NASA Astrophysics Data System (ADS)
Upadhyay, Ashutosh; Singh, Akhilesh Kumar
2015-04-01
Results of the room temperature structural studies on (1-x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.
Structure Evolution of BaTiO3 on Co Doping: X-ray diffraction and Raman study
NASA Astrophysics Data System (ADS)
Mansuri, Amantulla; Mishra, Ashutosh
2016-10-01
In the present study, we have synthesize polycrystalline samples of BaTi1-xCoxO3 (x = 0, 0.05 and 0.1) with standard solid state reaction technique. The obtained samples are characterized by X-ray diffraction (XRD) and Raman spectroscopy. The detail structural analysis has been performed by Rietveld refinement using Fullprof program. The structural analysis reveal the samples are chemical pure and crystallize in tetragonal phase with space group Pm3m. We observe an increase in lattice parameters which results due to substitution of Co2+ with large ionic radii (0.9) for smaller ionic radii (0.6) Ti4+. Moreover peak at 45.5° shift to 45° on Co doping, which is due to structure phase transition from tetragonal to cubic. Raman study infers that the intensity of characteristic peaks decreases and linewidth increases with Co doping. The bands linked with the tetragonal structure (307 cm1) decreased due to the tetragonal-towards-cubic phase transition with Co doping. Our structural study reveals the expansion of BTO unit cell and tetragonal-to-cubic phase transformation takes place, results from different characterization techniques are conclusive and show structural evolution with Co doping.
NASA Astrophysics Data System (ADS)
Augustyns, V.; van Stiphout, K.; Joly, V.; Lima, T. A. L.; Lippertz, G.; Trekels, M.; Menéndez, E.; Kremer, F.; Wahl, U.; Costa, A. R. G.; Correia, J. G.; Banerjee, D.; Gunnlaugsson, H. P.; von Bardeleben, J.; Vickridge, I.; Van Bael, M. J.; Hadermann, J.; Araújo, J. P.; Temst, K.; Vantomme, A.; Pereira, L. M. C.
2017-11-01
γ -Fe and related alloys are model systems of the coupling between structure and magnetism in solids. Since different electronic states (with different volumes and magnetic ordering states) are closely spaced in energy, small perturbations can alter which one is the actual ground state. Here, we demonstrate that the ferromagnetic state of γ -Fe nanoparticles is associated with a tetragonal distortion of the fcc structure. Combining a wide range of complementary experimental techniques, including low-temperature Mössbauer spectroscopy, advanced transmission electron microscopy, and synchrotron radiation techniques, we unambiguously identify the tetragonally distorted ferromagnetic ground state, with lattice parameters a =3.76 (2 )Å and c =3.50 (2 )Å , and a magnetic moment of 2.45(5) μB per Fe atom. Our findings indicate that the ferromagnetic order in nanostructured γ -Fe is generally associated with a tetragonal distortion. This observation motivates a theoretical reassessment of the electronic structure of γ -Fe taking tetragonal distortion into account.
Theoretical calculations of high-pressure phases of NiF2: An ab initio constant-pressure study
NASA Astrophysics Data System (ADS)
Kürkçü, Cihan; Merdan, Ziya; Öztürk, Hülya
2016-12-01
We have studied the structural properties of the antiferromagnetic NiF2 tetragonal structure with P42/ mnm symmetry using density functional theory (DFT) under rapid hydrostatic pressure up to 400 GPa. For the exchange correlation energy we used the local density approximation (LDA) of Ceperley and Alder (CA). Two phase transformations are successfully observed through the simulations. The structures of XF2-type compounds crystallize in rutile-type structure. NiF2 undergoes phase transformations from the tetragonal rutile-type structure with space group P42/ mnm to orthorhombic CaCl2-type structure with space group Pnnm and from this orthorhombic phase to monoclinic structure with space group C2/ m at 152 GPa and 360 GPa, respectively. These phase changes are also studied by total energy and enthalpy calculations. According to these calculations, we perdict these phase transformations at about 1.85 and 30 GPa.
Local and average structures of BaTiO 3-Bi(Zn 1/2Ti 1/2)O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usher, Tedi-Marie; Iamsasri, Thanakorn; Forrester, Jennifer S.
The complex crystallographic structures of (1-x)BaTiO 3-xBi(Zn 1/2Ti 1/2)O 3 (BT-xBZT) are examined using high resolution synchrotron X-ray diffraction, neutron diffraction, and neutron pair distribution function (PDF) analyses. The short-range structures are characterized from the PDFs, and a combined analysis of the X-ray and neutron diffraction patterns is used to determine the long-range structures. Our results demonstrate that the structure appears different when averaged over different length scales. In all compositions, the local structures determined from the PDFs show local tetragonal distortions (i.e., c/a > 1). But, a box-car fitting analysis of the PDFs reveals variations at different length scales.more » For 0.80BT-0.20BZT and 0.90BT-0.10BZT, the tetragonal distortions decrease at longer atom-atom distances (e.g., 30 vs. 5 ). When the longest distances are evaluated (r > 40 ), the lattice parameters approach cubic. Neutron and X-ray diffraction yield further information about the long-range structure. Compositions 0.80BT-0.20BZT and 0.90BT-0.10BZT appear cubic by Bragg diffraction (no peak splitting), consistent with the PDFs at long distances. However, these patterns cannot be adequately fit using a cubic lattice model; modeling their structures with the P4mm space group allows for a better fit to the patterns because the space group allows for c-axis atomic displacements that occur at the local scale. Furthermore, for the compositions 0.92BT-0.08BZT and 0.94BT-0.06BZT, strong tetragonal distortions are observed at the local scale and a less-distorted tetragonal structure is observed at longer length scales. In Rietveld refinements, the latter is modeled using a tetragonal phase. Since the peak overlap in these two-phase compositions limits the ability to model the local-scale structures as tetragonal, it is approximated in the refinements as a cubic phase. These results demonstrate that alloying BT with BZT results in increased disorder and disrupts the long-range ferroelectric symmetry present in BT, while the large tetragonal distortion present in BZT persists at the local scale.« less
Local and average structures of BaTiO 3-Bi(Zn 1/2Ti 1/2)O 3
Usher, Tedi-Marie; Iamsasri, Thanakorn; Forrester, Jennifer S.; ...
2016-11-11
The complex crystallographic structures of (1-x)BaTiO 3-xBi(Zn 1/2Ti 1/2)O 3 (BT-xBZT) are examined using high resolution synchrotron X-ray diffraction, neutron diffraction, and neutron pair distribution function (PDF) analyses. The short-range structures are characterized from the PDFs, and a combined analysis of the X-ray and neutron diffraction patterns is used to determine the long-range structures. Our results demonstrate that the structure appears different when averaged over different length scales. In all compositions, the local structures determined from the PDFs show local tetragonal distortions (i.e., c/a > 1). But, a box-car fitting analysis of the PDFs reveals variations at different length scales.more » For 0.80BT-0.20BZT and 0.90BT-0.10BZT, the tetragonal distortions decrease at longer atom-atom distances (e.g., 30 vs. 5 ). When the longest distances are evaluated (r > 40 ), the lattice parameters approach cubic. Neutron and X-ray diffraction yield further information about the long-range structure. Compositions 0.80BT-0.20BZT and 0.90BT-0.10BZT appear cubic by Bragg diffraction (no peak splitting), consistent with the PDFs at long distances. However, these patterns cannot be adequately fit using a cubic lattice model; modeling their structures with the P4mm space group allows for a better fit to the patterns because the space group allows for c-axis atomic displacements that occur at the local scale. Furthermore, for the compositions 0.92BT-0.08BZT and 0.94BT-0.06BZT, strong tetragonal distortions are observed at the local scale and a less-distorted tetragonal structure is observed at longer length scales. In Rietveld refinements, the latter is modeled using a tetragonal phase. Since the peak overlap in these two-phase compositions limits the ability to model the local-scale structures as tetragonal, it is approximated in the refinements as a cubic phase. These results demonstrate that alloying BT with BZT results in increased disorder and disrupts the long-range ferroelectric symmetry present in BT, while the large tetragonal distortion present in BZT persists at the local scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Ashutosh; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in
2015-04-14
Results of the room temperature structural studies on (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases inmore » the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.« less
On the Tetragonal Forms of KMo 4O 6
NASA Astrophysics Data System (ADS)
McCarroll, W. H.; Ramanujachary, K. V.; Greenblatt, M.; Marsh, Richard E.
1995-06-01
A reexamination of the X-ray diffraction data for the tetragonal form of KMo4O6 prepared by fused salt electrolysis leads to the conclusion that the crystal structure is better described by using space group P 4/mbm and not P4¯ as previously reported. However, refinement in the new space group does not result in any significant changes in the atomic arrangement. Possible reasons for the significant difference between the c lattice parameter of this form of KMo4O6 and that prepared at high pressures are also discussed.
NASA Astrophysics Data System (ADS)
Bhandari, Churna; Lambrecht, Walter R. L.
2018-06-01
While the tetragonal antiferro-electrically distorted (AFD) phase with space group I 4 / mcm is well known for SrTiO3 to occur below 105 K, there are also some hints in the literature of an orthorhombic phase, either at the lower temperature or at high pressure. A previously proposed orthorhombic layered structure of SrTiO3, known as the post-perovskite or CaIrO3 structure with space group Cmcm is shown to have significantly higher energy than the cubic or tetragonal phase and to have its minimum volume at larger volume than cubic perovskite. The Cmcm structure is thus ruled out. We also study an alternative Pnma phase obtained by two octahedral rotations about different axes. This phase is found to have slightly lower energy than the I 4 / mcm phase in spite of the fact that its parent, in-phase tilted P 4 / mbm phase is not found to occur. Our calculated enthalpies of formation show that the I 4 / mcm phase occurs at slightly higher volume than the cubic phase and has a negative transition pressure relative to the cubic phase, which suggests that it does not correspond to the high-pressure tetragonal phase. The enthalpy of the Pnma phase is almost indistinguishable from the I 4 / mcm phase. Alternative ferro-electric tetragonal and orthorhombic structures previously suggested in literature are discussed.
Structural investigation of cooperite (PtS) crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozhdestvina, V. I., E-mail: veronika@ascnet.ru; Udovenko, A. A.; Rubanov, S. V.
2016-03-15
The single-crystal structure of cooperite, a natural platinum sulfide PtS, is studied by X-ray diffraction supported by high-resolution scanning transmission electron microscopy and X-ray spectrum microanalysis. It is found that, in addition to the main reflections corresponding to the known tetragonal cell (a = 3.47 and c = 6.11 Å; space group P4{sub 2}/mmc), many weak reflections with intensities I ≤ 60σ(I) are clearly observed. These reflections fit the tetragonal cell (space group I4/mmm) with doubled parameters. In structures with small (P4{sub 2}/mmc) and large (I4/mmm) cells, the S atoms occupy statistically two special positions. It is shown that themore » chemical composition of the cooperite crystals deviates from the stoichiometric composition: sulfur-deficient specimens predominate.« less
NASA Astrophysics Data System (ADS)
Umamaheswari, R.; Yogeswari, M.; Kalpana, G.
2013-02-01
Self-consistent scalar relativistic band structure calculations for AMO (A=Li, Na, K and Rb; M=Ag and Cu) compounds have been performed using the tight-binding linear muffin-tin orbital (TB-LMTO) method within the local density approximation (LDA). At ambient conditions, these compounds are found to crystallize in tetragonal KAgO-type structure with two different space group I-4m2 and I4/mmm. Nowadays, hypothetical structures are being considered to look for new functional materials. AMO compounds have stoichiometry similar to eight-electron half-Heusler materials of type I-I-VI which crystallizes in cubic (C1b) MgAgAs-type structure with space group F-43m. For all these compounds, by interchanging the positions of atoms in the hypothetical cubic structure, three phases (α, β and γ) are formed. The energy-volume relation for these compounds in tetragonal KAgO-type structure and cubic α, β and γ phases of related structure have been obtained. Under ambient conditions these compounds are more stable in tetragonal KAgO-type (I4/mmm) structure. The total energies calculated within the atomic sphere approximation (ASA) were used to determine the ground state properties such as equilibrium lattice parameters, c/a ratio, bulk modulus, cohesive energy and are compared with the available experimental results. The results of the electronic band structure calculations at ambient condition show that LiCuO and NaMO are indirect band gap semiconductors whereas KMO and RbMO are direct band gap semiconductors. At high pressure the band gap decreases and the phenomenon of band overlap metallization occur. Also these compounds undergo structural phase transition from tetragonal I-4m2 phase to cubic α-phase and transition pressures were calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small, Ward; Pearson, Mark A.; Metz, Tom R.
Dow Corning SE 1700 (reinforced polydimethylsiloxane) porous structures were made by direct ink writing (DIW) in a face centered tetragonal (FCT) configuration. The filament diameter was 250 μm. Structures consisting of 4, 8, or 12 layers were fabricated with center-to-center filament spacing (“road width” (RW)) of 475, 500, 525, 550, or 575 μm. Three compressive load-unload cycles to 2000 kPa were performed on four separate areas of each sample; three samples of each thickness and filament spacing were tested. At a given strain during the third loading phase, stress varied inversely with porosity. At 10% strain, the stress was nearlymore » independent of the number of layers (i.e., thickness). At higher strains (20- 40%), the stress was highest for the 4-layer structure; the 8- and 12-layer structures were nearly equivalent suggesting that the load deflection is independent of number of layers above 8 layers. Intra-and inter-sample variability of the load deflection response was higher for thinner and less porous structures.« less
Superconductivity in YTE2Ge2 compounds (TE = d-electron transition metal)
NASA Astrophysics Data System (ADS)
Chajewski, G.; Samsel-Czekała, M.; Hackemer, A.; Wiśniewski, P.; Pikul, A. P.; Kaczorowski, D.
2018-05-01
Polycrystalline samples of YTE2Ge2 with TE = Co, Ni, Ru, Rh, Pd and Pt were synthesized and characterized by means of X-ray powder diffraction and low-temperature electrical resistivity and specific heat measurements, supplemented by fully relativistic full-potential local-orbital band structure calculations. We confirm that most of the compounds studied crystallize in a body-centered tetragonal ThCr2S2 -type structure (space group I 4 / mmm) and have three-dimensional Fermi surfaces, while only one of them (YPt2Ge2) forms with a primitive tetragonal CaBe2Ge2 -type unit cell (space group P 4 / nmm) and possesses quasi-two-dimensional Fermi surface sheets with some nesting. Physical properties data show conventional superconductivity in the phases with TE = Co, Pd and Pt, i.e. independently of the structure type (and hence the dimensionality of the Fermi surface).
