the tetragonal distortion increases with pressure. The evolution of the tetragonal distortion is analyzed in terms of the electronic band structure. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 49985.

  6. Electronic structure and energetics of the tetragonal distortion for TiH2, ZrH2 and HfH2: a first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quijano, Ramiro; DeCoss, Romeo; Singh, David J

    2009-01-01

    The electronic structure and energetics of the tetragonal distortion for the fluorite-type dihydrides TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} are studied by means of highly accurate first-principles total-energy calculations. For HfH{sub 2}, in addition to the calculations using the scalar relativistic (SR) approximation, calculations including the spin-orbit coupling have also been performed. The results show that TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} in the cubic phase are unstable against tetragonal strain. For the three systems, the total energy shows two minima as a function of the c/a ratio with the lowest-energy minimum at c/a < 1 in agreementmore » with the experimental observations. The band structure of TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} (SR) around the Fermi level shows two common features along the two major symmetry directions of the Brillouin zone, {Lambda}?L and {Lambda}?K, a nearly flat doubly degenerate band, and a van Hove singularity, respectively. In cubic HfH{sub 2} the spin-orbit coupling lifts the degeneracy of the partially filled bands in the {Lambda}?L path, while the van Hove singularity in the {Lambda}?K path remains unchanged. The density of states of the three systems in the cubic phase shows a sharp peak at the Fermi level. We found that the tetragonal distortion produces a strong reduction in the density of states at the Fermi level resulting mainly from the splitting of the doubly-degenerate bands in the {Lambda}?L direction and the shift of the van Hove singularity to above the Fermi level. The validity of the Jahn-Teller model in explaining the tetragonal distortion in this group of dihydrides is discussed.« less

  7. Human serum albumin crystals and method of preparation

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1989-01-01

    Human serum albumin (HSA) crystals are provided in the form of tetragonal plates having the space groups P42(sub 1)2, the crystals being grown to sizes in excess of 0.5 mm in two dimensions and a thickness of 0.1 mm. Growth of the crystals is carried out by a hanging drop method wherein a precipitant solution containing polyethylene glycol (PEG) and a phosphate buffer is mixed with an HSA solution, and a droplet of mixed solution is suspended over a well of precipitant solution. Crystals grow to the desired size in 3 to 7 days. Concentration of reagents, pH and other parameters are controlled within prescribed limits. The resulting crystals exhibit a size and quality such as to allow performance of x ray diffraction studies and enable the conduct of drug binding studies as well as genetic engineering studies.

  8. Structure symmetry determination and magnetic evolution in Sr 2Ir 1–xRh xO 4

    DOE PAGES

    Ye, Feng; Wang, Xiaoping; Hoffmann, Christina; ...

    2015-11-23

    We use single-crystal neutron diffraction to determine the crystal structure symmetry and to study the magnetic evolution in the rhodium doped iridates Sr 2Ir 1–xRh xO 4 (0 ≤ x ≤ 0.16). Throughout this doping range, the crystal structure retains a tetragonal symmetry (space group I4 1/a) with two distinct magnetic Ir sites in the unit cell forming staggered IrO 6 rotation. Upon Rh doping, the magnetic order is suppressed and the magnetic moment of Ir4+ is reduced from 0.21 μ B/Ir for x = 0 to 0.18 μ B/Ir for x = 0.12. As a result, the magnetic structuremore » at x = 0.12 is different from that of the parent compound while the moments remain in the basal plane.« less

  9. Structural, optical and dielectric properties of Sn0.97Ce0.03O2 nanostructures

    NASA Astrophysics Data System (ADS)

    Ahmed, Ateeq; Siddique, M. Naseem; Ali, Tinku; Tripathi, P.

    2018-05-01

    In present work, 3% cerium doped SnO2 (Sn0.97Ce0.03O2) nanoparticles (NPs) have been synthesized by sol-gel method. The prepared sample has been characterized by using various techniques such as XRD, UV-visible absorption spectroscopy and LCR meter measurements. Structural Rietveld refinement of XRD data reveals that (Sn0.97Ce0.03O2) sample has a pure single phase tetragonal structure with space group (P42/mnm) without creating any impurity phase such as cerium oxide. UV-visible spectroscopy determines band gap value 3.47 eV for (Sn0.97Ce0.03O2) NPs using Tauc's relation. Dielectric constant and loss decreased with increase in frequency while ac conductivity was found to increase with increase in frequency. The observed dielectric results has been explained in the light of Maxwell-Wagner model.

  10. Structural, dielectric and magnetic studies of magnetoelectric trirutile Fe{sub 2}TeO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaushik, S. D., E-mail: sdkaushik@csr.res.in; Sahu, B.; Mohapatra, S. R.

    2016-05-23

    We have investigated structural, magnetic and dielectric properties of Fe{sub 2}TeO{sub 6} which is a magnetoelectric antiferromagnet with the trirutile lattice. Rietveld analysis of room temperature X-ray diffraction data shows the phase purity of the sample with tetragonal trirutile structure (space group P4{sub 2}/mnm). The DC susceptibility measurement performed on polycrystalline powders exhibits antiferromagnetic ordering below transition temperature ~ 210K. The employment of Curie-Weiss law to inverse magnetic susceptibility only in the temperature range 350-260 K indicates the magnetic ordering starts developing before the transition temperature. The temperature dependent dielectric measurements show an intrinsic behavior of dielectric constant below 150more » K while a continuous increase in dielectric constant with temperature above 150 K may be attributed to a small increase in electrical conduction, known commonly in the literatures.« less

  11. Hybridization gap in the semiconducting compound SrIr 4In 2Ge 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calta, Nicholas P.; Im, Jino; Fang, Lei

    Here, large single crystals of SrIr 4In 2Ge 4 were synthesized using the In flux method. This compound is a hybridization gap semiconductor with an experimental optical band gap of E g = 0.25(3) eV. It crystallizes in the tetragonal EuIr 4In 2Ge 4 structure type with space group 1more » $$\\overline{4}$$2m and unit cell parameters a = 6.9004(5) Å and c = 8.7120(9) Å. The electronic structure is very similar to both EuIr 4In 2Ge 4 and the parent structure Ca 3Ir 4Ge 4, suggesting that these compounds comprise a new family of hybridization gap materials that exhibit indirect gap, semiconducting behavior at a valence electron count of 60 per formula unit, similar to the Heusler alloys.« less

  12. Molten Salt Synthesis and Structural Characterization of BaTiO3 Nanocrystal Ceramics

    NASA Astrophysics Data System (ADS)

    Ahda, S.; Misfadhila, S.; Parikin, P.; Putra, T. Y. S. P.

    2017-02-01

    A new synthesis route to obtain high-purity barium titanate powder, BaTiO3, using the molten salt method by reacting the raw materials (BaCO3 and TiO2) in an atmosphere of molten NaCl and KCl, has been developed. The synthesized BaTiO3 ceramic particles have been successfully carried out at the sintering temperature 950°C for 4 hours. The Rietveld refinement of the XRD diffraction patterns was employed to characterize the structural information of the nanocrystalline BaTiO3 ceramics. The lattice parameters (a=4.0043 Å, b=4.0308Å with space group P4mm) of tetragonal perovskite structure, as an indication of piezoelectric characteristics, have been successfully determined by the Rietveld refinement. While the crystallitte particle size and strains have been obtained for the values of 110.6 nm and 0.74 % respectively

  13. Observation of shift in band gap with annealing in hydrothermally synthesized TiO2-thin films

    NASA Astrophysics Data System (ADS)

    Pawar, Vani; Jha, Pardeep K.; Singh, Prabhakar

    2018-05-01

    Anatase TiO2 thin films were synthesized by hydrothermal method. The films were fabricated on a glass substrate by spin coating unit and annealed at 500 °C for 2 hours in ambient atmosphere. The effect of annealing on microstructure and optical properties of TiO2 thin films namely, just deposited and annealed thin film were investigated. The XRD data confirms the tetragonal crystalline structure of the films with space group I41/amd. The surface morphology suggests that TiO2 particles are almost homogeneous in size and annealing of the film affect the grain growth of the particles. The band gap energy increases from 2.81 to 3.34 eV. On the basis of our observation, it can be concluded that the annealing of TiO2 thin films enhances the absorption range and it may find potential application in the field of solar cells.

  14. Crystallization and preliminary X-ray analysis of CTP:phosphoethanolamine cytidylyltransferase (ECT) from Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohtsuka, Jun; Nagata, Koji; Lee, Woo Cheol

    2006-10-01

    CTP:phosphoethanolamine cytidylyltransferase from S. cerevisiae has been expressed, purified and crystallized. CTP:phosphoethanolamine cytidylyltransferase (ECT) is the enzyme that catalyzes the conversion of phosphoethanolamine to CDP-ethanolamine in the phosphatidylethanolamine-biosynthetic pathway (Kennedy pathway). ECT from Saccharomyces cerevisiae was crystallized by the sitting-drop vapour-diffusion method using PEG 4000 as precipitant. The crystals diffracted X-rays from a synchrotron-radiation source to 1.88 Å resolution. The space group was assigned as primitive tetragonal, P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 66.3, c = 150.8 Å. The crystals contain one ECT molecule in the asymmetric unit (V{sub M} = 2.2more » Å{sup 3} Da{sup −1}), with a solvent content of 43%.« less

  15. Hybridization gap in the semiconducting compound SrIr 4In 2Ge 4

    DOE PAGES

    Calta, Nicholas P.; Im, Jino; Fang, Lei; ...

    2016-11-18

    Here, large single crystals of SrIr 4In 2Ge 4 were synthesized using the In flux method. This compound is a hybridization gap semiconductor with an experimental optical band gap of E g = 0.25(3) eV. It crystallizes in the tetragonal EuIr 4In 2Ge 4 structure type with space group 1more » $$\\overline{4}$$2m and unit cell parameters a = 6.9004(5) Å and c = 8.7120(9) Å. The electronic structure is very similar to both EuIr 4In 2Ge 4 and the parent structure Ca 3Ir 4Ge 4, suggesting that these compounds comprise a new family of hybridization gap materials that exhibit indirect gap, semiconducting behavior at a valence electron count of 60 per formula unit, similar to the Heusler alloys.« less

  16. Interdependence between electrical and magnetic properties of polycrystalline cobalt-substituted tungsten bronze multiferroic ceramics

    NASA Astrophysics Data System (ADS)

    Jindal, Shilpi; Devi, Sheela; Vasishth, Ajay; Batoo, Khalid Mujasam; Kumar, Gagan

    Polycrystalline cobalt-substituted tungsten bronze ferroelectric ceramics with chemical composition Ba5CaTi2-xCoXNb8O30 (x=0.00, 0.02, 0.04 and 0.08) were synthesized by solid state reaction technique. X-ray diffraction (XRD) technique was used to confirm the phase formation and it revealed the formation of single phase tetragonal structure with space group P4bm. The surface morphology of the samples was studied by using the scanning electron microscopy (SEM) technique. The dielectric properties such as dielectric constant and dielectric loss have been investigated as a function of temperature and frequency. The P-E and M-H studies confirmed the coexistent of ferroelectricity and magnetism at room temperature. The P-E loop study indicated an increase in the coercive field while the M-H study depicted a decrease in the magnetization with the incorporation of cobalt ions.

  17. Crystallization and preliminary X-ray diffraction studies of hyperthermophilic archaeal Rieske-type ferredoxin (ARF) from Sulfolobus solfataricus P1

    PubMed Central

    Kounosu, Asako; Hasegawa, Kazuya; Iwasaki, Toshio; Kumasaka, Takashi

    2010-01-01

    The hyperthermophilic archaeal Rieske-type [2Fe–2S] ferredoxin (ARF) from Sulfolobus solfataricus P1 contains a low-potential Rieske-type [2Fe–2S] cluster that has served as a tractable model for ligand-substitution studies on this protein family. Recombinant ARF harbouring a pET30a vector-derived N-­terminal extension region plus a hexahistidine tag has been heterologously overproduced in Escherichia coli, purified and crystallized by the hanging-drop vapour-diffusion method using 0.05 M sodium acetate, 0.05 M HEPES, 2 M ammonium sulfate pH 5.5. The crystals diffracted to 1.85 Å resolution and belonged to the tetragonal space group P43212, with unit-cell parameters a = 60.72, c = 83.31 Å. The asymmetric unit contains one protein molecule. PMID:20606288

  18. Crystallization and preliminary X-ray diffraction studies of hyperthermophilic archaeal Rieske-type ferredoxin (ARF) from Sulfolobus solfataricus P1.

    PubMed

    Kounosu, Asako; Hasegawa, Kazuya; Iwasaki, Toshio; Kumasaka, Takashi

    2010-07-01

    The hyperthermophilic archaeal Rieske-type [2Fe-2S] ferredoxin (ARF) from Sulfolobus solfataricus P1 contains a low-potential Rieske-type [2Fe-2S] cluster that has served as a tractable model for ligand-substitution studies on this protein family. Recombinant ARF harbouring a pET30a vector-derived N-terminal extension region plus a hexahistidine tag has been heterologously overproduced in Escherichia coli, purified and crystallized by the hanging-drop vapour-diffusion method using 0.05 M sodium acetate, 0.05 M HEPES, 2 M ammonium sulfate pH 5.5. The crystals diffracted to 1.85 A resolution and belonged to the tetragonal space group P4(3)2(1)2, with unit-cell parameters a = 60.72, c = 83.31 A. The asymmetric unit contains one protein molecule.

  19. Enhancement of tetragonal anisotropy and stabilisation of the tetragonal phase by Bi/Mn-double-doping in BaTiO3 ferroelectric ceramics

    PubMed Central

    Yabuta, Hisato; Tanaka, Hidenori; Furuta, Tatsuo; Watanabe, Takayuki; Kubota, Makoto; Matsuda, Takanori; Ifuku, Toshihiro; Yoneda, Yasuhiro

    2017-01-01

    To stabilise ferroelectric-tetragonal phase of BaTiO3, the double-doping of Bi and Mn up to 0.5 mol% was studied. Upon increasing the Bi content in BaTiO3:Mn:Bi, the tetragonal crystal-lattice-constants a and c shrank and elongated, respectively, resulting in an enhancement of tetragonal anisotropy, and the temperature-range of the ferroelectric tetragonal phase expanded. X-ray absorption fine structure measurements confirmed that Bi and Mn were located at the A(Ba)-site and B(Ti)-site, respectively, and Bi was markedly displaced from the centrosymmetric position in the BiO12 cluster. This A-site substitution of Bi also caused fluctuations of B-site atoms. Magnetic susceptibility measurements revealed a change in the Mn valence from +4 to +3 upon addition of the same molar amount of Bi as Mn, probably resulting from a compensating behaviour of the Mn at Ti4+ sites for donor doping of Bi3+ into the Ba2+ site. Because addition of La3+ instead of Bi3+ showed neither the enhancement of the tetragonal anisotropy nor the stabilisation of the tetragonal phase, these phenomena in BaTiO3:Mn:Bi were not caused by the Jahn-Teller effect of Mn3+ in the MnO6 octahedron, but caused by the Bi-displacement, probably resulting from the effect of the 6 s lone-pair electrons in Bi3+. PMID:28367973

  20. Room temperature metastable monoclinic phase in BaTiO3 crystals

    NASA Astrophysics Data System (ADS)

    Lummen, Tom; Wang, Jianjun; Holt, Martin; Kumar, Amit; Vlahos, Eftihia; Denev, Sava; Chen, Long-Qing; Gopalan, Venkatraman

    2011-03-01

    Low-symmetry monoclinic phases in ferroelectric materials are of considerable interest, due to their associated enhanced electromechanical coupling. Such phases have been found in Pb-based perovskite solid solutions such as lead zirconate titanate (PZT), where they form structural bridges between the rhombohedral and tetragonal ground states in compositional space. In this work, we directly image such a monoclinic phase in BaTi O3 crystals at room-temperature, using optical second harmonic generation, Raman, and X-ray microscopic imaging techniques. Phase-field modeling indicates that ferroelectric domain microstructures in BaTi O3 induce local inhomogeneous stresses in the crystals, which can effectively trap the transient intermediate monoclinic structure that occurs across the thermal orthorhombic-tetragonal phase boundary. The induced metastable monoclinic domains are ferroelectrically soft, being easily moved by electric fields as low as 0.5 kV cm-1 . Stabilizing such intermediate low-symmetry phases could very well lead to Pb-free materials with enhanced piezoelectric properties.

  1. Diffusion of vaporous guests into a seemingly non-porous organic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert, Simon A.; Janiak, Agnieszka; Thallapally, Praveen K.

    2014-10-07

    In this research, the tetragonal apohost phase of p-tert-butyltetramethoxythiacalix[4]arene absorbs hydrochloric acid and iodine. These guest molecules occupy different sites in the solid-state structure -- either within the small intrinsic voids of the macrocycle or within the interstitial spaces between the host molecules. This study illustrates the dynamic deformation of the host, providing strong mechanistic insight into the diffusion of guests into this seemingly non-porous material.

  2. The Symmetry and Packing Fraction of the Body Centered Tetragonal Structure

    ERIC Educational Resources Information Center

    Dunlap, Richard A.

    2012-01-01

    It is shown that for different ratios of lattice parameters, "c/a," the body centered tetragonal structure may be view as body centered tetragonal, body centered cubic, face centered cubic or hexagonal. This illustrates that the apparent symmetry of a lattice depends on the choice of the conventional unit cell.

  3. Symmetry of Epitaxial BiFeO3 Films in the Ultrathin Regime

    NASA Astrophysics Data System (ADS)

    Yang, Yongsoo; Schlep&üTz, Christian; Adamo, Carolina; Schlom, Darrell; Clarke, Roy

    2013-03-01

    BiFeO3 (BFO) films grown on SrTiO3 (STO) with a SrRuO3 buffer layer exhibit a monoclinic structure at thicknesses greater than 40 nm, but higher structural symmetry can be observed for thinner films [Phys. Rev. B 81, 144115 (2010)]. We report a structural phase transition from monoclinic to tetragonal in ultra-thin BFO films grown directly on (100)-oriented STO. X-ray diffraction measurements of 3-dimensional reciprocal space maps reveal half-integer order peaks due to oxygen octahedral tilting. When the film thickness is decreased below 20 unit cells, the integer-order Bragg peak splitting associated with the presence of multiple domains of the monoclinic phase disappears. Instead, a single peak that is commensurate with the STO substrate lattice appears. The diffraction pattern has four-fold symmetry, ruling out the presence of a single monoclinic domain in favor of a tetragonal film structure. The evolution of the oxygen octahedra tilt pattern inferred from the intensities of half-order peaks suggests that this transition originates from the corner-connectivity of oxygen atoms at the interface between BFO and STO, and also strongly supports this monoclinic to tetragonal transition. Supported in part by the U.S. Department of Energy (DE-FG02-06ER46273). Measurements performed at Sectors 13-BMC, 33-IDD, 33-BMC of the Advanced Photon Source, Argonne National Laboratory, USA (DOE contract No. DE-AC02-06CH11357).

  4. AFM Studies of Salt Concentration Effects on the (110) Surface Structure of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John

    2002-01-01

    Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.

  5. Formation of collapsed tetragonal phase in EuCo₂As₂ under high pressure.

    PubMed

    Bishop, Matthew; Uhoya, Walter; Tsoi, Georgiy; Vohra, Yogesh K; Sefat, Athena S; Sales, Brian C

    2010-10-27

    The structural properties of EuCo₂As₂ have been studied up to 35 GPa, through the use of x-ray diffraction in a diamond anvil cell at a synchrotron source. At ambient conditions, EuCo₂As₂ ) (I4/mmm) has a tetragonal lattice structure with a bulk modulus of 48 ± 4 GPa. With the application of pressure, the a axis exhibits negative compressibility with a concurrent sharp decrease in c-axis length. The anomalous compressibility of the a axis continues until 4.7 GPa, at which point the structure undergoes a second-order phase transition to a collapsed tetragonal (CT) state with a bulk modulus of 111 ± 2 GPa. We found a strong correlation between the ambient pressure volume of 122 parents of superconductors and the corresponding tetragonal to collapsed tetragonal phase transition pressures.

  6. Structural stability, electronic structure and mechanical properties of alkali gallium hydrides AGaH{sub 4} (A = Li, Na)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santhosh, M.; Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com; Manikandan, M.

    2016-05-06

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of alkali gallium hydrides AGaH{sub 4} (A = Li, Na) for three different crystal structures, namely tetragonal (P42{sub 1}c), tetragonal (P4{sub 2}/nmc) and monoclinic (P2{sub 1}/c). Among the considered structures, tetragonal (P42{sub 1}c) phase is found to be the most stable phase for these hydrides at normal pressure. A pressure induced structural phase transition from tetragonal (P42{sub 1}c) to tetragonal (P4{sub 2}/nmc) is observed. The electronic structure reveals that these hydrides are insulators. The calculated elastic constants indicate that these ternary imides are mechanically stablemore » at normal pressure.« less

  7. High-temperature structural phase transitions in neighborite: a high-resolution neutron powder diffraction investigation

    NASA Astrophysics Data System (ADS)

    Knight, Kevin S.; Price, G. David; Stuart, John A.; Wood, Ian G.

    2015-01-01

    The nature of the apparently continuous structural phase transition at 1,049 K in the perovskite-structured, MgSiO3 isomorph, neighborite (NaMgF3), from the orthorhombic ( Pbnm) hettotype phase to the cubic () aristotype structure, has been re-investigated using high-resolution, time-of-flight neutron powder diffraction. Using data collected at 1 K intervals close to the nominal phase transition temperature, the temperature dependence of the intensities of superlattice reflections at the M point and the R point of the pseudocubic Brillouin zone indicate the existence of a new intermediate tetragonal phase in space group P4/ mbm, with a narrow phase field extending from ~1,046.5 to ~1,048.5 K, at ambient pressure. Group theoretical analysis shows that the structural transitions identified in this study, Pbnm- P4/ mbm, and P4/ mbm-, are permitted to be second order. The observation of the tetragonal phase resolves the longstanding issue of why the high-temperature phase transition, previously identified as Pbnm-, and which would be expected to be first order under Landau theory, is in fact found to be continuous. Analysis of the pseudocubic shear strain shows it to vary with a critical exponent of 0.5 implying that the phase transition from Pbnm to P4/ mbm is tricritical in character. The large librational modes that exist in the MgF6 octahedron at high temperature, and the use of Gaussian probability density functions to describe atomic displacements, result in apparent bond shortening in the Mg-F distances, making mode amplitude determination an unreliable method for determination of the critical exponent from internal coordinates. Crystal structures are reported for the three phases of NaMgF3 at 1,033 K ( Pbnm), 1,047 K ( P4/ mbm) and 1,049 K ().

  8. Optical characteristics of sol-gel derived M3SiO5:Eu3+ (M = Sr, Ca and Mg) nanophosphors for display device technology

    NASA Astrophysics Data System (ADS)

    Singh, Devender; Sheoran, Suman; Bhagwan, Shri; Kadyan, Sonika

    2016-12-01

    A series of trivalent europium-doped M3SiO5 (M = Sr, Ca and Mg) phosphors were synthesized using sol-gel process at 950°C. Samples were further reheated at high temperature to study the effect of reheating on crystal structure and optical characteristics. X-ray diffraction measurement of these materials was carried out to know the crystal structure. Diffraction pattern showed monoclinic structure having space group Cm for Ca3SiO5 materials. However, tetragonal phase with space group P4/ncc was observed for Sr3SiO5 materials. Mg3SiO5 material show mixed diffraction peaks at 950 and 1,150°C. Transmission electron microscopic analysis was used to estimate the particle size of silicates. Photoluminescence emission spectra were recorded to check the luminescence properties of prepared materials. These phosphors exhibited a strong orange-red light under excitation at 395 nm. The prepared phosphors exhibited most intense peak in 610-620 nm region due to the 5D0→7F2 transition of europium (III) ion available in lattice. To overcome the deficiency of red silicates, M3SiO5 materials were explored and they might be integrated with ultraviolet LEDs to generate light which may be suitable for display applications.

  9. Synthesis, structure, and magnetic properties of new layered phosphate halides Sr2Cu5(PO4)4X2·8H2O (X = Cl, Br) with a crown-like building unit.

    PubMed

    Qiu, Chaoqun; He, Zhangzhen; Cui, Meiyan; Tang, Yingying; Chen, Sihuai

    2017-03-27

    Two new compounds Sr 2 Cu 5 (PO 4 ) 4 X 2 ·8H 2 O (X = Cl and Br) are synthesized by a conventional hydrothermal method. Sr 2 Cu 5 (PO 4 ) 4 Cl 2 ·8H 2 O crystallizes in the tetragonal system with a space group of P42 1 2, while Sr 2 Cu 5 (PO 4 ) 4 Br 2 ·8H 2 O crystallizes in the space group P4/nmm, which are found to have a similar framework of layered structure, in which the crown-like {Cu 5 (PO 4 ) 4 X 2 } building units connect to each other forming a 2D corrugated sheet with vacancies, while the Sr 2+ cations are located along the vacancies. The spin lattice of two compounds built by Cu 2+ ions shows a new type of corrugated square. Magnetic measurements confirmed that both Sr 2 Cu 5 (PO 4 ) 4 X 2 ·8H 2 O (X = Cl and Br) exhibit antiferromagnetic ordering at low temperatures. A fit of theoretical model shows exchange interaction J = -25.62 K for the Cl-analogue and J/k B = -26.47 K for the Br-analogue.

  10. Crystal growth and magnetic characterization of a tetragonal polymorph of NiNb2O6

    NASA Astrophysics Data System (ADS)

    Munsie, T. J. S.; Millington, A.; Dube, P. A.; Dabkowska, H. A.; Britten, J.; Luke, G. M.; Greedan, J. E.

    2016-04-01

    A previously unidentified polymorph of nickel niobate, NiNb2O6, was grown and stabilized in single crystalline form using an optical floating zone furnace. Key parameters of the growth procedure involved use of a slight excess of NiO (1.2% by mol), an O2 atmosphere and a growth rate of 25 mm/h. The resulting boule consisted of a polycrystalline exterior shell of the columbite structure - columbite is the thermodynamically stable form of NiNb2O6 under ambient conditions - and a core region consisting of transparent yellow-green single crystals up to 5 mm×2 mm×1 mm in dimension of the previously unidentified phase. The crystal structure, solved from single crystal x-ray diffraction data, is described in the P42/n space group. Interestingly, this is not a subgroup of P42/mnm, the rutile space group. The Ni2+ ions form layers which are displaced such that interlayer magnetic frustration is anticipated. Magnetic susceptibility data shows a broad maximum at approximately 22 K and evidence for long range antiferromagnetic order at approximately 14 K, obtained by Fisher heat capacity analysis as well as heat capacity measurements. The susceptibility data for T > 25 K are well fit by a square lattice S = 1 model, consistent with the Ni sublattice topology.

  11. Phase field modeling of tetragonal to monoclinic phase transformation in zirconia

    NASA Astrophysics Data System (ADS)

    Mamivand, Mahmood

    Zirconia based ceramics are strong, hard, inert, and smooth, with low thermal conductivity and good biocompatibility. Such properties made zirconia ceramics an ideal material for different applications form thermal barrier coatings (TBCs) to biomedicine applications like femoral implants and dental bridges. However, this unusual versatility of excellent properties would be mediated by the metastable tetragonal (or cubic) transformation to the stable monoclinic phase after a certain exposure at service temperatures. This transformation from tetragonal to monoclinic, known as LTD (low temperature degradation) in biomedical application, proceeds by propagation of martensite, which corresponds to transformation twinning. As such, tetragonal to monoclinic transformation is highly sensitive to mechanical and chemomechanical stresses. It is known in fact that this transformation is the source of the fracture toughening in stabilized zirconia as it occurs at the stress concentration regions ahead of the crack tip. This dissertation is an attempt to provide a kinetic-based model for tetragonal to monoclinic transformation in zirconia. We used the phase field technique to capture the temporal and spatial evolution of monoclinic phase. In addition to morphological patterns, we were able to calculate the developed internal stresses during tetragonal to monoclinic transformation. The model was started form the two dimensional single crystal then was expanded to the two dimensional polycrystalline and finally to the three dimensional single crystal. The model is able to predict the most physical properties associated with tetragonal to monoclinic transformation in zirconia including: morphological patterns, transformation toughening, shape memory effect, pseudoelasticity, surface uplift, and variants impingement. The model was benched marked with several experimental works. The good agreements between simulation results and experimental data, make the model a reliable tool for predicting tetragonal to monoclinic transformation in the cases we lack experimental observations.

  12. New tetragonal derivatives of cubic NaZn{sub 13}-type structure: RNi{sub 6}Si{sub 6} compounds, crystal structure and magnetic ordering (R=Y, La, Ce, Sm, Gd–Yb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pani, M.; Manfrinetti, P.; Provino, A.

    2014-02-15

    Novel RNi{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure for R=La–Ce (tP52, space group P4/nbm N 125-1) and new YNi{sub 6}Si{sub 6}-type structure for R=Y, Sm, Gd–Yb (tP52, space group P4{sup ¯}b2N 117) that are tetragonal derivative of NaZn{sub 13}-type structure, like LaCo{sub 9}Si{sub 4}-type. The CeNi{sub 6}Si{sub 6}, GdNi{sub 6}Si{sub 6}, TbNi{sub 6}Si{sub 6}, DyNi{sub 6}Si{sub 6} and HoNi{sub 6}Si{sub 6} compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 5 K. However, the inverse paramagnetic susceptibility of LaNi{sub 6}Si{sub 6} does not follow Curie–Weiss law. The DyNi{sub 6}Si{sub 6}more » shows ferromagnetic-like saturation behaviour at 5 K in applied fields of 50 kOe, giving rise to a magnetic moment value of 6.5 μ{sub B}/f.u. in 50 kOe. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi{sub 6}Si{sub 6} with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. - Graphical abstract: Novel (La, Ce)Ni{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure and (Y, Sm, Gd–Yb) adopt the new YNi{sub 6}Si{sub 6}-type structure that are tetragonal derivative of NaZn{sub 13}-type structure, like LaCo{sub 9}Si{sub 4}-type. The CeNi{sub 6}Si{sub 6}, GdNi{sub 6}Si{sub 6}, TbNi{sub 6}Si{sub 6}, DyNi{sub 6}Si{sub 6} and HoNi{sub 6}Si{sub 6} compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 4.2 K. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi{sub 6}Si{sub 6} with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. Display Omitted - Highlights: • The new (La, Ce)Ni{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure. • The new (Y, Sm, Gd–Yb)Ni{sub 6}Si{sub 6} compounds adopt the new YNi{sub 6}Si{sub 6}-type structure. • TbNi{sub 6}Si{sub 6} has square modulated c-collinear antiferromagnetic ordering below ∼10 K.« less

  13. Pressure-induced half-collapsed-tetragonal phase in CaKFe 4 As 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaluarachchi, Udhara S.; Taufour, Valentin; Sapkota, Aashish

    Here, we report the temperature-pressure phase diagram of CaKFe 4As 4 established using high-pressure electrical resistivity, magnetization, and high-energy x-ray diffraction measurements up to 6 GPa. With increasing pressure, both resistivity and magnetization data show that the bulk superconducting transition of CaKFe 4As 4 is suppressed and then disappears at p ≳ 4 GPa. High-pressure x-ray data clearly indicate a phase transition to a collapsed tetragonal phase in CaKFe 4As 4 under pressure that coincides with the abrupt loss of bulk superconductivity near 4 GPa. The x-ray data, combined with resistivity data, indicate that the collapsed tetragonal transition line ismore » essentially independent of pressure, occurring at 4.0(5) GPa for temperatures below 150 K. Density functional theory calculations also find a sudden transition to a collapsed tetragonal state near 4 GPa, as As-As bonding develops across the Ca layer. Bonding across the K layer only occurs for p ≥ 12 GPa. These findings demonstrate a different type of collapsed tetragonal phase in CaKFe 4As 4 as compared to CaFe 2As 2: a half-collapsed tetragonal phase.« less

  14. Pressure-induced half-collapsed-tetragonal phase in CaKFe 4 As 4

    DOE PAGES

    Kaluarachchi, Udhara S.; Taufour, Valentin; Sapkota, Aashish; ...

    2017-10-02

    Here, we report the temperature-pressure phase diagram of CaKFe 4As 4 established using high-pressure electrical resistivity, magnetization, and high-energy x-ray diffraction measurements up to 6 GPa. With increasing pressure, both resistivity and magnetization data show that the bulk superconducting transition of CaKFe 4As 4 is suppressed and then disappears at p ≳ 4 GPa. High-pressure x-ray data clearly indicate a phase transition to a collapsed tetragonal phase in CaKFe 4As 4 under pressure that coincides with the abrupt loss of bulk superconductivity near 4 GPa. The x-ray data, combined with resistivity data, indicate that the collapsed tetragonal transition line ismore » essentially independent of pressure, occurring at 4.0(5) GPa for temperatures below 150 K. Density functional theory calculations also find a sudden transition to a collapsed tetragonal state near 4 GPa, as As-As bonding develops across the Ca layer. Bonding across the K layer only occurs for p ≥ 12 GPa. These findings demonstrate a different type of collapsed tetragonal phase in CaKFe 4As 4 as compared to CaFe 2As 2: a half-collapsed tetragonal phase.« less

  15. Pressure-induced half-collapsed-tetragonal phase in CaKFe4As4

    NASA Astrophysics Data System (ADS)

    Kaluarachchi, Udhara S.; Taufour, Valentin; Sapkota, Aashish; Borisov, Vladislav; Kong, Tai; Meier, William R.; Kothapalli, Karunakar; Ueland, Benjamin G.; Kreyssig, Andreas; Valentí, Roser; McQueeney, Robert J.; Goldman, Alan I.; Bud'ko, Sergey L.; Canfield, Paul C.

    2017-10-01

    We report the temperature-pressure phase diagram of CaKFe4As4 established using high-pressure electrical resistivity, magnetization, and high-energy x-ray diffraction measurements up to 6 GPa. With increasing pressure, both resistivity and magnetization data show that the bulk superconducting transition of CaKFe4As4 is suppressed and then disappears at p ≳4 GPa. High-pressure x-ray data clearly indicate a phase transition to a collapsed tetragonal phase in CaKFe4As4 under pressure that coincides with the abrupt loss of bulk superconductivity near 4 GPa. The x-ray data, combined with resistivity data, indicate that the collapsed tetragonal transition line is essentially independent of pressure, occurring at 4.0(5) GPa for temperatures below 150 K. Density functional theory calculations also find a sudden transition to a collapsed tetragonal state near 4 GPa, as As-As bonding develops across the Ca layer. Bonding across the K layer only occurs for p ≥12 GPa. These findings demonstrate a different type of collapsed tetragonal phase in CaKFe4As4 as compared to CaFe2As2 : a half-collapsed tetragonal phase.

  16. A systematic probe in the properties of spray coated mixed spinel films of cobalt and manganese

    NASA Astrophysics Data System (ADS)

    Grace Victoria, S.; Moses Ezhil Raj, A.

    2018-01-01

    The multiple oxidation states of manganese and cobalt in cobalt manganese oxides play a crucial role in shaping up the vivid properties thus evoking curiosity among researchers. In the present work, mixed spinel films of CoMn(CoMn)2O4 were coated on glass substrates by the spray pyrolysis technique with different precursor concentrations of the acetate salts of the metals in ethyl alcohol. XRD investigations revealed an intermediate tetragonal spinel structure between cubic MnCo2O4 and tetragonal Mn3O4 (JCPDS 18-0410) with predominant orientation along (311) plane. The tetragonal distortion from cubic symmetry may be due to high Mn2+ ion content at octahedral sites. Raman spectroscopy highlighted two typical emission peaks characteristic of the deposited mixed spinel oxides. Functional groups were assigned with the aid of FTIR spectral analysis to the observed absorption bands. The binding energies of the photo-electron peaks observed for the transition metal ions and the oxygenated ions were recorded by XPS. The results indicated that the divalent and trivalent ions of cobalt co-existed with the divalent manganese ions. AFM images revealed vertically aligned columnar grains. The electrical measurements indicated conduction mechanism through jumps of polarons. Optical absorption revealed wide band gap energy of 3.76 eV.

  17. Modeling the SHG activities of diverse protein crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupert, Levi M.; DeWalt, Emma L.; Simpson, Garth J., E-mail: gsimpson@purdue.edu

    2012-11-01

    The origins of the diversity in the SHG signal from protein crystals are investigated and potential protein-crystal coverage by SHG microscopy is assessed. A symmetry-additive ab initio model for second-harmonic generation (SHG) activity of protein crystals was applied to assess the likely protein-crystal coverage of SHG microscopy. Calculations were performed for 250 proteins in nine point-group symmetries: a total of 2250 crystals. The model suggests that the crystal symmetry and the limit of detection of the instrument are expected to be the strongest predictors of coverage of the factors considered, which also included secondary-structural content and protein size. Much ofmore » the diversity in SHG activity is expected to arise primarily from the variability in the intrinsic protein response as well as the orientation within the crystal lattice. Two or more orders-of-magnitude variation in intensity are expected even within protein crystals of the same symmetry. SHG measurements of tetragonal lysozyme crystals confirmed detection, from which a protein coverage of ∼84% was estimated based on the proportion of proteins calculated to produce SHG responses greater than that of tetragonal lysozyme. Good agreement was observed between the measured and calculated ratios of the SHG intensity from lysozyme in tetragonal and monoclinic lattices.« less

  18. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Sumida, John

    2000-01-01

    One of the most powerful and versatile methods for studying molecules in solution is fluorescence. Crystallization typically takes place in a concentrated solution environment, whereas fluorescence typically has an upper concentration limit of approximately 1 x 10(exp -5)M, thus intrinsic fluorescence cannot be employed, but a fluorescent probe must be added to a sub population of the molecules. However the fluorescent species cannot interfere with the self-assembly process. This can be achieved with macromolecules, where fluorescent probes can be covalently attached to a sub population of molecules that are subsequently used to track the system as a whole. We are using fluorescence resonance energy transfer (FRET) to study the initial solution phase self-assembly process of tetragonal lysozyme crystal nucleation, using covalent fluorescent derivatives which crystallize in the characteristic P432121 space group. FRET studies are being carried out between cascade blue (CB-lys, donor, Ex 376 nm, Em 420 nm) and lucifer yellow (LY-lys, acceptor, Ex 425 nm, Em 520 nm) asp101 derivatives. The estimated R0 for this probe pair, the distance where 50% of the donor energy is transferred to the acceptor, is approximately 1.2 nm, compared to 2.2 nm between the side chain carboxyls of adjacent asp101's in the crystalline 43 helix. The short CB-lys lifetime (approximately 5 ns), coupled with the large average distances between the molecules ((sup 3) 50 nm) in solution, ensure that any energy transfer observed is not due to random diffusive interactions. Addition of LY-lys to CB-lys results in the appearance of a second, shorter lifetime (approximately 0.2 ns). Results from these and other ongoing studies will be discussed in conjunction with a model for how tetragonal lysozyme crystals nucleate and grow, and the relevance of that model to microgravity protein crystal growth

  19. NASA Astrophysics Data System (ADS)

    Knight, Kevin S.; Marshall, William G.; Hawkins, Philip M.

    2014-06-01

    The fluoroperovskite phase RbCaF3 has been investigated using high-pressure neutron powder diffraction in the pressure range ~0-7.9 GPa at room temperature. It has been found to undergo a first-order high-pressure structural phase transition at ~2.8 GPa from the cubic aristotype phase to a hettotype phase in the tetragonal space group I4/ mcm. This transition, which also occurs at ~200 K at ambient pressure, is characterised by a linear phase boundary and a Clapeyron slope of 2.96 × 10-5 GPa K-1, which is in excellent agreement with earlier, low-pressure EPR investigations. The bulk modulus of the high-pressure phase (49.1 GPa) is very close to that determined for the low-pressure phase (50.0 GPa), and both are comparable with those determined for the aristotype phases of CsCdF3, TlCdF3, RbCdF3, and KCaF3. The evolution of the order parameter with pressure is consistent with recent modifications to Landau theory and, in conjunction with polynomial approximations to the pressure dependence of the lattice parameters, permits the pressure variation of the bond lengths and angles to be predicted. On entering the high-pressure phase, the Rb-F bond lengths decrease from their extrapolated values based on a third-order Birch-Murnaghan fit to the aristotype equation of state. By contrast, the Ca-F bond lengths behave atypically by exhibiting an increase from their extrapolated magnitudes, resulting in the volume and the effective bulk modulus of the CaF6 octahedron being larger than the cubic phase. The bulk moduli for the two component polyhedra in the tetragonal phase are comparable with those determined for the constituent binary fluorides, RbF and CaF2.

  20. The origin of transverse anisotropy in axially symmetric single molecule magnets.

    PubMed

    Barra, Anne-Laure; Caneschi, Andrea; Cornia, Andrea; Gatteschi, Dante; Gorini, Lapo; Heiniger, Leo-Philipp; Sessoli, Roberta; Sorace, Lorenzo

    2007-09-05

    Single-crystal high-frequency electron paramagnetic resonance spectroscopy has been employed on a truly axial single molecule magnet of formula [Mn(12)O(12)(tBu-CH(2)CO(2))16(CH(3)OH)4].CH(3)OH to investigate the origin of the transverse magnetic anisotropy, a crucial parameter that rules the quantum tunneling of the magnetization. The crystal structure, including the absolute structure of the crystal used for EPR experiments, has been fully determined and found to belong to I4 tetragonal space group. The angular dependence of the resonance fields in the crystallographic ab plane shows the presence of high-order tetragonal anisotropy and strong dependence on the MS sublevels with the second-highest-field transition being angular independent. This was rationalized including competing fourth- and sixth-order transverse parameters in a giant spin Hamiltonian which describes the magnetic anisotropy in the ground S = 10 spin state of the cluster. To establish the origin of these anisotropy terms, the experimental results have been further analyzed using a simplified multispin Hamiltonian which takes into account the exchange interactions and the single ion magnetic anisotropy of the Mn(III) centers. It has been possible to establish magnetostructural correlations with spin Hamiltonian parameters up to the sixth order. Transverse anisotropy in axial single molecule magnets was found to originate from the multispin nature of the system and from the breakdown of the strong exchange approximation. The tilting of the single-ion easy axes of magnetization with respect to the 4-fold molecular axis of the cluster plays the major role in determining the transverse anisotropy. Counterintuitively, the projections of the single ion easy axes on the ab plane correspond to hard axes of magnetization.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliev, Ziya S., E-mail: ziyasaliev@gmail.com; Institute of Physics, ANAS, H.Javid ave. 131, AZ1143 Baku; Donostia International Physics Center

    Single crystals of the ternary copper compounds CuTlS and CuTlSe have been successfully grown from stoichiometric melt by using vertical Bridgman-Stockbarger method. The crystal structure of the both compounds has been determined by powder and single crystal X-Ray diffraction. They crystallize in the PbFCl structure type with two formula units in the tetragonal system, space group P4/nmm, a=3.922(2); c=8.123(6); Z=2 and a=4.087(6); c=8.195(19) Å; Z=2, respectively. The band structure of the reported compounds has been analyzed by means of full-potential linearized augmented plane-wave (FLAPW) method based on the density functional theory (DFT). Both compounds have similar band structures and aremore » narrow-gap semiconductors with indirect band gap. The resistivity measurements agree with a semiconductor behavior although anomalies are observed at low temperature. - Graphical abstract: The crystal structures of CuTl and CuTlSe are isostructural with the PbFCl-type and the superconductor LiFeAs-type tetragonal structure. The band structure calculations confirmed that they are narrow-gap semiconductors with indirect band gaps of 0.326 and 0.083 eV. The resistivity measurements, although confirming the semiconducting behavior of both compounds exhibit unusual anomalies at low temperatures. - Highlights: • Single crystals of CuTlS and CuTlSe have been successfully grown by Bridgman-Stockbarger method. • The crystal structure of the both compounds has been determined by single crystal XRD. • The band structure of the both compounds has been analyzed based on the density functional theory (DFT). • The resistivity measurements have been carried out from room temperature down to 10 K.« less

  2. Anisotropic magnetic properties of the KMo4O6

    NASA Astrophysics Data System (ADS)

    Andrade, M.; Maffei, M. L.; Dos Santos, C. A. M.; Ferreira, B.; Sartori, A. F.

    2012-02-01

    Electrical resistivity measurements in the tetragonal KMo4O6 single crystals show a metal-insulator transition (MIT) near 100K. Magnetization measurements as a function of temperature show no evidence of magnetic ordering at this MIT [1]. Single crystals of KMo4O6 were obtained by electrolysis of a melt with a molar ratio of K2MoO4:MoO3 = 6:1. The process were carried out at 930 C with a current of 20-25mA for 52h in argon atmosphere. After that, electrodes were removed from the melt alloying the crystals to cool down to room temperature rapidly. Scanning Electron Microscopy (SEM) showed that the black single crystals were grown on the platinum cathode. Typical dimensions of the single crystals are 1x0.2x0.2mm^3. X-ray diffractometry confirmed that the single crystals have KMo4O6 tetragonal crystalline structure with space group P4. Magnetization measurements were performed parallel and perpendicular to the c-axis from 2 to 300K. The results show anisotropic behavior between both directions. Furthermore, the temperature independence of the magnetization at high temperature and the upturn at low temperature are observed in agreement with previous results [1]. MxH curves measured at several temperatures show nonlinear behavior and a small magnetic ordering. The magnetic ordering seems to be related to the MIT near 100K. This material is based upon support by FAPESP (2009/14524-6 and 2009/54001-6) and CNPq/NSF (490182/2009-7). M. Andrade is CAPES fellow and C.A.M. dos Santos is CNPq fellow. [4pt] [1] K. V. Ramanujachary et al., J. Sol. State Chem.102 (1993) 69.

  3. Hole doping and structural transformation in CsTl1-xHgxCl3.

    PubMed

    Retuerto, Maria; Yin, Zhiping; Emge, Thomas J; Stephens, Peter W; Li, Man-Rong; Sarkar, Tapati; Croft, Mark C; Ignatov, Alexander; Yuan, Z; Zhang, S J; Jin, Changqing; Paria Sena, Robert; Hadermann, Joke; Kotliar, Gabriel; Greenblatt, Martha

    2015-02-02

    CsTlCl(3) and CsTlF(3) perovskites have been theoretically predicted to be superconductors when properly hole-doped. Both compounds have been previously prepared as pure compounds: CsTlCl(3) in a tetragonal (I4/m) and a cubic (Fm3̅m) perovskite polymorph and CsTlF(3) as a cubic perovskite (Fm3̅m). In this work, substitution of Tl in CsTlCl(3) with Hg is reported, in an attempt to hole-dope the system and induce superconductivity. The whole series CsTl(1-x)HgxCl(3) (x = 0.0, 0.1, 0.2, 0.4, 0.6, and 0.8) was prepared. CsTl(0.9)Hg(0.1)Cl(3) is tetragonal as the more stable phase of CsTlCl(3). However, CsTl(0.8)Hg(0.2)Cl(3) is already cubic with the space group Fm3̅m and with two different positions for Tl(+) and Tl(3+). For x = 0.4 and 0.5, solid solutions could not be formed. For x ≥ 0.6, the samples are primitive cubic perovskites with one crystallographic position for Tl(+), Tl(3+), and Hg(2+). All of the samples formed are insulating, and there is no signature of superconductivity. X-ray absorption spectroscopy indicates that all of the samples have a mixed-valence state of Tl(+) and Tl(3+). Raman spectroscopy shows the presence of the active Tl-Cl-Tl stretching mode over the whole series and the intensity of the Tl-Cl-Hg mode increases with increasing Hg content. First-principle calculations confirmed that the phases are insulators in their ground state and that Hg is not a good dopant in the search for superconductivity in this system.

  4. Suppression of electron correlations in the collapsed tetragonal phase of CaFe2As2 under ambient pressure demonstrated by As75 NMR/NQR measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, Yuji; Roy, Beas; Ran, Sheng

    2014-03-20

    The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magneticmore » susceptibility χ and the T dependence of 1/T1Tχ, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.« less

  5. [Effect of Al₂O₃ sandblasting on the bond strength between 3mol% yttrium-stabilized tetragonal zirconium polycrystal zirconia framework and veneering porcelain].

    PubMed

    Qiang, Zeng; Ning, Li; Yanan, Zhou; Jiazhen, Yan; Wenbo, Liu

    2015-12-01

    The effect of sandblasting on the bond strength between 3mol% yttrium-stabilized tetragonal zirconium polycrystal (3Y-TZP) zirconia framework and veneering porcelain was evaluated. A total of 21 specimens [(25 ± 1) mm x (3 ± 0.1) mmx (0.5 ± 0.05) mm] were prepared according to ISO 9693. The specimens were then randomly divided into 3 groups. Sandblasting was performed on 2 meshes of Al₂O₃ particles: group A with mesh 110 and group B with mesh 80. Group C, which was not sandblasted, was the control group. The surface roughness of the zirconia framework, as well as the bond strength between 3Y-TZP zirconia framework and veneering porcelain, was measured. The interface microstructure was observed by scanning electron microscope (SEM), and elemental distribution was detected by energy dispersive spectroscopy (EDS). Surface roughness values were (1.272 ± 0.149) μm for group A, (0.622 ± 0.113) μm for group B, and (0.221 ± 0.065) μm for group C. Statistical significance were found among groups (P < 0.05). The bond strength values were (28.21 ± 1.52) MPa for group A, (27.71 ± 1.27) MPa for group B, and (24.87 ± 3.84) MPa for group C. Statistical significance was found between group A and group C (P < 0.05), whereas the other groups had no statistical significance (P > 0.05). Interface adhesion failure was the primary performance. SEM images showed the close interface bonding, and EDS showed that the interface had no obvious element penetration. Al₂O₃ sandblasting can slightly enhance the bond strength between zirconia framework and veneering porcelain.

  6. First-principles calculation of the effects of tetragonal distortions on the Gilbert damping parameter of Co2MnSi

    NASA Astrophysics Data System (ADS)

    Pradines, B.; Arras, R.; Calmels, L.

    2017-05-01

    We present an ab initio study of the influence of the tetragonal distortion, on the static and dynamic (Gilbert damping parameter) magnetic properties of a Co2MnSi crystal. This tetragonal distortion can for instance be due to strain, when Co2MnSi is grown on a substrate with a small lattice mismatch. Using fully relativistic Korringa-Kohn-Rostoker (KKR) calculations, in conjunction with the coherent potential approximation (CPA) to describe atomic disorder and the linear response formalism to compute the Gilbert damping parameter, we show that a tetragonal distortion can substantially change the properties of Co2MnSi, in a way which depends on the kind of atomic disorder.

  7. Study on structural, morphological, optical and thermal properties of guanidine carbonate doped nickel sulfate hexahydrate crystal.

    PubMed

    Silambarasan, A; Rajesh, P; Ramasamy, P

    2015-01-05

    The single crystal of guanidine carbonate doped nickel sulfate hexahydrate was grown from solution for ultraviolet filters. The single crystal XRD confirms that the grown single crystal belongs to the tetragonal system with the space group of P4₁2₁2. The crystallinity of the grown crystal was estimated by powder X-ray diffraction studies. The optical transmission and thermal stability of as-grown guanidine carbonate doped nickel sulfate single crystals have been studied. The optical transmission spectrum demonstrates the characteristics of ultraviolet filters. The TG/DTA studies confirm the thermal properties of grown crystals. Thermo-gravimetric analysis showed that the dehydration temperature of the guanidine carbonate doped nickel sulfate crystal is about 100 °C, which is much higher than that of pure nickel sulfate hexahydrate (NSH) crystals which is 72 °C. The growth behaviors and dislocation density were detected under the high resolution XRD and etching studies respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. New ruthenium carboxylate complexes having a 1-5-. eta. sup 5 -cyclooctadienyl ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osakada, Kohtaro; Grohmann, A.; Yamamoto, Akio

    1990-07-01

    Reaction of 3-butenoic acid with Ru(cod)(cot) (cod) = 1-2-{eta}{sup 2}:5-6-{eta}{sup 2}-cyclooctadiene; cot = 1-6-{eta}{sup 6}-cyclooctatriene in the presence of PMe{sub 3} gives a new ruthenium(II) complex formulated as Ru(1-5-{eta}{sup 5}-C{sub 8}H{sub 11}){eta}{sup 1}(O),{eta}{sup 2}(C,C{prime}-OCOCH{sub 2}CH{double bond}CH{sub 2})(PMe{sub 3}) (1). X-ray crystallography revealed its structure as having a piano-stool coordination around the ruthenium center. Crystals of 1 are tetragonal, space group P4{sub 3}2{sub 1}2, with a = 12.559 (3) {angstrom}, c = 20.455 (4) {angstrom}, and Z = 8. {sup 1}H and {sup 13}C({sup 1}H) NMR spectra of 1 agree well for the structure with the allyl entity of the carboxylatemore » {pi}-bonded through the C{double bond}C double bond to ruthenium.« less

  9. Structure flexibility of the Cu2ZnSnS4 absorber in low-cost photovoltaic cells: from the stoichiometric to the copper-poor compounds.

    PubMed

    Choubrac, L; Lafond, A; Guillot-Deudon, C; Moëlo, Y; Jobic, S

    2012-03-19

    Here we present for the very first time a single-crystal investigation of the Cu-poor Zn-rich derivative of Cu(2)ZnSnS(4). Nowadays, this composition is considered as the one that delivers the best photovoltaic performances in the specific domain of Cu(2)ZnSnS(4)-based thin-film solar cells. The existence of this nonstoichiometric phase is definitely demonstrated here in an explicit and unequivocal manner on the basis of powder and single-crystal X-ray diffraction analyses coupled with electron microprobe analyses. Crystals are tetragonal, space group I ̅4, Z = 2, with a = 5.43440(15) Å and c = 10.8382(6) Å for Cu(2)ZnSnS(4) and a = 5.43006(5) Å and c = 10.8222(2) Å for Cu(1.71)Zn(1.18)Sn(0.99)S(4). © 2012 American Chemical Society

  10. A new oxytelluride: Perovskite and CsCl intergrowth in Ba 3Yb 2O 5Te

    DOE PAGES

    Whalen, J. B.; Besara, T.; Vasquez, R.; ...

    2013-04-27

    The new oxytelluride Ba 3Yb 2O 5Te was obtained from an alkaline earth flux. Ba3Yb2O5Te crystallizes in the tetragonal space group P4/ mmm (#123), with a=4.3615(3) Å and c=11.7596(11) angstrom, Z=1. The structure combines two distinct building blocks, a Ba 2Yb 2O 5 perovskite-like double layer with square bipyramidal coordination of the ytterbium ions, and a CsCl-type BaTe layer. Short range magnetic order is apparent at below 5 K, with the magnetic behavior above this temperature dominated by crystal field effects. The structure may be considered as an analog to the Ruddlesden-Popper phases, where the NaCl-type layer has been replacedmore » by the CsCl-type layer. Finally, the two-dimensional magnetic behavior is expected based on the highly anisotropic nature of the structure.« less

  11. Overexpression, purification and crystallization of a choline-binding protein CbpI from Streptococcus pneumoniae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paterson, Neil G., E-mail: neison@chem.gla.ac.uk; Riboldi-Tunicliffe, Alan; Mitchell, Timothy J.