Switchable Ni–Mn–Ga Heusler nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zayak, Alexey T.; Beckman, Scott P.; Tiago, Murilo L.
2008-10-02
Here, we examined bulk-like Heusler nanocrystals using real-space pseudopotentials constructed within density functional theory. The nanocrystals were made of various compositions of Ni-Mn-Ga in the size range from 15 up to 169 atoms. Among these compositions, the closest to the stoichiometric Ni 2MnGa were found to be the most stable. The Ni-based nanocrystals retained a tendency for tetragonal distortion, which is inherited from the bulk properties. Surface effects suppress the tetragonal structure in the smaller Ni-based nanocrystals, while bigger nanocrystals develop a bulk-like tetragonal distortion. We suggest the possibility of switchable Ni-Mn-Ga nanocrystals, which could be utilized for magnetic nano-shape-memorymore » applications.« less
Paria Sena, Robert; Babaryk, Artem A; Khainakov, Sergiy; Garcia-Granda, Santiago; Slobodyanik, Nikolay S; Van Tendeloo, Gustaaf; Abakumov, Artem M; Hadermann, Joke
2016-01-21
The crystal structure of the K6.4Nb28.2Ta8.1O94 pseudo-tetragonal tungsten bronze-type oxide was determined using a combination of X-ray powder diffraction, neutron diffraction and transmission electron microscopy techniques, including electron diffraction, high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), annular bright field STEM (ABF-STEM) and energy-dispersive X-ray compositional mapping (STEM-EDX). The compound crystallizes in the space group Pbam with unit cell parameters a = 37.468(9) Å, b = 12.493(3) Å, c = 3.95333(15) Å. The structure consists of corner sharing (Nb,Ta)O6 octahedra forming trigonal, tetragonal and pentagonal tunnels. All tetragonal tunnels are occupied by K(+) ions, while 1/3 of the pentagonal tunnels are preferentially occupied by Nb(5+)/Ta(5+) and 2/3 are occupied by K(+) in a regular pattern. A fractional substitution of K(+) in the pentagonal tunnels by Nb(5+)/Ta(5+) is suggested by the analysis of the HAADF-STEM images. In contrast to similar structures, such as K2Nb8O21, also parts of the trigonal tunnels are fractionally occupied by K(+) cations.
Identification and properties of the non-cubic phases of Mg 2Pb
Li, Yuwei; Bian, Guang; Singh, David J.
2016-12-20
Mg 2Pb occurs in the cubic fluorite structure and is a semimetal with a band structure strongly affected by spin-orbit interaction on the Pb p states. Its properties are therefore of interest in the context of topological materials. In addition a different phase of Mg 2Pb was experimentally reported, but its crystal structure and properties remain unknown. Here we determine the structure of this phase using ab initio evolutionary methods and report its properties. The energy of one tetragonal phase, space group P4/ nmm, is 2 meV per atom higher than that of the ground state structure supporting the experimentalmore » observation. We find this tetragonal phase to be a compenstated anisotropic metal with strong spin orbit effects. As a result, many other metastable structures have also been identified, especially one orthorhombic structure, space group Pnma, of which energy is 17 meV per atom higher than that of ground state structure and which perhaps could be the phase that was reported based on similarity of lattice parameters.« less
Pressure-induced phase transitions in the CdC r2S e4 spinel
NASA Astrophysics Data System (ADS)
Efthimiopoulos, I.; Liu, Z. T. Y.; Kucway, M.; Khare, S. V.; Sarin, P.; Tsurkan, V.; Loidl, A.; Wang, Y.
2016-11-01
We have conducted high-pressure x-ray diffraction and Raman spectroscopic studies on the CdC r2S e4 spinel at room temperature up to 42 GPa. We have resolved three structural transitions up to 42 GPa, i.e., the starting F d 3 ¯m phase transforms at ˜11 GPa into a tetragonal I 41/a m d structure, an orthorhombic distortion was observed at ˜15 GPa , whereas structural disorder initiates beyond 25 GPa. Our ab initio density functional theory studies successfully reproduced the observed crystalline-to-crystalline structural transitions. In addition, our calculations propose an antiferromagnetic ordering as a potential magnetic ground state for the high-pressure tetragonal and orthorhombic modifications, compared with the starting ferromagnetic phase. Furthermore, the computational results indicate that all phases remain insulating in their stability pressure range, with a direct-to-indirect band gap transition for the F d 3 ¯m phase taking place at 5 GPa. We attempted also to offer an explanation behind the peculiar first-order character of the F d 3 ¯m (cubic ) →I 41/a m d (tetragonal) transition observed for several relevant Cr spinels, i.e., the sizeable volume change at the transition point, which is not expected from space group symmetry considerations. We detected a clear correlation between the cubic-tetragonal transition pressures and the next-nearest-neighbor magnetic exchange interactions for the Cr-bearing sulfide and selenide members, a strong indication that the cubic-tetragonal transitions in these systems are principally governed by magnetic effects.
NASA Astrophysics Data System (ADS)
Supatutkul, C.; Pramchu, S.; Jaroenjittichai, A. P.; Laosiritaworn, Y.
2017-09-01
This work reports the structures and electronic properties of two-dimensional (2D) ZnO in hexagonal, (4,8)-tetragonal, and (4,4)-tetragonal monolayer using GGA and HSE-hybrid functional. The calculated results show that the band gaps of 2D ZnO sheets are wider than those of the bulk ZnO. The hexagonal and (4,8)-tetragonal phases yield direct band gaps, which are 4.20 eV, and 4.59 eV respectively, while the (4,4)-tetragonal structure has an indirect band gap of 3.02 eV. The shrunken Zn-O bond lengths in the hexagonal and (4,8)-tetragonal indicate that they become more ionic in comparison with the bulk ZnO. In addition, the hexagonal ZnO sheet is the most energetically favourable. The total energy differences of (4,8)-tetragonal and (4,4)-tetragonal sheets from that of hexagonal monolayer (per formula unit) are 197 meV and 318 meV respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manoun, Bouchaib, E-mail: manounb@gmail.com; Tamraoui, Y.; Lazor, P.
2013-12-23
Double-perovskite oxide Sr{sub 2}MgTeO{sub 6} has been synthetized, and its crystal structure was probed by the technique of X-ray diffraction at room temperature. The structure is monoclinic, space group I2/m. Temperature-induced phase transitions in this compound were investigated by Raman spectroscopy up to 550 °C. Two low-wavenumber modes corresponding to external lattice vibrations merge at temperature of around 100 °C, indicating a phase transition from the monoclinic (I2/m) to the tetragonal (I4/m) structure. At 300 °C, changes in the slopes of temperature dependencies of external and O–Te–O bending modes are detected and interpreted as a second phase transition from the tetragonal (I4/m) tomore » the cubic (Fm-3m) structure.« less
NASA Astrophysics Data System (ADS)
Durandurdu, Murat
2007-07-01
The behavior of gold crystal under uniaxial, tensile, and three different triaxial stresses is studied using an ab initio constant pressure technique within a generalized gradient approximation. Gold undergoes a phase transformation from the face-centered-cubic structure (fcc) to a body-centered-tetragonal (bct) structure having the space group of I4/mmm with the application of uniaxial stress, while it transforms to a face-centered-tetragonal (fct) phase within I4/mmm symmetry under uniaxial tensile loading. Further uniaxial compression of the bct phase results in a symmetry change from I4/mmm to P1 at high stresses and ultimately structural failure around 200.0GPa . For the case of triaxial stresses, gold also converts into a bct state. The critical stress for the fcc-to-bct transformation increases as the ratio of the triaxial stress increases. Both fct and bct phases are elastically unstable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santhosh, M.; Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com; Manikandan, M.
2016-05-06
Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of alkali gallium hydrides AGaH{sub 4} (A = Li, Na) for three different crystal structures, namely tetragonal (P42{sub 1}c), tetragonal (P4{sub 2}/nmc) and monoclinic (P2{sub 1}/c). Among the considered structures, tetragonal (P42{sub 1}c) phase is found to be the most stable phase for these hydrides at normal pressure. A pressure induced structural phase transition from tetragonal (P42{sub 1}c) to tetragonal (P4{sub 2}/nmc) is observed. The electronic structure reveals that these hydrides are insulators. The calculated elastic constants indicate that these ternary imides are mechanically stablemore » at normal pressure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graetsch, H.A., E-mail: heribert.graetsch@rub.de
The amplitudes of the positional, occupational and adp modulations of sbn mixed crystals are strongly enhanced for high strontium contents. The increase of structural modulations is accompanied by reduced spontaneous electric polarization largely due to smaller off-center shifts of the niobium atoms. Beyond the room temperature ferroelectric – intermediate transition near x=0.77, anomal large U{sub 33} atomic displacement parameters of the niobium atoms indicate static disorder caused by loss of orientational coupling between residual shifts of Nb atoms in neighboring NbO{sub 6} octahedra. Change of satellite intensities show a reduction from two-dimensional to one-dimensional modulation which is not consistent withmore » tetragonal symmetry. The pseudo-tetragonally twinned crystal structure of sbn82 was refined in the orthorhombic super-space group A2mm(½0γ)000. The apparent tetragonal symmetry of the other investigated sbn samples also seems to be due to pseudo tetragonal twinning with equal twin volumes. The modulations mainly consist of cooperatively tilted NbO{sub 6} octahedra and wave-like ordered incomplete occupation of the largest cation sites (Me2a and b) by Ba{sup 2+} and Sr{sup 2+}. Furthermore, the atomic displacement parameters of the Me2 sites are strongly modulated. - Graphical abstract: Satellite reflections and modulation coefficients in the solid solution series Sr{sub x}Ba{sub 1−x}Nb{sub 2}O{sub 6}. - Highlights: • The modulationed structures are refined for the whole composition range of sbn32–sbn82 in tetragonal and orthorhombic setting. • The amplitudes of positional, occupational and adp modulations increase strongly with the strontium content. • Evidence is presented that the sbn crystals are pseudo tetragonally twinned. • The ferroelectric–intermediate paraelectric transition is not accompanied by a change of symmetry. • Anomal adp of intermediate (non-ferroelectric) sbn82 indicate loss of coupling between off-center shifts of neighboring niobium.« less
Paramagnetic-to-nonmagnetic transition in antiperovskite nitride Cr3GeN studied by 14N-NMR and µSR
NASA Astrophysics Data System (ADS)
Takao, K.; Liu, Z.; Uji, K.; Waki, T.; Tabata, Y.; Watanabe, I.; Nakamura, H.
2017-06-01
The antiperovskite-related nitride Cr3GeN forms a tetragonal structure with the space group P\\bar{4}{2}1m at room temperature. It shows a tetragonal (P\\bar{4}{2}1m) to tetragonal (I4/mcm) structural transition with a large hysteresis at 300-400 K. The magnetic susceptibility of Cr3GeN shows Curie-Weiss type temperature dependence at high temperature, but is almost temperature-independent below room temperature. We carried out µSR and 14N-NMR microscopy measurements to reveal the magnetic ground state of Cr3GeN. Gradual muon spin relaxation, which is nearly temperature-independent below room temperature, was observed, indicating that Cr3GeN is magnetically inactive. In the 14N-NMR measurement, a quadrupole-split spectrum was obtained at around 14 K = 0. The temperature dependence of 14(1/T1) satisfies the Korringa relation. These experimental results indicate that the ground state of Cr3GeN is Pauli paramagnetic, without antiferromagnetic long-range order.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Ken-ichi; Tanaka, Nobutada, E-mail: ntanaka@pharm.showa-u.ac.jp; Ishikura, Shuhei
Pig heart carbonyl reductase has been crystallized in the presence of NADPH. Diffraction data have been collected using synchrotron radiation. Pig heart carbonyl reductase (PHCR), which belongs to the short-chain dehydrogenase/reductase (SDR) family, has been crystallized by the hanging-drop vapour-diffusion method. Two crystal forms (I and II) have been obtained in the presence of NADPH. Form I crystals belong to the tetragonal space group P4{sub 2}, with unit-cell parameters a = b = 109.61, c = 94.31 Å, and diffract to 1.5 Å resolution. Form II crystals belong to the tetragonal space group P4{sub 1}2{sub 1}2, with unit-cell parameters amore » = b = 120.10, c = 147.00 Å, and diffract to 2.2 Å resolution. Both crystal forms are suitable for X-ray structure analysis at high resolution.« less
Ba0.06(Na,Bi)0.94Ti1-x(Ni1/3Nb2/3)xO3 ceramics: X-ray diffraction and infrared spectroscopy studies
NASA Astrophysics Data System (ADS)
Mishra, R. K.; Prasad, Ashutosh; Chandra, K. P.; Prasad, K.
2018-05-01
Non-lead ceramic samples of Ba0.06(Na0.5Bi0.5)0.94Ti1-x(Ni1/3Nb2/3)xO3; 0 ≤ x ≤ 1.0 were prepared by standard high temperature ceramic synthesis method. Rietveld refinements of X-ray diffraction data of these ceramics were carried out using FullProf software and determined their crystal symmetry, space group and unit cell dimensions. Rietveld refinement revealed that Ba0.06(Na0.5Bi0.5)0.94TiO3 has a monoclinic structure with space group P4/m while B0.06(Na0.5Bi0.5)0.94(Ni1/3Nb2/3)O3 has tetragonal (pseudo-cubic) structure with space group P4/mmm. Partial replacement of Ti4+ ion by pseudo-cation (Ni1/33 +Nb2/3 5 +) 4 + resulted in the change of unit cell structure from monoclinic to tetragonal. SEM studies were carried out in order to access the quality of the prepared ceramics which showed a change in grain sizes with the increase of (Ni1/33 +Nb2/3 5 +) 4 + content. FTIR spectra confirmed the formation of perovskite type solid solutions.
The Effect of Poling on the Properties of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 Ceramics
NASA Astrophysics Data System (ADS)
Uršič, Hana; Tellier, Jenny; Hrovat, Marko; Holc, Janez; Drnovšek, Silvo; Bobnar, Vid; Alguero, Miguel; Kosec, Marija
2011-03-01
The effects of the poling field on the structural and electrical properties of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (0.65PMN-0.35PT) ceramics were investigated. The highest piezoelectric coefficient d33, coupling coefficients kp, kt, and mechanical quality factor Qm were achieved for ceramics poled at electric fields between 2 and 3.5 kV/mm, whereas the d33, kp, kt, and Qm of ceramics poled at higher electric fields, i.e., 4 and 4.5 kV/mm, were lower. The non-poled ceramics contained 86% of the monoclinic phase with the space group Pm and 14% of the tetragonal phase with the space group P4mm. However, the ceramics poled at 2.5 kV/mm contained 99% of the monoclinic phase and the rest is the tetragonal phase. The results show that the ratio of the monoclinic to the tetragonal phases can be changed by the application of a poling electric field and that the extent of this change is dependent on the field strength.
Effect of pressure on the tetragonal distortion in TiH2: a first-principles study
NASA Astrophysics Data System (ADS)
de Coss, R.; Quijano, R.; Singh, D. J.
2009-03-01
The transition metal dihydride TiH2 present the fluorite structure (CaF2) at high temperature but undergoes a tetragonal distortion with c/a<1 at low temperature. Early electronic band structure calculations have shown that TiH2 in the cubic phase display a nearly flat double degenerated band at the Fermi level. Thus the low temperature tetragonal distortion has been associated to a Jahn-Teller effect. Nevertheless, recently we have show that the instability of fcc-TiH2 is likely to be related with a van Hove singularity. In the present work, we have performed ab-initio calculations of the electronic structure and the tetragonal distortion for TiH2 under pressure (0-30 GPa). We found that the fcc-fct energy barrier and the tetragonal distortion increases with pressure. The evolution of the tetragonal distortion is analyzed in terms of the electronic band structure. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 49985.
Torchinsky, D H; Chu, H; Zhao, L; Perkins, N B; Sizyuk, Y; Qi, T; Cao, G; Hsieh, D
2015-03-06
We report a global structural distortion in Sr_{2}IrO_{4} using spatially resolved optical second and third harmonic generation rotational anisotropy measurements. A symmetry lowering from an I4_{1}/acd to I4_{1}/a space group is observed both above and below the Néel temperature that arises from a staggered tetragonal distortion of the oxygen octahedra. By studying an effective superexchange Hamiltonian that accounts for this lowered symmetry, we find that perfect locking between the octahedral rotation and magnetic moment canting angles can persist even in the presence of large noncubic local distortions. Our results explain the origin of the forbidden Bragg peaks recently observed in neutron diffraction experiments and reconcile the observations of strong tetragonal distortion and perfect magnetoelastic locking in Sr_{2}IrO_{4}.
Structural analysis and ferroelectric properties of Fe doped BaTiO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Ashutosh, E-mail: a.mansuri14@gmail.com, E-mail: amishra1960@yahoo.co.in; Mansuri, Amantulla, E-mail: a.mansuri14@gmail.com, E-mail: amishra1960@yahoo.co.in; Dwivedi, J. P.
2016-05-23
The polycrystalline samples of Fe doped BaTiO{sub 3} (BTO) with compositional formula BaTi{sub 1-x}Fe{sub x}O{sub 3} (x = 0, 0.03, 0.04 and 0.05) were prepared by solid-state reaction route. The influence of the Fe content on the structural, vibrational and electric properties of BaTiO{sub 3} was investigated using X-ray powder diffraction (XRD), Raman spectroscopy and Polarization techniques. XRD analysis indicates the formation of single-phase tetragonal structure for all the prepared samples. Tetragonal cubic structure with space group P4mm of all samples is further approved by Rietveld refinement. Room temperature Raman spectra of pure BaTiO{sub 3} show four active modes ofmore » vibration whose intensity decreases with increasing Fe doping. Small shift in Raman modes and increment in the line width has been observed with the doping ions. The hysteresis loop is very well performed with regular sharp characteristic of ferroelectric materials.« less
Phase Transition and Structure of Silver Azide at High Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
D Hou; F Zhang; C Ji
2011-12-31
Silver azide (AgN{sub 3}) was compressed up to 51.3 GPa. The results reveal a reversible second-order orthorhombic-to-tetragonal phase transformation starting from ambient pressure and completing at 2.7 GPa. The phase transition is accompanied by a proximity of cell parameters a and b, a 3{sup o} rotation of azide anions, and a change of coordination number from 4-4 (four short, four long) to eight fold. The crystal structure of the high pressure phase is determined to be in I4/mcm space group, with Ag at 4a, N{sub 1} at 4d, and N{sub 2} at 8h Wyckoff positions. Both of the two phasesmore » have anisotropic compressibility: the orthorhombic phase exhibits an anomalous expansion under compression along a-axis and is more compressive along b-axis than c-axis; the tetragonal phase is more compressive along the interlayer direction than the intralayer directions. The bulk moduli of the orthorhombic and tetragonal phases are determined to be K{sub OT} = 39{+-}5 GPa with K{sub OT'} = 10{+-}7 and K{sub OT} = 57 {+-}2 GPa with K{sub OT'} = 6.6{+-}0.2, respectively.« less
The Symmetry and Packing Fraction of the Body Centered Tetragonal Structure
ERIC Educational Resources Information Center
Dunlap, Richard A.
2012-01-01
It is shown that for different ratios of lattice parameters, "c/a," the body centered tetragonal structure may be view as body centered tetragonal, body centered cubic, face centered cubic or hexagonal. This illustrates that the apparent symmetry of a lattice depends on the choice of the conventional unit cell.
Formation of collapsed tetragonal phase in EuCo₂As₂ under high pressure.
Bishop, Matthew; Uhoya, Walter; Tsoi, Georgiy; Vohra, Yogesh K; Sefat, Athena S; Sales, Brian C
2010-10-27
The structural properties of EuCo₂As₂ have been studied up to 35 GPa, through the use of x-ray diffraction in a diamond anvil cell at a synchrotron source. At ambient conditions, EuCo₂As₂ ) (I4/mmm) has a tetragonal lattice structure with a bulk modulus of 48 ± 4 GPa. With the application of pressure, the a axis exhibits negative compressibility with a concurrent sharp decrease in c-axis length. The anomalous compressibility of the a axis continues until 4.7 GPa, at which point the structure undergoes a second-order phase transition to a collapsed tetragonal (CT) state with a bulk modulus of 111 ± 2 GPa. We found a strong correlation between the ambient pressure volume of 122 parents of superconductors and the corresponding tetragonal to collapsed tetragonal phase transition pressures.
Crystal structure and properties of tetragonal EuAg{sub 4}In{sub 8} grown by metal flux technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subbarao, Udumula; Sarkar, Sumanta; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in
The compound EuAg{sub 4}In{sub 8} has been obtained as single crystals in high yield from reactions run in liquid indium. X-ray diffraction on single crystals suggests that EuAg{sub 4}In{sub 8} crystallizes in the CeMn{sub 4}Al{sub 8} structure type, tetragonal space group I4/mmm with lattice constants a=b=9.7937(2) Å and c=5.7492(2) Å. Crystal structure of EuAg{sub 4}In{sub 8} is composed of pseudo Frank–Kasper cages occupied by one europium atom in each ring, which are shared through the corner along the ab plane resulting in a three dimensional network. The magnetic susceptibility of EuAg{sub 4}In{sub 8} was measured in the temperature range 2–300more » K, which obeyed Curie–Weiss law above 50 K. Magnetic moment value calculated from the fitting indicates the presence of divalent europium, which was confirmed by X-ray absorption near edge spectroscopy. Electrical resistivity measurements suggest that EuAg{sub 4}In{sub 8} is metallic in nature with a probable Fermi liquid behavior at low temperature. - Graphical abstract: The tetragonal EuAg{sub 4}In{sub 8} has been grown as single crystals from reactions run in liquid indium. Magnetic and XANES measurements suggest divalent nature of Eu and resistivity measurements suggest metallic nature. - Highlights: • EuAg{sub 4}In{sub 8} phase having tetragonal phase is grown by metal flux technique. • Magnetic and XANES measurements exhibit divalent nature of Eu in EuAg{sub 4}In{sub 8}. • Resistivity measurement suggests metallic nature and probable Fermi liquid behavior.« less
Suppression of superconductivity and structural phase transitions under pressure in tetragonal FeS
Lai, Xiaofang; Liu, Ying; Lu, Xujie; ...
2016-08-08
Pressure is a powerful tool to study iron-based superconductors. Here, we report systematic high-pressure transport and structural characterizations of the newly discovered superconductor FeS. It is found that superconductor FeS (tetragonal) partly transforms to a hexagonal structure at 0.4 GPa, and then completely transforms to an orthorhombic phase at 7.4 GPa and finally to a monoclinic phase above 9.0 GPa. The superconducting transition temperature of tetragonal FeS was gradually depressed by pressure, different from the case in tetragonal FeSe. With pressure increasing, the S-Fe-S angles only slightly change but the anion height deviates farther from 1.38 Å. This change ofmore » anion height, together with the structural instability under pressure, should be closely related to the suppression of superconductivity. We also observed an anomalous metal-semiconductor transition at 6.0 GPa and an unusual increased resistance with further compression above 9.6 GPa. The former can be ascribed to the tetragonal-orthorhombic structural phase transition, and the latter to the electronic structure changes of the high-pressure monoclinic phase. Lastly, a phase diagram of tetragonal FeS as functions of pressure and temperature was mapped out for the first time, which will shed new light on understanding of the structure and physics of the superconducting FeS.« less
NASA Astrophysics Data System (ADS)
van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong
2016-06-01
We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.
Symmetry of Epitaxial BiFeO3 Films in the Ultrathin Regime
NASA Astrophysics Data System (ADS)
Yang, Yongsoo; Schlep&üTz, Christian; Adamo, Carolina; Schlom, Darrell; Clarke, Roy
2013-03-01
BiFeO3 (BFO) films grown on SrTiO3 (STO) with a SrRuO3 buffer layer exhibit a monoclinic structure at thicknesses greater than 40 nm, but higher structural symmetry can be observed for thinner films [Phys. Rev. B 81, 144115 (2010)]. We report a structural phase transition from monoclinic to tetragonal in ultra-thin BFO films grown directly on (100)-oriented STO. X-ray diffraction measurements of 3-dimensional reciprocal space maps reveal half-integer order peaks due to oxygen octahedral tilting. When the film thickness is decreased below 20 unit cells, the integer-order Bragg peak splitting associated with the presence of multiple domains of the monoclinic phase disappears. Instead, a single peak that is commensurate with the STO substrate lattice appears. The diffraction pattern has four-fold symmetry, ruling out the presence of a single monoclinic domain in favor of a tetragonal film structure. The evolution of the oxygen octahedra tilt pattern inferred from the intensities of half-order peaks suggests that this transition originates from the corner-connectivity of oxygen atoms at the interface between BFO and STO, and also strongly supports this monoclinic to tetragonal transition. Supported in part by the U.S. Department of Energy (DE-FG02-06ER46273). Measurements performed at Sectors 13-BMC, 33-IDD, 33-BMC of the Advanced Photon Source, Argonne National Laboratory, USA (DOE contract No. DE-AC02-06CH11357).
Structure of water clusters on graphene: A classical molecular dynamics approach
NASA Astrophysics Data System (ADS)
Maekawa, Yuki; Sasaoka, Kenji; Yamamoto, Takahiro
2018-03-01
The microscopic structure of surface water adsorbed on graphene is elucidated theoretically by classical molecular dynamics simulation. At a low temperature (100 K), the main polygon consisting of hydrogen bonds in single-layered water on graphene is tetragonal, whereas the dominant polygons in double-layered water are tetragonal, pentagonal, and hexagonal. On the other hand, at room temperature, the tetragonal, pentagonal, and hexagonal water clusters are the main structures in both single- and double-layered water.
NASA Astrophysics Data System (ADS)
Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan; Ran, Sheng; Valentí, Roser; Canfield, Paul C.
2016-01-01
Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe2As2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ˜25 % on cooling from room temperature to ˜100 K in the tetragonal phase and is only weakly temperature dependent at low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe2As2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.
Crystal Growth and Optical Properties of Co2+ Doped SrLaGa3O7
2001-01-01
Electron Spin Resonance, absorption spectra, gallate crystals, thermal annealing. 1. INTRODUCTION SrLaGa307 (SLGO) belongs to the family of binary... gallates of alkaline and rare earth metals. Crystal of these compounds have the tetragonal gehlenite (Ca 2AS12SiO 7) structure (space group: P-421ml, D 3 2d
Electronic structures and superconductivity in LuTE2Si2 phases (TE = d-electron transition metal)
NASA Astrophysics Data System (ADS)
Samsel-Czekała, M.; Chajewski, G.; Wiśniewski, P.; Romanova, T.; Hackemer, A.; Gorzelniak, R.; Pikul, A. P.; Kaczorowski, D.
2018-05-01
In the course of our search for unconventional superconductors amidst the 1:2:2 phases, we have re-investigated the LuTE2Si2 compounds with TE = Fe, Co, Ni, Ru, Pd and Pt. In this paper, we present the results of our fully relativistic ab initio calculations of the band structures, performed using the full-potential local-orbital code. The theoretical data are supplemented by the results of low-temperature electrical transport and specific heat measurements performed down to 0.35 K. All the materials studied but LuPt2Si2 crystallize with the body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm). Their Fermi surfaces exhibit a three-dimensional multi-band character. In turn, the Pt-bearing compound adopts the primitive tetragonal CaBe2Ge2-type structure (space group P4/nmm), and its Fermi surface consists of predominantly quasi-two-dimensional sheets. Bulk superconductivity was found only in LuPd2Si2 and LuPt2Si2 (independent of the structure type and dimensionality of the Fermi surface). The key superconducting characteristics indicate a fully-gapped BCS type character. Though the electronic structure of LuFe2Si2 closely resembles that of the unconventional superconductor YFe2Ge2, this Lu-based silicide exhibits neither superconductivity nor spin fluctuations at least down to 0.35 K.
Ab initio study of the structural phase transitions of the double perovskites Sr2MWO6 (M=Zn, Ca, Mg)
NASA Astrophysics Data System (ADS)
Petralanda, U.; Etxebarria, I.