    2006-07-01

    The choline-binding protein CbpI from S. pneumoniae has been purified and crystallized and diffraction data have been collected to 3.5 Å resolution. The choline-binding protein CbpI from Streptococcus pneumoniae is a 23.4 kDa protein with no known function. The protein has been successfully purified initially using Ni–NTA chromatography and to homogeneity using Q-Sepharose ion-exchange resin as an affinity column. CbpI was crystallized using PEG 3350 as a precipitant and X-ray crystallographic analysis showed that the crystals belonged to the tetragonal space group P4, with unit-cell parameters a = b = 83.31, c = 80.29 Å, α = β = γmore » = 90°. The crystal contains two molecules in the asymmetric unit with a solvent content of 55.7% (V{sub M} = 2.77 Å{sup 3} Da{sup −1}) and shows a diffraction limit of 3.5 Å.« less

  12. Crystal structure refinement of ReSi1.75 with an ordered arrangement of silicon vacancies

    NASA Astrophysics Data System (ADS)

    Harada, Shunta; Hoshikawa, Hiroaki; Kuwabara, Kosuke; Tanaka, Katsushi; Okunishi, Eiji; Inui, Haruyuki

    2011-08-01

    The crystal structure and microstructure of ReSi1.75 were investigated by synchrotron X-ray diffraction combined with scanning transmission electron microscopy. ReSi1.75 contains an ordered arrangement of vacancies in Si sites in the underlying tetragonal C11b lattice of the MoSi2-type and the crystal structure is monoclinic with the space group Cm. Atomic positions of Si atoms near vacancies are considerably displaced from the corresponding positions in the parent C11b structure, and they exhibit anomalously large local thermal vibration accompanied by large values of atomic displacement parameter. There are four differently-oriented domains with two of them being related to each other by the 90° rotation about the c-axis of the underlying C11b lattice and the other two being their respective twins. The habit planes for domain boundaries observed experimentally are consistent with those predicted with ferroelastic theory.

  13. Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics

    NASA Astrophysics Data System (ADS)

    Jo, Wook; Daniels, John E.; Jones, Jacob L.; Tan, Xiaoli; Thomas, Pamela A.; Damjanovic, Dragan; Rödel, Jürgen

    2011-01-01

    The correlation between structure and electrical properties of lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 (BNT-100xBT) polycrystalline piezoceramics was investigated systematically by in situ synchrotron diffraction technique, combined with electrical property characterization. It was found that the morphotropic phase boundary (MPB) between a rhombohedral and a tetragonal phase evolved into a morphotropic phase region with electric field. In the unpoled material, the MPB was positioned at the transition from space group R3m to P4mm (BNT-11BT) with optimized permittivity throughout a broad single-phase R3m composition regime. Upon poling, a range of compositions from BNT-6BT to BNT-11BT became two-phase mixture, and maximum piezoelectric coefficient was observed in BNT-7BT. It was shown that optimized electrical properties are related primarily to the capacity for domain texturing and not to phase coexistence.

  14. Upconversion luminescence of CsScF4 crystals doped with erbium and ytterbium

    NASA Astrophysics Data System (ADS)

    Ikonnikov, D. A.; Voronov, V. N.; Molokeev, M. S.; Aleksandrovsky, A. S.

    2016-10-01

    Tetragonal CsScF4 crystals doped with (5 at.%) Er and Er/Yb (0.5 at.%/5 at.%) are grown and their crystal structure is determined to belong to Pmmn space group. Er and Yb ions are shown to occupy distorted octahedral Sc sites with the center of inversion. Bright visible upconversion luminescence was observed under 970-980 nm pumping with red (4F9/2), yellow (4S3/2) and green (2H11/2) bands of comparable intensity. UCL tuning curves maximize at 972 nm (CSF:Er) and at 969.7 nm (CSF:Er,Yb) pumping wavelengths. Different ratios between yellow-green and red luminescence intensities in CSF:Er and CSF:Er, Yb are explained by contribution of cross-relaxation in CSF:Er UCL. UC in CSF:Er is a three stage process while UC in CSF:Er, Yb is a two stage process. The peculiarities of power dependences are explained by the power-dependent repopulation between starting levels of UC.

  15. Crystallization and preliminary X-ray crystallographic analysis of the tRNA-specific adenosine deaminase from Streptococcus pyogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, Min-Je; Lee, Won-Ho; Biotechnology and Genetic Engineering, Korea University, Seoul 136-701

    2005-04-01

    The tRNA-specific adenosine deaminase from the pathogenic bacteria S. pyogenes has been overexpressed and crystallized. The tRNA-specific adenosine deaminase from the pathogenic bacteria Streptococcus pyogenes (spTAD) has been overexpressed in Escherichia coli and crystallized in the presence of Zn{sup 2+} ion at 295 K using ammonium sulfate as a precipitant. Flash-cooled crystals of spTAD diffracted to 2.0 Å using 30%(v/v) glycerol as a cryoprotectant. X-ray diffraction data have been collected to 2.0 Å using synchrotron radiation. The crystal belongs to the tetragonal space group P4{sub 2}2{sub 1}2, with unit-cell parameters a = b = 81.042, c = 81.270 Å. Themore » asymmetric unit contains one subunit of spTAD, with a corresponding crystal volume per protein weight (V{sub M}) of 3.3 Å{sup 3} Da{sup −1} and a solvent content of 62.7%.« less

  16. Tuning the ground state of the Kondo lattice in UT Bi2 (T = Ag, Au) single crystals

    NASA Astrophysics Data System (ADS)

    Rosa, Priscila; Luo, Yongkang; Pagliuso, Pascoal; Bauer, Eric; Thompson, Joe; Fisk, Zachary

    2015-03-01

    Motivated by the interesting magnetic anisotropy found in the Ce-based heavy fermion family Ce TX2 (T = transition metal, X = pnictogen), here we study the novel U-based parent compounds U TBi2 (T = Ag, Au) by combining magnetization, electrical resistivity, and heat-capacity measurements. The single crystals, synthesized by the self-flux method, also crystallize in the tetragonal HfCuSi2-type structure (space group P4/nmm). Interestingly, although UAgBi2 is a low- γ antiferromagnet below TN = 181 K, UAuBi2 is a moderately heavy uniaxial ferromagnet below Tc = 22 K. Nevertheless, both compounds display the easy-magnetization direction along the c-axis and a large magnetocrystalline anisotropy. Our results point out to an incoherent Kondo behaviour in the paramagnetic state and an intricate competition between crystal field effects and two anisotropic exchange interactions, which lead to the remarkable difference in the observed ground states.

  17. Structural analysis of PrBaMn2O5+δ under SOFC anode conditions by in-situ neutron powder diffraction

    NASA Astrophysics Data System (ADS)

    Tomkiewicz, Alex C.; Tamimi, Mazin A.; Huq, Ashfia; McIntosh, Steven

    2016-10-01

    The crystal structure and oxygen stoichiometry of the proposed double perovskite solid oxide fuel cell (SOFC) anode material PrBaMn2O5+δ were determined under SOFC anode conditions via in-situ neutron diffraction. Measurements were performed in reducing atmospheres between 692 K and 984 K. The structure was fit to a tetragonal (space group P4/mmm) layered double perovskite structure with alternating Pr and Ba A-site cation layers. Under all conditions examined, the oxygen sites in the Ba and Mn layers were fully occupied, while the sites in the Pr layer were close to completely vacant. The results of the neutron diffraction experiments are compared to previous thermogravimetric analysis experiments to verify the accuracy of both experiments. PrBaMn2O5+δ was shown to be stable over a wide range of reducing atmospheres similar to anode operating conditions in solid oxide fuel cells without significant structural changes.

  18. Synthesis, structure and magnetic properties of Sr{sub 2}Fe{sub 1-x}Ga{sub x}MoO{sub 6} (0 {<=} x {<=} 0.6) double perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, Abul K., E-mail: aka7@st-andrews.ac.uk; Khan, Abdullah; Eriksson, Sten-G.

    2009-12-15

    Polycrystalline Sr{sub 2}Fe{sub 1-x}Ga{sub x}MoO{sub 6} (0 {<=} x {<=} 0.6) materials have been synthesized by solid state reaction method and studied by neutron powder diffraction (NPD) and magnetization measurements. Rietveld analysis of the temperature dependent NPD data shows that the compounds crystallize in the tetragonal symmetry in the space group I4/m. The anti-site (AS) defects concentration increases with Ga doping, giving rise to highly B-site disordered materials. Ga doping at the Fe-site decreases the cell volume. The evolution of bond lengths and the cation oxidation states was determined from the Rietveld refinement data. The saturation magnetization and Curie temperaturemore » decreased with the increasing Ga content in the samples. Low temperature neutron diffraction data analysis and magnetization measurements confirm the magnetic interaction as ferrimagnetic in the sample.« less

  19. Preparation and crystal structure of U3Fe2C5: An original uranium-iron carbide

    NASA Astrophysics Data System (ADS)

    Henriques, M. S.; Paixão, J. A.; Henriques, M. S. C.; Gonçalves, A. P.

    2015-09-01

    The U3Fe2C5 compound was prepared from the elements by arc-melting, followed by an heat-treatment in an induction furnace, at 1250 °C for 1 h and 1300 °C for 2 h. The crystal structure of this phase was determined by direct methods from single crystal X-ray diffraction data. U3Fe2C5 crystallizes in an original tetragonal crystal structure, with space group I4/mmm, a = 3.4980(3) Å and c = 19.8380(15) Å as lattice constants and two formula units per cell. This new type structure is characterized by the simultaneous presence of isolated and pairs of carbon atoms, the interatomic distances in the pairs being similar to a typical carbon-carbon double bond length found in a molecule. U3Fe2C5 is closely related to UC and UFeC2, and can be seen as build from two (distorted) UFeC2 unit cells and a UC layer.

  20. Crystallization and preliminary crystallographic analysis of a flavoprotein NADH oxidase from Lactobacillus brevis

    PubMed Central

    Kuzu, Mutlu; Niefind, Karsten; Hummel, Werner; Schomburg, Dietmar

    2005-01-01

    NADH oxidase (NOX) from Lactobacillus brevis is a homotetrameric flavoenzyme composed of 450 amino acids per subunit. The molecular weight of each monomer is 48.8 kDa. The enzyme catalyzes the oxidation of two equivalents of NADH and reduces one equivalent of oxygen to yield two equivalents of water, without releasing hydrogen peroxide after the reduction of the first equivalent of NADH. Crystals of this protein were grown in the presence of 34% polyethylene glycol monomethyl ether 2000, 0.1 M sodium acetate and 0.2 M ammonium sulfate at pH 5.4. They belong to the tetragonal space group P43212, with unit-cell parameters a = 74.8, b = 95.7, c = 116.9 Å, α = γ = 90, β = 103.8°. The current diffraction limit is 4.0 Å. The self-rotation function of the native data set is consistent with a NOX tetramer in the asymmetric unit. PMID:16511087

  1. Crystallization and preliminary X-ray diffraction studies of NP24-I, an isoform of a thaumatin-like protein from ripe tomato fruits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Raka; Chakrabarti, Chandana, E-mail: chandana.chakrabarti@saha.ac.in

    2005-08-01

    A thaumatin-like antifungal protein, NP24-I, has been isolated from ripe tomato fruits. It was crystallized by the vapour-diffusion method and data were collected to 2.45 Å. The structure was solved by molecular replacement. NP24 is a 24 kDa (207-amino-acid) antifungal thaumatin-like protein (TLP) found in tomato fruits. An isoform of the protein, NP24-I, is reported to play a possible role in ripening of the fruit in addition to its antifungal properties. The protein has been isolated and purified and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the tetragonal space group P4{sub 3}, with unit-cell parameters a =more » b = 61.01, c = 62.90 Å and one molecule per asymmetric unit. X-ray diffraction data were processed to a resolution of 2.45 Å and the structure was solved by molecular replacement.« less

  2. Effect of autoclave induced low-temperature degradation on the adhesion energy between yttria-stabilized zirconia veneered with porcelain.

    PubMed

    Li, Kai Chun; Waddell, J Neil; Prior, David J; Ting, Stephanie; Girvan, Liz; van Vuuren, Ludwig Jansen; Swain, Michael V

    2013-11-01

    To investigate the effect of autoclave induced low-temperature degradation on the adhesion energy between yttria-stabilized zirconia veneered with porcelain. The strain energy release rate using a four-point bending stable fracture test was evaluated for two different porcelains [leucite containing (VM9) and glass (Zirox) porcelain] veneered to zirconia. Prior to veneering the zirconia had been subjected to 0 (control), 1, 5, 10 and 20 autoclave cycles. The specimens were manufactured to a total bi-layer dimension of 30 mm × 8 mm × 3 mm. Subsequent scanning electron microscopy/energy dispersive spectrometry, electron backscatter diffraction and X-ray diffraction analysis were performed to identify the phase transformation and fracture behavior. The strain energy release rate for debonding of the VM9 specimens were significantly higher (p<0.05) compared to the Zirox specimens across all test groups. Increasing autoclave cycles lowered the strain energy release rate significantly (p<0.05) from 18.67 J/m(2) (control) to the lowest of 12.79 J/m(2) (cycle 10) for only the VM9 specimens. SEM analyses showed predominant cohesive fracture within the porcelain for all cycle groups. XRD analysis of the substrate prior to veneering confirmed a tetragonal to monoclinic phase transformation with increasing the number of autoclave cycles between 5 and 20. The monoclinic phase reverted back to tetragonal phase after undergoing conventional porcelain firing cycles. EBSD data showed significant changes of the grain size distribution between the control and autoclaved specimen (cycle 20). Increasing autoclave cycles only significantly decreased the adhesion of the VM9 layered specimens. In addition, a conventional porcelain firing schedule completely reverted the monoclinic phase back to tetragonal. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Magnetic structures and excitations in CePd2(Al,Ga)2 series: Development of the "vibron" states

    NASA Astrophysics Data System (ADS)

    Klicpera, M.; Boehm, M.; Doležal, P.; Mutka, H.; Koza, M. M.; Rols, S.; Adroja, D. T.; Puente Orench, I.; Rodríguez-Carvajal, J.; Javorský, P.

    2017-02-01

    CePd2Al2 -xGax compounds crystallizing in the tetragonal CaBe2Ge2 -type structure (space group P 4 /n m m ) and undergoing a structural phase transition to an orthorhombic structure (C m m e ) at low temperatures were studied by means of neutron scattering. The amplitude-modulated magnetic structure of CePd2Al2 is described by an incommensurate propagation vector k ⃗=(δx,1/2 +δy,0 ) with δx=0.06 and δy=0.04 . The magnetic moments order antiferromagnetically within the a b planes stacked along the c axis and are arranged along the direction close to the orthorhombic a axis with a maximum value of 1.5(1) μB/Ce3 +. CePd2Ga2 reveals a magnetic structure composed of two components: the first is described by the propagation vector k1⃗=(1/2 ,1/2 ,0 ) , and the second one propagates with k2⃗=(0 ,1/2 ,0 ) . The magnetic moments of both components are aligned along the same direction—the orthorhombic [100] direction—and their total amplitude varies depending on the mutual phase of magnetic moment components on each Ce site. The propagation vectors k1⃗ and k2⃗ describe also the magnetic structure of substituted CePd2Al2 -xGax compounds, except the one with x =0.1 .CePd2Al1.9Ga0.1 with magnetic structure described by k ⃗ and k1⃗ stays on the border between pure CePd2Al2 and the rest of the series. Determined magnetic structures are compared with other Ce 112 compounds. Inelastic neutron scattering experiments disclosed three nondispersive magnetic excitations in the paramagnetic state of CePd2Al2 , while only two crystal field (CF) excitations are expected from the splitting of ground state J =5/2 of the Ce3 + ion in a tetragonal/orthorhombic point symmetry. Three magnetic excitations at 1.4, 7.8, and 15.9 meV are observed in the tetragonal phase of CePd2Al2 . A structural phase transition to an orthorhombic structure shifts the first excitation up to 3.7 meV, while the other two excitations remain at almost the same energy. The presence of an additional magnetic peak is discussed and described within the Thalmeier-Fulde CF-phonon coupling (i.e., magnetoelastic coupling) model generalized to the tetragonal point symmetry. The second parent compound CePd2Ga2 does not display any sign of additional magnetic excitation. The expected two CF excitations were observed. The development of magnetic excitations in the CePd2Al2 -xGax series is discussed and crystal field parameters determined.

  4. Structure of water clusters on graphene: A classical molecular dynamics approach

    NASA Astrophysics Data System (ADS)

    Maekawa, Yuki; Sasaoka, Kenji; Yamamoto, Takahiro

    2018-03-01

    The microscopic structure of surface water adsorbed on graphene is elucidated theoretically by classical molecular dynamics simulation. At a low temperature (100 K), the main polygon consisting of hydrogen bonds in single-layered water on graphene is tetragonal, whereas the dominant polygons in double-layered water are tetragonal, pentagonal, and hexagonal. On the other hand, at room temperature, the tetragonal, pentagonal, and hexagonal water clusters are the main structures in both single- and double-layered water.

  5. Suppression of superconductivity and structural phase transitions under pressure in tetragonal FeS

    DOE PAGES

    Lai, Xiaofang; Liu, Ying; Lu, Xujie; ...

    2016-08-08

    Pressure is a powerful tool to study iron-based superconductors. Here, we report systematic high-pressure transport and structural characterizations of the newly discovered superconductor FeS. It is found that superconductor FeS (tetragonal) partly transforms to a hexagonal structure at 0.4 GPa, and then completely transforms to an orthorhombic phase at 7.4 GPa and finally to a monoclinic phase above 9.0 GPa. The superconducting transition temperature of tetragonal FeS was gradually depressed by pressure, different from the case in tetragonal FeSe. With pressure increasing, the S-Fe-S angles only slightly change but the anion height deviates farther from 1.38 Å. This change ofmore » anion height, together with the structural instability under pressure, should be closely related to the suppression of superconductivity. We also observed an anomalous metal-semiconductor transition at 6.0 GPa and an unusual increased resistance with further compression above 9.6 GPa. The former can be ascribed to the tetragonal-orthorhombic structural phase transition, and the latter to the electronic structure changes of the high-pressure monoclinic phase. Lastly, a phase diagram of tetragonal FeS as functions of pressure and temperature was mapped out for the first time, which will shed new light on understanding of the structure and physics of the superconducting FeS.« less

  6. Research on the optical spectra, g factors and defect structures for two tetragonal Y²+ centers in the irradiated CaF₂: Y crystal.

    PubMed

    Zheng, Wen-Chen; Mei, Yang; Yang, Yu-Guang; Liu, Hong-Gang

    2012-11-01

    Based on the defect models that the tetragonal Y(2+) (1) center in the irradiated CaF(2): Y crystal is due to Y(2+) at Ca(2+) site associated with a nearest interstitial F(-) ion along C(4) axis and the tetragonal Y(2+) (2) center is Y(2+) at Ca(2+) site where the tetragonal distortion is caused by the static Jahn-Teller effect, the two optical spectral bands and anisotropic g factors for both tetragonal Y(2+) centers are calculated. The calculations are made by using two methods based on the cluster approach, one is the complete diagonalization (of energy matrix) method (CDM) and another is the perturbation theory method (PTM). The calculated results for each Y(2+) center from CDM and PTM coincide and show reasonable agreement with the experimental values. The calculated isotropic g factor for Y(2+) (2) center at higher temperature owing to the dynamical Jahn-Teller effect is also consistent with the observed value. The defect structures (i.e., tetragonal distortion) of the two Y(2+) centers are obtained from the calculation. It appears that both theoretical methods can be applied to explain the optical and EPR data, to study the defect model and to determine the defect structures for d(1) ions in crystals. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Crystallographic orientation of epitaxial BaTiO3 films: The role of thermal-expansion mismatch with the substrate

    NASA Astrophysics Data System (ADS)

    Srikant, V.; Tarsa, E. J.; Clarke, D. R.; Speck, J. S.

    1995-02-01

    Expitaxial ferroelectric BaTiO3 thin films have been grown on (001) MgO and MgO-buffered (001) GaAs substrates by pulsed laser deposition to explore the effect of substrate lattice parameter. X-ray-diffraction studies showed that the BaTiO3 films on both MgO single-crystal substrates and MgO-buffered (001) GaAs substrates have a cube-on-cube epitaxy; however, for the BaTiO3 films grown on MgO the spacing of the planes parallel to the substrate was close to the c-axis dimension of the unconstrained tetragonal phase, whereas the BaTiO3 films on MgO/GaAs exhibited a spacing closer to the a-axis dimension of the unconstrained tetragonal phase. The cube-on-cube epitaxy was maintained through the heterostructures even when thin epitaxial intermediate buffer layers of SrTiO3 and La(0.5)Sr(0.5)CoO3 were used. The intermediate layers had no effect on the position of the BaTiO3 peak in theta - 2 theta scans. Together, these observations indicate that, for the materials combinations studied, it is the thermal-expansion mismatch between the film and the underlying substrate that determines the crystallographic orientation of the BaTiO3 film. Preliminary measurements indicate that the BaTiO3 films are 'weakly' ferroelectric.

  8. Raman scattering in HfxZr1-xO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Robinson, Richard D.; Tang, Jing; Steigerwald, Michael L.; Brus, Louis E.; Herman, Irving P.

    2005-03-01

    Raman spectroscopy demonstrates that ˜5nm dimension HfxZr1-xO2 nanocrystals prepared by a nonhydrolytic sol-gel synthesis method are solid solutions of hafnia and zirconia, with no discernable segregation within the individual nanoparticles. Zirconia-rich particles are tetragonal and ensembles of hafnia-rich particles show mixed tetragonal/monoclinic phases. Sintering at 1200 °C produces larger particles (20-30 nm) that are monoclinic. A simple lattice dynamics model with composition-averaged cation mass and scaled force constants is used to understand how the Raman mode frequencies vary with composition in the tetragonal HfxZr1-xO2 nanoparticles. Background luminescence from these particles is minimized after oxygen treatment, suggesting possible oxygen defects in the as-prepared particles. Raman scattering is also used to estimate composition and the relative fractions of tetragonal and monoclinic phases. In some regimes there are mixed phases, and Raman analysis suggests that in these regimes the tetragonal phase particles are relatively rich in zirconium and the monoclinic phase particles are relatively rich in hafnium.

  9. Synthesis, characterization and crystal structure of a 1D thiocyanato bridged [Cu(en)2Zn(NCS)4]ṡH2O. Comparison of the three structures with the same [Cu(en)2Zn(NCS)4] unit - different in structural terms

    NASA Astrophysics Data System (ADS)

    Wrzeszcz, Grzegorz; Muzioł, Tadeusz M.; Tereba, Natalia

    2015-03-01

    In this paper we report the synthesis method and the structure of a one-dimensional thiocyanato bridged heterometallic compound, [Cu(en)2Zn(NCS)4]ṡH2O (1). Moreover, we compare the structure of (1) with the previously described structures of [Cu(en)2Zn(NCS)4]ṡ0.5H2O (2) and [Cu(en)2Zn(NCS)4]ṡCH3CN (3) Pryma et al. (2003) [7]. The compound (1) has been characterized by thermal decomposition, IR, Vis and EPR spectra, and magnetic studies. Structure has been determined by X-ray analysis. Described coordination polymer crystallizes in the orthorhombic Cmcm space group with a = 12.414(2), b = 10.3276(14), c = 14.967(2) Å, α = β = γ = 90°, V = 1918.8(5) Å3 and Z = 4. Each distorted tetrahedral zinc(II) centre (with N-bonded NCS-) links two tetragonally distorted octahedral copper(II) centres by two end-to-end thiocyanato bridges and vice versa forming a zigzag type of CuZn chain. The structures of (1), (2) and (3) differ in crystallographic system, space group and/or CuZn chain type as well as in details. Variable temperature magnetic susceptibility measurements show very weak antiferromagnetic interactions between the paramagnetic copper(II) ions for compound (1).

  10. Search for unconventional superconductors among the YTE 2Si2 compounds (TE  =  Cr, Co, Ni, Rh, Pd, Pt)

    NASA Astrophysics Data System (ADS)

    Pikul, A. P.; Samsel–Czekała, M.; Chajewski, G.; Romanova, T.; Hackemer, A.; Gorzelniak, R.; Wiśniewski, P.; Kaczorowski, D.

    2017-05-01

    Motivated by the recent discovery of exotic superconductivity in YFe2Ge2 we undertook reinvestigation of formation and physical properties of yttrium-based 1:2:2 silicides. Here we report on syntheses and crystal structures of the YTE 2Si2 compounds with TE  =  Cr, Co, Ni, Rh, Pd and Pt, and their low-temperature physical properties measurements, supplemented by results of fully relativistic full-potential local-orbital minimum basis band structure calculations. We confirm that most of the members of that family crystallize in a tetragonal ThCr2Si2-type structure (space group I4/mmm) and have three-dimensional Fermi surface, while only one of them (YPt2Si2) forms with a closely-related primitive CaBe2Ge2-type unit cell (space group P4/nmm) and possess quasi-two-dimensional Fermi surface sheets. Physical measurements indicated that BCS-like superconductivity is observed only in YPt2Si2 (T c  =  1.54 K) and YPd2Si2 (T c  =  0.43 K), while no superconducting phase transition was found in other systems at least down to 0.35 K. Thermal analysis showed no polymorphism in both superconducting phases. No clear relation between the superconductivity and the crystal structure (and dimensionality of the Fermi surface) was observed.

  11. Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems

    NASA Astrophysics Data System (ADS)

    de La Cruz, Clarina; Huang, Q.; Lynn, J. W.; Li, Jiying; , W. Ratcliff, II; Zarestky, J. L.; Mook, H. A.; Chen, G. F.; Luo, J. L.; Wang, N. L.; Dai, Pengcheng

    2008-06-01

    Following the discovery of long-range antiferromagnetic order in the parent compounds of high-transition-temperature (high-Tc) copper oxides, there have been efforts to understand the role of magnetism in the superconductivity that occurs when mobile `electrons' or `holes' are doped into the antiferromagnetic parent compounds. Superconductivity in the newly discovered rare-earth iron-based oxide systems ROFeAs (R, rare-earth metal) also arises from either electron or hole doping of their non-superconducting parent compounds. The parent material LaOFeAs is metallic but shows anomalies near 150K in both resistivity and d.c. magnetic susceptibility. Although optical conductivity and theoretical calculations suggest that LaOFeAs exhibits a spin-density-wave (SDW) instability that is suppressed by doping with electrons to induce superconductivity, there has been no direct evidence of SDW order. Here we report neutron-scattering experiments that demonstrate that LaOFeAs undergoes an abrupt structural distortion below 155K, changing the symmetry from tetragonal (space group P4/nmm) to monoclinic (space group P112/n) at low temperatures, and then, at ~137K, develops long-range SDW-type antiferromagnetic order with a small moment but simple magnetic structure. Doping the system with fluorine suppresses both the magnetic order and the structural distortion in favour of superconductivity. Therefore, like high-Tc copper oxides, the superconducting regime in these iron-based materials occurs in close proximity to a long-range-ordered antiferromagnetic ground state.

  12. Overexpression, crystallization and preliminary X-ray crystallographic analysis of phosphopantetheine adenylyltransferase from Enterococcus faecalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Ji Yong; Lee, Hyung Ho; Yoon, Hye Jin

    2006-11-01

    Phosphopantetheine adenylyltransferase from En. faecalis was crystallized and X-ray diffraction data were collected to 2.70 Å resolution. Phosphopantetheine adenylyltransferase, an essential enzyme in the coenzyme A biosynthetic pathway, catalyzes the reversible transfer of an adenylyl group from ATP to 4′-phosphopantetheine, yielding 3′-dephospho-CoA and pyrophosphate. Enterococcus faecalis PPAT has been overexpressed in Escherichia coli as a fusion with a C-terminal purification tag and crystallized at 297 K using a reservoir solution consisting of 0.1 M sodium HEPES pH 7.5, 0.8 M sodium dihydrogen phosphate and 0.8 M potassium dihydrogen phosphate. X-ray diffraction data were collected to 2.70 Å at 100 K.more » The crystals belong to the primitive tetragonal space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 160.81, c = 225.68 Å. Four copies of the hexameric molecule are likely to be present in the asymmetric unit, giving a crystal volume per protein weight (V{sub M}) of 3.08 Å{sup 3} Da{sup −1} and a solvent content of 60.1%.« less

  13. Synthesis and characterization of iron based superconductor Nd-1111

    NASA Astrophysics Data System (ADS)

    Alborzi, Z.; Daadmehr, V.

    2018-06-01

    Polycrystalline sample of NdFeAsO0.8F0.2 was prepared by one-step solid-state reaction method. The structural and electrical properties of sample were characterized through XRD pattern and the 4-probe method. The critical temperature was obtained at 56 K. The crystal structure was tetragonal with P4/nmm:2 symmetry group.

  14. Single crystal growth and characterization of Na{sub x}Ln{sub 1−x}MoO{sub 4}, Ln=La, Ce, Pr, Nd, Sm, and Eu (x=0.397–0.499)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortese, Anthony J.; Abeysinghe, Dileka; Smith, Mark D.

    Single crystals of La{sub 0.516(3)}Na{sub 0.484(3)}MoO{sub 4}, Ce{sub 0.512(2)}Na{sub 0.488(2)}MoO{sub 4}, Pr{sub 0.502(2)}Na{sub 0.498(2)}MoO{sub 4,} Nd{sub 0.501(2)}Na{sub 0.499(2)}MoO{sub 4}, Sm{sub 0.509(2)}Na{sub 0.491(2)}MoO{sub 4}, and Eu{sub 0.603(2)}Na{sub 0.397(2)}MoO{sub 4} were grown for the first time out of an alkali metal halide eutectic flux. All compounds crystallize in the tetragonal space group I4{sub 1}/a. UV/Vis measurements show the presence of an absorption edge for all compounds except Eu{sub 0.603(2)}Na{sub 0.397(2)}MoO{sub 4}. The temperature dependence of the magnetic susceptibility was measured for all compounds and found to be paramagnetic across the entire 2–300 K temperature range measured. - Graphical abstract: Single crystals ofmore » La{sub 0.516(3)}Na{sub 0.484(3)}MoO{sub 4}, Ce{sub 0.512(2)}Na{sub 0.488(2)}MoO{sub 4}, Pr{sub 0.502(2)}Na{sub 0.498(2)}MoO{sub 4,} Nd{sub 0.501(2)}Na{sub 0.499(2)}MoO{sub 4}, Sm{sub 0.509(2)}Na{sub 0.491(2)}MoO{sub 4}, and Eu{sub 0.603(2)}Na{sub 0.397(2)}MoO{sub 4} were grown for the first time out of an alkali metal halide eutectic flux. All compounds crystallize in the tetragonal space group I4{sub 1}/a. Eu{sub 0.603(2)}Na{sub 0.397(2)}MoO{sub 4} was found to possess the highest Mo{sup 5+} content at 20.6%. UV/Vis, magnetic susceptibility, and a bond valence sum analysis were performed on all samples. Display Omitted - Highlights: • Six lanthanide sodium molybdates have been synthesized and characterized. • An in situ reduction was carried out using Mo as a metal reducing agent. • UV/Vis and magnetic susceptibility data were collected. • Eu{sub 0.603(2)}Na{sub 0.397(2)}MoO{sub 4} was found to possess the highest Mo{sup 5+} content at 20.6%.« less

  15. Rare-earth metal gallium silicides via the gallium self-flux method. Synthesis, crystal structures, and magnetic properties of RE(Ga 1–xSi x)₂ (RE=Y, La–Nd, Sm, Gd–Yb, Lu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darone, Gregory M.; Hmiel, Benjamin; Zhang, Jiliang

    Fifteen ternary rare-earth metal gallium silicides have been synthesized using molten Ga as a molten flux. They have been structurally characterized by single-crystal and powder X-ray diffraction to form with three different structures—the early to mid-late rare-earth metals RE=La–Nd, Sm, Gd–Ho, Yb and Y form compounds with empirical formulae RE(Ga xSi 1–x)₂ (0.38≤x≤0.63), which crystallize with the tetragonal α-ThSi₂ structure type (space group I4₁/amd, No. 141; Pearson symbol tI12). The compounds of the late rare-earth crystallize with the orthorhombic α-GdSi₂ structure type (space group Imma, No. 74; Pearson symbol oI12), with refined empirical formula REGa xSi 2–x–y (RE=Ho, Er, Tm;more » 0.33≤x≤0.40, 0.10≤y≤0.18). LuGa₀.₃₂₍₁₎Si₁.₄₃₍₁₎ crystallizes with the orthorhombic YbMn₀.₁₇Si₁.₈₃ structure type (space group Cmcm, No. 63; Pearson symbol oC24). Structural trends are reviewed and analyzed; the magnetic susceptibilities of the grown single-crystals are presented. - Graphical abstract: This article details the exploration of the RE–Ga–Si ternary system with the aim to systematically investigate the structural “boundaries” between the α-ThSi₂ and α-GdSi₂-type structures, and studies of the magnetic properties of the newly synthesized single-crystalline materials. Highlights: • Light rare-earth gallium silicides crystallize in α-ThSi₂ structure type. • Heavy rare-earth gallium silicides crystallize in α-GdSi₂ structure type. • LuGaSi crystallizes in a defect variant of the YbMn₀.₁₇Si₁.₈₃ structure type.« less

  16. The crystal structures of BiTeO 3I, NdTeO 3X (X=Cl, Br) and Bi 5TeO 8.5I 2: some crystal chemistry peculiarities of layered Bi(Ln)Te oxyhalides

    NASA Astrophysics Data System (ADS)

    Berdonosov, Peter S.; Charkin, Dmitry O.; Kusainova, Ardak M.; Hervoches, Charles H.; Dolgikh, Valeriy A.; Lightfoot, Philip

    2000-09-01

    Four new layered oxyhalides related to the Sillen family have been prepared and characterized by Rietveld refinement of powder X-ray and neutron diffraction data. BiTeO 3I and NdTeO 3Br both adopt tetragonal symmetry, space group P4/ nmm (for BiTeO 3I, a=4.10811(8), c=27.988(1) Å; NdTeO 3Br, a=4.06603(7), c=26.922(1) Å, at 25°C). The structures are composed of triple and double fluorite-related mixed metal oxide layers separated by single and double halogen layers, in the sequence MTe 2O 5XXMTe 2O 5XM 2O 2X, which may be represented by the symbol X 13X 13X 22, where the subscript signifies the number of halogen layers and the superscript the number of metal sublayers within the fluorite block, by analogy with Sillen's notation. The double fluorite layers are occupied exclusively by Bi, whereas there is an ordered arrangement of Bi/Te within the triple fluorite layers, with Te exclusively occupying the outer sublayers of the block. NdTeO 3Cl adopts an orthorhombically distorted form of this structure type, space group Pmmn, a=4.08096(8), b=4.03441(8), c=25.7582(7) Å at 25°C. Bi 5TeO 8.5I 2 adopts a distorted, non-centrosymmetric version of the simpler X 13 structure type, space group Cmm2, a=5.6878(3), b=5.7230(3), c=9.7260(6) Å, consisting of single halogen layers sandwiched between triple fluorite layers, in which there is partial ordering of the Bi/Te cations.

  17. Thickness-dependent electrocaloric effect in mixed-phase Pb0.87Ba0.1 La0.02(Zr0.6Sn0.33Ti0.07)O3 thin films

    PubMed Central

    Correia, T. M.

    2016-01-01

    Full-perovskite Pb0.87Ba0.1La0.02(Zr0.6Sn0.33Ti0.07)O3 (PBLZST) thin films were fabricated by a sol–gel method. These revealed both rhombohedral and tetragonal phases, as opposed to the full-tetragonal phase previously reported in ceramics. The fractions of tetragonal and rhombohedral phases are found to be strongly dependent on film thickness. The fraction of tetragonal grains increases with increasing film thickness, as the substrate constraint throughout the film decreases with film thickness. The maximum of the dielectric constant (εm) and the corresponding temperature (Tm) are thickness-dependent and dictated by the fraction of rhombohedral and tetragonal phase, with εm reaching a minimum at 400 nm and Tm shifting to higher temperature with increasing thickness. With the thickness increase, the breakdown field decreases, but field-induced antiferroelectric–ferroelectric (EAFE−FE) and ferroelectric–antiferroelectric (EFE−AFE) switch fields increase. The electrocaloric effect increases with increasing film thickness. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402937

  18. The p- T phase diagram of KNbO 3 by a dielectric constant measurement

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Endo, S.; Deguchi, K.; Ming, L. C.; Zou, G.

    2001-11-01

    A dielectric constant measurement was carried out on perovskite-type ferroelectrics KNbO 3 over a wide range of temperature under high pressure. The temperature- and pressure-dependence of the dielectric constant clarified that all temperatures of the transitions from the ferroelectric rhombohedral to orthorhombic, to tetragonal and then to the paraelectric cubic phase, decrease with increasing pressure. These results indicate that the orthorhombic-tetragonal transition takes place at 8.5 GPa and the tetragonal-cubic transition at 11 GPa, at room temperature.

  19. Effects of Zr/Ce molar ratio and water content on thermal stability and structure of ZrO{sub 2}–CeO{sub 2} mixed oxides prepared via sol–gel process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Wenzhi; Yang, Jili; Wang, Chunjie

    2012-09-15

    Highlights: ► Tetragonal t″ phase was stabilized in Zr{sub 0.5}Ce{sub 0.5}O{sub 2} solid solution at temperature as high as 1000 °C. ► Specific surface area of powders decreased with the increase of water addition and the Ce content. ► The single stable phase was controlled by adjusting the volume ratio of water and ethanol. ► Tetragonal (t″) phase dissociated into cubic and tetragonal (t′) phases at 1200 °C. -- Abstract: ZrO{sub 2}–CeO{sub 2} mixed oxides were synthesized via sol–gel process. Thermal stability, structure and morphology of samples were investigated by powder X-ray diffraction, FT-Raman spectroscopy, X-ray photoelectron spectroscopy and scanningmore » electron microscopy. In this approach, the solvent composition and Zr/Ce molar ratio have great influences on the structure and morphology of final products. With decreasing water content in the mixed solvent, specific surface area of powders increased and the single tetragonal phase was obtained. Only when the volume ratio of water and ethanol and the Zr/Ce molar ratio were 1:1, tetragonal t″-Zr{sub 0.5}Ce{sub 0.5}O{sub 2} could be stabilized in powders at temperature as high as 1000 °C. Meanwhile, tetragonal (t′) and (t″) phases coexisted in Zr{sub 0.5}Ce{sub 0.5}O{sub 2} solid solution without peak splitting after calcination at 1100 °C, further transforming into cubic and tetragonal (t′) phases at 1200 °C. The effective activation energy for Zr{sub 0.5}Ce{sub 0.5}O{sub 2} nanocrystallite growth during annealing is about 5.24 ± 0.15 kJ/mol.« less

  20. Uniaxial strain control of spin-polarization in multicomponent nematic order of BaFe 2As 2

    DOE PAGES

    Kissikov, T.; Sarkar, R.; Lawson, M.; ...

    2018-03-13

    The iron-based high temperature superconductors exhibit a rich phase diagram reflecting a complex interplay between spin, lattice, and orbital degrees of freedom. The nematic state observed in these compounds epitomizes this complexity, by entangling a real-space anisotropy in the spin fluctuation spectrum with ferro-orbital order and an orthorhombic lattice distortion. A subtle and less-explored facet of the interplay between these degrees of freedom arises from the sizable spin-orbit coupling present in these systems, which translates anisotropies in real space into anisotropies in spin space. We present nuclear magnetic resonance studies, which reveal that the magnetic fluctuation spectrum in the paramagneticmore » phase of BaFe 2As 2 acquires an anisotropic response in spin-space upon application of a tetragonal symmetry-breaking strain field. Lastly, our results unveil an internal spin structure of the nematic order parameter, indicating that electronic nematic materials may offer a route to magneto-mechanical control.« less

  1. Phase transition in a tetragonal In90Pb10 alloy under high pressure: a switch from c/a > 1 to c/a < 1

    NASA Astrophysics Data System (ADS)

    Degtyareva, V. F.; Bdikin, I. K.; Porsch, F.; Novokhatskaya, N. I.

    2003-03-01

    The effect of pressure on tetragonal In-Pb alloys with 10, 15, and 22 at.% Pb has been studied up to pressure 30 GPa with diamond anvil cells using synchrotron radiation. The In-type face-centred tetragonal phase of the In alloy with 10 at.% Pb undergoes under pressure a phase transition with a discontinuous jump of the axial ratio from c/a > 1 to c/a < 1 via a two-phase region from 7 to 20 GPa. The tetragonal phases of the In alloys with 15 and 22 at.% Pb with c/a < 1 at ambient pressure show only a slight decrease in c/a with pressure increase. The correlation of the axial ratio with the alloy content and its change with pressure in In alloys and In itself are attributed to Brillouin-zone-Fermi-sphere interactions.

  2. The exchange interactions and the state of manganese atoms in the solid solutions in Bi{sub 3}NbO{sub 7} of cubic and tetragonal modifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chezhina, N.V., E-mail: chezhina@nc2490.spb.edu; Zhuk, N.A.; Korolev, D.A.

    2016-01-15

    The comparative analysis of magnetic behavior of manganese-containing solid solutions Bi{sub 3}Nb{sub 1−x}Mn{sub x}O{sub 7−δ} (x=0.01−0.10) of cubic and tetragonal modifications was performed. Based on the results of magnetic susceptibility studies paramagnetic manganese atoms in solid solutions of cubic and tetragonal modifications were found to be in the form of Mn(III), Mn(IV) monomers and exchange-coupled dimers of Mn(III)–O–Mn(III), Mn(IV)–O–Mn(IV), Mn(III)–O–Mn(IV). The exchange parameters and the distribution of monomers and dimers in solid solutions as a function of the content of paramagnetic atoms were calculated. - Graphical abstract: Structural transition of cubic to tetragonal Bi{sub 3}NbO{sub 7−δ}.

  3. Demonstration of Ru as the 4th ferromagnetic element at room temperature.

    PubMed

    Quarterman, P; Sun, Congli; Garcia-Barriocanal, Javier; Dc, Mahendra; Lv, Yang; Manipatruni, Sasikanth; Nikonov, Dmitri E; Young, Ian A; Voyles, Paul M; Wang, Jian-Ping

    2018-05-25

    Development of novel magnetic materials is of interest for fundamental studies and applications such as spintronics, permanent magnetics, and sensors. We report on the first experimental realization of single element ferromagnetism, since Fe, Co, and Ni, in metastable tetragonal Ru, which has been predicted. Body-centered tetragonal Ru phase is realized by use of strain via seed layer engineering. X-ray diffraction and electron microscopy confirm the epitaxial mechanism to obtain tetragonal phase Ru. We observed a saturation magnetization of 148 and 160 emu cm -3 at room temperature and 10 K, respectively. Control samples ensure the ferromagnetism we report on is from tetragonal Ru and not from magnetic contamination. The effect of thickness on the magnetic properties is also studied, and it is observed that increasing thickness results in strain relaxation, and thus diluting the magnetization. Anomalous Hall measurements are used to confirm its ferromagnetic behavior.

  4. Glass ceramic toughened with tetragonal zirconia

    DOEpatents

    Keefer, K.D.

    1984-02-10

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nuclearing agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200 to 1700/sup 0/C and is then heat-treated at a temperature within the range of 800 to 1200/sup 0/C in order to precipitate tetragonal ZrO/sub 2/. The composition, as well as the length and temperature of the heat treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  5. Glass ceramic toughened with tetragonal zirconia

    DOEpatents

    Keefer, Keith D.; Michalske, Terry A.

    1986-01-01

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat-treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nucleating agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200.degree. to 1700.degree. C. and is then heat-treated at a temperature within the range of 800.degree. to 1200.degree. C. in order to precipitate tetragonal ZrO.sub.2. The composition, as well as the length and temperature of the heat-treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  6. Effects of poling over the orthorhombic-tetragonal phase transition temperature in compositionally homogeneous (K,Na)NbO3-based ceramics

    NASA Astrophysics Data System (ADS)

    Morozov, M. I.; Kungl, H.; Hoffmann, M. J.

    2011-03-01

    Li-, Ta-, and Mn-modified (K,Na)NbO3 ceramics with various compositional homogeneity have been prepared by conventional and precursor methods. The homogeneous ceramic has demonstrated a sharper peak in temperature dependent piezoelectric response. The dielectric and piezoelectric properties of the homogeneous ceramics have been characterized at the experimental subcoercive electric fields near the temperature of the orthorhombic-tetragonal phase transition with respect to poling in both phases. Poling in the tetragonal phase is shown to enhance the low-signal dielectric and piezoelectric properties in the orthorhombic phase.

  7. Direct synthesis of ultrafine tetragonal BaTiO3 nanoparticles at room temperature

    PubMed Central

    2011-01-01

    A large quantity of ultrafine tetragonal barium titanate (BaTiO3) nanoparticles is directly synthesized at room temperature. The crystalline form and grain size are checked by both X-ray diffraction and transmission electron microscopy. The results revealed that the perovskite nanoparticles as fine as 7 nm have been synthesized. The phase transition of the as-prepared nanoparticles is investigated by the temperature-dependent Raman spectrum and shows the similar tendency to that of bulk BaTiO3 materials. It is confirmed that the nanoparticles have tetragonal phase at room temperature. PMID:21781339

  8. Evolution of structure and superconductivity in Ba(Ni 1 -xCox)2As2

    NASA Astrophysics Data System (ADS)

    Eckberg, Chris; Wang, Limin; Hodovanets, Halyna; Kim, Hyunsoo; Campbell, Daniel J.; Zavalij, Peter; Piccoli, Philip; Paglione, Johnpierre

    2018-06-01

    The effects of Co substitution on Ba (Ni1-xCox) 2As2 (0 ≤x ≤0.251 ) single crystals grown out of Pb flux are investigated via transport, magnetic, and thermodynamic measurements. BaNi2As2 exhibits a first-order tetragonal to triclinic structural phase transition at Ts=137 K upon cooling, and enters a superconducting phase below Tc=0.7 K. The structural phase transition is sensitive to cobalt content and is suppressed completely by x ≥0.133 . The superconducting critical temperature, Tc, increases continuously with x , reaching a maximum of Tc=2.3 K at x =0.083 and then decreases monotonically until superconductivity is no longer observable well into the tetragonal phase. In contrast to similar BaNi2As2 substitutional studies, which show an abrupt change in Tc at the triclinic-tetragonal boundary that extends far into the tetragonal phase, Ba (Ni1-xCox) 2As2 exhibits a domelike phase diagram centered around the zero-temperature tetragonal-triclinic boundary. Together with an anomalously large heat capacity jump Δ Ce/γ T ˜2.2 near optimal doping, the smooth evolution of Tc in the Ba (Ni1-xCox) 2As2 system suggests a mechanism for pairing enhancement other than phonon softening.

  9. Tetragonal zirconia quantum dots in silica matrix prepared by a modified sol-gel protocol

    NASA Astrophysics Data System (ADS)

    Verma, Surbhi; Rani, Saruchi; Kumar, Sushil

    2018-05-01

    Tetragonal zirconia quantum dots (t-ZrO2 QDs) in silica matrix with different compositions ( x)ZrO2-(100 - x)SiO2 were fabricated by a modified sol-gel protocol. Acetylacetone was added as a chelating agent to zirconium propoxide to avoid precipitation. The powders as well as thin films were given thermal treatment at 650, 875 and 1100 °C for 4 h. The silica matrix remained amorphous after thermal treatment and acted as an inert support for zirconia quantum dots. The tetragonal zirconia embedded in silica matrix transformed into monoclinic form due to thermal treatment ≥ 1100 °C. The stability of tetragonal phase of zirconia is found to enhance with increase in silica content. A homogenous dispersion of t-ZrO2 QDs in silica matrix was indicated by the mapping of Zr, Si and O elements obtained from scanning electron microscope with energy dispersive X-ray analyser. The transmission electron images confirmed the formation of tetragonal zirconia quantum dots embedded in silica. The optical band gap of zirconia QDs (3.65-5.58 eV) was found to increase with increase in zirconia content in silica. The red shift of PL emission has been exhibited with increase in zirconia content in silica.

  10. Raman spectroscopy analysis of air grown oxide scale developed on pure zirconium substrate

    NASA Astrophysics Data System (ADS)

    Kurpaska, L.; Favergeon, J.; Lahoche, L.; El-Marssi, M.; Grosseau Poussard, J.-L.; Moulin, G.; Roelandt, J.-M.

    2015-11-01

    Using Raman spectroscopy technique, external and internal parts of zirconia oxide films developed at 500 °C and 600 °C on pure zirconium substrate under air at normal atmospheric pressure have been examined. Comparison of Raman peak positions of tetragonal and monoclinic zirconia phases, recorded during the oxide growth at elevated temperature, and after cooling at room temperature have been presented. Subsequently, Raman peak positions (or shifts) were interpreted in relation with the stress evolution in the growing zirconia scale, especially closed to the metal/oxide interface, where the influence of compressive stress in the oxide is the biggest. Reported results, for the first time show the presence of a continuous layer of tetragonal zirconia phase developed in the proximity of pure zirconium substrate. Based on the Raman peak positions we prove that this tetragonal layer is stabilized by the high compressive stress and sub-stoichiometry level. Presence of the tetragonal phase located in the outer part of the scale have been confirmed, yet its Raman characteristics suggest a stress-free tetragonal phase, therefore different type of stabilization mechanism. Presented study suggest that its stabilization could be related to the lattice defects introduced by highstoichiometry of zirconia or presence of heterovalent cations.

  11. Fe moments in the pressure-induced collapsed tetragonal phase of (Ca0.67Sr0.33) Fe2As2

    NASA Astrophysics Data System (ADS)

    Jeffries, Jason; Butch, Nicha; Bradley, Joseph; Xiao, Yuming; Chow, Paul; Saha, Shanta; Kirshenbaum, Kevin; Paglione, Johnpierre

    2013-06-01

    The tetragonal AEFe2As2 (AE =alkaline earth element) family of iron-based superconductors exhibits magnetic order at ambient pressure and low temperature. Under pressure, the magnetic order is suppressed, and an isostructural volume collapse is induced due to increased As-As bonding across the mirror plane of the structure. This collapsed tetragonal phase has been shown to support superconductivity under some conditions, and theoretical calculations suggest an unconventional origin. Theoretical calculations also reveal that enhanced As-As bonding and the magnitude of the Fe moments are correlated, suggesting that the Fe moments can be quenched in the collapsed tetragonal phase. Whether the Fe moments persist in the collapsed tetragonal phase has implications for the pairing mechanism of the observed, pressure-induced superconductivity in these compounds. We will present pressure- dependent x-ray emission spectroscopy (XES) measurements that probe the Fe moments through the volume collapse transition of (Ca0.67Sr0.33) Fe2As2. These measurements will be compared with previously reported phase diagrams that include superconductivity. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy (DOE), National Nuclear Security Administration under Contract No. DE-AC52-07NA27344.

  12. Correction of the equilibrium temperature caused by slight evaporation of water in protein crystal growth cells during long-term space experiments at International Space Station.

    PubMed

    Fujiwara, Takahisa; Suzuki, Yoshihisa; Yoshizaki, Izumi; Tsukamoto, Katsuo; Murayama, Kenta; Fukuyama, Seijiro; Hosokawa, Kouhei; Oshi, Kentaro; Ito, Daisuke; Yamazaki, Tomoya; Tachibana, Masaru; Miura, Hitoshi

    2015-08-01

    The normal growth rates of the {110} faces of tetragonal hen egg-white lysozyme crystals, R, were measured as a function of the supersaturation σ parameter using a reflection type interferometer under μG at the International Space Station (NanoStep Project). Since water slightly evaporated from in situ observation cells during a long-term space station experiment for several months, equilibrium temperature T(e) changed, and the actual σ, however, significantly increased mainly due to the increase in salt concentration C(s). To correct σ, the actual C(s) and protein concentration C(p), which correctly represent the measured T(e) value in space, were first calculated. Second, a new solubility curve with the corrected C(s) was plotted. Finally, the revised σ was obtained from the new solubility curve. This correction method successfully revealed that the 2.8% water was evaporated from the solution, leading to 2.8% increase in the C(s) and C(p) of the solution.

  13. Structural characterization of titania by X-ray diffraction, photoacoustic, Raman spectroscopy and electron paramagnetic resonance spectroscopy.

    PubMed

    Kadam, R M; Rajeswari, B; Sengupta, Arijit; Achary, S N; Kshirsagar, R J; Natarajan, V

    2015-02-25

    A titania mineral (obtained from East coast, Orissa, India) was investigated by X-ray diffraction (XRD), photoacoustic spectroscopy (PAS), Raman and Electron Paramagnetic Resonance (EPR) studies. XRD studies indicated the presence of rutile (91%) and anatase (9%) phases in the mineral. Raman investigation supported this information. Both rutile and anatase phases have tetragonal structure (rutile: space group P4(2)/mnm, a=4.5946(1) Å, c=2.9597(1) Å, V=62.48(1) (Å)(3), Z=2; anatase: space group I4(1)/amd, 3.7848(2) Å, 9.5098(11) Å, V=136.22(2) (Å)(3), Z=4). The deconvoluted PAS spectrum showed nine peaks around 335, 370, 415,485, 555, 605, 659, 690,730 and 785 nm and according to the ligand field theory, these peaks were attributed to the presence of V(4+), Cr(3+), Mn(4+) and Fe(3+) species. EPR studies revealed the presence of transition metal ions V(4+)(d(1)), Cr(3+)(d(3)), Mn(4+)(d(3)) and Fe(3+)(d(5)) at Ti(4+) sites. The EPR spectra are characterized by very large crystal filed splitting (D term) and orthorhombic distortion term (E term) for multiple electron system (s>1) suggesting that the transition metal ions substitute the Ti(4+) in the lattice which is situated in distorted octahedral coordination of oxygen. The possible reasons for observation of unusually large D and E term in the EPR spectra of transition metal ions (S=3/2 and 5/2) are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. CFA-2 and CFA-3 (Coordination Framework Augsburg University-2 and -3); novel MOFs assembled from trinuclear Cu(I)/Ag(I) secondary building units and 3,3',5,5'-tetraphenyl-bipyrazolate ligands.

    PubMed

    Grzywa, Maciej; Geßner, Christof; Denysenko, Dmytro; Bredenkötter, Björn; Gschwind, Fabienne; Fromm, Katharina M; Nitek, Wojciech; Klemm, Elias; Volkmer, Dirk

    2013-05-21

    The syntheses of H2-phbpz, [Cu2(phbpz)]·2DEF·MeOH (CFA-2) and [Ag2(phbpz)] (CFA-3) (H2-phbpz = 3,3',5,5'-tetraphenyl-1H,1'H-4,4'-bipyrazole) compounds and their crystal structures are described. The Cu(I) containing metal-organic framework CFA-2 crystallizes in the tetragonal crystal system, within space group I4(1)/a (no. 88) and the following unit cell parameters: a = 30.835(14), c = 29.306(7) Å, V = 27 865(19) Å(3). CFA-2 features a flexible 3-D three-connected two-fold interpenetrated porous structure constructed of triangular Cu(I) subunits. Upon exposure to different kinds of liquids (MeOH, EtOH, DMF, DEF) CFA-2 shows pronounced breathing effects. CFA-3 crystallizes in the monoclinic crystal system, within space group P2(1)/c (no. 14) and the following unit cell parameters: a = 16.3399(3), b = 32.7506(4), c = 16.2624(3) Å, β = 107.382(2)°, V = 8305.3(2) Å(3). In contrast to the former compound, CFA-3 features a layered 2-D three-connected structure constructed from triangular Ag(i) subunits. Both compounds are characterized by elemental and thermogravimetric analyses, single crystal structure analysis and X-ray powder diffraction, FTIR- and fluorescence spectroscopy. Preliminary results on oxygen activation in CFA-2 are presented and potential improvements in terms of framework robustness and catalytic efficiency are discussed.