2014-02-01
We study the interplay of structural distortions in double perovskites Sr2MWO6 (M = Zn, Ca, Mg) by means of first-principles calculations and group theoretical analysis. Structure relaxations of the cubic, tetragonal, and monoclinic phases show that the ground states of the three compounds are monoclinic, although the energy difference between the monoclinic and tetragonal structures is very small in the case of Sr2MgWO6. The symmetry analysis of the distortions involved in the experimental and calculated low-temperature structures shows that the amplitude of two primary distortions associated to rigid rotations of the MX6 and WO6 octahedra are dominant, although the amplitude of a third mode related to deformations of the MX6 groups can not be neglected. The energy maps of the space spanned by the three relevant modes are calculated, and the couplings among the modes are evaluated, showing that the role of a hard secondary mode (in the Landau sense) coupled trilinearly to the two primary instabilities is crucial to stabilize the monoclinic ground state. Results suggest that the key role of the trilinear coupling among three modes could be rather common. A phenomenological theory including the effects of the chemical pressure is also developed. We find that the evolution of the stiffness constants in terms of the atomic substitution follows an accurate linear dependence and that the influence of quantum saturation of the order parameters could stabilize the tetragonal phase of Sr2MgWO6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahmawati, F., E-mail: fitria@mipa.uns.ac.id; Apriyani, K.; Heraldy, E.
2016-03-29
In order to increase the economic value of local zircon concentrate from Bangka Island, NiO-YSZ was synthesized from Zirconia, ZrO{sub 2} that was prepared from local zircon concentrate. The NiO-YSZ composite was synthesized by solid state reaction method. XRD analysis equipped with Le Bail refinement was carried out to analyze the crystal structure and cell parameters of the prepared materials. The result showed that zirconia was crystallized in tetragonal structure with a space group of P42/NMC. Yttria-Stabilized-Zirconia (YSZ) was prepared by doping 8% mol yttrium oxide into zirconia and then sintered at 1250°C for 3 hours. Doping of 8% molmore » Yttria allowed phase transformation of zirconia from tetragonal into the cubic structure. Meanwhile, the composite of NiO-YSZ consists of two crystalline phases, i.e. the NiO with cubic structure and the YSZ with cubic structure. SEM analysis of the prepared materials shows that the addition of NiO into YSZ allows the morphology to become more roughness with larger grain size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan
Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe 2As 2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ~25% on cooling from room temperature to ~100 K in the tetragonal phase and is only weakly temperature dependent atmore » low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe 2As 2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Furthermore, based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.« less
NASA Astrophysics Data System (ADS)
Akdogan, E. K.; Safari, A.
2007-03-01
We propose a phenomenological intrinsic finite-size effect model for single domain, mechanically free, and surface charge compensated ΔG-P ⃗s-ξ space, which describes the decrease in tetragonal phase stability with decreasing ξ rigorously.
NASA Technical Reports Server (NTRS)
Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John
2002-01-01
Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.
Room temperature metastable monoclinic phase in BaTiO3 crystals
NASA Astrophysics Data System (ADS)
Lummen, Tom; Wang, Jianjun; Holt, Martin; Kumar, Amit; Vlahos, Eftihia; Denev, Sava; Chen, Long-Qing; Gopalan, Venkatraman
2011-03-01
Low-symmetry monoclinic phases in ferroelectric materials are of considerable interest, due to their associated enhanced electromechanical coupling. Such phases have been found in Pb-based perovskite solid solutions such as lead zirconate titanate (PZT), where they form structural bridges between the rhombohedral and tetragonal ground states in compositional space. In this work, we directly image such a monoclinic phase in BaTi O3 crystals at room-temperature, using optical second harmonic generation, Raman, and X-ray microscopic imaging techniques. Phase-field modeling indicates that ferroelectric domain microstructures in BaTi O3 induce local inhomogeneous stresses in the crystals, which can effectively trap the transient intermediate monoclinic structure that occurs across the thermal orthorhombic-tetragonal phase boundary. The induced metastable monoclinic domains are ferroelectrically soft, being easily moved by electric fields as low as 0.5 kV cm-1 . Stabilizing such intermediate low-symmetry phases could very well lead to Pb-free materials with enhanced piezoelectric properties.
Thickness-modulated anisotropic ferromagnetism in Fe-doped epitaxial HfO2 thin films
NASA Astrophysics Data System (ADS)
Liu, Wenlong; Liu, Ming; Zhang, Ruyi; Ma, Rong; Wang, Hong
2017-10-01
Epitaxial tetragonal Fe-doped Hf0.95Fe0.05O2 (FHO) thin films with various thicknesses were deposited on (001)-oriented NdCaAlO4 (NCAO) substrates by using a pulsed laser deposition (PLD) system. The crystal structure and epitaxial nature of the FHO thin films were confirmed by typical x-ray diffraction (XRD) θ-2θ scan and reciprocal space mapping (RSM). The results indicate that two sets of lattice sites exist with two different crystal orientations [(001) and (100)] in the thicker FHO thin films. Further, the intensity of the (100) direction increases with the increase in thicknesses, which should have a significant effect on the anisotropic magnetization of the FHO thin films. Meanwhile, all the FHO thin films possess a tetragonal phase structure. An anisotropy behavior in magnetization has been observed in the FHO thin films. The anisotropic magnetization of the FHO thin films is slowly weakened as the thickness increases. Meanwhile, the saturation magnetization (Ms) of both in-plane and out-of-plane decreases with the increase in the thickness. The change in the anisotropic magnetization and Ms is attributed to the crystal lattice and the variation in the valence of Fe ions. These results indicate that the thickness-modulated anisotropic ferromagnetism of the tetragonal FHO epitaxial thin films is of potential use for the integration of metal-oxide semiconductors with spintronics.
Antiferromagnetism in EuCu 2As 2 and EuCu 1.82Sb 2 single crystals
Anand, V. K.; Johnston, D. C.
2015-05-07
Single crystals of EuCu 2As 2 and EuCu 2Sb 2 were grown from CuAs and CuSb self-flux, respectively. The crystallographic, magnetic, thermal, and electronic transport properties of the single crystals were investigated by room-temperature x-ray diffraction (XRD), magnetic susceptibility χ versus temperature T, isothermal magnetization M versus magnetic field H, specific heat C p(T), and electrical resistivity ρ(T) measurements. EuCu 2As 2 crystallizes in the body-centered tetragonal ThCr 2Si 2-type structure (space group I4/mmm), whereas EuCu 2Sb 2 crystallizes in the related primitive tetragonal CaBe 2Ge 2-type structure (space group P4/nmm). The energy-dispersive x-ray spectroscopy and XRD data for themore » EuCu 2Sb 2 crystals showed the presence of vacancies on the Cu sites, yielding the actual composition EuCu 1.82Sb 2. The ρ(T) and C p(T) data reveal metallic character for both EuCu 2As 2 and EuCu 1.82Sb 2. Antiferromagnetic (AFM) ordering is indicated from the χ(T),C p(T), and ρ(T) data for both EuCu 2As 2 (T N = 17.5 K) and EuCu 1.82Sb 2 (T N = 5.1 K). In EuCu 1.82Sb 2, the ordered-state χ(T) and M(H) data suggest either a collinear A-type AFM ordering of Eu +2 spins S = 7/2 or a planar noncollinear AFM structure, with the ordered moments oriented in the tetragonal ab plane in either case. This ordered-moment orientation for the A-type AFM is consistent with calculations with magnetic dipole interactions. As a result, the anisotropic χ(T) and isothermal M(H) data for EuCu 2As 2, also containing Eu +2 spins S = 7/2, strongly deviate from the predictions of molecular field theory for collinear AFM ordering and the AFM structure appears to be both noncollinear and noncoplanar.« less
Diffusion of vaporous guests into a seemingly non-porous organic crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herbert, Simon A.; Janiak, Agnieszka; Thallapally, Praveen K.
2014-10-07
In this research, the tetragonal apohost phase of p-tert-butyltetramethoxythiacalix[4]arene absorbs hydrochloric acid and iodine. These guest molecules occupy different sites in the solid-state structure -- either within the small intrinsic voids of the macrocycle or within the interstitial spaces between the host molecules. This study illustrates the dynamic deformation of the host, providing strong mechanistic insight into the diffusion of guests into this seemingly non-porous material.
Zheng, Wen-Chen; Mei, Yang; Yang, Yu-Guang; Liu, Hong-Gang
2012-11-01
Based on the defect models that the tetragonal Y(2+) (1) center in the irradiated CaF(2): Y crystal is due to Y(2+) at Ca(2+) site associated with a nearest interstitial F(-) ion along C(4) axis and the tetragonal Y(2+) (2) center is Y(2+) at Ca(2+) site where the tetragonal distortion is caused by the static Jahn-Teller effect, the two optical spectral bands and anisotropic g factors for both tetragonal Y(2+) centers are calculated. The calculations are made by using two methods based on the cluster approach, one is the complete diagonalization (of energy matrix) method (CDM) and another is the perturbation theory method (PTM). The calculated results for each Y(2+) center from CDM and PTM coincide and show reasonable agreement with the experimental values. The calculated isotropic g factor for Y(2+) (2) center at higher temperature owing to the dynamical Jahn-Teller effect is also consistent with the observed value. The defect structures (i.e., tetragonal distortion) of the two Y(2+) centers are obtained from the calculation. It appears that both theoretical methods can be applied to explain the optical and EPR data, to study the defect model and to determine the defect structures for d(1) ions in crystals. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vlahos, E.; Kumar, A.; Denev, S.; Melville, A.; Adamo, C.; Ihlefeld, J. F.; Sheng, G.; Zeches, R. J.; Zhang, J. X.; He, Q.; Yang, C. H.; Erni, R.; Rossell, M. D.; J, A.; Hatt; Chu, Y.-H.; Wang, C. H.; Ederer, C.; Gopalan, V.; Chen, L. Q.; Schlom, D. G.; Spaldin, N. A.; Martin, L. W.; Ramesh, R.; Tenne, Dmitri
2010-03-01
We have shown that biaxially strained BiFeO3 thin films can undergo an isosymmetric phase transition from a rhombohedral-like to a tetragonal-like phase. This talk discusses the evolution of the tetragonal and the mixed phases in BiFeO3/YAlO3 thin films with varying film thickness using optical second harmonic generation (SHG) and Raman spectroscopy. 25nm, 75nm, and 225 nm thick films were studied; thinner films are dominated by the tetragonal phase, whereas thicker films exhibit both tetragonal and rhombohedral phases. The evolution of these phases as function of film thickness and temperature was experimentally determined.
Pressure-induced phase transitions of β-type pyrochlore CsTaWO 6
Zhang, F. X.; Tracy, C. L.; Shamblin, J.; ...
2016-09-30
The β-type pyrochlore CsTaWO 6 was studied by synchrotron X-ray diffraction (XRD) and Raman scattering methods up to pressures of 43 GPa using a diamond anvil cell (DAC). With increasing pressure, the cubic pyrochlore in space group of Fd-3¯m with combining macron]m transforms to an orthorhombic structure (space group: Pnma) at 5.9 GPa and then to a monoclinic structure (space group: P2 1/c) at ~18 GPa. The structural evolution in CsTaWO 6 is a continuous process and experimental results suggest that the initial cubic phase has a tetragonal distortion at ambient conditions. Both XRD and Raman measurements indicate that themore » pressure-induced phase transitions in CsTaWO 6 are reversible. Lastly, these results may provide a structural explanation of previous experimental resistivity measurement results for the isostructural superconductor K(Cs)Os 2O 6 at high pressure conditions.« less
Pressure-induced phase transitions of β-type pyrochlore CsTaWO 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, F. X.; Tracy, C. L.; Shamblin, J.
The β-type pyrochlore CsTaWO 6 was studied by synchrotron X-ray diffraction (XRD) and Raman scattering methods up to pressures of 43 GPa using a diamond anvil cell (DAC). With increasing pressure, the cubic pyrochlore in space group of Fd-3¯m with combining macron]m transforms to an orthorhombic structure (space group: Pnma) at 5.9 GPa and then to a monoclinic structure (space group: P2 1/c) at ~18 GPa. The structural evolution in CsTaWO 6 is a continuous process and experimental results suggest that the initial cubic phase has a tetragonal distortion at ambient conditions. Both XRD and Raman measurements indicate that themore » pressure-induced phase transitions in CsTaWO 6 are reversible. Lastly, these results may provide a structural explanation of previous experimental resistivity measurement results for the isostructural superconductor K(Cs)Os 2O 6 at high pressure conditions.« less
Crystal structures of the double perovskites Ba{sub 2}Sr{sub 1-} {sub x} Ca {sub x} WO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, W.T.; Akerboom, S.; IJdo, D.J.W.
2007-05-15
Structures of the double perovskites Ba{sub 2}Sr{sub 1-} {sub x} Ca {sub x} WO{sub 6} have been studied by the profile analysis of X-ray diffraction data. The end members, Ba{sub 2}SrWO{sub 6} and Ba{sub 2}CaWO{sub 6}, have the space group I2/m (tilt system a {sup 0} b {sup -} b {sup -}) and Fm3-barm (tilt system a {sup 0} a {sup 0} a {sup 0}), respectively. By increasing the Ca concentration, the monoclinic structure transforms to the cubic one via the rhombohedral R3-bar phase (tilt system a {sup -} a {sup -} a {sup -}) instead of the tetragonal I4/mmore » phase (tilt system a {sup 0} a {sup 0} c {sup -}). This observation supports the idea that the rhombohedral structure is favoured by increasing the covalency of the octahedral cations in Ba{sub 2} MM'O{sub 6}-type double perovskites, and disagrees with a recent proposal that the formation of the {pi}-bonding, e.g., d {sup 0}-ion, determines the tetragonal symmetry in preference to the rhombohedral one. - Graphical abstract: Enlarged sections showing the evolution of the basic (222) and (400) reflections in Ba{sub 2}Sr{sub 1-} {sub x} Ca {sub x} WO{sub 6}. Tick marks below are the positions of Bragg's reflections calculated using the space groups I2/m (x=0), R3-bar (x=0.25, 0.5 and 0.75) and Fm3-barm (x=1), respectively.« less
The magnetic structure of EuCu 2Sb 2
Ryan, D. H.; Cadogan, J. M.; Anand, V. K.; ...
2015-05-06
Antiferromagnetic ordering of EuCu 2Sb 2 which forms in the tetragonal CaBe 2Ge 2-type structure (space group P4/nmm #129) has been studied using neutron powder diffraction and 151Eu Mössbauer spectroscopy. The room temperature 151Eu isomer shift of –12.8(1) mm/s shows the Eu to be divalent, while the 151Eu hyperfine magnetic field (B hf) reaches 28.7(2) T at 2.1 K, indicating a full Eu 2+ magnetic moment. B hf(T) follows a smoothmore » $$S=\\frac{7}{2}$$ Brillouin function and yields an ordering temperature of 5.1(1) K. Refinement of the neutron diffraction data reveals a collinear A-type antiferromagnetic arrangement with the Eu moments perpendicular to the tetragonal c-axis. As a result, the refined Eu magnetic moment at 0.4 K is 7.08(15) μ B which is the full free-ion moment expected for the Eu 2+ ion with $$S=\\frac{7}{2}$$ and a spectroscopic splitting factor of g = 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Chen; Pinkerton, Frederick E.; Herbst, Jan F.
New magnetic materials containing cerium, iron, and small additions of a third element are disclosed. These materials comprise compounds Ce(Fe.sub.12-xM.sub.x) where x=1-4, having the ThMn.sub.12 tetragonal crystal structure (space group I4/mmm, #139). Compounds with M=B, Al, Si, P, S, Sc, Co, Ni, Zn, Ga, Ge, Zr, Nb, Hf, Ta, and W are identified theoretically, and one class of compounds based on M=Si has been synthesized. The Si cognates are characterized by large magnetic moments (4.pi.M.sub.s greater than 1.27 Tesla) and high Curie temperatures (264.ltoreq.T.sub.c.ltoreq.305.degree. C.). The Ce(Fe.sub.12-xM.sub.x) compound may contain one or more of Ti, V, Cr, and Mo inmore » combination with an M element. Further enhancement in T.sub.c is obtained by nitriding the Ce compounds through heat treatment in N.sub.2 gas while retaining the ThMn.sub.12 tetragonal crystal structure; for example CeFe.sub.10Si.sub.2N.sub.1.29 has T.sub.c=426.degree. C.« less
Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO3
NASA Astrophysics Data System (ADS)
Rosenberg, Aaron J.; Katmis, Ferhat; Kirtley, John R.; Gedik, Nuh; Moodera, Jagadeesh S.; Moler, Kathryn A.
2017-12-01
The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-bandgap ferromagnetic insulator with a Curie temperature around 16 K, and SrTiO3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K, indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. We speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange.
Zhao, Jinggeng; Liu, Haozhe; Ehm, Lars; Dong, Dawei; Chen, Zhiqiang; Liu, Qingqing; Hu, Wanzheng; Wang, Nanlin; Jin, Changqing
2013-07-15
High-pressure angle-dispersive X-ray diffraction experiments on iron-based superconductor Ce(O(0.84)F(0.16))FeAs were performed up to 54.9 GPa at room temperature. A tetragonal to tetragonal isostructural phase transition starts at about 13.9 GPa, and a new high-pressure phase has been found above 33.8 GPa. At pressures above 19.9 GPa, Ce(O(0.84)F(0.16))FeAs completely transforms to a high-pressure tetragonal phase, which remains in the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure tetragonal phase. The structure analysis shows a discontinuity in the pressure dependences of the Fe-As and Ce-(O, F) bond distances, as well as the As-Fe-As and Ce-(O, F)-Ce bond angles in the transition region, which correlates with the change in T(c) of this compound upon compression. The isostructural phase transition in Ce(O(0.84)F(0.16))FeAs leads to a drastic drop in the superconducting transition temperature T(c) and restricts the superconductivity at low temperature. For the 1111-type iron-based superconductors, the structure evolution and following superconductivity changes under compression are related to the radius of lanthanide cations in the charge reservoir layer.
Determining the structure of tetragonal Y 2WO 6 and the site occupation of Eu 3+ dopant
NASA Astrophysics Data System (ADS)
Huang, Jinping; Xu, Jun; Li, Hexing; Luo, Hongshan; Yu, Xibin; Li, Yikang
2011-04-01
The compound Y 2WO 6 is prepared by solid state reaction at 750 °C using sodium chloride as mineralizer. Its structure is solved by ab-initio methods from X-ray powder diffraction data. This low temperature phase of yttrium tungstate crystallizes in tetragonal space group P4/ nmm (No. 129), Z=2, a=5.2596(2) Å, c=8.4158(4) Å. The tungsten atoms in the structure adopt an unusual [WO 6] distorted cubes coordination, connecting [YO 6] distorted cubes with oxygen vacancies at the O 2 layers while other yttrium ions Y 2 form [YO 8] cube coordination. Y 3+ ions occupy two crystallographic sites of 2 c ( C4v symmetry) and 2 a ( D2d symmetry) in the Y 2WO 6 host lattice. With Eu 3+ ions doped, the high resolution emission spectrum of Y 2WO 6:Eu 3+ suggests that Eu 3+ partly substituted for Y 3+ in these two sites. The result of the Rietveld structure refinement shows that the Eu 3+ dopants preferentially enter the 2 a site. The uniform cube coordination environment of Eu 3+ ions with the identical eight Eu-O bond lengths is proposed to be responsible for the intense excitation of long wavelength ultraviolet at 466-535 nm.
Structural stability and electronic properties of β-tetragonal boron: A first-principles study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayami, Wataru, E-mail: hayami.wataru@nims.go.jp
2015-01-15
It is known that elemental boron has five polymorphs: α- and β-rhombohedral, α- and β-tetragonal, and the high-pressure γ phase. β-tetragonal (β-t) boron was first discovered in 1960, but there have been only a few studies since then. We have thoroughly investigated, using first-principles calculations, the atomic and electronic structures of β-t boron, the details of which were not known previously. The difficulty of calculation arises from the fact that β-t boron has a large unit cell that contains between 184 and 196 atoms, with 12 partially-occupied interstitial sites. This makes the number of configurations of interstitial atoms too greatmore » to calculate them all. By introducing assumptions based on symmetry and preliminary calculations, the number of configurations to calculate can be greatly reduced. It was eventually found that β-t boron has the lowest total energy, with 192 atoms (8 interstitial atoms) in an orthorhombic lattice. The total energy per atom was between those of α- and β-rhombohedral boron. Another tetragonal structure with 192 atoms was found to have a very close energy. The valence bands were fully filled and the gaps were about 1.16 to 1.54 eV, making it comparable to that of β-rhombohedral boron. - Graphical abstract: Electronic density distribution for the lowest-energy configuration (N=192) viewed from the 〈1 0 0〉 direction. Left: isosurface (yellow) at d=0.09 electrons/a.u.{sup 3} Right: isosurface (orange) at d=0.12 electrons/a.u.{sup 3}. - Highlights: • β-tetragonal boron was thoroughly investigated using first-principles calculations. • The lowest energy structure contains 192 atoms in an orthorhombic lattice. • Another tetragonal structure with 192 atoms has a very close energy. • The total energy per atom is between those of α- and β-rhombohedral boron. • The band gap of the lowest energy structure is about 1.16 to 1.54 eV.« less
NASA Astrophysics Data System (ADS)
Ledderboge, Florian; Nowak, Jan; Massonne, Hans-Joachim; Förg, Katharina; Höppe, Henning A.; Schleid, Thomas
2018-07-01
Colourless, water- and air-stable single crystals of yttrium(III) oxoarsenate(V) Y[AsO4] in the xenotime-type crystal structure were prepared by the reaction of yttrium sesquioxide (Y2O3) dissolved in aqueous nitric acid (13%) with a solution of arsenic(V) oxide hydrate (As2O5·3H2O) and subsequent neutralization with 1 M caustic soda. Y[AsO4] crystallizes tetragonally in the space group I41/amd with the lattice parameters a = 704.63(6) and c = 628.94(5) pm for Z = 4 and is isotypic to the minerals xenotime RE[PO4] (RE: mainly Y and Yb) and chernovite RE[AsO4] (RE: mainly Y and Ce). This xenotime-type yttrium compound was used as precursor in a high-pressure experiment (20 kbar) at 700 °C to create a new tetragonal modification of Y[AsO4]. It shows the scheelite-type structure (space group: I41/a) with the lattice parameters a = 498.23(4) and c = 1120.71(9) pm for Z = 4, named after the mineral scheelite (Ca[WO4]). Both tetragonal structures are characterized by only one crystallographically unique position for each of the Y3+, As5+ and O2- ions with distances of d(Y-O) = 232 and 241 pm (C.N. = 8) as well as d(As-O) = 169 pm (C.N. = 4) in the case of the scheelite-type structure. The xenotime-type compound shows an unexpected slight decrease in average bond lengths for the yttrium to oxygen (d(Y-O) = 230 and 241 pm, C.N. = 8) as well as for the arsenic to oxygen distances (d(As-O) = 168 pm, C.N. = 4), accompanied by a drastic density increase from Dx = 4.85 (xenotime type) to Dx = 5.44 g • cm-3 (scheelite type). Luminescence spectroscopic measurements of the Eu3+-doped Y[AsO4] samples, obtained in experiments at similar conditions as for the pure compounds, show a bright, reddish lighting for the scheelite type, which does not occur for the xenotime type of yttrium(III) oxoarsenate(V).
Diffraction studies of the high pressure phases of GaAs and GaP
NASA Technical Reports Server (NTRS)
Baublitz, M., Jr.; Ruoff, A. L.
1982-01-01
High pressure structural phase transitions of GaAs and GaP have been studied by energy dispersive X-ray diffraction with the radiation from the Cornell High Energy Synchrotron Source. GaAs began to transform at 172 + or - 7 kbar to an orthorhombic structure possibly belonging to space group Fmmm. GaP transformed to a tetragonal beta-Sn type phase at 215 + or - 8 kbar. Although pressure transmitting media were used to minimize shear stresses in the specimens, the high pressure diffraction results were interpreted as showing evidence for planar defects in the specimens.
Evolution of structure and superconductivity in Ba(Ni 1 -xCox)2As2
NASA Astrophysics Data System (ADS)
Eckberg, Chris; Wang, Limin; Hodovanets, Halyna; Kim, Hyunsoo; Campbell, Daniel J.; Zavalij, Peter; Piccoli, Philip; Paglione, Johnpierre
2018-06-01
The effects of Co substitution on Ba (Ni1-xCox) 2As2 (0 ≤x ≤0.251 ) single crystals grown out of Pb flux are investigated via transport, magnetic, and thermodynamic measurements. BaNi2As2 exhibits a first-order tetragonal to triclinic structural phase transition at Ts=137 K upon cooling, and enters a superconducting phase below Tc=0.7 K. The structural phase transition is sensitive to cobalt content and is suppressed completely by x ≥0.133 . The superconducting critical temperature, Tc, increases continuously with x , reaching a maximum of Tc=2.3 K at x =0.083 and then decreases monotonically until superconductivity is no longer observable well into the tetragonal phase. In contrast to similar BaNi2As2 substitutional studies, which show an abrupt change in Tc at the triclinic-tetragonal boundary that extends far into the tetragonal phase, Ba (Ni1-xCox) 2As2 exhibits a domelike phase diagram centered around the zero-temperature tetragonal-triclinic boundary. Together with an anomalously large heat capacity jump Δ Ce/γ T ˜2.2 near optimal doping, the smooth evolution of Tc in the Ba (Ni1-xCox) 2As2 system suggests a mechanism for pairing enhancement other than phonon softening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Rishikesh, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in
2014-07-28
We present here the results of structural studies on multiferroic (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} solid solution using Rietveld analysis on powder x-ray diffraction data in the composition range 0.35 ≤ x ≤ 0.55. The stability region of various crystallographic phases at room temperature for (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} is determined precisely. Structural transformation from pseudo-cubic (x ≤ 0.40) to tetragonal (x ≥ 0.50) phase is observed via phase coexistence region demarcating the morphotropic phase boundary. The morphotropic phase boundary region consists of coexisting tetragonal and monoclinic structures with space group P4mm and Pm, respectively, stable in composition range 0.41 ≤ x ≤ 0.49 as confirmed by Rietveld analysis. The resultsmore » of Rietveld analysis completely rule out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier workers. A comparison between the bond lengths for “B-site cations-oxygen anions” obtained after Rietveld refinement, with the bond length calculated using Shannon-Prewitt ionic radii, reveals the ionic nature of B-O (Ni/Ti-O) bonds for the cubic phase and partial covalent character for the other crystallographic phases.« less
Ideal strength of bcc molybdenum and niobium
NASA Astrophysics Data System (ADS)
Luo, Weidong; Roundy, D.; Cohen, Marvin L.; Morris, J. W.
2002-09-01
The behavior of bcc Mo and Nb under large strain was investigated using the ab initio pseudopotential density-functional method. We calculated the ideal shear strength for the {211}<111> and {011}<111> slip systems and the ideal tensile strength in the <100> direction, which are believed to provide the minimum shear and tensile strengths. As either material is sheared in either of the two systems, it evolves toward a stress-free tetragonal structure that defines a saddle point in the strain-energy surface. The inflection point on the path to this tetragonal ``saddle-point'' structure sets the ideal shear strength. When either material is strained in tension along <100>, it initially follows the tetragonal, ``Bain,'' path toward a stress-free fcc structure. However, before the strained crystal reaches fcc, its symmetry changes from tetragonal to orthorhombic; on continued strain it evolves toward the same tetragonal saddle point that is reached in shear. In Mo, the symmetry break occurs after the point of maximum tensile stress has been passed, so the ideal strength is associated with the fcc extremum as in W. However, a Nb crystal strained in <100> becomes orthorhombic at tensile stress below the ideal strength. The ideal tensile strength of Nb is associated with the tetragonal saddle point and is caused by failure in shear rather than tension. In dimensionless form, the ideal shear and tensile strengths of Mo (τ*=τm/G111=0.12, σ*=σm/E100=0.078) are essentially identical to those previously calculated for W. Nb is anomalous. Its dimensionless shear strength is unusually high, τ*=0.15, even though the saddle-point structure that causes it is similar to that in Mo and W, while its dimensionless tensile strength, σ*=0.079, is almost the same as that of Mo and W, even though the saddle-point structure is quite different.