  15. Variable-temperature single-crystal X-ray diffraction study of tetragonal and cubic perovskite-type barium titanate phases.

    PubMed

    Nakatani, Tomotaka; Yoshiasa, Akira; Nakatsuka, Akihiko; Hiratoko, Tatsuya; Mashimo, Tsutomu; Okube, Maki; Sasaki, Satoshi

    2016-02-01

    A variable-temperature single-crystal X-ray diffraction study of a synthetic BaTiO3 perovskite has been performed over the temperature range 298-778 K. A transition from a tetragonal (P4mm) to a cubic (Pm3m) phase has been revealed near 413 K. In the non-centrosymmetric P4mm symmetry group, both Ti and O atoms are displaced along the c-axis in opposite directions with regard to the Ba position fixed at the origin, so that Ti(4+) and Ba(2+) cations occupy off-center positions in the TiO6 and BaO12 polyhedra, respectively. Smooth temperature-dependent changes of the atomic coordinates become discontinuous with the phase transition. Our observations imply that the cations remain off-center even in the high-temperature cubic phase. The temperature dependence of the mean-square displacements of Ti in the cubic phase includes a significant static component which means that Ti atoms are statistically distributed in the off-center positions.

  16. Raman effect in icosahedral boron-rich solids

    PubMed Central

    Werheit, Helmut; Filipov, Volodymyr; Kuhlmann, Udo; Schwarz, Ulrich; Armbrüster, Marc; Leithe-Jasper, Andreas; Tanaka, Takaho; Higashi, Iwami; Lundström, Torsten; Gurin, Vladimir N; Korsukova, Maria M

    2010-01-01

    We present Raman spectra of numerous icosahedral boron-rich solids having the structure of α-rhombohedral, β-rhombohedral, α-tetragonal, β-tetragonal, YB66, orthorhombic or amorphous boron. The spectra were newly measured and, in some cases, compared with reported data and discussed. We emphasize the importance of a high signal-to-noise ratio in the Raman spectra for detecting weak effects evoked by the modification of compounds, accommodation of interstitial atoms and other structural defects. Vibrations of the icosahedra, occurring in all the spectra, are interpreted using the description of modes in α-rhombohedral boron by Beckel et al. The Raman spectrum of boron carbide is largely clarified. Relative intra- and inter-icosahedral bonding forces are estimated for the different structural groups and for vanadium-doped β-rhombohedral boron. The validity of Badger's rule is demonstrated for the force constants of inter-icosahedral B–B bonds, whereas the agreement is less satisfactory for the intra-icosahedral B–B bonds. PMID:27877328

  17. Is it Possible to have the Similar Unit Cell in Crystals of Different form from the same Macromolecule? (A Case Study of Ribosome Crystals)

    NASA Technical Reports Server (NTRS)

    Karpova, E. A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Three different types of ribosome crystals were grown by the vapor diffusion technique in hanging drops as described in (1,2). The ribosome is a large asymmetric RNA-protein complex (2.3 million Da), which is protein syntheses machinery of the cell. In this poster we would like to discuss the features of ribosome crystallization. Ribosomes were purified from the thermophilic bacteria Thermus thermophilus by centrifugation (3). Three types of crystals (needle, flat tetragonal and tetragonal-like pyramid) can be grown from the same solution; furthermore, in the same drop using 10-15% 2-methyl-2,4- pentanediol as a precipitant. The crystals appeared in 5-48 hours. The crystals were stable and can co-exist in solution over long period of time. The kinetics of appearance of different crystal forms was different: first the needle crystals were grown, then the tetragonal, and finally the tetragonal pyramids. Later studies of the process of ribosome crystal growth depending on supersaturation showed that low supersaturation results in the appearance of tetragonal plates or tetragonal-like pyramids. An electron microscopy study, together with computer modeling, has shown that crystals of different forms have a high probability of having the same unit cell parameters. According to these experiments the following conclusion can be dranvn: the level of supersaturation of the macromolecule in a crystallizing solution is one of the major factors for forming three-dimensional crystals convenient for X-rays diffraction analysis. From the same macromolecule solution, crystals of different forms can be grown at approximately the same conditions by varying the concentration of macromolecule in the solution. Ion-macromolecule and water-macromolecule interactions, apparently, play the main role in the formation of the unit cell of the crystals.

  18. Crystallization and preliminary X-ray analysis of Der f 2, a potent allergen derived from the house dust mite (Dermatophagoides farinae)

    NASA Technical Reports Server (NTRS)

    Roeber, Dana; Achari, Aniruddha; Takai, Toshiro; Okumura, Yasushi; Scott, David L.

    2003-01-01

    Although a number of allergens have been identified and isolated, the underlying molecular basis for the potent immune response is poorly understood. House dust mites (Dermatophagoides sp.) are ubiquitous contributors to atopy in developed countries. The rhinitis, dermatitis and asthma associated with allergic reactions to these arthropods are frequently caused by relatively small (125-129 amino acids) mite proteins of unknown biological function. Der f 2, a major allergen from the mite D. farinae, has been recombinantly expressed, characterized and crystallized. The crystals belong to the tetragonal space group I4(1)22, with unit-cell parameters a = b = 95.2, c = 103.3 A. An essentially complete (97.2%) data set has been collected to 2.4 A at a synchrotron source. Attempts to solve the crystal structure of Der f 2 by molecular replacement using the NMR coordinates for either Der f 2 or Der p 2 (the homologous protein from D. pteronyssinus) failed, but preliminary searches using the crystalline Der p 2 atomic coordinates appear to be promising.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavira, José A.; Jesus, Walleska de; Camara-Artigas, Ana

    The haemoglobin II from the clam L. pectinata has been crystallized using counter-diffusion in single capillary in the presence of agarose to improve crystal quality. Initial phases have been obtained by molecular replacement. Haemoglobin II is one of three haemoglobins present in the cytoplasm of the Lucina pectinata mollusc that inhabits the Caribbean coast. Using HBII purified from its natural source, crystallization screening was performed using the counter-diffusion method with capillaries of 0.2 mm inner diameter. Crystals of HbII suitable for data collection and structure determination were grown in the presence of agarose at 0.1%(w/v) in order to improve theirmore » quality. The crystals belong to the tetragonal space group P4{sub 2}2{sub 1}2, with unit-cell parameters a = b = 73.92, c = 152.35 Å, and diffracted X-rays to a resolution of better than 2.0 Å. The asymmetric unit is a homodimer with a corresponding Matthews coefficient (V{sub M}) of 3.15 Å{sup 3} Da{sup −1} and a solvent content of 61% by volume.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beales, T.P.; Parberry, J.M.

    (Bi{sub 0.33}Cd{sub 0.67})Sr{sub 2}YCu{sub 2}O{sub 7{minus}{delta}} can be synthesized single phase by XRD, between 800 and 950 C. It has a tetragonal structure, space group P4/mmm, and lattice parameters a = 3.802 {angstrom} and c = 11.96 {angstrom}. The Cd site can be fully replaced with an appropriate M{sup 11} ion and the Y site can be chemically substituted up to 100% by lanthanide ions with ionic radii falling between those of Nd and Gd, with a measurable shift in a and c axis lattice parameters. As synthesized, (Bi{sub 0.33}Cd{sub 0.67})Sr{sub 2}YCu{sub 2}O{sub 7{minus}{delta}} is semiconducting and paramagnetic down tomore » 4 K. Superconductivity can be induced by a post-synthesis annealing in high pressure oxygen to give {Tc} = 40 K. Thermopower measurements show that the material is underdoped with S{sub 290K} = 50 {mu}VK{sup {minus}1}. Introduction of extra charge carriers to raise {Tc} by doping Ca on the Y site is not chemically possible with the synthesis techniques used.« less

  1. Synthesis and characterization of FeSe1-xTex (x=0, 0.5, 1) superconductors

    NASA Astrophysics Data System (ADS)

    Zargar, Rayees A.; Hafiz, A. K.; Awana, V. P. S.

    2015-08-01

    In this study, FeTe1-xSex (x=0,0.5,1) samples were prepared by conventional solid state reaction method and investigated by powder XRD, SEM, Raman and resistivity measurement techniques to reveal the effect of tellurium (Te) substitution in FeSe matrix. Rietveld analysis was performed on room temperature recorded, X-ray diffraction (XRD) patterns of pure FeSe, FeTe and FeSe0.5Te0.5 which shows that all the compounds are crystallized in a tetragonal structure. SEM images show the dense surface morphology. Raman spectra recorded in the range from 100 to 700 cm-1 at ambient temperature has been interpreted by P4/nmm space group of the lattice. The variation in intensity and shift in peak positions of some phonon modes has been discussed on the basis of variation in crystalline field effect by substituting Te in FeSe lattice. The resistivity versus temperature curves reveals that FeSe becomes superconductor at 7 K and FeSe0.5Te0.5 shows superconductivity below 14 K while FeTe is non-superconducting compound.

  2. Crystallization and preliminary X-ray characterization of arylamine N-acetyltransferase C (BanatC) from Bacillus anthracis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluvinage, Benjamin; Li de la Sierra-Gallay, Inés; Martins, Marta

    2007-10-01

    Bacillus anthracis arylamine N-acetyltransferase C (BanatC) is an enzyme that metabolizes the drug sulfamethoxazole. Crystals of the purified enzyme that diffract at 1.95 Å are reported. The arylamine N-acetyltransferase (NAT) enzymes are xenobiotic metabolizing enzymes that have been found in a large range of eukaryotes and prokaryotes. These enzymes catalyse the acetylation of arylamine drugs and/or pollutants. Recently, a Bacillus anthracis NAT isoform (BanatC) has been cloned and shown to acetylate the sulfonamide antimicrobial sulfamethoxazole (SMX). Subsequently, it was shown that BanatC contributes to the resistance of this bacterium to SMX. Here, the crystallization and the X-ray characterization of BanatCmore » (Y38F mutant) are reported. The crystals belong to the tetragonal space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 53.70, c = 172.40 Å, and diffract to 1.95 Å resolution on a synchrotron source.« less

  3. Syntheses, characterization and nonlinear optical properties of sodium-scandium carbonate Na5Sc(CO3)4·2H2O

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Luo, Min; Ye, Ning

    2014-10-01

    A novel nonlinear optical (NLO) material Na5Sc(CO3)4·2H2O has been synthesized under a subcritical hydrothermal condition. The structure is determined by single-crystal X-ray diffraction and further characterized by TG analyses and UV-vis-NIR diffuse reflectance spectrum. It crystallizes in the tetragonal space group P-421c, with a = b = 7.4622(6) Å, C = 11.5928(15) Å. The Second-harmonic generation (SHG) on polycrystalline samples was measured using the Kurtz and Perry technique, which indicated that Na5Sc(CO3)4·2H2O was a phase-matchable material, and its measured SHG coefficient was about 1.8 times as large as that of d36 (KDP). The results from the UV-vis diffuse reflectance spectroscopy study of the powder samples indicated that the short-wavelength absorption edges of Na5Sc(CO3)4·2H2O is about 220 nm, suggesting that this crystal is a promising UV nonlinear optical (NLO) materials.

  4. Influence of Cobalt Substitution on the Magnetic Properties of Fe5PB2.

    PubMed

    Cedervall, Johan; Nonnet, Elise; Hedlund, Daniel; Häggström, Lennart; Ericsson, Tore; Werwiński, Mirosław; Edström, Alexander; Rusz, Ján; Svedlindh, Peter; Gunnarsson, Klas; Sahlberg, Martin

    2018-01-16

    The substitutional effects of cobalt in (Fe 1-x Co x ) 5 PB 2 have been studied with respect to crystalline structure and chemical order with X-ray diffraction and Mössbauer spectroscopy. The magnetic properties have been determined from magnetic measurements, and density functional theory calculations have been performed for the magnetic properties of both the end compounds, as well as the chemically disordered intermediate compounds. The crystal structure of (Fe 1-x Co x ) 5 PB 2 is tetragonal (space group I4/mcm) with two different metal sites, with a preference for cobalt atoms in the M(2) position (4c) at higher cobalt contents. The substitution also affects the magnetic properties with a decrease of the Curie temperature (T C ) with increasing cobalt content, from 622 to 152 K for Fe 5 PB 2 and (Fe 0.3 Co 0.7 ) 5 PB 2 , respectively. Thus, the Curie temperature is dependent on composition, and it is possible to tune T C to a temperature near room temperature, which is one prerequisite for magnetic cooling materials.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charkin, Dmitri O.; Black, Cameron; Downie, Lewis J.

    Two new rare-earth – alkali – tellurium oxide halides were synthesized by a salt flux technique and characterized by single-crystal X-ray diffraction. The structures of the new compounds Cs{sub 7}Sm{sub 11}[TeO{sub 3}]{sub 12}Cl{sub 16} (I) and Rb{sub 7}Nd{sub 11}[TeO{sub 3}]{sub 12}Br{sub 16} (II) (both tetragonal, space group I4/mcm) correspond to the sequence of [MLn{sub 11}(TeO{sub 3}){sub 12}] and [M{sub 6}X{sub 16}] layers and bear very strong similarities to those of known selenite analogs. We discuss the trends in similarities and differences in compositions and structural details between the Se and Te compounds; more members of the family are predicted. -more » Graphical abstract: Two new rare-earth – alkali – tellurium oxide halides were predicted and synthesized. - Highlights: • Two new rare-earth – alkali – tellurium oxide halides were synthesized. • They adopt slab structure of rare earth-tellurium-oxygen and CsCl-like slabs. • The Br-based CsCl-like slabs have been observed first in this layered family.« less

  6. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of human histidine triad nucleotide-binding protein 2 (hHINT2)

    PubMed Central

    Dolot, Rafał; Włodarczyk, Artur; Bujacz, Grzegorz D.; Nawrot, Barbara

    2013-01-01

    Histidine triad nucleotide-binding protein 2 (HINT2) is a mitochondrial adenosine phosphoramidase mainly expressed in the pancreas, liver and adrenal gland. HINT2 possibly plays a role in apoptosis, as well as being involved in steroid biosynthesis, hepatic lipid metabolism and regulation of hepatic mitochondria function. The expression level of HINT2 is significantly down-regulated in hepatocellular carcinoma patients. To date, endogenous substrates for this enzyme, as well as the three-dimensional structure of human HINT2, are unknown. In this study, human HINT2 was cloned, overexpressed in Escherichia coli and purified. Crystallization was performed at 278 K using PEG 4000 as the main precipitant; the crystals, which belonged to the tetragonal space group P41212 with unit-cell parameters a = b = 76.38, c = 133.25 Å, diffracted to 2.83 Å resolution. Assuming two molecules in the asymmetric unit, the Matthews coefficient and the solvent content were calculated to be 2.63 Å3 Da−1 and 53.27%, respectively. PMID:23832208

  7. Pressure-induced structural and semiconductor-semiconductor transitions in C o0.5M g0.5C r2O4

    NASA Astrophysics Data System (ADS)

    Rahman, S.; Saqib, Hajra; Zhang, Jinbo; Errandonea, D.; Menéndez, C.; Cazorla, C.; Samanta, Sudeshna; Li, Xiaodong; Lu, Junling; Wang, Lin

    2018-05-01

    The effect of pressure on the structural, vibrational, and electronic properties of Mg-doped Cr bearing spinel C o0.5M g0.5C r2O4 was studied up to 55 GPa at room-temperature using x-ray diffraction, Raman spectroscopy, electrical transport measurements, and ab initio calculations. We found that the ambient-pressure phase is cubic (spinel-type, F d 3 ¯m ) and underwent a pressure-induced structural transition to a tetragonal phase (space group I 4 ¯m 2 ) above 28 GPa. The ab initio calculation confirmed this first-order phase transition. The resistivity of the sample decreased at low pressures with the existence of a low-pressure (LP) phase and started to increase with the emergence of a high-pressure (HP) phase. The temperature dependent resistivity experiments at different pressures illustrated the wide band gap semiconducting nature of both the LP and HP phases with different activation energies, suggesting a semiconductor-semiconductor transition at HP. No evidence of chemical decomposition or a semiconductor-metal transition was observed in our studies.

  8. Dynamic Response of CoSb2O6 Trirutile-Type Oxides in a CO2 Atmosphere at Low-Temperatures

    PubMed Central

    Guillén-Bonilla, Alex; Rodríguez-Betancourtt, Verónica-María; Flores-Martínez, Martín; Blanco-Alonso, Oscar; Reyes-Gómez, Juan; Gildo-Ortiz, Lorenzo; Guillén-Bonilla, Héctor

    2014-01-01

    Experimental work on the synthesis of the CoSb2O6 oxide and its CO2 sensing properties is presented here. The oxide was synthesized by a microwave-assisted colloidal method in presence of ethylenediamine after calcination at 600 °C. This CoSb2O6 oxide crystallized in a tetragonal structure with cell parameters a = 4.6495 and c = 9.2763 Å, and space group P42/mnm. To prove its physical, chemical and sensing properties, the oxide was subjected to a series of tests: Raman spectroscopy, Scanning Electron Microscopy (SEM) and impedance (Z) measurements. Microstructures, like columns, bars and hollow hemispheres, were observed. For the CO2 sensing test, a thick film of CoSb2O6 was used, measuring the impedance variations on the presence of air/CO2 flows (0.100 sccm/0.100 sccm) using AC (alternating current) signals in the frequency-range 0.1–100 kHz and low relative temperatures (250 and 300 °C). The CO2 sensing results were quite good. PMID:25162232

  9. Gyroid Structures at Highly Asymmetric Volume Fractions by Blending of ABC Triblock Terpolymer and AB Diblock Copolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong

    Here, we investigated, via small angle X-ray scattering and transmission electron microscopy, the morphologies of binary blend of polyisoprene- b-polystyrene- b-poly(2-vinylpyridine) (ISP) triblock terpolymer and polyisoprene-b-polystyrene (IS) diblock copolymer. An asymmetric ISP with volume fractions ( f) of 0.12, 0.75, and 0.13 for PI, PS, and P2VP blocks, respectively, showed a new morphology: Coexistence of spheres and cylinders with tetragonal packing. Asymmetric IS with f I = 0.11 and f S =0.89 showed conventional body-centered cubic spherical microdomains. Very interestingly, a binary blend of ISP and IS with overall volume fractions of f I = 0.12, f S = 0.79,more » and f P = 0.09 exhibited core-shell double gyroid (CSG: Q 230 space group), where PI consists of thin core and PS forms thick shell, while P2VP becomes thin matrix. It is very unusual to form highly asymmetric CSG with the matrix having very small volume fraction (0.09).« less

  10. Structure, microstructure and infrared studies of Ba{sub 0.06}(Na{sub 1/2}Bi{sub 1/2}){sub 0.94}TiO{sub 3}-NaNbO{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Sumit K., E-mail: sumit.sxc13@gmail.com; Singh, S. N., E-mail: snsphyru@gmail.com; Prasad, K., E-mail: k.prasad65@gmail.com

    2016-05-06

    Lead-free solid solutions (1-x)Ba{sub 0.06}(Na{sub 1/2}Bi{sub 1/2}){sub 0.94}TiO{sub 3}-xNaNbO{sub 3} (0 ≤ x ≤ 1.0) were prepared by conventional ceramic fabrication technique. X-ray diffraction and Rietveld refinement analyses of these ceramics were carried out using X’Pert HighScore Plus software to determine the crystal symmetry, space group and unit cell dimensions. Rietveld refinement revealed that NaNbO{sub 3} with orthorhombic structure was completely diffused into Ba{sub 0.06}(Na{sub 1/2}Bi{sub 1/2}){sub 0.94}TiO{sub 3} lattice having the rhombohedral-tetragonal symmetry. EDS and SEM studies were carried out in order to evaluate the quality and purity of the compounds. SEM images showed a change in grain shapemore » with the increase of NaNbO{sub 3} content. FTIR spectra confirmed the formation of solid solution.« less

  11. Yb7Ni4InGe12: a quaternary compound having mixed valent Yb atoms grown from indium flux.

    PubMed

    Subbarao, Udumula; Jana, Rajkumar; Chondroudi, Maria; Balasubramanian, Mahalingam; Kanatzidis, Mercouri G; Peter, Sebastian C

    2015-03-28

    The new intermetallic compound Yb7Ni4InGe12 was obtained as large silver needle shaped single crystals from reactive indium flux. Single crystal X-ray diffraction suggests that Yb7Ni4InGe12 crystallizes in the Yb7Co4InGe12 structure type, and tetragonal space group P4/m and lattice constants are a = b = 10.291(2) Å and c = 4.1460(8) Å. The crystal structure of Yb7Ni4InGe12 consists of columnar units of three different types of channels filled with the Yb atoms. The crystal structure of Yb7Ni4InGe12 is closely related to Yb5Ni4Ge10. The effective magnetic moment obtained from the magnetic susceptibility measurements in the temperature range 200-300 K is 3.66μB/Yb suggests mixed/intermediate valence behavior of ytterbium atoms. X-ray absorption near edge spectroscopy (XANES) confirms that Yb7Ni4InGe12 exhibits mixed valence.

  12. Gyroid Structures at Highly Asymmetric Volume Fractions by Blending of ABC Triblock Terpolymer and AB Diblock Copolymer

    DOE PAGES

    Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong; ...

    2017-11-08

    Here, we investigated, via small angle X-ray scattering and transmission electron microscopy, the morphologies of binary blend of polyisoprene- b-polystyrene- b-poly(2-vinylpyridine) (ISP) triblock terpolymer and polyisoprene-b-polystyrene (IS) diblock copolymer. An asymmetric ISP with volume fractions ( f) of 0.12, 0.75, and 0.13 for PI, PS, and P2VP blocks, respectively, showed a new morphology: Coexistence of spheres and cylinders with tetragonal packing. Asymmetric IS with f I = 0.11 and f S =0.89 showed conventional body-centered cubic spherical microdomains. Very interestingly, a binary blend of ISP and IS with overall volume fractions of f I = 0.12, f S = 0.79,more » and f P = 0.09 exhibited core-shell double gyroid (CSG: Q 230 space group), where PI consists of thin core and PS forms thick shell, while P2VP becomes thin matrix. It is very unusual to form highly asymmetric CSG with the matrix having very small volume fraction (0.09).« less

  13. Bi2(IO3)(IO6): First combination of [IO3]- and [IO6]5- anions in three-dimensional framework

    NASA Astrophysics Data System (ADS)

    Sun, Chuanling; Wu, Yuandong; Mei, Dajiang; Doert, Thomas

    2018-03-01

    A new bismuth (III) iodate periodate, Bi2(IO3)(IO6) was obtained from hydrothermal reactions using Bi(NO3)3·5H2O, and H5IO6 as starting materials. Bi2(IO3)(IO6) crystallizes in the monoclinic space group P21/c (No. 14) with lattice parameters ɑ = 8.1119(6), b = 5.4746(4), c = 16.357(1) Å, β = 99.187(2)°, V = 717.07(9) Å3, Z = 4. The structure of Bi2(IO3)(IO6) features a three-dimensional framework which is a combination of [Bi(1)O5] tetragonal pyramids, [Bi(2)O8] bicapped trigonal prisms and [IO3]- and [IO6]5- anions. Thermal analysis shows that the compound is thermally stable up to about 350 °C. The solid state UV-vis-NIR diffuse reflectance spectrum indicates that Bi2(IO3)(IO6) is a semiconductor with a band gap of 2.76 eV.

  14. Synthesis, crystal structure and physico-chemical properties of the new quaternary oxide Sr 5BiNi 2O 9.6

    NASA Astrophysics Data System (ADS)

    Novitskaya, Mariya; Makhnach, Leonid; Ivashkevich, Ludmila; Pankov, Vladimir; Klein, Holger; Rageau, Amélie; David, Jérémy; Gemmi, Mauro; Hadermann, Joke; Strobel, Pierre

    2011-12-01

    A new black quaternary oxide Sr 5BiNi 2O 9.6 was synthesized by solid state reaction at 1200 °C. Its structure was solved by electron crystallography and X-ray powder refinement, yielding a tetragonal structure with space group I4/ mmm, a=5.3637 (2) Å, c=17.5541(5) Å, Z=4. The structure can be described as a stacking of (Bi,Sr)-O rocksalt slabs and SrNiO 3- δ perovskite slabs. The initial nickel valence is close to +3.1. Thermogravimetry and high-temperature oxygen coulometry showed that this compound has variable oxygen content as a function of temperature and oxygen pressure, and ultimately decomposes when heated in low oxygen pressure above 800 °C. It is a metallic conductor with n-type conduction. Its thermoelectric power was determined and found to be -20 and -38 μV/K at 300 and 650 °C, respectively. Magnetic measurements confirm the nickel valence close to +3 and show evidence of magnetic ordering at 20 K.

  15. Effect of Fe doping on structural and impedance properties of PZTFN ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Arvind, E-mail: arvindmse07311209.in@gmail.com; Pal, Vijayeta; Mishra, S. K.

    2016-05-06

    An attempts have been made to synthesis the ceramics Pb{sub 1-3x/2} Fe{sub x}(Zr{sub 0.52}Ti{sub 0.48}){sub 1-5y/4} NbyO{sub 3} abbreviated as (PFZTN) for x = 1-6 mol% and y = 5.5 mol% by a semi-wet route. In the present paper, we have investigated the effect of Fe doping on structural and electrical properties of the PFZTN ceramics. X-ray diffraction (XRD) patterns reveal that PFZTN ceramics are single phase in nature. However, for x = 0.05 and 0.06, a secondary phase appears as discernible from the XRD profiles. Rietveld analysis of the powder diffraction data shows the presence of coexistence of tetragonal (P4mm spacemore » group) and rhombohedral phases (R3c space group) occurs near the morphotropic phase boundary (MPB) at x ≥ = 0.05. The log-log plots show that the conductivity increases with increase of temperature. The ac conductivity becomes sensitive at high frequency region and shifted towards higher frequency side with increasing temperature. It is observed that the activation energy (Ea) decreases with increasing frequency. This complex perovskite structure can be used as a multilayer ceramic capacitors and electromechanical transducers.« less

  16. Data acquisition of neutron crystallography on tetragonal and triclinic forms of hen-egg-white (HEW) lysozyme with an elastically bent Si monochromator

    NASA Astrophysics Data System (ADS)

    Tanaka, I.; Minezaki, Y.; Harada, K.; Niimura, N.

    An elastically bent silicon (EBSi) as a monochromator has been optimized for neutron diffractometers of biocrystallography. It was found that several stacked thin Si plates were easier to be bent much for the near focusing point and they increased neutron reflectivity by aligning the plates. Currently, an EBSi(1 1 1) monochromator system was equipped at a diffractometer (BIX-I). It took 50 days to collect about 12 000 reflections of hen-egg-white lysozyme. The minimum d-spacing was 2.1 Å.

  17. Room Temperature Monoclinic Phase in BaTiO3 Single Crystals

    NASA Astrophysics Data System (ADS)

    Denev, Sava; Kumar, Amit; Barnes, Andrew; Vlahos, Eftihia; Shepard, Gabriella; Gopalan, Venkatraman

    2010-03-01

    BaTiO3 is a well studied ferroelectric material for the last half century. It is well known to show phase transitions to tetragonal, orthorhombic and rhombohedral phases upon cooling. Yet, some old and some recent studies have argued that all these phases co-exist with a second phase with monoclinic distortion. Using optical second harmonic generation (SHG) at room temperature we directly present evidence for such monoclininc phase co-existing with tetragonal phase at room temperature. We observe domains with the expected tetragonal symmetry exhibiting 90^o and 180^o domain walls. However, at points of higher stress at the tips of the interpenetrating tetragonal domains we observe a well pronounced metastable ``staircase pattern'' with a micron-scale fine structure. Polarization studies show that this phase can be explained only by monoclinic symmetry. This phase is very sensitive to external perturbations such as temperature and fields, hence stabilizing this phase at room temperature could lead to large properties' tunability.

  18. Temperature-dependent electron paramagnetic resonance detect oxygen vacancy defects and Cr valence of tetragonal Ba(Ti1-xCrx)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Han, Dan-Dan; Lu, Da-Yong; Meng, Fan-Ling; Yu, Xin-Yu

    2018-03-01

    Temperature-dependent electron paramagnetic resonance (EPR) study was employed to detect oxygen vacancy defects in the tetragonal Ba(Ti1-xCrx)O3 (x = 5%) ceramic for the first time. In the rhombohedral phase below -150 °C, an EPR signal at g = 1.955 appeared in the insulating Ba(Ti1-xCrx)O3 (x = 5%) ceramic with an electrical resistivity of 108 Ω cm and was assigned to ionized oxygen vacancy defects. Ba(Ti1-xCrx)O3 ceramics exhibited a tetragonal structure except Ba(Ti1-xCrx)O3 (x = 10%) with a tetragonal-hexagonal mixed phase and a first-order phase transition dielectric behavior (ε‧m > 11,000). Mixed valence Cr ions could coexist in ceramics, form CrTi‧-VOrad rad or CrTirad-TiTi‧ defect complexes and make no contribution to a dielectric peak shift towards low temperature.

  19. [Interface compatibility between tooth-like yttria-stabilized tetragonal zirconia polycrystal by adding rare-earth oxide and Vita VM9 veneering porcelain].

    PubMed

    Gao, Yan; Zhang, Fu-qiang; He, Fan

    2011-10-01

    To evaluate the interface compatibility between tooth-like yttria-stabilized tetragonal zirconia polycrystal(Y-TZP) by adding rare-earth oxide and Vita VM9 veneering porcelain. Six kinds(S1,S2,S3,S4,S5,S6) of tooth-like yttria stabilized tetragonal zirconia polycrystal were made by introducing internal colorating technology to detect the thermal shock resistance and interface bonding strength with Vita VM9 Bsaedentin. Statistical analysis was performed using SAS6.12 software package. There was no gap between the layers via hot shocking test.The shear bonding strength between Y-TZP and VitaVM9 was higher and the value was (36.03±3.82) to (37.98±4.89) MPa. By adding rare-earth oxide to yttria-stabilized tetragonal zirconia polycrystal ,better compatibility between the layer (TZP and Vita VM9) can be formed which is of better interface integrate and available for clinical applications.

  20. Thermodynamic analysis of the formation of tetragonal bainite in steels

    NASA Astrophysics Data System (ADS)

    Mirzayev, D. A.; Mirzoev, A. A.; Buldashev, I. V.; Okishev, K. Yu.

    2017-06-01

    In the articles of Bkhadeshia, a new class of high-strength steels based on the structure of carbidefree bainite with an enhanced carbon content has been developed. According to Bkhadeshia, the main factor responsible for the high solubility of carbon is the occurrence of a tetragonality of the bainite lattice. To check this effect, in this article, the theory of tetragonality of martensite of iron alloys developed by Zener and Khachaturyan was applied to bainite under the assumption that the precipitation of carbides is prohibited. Equations for the chemical potentials of carbon and iron in austenite and in tetragonal ferrite have been derived. The equilibrium of these phases has been considered, and the calculations of the boundary concentrations of carbon and iron at different temperatures (300-1000 K) and at different parameters of the deformation interaction λ0 have been performed. The rigorous calculations confirmed Bkhadeshia's hypothesis that the suppression of the carbide formation during the formation of bainite leads to an increase in the carbon solubility in the bcc phase.

  1. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a functionmore » of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.« less

  2. Crystal structure and magnetic properties of high-oxygen pressure annealed Sr{sub 1-x}La{sub x}Co{sub 0.5}Fe{sub 0.5}O{sub 3-{delta}} (0{<=}x{<=}0.5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swierczek, Konrad; Materials Science Division, Argonne National Laboratory, Argonne, IL 60439; Dabrowski, Bogdan

    2009-02-15

    Structural and magnetic studies are presented for the perovskite type Sr{sub 1-x}La{sub x}Co{sub 0.5}Fe{sub 0.5}O{sub 3-{delta}} (0{<=}x{<=}0.5) materials annealed under moderately high-oxygen pressures of {approx}200 atm. A detailed analysis of the room temperature neutron time-of-flight diffraction data reveals that the crystal structure of the sample SrCo{sub 0.5}Fe{sub 0.5}O{sub 2.89(1)}, previously described as vacancy-disordered cubic, is similar to the formerly reported, oxygen-vacancy ordered Sr{sub 8}Fe{sub 8}O{sub 23} compound, i.e. Sr{sub 8}Co{sub 4}Fe{sub 4}O{sub 23} is tetragonal with the I4/mmm symmetry. With an increase of the La content the studied materials become nearly oxygen stoichiometric and a lowering of the crystal symmetrymore » is observed from cubic Pm3-barm (x=0.1 and 0.2) to tetragonal I4/mcm (x=0.3 and 0.4), and finally to monoclinic I12/c1 (x=0.5). Low-temperature structural and magnetic measurements show a ferromagnetic ordering with the maximum Curie temperature near 290 K at x=0.2. - Graphical Abstract: Room temperature Rietveld refinement profile using I4/mmm space group for the oxygen vacancy ordered SrCo{sub 0.5}Fe{sub 0.5}O{sub 2.89} (Sr{sub 8}Co{sub 4}Fe{sub 4}O{sub 23}). Top tick-marks denote allowed reflections in I4/mmm, bottom one emphasize the possibility of inexact indexing using Pm3-barm symmetry. Previous reports indicate that similar ordering is common for SrCo{sub 1-x}Fe{sub x}O{sub 3-{delta}} compounds possibly hindering their applications.« less

  3. Strain-induced tetragonal distortions and multiferroic properties in polycrystalline Sr1 -xB axMn O3 (x =0.43 -0.45 ) perovskites

    NASA Astrophysics Data System (ADS)

    Somaily, H.; Kolesnik, S.; Mais, J.; Brown, D.; Chapagain, K.; Dabrowski, B.; Chmaissem, O.

    2018-05-01

    We report the structure-property phase diagram of unique single-ion type-1 multiferroic pseudocubic Sr1 -xB axMn O3 perovskites. Employing a specially designed multistep reduction-oxidation synthesis technique, we have synthesized Sr1 -xB axMn O3 compositions in their polycrystalline form with a significantly extended Ba solubility limit that is only rivaled by a very limited number of crystals and thin films grown under nonequilibrium conditions. Understanding the multiferroic interplay with structure in Sr1 -xB axMn O3 is of great importance as it opens the door wide to the development of newer materials from the parent (A A' ) (B B' ) O3 system with enhanced properties. To this end, using a combination of time-of-flight neutron and synchrotron x-ray scattering techniques, we determined the exact structures and quantified the Mn and oxygen polar distortions above and below the ferroelectric Curie temperature TC and the Néel temperature TN. In its ferroelectric state, the system crystalizes in the noncentrosymmetric tetragonal P 4 m m space group, which gives rise to a large electric dipole moment Ps, in the z direction, of 18.4 and 29.5 μ C /c m2 for x =0.43 and 0.45, respectively. The two independently driven ferroelectric and magnetic order parameters are single-handedly accommodated by the Mn sublattice leading to a novel strain-assisted multiferroic behavior in agreement with many theoretical predictions. Our neutron diffraction results demonstrate the large and tunable suppression of the ferroelectric order at the onset of AFM ordering and confirm the coexistence and strong coupling of the two ferroic orders below TN. The refined magnetic moments confirm the strong covalent bonding between Mn and the oxygen anions, which is necessary for stabilizing the ferroelectric phase.

  4. Strain-induced tetragonal distortions and multiferroic properties in polycrystalline Sr 1 - x B a x Mn O 3 ( x = 0.43 - 0.45 ) perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somaily, H.; Kolesnik, S.; Mais, J.

    Here, we report a comprehensive structure-property phase diagram of unique single-ion type-1 multiferroic pseudocubic Sr 1-xBa xMnO 3 perovskites. Employing a specially designed multi-step reduction-oxidation synthesis technique, we describe the successful synthesis of previously unknown Sr 1-xBa xMnO 3 compositions in their polycrystalline form with a significantly extended Ba solubility limit that is only rivaled by a very limited number of crystals and thin films grown under non-equilibrium conditions. Understanding the multiferroic interplay with structure in Sr 1-xBa xMnO 3 is of great importance as it opens the door wide to the development of newer materials from the parent (AA’)(BB’)more » O 3 system with enhanced properties. To this end, using a combination of time-of-flight neutron and synchrotron x-ray scattering techniques, we determined the exact structures and quantified the Mn and oxygen polar distortions above and below T C and T N. In its ferroelectric state, the system crystalizes in the noncentrosymmetric tetragonal P4mm space group which gives rise to a large electric dipole moment P s, in the z-direction, of 18.4 and 29.5 µC/cm 2 for x = 0.43 and 0.45, respectively. The two independently driven ferroelectric and magnetic order parameters are single-handedly accommodated by the Mn sublattice leading to a novel strain-assisted multiferroic behavior in agreement with many theoretical predictions. Our neutron diffraction results demonstrate the large and tunable suppression of the ferroelectric order at the onset of AFM ordering and confirm the coexistence and strong coupling of the two ferroic orders below T N. The refined magnetic moments confirm the strong covalent bonding between Mn and the oxygen anions which is necessary for stabilizing the ferroelectric phase.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamdi, S.; Ouni, S.; Chaker, H.

    A new compound DySr{sub 5}Ni{sub 2.4}Cu{sub 0.6}O{sub 12-{delta}} has been prepared by sol gel method and annealed at 1473 K in 1 atm of Ar gas flow. The X-ray diffraction (XRD) is used for phase identification. The sample shows to adopt the K{sub 2}NiF{sub 4}-type structure based on tolerance factor calculation. XRD analysis using the Rietveld method was carried out and it was found that DySr{sub 5}Ni{sub 2.4}Cu{sub 0.6}O{sub 12-{delta}} (Dy{sub 0.33}Sr{sub 1.67}Ni{sub 0.8}Cu{sub 0.2}O{sub 4-{delta}}') compound crystallizes in tetragonal symmetry with space group I4/mmm (Z=2). The lattice parameters are found to be at room temperature a=3.7696(5) A and c=12.3747(2)more » A. The final reliability indices were: R{sub B}=5.219% and {chi}{sup 2}=3.47. Four probe electrical resistivity measurements were performed versus temperature in the range 294-579 K. A semiconducting behaviour over the whole range of temperature, with a conductivity maximum of 0.4 S cm{sup -1} is observed at 510 K. - Graphical abstract: DySr{sub 5}Ni{sub 2.4}Cu{sub 0.6}O{sub 12-{delta}} exhibits a semi-conducting behaviour over the whole temperature range 294-579 K with a conductivity maximum of 0.4 S cm{sup -1} at 510 K. Highlights: > We described our attempts to synthesize the pure compound DySr{sub 5}Ni{sub 2.4}Cu{sub 0.6}O{sub 12-{delta}}. > Product was characterized by XRD and electrical resistivity measurements. > Iodometric titration was used for the analysis of the oxygen nonstoichiometry. > Calculated tolerance factor was included in the tetragonal symmetry stability range. > Compound exhibits a semi-conducting behaviour over the whole temperature range 294-579 K.« less

  6. Charge disproportionation in tetragonal La2MoO5, a small band gap semiconductor influenced by direct Mo-Mo bonding.

    PubMed

    Colabello, Diane M; Camino, Fernando E; Huq, Ashfia; Hybertsen, Mark; Khalifah, Peter G

    2015-01-28

    The structure of the novel compound La2MoO5 has been solved from powder X-ray and neutron diffraction data and belongs to the tetragonal space group P4/m (no. 83) with a = 12.6847(3) Å and c = 6.0568(2) Å and with Z = 8. It consists of equal proportions of bioctahedral (Mo2O10) and square prismatic (Mo2O8) dimers, both of which contain direct Mo-Mo bonds and are arranged in 1D chains. The Mo-Mo bond length in the Mo2O10 dimers is 2.684(8) Å, while there are two types of Mo2O8 dimers with Mo-Mo bonds lengths of 2.22(2) and 2.28(2) Å. Although the average Mo oxidation state in La2MoO5 is 4+, the very different Mo-Mo distances reflect the fact that the Mo2O10 dimers contain only Mo(5+) (d(1)), while the prismatic Mo2O8 dimers only contain Mo(3+) (d(3)), a result directly confirmed by density function theory calculations. This is due to the complete disproportionation of Mo(4+), a phenomenon which has not previously been observed in solid-state compounds. La2MoO5 is diamagnetic, behavior which is not expected for a nonmetallic transition-metal oxide whose cation sites have an odd number of d-electrons. The resistivity displays the Arrhenius-type activated behavior expected for a semiconductor with a band gap of 0.5 eV, exhibiting an unusually small transport gap relative to other diamagnetic oxides. Diffuse reflectance studies indicate that La2MoO5 is a rare example of a stable oxide semiconductor with strong infrared absorbance. It is shown that the d-orbital splitting associated with the Mo2O8 and Mo2O10 dimeric units can be rationalized using simple molecular orbital bonding concepts.

  7. Strain-induced tetragonal distortions and multiferroic properties in polycrystalline Sr 1 - x B a x Mn O 3 ( x = 0.43 - 0.45 ) perovskites

    DOE PAGES

    Somaily, H.; Kolesnik, S.; Mais, J.; ...

    2018-05-17

    Here, we report a comprehensive structure-property phase diagram of unique single-ion type-1 multiferroic pseudocubic Sr 1-xBa xMnO 3 perovskites. Employing a specially designed multi-step reduction-oxidation synthesis technique, we describe the successful synthesis of previously unknown Sr 1-xBa xMnO 3 compositions in their polycrystalline form with a significantly extended Ba solubility limit that is only rivaled by a very limited number of crystals and thin films grown under non-equilibrium conditions. Understanding the multiferroic interplay with structure in Sr 1-xBa xMnO 3 is of great importance as it opens the door wide to the development of newer materials from the parent (AA’)(BB’)more » O 3 system with enhanced properties. To this end, using a combination of time-of-flight neutron and synchrotron x-ray scattering techniques, we determined the exact structures and quantified the Mn and oxygen polar distortions above and below T C and T N. In its ferroelectric state, the system crystalizes in the noncentrosymmetric tetragonal P4mm space group which gives rise to a large electric dipole moment P s, in the z-direction, of 18.4 and 29.5 µC/cm 2 for x = 0.43 and 0.45, respectively. The two independently driven ferroelectric and magnetic order parameters are single-handedly accommodated by the Mn sublattice leading to a novel strain-assisted multiferroic behavior in agreement with many theoretical predictions. Our neutron diffraction results demonstrate the large and tunable suppression of the ferroelectric order at the onset of AFM ordering and confirm the coexistence and strong coupling of the two ferroic orders below T N. The refined magnetic moments confirm the strong covalent bonding between Mn and the oxygen anions which is necessary for stabilizing the ferroelectric phase.« less

  8. Synthesis, structure, and bonding of two lanthanum indium germanides with novel structures and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guloy, A.M.; Corbett, J.D.

    1996-04-24

    The new tetragonal phases La{sub 3}In{sub 4}Ge and La{sub 3}InGe are obtained from high-temperature reactions of the elements in welded Ta followed by annealing. The structures of both were established by single-crystal X-ray diffraction in tetragonal space group I4/mcm (Z = 4 and 16, {alpha} = 8.5165(3) and 12.3083(2) {Angstrom}, c = 11.9024(4) and 16.0776(4) {Angstrom}, respectively). La{sub 3}In{sub 4}Ge contains layers or slabs of three-connected indium built of puckered 8-rings and 4-rings, or of squashed tetrahedra ({open_quotes}butterflies{close_quotes}) interlinked at all vertices, and these are separated by layers of La and isolated Ge. The phase is deficient of being amore » Zintl phase by three electrons per formula unit and is better described in terms of an alternate optimized and delocalized bonding picture and an open-shell metallic better described in terms of an alternate optimized and delocalized bonding picture and an open-shell metallic behavior for the In slabs. The more complex La{sub 3}InGe, isostructural with Gd{sub 3}Ga{sub 2}, is also layered. This phase contains pairs of mixed-occupancy (0.75 In, 0.25 Ge) sites separated by 3.020 {Angstrom}, as well as isolated In and Ge atoms. The former appear to be fully reduced closed-shell atoms (relative to the bonded Ga dimers in Gd{sub 3}Ga{sub 2}) that are held in somewhat close proximity by cation matrix effects. The compound appears to be semiconducting and thus is a classical Zintl phase, (La{sup +3}){sub 3}In{sup {minus}5}Ge{sup {minus}4} in the simplest oxidation state notation. High Coulomb energies are presumably important for the nature of the bonding and the stabilities of both compounds.« less

  9. Magnetostructural coupling behavior at the ferromagnetic transition in double-perovskite S r2FeMo O6

    NASA Astrophysics Data System (ADS)

    Yang, Dexin; Harrison, Richard J.; Schiemer, Jason A.; Lampronti, Giulio I.; Liu, Xueyin; Zhang, Fenghua; Ding, Hao; Liu, Yan'gai; Carpenter, Michael A.

    2016-01-01

    The ordered double-perovskite S r2FeMo O6 (SFMO) possesses remarkable room-temperature low-field colossal magnetoresistivity and transport properties which are related, at least in part, to combined structural and magnetic instabilities that are responsible for a cubic-tetragonal phase transition near 420 K. A formal strain analysis combined with measurements of elastic properties from resonant ultrasound spectroscopy reveal a system with weak biquadratic coupling between two order parameters belonging to Γ4+ and m Γ4+ of parent space group F m 3 ¯m . The observed softening of the shear modulus by ˜50% is due to the classical effects of strain/order parameter coupling at an improper ferroelastic (Γ4+) transition which is second order in character, while the ferromagnetic order parameter (m Γ4+ ) couples only with volume strain. The influence of a third order parameter, for ordering of Fe and Mo on crystallographic B sites, is to change the strength of coupling between the Γ4+ order parameter and the tetragonal shear strain due to the influence of changes in local strain heterogeneity at a unit cell scale. High anelastic loss below the transition point reveals the presence of mobile ferroelastic twin walls which become pinned by oxygen vacancies in a temperature interval near 340 K. The twin walls must be both ferroelastic and ferromagnetic, but due to the weak coupling between the magnetic and structural order parameters it should be possible to pull them apart with a weak magnetic field. These insights into the role of strain coupling and relaxational effects in a system with only weak coupling between three order parameters allow rationalization and prediction of how static and dynamic properties of the material might be tuned in thin film form by choice of strain contrast with a substrate.

  10. Crystal structures and compressibility of novel iron borides Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} synthesized at high pressure and high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykova, E., E-mail: elena.bykova@uni-bayreuth.de; Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth; Gou, H.

    2015-10-15

    We present here a detailed description of the crystal structures of novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} with various iron content (x=1.01(1), 1.04(1), 1.32(1)), synthesized at high pressures and high temperatures. As revealed by high-pressure single-crystal X-ray diffraction, the structure of Fe{sub 2}B{sub 7} possesses short incompressible B–B bonds, which make it as stiff as diamond in one crystallographic direction. The volume compressibility of Fe{sub 2}B{sub 7} (the bulk modulus K{sub 0}= 259(1.8) GPa, K{sub 0}′= 4 (fixed)) is even lower than that of FeB{sub 4} and comparable with that of MnB{sub 4}, known for highmore » bulk moduli among 3d metal borides. Fe{sub x}B{sub 50} adopts the structure of the tetragonal δ-B, in which Fe atoms occupy an interstitial position. Fe{sub x}B{sub 50} does not show considerable anisotropy in the elastic behavior. - Graphical abstract: Crystal structures of novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} (x=1.01(1), 1.04(1), 1.32(1)). - Highlights: • Novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50}, were synthesized under HPHT conditions. • Fe{sub 2}B{sub 7} has a unique orthorhombic structure (space group Pbam). • Fe{sub 2}B{sub 7} possesses short incompressible B–B bonds that results in high bulk modulus. • Fe{sub x}B{sub 50} adopts the structure of the tetragonal δ-B composed of B{sub 12} icosahedra. • In Fe{sub x}B{sub 50} intraicosahedral bonds are stiffer than intericosahedral ones.« less

  11. Pressure-induced phase transitions and correlation between structure and superconductivity in iron-based superconductor Ce(O(0.84)F(0.16))FeAs.

    PubMed

    Zhao, Jinggeng; Liu, Haozhe; Ehm, Lars; Dong, Dawei; Chen, Zhiqiang; Liu, Qingqing; Hu, Wanzheng; Wang, Nanlin; Jin, Changqing

    2013-07-15

    High-pressure angle-dispersive X-ray diffraction experiments on iron-based superconductor Ce(O(0.84)F(0.16))FeAs were performed up to 54.9 GPa at room temperature. A tetragonal to tetragonal isostructural phase transition starts at about 13.9 GPa, and a new high-pressure phase has been found above 33.8 GPa. At pressures above 19.9 GPa, Ce(O(0.84)F(0.16))FeAs completely transforms to a high-pressure tetragonal phase, which remains in the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure tetragonal phase. The structure analysis shows a discontinuity in the pressure dependences of the Fe-As and Ce-(O, F) bond distances, as well as the As-Fe-As and Ce-(O, F)-Ce bond angles in the transition region, which correlates with the change in T(c) of this compound upon compression. The isostructural phase transition in Ce(O(0.84)F(0.16))FeAs leads to a drastic drop in the superconducting transition temperature T(c) and restricts the superconductivity at low temperature. For the 1111-type iron-based superconductors, the structure evolution and following superconductivity changes under compression are related to the radius of lanthanide cations in the charge reservoir layer.

  12. Structural crossover from nonmodulated to long-period modulated tetragonal phase and anomalous change in ferroelectric properties in the lead-free piezoelectric N a1 /2B i1 /2Ti O3-BaTi O3

    NASA Astrophysics Data System (ADS)

    Rao, Badari Narayana; Khatua, Dipak Kumar; Garg, Rohini; Senyshyn, Anatoliy; Ranjan, Rajeev

    2015-06-01

    The highly complex structure-property interrelationship in the lead-free piezoelectric (x )N a1 /2B i1 /2Ti O3- (1 -x ) BaTi O3 is a subject of considerable contemporary debate. Using comprehensive x-ray, neutron diffraction, dielectric, and ferroelectric studies, we have shown the existence of a new criticality in this system at x =0.80 , i.e., well within the conventional tetragonal phase field. This criticality manifests as a nonmonotonic variation of the tetragonality and coercivity and is shown to be associated with a crossover from a nonmodulated tetragonal phase (for x <0.8 ) to a long-period modulated tetragonal phase (for x >0.80 ). It is shown that the stabilization of long-period modulation introduces a characteristic depolarization temperature in the system. While differing qualitatively from the two-phase model often suggested for the critical compositions of this system, our results support the view with regard to the tendency in perovskites to stabilize long-period modulated structures as a result of complex interplay of antiferrodistortive modes [Bellaiche and Iniguez, Phys. Rev. B 88, 014104 (2013), 10.1103/PhysRevB.88.014104; Prosandeev, Wang, Ren, Iniguez, ands Bellaiche, Adv. Funct. Mater. 23, 234 (2013), 10.1002/adfm.201201467].

  13. Microstructure and mechanical properties of bulk and plasma-sprayed y2O3-partially stabilized zirconia

    NASA Technical Reports Server (NTRS)

    Valentine, P. G.; Maier, R. D.

    1980-01-01

    Bulk 8.0 weight percent yttria partially stabilied zirconia (PSZ) was studied by light microscopy, transmission electron microscopy, X-ray analysis, microhardness testing, and fracture toughness testing. The as received PSZ contained spheroidal and grain boundary precipitates up to 4 micrometers in size. Spheroids up to 1.26 micrometers were metastable tetragonal; large spheroids were monoclinic. Grinding the PSZ into powder did not cause a significant amount of tetragonal to transform to monoclinic. This indicates that transformation toughness is not a significant mechanism in PSZ. Aging the PSZ at 1500 C caused the fine tetragonal precipitates to grow from 0.06 to 0.12 micrometers, in 250 minutes. A peak hardness of 1400 kg/sq mm was attained after 50 minutes. Solution annealing and quenching the as received PSZ eliminated the large precipitates, but fine tetragonal precipitates reformed on quenching. Aging at 1500 C caused the fine 0.02 micrometers tetragonal precipitates to grow into plates about 0.10 by 0.50 micrometers. A peak hardness of 1517 kg/sq mm was obtained after 250 minutes. On further aging, monoclinic percipitates formed along grain boundaries. The fracture toughness of the aged and unaged solution annealed and quenched PSZ was found to be between 2 and 3 MN /square root of m cubed. This range of fracture toughness is consistent with PSZ's that do not undergo transformation toughening.

  14. Local structures of the tetragonal Gd3 -VM and Gd3 -Li centers in perovskite fluorides

    NASA Astrophysics Data System (ADS)

    Zheng, W. C.

    The zero-field splittings b20 of the tetragonal Gd3+-VM and Gd3+-Li+ centers for Gd3+ ions in fluoroperovskite crystals have been studied on the basis of the superposition model in which the value of t2

  15. Halogen bonds in some dihalogenated phenols: applications to crystal engineering.

    PubMed

    Mukherjee, Arijit; Desiraju, Gautam R

    2014-01-01

    3,4-Dichlorophenol (1) crystallizes in the tetragonal space group I41/a with a short axis of 3.7926 (9) Å. The structure is unique in that both type I and type II Cl⋯Cl interactions are present, these contact types being distinguished by the angle ranges of the respective C-Cl⋯Cl angles. The present study shows that these two types of contacts are utterly different. The crystal structures of 4-bromo-3-chlorophenol (2) and 3-bromo-4-chlorophenol (3) have been determined. The crystal structure of (2) is isomorphous to that of (1) with the Br atom in the 4-position participating in a type II interaction. However, the monoclinic P21/c packing of compound (3) is different; while the structure still has O-H⋯O hydrogen bonds, the tetramer O-H⋯O synthon seen in (1) and (2) is not seen. Rather than a type I Br⋯Br interaction which would have been mandated if (3) were isomorphous to (1) and (2), Br forms a Br⋯O contact wherein its electrophilic character is clearly evident. Crystal structures of the related compounds 4-chloro-3-iodophenol (4) and 3,5-dibromophenol (5) were also determined. A computational survey of the structural landscape was undertaken for (1), (2) and (3), using a crystal structure prediction protocol in space groups P21/c and I41/a with the COMPASS26 force field. While both tetragonal and monoclinic structures are energetically reasonable for all compounds, the fact that (3) takes the latter structure indicates that Br prefers type II over type I contacts. In order to differentiate further between type I and type II halogen contacts, which being chemically distinct are expected to have different distance fall-off properties, a variable-temperature crystallography study was performed on compounds (1), (2) and (4). Length variations with temperature are greater for type II contacts compared with type I. The type II Br⋯Br interaction in (2) is stronger than the corresponding type II Cl⋯Cl interaction in (1), leading to elastic bending of the former upon application of mechanical stress, which contrasts with the plastic deformation of (1). The observation of elastic deformation in (2) is noteworthy; in that it finds an explanation based on the strengths of the respective halogen bonds, it could also be taken as a good starting model for future property design. Cl/Br isostructurality is studied with the Cambridge Structural Database and it is indicated that this isostructurality is based on shape and size similarity of Cl and Br, rather than arising from any chemical resemblance.