NASA Astrophysics Data System (ADS)
Singh, Anar; Kaifeng, Dong; Chen, Jing-Sheng
2018-03-01
Epitaxial BiFeO3 thin films of 130nm were deposited by pulsed laser deposition (PLD) technique on La0.67Sr0.33MnO3 buffered SrTiO3 (001) substrate at various temperatures under different ambient oxygen pressures. Reciprocal space mapping reveals that, with decreasing temperature and oxygen pressure, the broadly reported monoclinic phase (MA) of BiFeO3 thin film initially transforms to a tetragonal phase (T1) with c/a =1.05 (1) in a narrow girth of deposition condition and then to a super-tetragonal phase (T2) with giant c/a = 1.24 (1), as confirmed by reciprocal space mapping using high resolution x-ray diffraction. The surface morphology of the films reveals the island growth of the BiFeO3 films deposited at low temperatures. We propose that the transformation from monoclinic to the super-tetragonal phase is essentially due to the manifestation of excess local strain as a result of the island growth. This study offers a recipe to grow the super-tetragonal phase of BiFeO3, with giant c/a =1.24 (1) which exhibits exceptionally large ferroelectric polarization, on ferromagnetic layer La0.67Sr0.33MnO3. This phase of BiFeO3 can be utilized for the ferroelectric control of magnetism at the interface of BiFeO3 and La0.67Sr0.33MnO3.
Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO 3
Rosenberg, Aaron J.; Katmis, Ferhat; Kirtley, John R.; ...
2017-12-15
The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-bandgap ferromagnetic insulator with a Curie temperature around 16K, and SrTiO 3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K,more » indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. Here, we speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange.« less
Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, Aaron J.; Katmis, Ferhat; Kirtley, John R.
The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-bandgap ferromagnetic insulator with a Curie temperature around 16K, and SrTiO 3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K,more » indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. Here, we speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krejčiříková, Veronika; Fábry, Milan; Marková, Vladimíra
2008-07-01
Mouse galectin-4 carbohydrate binding domain was overexpressed in E. coli and crystallized in the presence of lactose. The crystals belong to tetragonal space group P42{sub 1}2 and diffraction data were collected to 2.1 Å resolution. Galectin-4 is thought to play a role in the process of tumour conversion of cells of the alimentary tract and the breast tissue; however, its exact function remains unknown. With the aim of elucidating the structural basis of mouse galectin-4 (mGal-4) binding specificity, we have undertaken X-ray analysis of the N-terminal domain, CRD1, of mGal-4 in complex with lactose (the basic building block of knownmore » galectin-4 carbohydrate ligands). Crystals of CRD1 in complex with lactose were obtained using vapour-diffusion techniques. The crystals belong to tetragonal space group P42{sub 1}2 with unit-cell parameters a = 91.1, b = 91.16, c = 57.10 Å and preliminary X-ray diffraction data were collected to 3.2 Å resolution. An optimized crystallization procedure and cryocooling protocol allowed us to extend resolution to 2.1 Å. Structure refinement is currently under way; the initial electron-density maps clearly show non-protein electron density in the vicinity of the carbohydrate binding site, indicating the presence of one lactose molecule. The structure will help to improve understanding of the binding specificity and function of the potential colon cancer marker galectin-4.« less
Nanowire Ice of Phase VI and Distorted VII in Mesoporous Silica Nanotorus Superlattice
NASA Astrophysics Data System (ADS)
Zhu, Jinlong; Zhang, Jianzhong; Zhao, Yusheng
2014-03-01
The motivation of nano H2O realization and characterization is the highly polarized nature of H2O molecules and the spatial hydrogen bonded networks both in liquid and solid form. The hydrogen bonding character of water molecules results in a remarkably rich phase diagram in the pressure-temperature space. Water/Ice confined in nanochannels showed novel structures and properties as results of hydrophobic and hydrophilic interactions and hydrogen bonding interaction between water molecule and the surface of nanochannel. Studies on nano H2O can provide potential pathway to understand the complicated structure evolutions of ice in the P- T space, because the interplay between nano-confinement and strong intermolecular hydrogen interactions can lead to even richer ice structures which were not found in the none-confined bulk form. The high pressure experiment indicated that the pressure of nanowire ice VI and VII shifted up to 1.7 GPa and 2.5 GPa, and about ~ 0.65 GPa and 0.4 GPa higher than that of normal ice. The nano size effect and the strength of mesoporous silica nanotorus are responsible for the pressure shifts of ice phase regions. More pronounced, the cubic ice VII changed into a tetragonal distorted ``psuedocubic'' structure of the nanowire ice when confined in the mesoporous tubes. The degree of tetragonality increased with increasing pressure, which is resulted from the uniaxial pressure nanowire ice felt, and the anisotropic hydrogen bonding interactions including the H2O-H2O hydrogen bonds in the bulk of the ice and the H2O-silica -OH hydrogen bonds between the interface of nanowire ice and mesoporous silica. The experimental work has benefited from the use of CHESS at Cornell University, which is supported by the NSF award DMR-0936384.
Electron Microscopic Study of the Structure of Tetragonal Martensite in In-4.5% Cd Alloy
NASA Astrophysics Data System (ADS)
Khlebnikova, Yu. V.; Egorova, L. Yu.; Rodionov, D. P.
2018-04-01
In this work, the formation of a packet structure composed of colonies of lamellar plates separated by twin boundary {101}fct in In-4.5 wt % Cd alloy upon cooling below the fcc → fct martensitic transition temperature has been shown using the methods of metallography, X-ray diffraction, transmission electron microscopy, and EBSD analysis. Two neighboring lamellae differ from each other by the direction of their tetragonality axes. Using EBSD analysis, it has been established that neighboring packets always contain three types of tetragonal martensite lamellae, which are in twin positions and differ from each other by the direction of their tetragonality axes. In turn, each martensite lamella consists of a set of smaller lamellae, which are in twin positions. After the cycle of fct → fcc → fct transitions, the alloy recrystallizes with a decrease in the grain size by several times compared with the initial structure such that the size of packets and the length and width of martensitic lamellae in a packet correlate with a change in the size of an alloy grain.
Revealing the hidden structural phases of FeRh
NASA Astrophysics Data System (ADS)
Kim, Jinwoong; Ramesh, R.; Kioussis, Nicholas
2016-11-01
Ab initio electronic structure calculations reveal that tetragonal distortion has a dramatic effect on the relative stability of the various magnetic structures (C-, A-, G-, A'-AFM, and FM) of FeRh giving rise to a wide range of novel stable/metastable structures and magnetic phase transitions between these states. We predict that the cubic G-AFM structure, which was believed thus far to be the ground state, is metastable and that the tetragonally expanded G-AFM is the stable structure. The low energy barrier separating these states suggests phase coexistence at room temperature. We propose an A'-AFM phase to be the global ground state among all magnetic phases which arises from the strain-induced tuning of the exchange interactions. The results elucidate the underlying mechanism for the recent experimental findings of electric-field control of magnetic phase transition driven via tetragonal strain. The magnetic phase transitions open interesting prospects for exploiting strain engineering for the next-generation memory devices.
Ordered structure of FeGe2 formed during solid-phase epitaxy
NASA Astrophysics Data System (ADS)
Jenichen, B.; Hanke, M.; Gaucher, S.; Trampert, A.; Herfort, J.; Kirmse, H.; Haas, B.; Willinger, E.; Huang, X.; Erwin, S. C.
2018-05-01
Fe3Si /Ge (Fe ,Si ) /Fe3Si thin-film stacks were grown by a combination of molecular beam epitaxy and solid-phase epitaxy (Ge on Fe3Si ). The stacks were analyzed using electron microscopy, electron diffraction, and synchrotron x-ray diffraction. The Ge(Fe,Si) films crystallize in the well-oriented, layered tetragonal structure FeGe2 with space group P 4 m m . This kind of structure does not exist as a bulk material and is stabilized by the solid-phase epitaxy of Ge on Fe3Si . We interpret this as an ordering phenomenon induced by minimization of the elastic energy of the epitaxial film.
NASA Astrophysics Data System (ADS)
Rao, Badari Narayana; Khatua, Dipak Kumar; Garg, Rohini; Senyshyn, Anatoliy; Ranjan, Rajeev
2015-06-01
The highly complex structure-property interrelationship in the lead-free piezoelectric (x )N a1 /2B i1 /2Ti O3- (1 -x ) BaTi O3 is a subject of considerable contemporary debate. Using comprehensive x-ray, neutron diffraction, dielectric, and ferroelectric studies, we have shown the existence of a new criticality in this system at x =0.80 , i.e., well within the conventional tetragonal phase field. This criticality manifests as a nonmonotonic variation of the tetragonality and coercivity and is shown to be associated with a crossover from a nonmodulated tetragonal phase (for x <0.8 ) to a long-period modulated tetragonal phase (for x >0.80 ). It is shown that the stabilization of long-period modulation introduces a characteristic depolarization temperature in the system. While differing qualitatively from the two-phase model often suggested for the critical compositions of this system, our results support the view with regard to the tendency in perovskites to stabilize long-period modulated structures as a result of complex interplay of antiferrodistortive modes [Bellaiche and Iniguez, Phys. Rev. B 88, 014104 (2013), 10.1103/PhysRevB.88.014104; Prosandeev, Wang, Ren, Iniguez, ands Bellaiche, Adv. Funct. Mater. 23, 234 (2013), 10.1002/adfm.201201467].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Wenzhi; Yang, Jili; Wang, Chunjie
2012-09-15
Highlights: ► Tetragonal t″ phase was stabilized in Zr{sub 0.5}Ce{sub 0.5}O{sub 2} solid solution at temperature as high as 1000 °C. ► Specific surface area of powders decreased with the increase of water addition and the Ce content. ► The single stable phase was controlled by adjusting the volume ratio of water and ethanol. ► Tetragonal (t″) phase dissociated into cubic and tetragonal (t′) phases at 1200 °C. -- Abstract: ZrO{sub 2}–CeO{sub 2} mixed oxides were synthesized via sol–gel process. Thermal stability, structure and morphology of samples were investigated by powder X-ray diffraction, FT-Raman spectroscopy, X-ray photoelectron spectroscopy and scanningmore » electron microscopy. In this approach, the solvent composition and Zr/Ce molar ratio have great influences on the structure and morphology of final products. With decreasing water content in the mixed solvent, specific surface area of powders increased and the single tetragonal phase was obtained. Only when the volume ratio of water and ethanol and the Zr/Ce molar ratio were 1:1, tetragonal t″-Zr{sub 0.5}Ce{sub 0.5}O{sub 2} could be stabilized in powders at temperature as high as 1000 °C. Meanwhile, tetragonal (t′) and (t″) phases coexisted in Zr{sub 0.5}Ce{sub 0.5}O{sub 2} solid solution without peak splitting after calcination at 1100 °C, further transforming into cubic and tetragonal (t′) phases at 1200 °C. The effective activation energy for Zr{sub 0.5}Ce{sub 0.5}O{sub 2} nanocrystallite growth during annealing is about 5.24 ± 0.15 kJ/mol.« less
Structural phase transitions in Bi2Se3 under high pressure
Yu, Zhenhai; Wang, Lin; Hu, Qingyang; Zhao, Jinggeng; Yan, Shuai; Yang, Ke; Sinogeikin, Stanislav; Gu, Genda; Mao, Ho-kwang
2015-01-01
Raman spectroscopy and angle dispersive X-ray diffraction (XRD) experiments of bismuth selenide (Bi2Se3) have been carried out to pressures of 35.6 and 81.2 GPa, respectively, to explore its pressure-induced phase transformation. The experiments indicate that a progressive structural evolution occurs from an ambient rhombohedra phase (Space group (SG): R-3m) to monoclinic phase (SG: C2/m) and eventually to a high pressure body-centered tetragonal phase (SG: I4/mmm). Evidenced by our XRD data up to 81.2 GPa, the Bi2Se3 crystallizes into body-centered tetragonal structures rather than the recently reported disordered body-centered cubic (BCC) phase. Furthermore, first principles theoretical calculations favor the viewpoint that the I4/mmm phase Bi2Se3 can be stabilized under high pressure (>30 GPa). Remarkably, the Raman spectra of Bi2Se3 from this work (two independent runs) are still Raman active up to ~35 GPa. It is worthy to note that the disordered BCC phase at 27.8 GPa is not observed here. The remarkable difference in atomic radii of Bi and Se in Bi2Se3 may explain why Bi2Se3 shows different structural behavior than isocompounds Bi2Te3 and Sb2Te3. PMID:26522818
Structural phase transitions in Bi 2Se 3 under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhenhai; Gu, Genda; Wang, Lin
2015-11-02
Raman spectroscopy and angle dispersive X-ray diffraction (XRD) experiments of bismuth selenide (Bi 2Se 3) have been carried out to pressures of 35.6 and 81.2 GPa, respectively, to explore its pressure-induced phase transformation. The experiments indicate that a progressive structural evolution occurs from an ambient rhombohedra phase (Space group (SG): R-3m) to monoclinic phase (SG: C2/m) and eventually to a high pressure body-centered tetragonal phase (SG: I4/mmm). Evidenced by our XRD data up to 81.2 GPa, the Bi 2Se 3 crystallizes into body-centered tetragonal structures rather than the recently reported disordered body-centered cubic (BCC) phase. Furthermore, first principles theoretical calculationsmore » favor the viewpoint that the I4/mmm phase Bi 2Se 3 can be stabilized under high pressure (>30 GPa). Remarkably, the Raman spectra of Bi 2Se 3 from this work (two independent runs) are still Raman active up to ~35 GPa. Furthermore, it is worthy to note that the disordered BCC phase at 27.8 GPa is not observed here. The remarkable difference in atomic radii of Bi and Se in Bi 2Se 3 may explain why Bi 2Se 3 shows different structural behavior than isocompounds Bi 2Te 3 and Sb 2Te 3.« less
NASA Astrophysics Data System (ADS)
Marcus, P. M.; Jona, F.
2005-05-01
A simple effective procedure (MNP) for finding equilibrium tetragonal and hexagonal states under pressure is described and applied. The MNP procedure finds a path to minima of the Gibbs free energy G at T=0 K (G=E+pV, E=energy per atom, p=pressure, V=volume per atom) for tetragonal and hexagonal structures by using the approximate expansion of G in linear and quadratic strains at an arbitrary initial structure to find a change in the strains which moves toward a minimum of G. Iteration automatically proceeds to a minimum within preset convergence criteria on the calculation of the minimum. Comparison is made with experimental results for the ground states of seven metallic elements in hexagonal close-packed (hcp), face- and body-centered cubic structures, and with a previous procedure for finding minima based on tracing G along the epitaxial Bain path (EBP) to a minimum; the MNP is more easily generalized than the EBP procedure to lower symmetry and more atoms in the unit cell. Comparison is also made with a molecular-dynamics program for crystal equilibrium structures under pressure and with CRYSTAL, a program for crystal equilibrium structures at zero pressure. Application of MNP to the elements Y and Cd, which have hcp ground states at zero pressure, finds minima of E at face-centered cubic (fcc) structure for both Y and Cd. Evaluation of all the elastic constants shows that fcc Y is stable, hence a metastable phase, but fcc Cd is unstable.
NASA Astrophysics Data System (ADS)
Zhang, Huaming; Yu, Xiaopeng; Xiao, Wenbo
2017-12-01
The electron paramagnetic resonance parameters (g factors g ‖, g ⊥ and hyperfine structure constants A ‖, A ⊥) of a tetragonal V4+ center in oxyfluoroborate glasses (20Li2O-10Li2F2-70B2O3) are theoretically investigated by using the perturbation formulas for a 3d1 ion in tetragonally compressed octahedra. The calculated results are in good agreement with the experimental data. Local structure parameters of [VO6]8- clusters are obtained from the calculation (i.e., R‖ ≈ 1.74 Å and R⊥ ≈ 1.985 Å for the metal-ligand distances parallel and perpendicular to the C4 axis, respectively). It is shown that the local structure around the V4+ ion possesses a compressed tetragonal distortion along C 4 axis. The signs of the hyperfine structure constants A‖ and A ⊥ for V4+ centers in oxyfluoroborate glasses were also suggested in the discussion.
Unusual structural phase transition in [N(C2H5)4][N(CH3)4][ZnBr4
NASA Astrophysics Data System (ADS)
Krawczyk, Monika K.; Ingram, Adam; Cach, Ryszard; Czapla, Zbigniew; Czupiński, Olaf; Dacko, Sławomir; Staniorowski, Piotr
2018-04-01
The new hybrid organic-inorganic crystal [N(C2H5)4][N(CH3)4][ZnBr4] was grown and its physical properties and structural phase transition are presented. On the basis of thermal analysis (DSC (differential scanning calorimetry), DTA (differential thermal analysis), DTG), X-ray structural, dilatometric and dielectric studies as well as optical observation, the reversible first-order phase transition at 490/488 K on heating and cooling run, respectively, has been found. An appearance of domain structure of ferroelastic type gives evidence for an untypical lowering of crystal symmetry during the phase transition. At room temperature, the satisfying crystal structure solution was found in the tetragonal system, in the P?21m space group.
Pseudomorphic to orthomorphic growth of Fe films on Cu3Au(001)
NASA Astrophysics Data System (ADS)
Bruno, F.; Terreni, S.; Floreano, L.; Cossaro, A.; Cvetko, D.; Luches, P.; Mattera, L.; Morgante, A.; Moroni, R.; Repetto, M.; Verdini, A.; Canepa, M.
2002-06-01
The structure of Fe films grown on the (001) surface of a Cu3Au single crystal at room temperature has been investigated by means of grazing incidence x-ray diffraction (GIXRD) and photo/Auger-electron diffraction (ED) as a function of thickness in the (3-36)-Å range. The combination of GIXRD and ED allows one to obtain quantitative information on the in-plane spacing a from the former technique, and the ratio between the vertical spacing c and a, from the latter one. At low coverage the film grows pseudomorphic to the face-centered-cubic substrate. The experimental results obtained on a film of 8 Å thickness clearly indicate the overcoming of the limit for pseudomorphic growth. Above this limit the film is characterized by the coexistence of the pseudomorphic phase with another tetragonally strained phase γ, which falls on the epitaxial line of ferromagnetic face-centered cubic Fe. Finally, the development of a body-centered phase α, whose unit cell is rotated by 45° with respect to the substrate one, has been clearly observed at ~17 Å. α is the dominating phase for film thickness above ~25 Å and its lattice constant evolves towards the orthomorphic phase in strict quantitative agreement with epitaxial curves calculated for body-centered tetragonal iron phases.
NASA Astrophysics Data System (ADS)
Welch, M. D.; Kleppe, A. K.
2016-07-01
The crystal structure of hydroxide perovskite Ga(OH)3, the mineral söhngeite, has been determined for a natural sample by single-crystal XRD in space group P42/ nmc to R 1 = 0.031, wR 2 = 0.071, GoF = 1.208, and for comparison also in space group P42/ n to R 1 = 0.031, wR 2 = 0.073, GoF = 1.076. Unit cell parameters are a = 7.4546(2) Å, c = 7.3915(2) Å, V = 410.75(2) Å3. The two structures are very similar and both have tilt system a + a + c -. The approximate positions of all H atoms in each structure have been refined. In the P42/ nmc structure all five H sites are half-occupied, whereas in the P42/ n structure four sites are half-occupied and one is fully occupied. The presence of five non-equivalent OH groups in söhngeite is confirmed by single-crystal Raman spectroscopy, but does not allow a choice between these two space groups to be made. There is only a single very weak violator of the c-glide of P42/ nmc and the two refined structures are essentially the same, but are significantly different from that of the original description in which orthorhombic space group Pmn21 was reported with corresponding tilt system a 0 a 0 c +. It is argued here that such a structure is very implausible for a hydroxide perovskite. On heating söhngeite to 423 K, transformation to a cubic structure with Imbar{3} symmetry ( a + a + a +) of the aristotype occurs. This cubic phase was recovered on cooling to 293 K without back-transformation to the tetragonal polymorph. As there is no continuous group/subgroup pathway from P42/ nmc (or P42/ n) to Imbar{3}, the transformation must be first-order, which is consistent with the large hysteresis observed. The change from the tetragonal to cubic structures involves a change in tilt system a + a + c - → a + a + a +, with a significant reconfiguration of hydrogen-bonding topology. The very different tilt systems and hydrogen-bonding configurations of the two polymorphs are responsible for hysteresis and metastable preservation of the cubic phase at 293 K. As the Ga(OH)6 octahedra of the low- and high- T polymorphs are very similar it is inferred that the transformation is driven by proton behaviour, presumably involving proton re-ordering.
Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean -Christophe; ...
2017-11-15
In this paper, connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered CH 3NH 3more » + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R- and M-point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean -Christophe
In this paper, connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered CH 3NH 3more » + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R- and M-point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.« less
NASA Astrophysics Data System (ADS)
Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean-Christophe; Even, Jacky; Mohite, Aditya D.; Sfeir, Matthew Y.
2017-11-01
Connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered C H3N H3 + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R - and M -point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.
Magnetic structures and excitations in CePd2(Al,Ga)2 series: Development of the "vibron" states
NASA Astrophysics Data System (ADS)
Klicpera, M.; Boehm, M.; Doležal, P.; Mutka, H.; Koza, M. M.; Rols, S.; Adroja, D. T.; Puente Orench, I.; Rodríguez-Carvajal, J.; Javorský, P.
2017-02-01
CePd2Al2 -xGax compounds crystallizing in the tetragonal CaBe2Ge2 -type structure (space group P 4 /n m m ) and undergoing a structural phase transition to an orthorhombic structure (C m m e ) at low temperatures were studied by means of neutron scattering. The amplitude-modulated magnetic structure of CePd2Al2 is described by an incommensurate propagation vector k ⃗=(δx,1/2 +δy,0 ) with δx=0.06 and δy=0.04 . The magnetic moments order antiferromagnetically within the a b planes stacked along the c axis and are arranged along the direction close to the orthorhombic a axis with a maximum value of 1.5(1) μB/Ce3 +. CePd2Ga2 reveals a magnetic structure composed of two components: the first is described by the propagation vector k1⃗=(1/2 ,1/2 ,0 ) , and the second one propagates with k2⃗=(0 ,1/2 ,0 ) . The magnetic moments of both components are aligned along the same direction—the orthorhombic [100] direction—and their total amplitude varies depending on the mutual phase of magnetic moment components on each Ce site. The propagation vectors k1⃗ and k2⃗ describe also the magnetic structure of substituted CePd2Al2 -xGax compounds, except the one with x =0.1 .CePd2Al1.9Ga0.1 with magnetic structure described by k ⃗ and k1⃗ stays on the border between pure CePd2Al2 and the rest of the series. Determined magnetic structures are compared with other Ce 112 compounds. Inelastic neutron scattering experiments disclosed three nondispersive magnetic excitations in the paramagnetic state of CePd2Al2 , while only two crystal field (CF) excitations are expected from the splitting of ground state J =5/2 of the Ce3 + ion in a tetragonal/orthorhombic point symmetry. Three magnetic excitations at 1.4, 7.8, and 15.9 meV are observed in the tetragonal phase of CePd2Al2 . A structural phase transition to an orthorhombic structure shifts the first excitation up to 3.7 meV, while the other two excitations remain at almost the same energy. The presence of an additional magnetic peak is discussed and described within the Thalmeier-Fulde CF-phonon coupling (i.e., magnetoelastic coupling) model generalized to the tetragonal point symmetry. The second parent compound CePd2Ga2 does not display any sign of additional magnetic excitation. The expected two CF excitations were observed. The development of magnetic excitations in the CePd2Al2 -xGax series is discussed and crystal field parameters determined.
NASA Astrophysics Data System (ADS)
Yadav, Arun Kumar; Verma, Anita; Kumar, Sunil; Srihari, Velaga; Sinha, A. K.; Reddy, V. Raghavendra; Liu, Shun Wei; Biring, Sajal; Sen, Somaditya
2018-03-01
The phase purity and crystal structure of Pb(1-x)LaxTi(1-x)AlxO3 (0 ≤ x ≤ 0.25) samples (synthesized via the sol-gel process) were confirmed using synchrotron x-ray powder diffraction (XRD) (wavelength, λ = 0.44573 Å). Rietveld analyses of powder x-ray diffraction data confirmed the tetragonal structure for compositions with x ≤ 0.18 and cubic structure for the sample with x = 0.25. Temperature-dependent XRD was performed to investigate the structural change from tetragonal to cubic structure phase transition. Raman spectroscopy at room temperature also confirmed this phase transition with compositions. Field emission scanning electron microscopy (FESEM) provided information about the surface morphology while an energy dispersive x-ray spectrometer attached with FESEM confirmed the chemical compositions of samples. Temperature and frequency dependent dielectric studies showed that the tetragonal to cubic phase transition decreased from 680 K to 175 K with an increase in the x from 0.03 to 0.25, respectively. This is correlated with the structural studies. Electric field dependent spontaneous polarization showed a proper ferroelectric loop for 0.06 ≤ x ≤ 0.18 belonging to a tetragonal phase, while for x ≥ 0.25, the spontaneous polarization vanishes. Bipolar strain versus electric field revealed a butterfly loop for 0.06 ≤ x ≤ 0.18 compositions. Energy storage efficiency initially increases nominally with substitution but beyond x = 0.18 enhances considerably.
NASA Astrophysics Data System (ADS)
Nurlybek, A. Ispulov; Abdul, Qadir; M, A. Shah; Ainur, K. Seythanova; Tanat, G. Kissikov; Erkin, Arinov
2016-03-01
The thermoelastic wave propagation in a tetragonal syngony anisotropic medium of classes 4, 4/m having heterogeneity along z axis has been investigated by employing matrizant method. This medium has an axis of second-order symmetry parallel to z axis. In the case of the fourth-order matrix coefficients, the problems of wave refraction and reflection on the interface of homogeneous anisotropic thermoelastic mediums are solved analytically.
Local structures of the tetragonal Gd3 -VM and Gd3 -Li centers in perovskite fluorides
NASA Astrophysics Data System (ADS)
Zheng, W. C.
The zero-field splittings b20 of the tetragonal Gd3+-VM and Gd3+-Li+ centers for Gd3+ ions in fluoroperovskite crystals have been studied on the basis of the superposition model in which the value of t2
NASA Astrophysics Data System (ADS)
Wu, Wei
2015-05-01
The electronic structures of cubic and tetragonal MnV2O4 have been studied using hybrid-exchange density-functional theory. The computed electronic structure of the tetragonal phase shows an antiferro-orbital ordering on V sites and a ferrimagnetic ground state (the spins on V and Mn are antialigned). These results are in good agreement with the previous theoretical result obtained from the local-density approximation + U methods [S. Sarkar et al., Phys. Rev. Lett. 102, 216405 (2009), 10.1103/PhysRevLett.102.216405]. Moreover, the electronic structure, especially the projected density of states of the cubic phase, has been predicted with good agreement with the recent soft x-ray spectroscopy experiment. Similar to the tetragonal phase, the spins on V and Mn in the cubic structure favor a ferrimagnetic configuration. Most interesting is that the computed charge densities of the spin-carrying orbitals on V in the cubic phase show an exotic orbital ordering, i.e., a ferro-orbital ordering along [110] but an antiferro-orbital ordering along [1 ¯10 ] .
Intermediate orthorhombic phases in Ba-122 Iron Arsenides
NASA Astrophysics Data System (ADS)
Ruff, J. P. C.; Islam, Z.; Das, R. K.; Kuo, H.-H.; Fisher, I. R.
2013-03-01
Despite widespread interest, there are details of the tetragonal-orthorhombic structural phase transition in the iron arsenide superconductors that remain controversial. We have revisited the transition in three characteristic compositions of the canonical ``122'' family Ba(Fe/Co)2(As/P)2 using single crystal synchrotron x-ray diffraction. In the parent compound, we confirm previous observations of a sequence of structural transitions which are closely spaced in temperature, and uncover pronounced magnetoelastic effects in the intermediate orthorhombic phase. Modification of the structural transitions by doping is observed to differ significantly depending on whether the dopant is Co or P. Work performed at the Advanced Photon Source was supported by the DOE, under Contract No. DE-AC02-06CH11357.