  16. Locations of Halide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Adimurthy, Ganapathi; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions play an important role in the crystallization of lysozyme, and are known to bind to the crystalline protein. Previous studies employing X-ray crystallography had found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. Studies using other approaches have reported more chloride ion binding sites, but their locations were not known. Knowing the precise location of these anions is also useful in determining the correct electrostatic fields surrounding the protein. In the first part of this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from the lysozyme crystals grown in bromide and chloride solutions under identical conditions. The anion locations were then obtained from standard crystallographic methods and five possible anion binding sites were found in this manner. The sole chloride ion binding site found in previous studies was confirmed. The remaining four sites were new ones for tetragonal lysozyme crystals. However, three of these new sites and the previously found one corresponded to the four unique binding sites found for nitrate ions in monoclinic crystals. This suggests that most of the anion binding sites in lysozyme remain unchanged, even when different anions and different crystal forms of lysozyme are employed. It is unlikely that there are many more anions in the tetragonal lysozyme crystal structure. Assuming osmotic equilibrium it can be shown that there are at most three more anions in the crystal channels. Some of the new anion binding sites found in this study were, as expected, in pockets containing basic residues. However, some of them were near neutral, but polar, residues. Thus, the study also showed the importance of uncharged, but polar groups, on the protein surface in determining its electrostatic field. This was important for the second part of this study where the electrostatic field surrounding the protein was accurately determined. This was achieved by solving the linearized version of the Poisson-Boltzmann equation for the protein in solution. The solution was computed employing the commercial code Delphi which uses a finite difference technique. This has recently become available as a module in the general protein visualization code Insight II. Partial charges were assigned to the polar groups of lysozyme for the calculations done here. The calculations showed the complexity of the electrostatic field surrounding the protein. Although most of the region near the protein surface had a positive field strength, the active site cleft was negatively charged and this was projected a considerable distance. This might explain the occurrence of "head-to-side" interactions in the formation of lysozyme aggregates in solution. Pockets of high positive field strength were also found in the vicinity of the anion locations obtained from the crystallographic part of this study, confirming the validity of these calculations. This study clearly shows not only the importance of determining the counterion locations in protein crystals and the electrostatic fields surrounding the protein, but also the advantage of performing them together.

  17. [Evaluation of alumina effects on the mechanical property and translucency of nano-zirconia all-ceramics].

    PubMed

    Jiang, Li; Zhao, Yong-qi; Zhang, Jing-chao; Liao, Yun-mao; Li, Wei

    2010-06-01

    To study the effects of alumina content on sintered density, mechanical property and translucency of zirconia nanocomposite all-ceramics. Specimens of zirconia nanocomposite all-ceramics were divided into five groups based on their alumina content which are 0% (control group), 2.5%, 5.0%, 7.5% and 10.0% respectively. The sintered densities were measured using Archimedes' method. Specimens' bending strengths were measured with three-point bending test (ISO 6872). The visible light transmittances were measured with spectrophotometric arrangements and the fractured surfaces were observed using scanning electron microscope (SEM). The control group of pure zirconia could be sintered to the theoretical density under pressure-less sintering condition. The bending strength was (1100.27 ± 54.82) MPa, the fracture toughness was (4.96 ± 0.35) MPa×m(1/2) and the transmittance could reach 17.03%. The sintered density and transmittance decreased as alumina content increased from 2.5% to 10%. However, the fracture toughness only increased slightly. In all four alumina groups, the additions of alumina had no significant effect on samples' bending strengths (P > 0.05). When the content of alumina was 10%, fracture toughness of specimens reached (6.13 ± 0.44) MPa×m(1/2) while samples' transmittance declined to 6.21%. SEM results showed that alumina particles had no significant effect on the grain size and distribution of tetragonal zirconia polycrystals. Additions of alumina to yttria-tetragonal zirconia polycrystals could influence its mechanical property and translucency. Additions of the other phase to zirconia ceramics should meet the clinical demands of strength and esthetics.

  18. Nanowire Ice of Phase VI and Distorted VII in Mesoporous Silica Nanotorus Superlattice

    NASA Astrophysics Data System (ADS)

    Zhu, Jinlong; Zhang, Jianzhong; Zhao, Yusheng

    2014-03-01

    The motivation of nano H2O realization and characterization is the highly polarized nature of H2O molecules and the spatial hydrogen bonded networks both in liquid and solid form. The hydrogen bonding character of water molecules results in a remarkably rich phase diagram in the pressure-temperature space. Water/Ice confined in nanochannels showed novel structures and properties as results of hydrophobic and hydrophilic interactions and hydrogen bonding interaction between water molecule and the surface of nanochannel. Studies on nano H2O can provide potential pathway to understand the complicated structure evolutions of ice in the P- T space, because the interplay between nano-confinement and strong intermolecular hydrogen interactions can lead to even richer ice structures which were not found in the none-confined bulk form. The high pressure experiment indicated that the pressure of nanowire ice VI and VII shifted up to 1.7 GPa and 2.5 GPa, and about ~ 0.65 GPa and 0.4 GPa higher than that of normal ice. The nano size effect and the strength of mesoporous silica nanotorus are responsible for the pressure shifts of ice phase regions. More pronounced, the cubic ice VII changed into a tetragonal distorted ``psuedocubic'' structure of the nanowire ice when confined in the mesoporous tubes. The degree of tetragonality increased with increasing pressure, which is resulted from the uniaxial pressure nanowire ice felt, and the anisotropic hydrogen bonding interactions including the H2O-H2O hydrogen bonds in the bulk of the ice and the H2O-silica -OH hydrogen bonds between the interface of nanowire ice and mesoporous silica. The experimental work has benefited from the use of CHESS at Cornell University, which is supported by the NSF award DMR-0936384.

  19. Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations.

    PubMed

    Pereira, Gabriel K R; Guilardi, Luís F; Dapieve, Kiara S; Kleverlaan, Cornelis J; Rippe, Marília P; Valandro, Luiz Felipe

    2018-05-23

    This study characterized the mechanical properties (static and under fatigue), the crystalline microstructure (monoclinic - m, tetragonal - t and cubic - c phase contents) and the surface topography of three yttrium-stabilized zirconia (YSZ) materials with different translucent properties, before and after aging in an autoclave (low temperature degradation). Disc-shaped specimens were produced from second generation (Katana ML/HT - high-translucent) and third generations (Katana STML - super-translucent and UTML - ultra-translucent) YSZ ceramics (Kuraray Noritake Dental Inc.), following ISO 6872-2015 guidelines for biaxial flexural strength testing (final dimensions: 15 mm in diameter and 1.2 ± 0.2 mm in thickness), and then subjected to the respective tests and analyses. ML was mainly composed of tetragonal crystals, while STML and UTML presented cubic content. Aging increased the monoclinic content for ML and did not affect STML and UTML. Topographical analysis highlights different grain sizes on the ceramic surface (UTML > STML > ML) and aging had no effect on this outcome. Weibull analysis showed the highest characteristic strength for ML both before and after aging, and statistically similar Weibull moduli for all groups. ML material also obtained the highest survival rates (ML > STML > UTML) for both fatigue strength and number of cycles to failure. All fractures originated from surface defects on the tensile side. Third generation zirconia (Katana STML and UTML) are fully stabilized materials (with tetragonal and cubic crystals), being totally inert to the autoclave aging, and presented lower mechanical properties than the second-generation zirconia (Katana ML - metastable zirconia). Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Effect of intracrystalline water on longitudinal sound velocity in tetragonal hen-egg-white lysozyme crystals.

    PubMed

    Tachibana, M; Koizumi, H; Kojima, K

    2004-05-01

    Longitudinal sound velocity of tetragonal hen-egg-white (HEW) lysozyme crystals was measured during air drying by ultrasonic pulseecho method. The sound velocity increases with exposure to open air and approaches a constant value. The maximum value is approximately 2900 m/s that is about 1.6 times as much as that of original one before drying. In addition, the sound velocity clearly recovers to original one after immersing the dried crystal in solution. Therefore, the sound velocity in tetragonal HEW lysozyme crystals can be reversibly changed due to dehydration and rehydration. These changes in sound velocity are discussed in the light of water-mediated intramolecular and intermolecular interactions in the crystals.

  1. Effect of intracrystalline water on longitudinal sound velocity in tetragonal hen-egg-white lysozyme crystals

    NASA Astrophysics Data System (ADS)

    Tachibana, M.; Koizumi, H.; Kojima, K.

    2004-05-01

    Longitudinal sound velocity of tetragonal hen-egg-white (HEW) lysozyme crystals was measured during air drying by ultrasonic pulseecho method. The sound velocity increases with exposure to open air and approaches a constant value. The maximum value is ˜2900 m/s that is about 1.6 times as much as that of original one before drying. In addition, the sound velocity clearly recovers to original one after immersing the dried crystal in solution. Therefore, the sound velocity in tetragonal HEW lysozyme crystals can be reversibly changed due to dehydration and rehydration. These changes in sound velocity are discussed in the light of water-mediated intramolecular and intermolecular interactions in the crystals.

  2. Tuning the Curie temperature of FeCo compounds by tetragonal distortion

    NASA Astrophysics Data System (ADS)

    Jakobsson, A.; Şaşıoǧlu, E.; Mavropoulos, Ph.; Ležaić, M.; Sanyal, B.; Bihlmayer, G.; Blügel, S.

    2013-09-01

    Combining density-functional theory calculations with a classical Monte Carlo method, we show that for B2-type FeCo compounds, tetragonal distortion gives rise to a strong reduction of the Curie temperature TC. The TC monotonically decreases from 1575 K (for c /a=1) to 940 K (for c /a=√2 ). We find that the nearest neighbor Fe-Co exchange interaction is sufficient to explain the c/a behavior of the TC. Combination of high magnetocrystalline anisotropy energy with a moderate TC value suggests tetragonal FeCo grown on the Rh substrate with c /a=1.24 to be a promising material for heat-assisted magnetic recording applications.

  3. Effects of pH and calcination temperature on structural and optical properties of alumina nanoparticles

    NASA Astrophysics Data System (ADS)

    Amirsalari, A.; Farjami Shayesteh, S.

    2015-06-01

    In this study, we describe the synthesis of alumina nanoparticles using a chemical wet method in at varying pH. The optimized prepared particles with pH equals to 9 were calcined at various temperatures. For characterization of structural and optical properties of nanoparticles had been used X-ray diffraction, Infrared Fourier transform spectroscopy, field effect-scanning electron microscopy, photoluminescence and ultraviolet-visible spectroscopy. The results revealed that the nanoparticles calcined at 500 °C consist of an Al2O3 tetragonal structure and tetragonal distortion decreases with increasing calcination temperature up to 750 °C then increased with increasing temperature. Another phase similar to γ-Al2O3 was formed instead of δ-Al2O3 in the transition sequence from the γ to θ phase. FT-IR analysis; suggests that there are a few different types of functional groups on the surface of the alumina nanoparticles such as hydroxy groups and oxy groups. The transmittance spectra showed that the absorption bands in the UV region strongly depend on the calcination temperature. Moreover, the results showed that alumina has an optical direct band gap and that the energy gap decreases with increasing the calcination temperature and pH of the reaction. Luminescence spectra showed that some luminescent centers such as OH-related radiative centers and oxygen vacancies (F, F22+ and F2 centers) centers exist in the nanoparticles.

  4. Electron Microscopic Study of the Structure of Tetragonal Martensite in In-4.5% Cd Alloy

    NASA Astrophysics Data System (ADS)

    Khlebnikova, Yu. V.; Egorova, L. Yu.; Rodionov, D. P.

    2018-04-01

    In this work, the formation of a packet structure composed of colonies of lamellar plates separated by twin boundary {101}fct in In-4.5 wt % Cd alloy upon cooling below the fcc → fct martensitic transition temperature has been shown using the methods of metallography, X-ray diffraction, transmission electron microscopy, and EBSD analysis. Two neighboring lamellae differ from each other by the direction of their tetragonality axes. Using EBSD analysis, it has been established that neighboring packets always contain three types of tetragonal martensite lamellae, which are in twin positions and differ from each other by the direction of their tetragonality axes. In turn, each martensite lamella consists of a set of smaller lamellae, which are in twin positions. After the cycle of fct → fcc → fct transitions, the alloy recrystallizes with a decrease in the grain size by several times compared with the initial structure such that the size of packets and the length and width of martensitic lamellae in a packet correlate with a change in the size of an alloy grain.

  5. Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor

    NASA Astrophysics Data System (ADS)

    Jia, Yufei; Kerner, Ross A.; Grede, Alex J.; Rand, Barry P.; Giebink, Noel C.

    2017-12-01

    Hybrid organic-inorganic perovskites have emerged as promising gain media for tunable, solution-processed semiconductor lasers. However, continuous-wave operation has not been achieved so far1-3. Here, we demonstrate that optically pumped continuous-wave lasing can be sustained above threshold excitation intensities of 17 kW cm-2 for over an hour in methylammonium lead iodide (MAPbI3) distributed feedback lasers that are maintained below the MAPbI3 tetragonal-to-orthorhombic phase transition temperature of T ≈ 160 K. In contrast with the lasing death phenomenon that occurs for pure tetragonal-phase MAPbI3 at T > 160 K (ref. 4), we find that continuous-wave gain becomes possible at T ≈ 100 K from tetragonal-phase inclusions that are photogenerated by the pump within the normally existing, larger-bandgap orthorhombic host matrix. In this mixed-phase system, the tetragonal inclusions function as carrier recombination sinks that reduce the transparency threshold, in loose analogy to inorganic semiconductor quantum wells, and may serve as a model for engineering improved perovskite gain media.

  6. Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO3

    NASA Astrophysics Data System (ADS)

    Rosenberg, Aaron J.; Katmis, Ferhat; Kirtley, John R.; Gedik, Nuh; Moodera, Jagadeesh S.; Moler, Kathryn A.

    2017-12-01

    The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-bandgap ferromagnetic insulator with a Curie temperature around 16 K, and SrTiO3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K, indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. We speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange.

  7. A comparison study of the Born effective charges and dielectric properties of the cubic, tetragonal, monoclinic, ortho-I, ortho-II and ortho-III phases of zirconia

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Chen, Hua-Xin; Duan, Li; Fan, Ji-Bin; Ni, Lei; Ji, Vincent

    2018-07-01

    Using density-functional perturbation theory, we systematically investigate the Born effective charges and dielectric properties of cubic, tetragonal, monoclinic, ortho-I (Pbca), ortho-II (Pnma) and ortho-III (Pca21) phases of ZrO2. The magnitudes of the Born effective charges of the Zr and oxygen atoms are greater than their nominal ionic valences (+4 for Zr and -2 for oxygen), indicating a strong dynamic charge transfer from Zr atoms to O atoms and a mixed covalent-ionic bonding in six phases of ZrO2. For all six phases of ZrO2, the electronic contributions εij∞ to the static dielectric constant are rather small (range from 5 to 6.5) and neither strongly anisotropic nor strongly dependent on the structural phase, while the ionic contributions εijion to the static dielectric constant are large and not only anisotropic but also dependent on the structural phase. The average dielectric constant εbar0 of the six ZrO2 phases decreases in the sequence of tetragonal, cubic, ortho-II (Pnma), ortho-I (Pbca), ortho-III (Pca21) and monoclinic. So among six phases of ZrO2, the tetragonal and cubic phases are two suitable phases to replace SiO2 as the gate dielectric material in modern integrated-circuit technology. Furthermore, for the tetragonal ZrO2 the best orientation is [100].

  8. Ultrafast optical snapshots of hybrid perovskites reveal the origin of multiband electronic transitions

    DOE PAGES

    Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean -Christophe; ...

    2017-11-15

    In this paper, connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered CH 3NH 3more » + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R- and M-point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.« less

  9. Ultrafast optical snapshots of hybrid perovskites reveal the origin of multiband electronic transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean -Christophe

    In this paper, connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered CH 3NH 3more » + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R- and M-point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.« less

  10. Ultrafast optical snapshots of hybrid perovskites reveal the origin of multiband electronic transitions

    NASA Astrophysics Data System (ADS)

    Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean-Christophe; Even, Jacky; Mohite, Aditya D.; Sfeir, Matthew Y.

    2017-11-01

    Connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered C H3N H3 + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R - and M -point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.

  11. Ideal strength of bcc molybdenum and niobium

    NASA Astrophysics Data System (ADS)

    Luo, Weidong; Roundy, D.; Cohen, Marvin L.; Morris, J. W.

    2002-09-01

    The behavior of bcc Mo and Nb under large strain was investigated using the ab initio pseudopotential density-functional method. We calculated the ideal shear strength for the {211}<111> and {011}<111> slip systems and the ideal tensile strength in the <100> direction, which are believed to provide the minimum shear and tensile strengths. As either material is sheared in either of the two systems, it evolves toward a stress-free tetragonal structure that defines a saddle point in the strain-energy surface. The inflection point on the path to this tetragonal ``saddle-point'' structure sets the ideal shear strength. When either material is strained in tension along <100>, it initially follows the tetragonal, ``Bain,'' path toward a stress-free fcc structure. However, before the strained crystal reaches fcc, its symmetry changes from tetragonal to orthorhombic; on continued strain it evolves toward the same tetragonal saddle point that is reached in shear. In Mo, the symmetry break occurs after the point of maximum tensile stress has been passed, so the ideal strength is associated with the fcc extremum as in W. However, a Nb crystal strained in <100> becomes orthorhombic at tensile stress below the ideal strength. The ideal tensile strength of Nb is associated with the tetragonal saddle point and is caused by failure in shear rather than tension. In dimensionless form, the ideal shear and tensile strengths of Mo (τ*=τm/G111=0.12, σ*=σm/E100=0.078) are essentially identical to those previously calculated for W. Nb is anomalous. Its dimensionless shear strength is unusually high, τ*=0.15, even though the saddle-point structure that causes it is similar to that in Mo and W, while its dimensionless tensile strength, σ*=0.079, is almost the same as that of Mo and W, even though the saddle-point structure is quite different.

  12. Structural stability and electronic properties of β-tetragonal boron: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayami, Wataru, E-mail: hayami.wataru@nims.go.jp

    2015-01-15

    It is known that elemental boron has five polymorphs: α- and β-rhombohedral, α- and β-tetragonal, and the high-pressure γ phase. β-tetragonal (β-t) boron was first discovered in 1960, but there have been only a few studies since then. We have thoroughly investigated, using first-principles calculations, the atomic and electronic structures of β-t boron, the details of which were not known previously. The difficulty of calculation arises from the fact that β-t boron has a large unit cell that contains between 184 and 196 atoms, with 12 partially-occupied interstitial sites. This makes the number of configurations of interstitial atoms too greatmore » to calculate them all. By introducing assumptions based on symmetry and preliminary calculations, the number of configurations to calculate can be greatly reduced. It was eventually found that β-t boron has the lowest total energy, with 192 atoms (8 interstitial atoms) in an orthorhombic lattice. The total energy per atom was between those of α- and β-rhombohedral boron. Another tetragonal structure with 192 atoms was found to have a very close energy. The valence bands were fully filled and the gaps were about 1.16 to 1.54 eV, making it comparable to that of β-rhombohedral boron. - Graphical abstract: Electronic density distribution for the lowest-energy configuration (N=192) viewed from the 〈1 0 0〉 direction. Left: isosurface (yellow) at d=0.09 electrons/a.u.{sup 3} Right: isosurface (orange) at d=0.12 electrons/a.u.{sup 3}. - Highlights: • β-tetragonal boron was thoroughly investigated using first-principles calculations. • The lowest energy structure contains 192 atoms in an orthorhombic lattice. • Another tetragonal structure with 192 atoms has a very close energy. • The total energy per atom is between those of α- and β-rhombohedral boron. • The band gap of the lowest energy structure is about 1.16 to 1.54 eV.« less

  13. A3V5O14 (A = K+, Rb+, or Tl+), new polar oxides with a tetragonal tungsten bronze related structural topology: synthesis, structure, and functional properties.

    PubMed

    Yeon, Jeongho; Kim, Sang-Hwan; Halasyamani, P Shiv

    2010-08-02

    Three polar noncentrosymmetric (NCS) oxide materials, A(3)V(5)O(14) (A = K(+), Rb(+), or Tl(+)), have been synthesized by hydrothermal and conventional solid state techniques. Their crystal structures and functional properties (second-harmonic generation, piezoelectricity, and polarization) have been determined. The iso-structural materials exhibit a layered structural topology that consists of corner-sharing VO(4) tetrahedra and VO(5) square pyramids. The layers stack parallel to the c-axis direction and are separated by the K(+), Rb(+), or Tl(+) cations. Powder second-harmonic generation (SHG) measurements using 1064 nm radiation indicate the materials exhibit moderate SHG efficiencies of approximately 100 x alpha-SiO(2). Additional SHG measurements, that is, particle size versus SHG efficiency, indicate the materials are type-I phase-matchable. Converse piezoelectric measurements for K(3)V(5)O(14), Rb(3)V(5)O(14), and Tl(3)V(5)O(14) revealed d(33) values of 28, 22, and 26 pm/V, respectively. Pyroelectric measurements, that is, temperature-dependent polarization measurements, resulted in pyroelectric coefficients of -2.2, -2.9, and -2.8 microC/m(2) x K at 65 degrees C, for K(3)V(5)O(14), Rb(3)V(5)O(14), and Tl(3)V(5)O(14) respectively. Frequency-dependent polarization measurements confirmed that all of the materials are nonferroelectric, consistent with our first principle density functional theory (DFT) electronic structure calculations. Infrared, UV-vis, thermogravimetric, and differential scanning calorimetry measurements were also performed. Crystal data: K(3)V(5)O(14), trigonal, space group P31m (No. 157), a = 8.6970(16) A, c = 4.9434(19) A, V = 323.81(15), and Z = 1; Rb(3)V(5)O(14), trigonal, space group P31m (No. 157), a = 8.7092(5) A, c = 5.2772(7) A, V = 346.65(5), and Z = 1; Tl(3)V(5)O(14), trigonal, space group P31m (No. 157), a = 8.7397(8) A, c = 5.0846(10) A, V = 336.34(8), and Z = 1.

  14. New ternary tantalum borides containing boron dumbbells: Experimental and theoretical studies of Ta2OsB2 and TaRuB

    NASA Astrophysics Data System (ADS)

    Mbarki, Mohammed; Touzani, Rachid St.; Rehorn, Christian W. G.; Gladisch, Fabian C.; Fokwa, Boniface P. T.

    2016-10-01

    The new ternary transition metal-rich borides Ta2OsB2 and TaRuB have been successfully synthesized by arc-melting the elements in a water-cooled crucible under an argon atmosphere. The crystal structures of both compounds were solved by single-crystal X-ray diffraction and their metal compositions were confirmed by EDX analysis. It was found that Ta2OsB2 and TaRuB crystallize in the tetragonal Nb2OsB2 (space group P4/mnc, no. 128) and the orthorhombic NbRuB (space group Pmma, no. 51) structure types with lattice parameters a=5.878(2) Å, c=6.857(2) Å and a=10.806(2) Å, b=3.196(1) Å, c=6.312(2) Å, respectively. Furthermore, crystallographic, electronic and bonding characteristics have been studied by density functional theory (DFT). Electronic structure relaxation has confirmed the crystallographic parameters while COHP bonding analysis indicates that B2-dummbells are the strongest bonds in both compounds. Moreover, the formation of osmium dumbbells in Ta2OsB2 through a Peierls distortion along the c-axis, is found to be the origin of superstructure formation. Magnetic susceptibility measurements reveal that the two phases are Pauli paramagnets, thus confirming the theoretical DOS prediction of metallic character. Also hints of superconductivity are found in the two phases, however lack of single phase samples has prevented confirmation. Furthermore, the thermodynamic stability of the two modifications of AMB (A=Nb, Ta; M =Ru, Os) are studied using DFT, as new possible phases containing either B4- or B2-units are predicted, the former being the most thermodynamically stable modification.

  15. Crystallization and initial X-ray diffraction studies of scaffolding protein (gp7) of bacteriophage ϕ29

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badasso, Mohammed O., E-mail: badas001@umn.edu; Anderson, Dwight L.; Department of Oral Science, University of Minnesota, Minneapolis, MN 55455

    2005-04-01

    ϕ29 bacteriophage scaffolding protein (gp7) has been overproduced in E. coli, purified, crystallized and characterized by X-ray diffraction. Two distinct crystal forms were obtained and a diffraction data set was collected to 1.8 Å resolution. The Bacillus subtilis bacteriophage ϕ29 scaffolding protein (gp7) has been crystallized by the hanging-drop vapour-diffusion method at 293 K. Two new distinct crystal forms that both differed from a previously crystallized and solved scaffolding protein were grown under the same conditions. Form I belongs to the primitive tetragonal space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 77.13, c = 37.12 Å.more » Form II crystals exhibit an orthorhombic crystal form, with space group C222 and unit-cell parameters a = 107.50, b = 107. 80, c = 37.34 Å. Complete data sets have been collected to 1.78 and 1.80 Å for forms I and II, respectively, at 100 K using Cu Kα X-rays from a rotating-anode generator. Calculation of a V{sub M} value of 2.46 Å{sup 3} Da{sup −1} for form I suggests the presence of one molecule in the asymmetric unit, corresponding to a solvent content of 50.90%, whereas form II has a V{sub M} of 4.80 Å{sup 3} Da{sup −1} with a solvent content of 48.76% and two molecules in the asymmetric unit. The structures of both crystal forms are being determined by the molecular-replacement method using the coordinates of the published crystal structure of gp7.« less

  16. High-pressure behaviour of Cs{sub 2}V{sub 3}O{sub 8} fresnoite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grzechnik, Andrzej, E-mail: grzechnik@xtal.rwth-aachen.de; Yeon, Jeongho; Zur Loye, Hans-Conrad

    2016-06-15

    Crystal structure of Cs{sub 2}V{sub 3}O{sub 8} fresnoite (P4bm, Z=2) has been studied using single-crystal X-ray diffraction in a diamond anvil cell to 8.6 GPa at room temperature. Cs{sub 2}V{sub 3}O{sub 8} undergoes a reversible first-order phase transition at about 4 GPa associated with anomalies in the pressure dependencies of the lattice parameters and unit-cell volume but without any symmetry change. Both structures consist of layers of corner-sharing V{sup 5+}O{sub 4} tetrahedra and V{sup 4+}O{sub 5} tetragonal pyramids separated by the Cs{sup +} cations located between the layers. At low pressures, the compression has little effect on the polarity ofmore » the structure. Above 4 GPa, the pseudosymmetry with respect to the corresponding centrosymmetric space group P4/mbm abruptly increases. The effects of external pressure and of the A{sup +} cation substitution in the vanadate fresnoites A{sub 2}V{sub 3}O{sub 8} (A{sup +}: K{sup +}, Rb{sup +}, NH{sub 4}{sup +}, Cs{sup +}) are discussed. - Graphical abstract: Non-centrosymmetric Cs{sub 2}V{sub 3}O{sub 8} undergoes a reversible first-order phase transition at about 4 GPa associated with an abrupt change of the pseudosymmetry with respect to the centrosymmetric space group P4/mbm. Display Omitted - Highlights: • High-pressure behaviour of vanadate fresnoites depends on alkali metal cations. • The size of the alkali metal cation determines whether the high-pressure phase is centrosymmetric. • No incommensurate structures are observed upon compression.« less

  17. RRh2Al10 (R = Ce, Yb): New intermetallic compounds in the 1 : 2 : 10 stoichiometry series

    NASA Astrophysics Data System (ADS)

    Strydom, A. M.; Djoumessi, R. F.; Blinova, M.; Tursina, A.; Nesterenko, S.; Avzuragova, V.

    2018-05-01

    The orthorhombic, space group Cmcm YbFe2Al10 structure type series of compounds are known to form with practically the entire series of rare-earth elements R, but only with the three d - electron elements Fe, Ru, and Os. The Ce-derivatives in particular have been of much interest since the first reports of their highly unusual physical properties. Classified as Kondo insulators, CeRu2Al10 and CeOs2Al10 controversially order magnetically and with uncharacteristically high Néel temperatures of ≃ 28 K. CeFe2Al10 on the other hand shows pronounced semiconducting and Kondo features but remains paramagnetic. As part of our ongoing studies into the rich physics of this class of materials we have succeeded in synthesizing new members of the 1:2:10 stoichiometry involving the chemical element Rh for the first time. CeRh2Al10 is found to crystallize in the tetragonal system with space group I41 / amd . Yb Rh2Al10 on the other hand forms in the serial Cmcm orthorhombic structure type. We discuss important similarities between the two types. At 5.310 Å the shortest Ce-Ce distance is, likewise to the situation in CeRu2Al10 and CeOs2Al10 , also well above the Hill limit of 3.40 Å. Despite the cage-like structure and large rare-earth separation distances, this study reveals the onset of long-range magnetic ordering in CeRh2Al10 at 3.9 K. The magnetic ordering develops out of an incoherent Kondo state that dominates the electrical resistivity below about 40 K.

  18. Single crystal growth and characterization of pure and sodium-modified copper tartrate

    NASA Astrophysics Data System (ADS)

    Quasim, I.; Firdous, A.; Want, B.; Khosa, S. K.; Kotru, P. N.

    2008-12-01

    Single crystal growth of pure and modified copper tartrate crystals bearing composition (Cu) x(Na) yC 4H 4O 6· nH 2O (where x=1, 0.77, 0.65; y=0, 0.23, 0.35) is achieved using gel technique. The optimum conditions required for the growth of these crystals are worked out. The morphological development of these crystals is studied using optical and scanning electron microscopy. The dominant habit faces of the grown copper tartrate crystals are (0 0 1) and (1 1 1). Calculation of the cell parameters using CRYSFIRE software suggests that the pure copper tartrate crystal belongs to orthorhombic system with space group P2 1/c whereas the modified copper tartrate falls under tetragonal system with the space group P4 2/nbc. The external morphological development is shown to remain unaffected in the modified copper tartrate. The stoichiometric composition of the crystals is established by EDAX analysis, CH analysis, FTIR spectroscopy and thermoanalytical techniques. Thermal analysis of the grown crystals suggests that pure copper tartrate is thermally stable up to 42.84 °C whereas the modified copper tartrate crystals are stable only up to 33.11 and 25.11 °C. Calculation of the percentage weight loss from the thermogram supplemented by EDAX/CH analysis and FTIR spectroscopy suggest that the chemical formula of pure copper tartrate crystal is CuC 4H 4O 6·3H 2O whereas the chemical formula for the modified copper tartrate crystals is (Cu) 0.77(Na) 0.23C 4H 4O 6·3H 2O and (Cu) 0.65(Na) 0.35 C 4H 4O 6·H 2O.

  19. Structural diversities induced by cation sizes in a series of fluorogermanophosphates: A2[GeF2(HPO4)2] (A = Na, K, Rb, NH4, and Cs).

    PubMed

    Chen, Zhang-Gai; Huang, Xia; Zhuang, Rong-Chuan; Zhang, Yu; Liu, Xin; Shi, Tao; Wang, Shuai-Hua; Wu, Shao-Fan; Mi, Jin-Xiao; Huang, Ya-Xi

    2017-09-12

    Germanophosphates, in comparison with other metal phosphates, have been less studied but potentially exhibit more diverse structural chemistry with wide applications. Herein we applied a hydro-/solvo-fluorothermal route to make use of both the "tailor effect" of fluoride for the formation of low dimensional anionic clusters and the presence of alkali cations of different sizes to align the anionic clusters to control the overall crystal symmetries of germanophosphates. The synergetic effects of fluoride and alkali cations led to structural changes from chain-like structures to layered structures in a series of five novel fluorogermanophosphates: A 2 [GeF 2 (HPO 4 ) 2 ] (A = Na, K, Rb, NH 4 , and Cs, denoted as Na, K, Rb, NH4, and Cs). Although these fluorogermanophosphates have stoichiometrically equivalent formulas, they feature different anionic clusters, diverse structural dimensionalities, and contrasting crystal symmetries. Chain-like structures were observed for the compounds with the smaller sized alkali ions (Na + , K + , and Rb + ), whereas layered structures were found for those containing the larger sized cations ((NH 4 ) + and Cs + ). Specifically, monoclinic space groups were observed for the Na, K, Rb, and NH4 compounds, whereas a tetragonal space group P4/mbm was found for the Cs compound. These compounds provide new insights into the effects of cation sizes on the anionic clusters built from GeO 4 F 2 octahedra and HPO 4 tetrahedra as well as their influences on the overall structural symmetries in germanophosphates. Further characterization including IR spectroscopy and thermal analyses for all five compounds is also presented.

  20. Intrinsic crystal phase separation in the antiferromagnetic superconductor Rb(y)Fe(2-x)Se2: a diffraction study.

    PubMed

    Yu Pomjakushin, V; Krzton-Maziopa, A; Pomjakushina, E V; Conder, K; Chernyshov, D; Svitlyk, V; Bosak, A

    2012-10-31

    The crystal and magnetic structures of the superconducting iron-based chalcogenides Rb(y)Fe(2-x)Se(2) have been studied by means of single-crystal synchrotron x-ray and high-resolution neutron powder diffraction in the temperature range 2-570 K. The ground state of the crystal is an intrinsically phase-separated state with two distinct-by-symmetry phases. The main phase has the iron vacancy ordered √5 × √5 superstructure (I4/m space group) with AFM ordered Fe spins. The minority phase does not have √5 × √5-type of ordering and has a smaller in-plane lattice constant a and larger tetragonal c-axis and can be well described by assuming the parent average vacancy disordered structure (I4/mmm space group) with the refined stoichiometry Rb(0.60(5))(Fe(1.10(5))Se)(2). The minority phase amounts to 8-10% mass fraction. The unit cell volume of the minority phase is 3.2% smaller than the one of the main phase at T = 2 K and has quite different temperature dependence. The minority phase merges with the main vacancy ordered phase on heating above the phase separation temperature T(P) = 475 K. The spatial dimensions of the phase domains strongly increase above T(P) from 1000 to >2500 Å due to the integration of the regions of the main phase that were separated by the second phase at low temperatures. Additional annealing of the crystals at a temperature T = 488 K, close to T(P), for a long time drastically reduces the amount of the minority phase.

  1. Synthesis and magnetic properties of the high-pressure scheelite-type GdCrO{sub 4} polymorph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dos santos-Garcia, A.J., E-mail: adossant@quim.ucm.es; Climent-Pascual, E.; Gallardo-Amores, J.M.

    The scheelite-type polymorph of GdCrO{sub 4} has been obtained from the corresponding zircon-type compound under high pressure and temperature conditions, namely 4 GPa and 803 K. The crystal structure has been determined by X-ray powder diffraction. This GdCrO{sub 4} scheelite crystallizes in a tetragonal symmetry with space group I4{sub 1}/a (No. 88, Z=4), a=5.0501(1) A, c=11.4533(2) A and V=292.099(7) A{sup 3}. The thermal decomposition leads to the formation of the zircon-polymorph as intermediate phase at 773 K to end in the corresponding GdCrO{sub 3} distorted perovskite-structure at higher temperatures. Magnetic susceptibility and magnetization measurements suggest the existence of long-range antiferromagneticmore » interactions which have been also confirmed from specific heat measurements. Neutron powder diffraction data reveal the simultaneous antiferromagnetic Gd{sup 3+} and Cr{sup 5+} ordering in the scheelite-type GdCrO{sub 4} with a T{sub N}{approx}20 K. The magnetic propagation vector was found to be k=(0 0 0). Combined with group theory analysis, the best neutron powder diffraction fit was obtained with a collinear antiferromagnetic coupling in which the m{sub Cr{sup 5}{sup +}} and m{sub Gd{sup 3}{sup +}} magnetic moments are confined in the tetragonal basal plane according to the mixed representation {Gamma}{sub 6} Circled-Plus {Gamma}{sub 8}. Thermal decomposition of the GdCrO{sub 4} high pressure polymorph, from the scheelite-type through the zircon-type structure as intermediate to end in the GdCrO{sub 3} perovskite. Highlights: Black-Right-Pointing-Pointer New high pressure GdCrO{sub 4} polymorph crystallizing in the scheelite type structure. Black-Right-Pointing-Pointer It is an antiferromagnet with a metamagnetic transition at low magnetic fields. Black-Right-Pointing-Pointer We have determined its magnetic structure from powder neutron diffraction data. Black-Right-Pointing-Pointer Otherwise, the room pressure zircon-polymorph is a ferromagnet. Black-Right-Pointing-Pointer The paper will be a great contribution in the study of 3d-4f magnetic interactions.« less

  2. Protein crystal growth; Proceedings of the First International Conference, Stanford University, CA, August 14-16, 1985

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S. (Editor)

    1986-01-01

    Papers are presented on mechanisms of nucleation and growth of protein crystals, the role of purification in the crystallization of proteins and nucleic acids, and the effect of chemical impurities in polyethylene glycol on macromolecular crystallization. Also considered are growth kinetics of tetragonal lysozyme crystals, thermodynamic and kinetic considerations for crystal growth of complex molecules from solution, protein single-crystal growth under microgravity, and growth of organic crystals in a microgravity environment. Papers are also presented on preliminary investigations of protein crystal growth using the Space Shuttle, convective diffusion in protein crystal growth, and the growth and characterization of membrane protein crystals.

  3. Orientation-resolved domain mapping in tetragonal SrTiO 3 using polarized Raman spectroscopy

    DOE PAGES

    Gray, Jr., Dodd J.; Merz, Tyler A.; Hikita, Yasuyuki; ...

    2016-12-16

    Here, we present microscopically resolved, polarized spectroscopy of Raman scattering collected from tetragonal SrTiO 3. The anisotropic response of first-order Raman peaks within a single tetragonal domain has been measured. From these data, we assign symmetries to the phonons seen in the first-order Raman spectrum which is normally complicated by uncontrolled domain structure. Using a translation stage, we map the local domain orientation of a 3–μm 3 crystal volume near the laser focus and compare it to wide-field polarized images. This technique can be performed with readily available instruments and is relevant to the study of a wide range ofmore » related materials, interfaces, and devices.« less

  4. Electronic Degeneracy and Intrinsic Magnetic Properties of EpitaxialNb : SrTiO3 Thin Films Controlled by Defects

    NASA Astrophysics Data System (ADS)

    Sarantopoulos, A.; Ferreiro-Vila, E.; Pardo, V.; Magén, C.; Aguirre, M. H.; Rivadulla, F.

    2015-10-01

    We report thermoelectric power experiments in e -doped thin films of SrTiO3 (STO) which demonstrate that the electronic band degeneracy can be lifted through defect management during growth. We show that even small amounts of cationic vacancies, combined with epitaxial stress, produce a homogeneous tetragonal distortion of the films, resulting in a Kondo-like resistance upturn at low temperature, large anisotropic magnetoresistance, and nonlinear Hall effect. Ab initio calculations confirm a different occupation of each band depending on the degree of tetragonal distortion. The phenomenology reported in this Letter for tetragonally distorted e -doped STO thin films, is similar to that observed in LaAlO3 /STO interfaces and magnetic STO quantum wells.

  5. Effect of Variable Oxidation States of Vanadium on the Structural, Optical, and Dielectric Properties of B2O3-Li2O-ZnO-V2O5 Glasses.

    PubMed

    Arya, S K; Danewalia, S S; Arora, Manju; Singh, K

    2016-12-01

    In the present study, the effect of variable vanadium oxidation states on the structural, optical, and dielectric properties of vanadium oxide containing lithium borate glasses has been investigated. Electron paramagnetic resonance studies indicate that vanadium in these glasses is mostly in the V 4+ state, having a tetragonal symmetry. As the glass composition of V 2 O 5 increases, tetragonality also increases at the cost of octahedral symmetry. The photoluminescence (PL) spectra of these glasses are dominated by zinc oxide transition, whereas the peaks pertaining to the vanadyl group are not visible in the PL spectra. The optical absorption spectra show a single wide absorption band, which is attributed to V 4+ ions in these glasses. The ac conductivity of the glasses increases with an increase in vanadium content. The highest electrical conductivity observed is ∼10 -5 S cm -1 at 250 °C for the glass with 2.5 mol % V 2 O 5 . Electrical conductivity is dominated by electron conduction, as indicated by the activation energy calculation.

  6. KCd2[N(CN)2]5(H2O)4: an enmeshed honeycomb grid.

    PubMed

    Schlueter, John A; Geiser, Urs; Funk, Kylee A

    2008-02-01

    The title compound, poly[potassium [diaquapenta-micro(2)-dicyanamido-dicadmium(II)] dihydrate], {K[Cd(2)(C(2)N(3))(5)(H(2)O)(2)].2H(2)O}(n), contains two-dimensional anionic sheets of {[Cd(2){N(CN)(2)}(H(2)O)(2)](-)}(n) with a modified (6,3)-net (layer group cm2m, No. 35). Two sets of equivalent sheets interpenetrate orthogonally to form a tetragonal enmeshed grid.

  7. The Effects of Thermal History on Nucleation of Tetragonal Lysozyme Crystals, or Hot Protein and Cold Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael; Judge, Russell; Pusey, Marc

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.2 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubilities are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to addition of precipitant solution. Warming a lysozyme solution above the phase transition point, then cooling it back below this point, has been shown to affect the subsequent nucleation rate, as determined by the numbers and size of crystals formed, but not the growth rate for the tetragonal crystal form . We have now measured the kinetics of this process and investigated its reversibility. The transition effects are progressive with temperature, having a half time of about 1 hour at 37C at pH 4.8. After holding a lysozyme solution at 37C (prior to addition of precipitant) for 16 hours, then cooling it back to 4C no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. Putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. This differential behaviour may be exploited to elucidate how and where flow affects the lysozyme crystal growth process. The presentation will focus on the results of these and ongoing studies in this area.

  8. Sol-gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain.

    PubMed

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol-gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia-porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and P<0.001, respectively). This study showed that aluminosilicate sol-gel dip coating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain.

  9. Sol–gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain

    PubMed Central

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol–gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia–porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and P<0.001, respectively). This study showed that aluminosilicate sol–gel dip coating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain. PMID:27478376

  10. Crystal structures of the free and inhibited forms of plasmepsin I (PMI) from Plasmodium falciparum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaumik, Prasenjit; Horimoto, Yasumi; Xiao, Huogen

    2011-09-06

    Plasmepsin I (PMI) is one of the four vacuolar pepsin-like proteases responsible for hemoglobin degradation by the malarial parasite Plasmodium falciparum, and the only one with no crystal structure reported to date. Due to substantial functional redundancy of these enzymes, lack of inhibition of even a single plasmepsin can defeat efforts in creating effective antiparasitic agents. We have now solved crystal structures of the recombinant PMI as apoenzyme and in complex with the potent peptidic inhibitor, KNI-10006, at the resolution of 2.4 and 3.1 {angstrom}, respectively. The apoenzyme crystallized in the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} with twomore » molecules in the asymmetric unit and the structure has been refined to the final R-factor of 20.7%. The KNI-10006 bound enzyme crystallized in the tetragonal space group P4{sub 3} with four molecules in the asymmetric unit and the structure has been refined to the final R-factor of 21.1%. In the PMI-KNI-10006 complex, the inhibitors were bound identically to all four enzyme molecules, with the opposite directionality of the main chain of KNI-10006 relative to the direction of the enzyme substrates. Such a mode of binding of inhibitors containing an allophenylnorstatine-dimethylthioproline insert in the P1-P1' positions, previously reported in a complex with PMIV, demonstrates the importance of satisfying the requirements for the proper positioning of the functional groups in the mechanism-based inhibitors towards the catalytic machinery of aspartic proteases, as opposed to binding driven solely by the specificity of the individual enzymes. A comparison of the structure of the PMI-KNI-10006 complex with the structures of other vacuolar plasmepsins identified the important differences between them and may help in the design of specific inhibitors targeting the individual enzymes.« less

  11. Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO 3

    DOE PAGES

    Rosenberg, Aaron J.; Katmis, Ferhat; Kirtley, John R.; ...

    2017-12-15

    The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-bandgap ferromagnetic insulator with a Curie temperature around 16K, and SrTiO 3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K,more » indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. Here, we speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange.« less

  12. Ferroelectricity of strained SrTiO3 in lithium tetraborate glass-nanocomposite and glass-ceramic

    NASA Astrophysics Data System (ADS)

    Abdel-Khalek, E. K.; Mohamed, E. A.; Kashif, I.

    2018-02-01

    Glass-nanocomposite (GNCs) sample of the composition [90Li2B4O7-10SrTiO3] (mol %) was prepared by conventional melt quenching technique. The glassy phase and the amorphous nature of the GNCs sample were identified by Differential thermal analysis (DTA) and X-ray diffraction (XRD) studies, respectively. DTA of the GNCs exhibits sharp and broad exothermic peaks which represent the crystallization of Li2B4O7 and SrTiO3, respectively. The tetragonal Li2B4O7 and tetragonal SrTiO3 crystalline phases in glass-ceramic (GC) were identified by XRD and scanning electron microscopic (SEM). The strain tetragonal SrTiO3 phase in GNCs and GC has been confirmed by SEM. The values of crystallization activation energies (Ec1 and Ec2) for the first and second exothermic peaks are equal to 174 and 1452 kJ/mol, respectively. The Ti3+ ions in tetragonal distorted octahedral sites in GNCs were identified by optical transmission spectrum. GNCs and GC samples exhibit broad dielectric anomalies at 303 and 319 K because of strained SrTiO3 ferroelectric, respectively.

  13. Controlled synthesis, characterization and photoluminescence property of olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Youjin, E-mail: zyj@ustc.edu.cn; Zheng, Ao; Yang, Xiaozhi

    2012-09-15

    Highlights: ► The olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was gained with EDTA assisted hydrothermal method. ► The product was characterized by XRD, XPS, FTIR, FESEM, and PL. ► The possible formation mechanism for olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was proposed. ► The PL in visible region of the olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was studied. -- Abstract: The olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was obtained by a convenient and facile complex agent assisted hydrothermal method. The product was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FESEM) andmore » photoluminescence (PL). The possible formation mechanism of the olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was proposed. The photoluminescence property in visible region of the olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was studied.« less

  14. Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.

    PubMed

    Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G

    2017-06-26

    Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.

  15. Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Aaron J.; Katmis, Ferhat; Kirtley, John R.

    The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-bandgap ferromagnetic insulator with a Curie temperature around 16K, and SrTiO 3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K,more » indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. Here, we speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange.« less

  16. Collapsed tetragonal phase as a strongly covalent and fully nonmagnetic state: Persistent magnetism with interlayer As-As bond formation in Rh-doped Ca0 .8Sr0 .2Fe2As2

    NASA Astrophysics Data System (ADS)

    Zhao, K.; Glasbrenner, J. K.; Gretarsson, H.; Schmitz, D.; Bednarcik, J.; Etter, M.; Sun, J. P.; Manna, R. S.; Al-Zein, A.; Lafuerza, S.; Scherer, W.; Cheng, J. G.; Gegenwart, P.

    2018-02-01

    A well-known feature of the CaFe2As2 -based superconductors is the pressure-induced collapsed tetragonal phase that is commonly ascribed to the formation of an interlayer As-As bond. Using detailed x-ray scattering and spectroscopy, we find that Rh-doped Ca0.8Sr0.2Fe2As2 does not undergo a first-order phase transition and that local Fe moments persist despite the formation of interlayer As-As bonds. Our density functional theory calculations reveal that the Fe-As bond geometry is critical for stabilizing magnetism and the pressure-induced drop in the c lattice parameter observed in pure CaFe2As2 is mostly due to a constriction within the FeAs planes. The collapsed tetragonal phase emerges when covalent bonding of strongly hybridized Fe 3 d and As 4 p states completely wins out over their exchange splitting. Thus the collapsed tetragonal phase is properly understood as a strong covalent phase that is fully nonmagnetic with the As-As bond forming as a by-product.

  17. Characterization of a Diamond Ground Y-TZP and Reversion of the Tetragonal to Monoclinic Transformation.

    PubMed

    Candido, L M; Fais, Lmg; Ferreira, E B; Antonio, S G; Pinelli, Lap

    To characterize the surface of an yttria-stabilized zirconia (Y-TZP) ceramic after diamond grinding in terms of its crystalline phase, morphology, mean roughness (Ra), and wettability as well as to determine a thermal treatment to reverse the resulting tetragonal to monoclinic (t-m) transformation. Y-TZP specimens were distributed into different groups according to the actions (or no action) of grinding and irrigation. Grinding was accomplished using a diamond stone at a low speed. The samples were characterized by x-ray diffraction (XRD), scanning electron microscopy, goniometry, and profilometry. In situ high-temperature XRD was used to determine an annealing temperature to reverse the t-m transformation. Ra was submitted to the Kruskal-Wallis test, followed by the Dunn test (α=0.05). The volume fraction of the monoclinic phase and contact angle were submitted to one-way analysis of variance, followed by the Tukey test (α=0.05). Monoclinic zirconia was observed on the surface of samples after dry and wet grinding with a diamond stone. The volume fraction of the monoclinic phase was smaller on the dry ground samples (3.6%±0.3%) than on the wet ground samples (5.6%±0.3%). High-temperature XRD showed reversion of the t-m phase transformation, which started at 700°C and completed at 800°C in a conventional oven. Grinding with a diamond stone partially transformed the crystalline phase on the surface of a Y-TZP ceramic from tetragonal to monoclinic zirconia while simultaneously increasing the surface roughness and wettability. The t-m transformation could be reversed by heat treatment at 800°C or 900°C for 60 minutes or 1000°C for 30 minutes.

  18. Influence of the Organic Species and Oxoanion in the Synthesis of two Uranyl Sulfate Hydrates, (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 ­(H 2 O)]·7H 2 O and (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 (H 2 O)]·4H 2 O, and a Uranyl Selenate-Selenite [C 5 H 6 N][(UO 2 )(SeO 4 )(HSeO 3 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J.; Wylie, Ernest M.; Burns, Peter C.

    2012-08-08

    Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)]·7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)]·4H2O (NDUS1), and one uranyl selenate-selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L-cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4)more » Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two-dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two-dimensional uranyl selenate-selenite sheets with a U/Se ratio of 1/2. In-situ reaction of the L-cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L-cystine, balancing the charge of the sheets.« less

  19. Low temperature synthesis and characterization of Na–M–(O)–F phases with M=Ti, V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nava-Avendaño, Jessica; Ayllón, José A.; Frontera, Carlos

    2015-03-15

    Na{sub 5}Ti{sub 3}O{sub 3}F{sub 11} was prepared by the microwave assisted method, and presents a chiolite related structure with cell parameters a=10.5016(5), b=10.4025(5), and c=10.2911(5) Å and Cmca (no. 64) space group. From solvothermal synthesis at 100 °C the cryolite Na{sub 3−δ}VO{sub 1−δ}F{sub 5+δ} was prepared, which crystallizes in the monoclinic system with a=5.5403(2), b=5.6804(2), c=7.9523(2) Å, β=90.032(7)° cell parameters and P2{sub 1}/n (no. 14) space group. Under similar synthesis conditions but with higher HF concentration the chiolite-type phase Na{sub 5−δ}V{sub 3}F{sub 14} was achieved, which exhibits a=10.5482(2), b=10.4887(1) and c=10.3243(1) Å cell parameters and Cmc2{sub 1} (no. 36) spacemore » group. A single crystal also having the chiolite structure was synthesized at 200 °C which exhibits tetragonal symmetry (a=7.380(3) and c=10.381(11) Å and space group P4{sub 2}2{sub 1}2 (no. 94)). Bond valence sum indicates that it contains V{sup 4+} and therefore can be formulated as Na{sub 5}V{sub 3}O{sub 3}F{sub 11}. - Graphical abstract: Na{sub 5}M{sub 3}(O,F){sub 14} with M=Ti and V having chiolite structure and Na{sub 3−δ}VO{sub 1−δ}F{sub 5+δ} cryolite were prepared by means of microwave-assisted and solvothermal synthesis. - Highlights: • Na{sub 5}Ti{sub 3}O{sub 3}F{sub 11} chiolite was prepared by a microwave assisted method and characterized. • Na{sub 3−δ}VO{sub 1−δ}F{sub 5+δ} and Na{sub 5−δ}V{sub 3}F{sub 14} were prepared by solvothermal synthesis. • The compounds were structurally characterized by diffraction techniques. • O/F distribution was estimated by applying Pauling’s second rule.« less

  20. Marigold-like nanocrystals: controllable synthesis, field emission, and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Song, Changqing; Yu, Ke; Yin, Haihong; Zhang, Yuanyuan; Li, Shouchuan; Wang, Yang; Zhu, Ziqiang

    2014-06-01

    Cubic marigold-like Cu2S nanostructures were synthesized from a facile hydrothermal process without using any additives or surfactants. After thermal annealed at different condition, monoclinic Cu2S and tetragonal Cu1.81S nanostructures were obtained for the first time, maintaining the marigold-like morphology undestroyed. Field emission (FE) properties of these three types of nanostructures were investigated for the first time. The results indicated that the tetragonal Cu1.81S nanostructures had excellent field emission performance with turn-on field of and threshold field of . Moreover, their photocatalytic properties of the three nanostructures were also investigated by photodegradating methylene blue (MB). The results showed that the tetragonal Cu1.81S nanostructures may be a competitive material in both field emission and photocatalytic applications.

  1. Ferromagnetism in tetragonally distorted LaCoO3 thin films

    NASA Astrophysics Data System (ADS)

    Mehta, Virat Vasav; Liberati, Marco; Wong, Franklin J.; Chopdekar, Rajesh Vilas; Arenholz, Elke; Suzuki, Yuri

    2009-04-01

    Thin films of epitaxial LaCoO3 were synthesized on SrTiO3 and (La ,Sr)(Al,Ta)O3 substrates, varying the oxygen background pressure in order to evaluate the impact of epitaxial growth as well as oxygen vacancies on the long range magnetic order. The epitaxial constraints from the substrate impose a tetragonal distortion compared to the bulk form. X-ray absorption and x-ray magnetic circular dichroism measurements confirmed that the ferromagnetism arises from the Co ions and persists through the entire thickness of the film. It was found that for the thin films to show ferromagnetic order they have to be grown under the higher oxygen pressures. A correlation of the structure and magnetism suggests that the tetragonal distortions induce the ferromagnetism.

  2. Thermoelectric properties of n and p-type cubic and tetragonal XTiO3 (X = Ba,Pb): A density functional theory study

    NASA Astrophysics Data System (ADS)

    Rahman, Gul; Rahman, Altaf Ur

    2017-12-01

    Thermoelectric properties of cubic (C) and tetragonal (T) BaTiO3 (BTO) and PbTiO3 (PTO) are investigated using density functional theory together with semiclassical Boltzmann's transport theory. Both electron and hole doped BTO and PTO are considered in 300-500 K temperature range. We observed that C-BTO has larger power factor(PF) when doped with holes, whereas n-type carrier concentration in C-PTO has larger PF. Comparing both BTO and PTO, C-PTO has larger figure of merit ZT. Tetragonal distortion reduces the Seebeck coefficient S in n-doped PTO, and the electronic structures revealed that such reduction in S is mainly caused by the increase in the optical band gaps (Γ - Γ and Γ-X).

  3. Electronic Degeneracy and Intrinsic Magnetic Properties of EpitaxialNb: SrTiO3 Thin Films Controlled by Defects.

    PubMed

    Sarantopoulos, A; Ferreiro-Vila, E; Pardo, V; Magén, C; Aguirre, M H; Rivadulla, F

    2015-10-16

    We report thermoelectric power experiments in e-doped thin films of SrTiO3 (STO) which demonstrate that the electronic band degeneracy can be lifted through defect management during growth. We show that even small amounts of cationic vacancies, combined with epitaxial stress, produce a homogeneous tetragonal distortion of the films, resulting in a Kondo-like resistance upturn at low temperature, large anisotropic magnetoresistance, and nonlinear Hall effect. Ab initio calculations confirm a different occupation of each band depending on the degree of tetragonal distortion. The phenomenology reported in this Letter for tetragonally distorted e-doped STO thin films, is similar to that observed in LaAlO3/STO interfaces and magnetic STO quantum wells.

  4. Solvothermal synthesis of a new 3-D mixed-metal sulfide framework, (H1.33tren)[In2.67Sb1.33S8]·tren

    NASA Astrophysics Data System (ADS)

    Lampkin, John D.; Powell, Anthony V.; Chippindale, Ann M.

    2016-11-01

    A new indium(III) antimony(V) sulfide, (H1.33tren)[In2.67Sb1.33S8]·tren, has been prepared solvothermally at 433 K. The compound crystallises in the tetragonal space group I-42d (lattice parameters, a=12.6248(5) and c=19.4387(18) Å at 150 K) and contains adamantane-like T2 supertetrahedral units comprised of corner-sharing InS45- and SbS43- tetrahedra. The adamantane-like units are then linked through sulfur vertices to generate an open, 3-D framework structure containing large pores in which neutral, protonated tren (tris(2-aminoethylene)amine) molecules reside. The presence of the organic components was confirmed by solid-state 13C NMR (10 kHz), combustion and thermogravimetric analysis. The band gap, obtained from UV-vis diffuse reflectance measurements, is 2.7(2) eV. Stirring with either water or alkali-metal salt solution leads to removal of the neutral tren molecules and an 9% reduction in unit-cell volume on formation of (H1.33tren)[In2.67Sb1.33S8]·(H2O)4.

  5. Impact of copper substitution on the structural, ferroelectric and magnetic properties of tungsten bronze ceramics

    NASA Astrophysics Data System (ADS)

    Jindal, Shilpi; Devi, Sheela; Batoo, Khalid Mujasam; Kumar, Gagan; Vasishth, Ajay

    2018-05-01

    The copper substituted tungsten bronze ceramics with generic formula Ba5CaCuXTi2-xNb8O30(x = 0.0, 0.02, 0.04, 0.06 and 0.08) were successfully synthesized for the first time by solid state reaction method. X-ray diffraction (XRD), Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) were utilized to examine the different structural parameters and elemental compositions. XRD study depicted the single phase tetragonal structure having space group P4bm. The crystallite size was observed to be in the range 14.4-30.23 nm. The coexistent of ferroelectricity and magnetism was established by P-E and M-H measurements. The P-E loop study indicated an increase in the coercive field (11.805-23.736 kVcm-1) while the M-H study depicted adecrease in the magnetization (7.65 × 10-4-5.32 × 10-4 emu/g) with the incorporation of Cu2+ ions. Raman spectrum depicted that there is shift in the position of Raman modes with the substitution of copper which revealed one-mode behavior in the synthesized ceramics.

  6. Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar

    2018-05-01

    We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.

  7. Heavy ion irradiations on synthetic hollandite-type materials: Ba1.0Cs0.3A2.3Ti5.7O16 (A=Cr, Fe, Al)

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Tumurugoti, Priyatham; Clark, Braeden; Sundaram, S. K.; Amoroso, Jake; Marra, James; Sun, Cheng; Lu, Ping; Wang, Yongqiang; Jiang, Ying.-Bing.

    2016-07-01

    The hollandite supergroup of minerals has received considerable attention as a nuclear waste form for immobilization of Cs. The radiation stability of synthetic hollandite-type compounds described generally as Ba1.0Cs0.3A2.3Ti5.7O16 (A=Cr, Fe, Al) were evaluated by heavy ion (Kr) irradiations on polycrystalline single phase materials and multiphase materials incorporating the hollandite phases. Ion irradiation damage effects on these samples were examined using grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). Single phase compounds possess tetragonal structure with space group I4/m. GIXRD and TEM observations revealed that 600 keV Kr irradiation-induced amorphization on single phase hollandites compounds occurred at a fluence between 2.5×1014 Kr/cm2 and 5×1014 Kr/cm2. The critical amorphization fluence of single phase hollandite compounds obtained by in situ 1 MeV Kr ion irradiation was around 3.25×1014 Kr/cm2. The hollandite phase exhibited similar amorphization susceptibility under Kr ion irradiation when incorporated into a multiphase system.

  8. An investigation of down-conversion luminescence properties of rare earth doped CaMoO4 phosphors for solar cell application

    NASA Astrophysics Data System (ADS)

    Verma, Akta; Sharma, S. K.

    2018-05-01

    In the present work, we have synthesized a CaMoO4:(1%)Er3+,(1%)Yb3+ down-converting phosphor by hydrothermal method. The primary goal of studying down-conversion is to enhance the conversion efficiency of Si-solar cell by converting one high energy (UV) photon into two low energy (NIR) photons. The various characterization such as XRD, FESEM and Photoluminescence (PL) were carried out. The X-ray diffraction (XRD) pattern exhibit tetragonal crystal structure and has a space group of I41a (88). The FESEM microphotograph shows surface morphology having a abundance of particles in spherical shape. The PL emission spectra were recorded both in Visible and NIR regions. There is hypertensive emission peak at 555 nm in the visible region due to 4S3/2 → 4I15/2 transition of Er3+ ions and an emission at 980 nm (2F5/2 → 2F7/2) due to Yb3+ ions. The result shows a demand of this down-converting material in the field of solar energy to improve the efficiency of Si-solar-cell.

  9. Structure and dielectric properties of (Ba0.7Sr0.3)1- x Na x (Ti0.9Sn0.1)1- x Nb x O3 ceramics

    NASA Astrophysics Data System (ADS)

    Ghoudi, Hanen; Chkoundali, Souad; Aydi, Abdelhedi; Khirouni, Kamel

    2017-11-01

    (Ba0.7Sr0.3)1- x Na x (Ti0.9Sn0.1)1- x Nb x O3 ceramics with compositions x = 0.6, 0.7, 0.8 and 0.9 were synthesized using the solid-state reaction method. These ceramics were examined by X-ray diffraction and dielectric measurements over a broad temperature and frequency ranges. X-ray diffraction patterns revealed a single-perovskite phase crystallized in a cubic structure, for x < 0.8, and in tetragonal, for x ≥ 0.8, with Pm3m and P4mm spaces groups, respectively. Two types of behaviors, classical ferroelectric or relaxor, were observed depending on the x composition. It is noted that temperatures T C (the Curie temperature) or T m (the temperature of maximum permittivity) rise when x increases and the relaxor character grows more significantly when x composition decreases. To analyze the dielectric relaxation degree of relaxor, various models were considered. It was proven that an exponential function could well describe the temperature dependence of the static dielectric constant and relaxation time.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    dos Reis, Roberto; Yang, Hao; Ophus, Colin

    A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr 3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr 3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurementmore » of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). Finally, the approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.« less

  11. Crystallization and preliminary crystallographic analysis of a flavoprotein NADH oxidase from Lactobacillus brevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzu, Mutlu; Niefind, Karsten; Hummel, Werner

    2005-05-01

    The water-forming flavoenzyme NADH oxidase was crystallized successfully for the first time. The crystals diffract X-rays to at least 4.0 Å resolution. NADH oxidase (NOX) from Lactobacillus brevis is a homotetrameric flavoenzyme composed of 450 amino acids per subunit. The molecular weight of each monomer is 48.8 kDa. The enzyme catalyzes the oxidation of two equivalents of NADH and reduces one equivalent of oxygen to yield two equivalents of water, without releasing hydrogen peroxide after the reduction of the first equivalent of NADH. Crystals of this protein were grown in the presence of 34% polyethylene glycol monomethyl ether 2000, 0.1more » M sodium acetate and 0.2 M ammonium sulfate at pH 5.4. They belong to the tetragonal space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = 74.8, b = 95.7, c = 116.9 Å, α = γ = 90, β = 103.8°. The current diffraction limit is 4.0 Å. The self-rotation function of the native data set is consistent with a NOX tetramer in the asymmetric unit.« less

  12. Kondo lattice heavy fermion behavior in CeRh2Ga2

    NASA Astrophysics Data System (ADS)

    Anand, V. K.; Adroja, D. T.; Bhattacharyya, A.; Klemke, B.; Lake, B.

    2017-04-01

    The physical properties of an intermetallic compound CeRh2Ga2 have been investigated by magnetic susceptibility χ (T) , isothermal magnetization M(H), heat capacity {{C}\\text{p}}(T) , electrical resistivity ρ (T) , thermal conductivity κ (T) and thermopower S(T) measurements. CeRh2Ga2 is found to crystallize with CaBe2Ge2-type primitive tetragonal structure (space group P4/nmm). No evidence of long range magnetic order is seen down to 1.8 K. The χ (T) data show paramagnetic behavior with an effective moment {μ\\text{eff}}≈ 2.5~{μ\\text{B}} /Ce indicating Ce3+ valence state of Ce ions. The ρ (T) data exhibit Kondo lattice behavior with a metallic ground state. The low-T {{C}\\text{p}}(T) data yield an enhanced Sommerfeld coefficient γ =130(2) mJ/mol K2 characterizing CeRh2Ga2 as a moderate heavy fermion system. The high-T {{C}\\text{p}}(T) and ρ (T) show an anomaly near 255 K, reflecting a phase transition. The κ (T) suggests phonon dominated thermal transport with considerably higher values of Lorenz number L(T) compared to the theoretical Sommerfeld value L 0.

  13. A-site compositional effects in Ga-doped hollandite materials of the form BaxCsyGa2x+yTi8−2x−yO16: implications for Cs immobilization in crystalline ceramic waste forms

    PubMed Central

    Xu, Yun; Wen, Yi; Grote, Rob; Amoroso, Jake; Shuller Nickles, Lindsay; Brinkman, Kyle S.

    2016-01-01

    The hollandite structure is a promising crystalline host for Cs immobilization. A series of Ga-doped hollandite BaxCsyGa2x+yTi8−2x−yO16 (x = 0, 0.667, 1.04, 1.33; y = 1.33, 0.667, 0.24, 0) was synthesized through a solid oxide reaction method resulting in a tetragonal hollandite structure (space group I4/m). The lattice parameter associated with the tunnel dimension was found to increases as Cs substitution in the tunnel increased. A direct investigation of cation mobility in tunnels using electrochemical impedance spectroscopy was conducted to evaluate the ability of the hollandite structure to immobilize cations over a wide compositional range. Hollandite with the largest tunnel size and highest aspect ratio grain morphology resulting in rod-like microstructural features exhibited the highest ionic conductivity. The results indicate that grain size and optimized Cs stoichiometry control cation motion and by extension, the propensity for Cs release from hollandite. PMID:27273791

  14. Quantum Spin Liquids in Frustrated Spin-1 Diamond Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Buessen, Finn Lasse; Hering, Max; Reuther, Johannes; Trebst, Simon

    2018-01-01

    Motivated by the recent synthesis of the spin-1 A -site spinel NiRh2 O4 , we investigate the classical to quantum crossover of a frustrated J1-J2 Heisenberg model on the diamond lattice upon varying the spin length S . Applying a recently developed pseudospin functional renormalization group approach for arbitrary spin-S magnets, we find that systems with S ≥3 /2 reside in the classical regime, where the low-temperature physics is dominated by the formation of coplanar spirals and a thermal (order-by-disorder) transition. For smaller local moments S =1 or S =1 /2 , we find that the system evades a thermal ordering transition and forms a quantum spiral spin liquid where the fluctuations are restricted to characteristic momentum-space surfaces. For the tetragonal phase of NiRh2 O4 , a modified J1-J2--J2⊥ exchange model is found to favor a conventionally ordered Néel state (for arbitrary spin S ), even in the presence of a strong local single-ion spin anisotropy, and it requires additional sources of frustration to explain the experimentally observed absence of a thermal ordering transition.

  15. Equation of state of U2Mo up-to Mbar pressure range: Ab-initio study

    NASA Astrophysics Data System (ADS)

    Mukherjee, D.; Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.

    2018-04-01

    Experimentally, U2Mo is known to exist in tetragonal structure at ambient conditions. In contrast to experimental reports, the past theoretical studies carried out in this material do not find this phase to be stable structure at zero pressure. In order to examine this discrepancy between experiment and theory, we have performed ab-initio electronic band structure calculations on this material. In our theoretical study, we have attempted to search for lowest enthalpy structure at ambient as well at high pressure up to 200 GPa, employing evolutionary structure search algorithm in conjunction with ab-inito method. Our investigations suggest that a hexagonal structure with space group symmetry P6/mmm is the lowest enthalpy structure not only at ambient pressure but also up to pressure range of ˜200 GPa. To further, substantiate the results of these static lattice calculations the elastic and lattice dynamical stability has also been analysed. The theoretical isotherm derived from these calculations has been utilized to determine the Hugoniot of this material. Various physical properties such as zero pressure equilibrium volume, bulk modulus and its pressure derivative has also been derived from theoretical isotherm.

  16. Determination of the structural phase and octahedral rotation angle in halide perovskites

    NASA Astrophysics Data System (ADS)

    dos Reis, Roberto; Yang, Hao; Ophus, Colin; Ercius, Peter; Bizarri, Gregory; Perrodin, Didier; Shalapska, Tetiana; Bourret, Edith; Ciston, Jim; Dahmen, Ulrich

    2018-02-01

    A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurement of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). The approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.

  17. Flux growth of Yb(6.6)Ir(6)Sn(16) having mixed-valent ytterbium.

    PubMed

    Peter, Sebastian C; Subbarao, Udumula; Rayaprol, Sudhindra; Martin, Joshua B; Balasubramanian, Mahalingam; Malliakas, Christos D; Kanatzidis, Mercouri G

    2014-07-07

    The compound Yb6.6Ir6Sn16 was obtained as single crystals in high yield from the reaction of Yb with Ir and Sn run in excess indium. Single-crystal X-ray diffraction analysis shows that Yb6.6Ir6Sn16 crystallizes in the tetragonal space group P42/nmc with a = b = 9.7105(7) Å and c = 13.7183(11) Å. The crystal structure is composed of a [Ir6Sn16] polyanionic network with cages in which the Yb atoms are embedded. The Yb sublattice features extensive vacancies on one crystallographic site. Magnetic susceptibility measurements on single crystals indicate Curie-Weiss law behavior <100 K with no magnetic ordering down to 2 K. The magnetic moment within the linear region (<100 K) is 3.21 μB/Yb, which is ∼70% of the expected value for a free Yb(3+) ion suggesting the presence of mixed-valent ytterbium atoms. X-ray absorption near edge spectroscopy confirms that Yb6.6Ir6Sn16 exhibits mixed valence. Resistivity and heat capacity measurements for Yb6.6Ir6Sn16 indicate non-Fermi liquid metallic behavior.

  18. Structural, transport and magnetotransport properties of Ru-doped La0.5Sr0.5Mn1-xRuxO3 (x = 0.0 & 0.05) manganite

    NASA Astrophysics Data System (ADS)

    Jethva, Sadaf; Katba, Savan; Udeshi, Malay; Kuberkar, D. G.

    2017-09-01

    We report the results of the structural, transport and magnetotransport studies on polycrystalline La0.5Sr0.5Mn1-xRuxO3 (x = 0.0 and 0.05) manganite investigated using XRD and resistivity (with and without field) measurements. Rietveld refinement of XRD patterns confirms the single phasic tetragonal structure for both the samples crystalizing in I4/mcm space group (No. 140). Low-temperature resistivity and MR measurements with H = 0 T & 5 T field show thermal hysteresis which has been attributed to the first order phase transition. The increase in resistivity and decrease in metal - insulator transition temperature (TMI) with Ru - doping concentration in La0.5Sr0.5MnO3 (LSMO) has been understood in the context of superexchange interaction between Mn and Ru ions. The observed upturn in resistivity at low temperature under field has been explained using combined effect of electron - electron (e - e) interaction, Kondo-like spin-dependent scattering and electron - phonon interaction while the variation in resistivity at high temperature (T > Tp) has been explained using adiabatic small polaron hopping model.

  19. Structural and thermoelectric properties of A-site substituted (Sr1-x-yCaxNdy)TiO3 perovskites

    NASA Astrophysics Data System (ADS)

    Somaily, Hamoud H.

    Detailed structural results and models are reported for a special class of A-site substituted perovskites, (Sr1-x-yCaxNd y)TiO3, obtained with high resolution NPD data as a function of temperature and Nd composition. Two series with various A-site concentrations were synthesized and investigated. Each series was designed to have a nominally constant tolerance factor. At room temperature (RT), I determine the space groups of the Sr-rich and Sr poor series as being tetragonal I4/mcm and orthorhombic Pbnm, respectively. The RT structures remain unchanged upon increasing the Nd3+ content. However, three different orthorhombic phases, Pbnm, Ibmm, Pbcm, are determined for the Sr-rich series as a function of decreasing temperature; whereas, for the Sr-poor series the orthorhombic Pbnm structure is found to persist throughout the full range of measured temperatures. A phase diagram is constructed and proposed in the temperature range 0-1000 K. Thermoelectric properties of (Sr 1-x-yCaxNdy)TiO3 were also investigated and the best figure of merit ZT=0.07 was obtained with the Sr-rich series.

  20. Trypanothione reductase from Leishmania infantum: cloning, expression, purification, crystallization and preliminary X-ray data analysis.

    PubMed

    Baiocco, Paola; Franceschini, Stefano; Ilari, Andrea; Colotti, Gianni

    2009-01-01

    The most promising targets for Leishmania-specific drug design are two key enzymes involved in the unique thiol-based metabolism, common to all parasites of the Trypanosomatidae family: trypanothione synthetase (TryS) and trypanothione reductase (TR). Recently, new inhibitors of TR have been identified such as polyamines and tricyclic compounds. The knowledge of the three-dimensional structure of Leishmania TR will shed light on the mechanism of interaction of these inhibitors with TR and will be the starting point to design novel lead candidates to facilitate the development of new effective and affordable drugs. Trypanothione reductase from Leishmania infantum has been cloned, expressed in E. coli and purified. Crystals were obtained at 294 K by the hanging drop vapour diffusion method using ammonium sulfate as precipitant agent and diffract to better than 2.95 A resolution using a synchrotron radiation source. The crystals exhibit an unusually high solvent content of 74 %, belong to the tetragonal space group P41 with units cell parameters a=b=103.45 A, c=192.62 A and two molecules in the asymmetric unit. The protein X-ray structure has been solved by Molecular Replacement and the model is under construction.

  1. Surface spins enhanced magnetoelectric coefficient and impedance spectroscopy of BaFe{sub 0.01}Ti{sub 0.99}O{sub 3} and BaFe{sub 0.015}Ti{sub 0.985}O{sub 3} nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Kuldeep Chand, E-mail: kuldeep0309@yahoo.co.in; Akal School of Physics, Eternal University, Baru Sahib, Himachal Pradesh 173101; Tripathi, S.K.

    2015-08-15

    Highlights: • Multiferroic Fe-doped BaTiO{sub 3} nanorods. • Sol–gel. • Magnetoelectric coefficient. • Transmission electron microscopy. • Cole–Cole plots. - Abstract: Multiferroic BaFe{sub 0.01}Ti{sub 0.99}O{sub 3} (BFT1) and BaFe{sub 0.015}Ti{sub 0.985}O{sub 3} (BFT15) nanorods were prepared by a sol–gel synthesis and annealed at 700 °C/2 h. The tetragonal phase and nano dimensions of BFT samples are identified by X-ray diffraction and transmission electron microscopy. The enhancement in ferroelectricity depends upon low porosity, tetragonal phase, space charge field, larger surface area and oriented growth. The ferromagnetism depends upon partially filled inner shells, surface spins and oxygen vacancies. The magnetoelectric coefficient ismore » explained on the basis of surface spins, short-range interactions near surface boundary, compressive stress and twin structure contributed by nano grains which can reside stress near grain boundaries. The frequency dependent real (Z′) and imaginary (Z″) parts of impedance spectra are confirmed by the variations that observed in dielectric properties. The values of resistance of grain boundaries, R{sub gb} is higher than grains, R{sub g} indicating that the effect of grain boundaries is dominant in BFT nanorods.« less

  2. Tetragonal Lysozyme Nucleation and Crystal Growth: The Role of the Solution Phase

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Sumida, John; Maxwell, Daniel; Gorti, Sridhar; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Experimental evidence indicates a dominant role of solution phase interactions in nucleating and growing tetragonal lysozyme crystals. These interactions are extensive, even at saturation, and may be a primary cause of misoriented regions in crystals grown on Earth. Microgravity, by limiting interfacial concentrations to diffusion-controlled levels, may benefit crystal quality by also reducing the extent of associated species present at the interface.

  3. Synthesis, spectroscopic and thermal studies of the copper(II) aspartame chloride complex

    NASA Astrophysics Data System (ADS)

    Çakır, S.; Coşkun, E.; Naumov, P.; Biçer, E.; Bulut, İ.; İçbudak, H.; Çakır, O.

    2002-08-01

    Aspartame adduct of copper(II) chloride Cu(Asp) 2Cl 2·2H 2O (Asp=aspartame) is synthesized and characterized by elemental analysis, FT IR, UV/vis, ESR spectroscopies, TG, DTG, DTA measurements and molecular mechanics calculations. Aqueous solution of the green solid absorbs strongly at 774 and 367 nm. According to the FT IR spectra, the aspartame moiety coordinates to the copper(II) ion via its carboxylate ends, whereas the ammonium terminal groups give rise to hydrogen bonding network with the water, the chloride ions or neighboring carboxylate groups. The results suggest tetragonally distorted octahedral environment of the copper ions.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Peigong; Fan, Caimei, E-mail: fancm@163.com; Wang, Yawen

    Graphical abstract: The cubic phase BaTiO{sub 3} nanoparticles can be obtained at 600 °C and changed into tetragonal phase at 900 °C by a dual chelating sol–gel method, and the photocatalytic activities of the photocatalysts calcined at different temperatures were investigated by the removal of humic acid (HA) from water under UV light irradiation. Highlights: ► The humic acid in water was firstly degradated by BaTiO{sub 3} photocatalyst. ► The cubic BaTiO{sub 3} was obtained and changed into tetragonal phase at lower temperature. ► The chelating agents had an important influence on the phase formation of BaTiO{sub 3}. ► Themore » tetragonal phase BaTiO{sub 3} calcined at 900 °C exhibited higher photocatalytic activity under UV irradiation. -- Abstract: In this paper, a dual chelating sol–gel method was used to synthesize BaTiO{sub 3} nanoparticles by using acetylacetone and citric acid as chelating agents. The samples calcined at different temperatures were analyzed by thermogravimetric and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscope (SEM) and UV–vis diffuse reflectance spectra (UV–vis). The results indicated that cubic phase BaTiO{sub 3} nanoparticles about 19.6 nm can be obtained at 600 °C and changed into tetragonal phase at 900 °C about 97.1 nm. All the BaTiO{sub 3} nanoparticles showed effective photocatalytic activities on the removal of humic acid (HA) under UV light irradiation. A comparison of single (acetylacetone or citric acid) and dual chelating (acetylacetone and citric acid) synthetic processes was also studied and the results demonstrated that the dual chelating agents indeed reduced phase transformation temperature from cubic to tetragonal BaTiO{sub 3}.« less

  5. Tetragonal Almandine, (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12, a New High-Pressure Mineral from the Shergotty Impact on Mars: an Integrated FESEM-EPMA-Synchrotron Diffraction Investigation

    NASA Astrophysics Data System (ADS)

    Ma, C.; Tschauner, O. D.

    2016-12-01

    The combination of FESEM-EDS-EBSD, EPMA, and synchrotron microdiffraction is developing into a powerful tool for identification of micron-scale minerals in rocks such as high-pressure phases in shocked meteorites. During a nanomineralogy investigation of the Shergotty meteorite using this approach, we have identified a new shock-induced high-pressure silicate, majoritic almandine with a tetragonal I41/a structure, in an impact melt pocket. The Shergotty meteorite, which fell in the Gaya district, Bihar, India in 1865, is a Martian basaltic shergottite with shock features. Tetragonal almandine in Shergotty occurs as aggregates of subhedral crystals, 0.8 - 2.5 µm in diameter, along with stishovite in the central region of a shock melt pocket, showing an empirical formula of (Fe1.16Ca0.75Mg0.61Na0.42Mn0.03K0.01)(Al1.16Si0.63Mg0.19Ti0.02)Si3O12. Its general formula is (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12. EBSD indicated this phase has a garnet-related structure. Synchrotron X-ray diffraction revealed that this garnet has actually a tetragonal structure (I41/a) with unit cell dimensions: a = 11.585(9) Å, c = 11.63(4) Å, V = 1561(7) Å3, and Z = 8. Tetragonal almandine is the polymorph of cubic almandine, a new high-pressure garnet mineral, formed by shock metamorphism via the Shergotty impact event on Mars. It apparently crystallized from Fe-rich shock-induced melt under high-pressure and high-temperature conditions.

  6. A comprehensive study on the structural evolution of HfO 2 thin films doped with various dopants

    DOE PAGES

    Park, Min Hyuk; Schenk, Tony; Fancher, Christopher M.; ...

    2017-04-19

    The origin of the unexpected ferroelectricity in doped HfO 2 thin films is now considered to be the formation of a non-centrosymmetric Pca2 1 orthorhombic phase. Due to the polycrystalline nature of the films as well as their extremely small thickness (~10 nm) and mixed orientation and phase composition, structural analysis of doped HfO 2 thin films remains a challenging task. As a further complication, the structural similarities of the orthorhombic and tetragonal phase are difficult to distinguish by typical structural analysis techniques such as X-ray diffraction. To resolve this issue, the changes in the grazing incidence X-ray diffraction (GIXRD)more » patterns of HfO 2 films doped with Si, Al, and Gd are systematically examined. For all dopants, the shift of o111/ t101 diffraction peak is observed with increasing atomic layer deposition (ALD) cycle ratio, and this shift is thought to originate from the orthorhombic to P4 2/ nmc tetragonal phase transition with decreasing aspect ratio (2 a/(b + c) for orthorhombic and c/a for the tetragonal phase). For quantitative phase analysis, Rietveld refinement is applied to the GIXRD patterns. A progressive phase transition from P2 1/c monoclinic to orthorhombic to tetragonal is confirmed for all dopants, and a strong relationship between orthorhombic phase fraction and remanent polarization value is uniquely demonstrated. The concentration range for the ferroelectric properties was the narrowest for the Si-doped HfO 2 films. As a result, the dopant size is believed to strongly affect the concentration range for the ferroelectric phase stabilization, since small dopants can strongly decrease the free energy of the tetragonal phase due to their shorter metal–oxygen bonds.« less

  7. Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres.

    PubMed

    Leib, Elisabeth W; Vainio, Ulla; Pasquarelli, Robert M; Kus, Jonas; Czaschke, Christian; Walter, Nils; Janssen, Rolf; Müller, Martin; Schreyer, Andreas; Weller, Horst; Vossmeyer, Tobias

    2015-06-15

    Zirconia microparticles produced by sol-gel synthesis have great potential for photonic applications. To this end, identifying synthetic methods that yield reproducible control over size uniformity is important. Phase transformations during thermal cycling can disintegrate the particles. Therefore, understanding the parameters driving these transformations is essential for enabling high-temperature applications. Particle morphology is expected to influence particle processability and stability. Yttria-doping should improve the thermal stability of the particles, as it does in bulk zirconia. Zirconia and YSZ particles were synthesized by improved sol-gel approaches using fatty acid stabilizers. The particles were heated to 1500 °C, and structural and morphological changes were monitored by SEM, ex situ XRD and high-energy in situ XRD. Zirconia particles (0.4-4.3 μm in diameter, 5-10% standard deviation) synthesized according to the modified sol-gel approaches yielded significantly improved monodispersities. As-synthesized amorphous particles transformed to the tetragonal phase at ∼450 °C with a volume decrease of up to ∼75% and then to monoclinic after heating from ∼650 to 850 °C. Submicron particles disintegrated at ∼850 °C and microparticles at ∼1200 °C due to grain growth. In situ XRD revealed that the transition from the amorphous to tetragonal phase was accompanied by relief in microstrain and the transition from tetragonal to monoclinic was correlated with the tetragonal grain size. Early crystallization and smaller initial grain sizes, which depend on the precursors used for particle synthesis, coincided with higher stability. Yttria-doping reduced grain growth, stabilized the tetragonal phase, and significantly improved the thermal stability of the particles. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. A comprehensive study on the structural evolution of HfO 2 thin films doped with various dopants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Min Hyuk; Schenk, Tony; Fancher, Christopher M.

    The origin of the unexpected ferroelectricity in doped HfO 2 thin films is now considered to be the formation of a non-centrosymmetric Pca2 1 orthorhombic phase. Due to the polycrystalline nature of the films as well as their extremely small thickness (~10 nm) and mixed orientation and phase composition, structural analysis of doped HfO 2 thin films remains a challenging task. As a further complication, the structural similarities of the orthorhombic and tetragonal phase are difficult to distinguish by typical structural analysis techniques such as X-ray diffraction. To resolve this issue, the changes in the grazing incidence X-ray diffraction (GIXRD)more » patterns of HfO 2 films doped with Si, Al, and Gd are systematically examined. For all dopants, the shift of o111/ t101 diffraction peak is observed with increasing atomic layer deposition (ALD) cycle ratio, and this shift is thought to originate from the orthorhombic to P4 2/ nmc tetragonal phase transition with decreasing aspect ratio (2 a/(b + c) for orthorhombic and c/a for the tetragonal phase). For quantitative phase analysis, Rietveld refinement is applied to the GIXRD patterns. A progressive phase transition from P2 1/c monoclinic to orthorhombic to tetragonal is confirmed for all dopants, and a strong relationship between orthorhombic phase fraction and remanent polarization value is uniquely demonstrated. The concentration range for the ferroelectric properties was the narrowest for the Si-doped HfO 2 films. As a result, the dopant size is believed to strongly affect the concentration range for the ferroelectric phase stabilization, since small dopants can strongly decrease the free energy of the tetragonal phase due to their shorter metal–oxygen bonds.« less

  9. Ferroic phase transition of tetragonal Pb0.6-xCaxBi0.4(Ti0.75Zn0.15Fe0.1)O3 ceramics: Factors determining Curie temperature

    NASA Astrophysics Data System (ADS)

    Yu, Jian; An, Fei-fei; Cao, Fei

    2014-05-01

    In this paper, ferroelectric phase transitions of Pb0.6-xCaxBi0.4(Ti0.75Zn0.15Fe0.1)O3 with x ≤ 0.20 ceramics were experimentally measured and a change from first-order to relaxor was found at a critical composition x ˜ 0.19. With increasing Ca content of x ≤ 0.18, Curie temperature and tetragonality was found decrease but piezoelectric constant and dielectric constant increase in a quadratic polynomial relationship as a function of x, while the ferroic Curie temperature and ferroelastic ordering parameter of tetragonality are correlated in a quadratic polynomial relationship. Near the critical composition of ferroic phase transition from first-order to relaxor, the Pb0.42Ca0.18Bi0.4(Ti0.75Zn0.15Fe0.1)O3 and 1 mol % Nb + 0.5 mol % Mg co-doped Pb0.44Ca0.16Bi0.4(Ti0.75Zn0.15Fe0.1)O3 ceramics exhibit a better anisotropic piezoelectric properties than those commercial piezoceramics of modified-PbTiO3 and PbNb2O6. At last, those factors including reduced mass of unit cell, mismatch between cation size and anion cage size, which affect ferroic Curie temperature and ferroelastic ordering parameter (tetragonality) of tetragonal ABO3 perovskites, are analyzed on the basis of first principle effective Hamiltonian and the reduced mass of unit cell is argued a more universal variable than concentration to determine Curie temperature in a quadratic polynomial relationship over various perovskite-structured solid solutions.

  10. Intercalation of the layered solid acid HCa/sub 2/Nb/sub 3/O/sub 10/ by organic amines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, A.J.; Johnson, J.W.; Lewandowski, J.T.

    1987-01-01

    Layered compounds of formula C/sub n/H/sub 2n+1/NH/sub 3/Ca/sub 2/Nb/sub 3/O/sub 10/ are formed by reaction of n-alkylamines with the solid acid HCa/sub 2/Nb/sub 3/O/sub 10/. Other organic bases such as pyridine can also be intercalated. The lattice constants of the new compounds have been determined by powder X-ray diffraction. The unit cells are tetragonal with a axes that are unchanged with variation of the intercalated amine. The c axes lengths (layer spacings) vary systematically with the hydrocarbon chain length of the alkylamine.

  11. Optical properties of tetragonal and nanoscale BiFeO3

    NASA Astrophysics Data System (ADS)

    Chen, P.; Xu, X. S.; Musfeldt, J. L.; Santulli, A. C.; Koenigsmann, C.; Wong, S. S.; Podraza, N. J.; Melville, A.; Vlahos, E.; Gopalan, V.; Schlom, D. G.; Ramesh, R.

    2010-03-01

    We measured the optical properties of tetragonal thin film and nanoscale rhombohedral BiFeO3 in the range from near infrared to the near ultraviolet. The absorption spectrum in the tetragonal film is overall blue-shifted compared with that of the rhombohedral BiFeO3 film. It shows an absorption onset near 2.25 eV, a direct 3.1 eV band gap, and charge transfer excitations that are ˜0.4 eV higher than those of the rhombohedral counterpart. In the nanoparticles, the band gap decreases from 2.7 eV to ˜2.3 eV, and the well-known 3.2 and 4.5 eV charge transfer excitations split into multiplets. We discuss these results in terms of structural strain, surface strain, and local symmetry breaking.

  12. Development of dielectrophoresis MEMS device for PC12 cell patterning to elucidate nerve-network generation

    NASA Astrophysics Data System (ADS)

    Nakamachi, Eiji; Koga, Hirotaka; Morita, Yusuke; Yamamoto, Koji; Sakamoto, Hidetoshi

    2018-01-01

    We developed a PC12 cell trapping and patterning device by combining the dielectrophoresis (DEP) methodology and the micro electro mechanical systems (MEMS) technology for time-lapse observation of morphological change of nerve network to elucidate the generation mechanism of neural network. We succeeded a neural network generation, which consisted of cell body, axon and dendrites by using tetragonal and hexagonal cell patterning. Further, the time laps observations was carried out to evaluate the axonal extension rate. The axon extended in the channel and reached to the target cell body. We found that the shorter the PC12 cell distance, the less the axonal connection time in both tetragonal and hexagonal structures. After 48 hours culture, a maximum success rate of network formation was 85% in the case of 40 μm distance tetragonal structure.

  13. Towards novel multiferroic and magnetoelectric materials: dipole stability in tetragonal tungsten bronzes

    PubMed Central

    Rotaru, Andrei; Miller, Andrew J.; Arnold, Donna C.; Morrison, Finlay D.

    2014-01-01

    We discuss the strategy for development of novel functional materials with the tetragonal tungsten bronze structure. From the starting composition Ba6GaNb9O30, the effect of A- and B-site substitutions on the dielectric properties is used to develop an understanding of the origin and stability of the dipolar response in these compounds. Both tetragonal strain induced by large B-site cations and local strain variations created by isovalent A-site substitutions enhance dipole stability but result in a dilute, weakly correlated dipolar response and canonical relaxor behaviour. Decreasing cation size at the perovskite A2-site increases the dipolar displacements in the surrounding octahedra, but insufficiently to result in dipole ordering. Mechanisms introducing small A-site lanthanide cations and incorporation of A-site vacancies to induce ferroelectricity and magnetism are presented. PMID:24421377

  14. Temperature dependence of field-responsive mechanisms in lead zirconate titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Ching-Chang; Fancher, Chris M.; Isaac, Catherine

    2017-05-17

    An electric field loading stage was designed for use in a laboratory diffractometer that enables in situ investigations of the temperature dependence in the field response mechanisms of ferroelectric materials. The stage was demonstrated in this paper by measuring PbZr 1-xTi xO 3 (PZT) based materials—a commercially available PZT and a 1% Nb-doped PbZr 0.56Ti 0.44O 3 (PZT 56/44)—over a temperature range of 25°C to 250°C. The degree of non-180° domain alignment (η 002) of the PZT as a function of temperature was quantified. η 002 of the commercially available PZT increases exponentially with temperature, and was analyzed as amore » thermally activated process as described by the Arrhenius law. The activation energy for thermally activated domain wall depinning process in PZT was found to be 0.47 eV. Additionally, a field-induced rhombohedral to tetragonal phase transition was observed 5°C below the rhombohedral-tetragonal transition in PZT 56/44 ceramic. The field-induced tetragonal phase fraction was increased 41.8% after electrical cycling. Finally, a large amount of domain switching (η 002=0.45 at 1.75 kV/mm) was observed in the induced tetragonal phase.« less

  15. Domain wall and interphase boundary motion in (1-x)Bi(Mg 0.5 Ti 0.5 )O 3 –xPbTiO 3 near the morphotropic phase boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tutuncu, Goknur; Chen, Jun; Fan, Longlong

    Electric field-induced changes in the domain wall motion of (1-x)Bi(Mg 0.5Ti 0.5)O 3–xPbTiO 3 (BMT-xPT) near the morphotropic phase boundary (MPB) where x = 0.37 (BMT-37PT) and x =0.38 (BMT-38PT), are studied by means of synchrotron x-ray diffraction. Through Rietveld analysis and profile fitting, a mixture of coexisting monoclinic (Cm) and tetragonal (P4mm) phases is identified at room temperature. Extrinsic contributions to the property coefficients are evident from electric-field-induced domain wall motion in both the tetragonal and monoclinic phases, as well as through the interphase boundary motion between the two phases. Domain wall motion in the tetragonal and monoclinic phasesmore » for BMT-37PT is larger than that of BMT-38PT, possibly due to this composition's closer proximity to the MPB. Increased interphase boundary motion was also observed in BMT-37PT. Lattice strain, which is a function of both intrinsic piezoelectric strain and elastic interactions of the grains (the latter originating from domain wall and interphase boundary motion), is similar for the respective tetragonal and monoclinic phases.« less

  16. Charge Disproportionation in Tetragonal La 2MoO 5 , a Small Band Gap Semiconductor Influenced by Direct Mo–Mo Bonding

    DOE PAGES

    Colabello, Diane M.; Camino, Fernando E.; Huq, Ashfia; ...

    2014-12-31

    The structure of the novel compound La 2MoO 5 has been solved from powder X-ray and neutron diffraction data and belongs to the tetragonal space group P4/m (no. 83) with a = 12.6847(3) Å and c = 6.0568(2) Å and with Z = 8. It consists of equal proportions of bioctahedral (Mo 2O 10) and square prismatic (Mo 2O 8) dimers, both of which contain direct Mo-Mo bonds and are arranged in 1D chains. The Mo-Mo bond length in the Mo 2O 10dimers is 2.684(8) Å, while there are two types of Mo 2O 8 dimers with Mo-Mo bonds lengthsmore » of 2.22(2) and 2.28(2) Å. Although the average Mo oxidation state in La 2MoO 5 is 4+, the very different Mo-Mo distances reflect the fact that the Mo 2O 10 dimers contain only Mo5+ (d(1)), while the prismatic Mo2O8 dimers only contain Mo 3+ (d 3), a result directly confirmed by density function theory calculations. This is due to the complete disproportionation of Mo 4+, a phenomenon which has not previously been observed in solid-state compounds. La 2MoO 5 is diamagnetic, behavior which is not expected for a nonmetallic transition-metal oxide whose cation sites have an odd number of d-electrons. The resistivity displays the Arrhenius-type activated behavior expected for a semiconductor with a band gap of 0.5 eV, exhibiting an unusually small transport gap relative to other diamagnetic oxides. Diffuse reflectance studies indicate that La 2MoO 5 is a rare example of a stable oxide semiconductor with strong infrared absorbance. Lastly, we show that the d-orbital splitting associated with the Mo 2O 8 and Mo 2O 10 dimeric units can be rationalized using simple molecular orbital bonding concepts.« less

  17. Structural investigations of vanadyl doped Nb2O5·K2O·B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Anshu; Sanghi, S.; Agarwal, A.; Lather, M.; Bhatnagar, V.; Khasa, S.

    2009-07-01

    Pottasium nioborate glasses of composition xNb2O5·(30-x)K2O·69B2O3 containing 1 mol % of V2O5 were prepared by melt quench technique (1473K, 1h). The electron paramagnetic resonance spectra of VO2+ in these glasses have been recorded in X- band (v approx 9.14 GHz) at room temperature (RT). The spin Hamiltonian parameters, dipolar hyperfine coupling parameters, P and Fermi contact interaction parameter, K have been calculated. It is found that V4+ ions in these glasses exist as VO2+ in octahedral coordination with a tetragonal distortion. The tetragonality of V4+O6 complex decreases with increasing Nb2O5: K2O ratio and also there is an expansion of 3dXY orbit of unpaired electron in the vanadium ion. The study of IR transmission spectra over a range 400- 4000 cm-1 depicts the presence of both BO3 and BO4 structural units and Nb5+ ions are incorporated into the glass network as NbO6 octahedra, substituting BO4 groups.

  18. Effect of WO3 on EPR, structure and electrical conductivity of vanadyl doped WO3·M2O·B2O3 (M=Li, Na) glasses

    NASA Astrophysics Data System (ADS)

    Sheoran, A.; Agarwal, A.; Sanghi, S.; Seth, V. P.; Gupta, S. K.; Arora, M.

    2011-12-01

    Glasses with composition xWO3·(30-x)M2O·70B2O3 (M=Li, Na; 0≤x≤15) doped with 2 mol% V2O5 have been prepared using the melt-quench technique. The electron paramagnetic resonance spectra have been recorded in X-band (ν≈9.14 GHz) at room temperature (RT). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) only due to V4+ ions, which exist as VO2+ ions in octahedral coordination with a tetragonal compression in the present glass system. The tetragonality increases with WO3:M2O ratio and also there is an expansion of 3dxy orbit of unpaired electron in the vanadium ion. The study of IR transmission spectra over a range 400-4000 cm-1 depicts the presence of WO6 group. The DC conductivity (σ) has been measured in the temperature range 423-623 K and is found to be predominantly ionic.

  19. Self-assembled DNA Structures for Nanoconstruction

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Yin, Peng; Park, Sung Ha; Li, Hanying; Feng, Liping; Guan, Xiaoju; Liu, Dage; Reif, John H.; LaBean, Thomas H.

    2004-09-01

    In recent years, a number of research groups have begun developing nanofabrication methods based on DNA self-assembly. Here we review our recent experimental progress to utilize novel DNA nanostructures for self-assembly as well as for templates in the fabrication of functional nano-patterned materials. We have prototyped a new DNA nanostructure known as a cross structure. This nanostructure has a 4-fold symmetry which promotes its self-assembly into tetragonal 2D lattices. We have utilized the tetragonal 2D lattices as templates for highly conductive metallic nanowires and periodic 2D protein nano-arrays. We have constructed and characterized a DNA nanotube, a new self-assembling superstructure composed of DNA tiles. We have also demonstrated an aperiodic DNA lattice composed of DNA tiles assembled around a long scaffold strand; the system translates information encoded in the scaffold strand into a specific and reprogrammable barcode pattern. We have achieved metallic nanoparticle linear arrays templated on self-assembled 1D DNA arrays. We have designed and demonstrated a 2-state DNA lattice, which displays expand/contract motion switched by DNA nanoactuators. We have also achieved an autonomous DNA motor executing unidirectional motion along a linear DNA track.

  20. Protein solubilities determined by a rapid technique and modification of that technique to a micro-method

    NASA Technical Reports Server (NTRS)

    Cacioppo, Elizabeth; Pusey, Marc Lee; Munson, Sibyl

    1989-01-01

    A simple, rapid method for determination of protein solubilities has been developed which is based upon maximization of the free solution volume to be brought into equilibrium. The tetragonal lysozome solubility diagram has been determined from pH 4.0 to 5.2 (0.1 M sodium acetate), 2-7 percent NaCl, 3-25 C, and portions of the orthorhombic solubility diagram using this technique. Both tetragonal and orthorhombic solubilities were found to increase smoothly with decreasing salt concentration and increasing temperature; no retrograde solubilities were observed. Using column volumes of 75, 300, and 900 microliters, identical tetragonal lysozyme solubility diagrams were obtained. Chymotrypsinogen solubilities have also been determined using this apparatus, being retrograde over the temperature range tested. It is noted that the primary limiting factor in reducing the crystalline volume is the minimum solution sample size needed to accurately quantitate the protein.

  1. Giant magnetostriction in nanoheterogeneous Fe-Al alloys

    NASA Astrophysics Data System (ADS)

    Han, Yongjun; Wang, Hui; Zhang, Tianli; He, Yangkun; Jiang, Chengbao

    2018-02-01

    As a potential magnetostrictive material, Fe-Al alloys exhibit excellent mechanical properties, low cost, and moderate magnetostriction, but the magnetostriction mechanism is still a mystery. Here, we elucidate the structural origin of magnetostriction in Fe-Al alloys and further improve the magnetostriction five-fold via Tb doping. Nanoinclusions with a size of 3-5 nm were found dispersed in the A2 matrix in Fe82Al18 ribbons. The structure of the nanoinclusions is identified to be tetragonally modified-D03 (L60), which are considered to create the tetragonal distortion of the matrix, leading to the enhanced magnetostriction. Furthermore, a drastic enhancement of the magnetostriction up to 5 times was achieved by trace Tb doping (0.2 at. %). Synchrotron X-ray diffraction directly revealed the increased tetragonal distortion of the matrix caused by these Tb dopants. The results further enrich the heterogeneous magnetostriction and guide the development of magnetostrictive materials.

  2. Microstructure and mechanical properties of bulk yttria-partially-stabilized zirconia

    NASA Technical Reports Server (NTRS)

    Valentine, P. G.; Maier, R. D.; Mitchell, T. E.

    1981-01-01

    A commercially available bulk 4.5 mole percent yttria-(Y2O3) partially stabilized zirconia (PSZ) was studied by light microscopy, X-ray analysis, microhardness measurement, and fracture toughness testing. The growth of the precipitates and the phase transformations were studied as a function of aging in air at 1500 C. Aging curves were constructed for both the as received and the solution annealed and quenched materials; the curves showed hardness peaks at 1397 and 1517 Kg/sq mm respectively. The rectangular plate shaped tetragonal precipitates were found to have a 110 habit plane. A total of twelve different types of tetragonal precipitates were found. Grinding of the Y2O3 PSZ into powder did not cause a significant amount of metastable tetragonal precipitates to transform into the monoclinc phase, thus indicating that transformation toughening is not a significant mechanism for the material.

  3. Aqueous Combustion Synthesis and Characterization of Nanosized Tetragonal Zirconia Single Crystals

    NASA Astrophysics Data System (ADS)

    Reddy, B. S. B.; Mal, Indrajit; Tewari, Shanideep; Das, Karabi; Das, Siddhartha

    2007-08-01

    Nanocrystalline zirconia powder has been synthesized by an aqueous combustion synthesis route using glycine as fuel and nitrate as oxidizer. The powders have been prepared by using different glycine to zirconyl nitrate molar ratios (G/N). The powders produced with different G/N ratios have been characterized by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) to determine the parameters resulting from powder with attractive properties. The theoretical combustion temperature (T ad ) has been calculated for different G/N ratios, and it is correlated with powder characteristics. An attempt is also made to explain the stability of tetragonal zirconia on the basis of extrinsic factors such as the morphology of nanocrystallites. Nanocrystalline metastable tetragonal zirconia (˜25 nm) powder (TZ) with disc-shaped morphology has been produced with a weak agglomeration in fuel deficient mixtures.

  4. Local Orthorhombicity in the Magnetic C 4 Phase of the Hole-Doped Iron-Arsenide Superconductor Sr 1 - x Na x Fe 2 As 2

    DOE PAGES

    Frandsen, Benjamin A.; Taddei, Keith M.; Yi, Ming; ...

    2017-10-30

    We report on temperature-dependent pair distribution function measurements of Sr 1-xNa xFe 2As 2, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C 4 phase. Quantitative refinements indicate that the instantaneous local structure in the C 4 phase comprises fluctuating orthorhombic regions with a length scale of similar to 2 nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. Furthermore, these results highlight the exceptionally large nematic susceptibility of iron-based superconductors andmore » have significant implications for the magnetic C 4 phase and the neighboring C 2 and superconducting phases.« less

  5. Local Orthorhombicity in the Magnetic C 4 Phase of the Hole-Doped Iron-Arsenide Superconductor Sr 1 - x Na x Fe 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frandsen, Benjamin A.; Taddei, Keith M.; Yi, Ming

    We report on temperature-dependent pair distribution function measurements of Sr 1-xNa xFe 2As 2, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C 4 phase. Quantitative refinements indicate that the instantaneous local structure in the C 4 phase comprises fluctuating orthorhombic regions with a length scale of similar to 2 nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. Furthermore, these results highlight the exceptionally large nematic susceptibility of iron-based superconductors andmore » have significant implications for the magnetic C 4 phase and the neighboring C 2 and superconducting phases.« less

  6. Electronic transport properties of MFe2As2 (M = Ca, Eu, Sr) at ambient and high pressures up to 20 GPa

    NASA Astrophysics Data System (ADS)

    Morozova, Natalia V.; Karkin, Alexander E.; Ovsyannikov, Sergey V.; Umerova, Yuliya A.; Shchennikov, Vladimir V.; Mittal, R.; Thamizhavel, A.

    2015-12-01

    We experimentally investigated the electronic transport properties of four iron pnictide crystals, namely, EuFe2As2, SrFe2As2, and CaFe2As2 parent compounds, and superconducting CaFe1.94Co0.06As2 at ambient and high pressures up to 20 GPa. At ambient pressure we examined the electrical resistivity, Hall and magnetoresistance effects of the samples in a temperature range from 1.5 to 380 K in high magnetic fields up to 13.6 T. In this work we carried out the first simultaneous investigations of the in-plane and out-of-plane Hall coefficients, and found new peculiarities of the low-temperature magnetic and structural transitions that occur in these materials. In addition, the Hall coefficient data suggested that the parent compounds are semimetals with a multi-band conductivity that includes hole-type and electron-type bands. We measured the pressure dependence of the thermoelectric power (the Seebeck effect) of these samples up to 20 GPa, i.e. across the known phase transition from the tetragonal to the collapsed tetragonal lattice. The high-pressure behavior of the thermopower of EuFe2As2 and CaFe2As2 showing the p-n sign inversions was consistent with the semimetal model described above. By means of thermopower, we found in single-crystalline CaFe2As2 direct evidence of the band structure crossover related to the formation of As-As bonds along the c-axis on the tetragonal → collapsed tetragonal phase transition near 2 GPa. We showed that this feature is distinctly observable only in high-quality samples, and already for re-pressurization cycles this crossover was strongly smeared because of the moderate deterioration of the sample. We also demonstrated by means of thermopower that the band structure crossover that should accompany the tetragonal → collapsed tetragonal phase transition in EuFe2As2 near 8 GPa is hardly visible even in high-quality single crystals. This behavior may be related to a gradual valence change of the Eu ions under pressure that leads to an injection of free electrons and the steady shift of the conduction to n-type.

  7. Thermal Aging Behavior of Axial Suspension Plasma-Sprayed Yttria-Stabilized Zirconia (YSZ) Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Zhao, Yuexing; Wang, Liang; Yang, Jiasheng; Li, Dachuan; Zhong, Xinghua; Zhao, Huayu; Shao, Fang; Tao, Shunyan

    2015-02-01

    7.5YSZ thermal barrier coatings (TBCs) were deposited onto the stainless steel substrates using axial suspension plasma spraying (ASPS). Free-standing coatings were isothermally aged in air from 1200 to 1600 °C for 24 h and at 1550 °C for 20 to 100 h, respectively. Thermal aging behavior such as phase composition, microstructure evolutions, grain growth, and mechanical properties for thermal-aged coatings were investigated. Results show that the as-sprayed metastable tetragonal (t'-ZrO2) phase decomposes into equilibrium tetragonal (t-ZrO2) and cubic (c-ZrO2) phases during high-temperature exposures. Upon further cooling, the c-ZrO2 may be retained or transform into another metastable tetragonal (t″-ZrO2) phase, and tetragonal → monoclinic phase transformation occurred after 1550 °C/40 h aging treatment. The coating exhibits a unique structure with segmentation cracks and micro/nano-size grains, and the grains grow gradually with increasing aging temperature and time. In addition, the hardness ( H) and Young's modulus ( E) significantly increased as a function of temperature due to healing of pores or cracks and grain growth of the coating. And a nonmonotonic variation is found in the coatings thermal aged at a constant temperature (1550 °C) with prolonged time, this is a synergetic effect of coating sintering and m-ZrO2 phase formation.

  8. S = 1 on a Diamond Lattice in NiRh2O4

    NASA Astrophysics Data System (ADS)

    Chamorro, Juan; McQueen, Tyrel

    An S = 1 system has the potential of rich physics, and has been the subject of intense theoretical work. Extensive work has been done on one-dimensional and two-dimensional S = 1 systems, yet three dimensional systems remain elusive. Experimental realizations of three-dimensional S = 1, however, are limited, and no system to date has been found to genuinely harbor this. Recent theoretical work suggests that S = 1 on a diamond lattice would enable a novel topological paramagnet state, generated by fluctuating Haldane chains within the structure, with topologically protected end states. Here we present data on NiRh2O4, a tetragonal spinel that has a structural phase transition from cubic to tetragonal at T = 380 K. High resolution XRD shows it to have a tetragonally distorted spinel structure, with Ni2+ (d8, S = 1) on the tetrahedral, diamond sublattice site. Magnetic susceptibility and specific heat measurements show that it does not order magnetically down to T = 0.1 K. Nearest neighbor interactions remain the same despite the cubic to tetragonal phase transition. Comparison to theoretical models indicate that this system might fulfill the requirements necessary to have both highly entangled and topological behaviors. IQM Is Funded by US Department of Energy, Office of Basic Energy Sciences, Division of Material Sciences and Engineering, under Grant No. DE-FG02-08ER46544.

  9. Composition-dependent properties and phase stability of Fe-Pd ferromagnetic shape memory alloys: A first-principles study

    NASA Astrophysics Data System (ADS)

    Li, Chun-Mei; Hu, Yan-Fei

    2017-12-01

    The composition-dependent properties and their correlation with the phase stability of Fe75+xPd25-x (- 10.0 ≤x ≤10.0 ) alloys are systematically investigated by using first-principles exact muffin-tin orbitals (EMTO)-coherent potential approximation (CPA) calculations. It is shown that the martensitic transformation (MT) from L 12 to body-centered-tetragonal (bct) occurs in the ordered alloys with about -5.0 ≤x ≤10.0 . In both the L 12 and bct phases, the evaluated a and c/a agree well with the available experimental data; the average magnetic moment per atom increases whereas the local magnetic moments of Fe atoms, dependent on both their positions and the structure of the alloy, decrease with increasing x. The tetragonal shear elastic constant of the L 12 phase ( C ' ) decreases whereas that of the bct phase (Cs) increases with x. The tetragonality of the martensite ( |1 -c /a | ) increases whereas its energy relative to the austenite with a negative value decreases with Fe addition. All these effects account for the increase of MT temperature (TM) with x. The MT from L 12 to bct is finally confirmed originating from the splitting of Fe 3d Eg and T2 g bands upon tetragonal distortion due to the Jahn-Teller effect.

  10. Electrocaloric effect in BaTiO3 at all three ferroelectric transitions: Anisotropy and inverse caloric effects

    NASA Astrophysics Data System (ADS)

    Marathe, Madhura; Renggli, Damian; Sanlialp, Mehmet; Karabasov, Maksim O.; Shvartsman, Vladimir V.; Lupascu, Doru C.; Grünebohm, Anna; Ederer, Claude

    2017-07-01

    We study the electrocaloric (EC) effect in bulk BaTiO3 (BTO) using molecular dynamics simulations of a first principles-based effective Hamiltonian, combined with direct measurements of the adiabatic EC temperature change in BTO single crystals. We examine in particular the dependence of the EC effect on the direction of the applied electric field at all three ferroelectric transitions, and we show that the EC response is strongly anisotropic. Most strikingly, an inverse caloric effect, i.e., a temperature increase under field removal, can be observed at both ferroelectric-ferroelectric transitions for certain orientations of the applied field. Using the generalized Clausius-Clapeyron equation, we show that the inverse effect occurs exactly for those cases where the field orientation favors the higher temperature/higher entropy phase. Our simulations show that temperature changes of around 1 K can, in principle, be obtained at the tetragonal-orthorhombic transition close to room temperature, even for small applied fields, provided that the applied field is strong enough to drive the system across the first-order transition line. Our direct EC measurements for BTO single crystals at the cubic-tetragonal and at the tetragonal-orthorhombic transitions are in good qualitative agreement with our theoretical predictions, and in particular confirm the occurrence of an inverse EC effect at the tetragonal-orthorhombic transition for electric fields applied along the [001] pseudocubic direction.

  11. Origin of superconductivity in KFe2As2 under positive and negative pressures and relation to other Fe-based families

    NASA Astrophysics Data System (ADS)

    Valenti, Roser

    KFe2As2 shows an intricate behavior as a function of pressure. At ambient pressure the system is superconductor with a low critical temperature Tc=3.4 K and follows a V-shaped pressure dependence of Tc for moderate pressures with a local minimum at a pressure of 1.5 GPa. Under high pressures Pc=15 GPa, KFe2As2 exhibits a structural phase transition from a tetragonal to a collapsed tetragonal phase accompanied by a boost of the superconducting critical temperature up to 12 K. On the other hand, negative pressures realized through substitution of K by Cs or Rb decrease Tc down to 2.25K. In this talk we will discuss recent progress on the understanding of the microscopic origin of this pressure-dependent behavior by considering a combination of ab initio density functional theory with dynamical mean field theory and spin fluctuation theory calculations. We will argue that a Lifshitz transition associated with the structural collapse changes the pairing symmetry from d-wave (tetragonal) to s+/- (collapsed tetragonal) at high pressures while at ambient and negative pressures correlation effects appear to be detrimental for superconductivity. Further, we shall establish cross-links to the chalcogenide family, in particular FeSe under pressure. The Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged for financial support.

  12. The effects of temperature and NaCl concentration on tetragonal lysozyme face growth rates

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc Lee

    1994-01-01

    Measurements were made of the (110) and (101) face growth rates of the tetragonal form of hen egg white lysozyme at 0.1M sodium acetate buffer, pH 4.0, from 4 to 22 C and with 3.0%, 5.0%, and 7.0% NaCl used as the precipitating salt. The data were collected at supersaturation ratios ranging from approximately 4 to approximately 63. Both decreasing temperature and increasing salt concentrations shifted plots of the growth rate versus C/C(sat) to the right, i.e. higher supersaturations were required for comparable growth rates. The observed trends in the growth data are counter to those expected from the solubility data. If tetragonal lysozyme crystal growth is by addition of ordered aggregates from the solution, then the observed growth data could be explained as a result of the effects of lowered temperature and increased salt concentration on the kinetics and equilibrium processes governing protein-protein interactions in solution. The data indicate that temperature would be a more tractable means of controlling the growth rate for tetragonal lysozyme crystals contrary to the usual practice in, e.g., vapor diffusion protein crystal growth, where both the precipitant and protein concentrations are simultaneously increased. However, the available range for control is dependent upon the protein concentration, with the greatest growth rate control being at the lower concentration.

  13. Domain wall and interphase boundary motion in (1−x)Bi(Mg{sub 0.5}Ti{sub 0.5})O{sub 3}–xPbTiO{sub 3} near the morphotropic phase boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tutuncu, Goknur; Chen, Jun; Fan, Longlong

    Electric field-induced changes in the domain wall motion of (1−x)Bi(Mg{sub 0.5}Ti{sub 0.5})O{sub 3}–xPbTiO{sub 3} (BMT-xPT) near the morphotropic phase boundary (MPB) where x = 0.37 (BMT-37PT) and x = 0.38 (BMT-38PT), are studied by means of synchrotron x-ray diffraction. Through Rietveld analysis and profile fitting, a mixture of coexisting monoclinic (Cm) and tetragonal (P4mm) phases is identified at room temperature. Extrinsic contributions to the property coefficients are evident from electric-field-induced domain wall motion in both the tetragonal and monoclinic phases, as well as through the interphase boundary motion between the two phases. Domain wall motion in the tetragonal and monoclinic phases for BMT-37PT ismore » larger than that of BMT-38PT, possibly due to this composition's closer proximity to the MPB. Increased interphase boundary motion was also observed in BMT-37PT. Lattice strain, which is a function of both intrinsic piezoelectric strain and elastic interactions of the grains (the latter originating from domain wall and interphase boundary motion), is similar for the respective tetragonal and monoclinic phases.« less

  14. Anisotropic physical properties of single-crystal U2Rh2Sn in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Prokeš, K.; Gorbunov, D. I.; Reehuis, M.; Klemke, B.; Gukasov, A.; Uhlířová, K.; Fabrèges, X.; Skourski, Y.; Yokaichiya, F.; Hartwig, S.; Andreev, A. V.

    2017-05-01

    We report on the crystal and magnetic structures, magnetic, transport, and thermal properties of U2Rh2Sn single crystals studied in part in high magnetic fields up to 58 T. The material adopts a U3Si2 -related tetragonal crystal structure and orders antiferromagnetically below TN=25 K. The antiferromagnetic structure is characterized by a propagation vector k =(00 1/2 ) . The magnetism in U2Rh2Sn is found to be associated mainly with 5 f states. However, both unpolarized and polarized neutron experiments reveal at low temperatures in zero field non-negligible magnetic moments also on Rh sites. U moments of 0.50(2) μB are directed along the tetragonal axis while Rh moments of 0.06(4) μB form a noncollinear arrangement confined to the basal plane. The response to applied magnetic field is highly anisotropic. Above ˜15 K the easy magnetization direction is along the tetragonal axis. At lower temperatures, however, a stronger response is found perpendicular to the c axis. While for the a axis no magnetic phase transition is observed up to 58 T, for the field applied at 1.8 K along the tetragonal axis we observe above 22.5 T a field-polarized state. A magnetic phase diagram for the field applied along the c axis is presented.

  15. [Structure and properties of colored dental tetragonal zirconia stabilized by yttrium ceramics].

    PubMed

    Yi, Yuan-fu; Wang, Chen; Wen, Ning; Lin, Yong-zhao; Tian, Jie-mo

    2009-10-01

    To investigate the structure, mechanical and low temperature aging properties of colored dental zirconia ceramics. 5 graded colored dental zirconia ceramics were made by adding colorants and their combinations into a 3Y-TZP (tetragonal zirconia stabilized by 3mol% yttrium) powder, the green body were compacted at 200 MPa, pre-sinter at 1,050 degrees C and maintained for 2 h, then densely sintered at 1,500 degrees C for 2 h. Specimens were cut from each of the 5 graded colored blocks. Physical, mechanical properties as well as chemical stability were tested, microstructure were observed, crystalline phase were identified by X-ray diffraction (XRD), aging properties were assessed by measurement of the relative content of monoclinic phase and bending strength testing. The overall density of colored zirconia ceramics was over 99.7%, linear shrinkage was about 20%, while thermal expansion coefficient was about 11 x 10(-6) x degrees C(-1), the crystalline phase was tetragonal, bending strength was over 900 MPa which was slightly lowered than that of the uncolored zirconia, fracture toughness was slightly higher. Good chemical stability in acetic acid was observed. After aging treatment, tetragonal-to-monoclinic phase transformation was detected up to 40%, while bending strength was not significantly degraded. The results showed that colored 3Y-TZP ceramics presented good mechanical properties even after aging treatments, and was suitable for dental clinical use.

  16. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2014-11-01

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal-oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.

  17. Fabrication of dense and porous Li2ZrO3 nanofibers with electrospinning method

    NASA Astrophysics Data System (ADS)

    Yuan, Kangkang; Jin, Xiaotong; Xu, Chonghe; Wang, Xinqiang; Zhang, Guanghui; Zhu, Luyi; Xu, Dong

    2018-06-01

    Lithium zirconate (Li2ZrO3) has been extensively studied as CO2 capture material, electrolyte material and coating material. Most of the previous studies were focused on the powder structure, while seldom taking a consideration of fiber structure. In the present work, dense and porous Li2ZrO3 nanofibers with surface area of 16 m2 g-1 were prepared by electrospinning method. IR spectral results showed that lithium carbonate was the intermediate for the formation of Li2ZrO3. The phase transformation of Li2ZrO3 underwent the pathway of amorphous precursor fibers, tetragonal zirconia and Li2CO3, tetragonal Li2ZrO3, and monoclinic Li2ZrO3. XRD and XPS results further suggested that Li2O diffusion from the fiber body to surface occurred for Li2ZrO3 nanofibers when heat-treated above 900 °C, and the tetragonal Li2ZrO3 with high surface area could be obtained at 800 °C. Bamboo structure appeared both for the dense and porous nanofibers heat-treated at 1000 °C. The high surface area and high thermal stability of tetragonal phase of Li2ZrO3 make it a promising candidate in CO2 absorption, electrolyte and coating material.

  18. First-Principles Study of the Jahn-Teller Distortion in the Ti1-XVXH2 and Zr1-XNbxH2 Alloys

    NASA Astrophysics Data System (ADS)

    Quijano, Ramiro; de Coss, Romeo; Singh, David

    2008-03-01

    The transition metal dihydrides TiH2 and ZrH2 present the fluorite structure (CaF2) at high temperature but undergoes a tetragonal distortion with c/a<1 at low temperature. Electronic band structure calculations have shown that TiH2 and ZrH2 in the cubic phase display a very flat band at the Fermi level. Thus the low temperature tetragonal distortion has been associated to a Jahn-Teller effect. In order to understand the role of band filling in controlling the structural instability of the transition metal dihydrides, we have performed a first-principles total energy study of the Ti1-XVxH2 and Zr1-xNbxH2 alloys. The calculations were performed using FP-LAPW method within the (DFT) and we use the GGA for exchange correlation functional energy. The critical concentration for which the Jahn-Teller effect is suppressed, was determined from the evolution of the tetragonal-cubic energy barrier. We discuss the electronic mechanism of the structural-instability, in terms of the band filling. From the obtained results we conclude that the tetragonal distortion in TiH2 and ZrH2 is not produced only by a Jahn-Teller Effect. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 43830-F.

  19. Eu 3Ir 2In 15: A mixed-valent and vacancy-filled variant of the Sc 5Co 4Si 10 structure type with anomalous magnetic properties

    DOE PAGES

    Sarkar, Sumanta; Jana, Rajkumar; Siva, Ramesh; ...

    2015-10-27

    Here, a new compound, Eu 3Ir 2In 15 has been synthesized using indium as an active metal flux. The compound crystallizes in tetragonal P4/mbm space group with lattice parameters, a = 14.8580(4) Å, b = 14.8580(4) Å, c = 4.3901(2) Å. It was further characterized by SEM-EDX studies. The temperature dependent magnetic susceptibility suggests that Eu in this compound is exclusively in divalent state. The effective magnetic moment (μ eff) of this compound is 7.35 μ B/Eu ion with paramagnetic Curie temperature (θ p) of -28 K suggesting antiferromagnetic interaction. The mixed valent nature of Eu observed in magnetic measurementsmore » was confirmed by XANES measurements. The compound undergoes demagnetization at a low magnetic field (10 Oe), which is quite unusual for Eu based intermetallic compounds. Temperature dependent resistivity studies reveal that the compound is metallic in nature. A comparative study was made between Eu 3Ir 2In 15 and hypothetical vacancy variant Eu 5Ir 4In 10 which also crystallizes in the same crystal structure However our computational studies along with control experiments suggest that the latter is thermodynamically less feasible compared to the former and hence we proposed that it is highly unlikely that a RE 5T 4X 10 would exist with X as a group 13 elements.« less

  20. Synthesis and crystal structure of catena-bis(nicotinamide)aqua({mu}-phthalato)copper(II) hemihydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadikov, G. G., E-mail: sadgg@igic.ras.ru; Koksharova, T. V.; Antsyshkina, A. S.

    2008-07-15

    The copper(II) phthalate complex with nicotinamide [CuL{sub 2}({mu}-Pht)(H{sub 2}O)] . 0.5H{sub 2}O(I) (where L is nicotinamide and Pht{sup 2-} is an anion of phthalic acid) is synthesized and investigated using IR spectroscopy and X-ray diffraction. The crystals of compound I are monoclinic, a = 13.368(2) A, b = 7.891(3) A, c = 20.480(2) A, {beta} = 108.69(2){sup o}, Z = 4, and space group P2{sub 1}/c. The structural units of crystal I are linear chains formed by bridging phthalate anions and crystallization water molecules. The copper atom is coordinated by two pyridine nitrogen atoms of two nicotinamide ligands (Cu-N, 2.001more » and 2.045 A), two oxygen atoms of different phthalate anions (Cu-O, 1.964 and 2.235 A), and the oxygen atom of the H{sub 2} O molecule (Cu-O, 2.014 A). The coordination polyhedron of the copper atom is completed to an elongated (4 + 1 + 1) tetragonal bipyramid by the second (chelating) oxygen atom of the carboxyl group (Cu-O, 2.587 A), which is one of the anions of phthalic acid. The linear polymer molecules are joined into complex macromolecular dimers with the closest internal contacts of the specific type. The macromolecular dimers are the main supramolecular ensembles of the crystal structure.« less

  1. Intermediate orthorhombic phases in Ba-122 Iron Arsenides

    NASA Astrophysics Data System (ADS)

    Ruff, J. P. C.; Islam, Z.; Das, R. K.; Kuo, H.-H.; Fisher, I. R.

    2013-03-01

    Despite widespread interest, there are details of the tetragonal-orthorhombic structural phase transition in the iron arsenide superconductors that remain controversial. We have revisited the transition in three characteristic compositions of the canonical ``122'' family Ba(Fe/Co)2(As/P)2 using single crystal synchrotron x-ray diffraction. In the parent compound, we confirm previous observations of a sequence of structural transitions which are closely spaced in temperature, and uncover pronounced magnetoelastic effects in the intermediate orthorhombic phase. Modification of the structural transitions by doping is observed to differ significantly depending on whether the dopant is Co or P. Work performed at the Advanced Photon Source was supported by the DOE, under Contract No. DE-AC02-06CH11357.

  2. Chemical vapor deposition of yttria-stabilized zirconia as a thermal barrier coating for gas turbine engines

    NASA Astrophysics Data System (ADS)

    Varanasi, Venu Gopal

    The gas turbine engine uses an yttria-stabilized zirconia (YSZ) coating to provide thermal insulation for its turbine blades. This YSZ coating must be tetragonal in crystal structure, columnar in microstructure, and be 100--250 mum thick to provide for adequate protection for the turbine blades in the severe engine environment. Currently, YSZ coatings are fabricated by electron-beam physical vapor deposition (EB-PVD), but this fabrication method is cost intensive. Chemical vapor deposition (CVD) is a more commercially viable processing method and a possible alternative to EB-PVD. The deposition of tetragonal YSZ from gaseous metal and oxidation sources were studied. A chemical equilibrium analysis modeled the feasibility of depositing tetragonal YSZ for both chloride CVD (Zr-Y-C-O-Cl-H-Inert system) and metal-organic CVD (MOCVD) (Zr-Y-C-O-H system). Pure thermochemical properties and the assessed YSZ phase diagram were used in this analysis. Using the molar input of metals ((nY + nZr) and ( nY/(nY + nZr ) = 0.08)) as bases, equilibrium calculations showed that tetragonal YSZ formation was feasible. Tetragonal YSZ formation was feasible with high oxygen content (nO/(nY + nZr) > 8) and high temperature (T > 100°C) in the case of chloride CVD (Zr-Y-C-O-Cl-H-Inert). Tetragonal YSZ formation was feasible with high oxygen content (nO/( nY + nZr) > 5) and high temperature (T > 950°C) in the case of MOCVD (Zr-Y-C-O-H). Although solid carbon formation did not appear in chloride CVD, additional oxygen (nO/( nY + nZr) > 32) and low hydrogen content relative to carbon (nH/nC < 2) were required to avoid solid carbon formation in MOCVD. Coatings were deposited using a set of base conditions derived from the chemical equilibrium analysis. In chloride CVD, YCl3 was not included because of its low vapor pressure, thus, ZrCl4 was oxidized with the H2-CO2 gas mixture. Monoclinic ZrO2 coatings were deposited at the thermochemically optimized conditions (n O/(nY + nZr) > 8, T > 1004°C) with approximately 5.5 mum h-1 growth rate. In metal-organic CVD (MOCVD), liquid precursor solutions of Y- and Zr-beta-diketonate and Y- and Zr-n-butoxide precursors were used as the metal sources and O2 gas was used as the oxidation source. Using the Y- and Zr-beta-diketonate liquid precursor solution, tetragonal YSZ was deposited with a layered microstructure apparent and a maximum growth rate of approximately 14 mum h-1 (activation energy (E a) of 50.9 +/- 4.3 kJ mol-1). The growth rate (approximately 43 mum h-1 with Ea = 53.8 +/- 7.9 kJ mol-1) was improved using Y- and Zr- n-butoxide liquid precursor solutions, and the microstructure was columnar. Yet, two-phase deposition of monoclinic ZrO2 and tetragonal YSZ occurred. Results of electron-probe micro-analysis showed that the nY/(nY + nZr ) ratio was less than 45% of the nY/( nY + nZr) ratio in the liquid precursor solution.

  3. Pt-B System Revisited: Pt2B, a New Structure Type of Binary Borides. Ternary WAl12-Type Derivative Borides.

    PubMed

    Sologub, Oksana; Salamakha, Leonid; Rogl, Peter; Stöger, Berthold; Bauer, Ernst; Bernardi, Johannes; Giester, Gerald; Waas, Monika; Svagera, Robert

    2015-11-16

    On the basis of a detailed study applying X-ray single-crystal and powder diffraction, differential scanning calorimetry, and scanning electron microscopy analysis, it was possible to resolve existing uncertainties in the Pt-rich section (≥65 atom % Pt) of the binary Pt-B phase diagram above 600 °C. The formation of a unique structure has been observed for Pt2B [X-ray single-crystal data: space group C2/m, a = 1.62717(11) nm, b = 0.32788(2) nm, c = 0.44200(3) nm, β = 104.401(4)°, RF2 = 0.030]. Within the homogeneity range of "Pt3B", X-ray powder diffraction phase analysis prompted two structural modifications as a function of temperature. The crystal structure of "hT-Pt3B" complies with the hitherto reported structure of anti-MoS2 [space group P63/mmc, a = 0.279377(2) nm, c = 1.04895(1) nm, RF = 0.075, RI = 0.090]. The structure of the new "[Formula: see text]T-Pt3B" is still unknown. The formation of previously reported Pt∼4B has not been confirmed from binary samples. Exploration of the Pt-rich section of the Pt-Cu-B system at 600 °C revealed a new ternary compound, Pt12CuB6-y [X-ray single-crystal data: space group Im3̅, a = 0.75790(2) nm, y = 3, RF2 = 0.0129], which exhibits the filled WAl12-type structure accommodating boron in the interstitial trigonal-prismatic site 12e. The isotypic platinum-aluminum-boride was synthesized and studied. The solubility of copper in binary platinum borides has been found to attain ∼7 atom % Cu for Pt2B but to be insignificant for "[Formula: see text]T-Pt3B". The architecture of the new Pt2B structure combines puckered layers of boron-filled and empty [Pt6] octahedra (anti-CaCl2-type fragment) alternating along the x axis with a double layer of boron-semifilled [Pt6] trigonal prisms interbedded with a layer of empty tetrahedra and tetragonal pyramids (B-deficient α-T[Formula: see text]I fragment). Assuming boron vacancies ordering (space group R3), the Pt12CuB6-y structure exhibits serpentine-like columns of edge-connected boron-filled [Pt6] trigonal prisms running infinitely along the z axis and embedding the icosahedrally coordinated Cu atom. Pt2B, (Pt1-yCuy)2B (y = 0.045), and Pt12CuB6-y (y = 3) behave metallically, as revealed by temperature-dependent electrical resistivity measurements.

  4. Zirconia changes after grinding and regeneration firing.

    PubMed

    Hatanaka, Gabriel R; Polli, Gabriela S; Fais, Laiza M G; Reis, José Maurício Dos S N; Pinelli, Lígia A P

    2017-07-01

    Despite improvements in computer-aided design and computer-aided manufacturing (CAD-CAM) systems, grinding during either laboratory procedures or clinical adjustments is often needed to modify the shape of 3 mol(%) yttria-tetragonal zirconia polycrystal (3Y-TZP) restorations. However, the best way to achieve adjustment is unclear. The purpose of this in vitro study was to evaluate the microstructural and crystallographic phase changes, flexural strength, and Weibull modulus of a 3Y-TZP zirconia after grinding with or without water cooling and regeneration firing. Ninety-six bar-shaped specimens were obtained and divided as follows: as-sintered, control; as-sintered with regeneration firing; grinding without water cooling; grinding and regeneration firing with water cooling; and grinding and regeneration firing. Grinding (0.3 mm) was performed with a 150-μm diamond rotary instrument in a high-speed handpiece. For regeneration firing, the specimens were annealed at 1000°C for 30 minutes. The crystalline phases were evaluated by using x-ray powder diffraction. A 4-point bending test was conducted (10 kN; 0.5 mm/min). The Weibull modulus was used to analyze strength reliability. The microstructure was analyzed by scanning electron microscopy. Data from the flexural strength test were evaluated using the Kruskal-Wallis and Dunn tests (α=.05). Tetragonal-to-monoclinic phase transformation was identified in the ground specimens; R regeneration firing groups showed only the tetragonal phase. The median flexural strength of as-sintered specimens was 642.0; 699.3 MPa for as-sintered specimens with regeneration firing; 770.1 MPa for grinding and water-cooled specimens; 727.3 MPa for specimens produced using water-cooled grinding and regeneration firing; 859.9 MPa for those produced by grinding; and 764.6 for those produced by grinding and regeneration firing; with statistically higher values for the ground groups. The regenerative firing did not affect the flexural strength. Weibull modulus values ranged from 5.3 to 12.4. The SEM images showed semicircular cracks after grinding. Adjustments by grinding in 3Y-TZP frameworks should be performed with water cooling, and regeneration firing should be undertaken to obtain a more reliable material. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure

    DOEpatents

    Sachtler, W.M.H.; Huang, Y.Y.

    1998-07-28

    Methods are disclosed for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physical sorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics. 17 figs.

  6. Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure

    DOEpatents

    Sachtler, Wolfgang M. H.; Huang, Yin-Yan

    1998-01-01

    Methods for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physisorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics.

  7. Structural investigation of the C-O complex in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alt, H. Ch.; Kersch, A.; Wagner, H. E.

    A carbon-oxygen complex occurring in gallium arsenide crystals after annealing at around 700 °C is studied. Fourier transform infrared absorption measurements on the associated vibrational band at 2060 cm-1 under uniaxial stress reveal that the center has tetragonal symmetry. From the intensity of the {sup 18}O-related satellite band it is concluded that four oxygen atoms are involved. Ab initio local density calculations show that a tetragonal CO{sub 4} molecule forms a stable entity in the gallium arsenide lattice.

  8. Metal-organic chemical vapour deposition of polycrystalline tetragonal indium sulphide (InS) thin films

    NASA Technical Reports Server (NTRS)

    Macinnes, Andrew N.; Cleaver, William M.; Barron, Andrew R.; Power, Michael B.; Hepp, Aloysius F.

    1992-01-01

    The dimeric indium thiolate /(t Bu)2In(mu-S sup t Bu)/2 has been used as a single-source precursor for the MOCVD of InS thin films. The dimeric In2S2 core is proposed to account for the formation of the nonequilibrium high-pressure tetragonal phase in the deposited films. Analysis of the deposited films has been obtained by TEM, with associated energy-dispersive X-ray analysis and X-ray photoelectron spectroscopy.

  9. Structure of junctions of multiwalled carbon nanotubes with tetragonal cross section and flattened nanotubes revealed by electron-beam tomography

    NASA Astrophysics Data System (ADS)

    Nagano, Yuta; Kohno, Hideo

    2017-11-01

    Multiwalled carbon nanotubes with tetragonal cross section frequently form junctions with flattened multi-walled carbon nanotubes, a kind of carbon nanoribbon. The three-dimensional structure of the junctions is revealed by transmission-electron-microscopy-based tomography. Two types of junction, parallel and diagonal, are found. The formation mechanism of these two types of junction is discussed in terms of the origami mechanism that was previously proposed to explain the formation of carbon nanoribbons and nanotetrahedra.

  10. Clarification of the Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries

    USGS Publications Warehouse

    Watt, J.P.; Peselnick, L.

    1980-01-01

    Bounds on the effective elastic moduli of randomly oriented aggregates of hexagonal, trigonal, and tetragonal crystals are derived using the variational principles of Hashin and Shtrikman. The bounds are considerably narrower than the widely used Voigt and Reuss bounds. The Voigt-Reuss-Hill average lies within the Hashin-Shtrikman bounds in nearly all cases. Previous bounds of Peselnick and Meister are shown to be special cases of the present results.

  11. Ferroelastic phase transitions in (NH4)2TaF7

    NASA Astrophysics Data System (ADS)

    Pogorel'tsev, E. I.; Mel'nikova, S. V.; Kartashev, A. V.; Molokeev, M. S.; Gorev, M. V.; Flerov, I. N.; Laptash, N. M.

    2013-03-01

    The heat capacity, unit cell parameters, permittivity, optical properties, and thermal expansion of the (NH4)2TaF7 compound with a seven-coordinated anion polyhedron have been measured. It has been found that the compound undergoes two successive phase transitions with the symmetry change: tetragonal → ( T 1 = 174 K) orthorhombic → ( T 2 = 156 K) tetragonal. The ferroelastic nature of structural transformations has been established, and their entropy and susceptibility to hydrostatic pressure have been determined.

  12. Effects of whitening dentifrice on yttria-stabilized tetragonal zirconia polycrystal surfaces after simulating brushing.

    PubMed

    Pinelli, Lígia Antunes Pereira; Gimenes Olbera, Amanda Caroline; Candido, Lucas Miguel; Miotto, Larissa Natiele; Antonio, Selma Gutierrez; Fais, Laiza Maria Grassi

    2017-01-01

    The changes that occur after brushing yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) are unknown. These changes may favor the retention of microorganisms and chemisorption of water, impairing its longevity. The purpose of this in vitro study was to evaluate the effects of a whitening dentifrice on Y-TZP surfaces after simulating 10 years of brushing. Seventy-two bar-shaped specimens (20×4×1.2 mm) were divided into 4 groups: storage in distilled water (SW, control), brushing with distilled water (BW), brushing with dentifrice (BD), and brushing with whitening dentifrice (BWD). Brushing was conducted using a linear brushing machine (878400 cycles, 0.98 N, soft toothbrush). The mean roughness (Ra) was analyzed with a profilometer and the superficial topography with scanning electron microscopy (SEM) at baseline and after treatment. Crystalline phases were characterized using x-ray diffraction. Baseline and posttreatment Ra were analyzed using the 1-way ANOVA and Tukey HSD multiple comparison test; the paired t test was used for intragroup comparison (all α=.05). The Ra (μm) means (before/after treatment) were SW 0.28/0.28; BW 0.32/0.31; BD 0.28/0.36; BWD 0.30/0.20. No statistically significant difference was found for Ra at baseline (P=.108) than for posttreatment results (P<.001); the BD group had higher Ra values when compared with baseline (P=.019); the BWD group had the lowest values (P<.001). The BD surfaces showed pronounced scratches and detachment of the surface, while BWD showed smoother surfaces; similar crystallographic results among groups were observed. Brushing Y-TZP with conventional dentifrice increased roughness, while brushing with whitening dentifrice reduced roughness. Neither dentifrice changed the crystallographic phases after brushing. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Study of iridium silicide monolayers using density functional theory

    NASA Astrophysics Data System (ADS)

    Popis, Minh D.; Popis, Sylvester V.; Oncel, Nuri; Hoffmann, Mark R.; ćakır, Deniz

    2018-02-01

    In this study, we investigated physical and electronic properties of possible two-dimensional structures formed by Si (silicon) and Ir (iridium). To this end, different plausible structures were modeled by using density functional theory and the cohesive energies calculated for the geometry of optimized structures, with the lowest equilibrium lattice constants. Among several candidate structures, we identified three mechanically (via elastic constants and Young's modulus), dynamically (via phonon calculations), and thermodynamically stable iridium silicide monolayer structures. The lowest energy structure has a chemical formula of Ir2Si4 (called r-IrSi2), with a rectangular lattice (Pmmn space group). Its cohesive energy was calculated to be -0.248 eV (per IrSi2 unit) with respect to bulk Ir and bulk Si. The band structure indicates that the Ir2Si4 monolayer exhibits metallic properties. Other stable structures have hexagonal (P-3m1) and tetragonal (P4/nmm) cell structures with 0.12 and 0.20 eV/f.u. higher cohesive energies, respectively. Our calculations showed that Ir-Si monolayers are reactive. Although O2 molecules exothermically dissociate on the surface of the free-standing iridium silicide monolayers with large binding energies, H2O molecules bind to the monolayers with a rather weak interaction.

  14. Structural analysis, optical and dielectric function of [Ba{sub 0.9}Ca{sub 0.1}](Ti{sub 0.9}Zr{sub 0.1})O{sub 3} nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera-Pérez, G., E-mail: guillermo.herrera@cimav.edu.mx, E-mail: damasio.morales@cimav.edu.mx; Physics of Materials Department, Centro de Investigación en Materiales Avanzados; Morales, D., E-mail: guillermo.herrera@cimav.edu.mx, E-mail: damasio.morales@cimav.edu.mx

    2016-09-07

    This work presents the identification of inter-band transitions in the imaginary part of the dielectric function (ε{sub 2}) derived from the Kramers–Kronig analysis for [Ba{sub 0.9}Ca{sub 0.1}](Ti{sub 0.9}Zr{sub 0.1})O{sub 3} (BCZT) nanocrystals synthesized by the modified Pechini method. The analysis started with the chemical identification of the atoms that conform BCZT in the valence loss energy region of a high energy-resolution of electron energy loss spectroscopy. The indirect band energy (E{sub g}) was determined in the dielectric response function. This result is in agreement with the UV-Vis technique, and it obtained an optical band gap of 3.16 eV. The surface andmore » volume plasmon peaks were observed at 13.1 eV and 26.2 eV, respectively. The X-ray diffraction pattern and the Rietveld refinement data of powders heat treated at 700 °C for 1 h suggest a tetragonal structure with a space group (P4 mm) with the average crystal size of 35 nm. The average particle size was determined by transmission electron microscopy.« less

  15. New 1201-type (Hg,Se)-superconducting cuprate grown by sol gel and sealed quartz tube synthesis

    NASA Astrophysics Data System (ADS)

    Kandyel, Elsayed; Elsabawy, Khaled M.

    2008-12-01

    A new mercury based superconductor (Hg1-ySey)(Sr2-xLax)CuO4+δ (y = 0.25; 0.3 ⩽ x ⩽ 0.7) with a Tc(onset) of 50 K has been synthesized using sol gel process combined with the sealed quartz tube method. X-ray diffraction shows that the (Hg0.75Se0.25)(Sr2-xLax)CuO4+δ phase crystallizes in the tetragonal symmetry (space group P4/mmm) with a ≈ ap ≈ 3.8 Å and c ≈ 8.7 Å and is isostructural with the 94 K superconductor HgBa2CuO4+δ, adopting the so-called 1201-type structure. Both Se and La are necessary for the stabilization of the 1201-type Hg/Sr cuprates. EDX analysis indicated that mercury and selenium have incorporated into the structure with Se/Hg ≈ ⅓. The new high-Tc superconductor, (Hg0.75Se0.25)(Sr1.3La0.7)CuO4+δ, exhibits a current density, Jc, of 1270 KA/cm2 at (5 K and 5 T) which is higher than the estimated Jc value for (Hg,Cr)Sr2CuO4+δ.

  16. Purification, crystallization and preliminary X-ray characterization of prunin-1, a major component of the almond (Prunus dulcis) allergen amandin.

    PubMed

    Albillos, Silvia M; Jin, Tengchuan; Howard, Andrew; Zhang, Yuzhu; Kothary, Mahendra H; Fu, Tong-Jen

    2008-07-09

    The 11S globulins from plant seeds account for a number of major food allergens. Because of the interest in the structural basis underlying the allergenicity of food allergens, we sought to crystallize the main 11S seed storage protein from almond ( Prunus dulcis). Prunin-1 (Pru1) was purified from defatted almond flour by water extraction, cryoprecipitation, followed by sequential anion exchange, hydrophobic interaction, and size exclusion chromatography. Single crystals of Pru1 were obtained in a screening with a crystal screen kit, using the hanging-drop vapor diffusion method. Diffraction quality crystals were grown after optimization. The Pru1 crystals diffracted to at least 3.0 A and belong to the tetragonal space group P4(1)22, with unit cell parameters of a = b = 150.912 A, c = 165.248 A. Self-rotation functions and molecular replacement calculations showed that there are three molecules in the asymmetry unit with water content of 51.41%. The three Pru1 protomers are related by a noncrystallographic 3-fold axis and they form a doughnut-shaped trimer. Two prunin trimers form a homohexamer. Elucidation of prunin structure will allow further characterization of the allergenic features of the 11S protein allergens at the molecular level.

  17. A novel perovskite-like Ta-bronze KTa1+zO3: preparation, stoichiometry, conductivity and crystal structure studies.

    PubMed

    Arakcheeva, A; Chapuis, G; Grinevitch, V; Shamray, V

    2001-04-01

    A new cubic Ta-bronze (1) KTa(1+z)(+(5-delta))O(3) [z approximately 0.107 (3)] was obtained on a cathode by molten salt electrolysis of the system K(2)TaOF(5)-K(3)TaO(2)F(4)-(KF + NaF + LiF)(eutectic). Black, metallic cubic crystals of (1) are formed together with tetragonal beta-Ta. The perovskite-like crystal structure of (1) [a = 4.005 (1) A, space group Pm3m] was refined with anharmonic displacement parameters for Ta and K atoms and anisotropic displacement parameters for a split O-atom position [KM4CCD diffractometer; lambda(Mo Kalpha); 3320 measured reflections with I > 3sigma(I); R = 0.0095, wR = 0.0065, Deltarho(min) = -0.91 e A(-3), Deltarho(max) = 0.65 e A(-3)]. Defects in the O and K atomic positions were found. (1) is a semiconductor in the temperature range 4-300 K, whereas the well studied and closely related colourless transparent crystals KTa(+5)O(3) (2) are dielectric. Differences in the properties of (1) and (2) are assumed to be connected with the existence of Ta dumb-bells statistically distributed into the KTaO(3) matrix.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bugaris, Daniel E.; Malliakas, Christos D.; Han, Fei

    A new polymorph of the RE 2Ru 3Ge 5 (RE = Pr, Sm, Dy) compounds has been grown as single crystals via an indium flux. These compounds crystallize in tetragonal space group P4/mnc with the Sc 2Fe 3Si 5-type structure, having lattice parameters a = 11.020(2) Å and c = 5.853(1) Å for RE = Pr, a = 10.982(2) Å and c = 5.777(1) Å for RE = Sm, and a = 10.927(2) Å and c = 5.697(1) Å for RE = Dy. These materials exhibit a structural transition at low temperature, which is attributed to an apparent charge densitymore » wave (CDW). Both the high-temperature average crystal structure and the low-temperature incommensurately modulated crystal structure (for Sm 2Ru 3Ge 5 as a representative) have been solved. The charge density wave order is manifested by periodic distortions of the onedimensional zigzag Ge chains. From X-ray diffraction, charge transport (electrical resistivity, Hall effect, magnetoresistance), magnetic measurements, and heat capacity, the ordering temperatures (T CDW) observed in the Pr and Sm analogues are ~200 and ~175 K, respectively. The charge transport measurement results indicate an electronic state transition happening simultaneously with the CDW transition. X-ray absorption near-edge spectroscopy (XANES) and electronic band structure results are also reported.« less

  19. The crystal structure of lueshite at 298 K resolved by high-resolution time-of-flight neutron powder diffraction

    NASA Astrophysics Data System (ADS)

    Mitchell, Roger H.; Kennedy, Brendan J.; Knight, Kevin S.

    2018-01-01

    Refinement of time-of-flight high-resolution neutron powder diffraction data for lueshite (Na, Ca)(Nb, Ta, Ti)O3, the natural analogue of synthetic NaNbO3, demonstrates that lueshite at room temperature (298 K) adopts an orthorhombic structure with a 2 a p × 2 a p × 4 a p superlattice described by space group Pmmn [#59: a = 7.8032(4) Å; b = 7.8193(4) Å; c = 15.6156(9) Å]. This structure is analogous to that of phase S of synthetic NaNbO3 observed at 753-783 K (480-510 °C). In common with synthetic NaNbO3, lueshite exhibits a series of phase transitions with decreasing temperature from a cubic (Pm\\bar{3}m) aristotype through tetragonal ( P4/ mbm) and orthorhombic ( Cmcm) structures. However, the further sequence of phase transitions differs in that for lueshite the series terminates with the room temperature S ( Pmmn) phase, and the R ( Pmmn or Pnma) and P ( Pbcm) phases of NaNbO3 are not observed. The appearance of the S phase in lueshite at a lower temperature, relative to that of NaNbO3, is attributable to the effects of solid solution of Ti, Ta and Ca in lueshite.

  20. Structural, magnetic, and magnetocaloric properties of bilayer manganite La1.38Sr1.62Mn2O7

    NASA Astrophysics Data System (ADS)

    Yang, Yu-E.; Xie, Yunfei; Xu, Lisha; Hu, Dazhi; Ma, Chunlan; Ling, Langsheng; Tong, Wei; Pi, Li; Zhang, Yuheng; Fan, Jiyu

    2018-04-01

    In this study, we investigated the structural, magnetic phase transition, and magnetocaloric properties of bilayer perovskite manganite La1.38Sr1.62Mn2O7 based on X-ray diffraction, electron paramagnetic resonance, and temperature-/magnetic field-dependent magnetization measurements. The structural characterization results showed the prepared sample had a tetragonal structure with the space group I4/mmm. The Curie temperature was determined as 114 K in the magnetization studies and a second-order paramagnetic-ferromagnetic transition was confirmed by the Arrott plot, which showed that the slopes were positive for all the curves. According to the variation in the electron paramagnetic resonance spectrum, we detected obvious electronic phase separation across a broad temperature range from 220 to 80 K in this magnetic material, thereby indicating that the paramagnetic and ferromagnetic phases coexist above as well as below the Curie temperature. Based on a plot of the isothermal magnetization versus the magnetic applied field, we deduced the maximum magnetic entropy change, which only reached 1.89 J/kg.K under an applied magnetic field of 7.0 T. These theoretical investigations indicated that in addition to the magnetoelastic couplings and electron interaction, electronic phase separation and anisotropic exchange interactions also affect the magnetic entropy changes in this bilayer manganite.

  1. New metal oxides of the family Am[( TO) q]: ALiMn 3O 4 and ALiZn 3O 4 ( A = K, Rb)

    NASA Astrophysics Data System (ADS)

    Hoppe, R.; Seipp, E.; Baier, R.

    1988-01-01

    The new compounds KLiMn 3O 4 ( I), RbLiMn 3O 4 ( II), KLiZn 3O 4 ( III) and RbLiZn 3O 4 ( IV) have been prepared by solid state reaction of A2O ( A = K, Rb), Li 2O, and MO ( M = Mn, Zn). The isomorphous compounds are tetragonal, space group {I4}/{m}, Z = 2 , with lattice constants a = 838.32(4) pm, c = 341.88(3) pm for I; a = 840.66(8) pm, c = 344.85(4) pm for II; a = 819.27(9) pm, c = 334.20(7) pm for III,a = 823.62(9) pm, c = 339.73(7) pm for IV, as determined from Guinier X-ray powder patterns. The orange-colored manganates and colorless zincates are sensitive to moisture. The crystal structures of II and III have been determined by single-crystal X-ray techniques and refined to R = 0.09 ( II) and R = 0.06 ( III). The structure is built up from chains of face-shared cubes, 1∞[A O{8}/{2}] (A = K, Rb) , running parallel to the c axis. These are connected by Li + and M2+ ( M = Mn, Zn), statistically distributed on tetrahedral positions between the chains.

  2. Physical properties of the Ce 2 M Al 7 Ge 4 heavy-fermion compounds ( M = Co , Ir , Ni , Pd )

    DOE PAGES

    Ghimire, N. J.; Cary, S. K.; Eley, S.; ...

    2016-05-23

    Here, we report the synthesis, crystal structure, and characterization by means of single-crystal x-ray diffraction, neutron powder diffraction, and magnetic, thermal, and transport measurements of the new heavy-fermion compounds Ce 2MAl 7Ge 4 (M=Co,Ir,Ni,Pd). These compounds crystallize in a noncentrosymmetric tetragonal space group Pmore » $$\\bar{4}$$2 1m, consisting of layers of square nets of Ce atoms separated by Ge-Al and M-Al-Ge blocks. Ce 2CoAl 7Ge 4,Ce 2IrAl 7Ge 4, and Ce 2NiAl 7Ge 4 order magnetically below TM=1.8, 1.6, and 0.8 K, respectively. There is no evidence of magnetic ordering in Ce 2PdAl 7Ge 4 down to 0.4 K. Furthermore, the small amount of entropy released in the magnetic state of Ce 2MAl 7Ge 4 (M = Co, Ir, Ni) and the reduced specific heat jump at T M suggest a strong Kondo interaction in these materials. Ce 2PdAl 7Ge 4 shows non-Fermi liquid behavior, possibly due to the presence of a nearby quantum critical point.« less

  3. Neutron Powder Diffraction Study on the Magnetic Structure of NdPd 5 Al 2

    DOE PAGES

    Metoki, Naoto; Yamauchi, Hiroki; Kitazawa, Hideaki; ...

    2017-02-24

    The magnetic structure of NdPd 5Al 2 has been studied by neutron powder diffraction. Here, we observed the magnetic reflections with the modulation vector q=(1/2,0,0)q=(1/2,0,0) below the ordering temperature T N. We also found a collinear magnetic structure with a Nd moment of 2.7(3) μB at 0.5 K parallel to the c-axis, where the ferromagnetically ordered a-planes stack with a four-Nd-layer period having a ++-- sequence along the a-direction with the distance between adjacent Nd layers equal to a/2 (magnetic space group P anma). This “stripe”-like modulation is very similar to that in CePd 5Al 2 with q=(0.235,0.235,0)q=(0.235,0.235,0) with themore » Ce moment parallel to the c-axis. These structures with in-plane modulation are a consequence of the two-dimensional nature of the Fermi surface topology in this family, originating from the unique crystal structure with a very long tetragonal unit cell and a large distance of >7 Å between the rare-earth layers separated by two Pd and one Al layers.« less

  4. Magnetostructural transition in Fe{sub 5}SiB{sub 2} observed with neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cedervall, Johan, E-mail: johan.cedervall@kemi.uu.se; Kontos, Sofia; Hansen, Thomas C.

    2016-03-15

    The crystal and magnetic structure of Fe{sub 5}SiB{sub 2} has been studied by a combination of X-ray and neutron diffraction. Also, the magnetocrystalline anisotropy energy constant has been estimated from magnetisation measurements. High quality samples have been prepared using high temperature synthesis and subsequent heat treatment protocols. The crystal structure is tetragonal within the space group I4/mcm and the compound behaves ferromagnetically with a Curie temperature of 760 K. At 172 K a spin reorientation occurs in the compound and the magnetic moments go from aligning along the c-axis (high T) down to the ab-plane (low T). The magnetocrystalline anisotropymore » energy constant has been estimated to 0.3 MJ/m{sup 3} at 300 K. - Highlights: • The crystal and magnetic structure of Fe{sub 5}SiB{sub 2} has been studied by diffraction. • At 172 K a spin reorientation occurs in the compound. • The magnetic moments are aligned along the c-axis at high T. • The magnetic moments are aligned in the ab-plane at low T. • The magnetocrystalline anisotropy energy constant has been estimated to 0.3 MJ/m{sup 3}.« less

  5. Determination of the structural phase and octahedral rotation angle in halide perovskites

    DOE PAGES

    dos Reis, Roberto; Yang, Hao; Ophus, Colin; ...

    2018-02-12

    A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr 3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr 3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurementmore » of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). Finally, the approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.« less

  6. Magnetic Properties of Porous Metal-Organic Frameworks: Ni2(BODC)2(TED) and Ni2(BDC)2(TED)

    NASA Astrophysics Data System (ADS)

    Hamida, Youcef; Danilovic, Dusan; Lin, Chyan; Yuen, Tan; Li, Kunhao; Padmanabhan, Moothetty; Li, Jing

    2010-03-01

    Results of χ(T), M(H), and heat capacity C(T) measurements on two Ni dimer based porous materials Ni2(BODC)2(TED) and Ni2(BDC)2(TED) are reported. These materials form a tetragonal crystal structure of space group P4/ncc with a=b = 14.9 å and c = 19.4 å and Ni-Ni separation of 2.61å within the dimer. Magnetic data of Ni2(BODC)2(TED) revealed a ferromagnetic-like transition at about 17 K with θ = 8 K, and a coercivity field of 1700 G was observed in the hysteresis curve. Though isostructural to Ni2(BODC)2(TED), χ(T) and M(H) results of Ni2(BDC)2(TED) showed an antiferromagnetic transition at 10 K with θ = - 132 K, and no hysteresis was observed. Although specific heat data C(T) showed no clear transition in both compounds, nonlinear behavior is clearly seen in C/T vs. T plots, and a fit to the electron and phonon contributions to C(T) gives a large heavy-fermion-like γ in both cases. A model for the magnetic interactions is proposed and a comparison to the Cu and Co analogues is also made.

  7. Neutron Powder Diffraction Study on the Magnetic Structure of NdPd 5 Al 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metoki, Naoto; Yamauchi, Hiroki; Kitazawa, Hideaki

    The magnetic structure of NdPd 5Al 2 has been studied by neutron powder diffraction. Here, we observed the magnetic reflections with the modulation vector q=(1/2,0,0)q=(1/2,0,0) below the ordering temperature T N. We also found a collinear magnetic structure with a Nd moment of 2.7(3) μB at 0.5 K parallel to the c-axis, where the ferromagnetically ordered a-planes stack with a four-Nd-layer period having a ++-- sequence along the a-direction with the distance between adjacent Nd layers equal to a/2 (magnetic space group P anma). This “stripe”-like modulation is very similar to that in CePd 5Al 2 with q=(0.235,0.235,0)q=(0.235,0.235,0) with themore » Ce moment parallel to the c-axis. These structures with in-plane modulation are a consequence of the two-dimensional nature of the Fermi surface topology in this family, originating from the unique crystal structure with a very long tetragonal unit cell and a large distance of >7 Å between the rare-earth layers separated by two Pd and one Al layers.« less

  8. Phase transition studies in bismuth ferrite thin films synthesized via spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Goyal, Ankit; Lakhotia, Harish

    2013-06-01

    Multiferroic are the materials, which combine two or more "ferroic" properties, ferromagnetism, ferroelectricity or ferroelasticity. BiFeO3 is the only single phase multiferroic material which possesses a high Curie temperature (TC ˜ 1103 K), and a high Neel temperature (TN ˜ 643 K) at room temperature. Normally sophisticated methods are being used to deposit thin films but here we have tried a different method Low cost Spray Pyrolysis Method to deposit BiFeO3 thin film of Glass Substrate with rhombohedral crystal structure and R3c space group. Bismuth Ferrite thin films are synthesized using Bismuth Nitrate and Iron Nitrate as precursor solutions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) were used to study structural analysis of prepared thin films. XRD pattern shows phase formation of BiFeO3 and SEM analysis shows formation of nanocrystals of 200 nm. High Temperature Resistivity measurements were done by using Keithley Electrometer (Two Probe system). Abrupt behavior in temperature range (313 K - 400K) has been observed in resistance studies which more likely suggests that in this transition the structure is tetragonal rather than rhombohedral. BiFeO3 is the potential active material in the next generation of ferroelectric memory devices.

  9. Ba{sub 3}GeS{sub 5} and Ba{sub 3}InS{sub 4}Cl: Interesting size effects originated from the tetrahedral anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Ming-Yan; Xia, Sheng-Qing, E-mail: shqxia@sdu.edu.cn; Liu, Xiao-Cun

    2014-11-15

    Two new barium chalcogenides, Ba{sub 3}GeS{sub 5} and Ba{sub 3}InS{sub 4}Cl, were synthesized by using high temperature solid-state reactions and their structures were determined by single-crystal X-ray diffraction technique. Despite the similar chemical formula, the structures of Ba{sub 3}GeS{sub 5} and Ba{sub 3}InS{sub 4}Cl are subtly different due to the size effects originated from the tetrahedral anions. Ba{sub 3}GeS{sub 5} crystallizes in the orthorhombic space group Pnma (no. 62) with cell parameters of a=12.0528(9) Å, b=9.5497(7) Å and c=8.5979(6) Å, while Ba{sub 3}InS{sub 4}Cl adopts a different tetragonal system (space group: I4/mcm, no. 140, a=b=8.3613(6) Å, c=14.3806(18) Å). The measuredmore » optical band gap of Ba{sub 3}GeS{sub 5} is 3.0 eV, a little smaller than the value of 3.42 eV in Ba{sub 3}InS{sub 4}Cl. Theoretical calculations by Wien2k are provided as well in order to better understand these results. - Graphical abstract: The polyhedral structure view for Ba{sub 3}GeS{sub 5} and Ba{sub 3}InS{sub 4}Cl in which Ba, S and Cl atoms are plotted in purple, red and green spheres. - Highlights: • Two new barium chalcogenides, Ba{sub 3}GeS{sub 5} and Ba{sub 3}InS{sub 4}Cl, were synthesized from the BaCl{sub 2}-flux reactions. • Their crystal structures feature discrete [MS{sub 4}] tetrahedra which embody interesting size effects. • Both compounds exhibit a band gap around 3.0 eV. • They are thermally stable up to 1073 K.« less

  10. Crystallization and identification of the glycosylated moieties of two isoforms of the main allergen Hev b 2 and preliminary X-ray analysis of two polymorphs of isoform II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuentes-Silva, D.; Mendoza-Hernández, G.; Stojanoff, V.

    2007-09-01

    Crystallization of important glycoenzymes involved in IgE-mediated latex allergy. Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a β-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content constisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoformsmore » were crystallized by the hanging-drop vapour-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P4{sub 1} with unit-cell parameters a = b = 150.17, c = 77.41 Å were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 Å, β = 113.6°. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units.« less

  11. La{sup 3+} doping of the Sr{sub 2}CoWO{sub 6} double perovskite: A structural and magnetic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, C.A.; Viola, M.C.; Pedregosa, J.C.

    2008-11-15

    La-doped Sr{sub 2}CoWO{sub 6} double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, {lambda}=1.594 A). At room temperature, the replacement of Sr{sup 2+} by La{sup 3+} induces a change of the tetragonal structure, space group I4/m of the undoped Sr{sub 2}CoWO{sub 6} into the distorted monoclinic crystal structure, space group P2{sub 1}/n, Z=2. The structure of La-doped phases contains alternating CoO{sub 6} and (Co/W)O{sub 6} octahedra,more » almost fully ordered. On the other hand, the replacement of Sr{sup 2+} by La{sup 3+} induces a partial replacement of W{sup 6+} by Co{sup 2+} into the B sites, i.e. Sr{sub 2-x}La{sub x}CoW{sub 1-y}Co{sub y}O{sub 6} (y=x/4) with segregation of SrWO{sub 4}. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below T{sub N}=24 K independently of the La-substitution. - Graphical abstract: La-doped Sr{sub 2}CoWO{sub 6} double perovskites have been prepared in polycrystalline form by solid-state reaction. The general formula of these compounds is Sr{sub 2-x}La{sub x}CoW{sub 1-y}Co{sub y}O{sub 6} (y=x/4). XRPD, NPD and magnetic susceptibility studies were performed. The structure of monoclinic La-doped phases contains alternating CoO{sub 6} and (Co/W)O{sub 6} octahedra, almost fully ordered. NPD and magnetic measurements indicate an antiferromagnetic ordering at low temperature.« less

  12. Studies of High Critical Transition Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Zhou, Xue Zhi

    1990-01-01

    In early 1987 the high-T_{ rm c} superconductor, YBa_2 Cu_3O_{7 -delta}, with T_{ rm c} ~eq 90K was successfully made in our laboratory by a standard ceramic technique. Later Tl_2Ca _2Ba_2Cu_3 O_{10} with T _{rm c} ~eq 120K was produced by a special procedure. Structural analysis by x-ray diffraction showed that YBa_2 Cu_3O_{7 -delta} was responsible for the high -T_{rm c}, the so called 123 phase. It is an oxygen deficient perovskite with the orthorhombic structure, space group Pmmm, lattice constant a = 3.8243, b = 3.8862 and c = 11.667 A. Oxygen vacancies are very important to the superconducting properties. An impurity, Y_2BaCuO_5 , with a green colour, was identified as a semiconducting phase. A technique to grow single crystals of YBa _2Cu_3O_ {7-delta} is described. The crystals are rectangular up to 2 x 2 x 0.2 mm^3 in size. Two phases, Tl_2CaBa _2Cu_2O_8 (the 2122 phase) and Tl_2Ca _2Ba_2Cu _3O_{10} (the 2223 phase), are responsible for the high-T _{rm c} in the Tl-system; they have a tetragonal or pseudotetragonal structure with space group I4/mmm. Resistivity and magnetic ac susceptibility results show that high-T_{rm c} materials have a sharp superconducting transition and many properties in common with conventional superconductors. The shielding effect is closely related to the properties of grain boundaries. Magnetic ordering at low temperature (below 10K) of high-T_{rm c} materials was discovered by Mossbauer experiments with ^{57}Fe doped samples. Substitution of Fe for Cu reduced the superconducting transition temperature and the shielding effect. Theories of superconductivity for conventional and the new superconductors are reviewed and related to the experimental results.

  13. Influences of annealing temperature on structural characterization and magnetic properties of Mn-doped BaTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Phan, The-Long; Zhang, P.; Grinting, D.; Yu, S. C.; Nghia, N. X.; Dang, N. V.; Lam, V. D.

    2012-07-01

    Polycrystalline samples of BaTiO3 doped with 2.0 at. % Mn were prepared by solid-state reaction at various temperatures (Tan) ranging from 500 to 1350 °C, used high-pure powders of BaCO3, TiO2, and MnCO3 as precursors. Experimental results obtained from x-ray diffraction patterns and Raman scattering spectra reveal that tetragonal Mn-doped BaTiO3 starts constituting as Tan ≈ 500 °C. The Tan increase leads to the development of this phase. Interestingly, there is the tetragonal-hexagonal transformation in the crystal structure of BaTiO3 as Tan ≈ 1100 °C. Such the variations influence directly magnetic properties of the samples. Besides paramagnetic contributions of Mn2+ centers traced to electron spin resonance, the room-temperature ferromagnetism found in the samples is assigned to exchange interactions taking place between Mn3+ and Mn4+ ions located in tetragonal BaTiO3 crystals.

  14. Dramatic changes in the electronic structure upon transition to the collapsed tetragonal phase in CaFe 2As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhaka, R. S.; Jiang, Rui; Ran, S.

    2014-01-31

    We use angle-resolved photoemission spectroscopy and density functional theory calculations to study the electronic structure of CaFe 2As 2 in the collapsed tetragonal (CT) phase. This unusual phase of iron arsenic high-temperature superconductors was hard to measure as it exists only under pressure. By inducing internal strain, via the postgrowth thermal treatment of single crystals, we were able to stabilize the CT phase at ambient pressure. We find significant differences in the Fermi surface topology and band dispersion data from the more common orthorhombic-antiferromagnetic or tetragonal-paramagnetic phases, consistent with electronic structure calculations. The top of the hole bands sinks belowmore » the Fermi level, which destroys the nesting present in parent phases. The absence of nesting in this phase, along with an apparent loss of Fe magnetic moment, are now clearly experimentally correlated with the lack of superconductivity in this phase.« less

  15. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals

    PubMed Central

    Li, Dehui; Wang, Gongming; Cheng, Hung-Chieh; Chen, Chih-Yen; Wu, Hao; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2016-01-01

    Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirm that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Our findings offer significant fundamental insight on the temperature- and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials. PMID:27098114

  16. Substitutional Cd and Cd-Oxygen Vacancy Complexes in ZrO2 and Ce-doped ZrO_2

    NASA Astrophysics Data System (ADS)

    Zacate, Matthew O.; Karapetrova, E.; Platzer, R.; Gardner, J. A.; Evenson, W. E.; Sommers, J. A.

    1996-03-01

    We are using Perturbed Angular Correlation Spectroscopy (PAC) to study oxygen vacancy (V_O) dynamics in tetragonal ZrO2 and Ce-doped ZrO_2. PAC requires a radioactive probe atom, Cd in this study, which sits substitutionally for a Zr ion. Cd is doubly-negatively charged relative to the lattice and attracts doubly-positively charged V_Os. Pure tetragonal zirconia exists only above 950 ^circC and in this temperature range, the V_Os are very mobile. Above 950 ^circC we observe V_Os rapidly hopping about the Cd allowing us to determine the VO concentration and the trapping energy. We have been Ce-doping to stabilize the tetragonal phase to lower temperature to determine the electric field gradient the Cd experiences due to a stationary V_O. As a consequence of the Ce-doping, we observe a local lattice distortion about the Cd which increases with Ce-doping.

  17. Nanotwin and phase transformation in tetragonal Pb(Fe1/2Nb1/2)1-xTixO3 single crystal

    NASA Astrophysics Data System (ADS)

    Tu, C.-S.; Tseng, C.-T.; Chien, R. R.; Schmidt, V. Hugo; Hsieh, C.-M.

    2008-09-01

    This work is a study of phase transformation in (001)-cut Pb(Fe1/2Nb1/2)1-xTixO3 (x =48%) single crystals by means of dielectric permittivity, domain structure, and in situ x-ray diffraction. A first-order T(TNT)-C(TNT) phase transition was observed at the Curie temperature TC≅518 K upon zero-field heating. T, TNT, and C are tetragonal, tetragonal nanotwin, and cubic phases, respectively. T(TNT) and C(TNT) indicate that minor TNT domains reside in the T and C matrices. Nanotwins, which can cause broad diffraction peak, remain above TC≅518 K and give an average microscopic cubic symmetry in the polarizing microscopy. Colossal dielectric permittivity (>104) was observed above room temperature with strong frequency dispersion. This study suggests that nanotwins can play an important role in relaxor ferroelectric crystals while phase transition takes place. The Fe ion is a potential candidate as a B-site dopant for enhancing dielectric permittivity.

  18. Effect of starting powders on the sintering of nanostructured ZrO2 ceramics by colloidal processing

    NASA Astrophysics Data System (ADS)

    Suárez, Gustavo; Sakka, Yoshio; Suzuki, Tohru S.; Uchikoshi, Tetsuo; Zhu, Xinwen; Aglietti, Esteban F.

    2009-04-01

    The effect of starting powders on the sintering of nanostructured tetragonal zirconia was evaluated. Suspensions were prepared with a concentration of 10 vol.% by mixing a bicomponent mixture of commercial powders (97 mol.% monoclinic zirconia with 3 mol.% yttria) and by dispersing commercially available tetragonal zirconia (3YTZ, Tosoh). The preparation of the slurry by bead-milling was optimized. Colloidal processing using 50 μm zirconia beads at 4000 rpm generated a fully deagglomerated suspension leading to the formation of high-density consolidated compacts (62% of the theoretical density (TD) for the bicomponent suspension). Optimum colloidal processing of the bicomponent suspension followed by the sintering of yttria and zirconia allowed us to obtain nanostructured tetragonal zirconia. Three different sintering techniques were investigated: normal sintering, two-step sintering and spark plasma sintering. The inhibition of grain growth in the bicomponent mixed powders in comparison with 3YTZ was demonstrated. The inhibition of the grain growth may have been caused by inter-diffusion of cations during the sintering.

  19. Cubic-to-tetragonal structural phase transition in Rb1-xCsxCaF3 solid solutions: Thermal expansion and EPR studies

    NASA Astrophysics Data System (ADS)

    Lahoz, F.; Villacampa, B.; Alcalá, R.; Marquina, C.; Ibarra, M. R.

    1997-04-01

    The influence of crystal mixing on the structural phase transitions in Rb1-xCsxCaF3 (0=0.44. This transition shows a weak first-order component in the x=0 and 0.1 samples, which is progressively smeared out for x>0.1, indicating a spatial distribution of the critical temperature in those crystals with high ionic substitution rate. In RbCaF3 , another structural phase transition was observed at 20 K with a thermal hysteresis between 20 and 40 K. This transition has not been found in any of the mixed crystals.

  20. Lead-free Bi(Mg0.5Ti0.5)O3-modified 0.875Bi0.5Na0.5TiO3-0.125BaTiO3 ferroelectric ceramics with tetragonal structure and large field-induced strains

    NASA Astrophysics Data System (ADS)

    Li, Ling; Zhu, Mankang; Ren, Xiaowei; Wei, Qiumei; Zheng, Mupeng; Hou, Yudong

    2017-12-01

    A electrostrictive ceramics were designed by introducing Bi(Mg0.5Ti0.5)O3 into 0.875Bi0.5Na0.5TiO3-0.125BaTiO3 with tetragonal structure. All the specimens prepared by a conventional solid sintering technique exhibit the excellent sintering ability with a high relative density over 97%. It is found that, as BMT added, the specimens undergo a structure crossover from ferroelectric P4mm to ergodic P4bm, and the coexistence of both tetragonal structures takes bridge between them. A large field-induced strain of 0.30% and field-independent strain coefficient of 0.0254 m4/C2 occur at 4 mol.% BMT added. This material with excellent sinterability is suitable for the application in actuators and microposition controllers.

  1. Barium Titanate Nanoparticles for Biomarker Applications

    NASA Astrophysics Data System (ADS)

    Matar, O.; Posada, O. M.; Hondow, N. S.; Wälti, C.; Saunders, M.; Murray, C. A.; Brydson, R. M. D.; Milne, S. J.; Brown, A. P.

    2015-10-01

    A tetragonal crystal structure is required for barium titanate nanoparticles to exhibit the nonlinear optical effect of second harmonic light generation (SHG) for use as a biomarker when illuminated by a near-infrared source. Here we use synchrotron XRD to elucidate the tetragonal phase of commercially purchased tetragonal, cubic and hydrothermally prepared barium titanate (BaTiO3) nanoparticles by peak fitting with reference patterns. The local phase of individual nanoparticles is determined by STEM electron energy loss spectroscopy (EELS), measuring the core-loss O K-edge and the Ti L3-edge energy separation of the t2g, eg peaks. The results show a change in energy separation between the t2g and eg peak from the surface and core of the particles, suggesting an intraparticle phase mixture of the barium titanate nanoparticles. HAADF-STEM and bright field TEM-EDX show cellular uptake of the hydrothermally prepared BaTiO3 nanoparticles, highlighting the potential for application as biomarkers.

  2. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals

    DOE PAGES

    Li, Dehui; Wang, Gongming; Cheng, Hung -Chieh; ...

    2016-04-21

    Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirmmore » that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Lastly, our findings offer significant fundamental insight on the temperature-and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials.« less

  3. Antiferroelectricity in lanthanum doped zirconia without metallic capping layers and post-deposition/-metallization anneals

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Gaskell, Anthony Arthur; Dopita, Milan; Kriegner, Dominik; Tasneem, Nujhat; Mack, Jerry; Mukherjee, Niloy; Karim, Zia; Khan, Asif Islam

    2018-05-01

    We report the effects of lanthanum doping/alloying on antiferroelectric (AFE) properties of ZrO2. Starting with pure ZrO2, an increase in La doping leads to the narrowing of the AFE double hysteresis loops and an increase in the critical voltage/electric field for AFE → ferroelectric transition. At higher La contents, the polarization-voltage characteristics of doped/alloyed ZrO2 resemble that of a non-linear dielectric without any discernible AFE-type hysteresis. X-ray diffraction based analysis indicates that the increased La content while preserving the non-polar, parent AFE, tetragonal P42/nmc phase leads to a decrease in tetragonality and the (nano-)crystallite size and an increase in the unit cell volume. Furthermore, antiferroelectric behavior is obtained in the as-deposited thin films without requiring any capping metallic layers and post-deposition/-metallization anneals due to which our specific atomic layer deposition system configuration crystallizes and stabilizes the AFE tetragonal phase during growth.

  4. Real-time atomistic observation of structural phase transformations in individual hafnia nanorods

    DOE PAGES

    Hudak, Bethany M.; Depner, Sean W.; Waetzig, Gregory R.; ...

    2017-05-12

    High-temperature phases of hafnium dioxide have exceptionally high dielectric constants and large bandgaps, but quenching them to room temperature remains a challenge. Scaling the bulk form to nanocrystals, while successful in stabilizing the tetragonal phase of isomorphous ZrO 2, has produced nanorods with a twinned version of the room temperature monoclinic phase in HfO 2. Here we use in situ heating in a scanning transmission electron microscope to observe the transformation of an HfO 2 nanorod from monoclinic to tetragonal, with a transformation temperature suppressed by over 1000°C from bulk. When the nanorod is annealed, we observe with atomic-scale resolutionmore » the transformation from twinned-monoclinic to tetragonal, starting at a twin boundary and propagating via coherent transformation dislocation; the nanorod is reduced to hafnium on cooling. Unlike the bulk displacive transition, nanoscale size-confinement enables us to manipulate the transformation mechanism, and we observe discrete nucleation events and sigmoidal nucleation and growth kinetics.« less

  5. Location of Bromide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions have been shown to play a dominant role in the crystallization of chicken egg white lysozyme from salt solutions. Previous studies employing X-ray crystallography had found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystal grown in bromide and chloride solutions. Five possible anion binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four of these sites corresponded to four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion binding sites in lysozyme remain unchanged, even when different anions and different crystal forms of lysozyme are employed.

  6. Locations of Bromide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions have been shown to play a dominant role in the crystallization of chicken egg-white lysozyme from salt solutions. Previous studies employing X-ray crystallography have found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystals grown in bromide and chloride solutions. Five possible anion-binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four further sites were found which corresponded to the four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion-binding sites in lysozyme remain unchanged even when different anions and different crystal forms of lysozyme are employed.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fente, Antón; Correa-Orellana, Alexandre; Böhmer, Anna E.

    We show that biaxial strain induces alternating tetragonal superconducting and orthorhombic nematic domains in Co substituted CaFe 2As 2. We use Atomic Force, Magnetic Force and Scanning Tunneling Microscopy (AFM, MFM and STM) to identify the domains and characterize their properties, nding in particular that tetragonal superconducting domains are very elongated, more than several tens of μm long and about 30 nm wide, have the same Tc than unstrained samples and hold vortices in a magnetic eld. Thus, biaxial strain produces a phase separated state, where each phase is equivalent to what is found at either side of the rstmore » order phase transition between antiferromagnetic orthorhombic and superconducting tetragonal phases found in unstrained samples when changing Co concentration. Having such alternating superconducting domains separated by normal conducting domains with sizes of order of the coherence length opens opportunities to build Josephson junction networks or vortex pinning arrays and suggests that first order quantum phase transitions lead to nanometric size phase separation under the influence of strain.« less

  8. Theoretical Studies of the Electron Paramagnetic Resonance Parameters and Local Structure for VO2+ in Oxyfluoroborate Glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Huaming; Yu, Xiaopeng; Xiao, Wenbo

    2017-12-01

    The electron paramagnetic resonance parameters (g factors g ‖, g ⊥ and hyperfine structure constants A ‖, A ⊥) of a tetragonal V4+ center in oxyfluoroborate glasses (20Li2O-10Li2F2-70B2O3) are theoretically investigated by using the perturbation formulas for a 3d1 ion in tetragonally compressed octahedra. The calculated results are in good agreement with the experimental data. Local structure parameters of [VO6]8- clusters are obtained from the calculation (i.e., R‖ ≈ 1.74 Å and R⊥ ≈ 1.985 Å for the metal-ligand distances parallel and perpendicular to the C4 axis, respectively). It is shown that the local structure around the V4+ ion possesses a compressed tetragonal distortion along C 4 axis. The signs of the hyperfine structure constants A‖ and A ⊥ for V4+ centers in oxyfluoroborate glasses were also suggested in the discussion.

  9. Ionic and Optical Properties of Methylammonium Lead Iodide Perovskite across the Tetragonal-Cubic Structural Phase Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoque, Md Nadim Ferdous; Islam, Nazifah; Li, Zhen

    Practical hybrid perovskite solar cells (PSCs) must endure temperatures above the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI3). However, the ionic and optical properties of MAPbI3 in such a temperature range, and particularly, dramatic changes in these properties resulting from a structural phase transition, are not well studied. Herein, we report a striking contrast at approximately 45 degrees C in the ionic/electrical properties of MAPbl3 owing to a change of the ion activation energy from 0.7 to 0.5 eV, whereas the optical properties exhibit no particular transition except for the steady increase of the bandgap with temperature. Thesemore » observations can be explained by the 'continuous' nature of perovskite phase transition. We speculate that the critical temperature at which the ionic/electrical properties change, although related to crystal symmetry variation, is not necessarily the same temperature as when tetragonal-cubic structural phase transition occurs.« less

  10. A sol-powder coating technique for fabrication of yttria stabilised zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wattanasiriwech, Darunee; Wattanasiriwech, Suthee; Stevens, Ron

    Yttria stabilised zirconia has been prepared using a simple sol-powder coating technique. The polymeric yttria sol, which was prepared using 1,3 propanediol as a network modifier, was homogeneously mixed with nanocrystalline zirconia powder and it showed a dual function: as a binder which promoted densification and a phase modifier which stabilised zirconia in the tetragonal and cubic phases. Thermal analysis and X-ray diffraction revealed that the polymeric yttria sol which decomposed at low temperature into yttrium oxide could change the m {sup {yields}} t phase transformation behaviour of the zirconia, possibly due to the small particle size and very highmore » surface area of both yttria and zirconia particles allowing rapid alloying. The sintered samples exhibited three crystalline phases: monoclinic, tetragonal and cubic, in which cubic and tetragonal are the major phases. The weight fractions of the individual phases present in the selected specimens were determined using quantitative Rietveld analysis.« less

  11. Microstructure and mechanical properties of bulk yttria-partially-stabilized zirconia

    NASA Technical Reports Server (NTRS)

    Valentine, P. G.; Maier, R. D.; Mitchell, T. E.

    1981-01-01

    A commercially available bulk 4.5 mole percent yttria-Y2O3)-partially-stabilized zirconia (PSZ) was studied by light microscopy, X-ray analysis, microhardness measurement, and fracture toughness testing. The growth of the precipitates and the phase transformations were studied as a function of aging in air at 1500 C. Aging cuves were constructed for both the as-received and the solution-annealed-and-quenched materials; the curves showed hardness peaks at 1397 and 1517 kg/sq mm, respectively. A total of twelve different types of tetragonal precipitates were found. The rectangular plate-shaped tetragonal precipitates were found to have a (110) habit plane. Grinding of the Y2O3 PSZ into powder did not cause a significant amount of metastable tetragonal precipitates to transform into the monoclinic phase, thus indicating that transformation toughening is not a significant mechanism for the material. The fracture toughness of the aged and of the unaged solution-annealed-and-quenched PSZ was found to be between 2 and 3 MN/cu m/2.

  12. Revealing the hidden structural phases of FeRh

    NASA Astrophysics Data System (ADS)

    Kim, Jinwoong; Ramesh, R.; Kioussis, Nicholas

    2016-11-01

    Ab initio electronic structure calculations reveal that tetragonal distortion has a dramatic effect on the relative stability of the various magnetic structures (C-, A-, G-, A'-AFM, and FM) of FeRh giving rise to a wide range of novel stable/metastable structures and magnetic phase transitions between these states. We predict that the cubic G-AFM structure, which was believed thus far to be the ground state, is metastable and that the tetragonally expanded G-AFM is the stable structure. The low energy barrier separating these states suggests phase coexistence at room temperature. We propose an A'-AFM phase to be the global ground state among all magnetic phases which arises from the strain-induced tuning of the exchange interactions. The results elucidate the underlying mechanism for the recent experimental findings of electric-field control of magnetic phase transition driven via tetragonal strain. The magnetic phase transitions open interesting prospects for exploiting strain engineering for the next-generation memory devices.

  13. Opportunities for functional oxides in yttrium oxide-titanium oxide-zirconium oxide system: Applications for novel thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Francillon, Wesley

    This dissertation is an investigation of materials and processed under consideration for next generation thermal structural oxides with potential applications as thermal barrier coatings; wherein, high temperature stability and mechanical properties affect durability. Two notable next generation materials systems under investigation are pyrochlore and co-doped zirconia oxides. The motivation for this work is based on current limitations of the currently used thermal barrier material of yttria stabilized zirconia (YSZ) deposited by the plasma spray processes. The rapid quenching associated with the plasma spray process, results in a metastable structure that is a non-transformable tetragonal structure in the yttria partially stabilized zirconia system rather than the equilibrium anticipated two phase mixture of cubic and monoclinic phases. It has been shown that this metastable structure offers enhanced toughness and thus durability during thermomechanical cycling from the operating temperatures in excess of 1000C to ambient. However, the metastable oxides are susceptible to partitioning at temperatures greater than 1200C, thus resulting in a transformation of the tetragonal phase oxides. Transformations of the tetragonal prime phase into the parent cubic and tetragonal prime phase result in coating degradation. Several of the emerging oxides are based on rare earth additions to zirconia. However, there is limited information of the high temperature stability of these oxide coatings and more notably these compositions exhibit limited toughness for durable performance. A potential ternary composition based on the YSZ system that offers the ability to tailor the phase structure is based YO1.5-TiO2 -ZrO2. The ternary of YO1.5-TiO2-ZrO 2 has the current TBC composition of seven molar percent yttria stabilized zirconia, pyrochlore phase oxide and zirconia doped with yttria and titania additions (Ti-YSZ). The Ti-YSZ phase field is of interest because at equilibrium it is a single tetragonal phase. Thus, compositions are of single phase tetragonal phase, theoretically, should not undergo high temperature partitioning. Single Tetragonal phase oxides of Ti-YSZ also offer the possibility of enhanced toughness and higher temperature stability akin to those observed in yttria partially stabilized zirconia. Many pyrochlore oxides are under review because they have shown to have lower thermal conductivity than YSZ oxides. This study focused on chemically synthesizing homogeneous starting material compositions in a metastable state (preferably amorphous), following its evolution according to the phase hierarchy under conditions of kinetic constraints. The current equilibrium diagram of YO1.5-TiO2-ZrO 2 is based on theoretical calculations. One of the contributions of this work is the redefined phase fields in YO1.5-TiO2-ZrO 2 based on our experimental results. Investigated compositions were based on tie lines of Y2-xTi2ZrxO7+x/2 and Y2Ti2-yZryO7 representing substitution of Zr4+ for Y3+ and Zr4+ for Ti4+ respectively. More notably, we observed extended metastable phases in pyrochlore and fluorite oxides at low temperature. The significance of this result is that it offers a larger compositional range for investing pyrochlore oxides with associated high temperature phase stability for TBC applications. In tetragonal oxides, our results showed that Ti-YSZ results have slower partitioning kinetics in comparison to YSZ at high temperature. This study also emphasized the deposition of advanced ceramic coatings by plasma spray for tetragonal and pyrochlore systems, compositionally complex functional oxides that may potentially have lower thermal conductivity values compared to current YSZ oxides. Next generation thermal barrier coatings require powders with high chemical purity, chemical homogeneity, controlled particle size/shape and pertinent phase state. Thermal spray offers an avenue to create novel materials and deposits directly from the precursor and compositionally controlled powder feedstock. This study contributed to investigating an unexplored field that offers a variety of opportunities in materials synthesis that would not be possible by conventional methods. Understanding processing-microstructure-property correlations is of considerable importance in thermal spray of functional oxide materials. This thesis demonstrated by radio-frequency thermal spray that the complex pyrochlore oxide Y 2Ti2O7 could be deposited by directly injecting molecularly mixed precursors to form oxide coatings. Structural analysis revealed the metastable fluorite phase; however, with thermal treatments at relatively low temperature of 700°C the pyrochlore phase was obtained. For Ti-YSZ coatings, the tetragonal phase oxides were obtained with unique microstructures, however, the tetragonal prime destabilized at 1200°C. This dissertation explored novel oxide compositions through detailed structural analysis. The approach presented a comprehensive and integrated investigation as it pertains to phase evolution of oxides in powder feedstock to coating characteristics (phase/properties).

  14. Automatic procedure for stable tetragonal or hexagonal structures: application to tetragonal Y and Cd

    NASA Astrophysics Data System (ADS)

    Marcus, P. M.; Jona, F.

    2005-05-01

    A simple effective procedure (MNP) for finding equilibrium tetragonal and hexagonal states under pressure is described and applied. The MNP procedure finds a path to minima of the Gibbs free energy G at T=0 K (G=E+pV, E=energy per atom, p=pressure, V=volume per atom) for tetragonal and hexagonal structures by using the approximate expansion of G in linear and quadratic strains at an arbitrary initial structure to find a change in the strains which moves toward a minimum of G. Iteration automatically proceeds to a minimum within preset convergence criteria on the calculation of the minimum. Comparison is made with experimental results for the ground states of seven metallic elements in hexagonal close-packed (hcp), face- and body-centered cubic structures, and with a previous procedure for finding minima based on tracing G along the epitaxial Bain path (EBP) to a minimum; the MNP is more easily generalized than the EBP procedure to lower symmetry and more atoms in the unit cell. Comparison is also made with a molecular-dynamics program for crystal equilibrium structures under pressure and with CRYSTAL, a program for crystal equilibrium structures at zero pressure. Application of MNP to the elements Y and Cd, which have hcp ground states at zero pressure, finds minima of E at face-centered cubic (fcc) structure for both Y and Cd. Evaluation of all the elastic constants shows that fcc Y is stable, hence a metastable phase, but fcc Cd is unstable.

  15. Investigation of La and Al substitution on the spontaneous polarization and lattice dynamics of the Pb(1-x)LaxTi(1-x)AlxO3 ceramics

    NASA Astrophysics Data System (ADS)

    Yadav, Arun Kumar; Verma, Anita; Kumar, Sunil; Srihari, Velaga; Sinha, A. K.; Reddy, V. Raghavendra; Liu, Shun Wei; Biring, Sajal; Sen, Somaditya

    2018-03-01

    The phase purity and crystal structure of Pb(1-x)LaxTi(1-x)AlxO3 (0 ≤ x ≤ 0.25) samples (synthesized via the sol-gel process) were confirmed using synchrotron x-ray powder diffraction (XRD) (wavelength, λ = 0.44573 Å). Rietveld analyses of powder x-ray diffraction data confirmed the tetragonal structure for compositions with x ≤ 0.18 and cubic structure for the sample with x = 0.25. Temperature-dependent XRD was performed to investigate the structural change from tetragonal to cubic structure phase transition. Raman spectroscopy at room temperature also confirmed this phase transition with compositions. Field emission scanning electron microscopy (FESEM) provided information about the surface morphology while an energy dispersive x-ray spectrometer attached with FESEM confirmed the chemical compositions of samples. Temperature and frequency dependent dielectric studies showed that the tetragonal to cubic phase transition decreased from 680 K to 175 K with an increase in the x from 0.03 to 0.25, respectively. This is correlated with the structural studies. Electric field dependent spontaneous polarization showed a proper ferroelectric loop for 0.06 ≤ x ≤ 0.18 belonging to a tetragonal phase, while for x ≥ 0.25, the spontaneous polarization vanishes. Bipolar strain versus electric field revealed a butterfly loop for 0.06 ≤ x ≤ 0.18 compositions. Energy storage efficiency initially increases nominally with substitution but beyond x = 0.18 enhances considerably.

  16. Twin and habit plane microstructures due to the tetragonal to monoclinic transformation of zirconia

    NASA Astrophysics Data System (ADS)

    Simha, N. K.

    1997-02-01

    We first construct Bain strains for the tetragonal to monoclinic ( t → m) transformation of zirconia (ZrO 2), and then examine the resulting twin and habit plane microstructures. The ( t → m) transformation in zirconia occurs via two paths; transformation along path I has two Bain strains that involve shearing of a rectangular face of the tetragonal unit cell, and shearing of the square base corresponds to path II. The monoclinic variants resulting from each of the three Bain strains can form 12 twins, and four of the twins corresponding to path II are neither of type I nor of type II. Habit planes do not exist for the transformation along path I, whereas transformation along path II has: (± 0.8139, ± 0.3898, - 0.4309) t, (± 0.6489, ± 0.6271, - 0.4309) t, (± 0.7804, ± 0.4530, - 0.4309) t. We predict the exact twin planes observed by Bailey [(1964) Phase transformation at high temperatures in hafnia and zirconia. Proc. Roy. Soc.279A, 395-412], Bansal and Heuer [(1972) On a martensitic phase transformation in Zirconia ZrO 2—I. Metallographic evidence. Acta Metall.20, 1281-1289] and Buljan et al. [(1976) Optical and X-ray single crystal studies of the monoclinic ↔ tetragonal transition in ZrO 2. J. Am. Ceram. Soc.59, 351-354]; additional twins and habit planes that we predict have not yet been observed.

  17. Effect of texture dispersion on the effective biaxial modulus of fiber-textured hexagonal, tetragonal, and orthorhombic films

    NASA Astrophysics Data System (ADS)

    Wu, Huaping; Wu, Linzhi; Du, Shanyi

    2008-04-01

    The effective biaxial modulus (Meff) of fiber-textured hexagonal, tetragonal, and orthorhombic films is estimated by using the Voigt-Reuss-Hill and Vook-Witt grain-interaction models. The orientation distribution function with Gaussian distributions of the two Euler angles θ and ϕ is adopted to analyze the effect of texture dispersion degree on Meff. Numerical results that are based on ZnO, BaTiO3, and yttrium barium copper oxide (YBCO) materials show that the Vook-Witt average of Meff is identical to the Voigt-Reuss-Hill average of Meff for the (001) plane of ideally fiber-textured hexagonal and tetragonal films. The ϕ distribution has no influence on Meff of the (hkl)-fiber-textured hexagonal film at any θ distribution in terms of the isotropy in the plane perpendicular to the [001] direction. Comparably, tetragonal and orthorhombic films represent considerable actions of ϕ dispersion on Meff, and the effect of ϕ dispersion on Meff of a (001)-fiber-textured YBCO film is smaller than that for a (001)-fiber-textured BaTiO3 film since the shear anisotropic factor in the (001) shear plane of a YBCO film more closely approaches 1. Enhanced θ and ϕ distributions destroy the perfect fiber textures, and as a result, the films exhibit an evolution from ideal (hkl) fiber textures to random textures with varying full widths at half maximums of θ and ϕ.

  18. Role of multiorbital effects in the magnetic phase diagram of iron pnictides

    NASA Astrophysics Data System (ADS)

    Christensen, Morten H.; Scherer, Daniel D.; Kotetes, Panagiotis; Andersen, Brian M.

    2017-07-01

    We elucidate the pivotal role of the band structure's orbital content in deciding the type of commensurate magnetic order stabilized within the itinerant scenario of iron pnictides. Recent experimental findings in the tetragonal magnetic phase attest to the existence of the so-called charge and spin ordered density wave over the spin-vortex crystal phase, the latter of which tends to be favored in simplified band models of itinerant magnetism. Here we show that employing a multiorbital itinerant Landau approach based on realistic band structures can account for the experimentally observed magnetic phase, and thus shed light on the importance of the orbital content in deciding the magnetic order. In addition, we remark that the presence of a hole pocket centered at the Brillouin zone's M point favors a magnetic stripe rather than a tetragonal magnetic phase. For inferring the symmetry properties of the different magnetic phases, we formulate our theory in terms of magnetic order parameters transforming according to irreducible representations of the ensuing D4 h point group. The latter method not only provides transparent understanding of the symmetry-breaking schemes but also reveals that the leading instabilities always belong to the {A1 g,B1 g} subset of irreducible representations, independently of their C2 or C4 nature.

  19. Investigations on the Local Structures and the Spin Hamiltonian Parameters for Cu2+ in (90-x)TeO2-10GeO2-xWO3 Glasses

    NASA Astrophysics Data System (ADS)

    Feng, Chun-Rong; Jian, Jun; Chen, Xiao-Hong; Du, Quan; Wang, Ling

    2017-12-01

    The local structures and the spin Hamiltonian parameters (SHPs) for Cu2+ in (90-x)TeO2-10GeO2-xWO3 glasses are theoretically investigated at various WO3 concentrations (x=7.5, 15, 22.5 and 30 mol%). Subject to the Jahn-Teller effect, the [CuO6]10- groups are found to experience the small or moderate tetragonal elongation distortions (characterised by the relative tetragonal elongation ratios ρ≈0.35-3.09%) in C4 axis. With only three adjusted coefficients a, b and ω, the relevant model parameters (Dq, k and ρ) are described by the Fourier type and linear functions, respectively, and the measured concentration dependences of the d-d transition bands and SHPs are reproduced. The maximum of g∥ and the minimum of |A∥| at x=15 mol% are illustrated from the abrupt decrease of the copper-oxygen electron cloud admixtures or covalency and the obvious decline of the copper 3d-3s (4s) orbital admixtures due to the decreasing electron cloud density around oxygen ligands spontaneously bonding with Cu2+ and Te4+ (W6+), respectively.

  20. Ultrasound-assisted sol-gel synthesis of ZrO2.

    PubMed

    Guel, Marlene Lariza Andrade; Jiménez, Lourdes Díaz; Hernández, Dora Alicia Cortés

    2017-03-01

    Synthesis of tetragonal ZrO 2 by both conventional sol-gel and ultrasound-assisted sol-gel methods and using a non-ionic surfactant Tween-20, was performed. A porous microstructure composed of nanometric particles was observed. Tetragonal ZrO 2 was obtained using a low heat treatment temperature of powders, 500°C by both methods. A higher crystallinity and a shorter reaction time were observed when ultrasound was used in the sol-gel method due to the cavitation phenomenon. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Formation of nanocrystalline tetragonal oxide tungsten bronzes on platinum

    NASA Astrophysics Data System (ADS)

    Kosov, A. V.; Semerikova, O. L.; Vakarin, S. V.; Pankratov, A. A.; Plaksin, S. V.; Zaykov, Yu. P.

    2017-02-01

    Cyclic voltammetry is used to study the formation of tetragonal oxide tungsten bronze of the composition K x Na y WO3 on a Pt(110) substrate during electrodeposition from a K2WO4-Na2WO4-WO3 melt. The potential ranges in which cathode products of various compositions and morphologies form are found. K x Na(0.66- x)WO3 crystals are shown to form according to the nucleation/growth mechanism. A general scheme is proposed and used to write equations for cathode reactions.

  2. Variational method of determining effective moduli of polycrystals with tetragonal symmetry

    USGS Publications Warehouse

    Meister, R.; Peselnick, L.

    1966-01-01

    Variational principles have been applied to aggregates of randomly oriented pure-phase polycrystals having tetragonal symmetry. The bounds of the effective elastic moduli obtained in this way show a substantial improvement over the bounds obtained by means of the Voigt and Reuss assumptions. The Hill average is found to be a good approximation in most cases when compared to the bounds found from the variational method. The new bounds reduce in their limits to the Voigt and Reuss values. ?? 1966 The American Institute of Physics.

  3. Application of modern tensor calculus to engineered domain structures. 1. Calculation of tensorial covariants.

    PubMed

    Kopský, Vojtech

    2006-03-01

    This article is a roadmap to a systematic calculation and tabulation of tensorial covariants for the point groups of material physics. The following are the essential steps in the described approach to tensor calculus. (i) An exact specification of the considered point groups by their embellished Hermann-Mauguin and Schoenflies symbols. (ii) Introduction of oriented Laue classes of magnetic point groups. (iii) An exact specification of matrix ireps (irreducible representations). (iv) Introduction of so-called typical (standard) bases and variables -- typical invariants, relative invariants or components of the typical covariants. (v) Introduction of Clebsch-Gordan products of the typical variables. (vi) Calculation of tensorial covariants of ascending ranks with consecutive use of tables of Clebsch-Gordan products. (vii) Opechowski's magic relations between tensorial decompositions. These steps are illustrated for groups of the tetragonal oriented Laue class D(4z) -- 4(z)2(x)2(xy) of magnetic point groups and for tensors up to fourth rank.

  4. High-pressure behavior of cuprospinel CuFe 2O 4: Influence of the Jahn-Teller effect on the spinel structure

    DOE PAGES

    Kyono, Atsushi; Gramsch, Stephen A.; Nakamoto, Yuki; ...

    2015-08-14

    The Jahn-Teller-effect at Cu 2+ in cuprospinel CuFe 2O 4 was investigated using high-pressure, single crystal synchrotron x-ray diffraction (XRD) techniques at beamline BL10A at the Photon Factory, KEK, Japan. Six data sets were collected in the pressure range from ambient to 5.9 GPa at room temperature. Structural refinements based on the data were performed at 0.0, 1.8, 2.7, and 4.6 GPa. The unit cell volume of cuprospinel decreases continuously from 590.8 (6) Å 3 to 579.5 (8) Å 3 up to 3.8 GPa. Leastsquares fitting to a third-order Birch-Murnaghan equation of state yields zero-pressure volume V 0 = 590.7more » (1) Å 3 and bulk modulus K 0 = 188.1 (4.4) GPa with K’ fixed at 4.0. The crystal chemical composition determined by electron-probe analysis and x-ray site-occupancy refinement is represented as [Cu 0.526Fe 0.474] [6][Cu 0.074Fe 1.926]O 4. Most of the Cu 2+ are preferentially distributed onto the tetrahedral (T) site of the spinel structure. At 4.6 GPa, a cubic-tetragonal phase transition is indicated by a splitting of the a axis of the cubic structure into a smaller a axis and a longer c axis, with unit cell parameters a = 5.882 (1) Å and c = 8.337 (1) Å. The tetragonal crystal structure with space group I4 1/amd was refined to R1 = 0.0182 and wR2 = 0.0134 using observed 35 x-ray reflections. At the T site, the tetrahedral O-T-O bond angles along the c-axis direction of the unit cell decreases slightly from 109.47 ° to 108.7 (4) °, which generates a stretched tetrahedral geometry along the c-axis. The cubic-totetragonal transition induced by the Jahn-Teller effect at Cu 2+ is attributable to the angular distortion at the tetrahedral site. At the octahedral (M) site, on the other hand, the two M-O bonds parallel to the caxis are shortened with respect to the four M-O bonds parallel to the ab-plane, which are lengthened as a result of the phase transition, leading to a compressed octahedral geometry along the c-axis. With the competing distortions between the stretched tetrahedron and the compressed octahedron along the c-axis, the a unit cell parameter is shortened with respect to the c unit cell parameter, giving a c/a ratio slightly greater than unity as referred to cubic lattice (c/a = 1.002). The c/a value increases to 1.007 with pressure, suggesting a further evolution of the stretched tetrahedron and the compressed octahedron. The variation of c/a ratio of the cuprospinel is similar to that observed in the tetragonally distorted cuprospinel with Cu 2+ fully occupying the octahedral site of the structure.« less

  5. Electron paramagnetic resonance spectra of CdO-Al2O3-Bi2O3-B2O3 quaternary glasses containing VO2+ ions

    NASA Astrophysics Data System (ADS)

    Lalithaphani, A. V.; Srinivas, B.; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md.

    2018-04-01

    Borate glasses containing different concentrations of heavy metal oxide (CdO) with 2mol% of V2O5 as the paramagnetic probe were prepared by the conventional melt quenching technique. The prepared glasses were characterized by XRD to confirm the amorphous nature. EPR and Optical absorption studies were carried out at room temperature. EPR spectra of these glass samples were recorded at X-band frequency with 100 kHz field modulation at room temperature. From the EPR spectra the spin-Hamiltonian parameters were evaluated. The spin-Hamiltonian parameter values indicated that g|| < g┴ < ge [=2.0023] and A∥︀ > A┴. This suggests that VO2+ ions are present in octahedral sites with tetragonal compression and belong to C4v symmetry with dxy being the ground state. The measure of tetragonal distortion (Δg∥︀/Δg┴)varies non-linearly with glass composition indicating change in tetragonal distortion. The covalency rates were estimated. The number of spins participating in the resonance [N] and susceptibility (χ) values were also evaluated.

  6. Structures, Phase Transitions and Tricritical Behavior of the Hybrid Perovskite Methyl Ammonium Lead Iodide

    DOE PAGES

    Whitfield, P. S.; Herron, N.; Guise, W. E.; ...

    2016-10-21

    Here, we examine the crystal structures and structural phase transitions of the deuterated, partially deuterated and hydrogenous organic-inorganic hybrid perovskite methyl ammonium lead iodide (MAPbI 3) using time-of-flight neutron and synchrotron X-ray powder diffraction. Near 330 K the high temperature cubic phases transformed to a body-centered tetragonal phase. The variation of the order parameter Q for this transition scaled with temperature T as Q (T c-T) , where T c is the critical temperature and the exponent was close to , as predicted for a tricritical phase transition. We also observed coexistence of the cubic and tetragonal phases over amore » range of temperature in all cases, demonstrating that the phase transition was in fact first-order, although still very close to tricritical. Upon cooling further, all the tetragonal phases transformed into a low temperature orthorhombic phase around 160 K, again via a first-order phase transition. Finally, based upon these results, we discuss the impact of the structural phase transitions upon photovoltaic performance of MAPbI 3 based solar cells.« less

  7. Abnormal cubic-tetragonal phase transition of barium strontium titanate nanoparticles studied by in situ Raman spectroscopy and transmission electron microscopy heating experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yin; Chen, Chen; Gao, Ran

    2015-11-02

    Phase stability of the ferroelectric materials at high temperature is extremely important to their device performance. Ba{sub x}Sr{sub 1−x}TiO{sub 3} (BST) nanoparticles with different Sr contents (x = 1, 0.91, 0.65, 0.4, and 0) are prepared by a facile hydrothermal method. Using Raman spectroscopy and transmission electron microscopy (TEM) analyses under in situ heating conditions (up to 300 °C), the phase transitions of BST nanoparticles between 25 °C and 280 °C are comprehensively investigated. The original Curie temperature of BST nanoparticles decreases abruptly with the increase in Sr content, which is more obvious than in the bulk or film material. Besides, an abnormal phase transitionmore » from cubic to tetragonal structure is observed from BST nanoparticles and the transition temperature rises along with the increase in Sr content. Direct TEM evidences including a slight lattice distortion have been provided. Differently, BaTiO{sub 3} nanoparticles remained in the tetragonal phase during the above temperature ranges.« less

  8. Lattice parameters and structural phase transition of lanthanum titanate perovskite, La0.68(Ti0.95,Al0.05)O3.

    PubMed

    Ali, Roushown; Yashima, Masatomo

    2003-05-01

    Lattice parameters and the structural phase transition of La(0.68)(Ti(0.95),Al(0.05))O(3) have been investigated in situ in the temperature range 301-689 K by the synchrotron radiation powder diffraction (SR-PD) technique. High-angular-resolution SR-PD is confirmed to be a powerful technique for determining precise lattice parameters around a phase-transition temperature. The title compound exhibits a reversible phase transition between orthorhombic and tetragonal phases at 622.3 +/- 0.6 K. The following results were obtained: (i) the lattice parameters increased continuously with temperature, while the b/a ratio decreased continuously with temperature and became unity at the orthorhombic-tetragonal transition point; (ii) no hysteresis was observed between the lattice-parameter values measured on heating and on cooling. Results (i) and (ii) indicate that the orthorhombic-tetragonal phase transition is continuous and reversible. The b/a ratio is found to exhibit a more continuous temperature evolution than does the order parameter for a typical second-order phase transition based on Landau theory.

  9. Luminescence properties of Eu2+ in M2MgSi2O7 (M=Ca, Sr, and Ba) phosphors

    NASA Astrophysics Data System (ADS)

    Kim, T.; Kim, Y.; Kang, S.

    2012-03-01

    The photoluminescence properties of alkali-earth magnesium silicates (M2MgSi2O7, M=Ca, Sr, and Ba) doped with Eu2+ were investigated. Solid solutions of Ba x Sr2- x Si2O7, Ca2MgSi2O7, and Sr2MgSi2O7 were prepared. Ba x Sr2- x Si2O7 retained a tetragonal crystal structure similar to the structure of the other compounds up to a stoichiometry of x=1.6, which enabled a systematic study of the common structure. Monoclinic Ba2MgSi2O7 was prepared, and the luminescence properties were compared with those of other samples. The emission and excitation spectra of tetragonal M2MgSi2O7 (M=Ca, Sr, and Ba) changed as a function of the covalency, site symmetry, and crystal field strength. The luminescence properties showed excellent agreement with theoretical predictions based on these factors. The Stokes shift differentiated the emission behaviors of the tetragonal and monoclinic structures.

  10. One pot synthesis of pure micro/nano photoactive α-PbO crystals

    NASA Astrophysics Data System (ADS)

    Bhagat, Dharini; Waldiya, Manmohansingh; Vanpariya, Anjali; Mukhopadhyay, Indrajit

    2018-05-01

    The present study reports a simple, fast and cost effective precipitation technique for synthesis of pure α-PbO powder. Lead monoxide powder with tetragonal structure was synthesized chemically at an elevated temperature using lead acetate and sodium hydroxide solution bath. XRD powder diffraction was used to find the structural properties as well as phase transition from alpha to beta. Study revealed that synthesized PbO powder was crystalline with tetragonal symmetry, having an average crystallite size of 70 nm and lattice constants; a=3.97Å, b=3.97Å, and c=5.02Å. Phase transition from tetragonal to orthorhombic structure was studied by comparing the XRD data of the annealed samples in the temperature range from 200 °C to 600 °C. UV-Visible spectroscopy was used to find out the optical properties of prepared PbO powder. Diffuse reflectance and absorbance spectra confirmed the formation of α-PbO with obtained direct band gap of 1.9 eV. Synthesized lead monoxide (α-PbO) powder has promising application in energy conversion as well as energy storage applications.

  11. Direct visualization of phase separation between superconducting and nematic domains in Co-doped CaFe2As2 close to a first-order phase transition

    NASA Astrophysics Data System (ADS)

    Fente, Antón; Correa-Orellana, Alexandre; Böhmer, Anna E.; Kreyssig, Andreas; Ran, S.; Bud'ko, Sergey L.; Canfield, Paul C.; Mompean, Federico J.; García-Hernández, Mar; Munuera, Carmen; Guillamón, Isabel; Suderow, Hermann

    2018-01-01

    We show that biaxial strain induces alternating tetragonal superconducting and orthorhombic nematic domains in Co-substituted CaFe2As2 . We use atomic force, magnetic force, and scanning tunneling microscopy to identify the domains and characterize their properties, finding in particular that tetragonal superconducting domains are very elongated, more than several tens of micrometers long and about 30 nm wide; have the same Tc as unstrained samples; and hold vortices in a magnetic field. Thus, biaxial strain produces a phase-separated state, where each phase is equivalent to what is found on either side of the first-order phase transition between antiferromagnetic orthorhombic and superconducting tetragonal phases found in unstrained samples when changing Co concentration. Having such alternating superconducting domains separated by normal conducting domains with sizes of the order of the coherence length opens opportunities to build Josephson junction networks or vortex pinning arrays and suggests that first-order quantum phase transitions lead to nanometric-size phase separation under the influence of strain.

  12. Theoretical and experimental evaluation of piezo-optic parameters and photoelastic constant in tetragonal PWO.

    PubMed

    Natali, Pier Paolo; Montalto, Luigi; Daví, Fabrizio; Mengucci, Paolo; Ciriaco, Andrea; Paone, Nicola; Rinaldi, Daniele

    2018-02-01

    The tetragonal PbWO 4 (PWO) is one of the most important scintillating crystals, being used both in the Compact Muon Solenoid (CMS) experiment at the European Organization for Nuclear Research (CERN) and in the PANDA project at the Facility for Antiproton and Ion Research (FAIR). Light yield and other relevant scintillation properties depend, among many factors, also on the crystal mechanical quality. Accordingly, a detailed knowledge of crystal piezo-optic properties is a mandatory step toward understanding elasto-optic behavior and performing crystal quality control. In this paper, we evaluate for the first time, to the best of our knowledge, by means of both photoelastic and x-ray measurements, some components of the piezo-optic tensor; moreover, when the crystal is acted upon by a uniaxial stress, we obtain an evaluation for the rotation angle of the optic plane under stress as well as the photoelastic constant. These parameters are necessary to detect the residual stresses within the crystal, if any, and to give an overall quality measure. Such a methodology is in general suitable for any tetragonal crystals.

  13. Spin-orbital model of stoichiometric LaMnO3 with tetragonal distortions

    NASA Astrophysics Data System (ADS)

    Snamina, Mateusz; Oleś, Andrzej M.

    2018-03-01

    The spin-orbital superexchange model is derived for the cubic (perovskite) symmetry of LaMnO3, whereas real crystal structure is strongly deformed. We identify and explain three a priori important physical effects arising from tetragonal deformation: (i) the splitting of eg orbitals ∝Ez , (ii) the directional renormalization of d -p hybridization tp d, and (iii) the directional renormalization of charge excitation energies. Using the example of LaMnO3 crystal we evaluate their magnitude. It is found that the major effects of deformation are an enhanced amplitude of x2-y2 orbitals induced in the orbital order by Ez≃300 meV and anisotropic tp d≃2.0 (2.35) eV along the a b (c ) cubic axis, in very good agreement with Harrison's law. We show that the improved tetragonal model analyzed within mean field approximation provides a surprisingly consistent picture of the ground state. Excellent agreement with the experimental data is obtained simultaneously for: (i) eg orbital mixing angle, (ii) spin exchange constants, and (iii) the temperatures of spin and orbital phase transition.

  14. Tunable magnetic and transport properties of Mn3Ga thin films on Ta/Ru seed layer

    NASA Astrophysics Data System (ADS)

    Hu, Fang; Xu, Guizhou; You, Yurong; Zhang, Zhi; Xu, Zhan; Gong, Yuanyuan; Liu, Er; Zhang, Hongguo; Liu, Enke; Wang, Wenhong; Xu, Feng

    2018-03-01

    Hexagonal D019-type Mn3Z alloys that possess large anomalous and topological-like Hall effects have attracted much attention due to their great potential in antiferromagnetic spintronic devices. Herein, we report the preparation of Mn3Ga films in both tetragonal and hexagonal phases with a tuned Ta/Ru seed layer on a thermally oxidized Si substrate. Large coercivity together with large anomalous Hall resistivity is found in the Ta-only sample with a mixed tetragonal phase. By increasing the thickness of the Ru layer, the tetragonal phase gradually disappears and a relatively pure hexagonal phase is obtained in the Ta(5)/Ru(30) buffered sample. Further magnetic and transport measurements revealed that the anomalous Hall conductivity nearly vanishes in the pure hexagonal sample, while an abnormal asymmetric hump structure emerges in the low field region. The extracted additional Hall term is robust in a large temperature range and presents a sign reversal above 200 K. The abnormal Hall properties are proposed to be closely related to the frustrated spin structure of D019 Mn3Ga.

  15. Electronic and Structural Properties of ABO3: Role of the B-O Coulomb Repulsions for Ferroelectricity

    PubMed Central

    Miura, Kaoru; Azuma, Masaki; Funakubo, Hiroshi

    2011-01-01

    We have investigated the role of the Ti–O Coulomb repulsions in the appearance of the ferroelectric state in BaTiO3 as well as the role of the Zn–O Coulomb repulsions in BiZn0.5Ti0.5O3, using a first-principles calculation with optimized structures. In tetragonal BaTiO3, it is found that the Coulomb repulsions between Ti 3s and 3p states and O 2s and 2p states have an important role for the appearance of Ti ion displacement. In BiZn0.5Ti0.5O3, on the other hand, the stronger Zn–O Coulomb repulsions, which are due to the 3s, 3p, and 3d (d10) states of the Zn ion, have more important role than the Ti–O Coulomb repulsions for the appearance of the tetragonal structure. Our suggestion is consistent with the other ferroelectric perovskite oxides ABO3 in the appearance of tetragonal structures as well as rhombohedral structures. PMID:28879987

  16. Electronic and Structural Properties of ABO3: Role of the B-O Coulomb Repulsions for Ferroelectricity.

    PubMed

    Miura, Kaoru; Azuma, Masaki; Funakubo, Hiroshi

    2011-01-17

    We have investigated the role of the Ti-O Coulomb repulsions in the appearance of the ferroelectric state in BaTiO3 as well as the role of the Zn-O Coulomb repulsions in BiZn0.5Ti0.5O3, using a first-principles calculation with optimized structures. In tetragonal BaTiO3, it is found that the Coulomb repulsions between Ti 3s and 3p states and O 2s and 2p states have an important role for the appearance of Ti ion displacement. In BiZn0.5Ti0.5O3, on the other hand, the stronger Zn-O Coulomb repulsions, which are due to the 3s, 3p, and 3d (d10) states of the Zn ion, have more important role than the Ti-O Coulomb repulsions for the appearance of the tetragonal structure. Our suggestion is consistent with the other ferroelectric perovskite oxides ABO3 in the appearance of tetragonal structures as well as rhombohedral structures.

  17. Control of magnetic, nonmagnetic, and superconducting states in annealed Ca(Fe 1–xCo x)₂As₂

    DOE PAGES

    Ran, S.; Bud'ko, S. L.; Straszheim, W. E.; ...

    2012-06-22

    We have grown single-crystal samples of Co substituted CaFe₂As₂ using an FeAs flux and systematically studied the effects of annealing/quenching temperature on the physical properties of these samples. Whereas the as-grown samples (quenched from 960°C) all enter the collapsed tetragonal phase upon cooling, annealing/quenching temperatures between 350 and 800°C can be used to tune the system to low-temperature antiferromagnetic/orthorhomic or superconducting states as well. The progression of the transition temperature versus annealing/quenching temperature (T-T anneal) phase diagrams with increasing Co concentration shows that, by substituting Co, the antiferromagnetic/orthorhombic and the collapsed tetragonal phase lines are separated and bulk superconductivity ismore » revealed. We established a 3D phase diagram with Co concentration and annealing/quenching temperature as two independent control parameters. At ambient pressure, for modest x and T anneal values, the Ca(Fe₁₋ xCox)₂As₂ system offers ready access to the salient low-temperature states associated with Fe-based superconductors: antiferromagnetic/orthorhombic, superconducting, and nonmagnetic/collapsed tetragonal.« less

  18. Direct visualization of phase separation between superconducting and nematic domains in Co-doped CaFe 2 As 2 close to a first-order phase transition

    DOE PAGES

    Fente, Antón; Correa-Orellana, Alexandre; Böhmer, Anna E.; ...

    2018-01-09

    We show that biaxial strain induces alternating tetragonal superconducting and orthorhombic nematic domains in Co substituted CaFe 2As 2. We use Atomic Force, Magnetic Force and Scanning Tunneling Microscopy (AFM, MFM and STM) to identify the domains and characterize their properties, nding in particular that tetragonal superconducting domains are very elongated, more than several tens of μm long and about 30 nm wide, have the same Tc than unstrained samples and hold vortices in a magnetic eld. Thus, biaxial strain produces a phase separated state, where each phase is equivalent to what is found at either side of the rstmore » order phase transition between antiferromagnetic orthorhombic and superconducting tetragonal phases found in unstrained samples when changing Co concentration. Having such alternating superconducting domains separated by normal conducting domains with sizes of order of the coherence length opens opportunities to build Josephson junction networks or vortex pinning arrays and suggests that first order quantum phase transitions lead to nanometric size phase separation under the influence of strain.« less

  19. Electronic structure and electron-phonon coupling in TiH$$_2$$

    DOE PAGES

    Shanavas, Kavungal Veedu; Lindsay, Lucas R.; Parker, David S.

    2016-06-15

    Calculations using first principles methods and strong coupling theory are carried out to understand the electronic structure and superconductivity in cubic and tetragonal TiHmore » $$_2$$. A large electronic density of states at the Fermi level in the cubic phase arises from Ti-$$t_{2g}$$ states and leads to a structural instability against tetragonal distortion at low temperatures. However, constraining the in-plane lattice constants diminishes the energy gain associated with the tetragonal distortion, allowing the cubic phase to be stable at low temperatures. Furthermore, calculated phonon dispersions show decoupled acoustic and optic modes arising from Ti and H vibrations, respectively and frequencies of optic modes to be rather high. The cubic phase has a large electron-phonon coupling parameter $$\\lambda$$ and critical temperature of several K. Contribution of the hydrogen sublattice to $$\\lambda$$ is found to be small in this material, which we understand from strong coupling theory to be due to the small H-$s$ DOS at the Fermi level and high energy of hydrogen modes at the tetrahedral sites.« less

  20. The influence of the concentration of Sr ions on the crystal and magnetic structures of Ba{sub 2} –{sub x}Sr{sub x}FeMoO{sub 6} double perovskites (x = 0–1.6)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turchenko, V. A., E-mail: turchenko@jinr.ru; Kalanda, N. A.; Kovalev, L. V.

    2017-01-15

    The crystal and magnetic structures of a solid solution of double perovskite Ba{sub 2–} {sub x}Sr{sub x}FeMoO{sub 6} (x = 0–1.6) have been investigated by neutron diffraction. The high-resolution diffraction patterns have provided precise information about the changes in the crystal and magnetic structures with an increase in the strontium content and data on the behavior of the sample microstructure. Replacement of barium with strontium leads to a change in the lattice symmetry from cubic (x = 0, sp. gr. Fm3̄m)) to tetragonal (x = 0.4, sp. gr. I4/m). At x = 1.0, the symmetry is either tetragonal (sp. gr.more » I4/m) or orthorhombic (sp. gr. Fmmm), and at x = 1.6 the symmetry becomes again tetragonal (sp. gr. I4/m). The values of the Curie temperature and microstrain increase with an increase in the strontium content.« less

  1. Raman spectroscopic studies of defect structures and phase transition in hyper-stoichiometric UO(2+x).

    PubMed

    He, Heming; Shoesmith, David

    2010-07-28

    A method to determine the defect structures in hyper-stoichiometric UO(2+x) using a combination of XRD and Raman spectroscopy has been developed. A sequence of phase transitions, from cubic to tetragonal symmetry, occurs with increasing degree of non-stoichiometry. This sequence proceeds from a cubic phase through an intermediate t''-type tetragonal (axial ratio c/a = 1) phase to a final t-type tetragonal (c/a not = 1) phase. Four distinct structural defect regions can be identified in the stoichiometry range, UO(2) to U(3)O(7): (i) a random point defect structure (x (in UO(2+x)) < or = 0.05); (ii) a non-stoichiometry region (0.05 < or = x < or = 0.15) over which point defects are gradually eliminated and replaced by the Willis 2:2:2 cluster; (iii) a mixture of Willis and cuboctahedral clusters (0.15 < or = x < or = 0.23); (iv) the cuboctahedral cluster (x > or = 0.23). The geometry and steric arrangement of these defects is primarily determined by the concentration of the excess-oxygen interstitials.

  2. Hybrid-exchange density-functional theory study of the electronic structure of MnV2O4 : Exotic orbital ordering in the cubic structure

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    2015-05-01

    The electronic structures of cubic and tetragonal MnV2O4 have been studied using hybrid-exchange density-functional theory. The computed electronic structure of the tetragonal phase shows an antiferro-orbital ordering on V sites and a ferrimagnetic ground state (the spins on V and Mn are antialigned). These results are in good agreement with the previous theoretical result obtained from the local-density approximation + U methods [S. Sarkar et al., Phys. Rev. Lett. 102, 216405 (2009), 10.1103/PhysRevLett.102.216405]. Moreover, the electronic structure, especially the projected density of states of the cubic phase, has been predicted with good agreement with the recent soft x-ray spectroscopy experiment. Similar to the tetragonal phase, the spins on V and Mn in the cubic structure favor a ferrimagnetic configuration. Most interesting is that the computed charge densities of the spin-carrying orbitals on V in the cubic phase show an exotic orbital ordering, i.e., a ferro-orbital ordering along [110] but an antiferro-orbital ordering along [1 ¯10 ] .

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berastegui, P.; Hull, S., E-mail: stephen.hull@stfc.ac.u; Eriksson, S.G.

    The compound CsSn{sub 2}F{sub 5} has been investigated over the temperature range from ambient to 545 K using differential scanning calorimetry, impedance spectroscopy and neutron powder diffraction methods. A first-order phase transition is observed from DSC measurements at 510(2) K, to a phase possessing a high ionic conductivity ({sigma}{approx}2.5x10{sup -2} {Omega}{sup -1} cm{sup -1} at 520 K). The crystal structure of the high temperature superionic phase (labelled {alpha}) has been determined to be tetragonal (space group I4/mmm, a=4.2606(10) A, c=19.739(5) A and Z=2) in which the cations form layers perpendicular to the [001] direction, with a stacking sequence CsSnSnCsSnSn... Allmore » the anions are located in two partially occupied sites in the gap between the Cs and Sn layers, whilst the space between the Sn cations is empty, due to the orientation of the lone-pair electrons associated with the Sn{sup 2+}. The structure of {alpha}-CsSn{sub 2}F{sub 5} is discussed in relation to two other layered F{sup -} conducting superionic phases containing Sn{sup 2+} cations, {alpha}-RbSn{sub 2}F{sub 5} and {alpha}-PbSnF{sub 4} and, to facilitate this comparison, an improved structural characterisation of the former is also presented. The wider issue of the role of lone-pair cations such as Sn{sup 2+} in promoting dynamic disorder within an anion substructure is also briefly addressed. - Graphical abstract: CsSn{sub 2}F{sub 5} is shown to undergo a first order phase transition at 510(2) K to a superionic phase in which the specific electronic configuration of the Sn{sup 2+} plays a key role in promoting extensive disorder of the anions.« less

  4. Macromolecular crystallization in microgravity generated by a superconducting magnet.

    PubMed

    Wakayama, N I; Yin, D C; Harata, K; Kiyoshi, T; Fujiwara, M; Tanimoto, Y

    2006-09-01

    About 30% of the protein crystals grown in space yield better X-ray diffraction data than the best crystals grown on the earth. The microgravity environments provided by the application of an upward magnetic force constitute excellent candidates for simulating the microgravity conditions in space. Here, we describe a method to control effective gravity and formation of protein crystals in various levels of effective gravity. Since 2002, the stable and long-time durable microgravity generated by a convenient type of superconducting magnet has been available for protein crystal growth. For the first time, protein crystals, orthorhombic lysozyme, were grown at microgravity on the earth, and it was proved that this microgravity improved the crystal quality effectively and reproducibly. The present method always accompanies a strong magnetic field, and the magnetic field itself seems to improve crystal quality. Microgravity is not always effective for improving crystal quality. When we applied this microgravity to the formation of cubic porcine insulin and tetragonal lysozyme crystals, we observed no dependence of effective gravity on crystal quality. Thus, this kind of test will be useful for selecting promising proteins prior to the space experiments. Finally, the microgravity generated by the magnet is compared with that in space, considering the cost, the quality of microgravity, experimental convenience, etc., and the future use of this microgravity for macromolecular crystal growth is discussed.

  5. Phase coexistence and domain configuration in Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 single crystal revealed by synchrotron-based X-ray diffractive three-dimensional reciprocal space mapping and piezoresponse force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruixue; Xu, Han; Yang, Bin

    The crystalline phases and domain configuration in the morphotropic phase boundary composition Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 (PMN-0.34PT) single crystal have been investigated by synchrotronbased X-ray 3D Reciprocal Space Mapping (3D-RSM) and Piezoresponse Force Microscopy. The coexistence of tetragonal (T) and monoclinic MC phases in this PMN-0.34PT single crystal is confirmed. The affiliation of each diffraction spot in the 3D-RSM was identified with the assistance of qualitative simulation. Most importantly, the twinning structure between different domains in such a mixed phase PMN-PT crystal is firmly clarified, and the spatial distribution of different twin domains is demonstrated. In addition, the lattice parameters of T andmore » MC phases in PMN-0.34PT single crystal as well as the tilting angles of crystal lattices caused by the interfacial lattice mismatch are determined.« less

  6. Optical properties of quasi-tetragonal BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Chen, P.; Podraza, N. J.; Xu, X. S.; Melville, A.; Vlahos, E.; Gopalan, V.; Ramesh, R.; Schlom, D. G.; Musfeldt, J. L.

    2010-03-01

    Optical transmission spectroscopy and spectroscopic ellipsometry were used to extract the optical properties of an epitaxially grown quasi-tetragonal BiFeO3 thin film in the near infrared to near ultraviolet range. The absorption spectrum is overall blue shifted compared with that of rhombohedral BiFeO3, with an absorption onset near 2.25 eV, a direct 3.1 eV band gap, and charge transfer excitations that are ˜0.4 eV higher than those of the rhombohedral counterpart. We interpret these results in terms of structural strain and local symmetry breaking.

  7. 3D Photonic Crystals Build Up By Self-Organization Of Nanospheres

    DTIC Science & Technology

    2006-05-23

    variance for simple tetragonal Vst , of which general form is defined in Equation (5), could be an important parameter affecting band structure, and it is...plotted along with gap size both as a function of lattice parameter ratio c/a in Figure 2. Apparently, the inverse of variance, i.e. 1/ Vst , shows a...possible. 0.8 1.0 1.2 1.4 1.6 1.8 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 gap size (%) 1/ Vst c/a of simple tetragonal g ap s iz e (% ) 0.85 0.86

  8. Comment on "An experimental study of symmetry lowering of analcime"

    NASA Astrophysics Data System (ADS)

    Nespolo, Massimo

    2018-04-01

    In a recent article (Phys Chem Minerals. https://doi.org/10.1007/s00269-017-0922-1, 2018), analcime hydrothermally synthesized from a gel and then reheated was reported to have undergone a loss of symmetry to Ibca. We show that the reheated samples, reported as different, are identical to each other and actually tetragonal. The fact that the tetragonal axis was oriented along the a or b vector in the two reheated samples instead of the c vector as in the conventional setting seems to have been the cause of the misinterpretation of the diffraction pattern.

  9. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia.

    PubMed

    Qian, Mengke; Lu, Zhicen; Chen, Chen; Zhang, Huaiqin; Xie, Haifeng

    Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogenphosphate (MDP) conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM)/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH) 2 , nano-MgO, and nano-Zr(OH) 4 . A shear bond strength (SBS) test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were -583.892 (NaOH), -569.048 [Ca(OH) 2 ], -547.393 (MgO), and -530.279 kJ/mol [Zr(OH) 4 ]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH) 2 > MgO > Zr(OH) 4 . Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH) 4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH) 4 or -MgO coatings prior to conditioning with MDP-containing primers may potentially improve resin bonding of zirconia in the clinic.

  10. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia

    PubMed Central

    Qian, Mengke; Lu, Zhicen; Chen, Chen; Zhang, Huaiqin; Xie, Haifeng

    2016-01-01

    Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogenphosphate (MDP) conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM)/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH)2, nano-MgO, and nano-Zr(OH)4. A shear bond strength (SBS) test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were −583.892 (NaOH), −569.048 [Ca(OH)2], −547.393 (MgO), and −530.279 kJ/mol [Zr(OH)4]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH)2 > MgO > Zr(OH)4. Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH)4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH)4 or -MgO coatings prior to conditioning with MDP-containing primers may potentially improve resin bonding of zirconia in the clinic. PMID:27785013

  11. A{sub 5}RE{sub 4}X[TO{sub 4}]{sub 4} crystal growth: Fluoride flux synthesis of Na{sub 5}Ln{sub 4}F[GeO{sub 4}]{sub 4} (Ln=Pr, Nd), the first quaternary germanate oxyfluorides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latshaw, Allison M.; Wilkins, Branford O.; Morrison, Gregory

    Crystals of Na{sub 5}Pr{sub 4}F[GeO{sub 4}]{sub 4} and Na{sub 5}Nd{sub 4}F[GeO{sub 4}]{sub 4} were synthesized using a eutectic sodium fluoride, sodium chloride flux. Both compounds crystallize in the tetragonal space group I-4 with lattice parameters of a=12.1173(4) Å and c=5.6795(2) Å (Pr) and of a=12.0642(17) Å and c=5.6674(11) Å (Nd). The structure of the reported compounds is three-dimensional with face and corner sharing lanthanide polyhedra which edge and corner share with isolated germanium tetrahedra. These novel compositions represent the first example of quaternary germanium containing oxyfluorides. - Graphical abstract: Structural image of the first examples of quaternary germanate oxyfluorides. Displaymore » Omitted - Highlights: • Molten flux growth of crystals of two lanthanide germanate oxyfluorides. • Expansion of the A{sub 5}RE{sub 4}X[TO{sub 4}]{sub 4} family into germanate oxyfluorides. • Synthesis of Na{sub 5}Nd{sub 4}F[GeO{sub 4}]{sub 4} and Na{sub 5}Pr{sub 4}F[GeO{sub 4}]{sub 4}.« less

  12. Purification, Crystallization and Preliminary X-ray Characterization of Prunin-1, a Major Component of the Almond (Prunus dulcis) Allergen Amandin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albillos, Silvia M.; Jin, Tengchuan; Howard, Andrew

    2008-08-04

    The 11S globulins from plant seeds account for a number of major food allergens. Because of the interest in the structural basis underlying the allergenicity of food allergens, we sought to crystallize the main 11S seed storage protein from almond (Prunus dulcis). Prunin-1 (Pru1) was purified from defatted almond flour by water extraction, cryoprecipitation, followed by sequential anion exchange, hydrophobic interaction, and size exclusion chromatography. Single crystals of Pru1 were obtained in a screening with a crystal screen kit, using the hanging-drop vapor diffusion method. Diffraction quality crystals were grown after optimization. The Pru1 crystals diffracted to at least 3.0more » {angstrom} and belong to the tetragonal space group P4{sub 1}22, with unit cell parameters of a = b = 150.912 {angstrom}, c = 165.248 {angstrom}. Self-rotation functions and molecular replacement calculations showed that there are three molecules in the asymmetry unit with water content of 51.41%. The three Pru1 protomers are related by a noncrystallographic 3-fold axis and they form a doughnut-shaped trimer. Two prunin trimers form a homohexamer. Elucidation of prunin structure will allow further characterization of the allergenic features of the 11S protein allergens at the molecular level.« less

  13. Synthesis and characterization of the Cu2ZnSnS4 system for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Sánchez Pinzón, D. L.; Soracá Perez, G. Y.; Gómez Cuaspud, J. A.; López, E. Vera

    2017-01-01

    This paper focuses on the synthesis and characterization of a ceramic material based on the Cu2ZnSnS4 system, through the implementation of a hydrothermal route. For this purpose, we started from nitrate dissolutions in a 1.0mol L-1 concentration, which were mixed and treated in a teflon lined vessel steel at 280°C for 48h. The Physicochemical characterization of the solid was evaluated by means of ultraviolet visible spectroscopy (UV-VIS), X-ray diffraction (XRD), Raman spectroscopy, scanning and transmission electron microscopy (SEM-TEM) and solid state impedance spectroscopy (IS). The initial characterization through UV measurements confirms a Band-gap around 1.46eV obtained by the Kubelka-Munk method, which demonstrates the effectiveness of the synthesis method in the obtaining of a semiconductor material. The XRD results confirm the obtaining of a crystalline material of pure phase with tetragonal geometry and I-42m space group. The preferential crystalline orientation was achieved along (2 2 0) facet, with crystallite sizes of nanometric order (6.0nm). The morphological aspects evaluated by means electron microscopy, confirmed the homogeneity of the material, showing specifically a series of textural and surface properties of relevant importance. Finally, the electrical characterizations allow to validate the semiconductor behaviour of CZTS system for development of photovoltaic technologies.

  14. Crystallization and preliminary X-ray crystallographic analysis of the small subunit of the heterodimeric laccase POXA3b from Pleurotus ostreatus

    PubMed Central

    Ferraroni, Marta; Scozzafava, Andrea; Ullah, Sana; Tron, Thierry; Piscitelli, Alessandra; Sannia, Giovanni

    2014-01-01

    Laccases are multicopper oxidases of great biotechnological potential. While laccases are generally monomeric glycoproteins, the white-rot fungus Pleurotus ostreatus produces two closely related heterodimeric isoenzymes composed of a large subunit, homologous to the other fungal laccases, and a small subunit. The sequence of the small subunit does not show significant homology to any other protein or domain of known function and consequently its function is unknown. The highest similarity to proteins of known structure is to a putative enoyl-CoA hydratase/isomerase from Acinetobacter baumannii, which shows an identity of 27.8%. Diffraction-quality crystals of the small subunit of the heterodimeric laccase POXA3b (sPOXA3b) from P. ostreatus were obtained using the sitting-drop vapour-diffusion method at 294 K from a solution consisting of 1.8 M sodium formate, 0.1 M Tris–HCl pH 8.5. The crystals belonged to the tetragonal space group P41212 or P43212, with unit-cell parameters a = 126.6, c = 53.9 Å. The asymmetric unit contains two molecules related by a noncrystallographic twofold axis. A complete data set extending to a maximum resolution of 2.5 Å was collected at 100 K using a wavelength of 1.140 Å. PMID:24419623

  15. Synthesis and structure of a new layered oxyfluoride Sr{sub 2}ScO{sub 3}F with photocatalytic property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yongkun; Tang, Kaibin, E-mail: kbtang@ustc.edu.cn; Zhu, Baichuan

    2015-05-15

    Highlights: • A new oxyfluoride compound Sr{sub 2}ScO{sub 3}F was prepared by a solid state route. • The structure of this compound was determined by GSAS program based on XRD data. • The photocatalytic property was investigated under UV irradiation. - Abstract: A new Ruddlesden–Popper type scandium oxyfluoride, Sr{sub 2}ScO{sub 3}F, was synthesized by a conventional solid state reaction route. The detailed structure of Sr{sub 2}ScO{sub 3}F was investigated using X-ray diffraction (XRD) and selected area electron diffraction (SAED). The disorder distribution pattern of fluorine anions was determined by the {sup 19}F nuclear magnetic resonance (NMR) spectrum. The compound crystallizesmore » in a K{sub 2}NiF{sub 4}-type tetragonal structure (space group I4/mmm) with O/F anions disordered over the apical sites of the perovskite-type Sc(O,F){sub 6} octahedron layers interleaved with strontium cations. Ultraviolet–visible (UV–vis) diffuse reflection spectrum of the prepared Sr{sub 2}ScO{sub 3}F indicates that it has an absorption in the UV–vis region. The photocatalytic activity of Sr{sub 2}ScO{sub 3}F was further investigated, showing an effective photodegradation of Rhodamine-B (RB) within 2 h under UV light irradiation.« less

  16. Flux free single crystal growth and characterization of FeTe1-xSx (x=0.00 and 0.10) crystals

    NASA Astrophysics Data System (ADS)

    Maheshwari, P. K.; Awana, V. P. S.

    2018-05-01

    We report synthesis of S doped FeTe1-xSx (x = 0.00 and 0.10) single crystals using flux free method via solid state reaction. Single crystal XRD patterns of FeTe1-xSx (x = 0.00 and 0.10) confirm the single crystalline property, as the crystals are grown in (00l) plane only. Powder XRD result of FeTe1-xSx (x = 0.00 and 0.10) crystals show that crystalline in tetragonal structure having P4/nmm space group. Rietveld refinement results show that both a and c lattice parameters decreases with S doping of 10% at Te site in FeTe1-xSx. Detailed scanning electron microscopy (SEM) image of FeTe0.90S0.10 shows that the growth of crystal is in slab-like morphology. Electrical resistivity measurement results onset confirm the superconductivity in S doped 10% sample at Te site and superconducting transition Tconset occurs at 9.5K and Tcoffset(ρ=0) occurs at 6.5K. ρ-T measurement has been performed under various magnetic field up to 12 Tesla down to 2K. Upper critical field Hc2(0), for x=0.10, which comes around 70Tesla, 60Tesla and 45Tesla of normal resistivity criterion ρn = 90%, 50% and 10% criterion respectively.

  17. Crystal structure of bis-(2-{[1,1-bis-(hy-droxy-meth-yl)-2-oxidoeth-yl]imino-meth-yl}-6-meth-oxy-phenolato)manganese(IV) 0.39-hydrate.

    PubMed

    Buvaylo, Elena A; Vassilyeva, Olga Yu; Skelton, Brian W

    2015-11-01

    The title compound, [Mn(C12H15NO5)2]·0.39H2O, is a 0.39 hydrate of the isostructural complex bis-(2-{[1,1-bis-(hy-droxy-meth-yl)-2-oxidoeth-yl]imino-meth-yl}-6-meth-oxy-phenolato)manganese(IV) that has previously been reported by Back, Oliveira, Canabarro & Iglesias [Z. Anorg. Allg. Chem. (2015), 641, 941-947], based on room-temperature data. The current structure that was determined at 100 K reveals a lengthening of the c cell parameter compared with the published one due to the incorporation of the partial occupancy water mol-ecule. The title compound crystallizes in the tetra-gonal chiral space group P41212; the neutral [Mn(IV)(C12H15NO5)2] mol-ecule is situated on a crystallographic C 2 axis. The overall geometry about the central manganese ion is octa-hedral with an N2O4 core; each ligand acts as a meridional ONO donor. The coordination environment of Mn(IV) at 100 K displays a difference in one of the two Mn-O bond lengths, compared with the room-temperature structure. In the crystal, the neutral mol-ecules are stacked in a helical fashion along the c-axis direction.

  18. Structure and physical properties of EuTa{sub 2}O{sub 6} tungsten bronze polymorph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolodiazhnyi, T., E-mail: kolodiazhnyi.taras@nims.go.jp; Sakurai, H.; Vasylkiv, O.

    A tetragonal tungsten bronze (TTB) polymorph of EuTa{sub 2}O{sub 6} was prepared and analyzed. EuTa{sub 2}O{sub 6} crystallizes in the centrosymmetric Pnam space group (with unit cell: a = 12.3693, b = 12.4254, and c = 7.7228 Å) isomorphous with orthorhombic β-SrTa{sub 2}O{sub 6}. In contrast to early reports, we see no evidence of deviation from paramagnetic Curie-Weiss behavior among the Eu{sup 2+} 4f{sup 7}spins in EuTa{sub 2}O{sub 6} down to 2 K. Dielectric constant shows a broad peak at ca. 50 K with dielectric dispersion resembling diffuse phase transition. The relaxation time, however, follows a simple (non-freezing) thermally activated process with an activation energy of 92 meV and anmore » attempt frequency of f{sub 0} = 5.79 × 10{sup 12 }Hz. A thermal conductivity of EuTa{sub 2}O{sub 6} shows a low-temperature (T ≈ 30 K) “plateau” region reminiscent of a glass-like behaviour in Nb-based TTB compounds. This behaviour can be attributed to the loosely bound Eu{sup 2+} ions occupying large tricapped trigonal prismatic sites in the EuTa{sub 2}O{sub 6} structure.« less

  19. Preparation of polycrystalline FeTe1- x S x ( x = 0.00-0.30) via solid-state reaction method at ambient pressure

    NASA Astrophysics Data System (ADS)

    Lim, Edmund H. H.; Liew, Josephine Y. C.; Awang Kechik, M. M.; Halim, S. A.; Chen, S. K.; Tan, K. B.; Qi, X.

    2017-06-01

    Polycrystalline samples with nominal composition FeTe1- x S x ( x = 0.00-0.30) were synthesized via solid state reaction method with intermittent grinding in argon gas flow. X-ray diffraction (XRD) patterns revealed the tetragonal structure (space group P4/nmm) of the samples with the presence of impurities Fe3O4 and FeTe2. By substitution with S, the a and c lattice parameters shrink probably due to the smaller ionic radius of S2- compared to Te2-. Scanning electron microscopy images showed that the samples developed plate-like grains with increasing S substitution. Substitution of Te with S suppresses the structural transition of the parent compound FeTe as shown by both the temperature dependence of resistance and magnetic moment measurements. All of the S-substituted samples showed a rapid drop of resistance at around 9-10 K but zero resistance down to 4 K was not observed. In addition, negative magnetic moment corresponds to diamagnetism was detected in the samples for x = 0.25 and 0.30 suggesting the coexistence of magnetic and superconducting phase in these samples. The magnetization hysteresis loops measured at room temperature showed ferromagnetic behavior for the pure and S substituted samples. However, the magnetization, rentivity and coercivity decreased with S content.

  20. Overexpression, purification, crystallization and preliminary structural studies of p-coumaric acid decarboxylase from Lactobacillus plantarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez, Héctor; Rivas, Blanca de las; Muñoz, Rosario

    2007-04-01

    The enzyme p-coumaric acid decarboxylase (PDC) from L. plantarum has been recombinantly expressed, purified and crystallized. The structure has been solved at 2.04 Å resolution by the molecular-replacement method. The substrate-inducible p-coumaric acid decarboxylase (PDC) from Lactobacillus plantarum has been overexpressed in Escherichia coli, purified and confirmed to possess decarboxylase activity. The recombinant His{sub 6}-tagged enzyme was crystallized using the hanging-drop vapour-diffusion method from a solution containing 20%(w/v) PEG 4000, 12%(w/v) 2-propanol, 0.2 M sodium acetate, 0.1 M Tris–HCl pH 8.0 with 0.1 M barium chloride as an additive. Diffraction data were collected in-house to 2.04 Å resolution. Crystals belongedmore » to the tetragonal space group P4{sub 3}, with unit-cell parameters a = b = 43.15, c = 231.86 Å. The estimated Matthews coefficient was 2.36 Å{sup 3} Da{sup −1}, corresponding to 48% solvent content, which is consistent with the presence of two protein molecules in the asymmetric unit. The structure of PDC has been determined by the molecular-replacement method. Currently, the structure of PDC complexed with substrate analogues is in progress, with the aim of elucidating the structural basis of the catalytic mechanism.« less

  1. Structural, Optical and Impedance Spectroscopic Characterizations of Nanocrystalline A2Ti2Zr5O16 (A = Mg, Ca, Ba and Sr)

    NASA Astrophysics Data System (ADS)

    Sandeep, K.; Thomas, Jijimon K.; Solomon, Sam

    2018-04-01

    A nanocrystalline A2Ti2Zr5O16 (A = Mg, Ca, Ba and Sr) system has been synthesized by a modified combustion technique. The cation-deficient calzirtite (Ca2Ti2Zr5O16) is found to be a tetragonal structure with the space group I4(1)/acd. The average size of the particle from the transmission electron microscopy image is estimated to be 23.30 nm and 20.16 nm for Ca2Ti2Zr5O16 and Ba2Ti2Zr5O16, respectively. The optical bandgap calculated using a Tauc plot is between 3.01 eV and 3.46 eV. Raman and Fourier transform infrared spectroscopy (FTIR) studies were carried out to confirm the phase purity of the sample. The scanning electron microscopy (SEM) image of a Ca2Ti2Zr5O16 sample sintered at 1360°C for 3 h shows minimum porosity with 96% of the theoretical density. The frequency-dependent dielectric study shows that the dielectric constant is maximized at low frequencies and decreases as the frequency increases. The Cole-Cole plot reveals that the material exhibits conduction due to the contributions of grain, grain boundary and electrode effects. The photoluminescence spectra of the samples were recorded and the transitions causing emission have been identified.

  2. New structure type in the mixed-valent compound YbCu4Ga8.

    PubMed

    Subbarao, Udumula; Gutmann, Matthias J; Peter, Sebastian C

    2013-02-18

    The new compound YbCu(4)Ga(8) was obtained as large single crystals in high yield from reactions run in liquid gallium. Preliminary investigations suggest that YbCu(4)Ga(8) crystallizes in the CeMn(4)Al(8) structure type, tetragonal space group I4/mmm, and lattice constants are a = b = 8.6529(4) Å and c = 5.3976(11) Å. However, a detailed single-crystal XRD revealed a tripling of the c axis and crystallizing in a new structure type with lattice constants of a = b = 8.6529(4) Å and c = 15.465(1) Å. The structural model was further confirmed by neutron diffraction measurements on high-quality single crystal. The crystal structure of YbCu(4)Ga(8) is composed of pseudo-Frank-Kasper cages occupying one ytterbium atom in each ring which are shared through the corner along the ab plane, resulting in a three-dimensional network. The magnetic susceptibility of YbCu(4)Ga(8) investigated in the temperature range 2-300 K showed Curie-Weiss law behavior above 100 K, and the experimentally measured magnetic moment indicates mixed-valent ytterbium. Electrical resistivity measurements show the metallic nature of the compound. At low temperatures, variation of ρ as a function of T indicates a possible Fermi-liquid state at low temperatures.

  3. Symmetry and defects in rhombohedral single-crystalline Na0.5Bi0.5TiO3

    NASA Astrophysics Data System (ADS)

    Beanland, Richard; Thomas, Pam A.

    2014-05-01

    Recent work has indicated that the symmetry of the lead-free piezoelectric perovskite Na0.5Bi0.5TiO3 can be changed from monoclinic to rhombohedral through the application of an electric field, which may have implications for the study and design of piezoelectric materials close to a morphotropic phase boundary. We have examined high-quality, single-crystal Na0.5Bi0.5TiO3 using transmission electron microscopy and have used digital electron diffraction to observe the symmetry of defect-free regions of material on length scales of a few nanometers. This unequivocally demonstrates that the material is rhombohedral with space group R3c on this length scale. We find that a model that allows disordered displacements of Bi atoms from their nominal sites in the R3c symmetry, while retaining this symmetry on average, gives a very significant improvement in fit to simulations. We use conventional transmission electron microscopy to enumerate the different types of defects that are observed in other regions of the crystal and find a complex microstructure of antiphase boundaries, domain walls, and tetragonal platelets. Their interaction leads to the formation of very high densities of nanotwins. We show that these are expected to have a variable monoclinic Cc symmetry that is driven by the constraint of continuity of the crystal across a domain wall.

  4. Magnetism of the 35 K superconductor CsEuFe4As4

    NASA Astrophysics Data System (ADS)

    Albedah, Mohammed A.; Nejadsattari, Farshad; Stadnik, Zbigniew M.; Liu, Yi; Cao, Guang-Han

    2018-04-01

    The results of ab initio hyperfine-interaction parameters calculations, and of x-ray diffraction and 57Fe and 151Eu Mössbauer spectroscopy study of the new 35 K superconductor CsEuFe4As4 are reported. The superconductor crystallizes in the tetragonal space group P4/mmm with the lattice parameters a = 3.8956(1) Å and c = 13.6628(5) Å. It is demonstrated unequivocally that there is no magnetic order of the Fe magnetic moments down to 2.1 K and that the ferromagnetic order is associated with the Eu magnetic moments. The Curie temperature TC = 15.97(8) K determined from the temperature dependence of the hyperfine magnetic field at 151Eu nuclei is shown to be compatible with the temperature dependence of the transferred hyperfine magnetic field at 57Fe nuclei that is induced by the ferromagnetically ordered Eu sublattice. The Eu magnetic moments are shown to be perpendicular to the crystallographic c-axis. The temperature dependence of the principal component of the electric field gradient tensor, both at Fe and Eu sites, is well described by a T 3/2 power-law relation. Good agreement between the calculated and measured hyperfine-interaction parameters is observed. The Debye temperature of CsEuFe4As4 is found to be 295(3) K.

  5. Mössbauer spectroscopy measurements on the 35.5 K superconductor Rb1 -δEuFe4As4

    NASA Astrophysics Data System (ADS)

    Albedah, Mohammed A.; Nejadsattari, Farshad; Stadnik, Zbigniew M.; Liu, Yi; Cao, Guang-Han

    2018-04-01

    The results of x-ray diffraction and 57Fe and 151Eu Mössbauer spectroscopy measurements, supplemented with ab initio hyperfine-interaction parameter calculations, on the new 35.5 K superconductor Rb1 -δEuFe4As4 are presented. The superconductor crystallizes in the tetragonal space group P 4 /m m m with the lattice parameters a =3.8849 (1 ) Å and c =13.3370 (3 ) Å. It is shown that there is no magnetic order of the Fe magnetic moments down to 2.1 K and that the ferromagnetic order is associated solely with the Eu magnetic moments. The Curie temperature TC=16.54 (8 ) K is determined from the temperature dependence of both the hyperfine magnetic field at 151Eu nuclei and the transferred hyperfine magnetic field at 57Fe nuclei that is induced by the ferromagnetically ordered Eu sublattice. The Eu magnetic moments are demonstrated to be perpendicular to the crystallographic c axis. The temperature dependence of the principal component of the electric field gradient tensor, at both Fe and Eu sites, is well described by a T3 /2 power-law relation. Good agreement between the calculated and measured hyperfine-interaction parameters is observed. The Debye temperature of Rb1 -δEuFe4As4 is found to be 391(8) K.

  6. Preparation, electronic structure, and chemical bonding of lead-free (1 - x)(K0.5Bi0.5)TiO3- xBaTiO3 solid solution

    NASA Astrophysics Data System (ADS)

    Sasikumar, S.; Saravanan, R.; Saravanakumar, S.; Robert, M. Charles

    2018-01-01

    Polycrystalline lead-free (1 - x)(K0.5Bi0.5)TiO3- xBaTiO3, ((1 - x)KBT- xBT) ( x = 0.00, 0.08, 0.12) ceramics were synthesized via solid-state reaction method. The powder X-ray diffraction (PXRD) and structural refinement results confirm that a single-phase tetragonal structure with space group P4mm. Charge density distribution inside the unit cell of (1 - x)KBT- xBT was investigated by the maximum entropy method. Charge density analysis reveals the reduction in ionic nature along K/Bi-O bond and enhancement of covalent nature along Ti-O bond with the addition of BaTiO3. The charge density distribution studies done using maximum entropy method for (1 - x)KBT- xBT have not been done so far. The surface morphology study was done using scanning electron microscopy (SEM). Energy dispersive X-rays spectra (EDS) were used to investigate the elemental compositions present in the system. The dielectric constant and loss tangent were studied as a function of frequency. The dielectric constant and loss were decreased with increase of frequency. Room temperature dielectric constant ( ɛ) and loss (tan δ) were measured for x = 0.00 about 511 and 0.51, respectively, at a frequency of 10 kHz.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowley, S.; Okumura, N; Lord, S

    'A:a' knob-hole interactions and D:D interfacial interactions are important for fibrin polymerization. Previous studies with recombinant ?N308K fibrinogen, a substitution at the D:D interface, showed impaired polymerization. We examined the molecular basis for this loss of function by solving the crystal structure of ?N308K fragment D. In contrast to previous fragment D crystals, the ?N308K crystals belonged to a tetragonal space group with an unusually long unit cell (a = b = 95 Angstroms, c = 448.3 Angstroms). Alignment of the normal and ?N308K structures showed the global structure of the variant was not changed and the knob 'A' peptidemore » GPRP was bound as usual to hole 'a'. The substitution introduced an elongated positively charged patch in the D:D region. The structure showed novel, symmetric D:D crystal contacts between ?N308K molecules, indicating the normal asymmetric D:D interface in fibrin would be unstable in this variant. We examined GPRP binding to ?N308K in solution by plasmin protection assay. The results showed weaker peptide binding, suggesting that 'A:a' interactions were altered. We examined fibrin network structures by scanning electron microscopy and found the variant fibers were thicker and more heterogeneous than normal fibers. Considered together, our structural and biochemical studies indicate both 'A:a' and D:D interactions are weaker. We conclude that stable protofibrils cannot assemble from ?N308K monomers, leading to impaired polymerization.« less

  8. Magnetic structure of the ferromagnetic new ternary silicide Nd5CoSi2.

    PubMed

    Mayer, C; Gaudin, E; Gorsse, S; Porcher, F; André, G; Chevalier, B

    2012-04-04

    Nd(5)CoSi(2) was obtained from the elements by arc-melting followed by annealing at 883 K. Its investigation by single-crystal x-ray and neutron powder diffraction shows that this ternary silicide crystallizes as Nd(5)Si(3) in a tetragonal structure deriving from the Cr(5)B(3)-type (I4/mcm space group; a = 7.7472(2) and c = 13.5981(5) Å as unit cell parameters). The structural refinements confirm the mixed occupancy on the 8h site between Si and Co atoms, as already observed for Gd(5)CoSi(2). Magnetization and specific heat measurements reveal a ferromagnetic behavior below T(C) = 55 K for Nd(5)CoSi(2). This magnetic ordering is further evidenced by neutron powder diffraction investigation revealing between 1.8 K and T(C) a canted ferromagnetic structure in the direction of the c-axis described by a propagation vector k = (0 0 0). At 1.8 K, the two Nd(3+) ions carry ordered magnetic moments equal respectively to 1.67(7) and 2.37(7) μ(B) for Nd1 and Nd2; these two moments exhibit a canting angle of θ = 4.3(6)°. This magnetic structure presents some similarities with that reported for Nd(5)Si(3). © 2012 IOP Publishing Ltd

  9. Superconducting and magneto-transport properties of BiS{sub 2} based superconductor PrO{sub 1-x}F{sub x}BiS{sub 2} (x = 0 to 0.9)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Rajveer; Kishan, Hari; Awana, V. P. S., E-mail: awana@mail.npindia.org

    We report superconducting properties of PrO{sub 1-x}F{sub x}BiS{sub 2} compounds, synthesized by the vacuum encapsulation technique. The synthesized PrO{sub 1-x}F{sub x}BiS{sub 2} (x = 0.1, 0.3, 0.5, 0.7, and 0.9) samples are crystallized in a tetragonal P4/nmm space group. Both transport and DC magnetic susceptibility measurements showed bulk superconductivity below 4 K. The maximum T{sub c} is obtained for x = 0.7 sample. Under applied magnetic field, both T{sub c}{sup onset} and T{sub c} (ρ = 0) decrease to lower temperatures. We estimated highest upper critical field [H{sub c2}(0)] for PrO{sub 0.3}F{sub 0.7}BiS{sub 2} sample to be above 4 T (Tesla). The thermally activated flux flow activation energymore » (U{sub 0}) is estimated 54.63 meV in 0.05 T field for PrO{sub 0.3}F{sub 0.7}BiS{sub 2} sample. Hall measurement results showed that electron charge carriers are the dominating ones in these compounds. Thermoelectric effects (Thermal conductivity and Seebeck coefficient) data suggest strong electron-electron correlations in this material.« less

  10. Ternary Bismuthide SrPtBi 2: Computation and Experiment in Synergism to Explore Solid-State Materials

    DOE PAGES

    Gui, Xin; Zhao, Xin; Sobczak, Zuzanna; ...

    2018-02-14

    A combination of theoretical calculation and the experimental synthesis to explore the new ternary compound is demonstrated in the Sr–Pt–Bi system. Because Pt–Bi is considered as a new critical charge-transfer pair for superconductivity, it inspired us to investigate the Sr–Pt–Bi system. With a thorough calculation of all the known stable/metastable compounds in the Sr–Pt–Bi system and crystal structure predictions, the thermodynamic stability of hypothetical stoichiometry, SrPtBi2, is determined. Following the high-temperature synthesis and crystallographic analysis, the first ternary bismuthide in Sr–Pt–Bi, SrPtBi2 was prepared, and the stoichiometry was confirmed experimentally. SrPtBi 2 crystallizes in the space group Pnma (S.G. 62,more » Pearson Symbol oP48), which matches well with theoretical prediction using an adaptive genetic algorithm. Using first-principles calculations, we demonstrate that the orthorhombic structure has lower formation energies than other 112 structure types, such as tetragonal BaMnBi 2 (CuSmP 2) and LaAuBi 2 (CuHfSi 2) structure types. The bonding analysis indicates that the Pt–Bi interactions play a critical role in structural stability. The physical property measurements show the metallic properties at the low temperature, which agrees with the electronic structure assessment.« less

  11. Effect of Cs content on K1-xCsxAlSi2O6 ceramic solidification forms

    NASA Astrophysics Data System (ADS)

    Li, Jun; Duan, Jianxia; Hou, Li; Lu, Zhongyuan

    2018-02-01

    K1-xCsx-geopolymers with chemical compositions of about K1-xCsxAlSi2O6·nH2O were used as precursors to prepare K1-xCsxAlSi2O6 ceramic solidification forms through the thermal treatment method. The structures of K1-xCsxAlSi2O6 ceramic solidification forms obtained at different sintering temperatures have been characterized by X-ray diffraction, scanning electron microscopy and fourier transform infrared spectroscopy. It has been observed that the crystallization temperature and phase of K1-xCsxAlSi2O6 ceramic were significantly influenced by the Cs content. An increase in the Cs content resulted in a decrease in the crystallization temperature of the K1-xCsxAlSi2O6 cubic phase. K1-xCsxAlSi2O6 ceramic obtained at 850 °C was lecucite cubic or pollucite cubic phase when x ≥ 0.2, and the lattice parameters of cubic phase increased with increasing of Cs content. However, leucite tetragonal phase formed at elevated heating temperature (1100 °C and 1300 °C) except for the case x = 0.3, 0.4, 0.5 and 1. The c/a ratio of leucite tetragonal phase obtained at 1100 °C and 1300 °C was much more closed to 1 with Cs content increased, which made it hard to be indexed between cubic and tetragonal phase. In this case, leucite tetragonal phase could also be considered as pseudo-cubic phase. Additionally, the product consistency test leaching results showed that K1-xCsxAlSi2O6 ceramics possessed superior chemical durability.

  12. Atomistic simulation of cubic and tetragonal phases of U-Mo alloy: Structure and thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Starikov, S. V.; Kolotova, L. N.; Kuksin, A. Yu.; Smirnova, D. E.; Tseplyaev, V. I.

    2018-02-01

    We studied structure and thermodynamic properties of cubic and tetragonal phases of pure uranium and U-Mo alloys using atomistic simulations: molecular dynamics and density functional theory. The main attention was paid to the metastable γ0 -phase that is formed in U-Mo alloys at low temperature. Structure of γ0 -phase is similar to body-centered tetragonal (bct) lattice with displacement of a central atom in the basic cell along [ 001 ] direction. Such displacements have opposite orientations for part of the neighbouring basic cells. In this case, such ordering of the displacements can be designated as antiferro-displacement. Formation of such complex structure may be interpreted through forming of short U-U bonds. At heating, the tetragonal structure transforms into cubic γs -phase, still showing ordering of central atom displacements. With rise in temperature, γs -phase transforms to γ-phase with a quasi body-centered cubic (q-bcc) lattice. The local positions of uranium atoms in γ-phase correspond to γs -phase, however, orientations of the central atom displacements become disordered. Transition from γ0 to γ can be considered as antiferro-to paraelastic transition of order-disorder type. This approach to the structure description of uranium alloy allows to explain a number of unusual features found in the experiments: anisotropy of lattice at low temperature; remarkably high self-diffusion mobility in γ-phase; decreasing of electrical resistivity at heating for some alloys. In addition, important part of this work is the development of new interatomic potential for U-Mo system made with taking into account details of studied structures.

  13. Substrate-dependent structural and CO sensing properties of LaCoO3 epitaxial films

    NASA Astrophysics Data System (ADS)

    Liu, Haifeng; Sun, Hongjuan; Xie, Ruishi; Zhang, Xingquan; Zheng, Kui; Peng, Tongjiang; Wu, Xiaoyu; Zhang, Yanping

    2018-06-01

    LaCoO3 thin films were grown on different (0 0 1) oriented LaAlO3, SrTiO3 and (LaAlO3)0.3(Sr2AlTaO6)0.7 by the polymer assisted deposition method, respectively. All the LaCoO3 thin films are in epitaxial growth on these substrates, with tetragonal distortion of CoO6 octahedrons. Due to different in-plane lattice mismatch, the LaCoO3 film on LaAlO3 has the largest tetragonal distortion of CoO6 octahedrons while the film grown on (LaAlO3)0.3(Sr2AlTaO6)0.7 has the smallest tetragonal distortion. The relative contents of the surface absorbed oxygen species are found to increase for the LaCoO3 epitaxial films grown on (0 0 1) oriented (LaAlO3)0.3(Sr2AlTaO6)0.7, SrTiO3 and LaAlO3 substrates, sequentially. The film sensors exhibit good CO sensing properties at 150 °C, and the LaCoO3 film on LaAlO3 shows the highest response but the film on (LaAlO3)0.3(Sr2AlTaO6)0.7 shows the lowest. It reveals that the larger degree of Jahn-Teller-like tetragonal distortion of CoO6 octahedrons may greatly improve the surface absorbing and catalytic abilities, corresponding to more excellent CO sensing performance. The present study suggests that the formation of epitaxial films is an efficient methodology for controlling the octahedral distortion and thereby improving the gas sensing performance of perovskite transition metal oxides.

  14. Local conductivity enhancement due to the tetragonal domain structure in LaAlO3- SrTiO3 heterointerfaces

    NASA Astrophysics Data System (ADS)

    Moler, Kathryn

    2014-03-01

    Progress in the difficult task of growing oxide heterostructures has enabled the field of oxide interface engineering. The ability to control materials properties through interface engineering is demonstrated by the appearance of conductivity at the interface of certain insulators, most famously the {001}interface of the band insulators LaAlO3 (LAO) and TiO2-terminated SrTiO3 (STO). The prevailing explanation of conduction at the interface is electronic reconstruction due to a `polar catastrophe' in which charge migrates from the top LAO layer to the interface. Transport and other measurements in this system display a plethora of diverse physical phenomena. To better understand the interface conductivity, we used scanning superconducting quantum interference device (SQUID) microscopy to image the magnetic field locally generated by current in an interface. At low temperature, we found that the current flowed in conductive narrow paths oriented along the crystallographic axes, embedded in a less conductive background. The configuration of these paths changed upon thermal cycling above the STO cubic to tetragonal structural transition temperature, implying that the local conductivity is strongly modified by the STO tetragonal domain structure. In this talk, I will summarize these results and also report on measurements of conductivity and diamagnetism in related materials that firmly establish the influence of the STO tetragonal domains on electronic properties. Coauthors C. Bell, H.K. Sato, M. Hosoda, Y. Xie, Y. Hikita, & H.Y. Hwang (SIMES); R. Jany & C. Richter (Augsburg); C. Woltmann, G. Pfanzelt, & J. Mannhart (MP Stuttgart); B. Kalisky, E.M. Spanton, H. Noad, K.C. Nowack, A. Rosenberg, & J.R. Kirtley.

  15. Expansion of the tetragonal magnetic phase with pressure in the iron arsenide superconductor Ba 1 - x K x Fe 2 As 2

    DOE PAGES

    Hassinger, Elena; Gredat, G.; Valade, F.; ...

    2016-04-01

    In the temperature-concentration phase diagram of most iron-based superconductors, antiferromagnetic order is gradually suppressed to zero at a critical point, and a dome of superconductivity forms around that point. The nature of the magnetic phase and its fluctuations is of fundamental importance for elucidating the pairing mechanism. In Ba 1–xK xFe 2As 2 and Ba 1–xNa xFe 2As 2, it has recently become clear that the usual stripelike magnetic phase, of orthorhombic symmetry, gives way to a second magnetic phase, of tetragonal symmetry, near the critical point, in the range from x = 0.24 to x = 0.28 for Bamore » 1–xK xFe 2As 2. In a prior study, an unidentified phase was discovered for x < 0.24 but under applied pressure, whose onset was detected as a sharp anomaly in the resistivity. Here we report measurements of the electrical resistivity of Ba 1–xK xFe 2As 2 under applied hydrostatic pressures up to 2.75 GPa, for x = 0.22, 0.24, and 0.28. The critical pressure above which the unidentified phase appears is seen to decrease with increasing x and vanish at x = 0.24, thereby linking the pressure-induced phase to the tetragonal magnetic phase observed at ambient pressure. In the temperature-concentration phase diagram of Ba 1–xK xFe 2As 2, we find that pressure greatly expands the tetragonal magnetic phase, while the stripelike phase shrinks. As a result, this reveals that pressure may be a powerful tuning parameter with which to explore the interplay between magnetism and superconductivity in this material.« less

  16. Mechanical properties of metal dihydrides

    DOE PAGES

    Schultz, Peter A.; Snow, Clark S.

    2016-02-04

    First-principles calculations are used to characterize the bulk elastic properties of cubic and tetragonal phase metal dihydrides,more » $$\\text{M}{{\\text{H}}_{2}}$$ {$$\\text{M}$$ = Sc, Y, Ti, Zr, Hf, lanthanides} to gain insight into the mechanical properties that govern the aging behavior of rare-earth di-tritides as the constituent 3H, tritium, decays into 3He. As tritium decays, helium is inserted in the lattice, the helium migrates and collects into bubbles, that then can ultimately create sufficient internal pressure to rupture the material. The elastic properties of the materials are needed to construct effective mesoscale models of the process of bubble growth and fracture. Dihydrides of the scandium column and most of the rare-earths crystalize into a cubic phase, while dihydrides from the next column, Ti, Zr, and Hf, distort instead into the tetragonal phase, indicating incipient instabilities in the phase and potentially significant changes in elastic properties. We report the computed elastic properties of these dihydrides, and also investigate the off-stoichiometric phases as He or vacancies accumulate. As helium builds up in the cubic phase, the shear moduli greatly soften, converting to the tetragonal phase. Conversely, the tetragonal phases convert very quickly to cubic with the removal of H from the lattice, while the cubic phases show little change with removal of H. Finally, the source and magnitude of the numerical and physical uncertainties in the modeling are analyzed and quantified to establish the level of confidence that can be placed in the computational results, and this quantified confidence is used to justify using the results to augment and even supplant experimental measurements.« less

  17. Monoclinic phase transformation and mechanical durability of zirconia ceramic after fatigue and autoclave aging.

    PubMed

    Mota, Yasmine A; Cotes, Caroline; Carvalho, Rodrigo F; Machado, João P B; Leite, Fabíola P P; Souza, Rodrigo O A; Özcan, Mutlu

    2017-10-01

    This study evaluated the influence of two aging procedures on the biaxial flexural strength of yttria-stabilized tetragonal zirconia ceramics. Disc-shaped zirconia specimens and (ZE: E.max ZirCAD, Ivoclar; ZT: Zirkon Translucent, Zirkonzahn) (N = 80) (∅:12 mm; thickness:1.2 mm, ISO 6872) were prepared and randomly divided into four groups (n = 10 per group) according to the aging procedures: C: Control, no aging; M: mechanical cycling (2 × 10 6 cycles/3.8 Hz/200 N); AUT: Aging in autoclave at 134°C, 2 bar for 24 h; AUT + M: Autoclave aging followed by mechanical cycling. After aging, the transformed monoclinic zirconia (%) were evaluated using X-ray diffraction and surface roughness was measured using atomic force microscopy. The average grain size was measured by scanning electron microscopy and the specimens were submitted to biaxial flexural strength testing (1 mm/min, 1000 kgf in water). Data (MPa) were statistically analyzed using 2-way analysis of variance and Tukey's test (α = 0.05). Aging procedures significantly affected (p = 0.000) the flexural strength data but the effect of zirconia type was not significant (p = 0.657). AUT ZT (936.4 ± 120.9 b ) and AUT + M ZE (867.2 ± 49.3 b ) groups presented significantly higher values (p < 0.05) of flexural strength than those of the control groups (C ZT : 716.5 ± 185.7 a ; C ZE : 779.9 ± 114 a ) (Tukey's test). The monoclinic phase percentage (%) was higher for AUT ZE (71), AUT ZT (66), AUT + M ZE (71), and AUT + M ZM (66) compared to the C groups (ZE:0; ZT:0). Surface roughness (µm) was higher for AUT ZE (0.09), AUT ZT (0.08), AUT + M ZE (0.09 µm), and AUT + M ZT (0.09 µm) than those of other groups. Regardless of the zirconia type, autoclave aging alone or with mechanical aging increased the flexure strength but also induced higher transformation from tetragonal to monoclinic phase in both zirconia materials tested. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1972-1977, 2017. © 2016 Wiley Periodicals, Inc.

  18. New insights into organic-inorganic hybrid perovskite CH₃NH₃PbI₃ nanoparticles. An experimental and theoretical study of doping in Pb²⁺ sites with Sn²⁺, Sr²⁺, Cd²⁺ and Ca²⁺.

    PubMed

    Navas, Javier; Sánchez-Coronilla, Antonio; Gallardo, Juan Jesús; Hernández, Norge Cruz; Piñero, Jose Carlos; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; De los Santos, Desireé M; Aguilar, Teresa; Martín-Calleja, Joaquín

    2015-04-14

    This paper presents the synthesis of the organic-inorganic hybrid perovskite, CH3NH3PbI3, doped in the Pb(2+) position with Sn(2+), Sr(2+), Cd(2+) and Ca(2+). The incorporation of the dopants into the crystalline structure was analysed, observing how the characteristics of the dopant affected properties such as the crystalline phase, emission and optical properties. XRD showed how doping with Sn(2+), Sr(2+) and Cd(2+) did not modify the normal tetragonal phase. When doping with Ca(2+), the cubic phase was obtained. Moreover, DR-UV-Vis spectroscopy showed how the band gap decreased with the dopants, the values following the trend Sr(2+) < Cd(2+) < Ca(2+) < CH3NH3PbI3 ≈ Sn(2+). The biggest decrease was generated by Sr(2+), which reduced the CH3NH3PbI3 value by 4.5%. In turn, cathodoluminescence (CL) measurements confirmed the band gap obtained. Periodic-DFT calculations were performed to understand the experimental structures. The DOS analysis confirmed the experimental results obtained using UV-Vis spectroscopy, with the values calculated following the trend Sn(2+) ≈ Pb(2+) > Cd(2+) > Sr(2+) for the tetragonal structure and Pb(2+) > Ca(2+) for the cubic phase. The electron localization function (ELF) analysis showed similar electron localizations for undoped and Sn(2+)-doped tetragonal structures, which were different from those doped with Sr(2+) and Cd(2+). Furthermore, when Cd(2+) was incorporated, the Cd-I interaction was strengthened. For Ca(2+) doping, the Ca-I interaction had a greater ionic nature than Cd-I. Finally, an analysis based on the non-covalent interaction (NCI) index is presented to determine the weak-type interactions of the CH3NH3 groups with the dopant and I atoms. To our knowledge, this kind of analysis with these hybrid systems has not been performed previously.

  19. [In vitro evaluation of low-temperature aging effects of Y2O3 stabilized tetragonal zirconia polycrystals dental ceramics].

    PubMed

    Yi, Yuan-fu; Liu, Hong-chen; Wang, Chen; Tian, Jie-mo; Wen, Ning

    2008-03-01

    To investigate the influence of in vitro low-temperature degradation (LTD) treatment on the structural stability of 5 kinds of Y2O3 stabilized tetragonal zirconia polycrystals (Y-TZP) dental ceramics. TZ-3YS powder was compacted at 200 MPa using cold isostatic pressure and pre-sintered at 1050 degrees C for 2 h forming presintered blocks. Specimens were sectioned into 15 mm x 15 mm x 1.5 mm slices from blocks of TZ-3YS, Vita In-Ceram YZ, Ivoclar, Cercon Smart, and Kavo Y-TZP presintered blocks, 18 slices for each brand, and then densely sintered. Specimens were divided into 6 groups and subjected to an accelerated aging test carried out in an autoclave in steam at 134 degrees C, 0.2 MPa, for 0, 1, 2, 3, 4, and 5 h. X-ray diffraction (XRD) was used to identify crystal phases and relative content of monoclinic phase was calculated. Specimens for three-point bending test were fabricated using TZ-3YS ceramics according to the ISO 6872 standard and bending strength was tested before and after aging. The polished and aging specimens of TZ-3YS and Cercon Smart zirconia ceramics were observed by atomic force microscopy (AFM) to evaluate surface microstructure. Tetragonal-to-monoclinic phase transformation was detected for specimens of TZ-3YS, Vita In-Ceram YZ, Ivoclar, and Kavo zirconia ceramics except for Cercon Smart ceramics after aging, and the relative content of monoclinic phase was increasing with the prolonged aging time. TZ-3YS was the most affected material, Kavo took the second, and Vita and Ivoclar were similar. Aging had no significant negative effects on flexural strength of TZ-3YS with average bending strength being over 1100 MPa. The nucleation and growth of monoclinic phase were detected by AFM in surface of Cercon Smart zirconia in which monoclinic phase was not detected by XRD. The results suggest that LTD of dental Y-TZP is time dependent, but the aging test does not reduce the flexural strength of TZ-3YS. The long-term clinical serviceability of dental Y-TZP needs further observation.

  20. Non-Zhang-Rice Singlet Character of the First Ionization State of T-CuO

    NASA Astrophysics Data System (ADS)

    Adolphs, Clemens P. J.; Moser, Simon; Sawatzky, George A.; Berciu, Mona

    2016-02-01

    We argue that tetragonal CuO (T-CuO) has the potential to finally settle long-standing modeling issues for cuprate physics. We compare the one-hole quasiparticle (qp) dispersion of T-CuO to that of cuprates, in the framework of the strongly correlated (Ud d→∞ ) limit of the three-band Emery model. Unlike in CuO2 , magnetic frustration in T-CuO breaks the C4 rotational symmetry and leads to strong deviations from the Zhang-Rice singlet picture in parts of the reciprocal space. Our results are consistent with angle-resolved photoemission spectroscopy data but in sharp contradiction to those of a one-band model previously suggested for them. These differences identify T-CuO as an ideal material to test a variety of scenarios proposed for explaining cuprate phenomenology.

Top