NASA Astrophysics Data System (ADS)
Li, Ling; Zhu, Mankang; Ren, Xiaowei; Wei, Qiumei; Zheng, Mupeng; Hou, Yudong
2017-12-01
A electrostrictive ceramics were designed by introducing Bi(Mg0.5Ti0.5)O3 into 0.875Bi0.5Na0.5TiO3-0.125BaTiO3 with tetragonal structure. All the specimens prepared by a conventional solid sintering technique exhibit the excellent sintering ability with a high relative density over 97%. It is found that, as BMT added, the specimens undergo a structure crossover from ferroelectric P4mm to ergodic P4bm, and the coexistence of both tetragonal structures takes bridge between them. A large field-induced strain of 0.30% and field-independent strain coefficient of 0.0254 m4/C2 occur at 4 mol.% BMT added. This material with excellent sinterability is suitable for the application in actuators and microposition controllers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoque, Md Nadim Ferdous; Islam, Nazifah; Li, Zhen
Practical hybrid perovskite solar cells (PSCs) must endure temperatures above the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI3). However, the ionic and optical properties of MAPbI3 in such a temperature range, and particularly, dramatic changes in these properties resulting from a structural phase transition, are not well studied. Herein, we report a striking contrast at approximately 45 degrees C in the ionic/electrical properties of MAPbl3 owing to a change of the ion activation energy from 0.7 to 0.5 eV, whereas the optical properties exhibit no particular transition except for the steady increase of the bandgap with temperature. Thesemore » observations can be explained by the 'continuous' nature of perovskite phase transition. We speculate that the critical temperature at which the ionic/electrical properties change, although related to crystal symmetry variation, is not necessarily the same temperature as when tetragonal-cubic structural phase transition occurs.« less
A comprehensive study on the structural evolution of HfO 2 thin films doped with various dopants
Park, Min Hyuk; Schenk, Tony; Fancher, Christopher M.; ...
2017-04-19
The origin of the unexpected ferroelectricity in doped HfO 2 thin films is now considered to be the formation of a non-centrosymmetric Pca2 1 orthorhombic phase. Due to the polycrystalline nature of the films as well as their extremely small thickness (~10 nm) and mixed orientation and phase composition, structural analysis of doped HfO 2 thin films remains a challenging task. As a further complication, the structural similarities of the orthorhombic and tetragonal phase are difficult to distinguish by typical structural analysis techniques such as X-ray diffraction. To resolve this issue, the changes in the grazing incidence X-ray diffraction (GIXRD)more » patterns of HfO 2 films doped with Si, Al, and Gd are systematically examined. For all dopants, the shift of o111/ t101 diffraction peak is observed with increasing atomic layer deposition (ALD) cycle ratio, and this shift is thought to originate from the orthorhombic to P4 2/ nmc tetragonal phase transition with decreasing aspect ratio (2 a/(b + c) for orthorhombic and c/a for the tetragonal phase). For quantitative phase analysis, Rietveld refinement is applied to the GIXRD patterns. A progressive phase transition from P2 1/c monoclinic to orthorhombic to tetragonal is confirmed for all dopants, and a strong relationship between orthorhombic phase fraction and remanent polarization value is uniquely demonstrated. The concentration range for the ferroelectric properties was the narrowest for the Si-doped HfO 2 films. As a result, the dopant size is believed to strongly affect the concentration range for the ferroelectric phase stabilization, since small dopants can strongly decrease the free energy of the tetragonal phase due to their shorter metal–oxygen bonds.« less
A comprehensive study on the structural evolution of HfO 2 thin films doped with various dopants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Min Hyuk; Schenk, Tony; Fancher, Christopher M.
The origin of the unexpected ferroelectricity in doped HfO 2 thin films is now considered to be the formation of a non-centrosymmetric Pca2 1 orthorhombic phase. Due to the polycrystalline nature of the films as well as their extremely small thickness (~10 nm) and mixed orientation and phase composition, structural analysis of doped HfO 2 thin films remains a challenging task. As a further complication, the structural similarities of the orthorhombic and tetragonal phase are difficult to distinguish by typical structural analysis techniques such as X-ray diffraction. To resolve this issue, the changes in the grazing incidence X-ray diffraction (GIXRD)more » patterns of HfO 2 films doped with Si, Al, and Gd are systematically examined. For all dopants, the shift of o111/ t101 diffraction peak is observed with increasing atomic layer deposition (ALD) cycle ratio, and this shift is thought to originate from the orthorhombic to P4 2/ nmc tetragonal phase transition with decreasing aspect ratio (2 a/(b + c) for orthorhombic and c/a for the tetragonal phase). For quantitative phase analysis, Rietveld refinement is applied to the GIXRD patterns. A progressive phase transition from P2 1/c monoclinic to orthorhombic to tetragonal is confirmed for all dopants, and a strong relationship between orthorhombic phase fraction and remanent polarization value is uniquely demonstrated. The concentration range for the ferroelectric properties was the narrowest for the Si-doped HfO 2 films. As a result, the dopant size is believed to strongly affect the concentration range for the ferroelectric phase stabilization, since small dopants can strongly decrease the free energy of the tetragonal phase due to their shorter metal–oxygen bonds.« less
NASA Astrophysics Data System (ADS)
Pani, M.; Manfrinetti, P.; Provino, A.; Yuan, Fang; Mozharivskyj, Y.; Morozkin, A. V.; Knotko, A. V.; Garshev, A. V.; Yapaskurt, V. O.; Isnard, O.
2014-02-01
Novel RNi6Si6 compounds adopt the new CeNi6Si6-type structure for R=La-Ce (tP52, space group P4/nbm N 125-1) and new YNi6Si6-type structure for R=Y, Sm, Gd-Yb (tP52, space group P4barb2N 117) that are tetragonal derivative of NaZn13-type structure, like LaCo9Si4-type. The CeNi6Si6, GdNi6Si6, TbNi6Si6, DyNi6Si6 and HoNi6Si6 compounds are Curie-Weiss paramagnets down to ~30 K, and do not order magnetically down to 5 K. However, the inverse paramagnetic susceptibility of LaNi6Si6 does not follow Curie-Weiss law. The DyNi6Si6 shows ferromagnetic-like saturation behaviour at 5 K in applied fields of 50 kOe, giving rise to a magnetic moment value of 6.5 μB/f.u. in 50 kOe. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi6Si6 with K=[±1/4, ±1/4, 0] wave vector below ~10 K. The CeNi6Si6, GdNi6Si6, TbNi6Si6, DyNi6Si6 and HoNi6Si6 compounds are Curie-Weiss paramagnets down to ~30 K, and do not order magnetically down to 4.2 K. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi6Si6 with K=[±1/4, ±1/4, 0] wave vector below ~10 K.
Fokwa, Boniface P T; Hermus, Martin
2011-04-18
Polycrystalline samples and single crystals of four members of the new complex boride series Ti(3-x)Ru(5-y)Ir(y)B(2+x) (0 ≤ x ≤ 1 and 1 < y < 3) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The new silvery phases were structurally characterized by powder and single-crystal X-ray diffraction as well as energy- and wavelength-dispersive X-ray spectroscopy analyses. They crystallize with the tetragonal Ti(3)Co(5)B(2) structure type in space group P4/mbm (No. 127). Tetragonal prisms of Ru/Ir atoms are filled with titanium in the boron-poorest phase (Ti(3)Ru(2.9)Ir(2.1)B(2)). Gradual substitution of titanium by boron then results in the successive filling of this site by a Ti/B mixture en route to the complete boron occupation, leading to the boron-richest phase (Ti(2)Ru(2.8)Ir(2.2)B(3)). Furthermore, both ruthenium and iridium share two sites in these structures, but a clear Ru/Ir site preference is found. First-principles density functional theory calculations (Vienna ab initio simulation package) on appropriate structural models (using a supercell approach) have provided more evidence on the stability of the boron-richest and -poorest phases, and the calculated lattice parameters corroborate very well with the experimentally found ones. Linear muffin-tin orbital atomic sphere approximation calculations further supported these findings through crystal orbital Hamilton population bonding analyses, which also show that the Ru/Ir-B and Ru/Ir-Ti heteroatomic interactions are mainly responsible for the structural stability of these compounds. Furthermore, some stable and unstable phases of this complex series could be predicted using the rigid-band model. According to the density of states analyses, all phases should be metallic conductors, as was expected from these metal-rich borides.
Yabuta, Hisato; Tanaka, Hidenori; Furuta, Tatsuo; Watanabe, Takayuki; Kubota, Makoto; Matsuda, Takanori; Ifuku, Toshihiro; Yoneda, Yasuhiro
2017-01-01
To stabilise ferroelectric-tetragonal phase of BaTiO3, the double-doping of Bi and Mn up to 0.5 mol% was studied. Upon increasing the Bi content in BaTiO3:Mn:Bi, the tetragonal crystal-lattice-constants a and c shrank and elongated, respectively, resulting in an enhancement of tetragonal anisotropy, and the temperature-range of the ferroelectric tetragonal phase expanded. X-ray absorption fine structure measurements confirmed that Bi and Mn were located at the A(Ba)-site and B(Ti)-site, respectively, and Bi was markedly displaced from the centrosymmetric position in the BiO12 cluster. This A-site substitution of Bi also caused fluctuations of B-site atoms. Magnetic susceptibility measurements revealed a change in the Mn valence from +4 to +3 upon addition of the same molar amount of Bi as Mn, probably resulting from a compensating behaviour of the Mn at Ti4+ sites for donor doping of Bi3+ into the Ba2+ site. Because addition of La3+ instead of Bi3+ showed neither the enhancement of the tetragonal anisotropy nor the stabilisation of the tetragonal phase, these phenomena in BaTiO3:Mn:Bi were not caused by the Jahn-Teller effect of Mn3+ in the MnO6 octahedron, but caused by the Bi-displacement, probably resulting from the effect of the 6 s lone-pair electrons in Bi3+. PMID:28367973
Revised Space Groups for Three Molybdenum(V) Phosphate Compounds
NASA Astrophysics Data System (ADS)
Leclaire, A.; Borel, M. M.; Guesdon, A.; Marsh, Richard E.
2001-06-01
The space groups of three previously described Mo(V) phosphate structures are revised. (1) δ-KMo2P3O13, originally reported as triclinic, Poverline1, is revised to monoclinic, C2/c; it is identical to the compound previously identified as K4Mo8P12O52. (2) The compound formulated as [Mo12CdP8O50(OH)12]Cd [N(CH3)4]2(H3O)6·5H2O, originally described as monoclinic, Pn, is revised to P21/n (also monoclinic). (3) Rb3O2(MoO)4(PO4)4, originally reported as orthorhombic, C2221, is revised to tetragonal, P43212. The general descriptions of the structures are unchanged; however, for compound 2 the revision involves the addition of a center of symmetry and, as a result, there are significant changes in the interatomic distances and angles.
NASA Astrophysics Data System (ADS)
Antonyshyn, Iryna; Prots, Yurii; Margiolaki, Irene; Schmidt, Marcus Peter; Zhak, Olga; Oryshchyn, Stepan; Grin, Yuri
2013-03-01
The new phase ω1-Mn6Ga29 was synthesised in single-crystal form from the elements applying the high-temperature centrifugation-aided filtration technique. The crystal structure was determined using diffraction data collected from a twinned specimen: a new prototype, space group P1¯; a=6.3114(2) Å, b=9.9557(3) Å, c=18.920(1) Å, α=90.473(1)°, β=90.847(1)°, γ=90.396(1)°; R1=0.047, wR2=0.117 for 317 variable parameters and 7346 observed reflections; twinning matrix 0 0 -1/3, 0 -1 0, -3 0 0; twin domains ratio 0.830(3):0.170. All manganese atoms in the crystal structure of ω1-Mn6Ga29 are coordinated exclusively by Ga forming distorted tetragonal antiprisms. The monocapped [MnGa8+1] antiprisms condense into pairs by sharing their pseudo-quadratic faces and are interconnected via common apexes and edges to form a 3D framework. The relationship between the crystal structures of ω1-Mn6Ga29 and CuAl2, α-, β-CoSn3, PtSn4, Ti4MnBi2, PdGa5, Rh3Ga16, Rh4Ga21, Al7FeCu2, Co2Al9, and RhBi4 is discussed.
First-Principles Study of the Jahn-Teller Distortion in the Ti1-XVXH2 and Zr1-XNbxH2 Alloys
NASA Astrophysics Data System (ADS)
Quijano, Ramiro; de Coss, Romeo; Singh, David
2008-03-01
The transition metal dihydrides TiH2 and ZrH2 present the fluorite structure (CaF2) at high temperature but undergoes a tetragonal distortion with c/a<1 at low temperature. Electronic band structure calculations have shown that TiH2 and ZrH2 in the cubic phase display a very flat band at the Fermi level. Thus the low temperature tetragonal distortion has been associated to a Jahn-Teller effect. In order to understand the role of band filling in controlling the structural instability of the transition metal dihydrides, we have performed a first-principles total energy study of the Ti1-XVxH2 and Zr1-xNbxH2 alloys. The calculations were performed using FP-LAPW method within the (DFT) and we use the GGA for exchange correlation functional energy. The critical concentration for which the Jahn-Teller effect is suppressed, was determined from the evolution of the tetragonal-cubic energy barrier. We discuss the electronic mechanism of the structural-instability, in terms of the band filling. From the obtained results we conclude that the tetragonal distortion in TiH2 and ZrH2 is not produced only by a Jahn-Teller Effect. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 43830-F.
Structure and magnetic properties of ScFe 10Si 2
NASA Astrophysics Data System (ADS)
Bodak, O. I.; Stȩpień-Damm, J.; Drulis, H.; Kotur, B.; Suski, W.; Vagizov, F. G.; Wochowski, K.; Mydlarz, T.
1995-02-01
ScFe 10Si 2 crystallizes in the ThMn 12-type tetragonal structure with the space group I4/mmm and the lattice parameters: a = 0.8280 (1) nm, c = 0.4706 (1) nm and c/ a = 0.57. In the refinement performed for 317 independent reflections and 10 variable parameters, a final discrepancy factor R = 4.69% has been reached. The compound is ferromagnetic below 506 K ( 57Fe ME) and 560 K (magnetic). The distribution of the Fe atoms in the 8( i), 8( j) and 8( f) positions corresponds to 40, 31 and 29%, respectively. The Debye temperature determined from the temperature dependence of the isomer shift is 340 K.
Miura, Kaoru; Azuma, Masaki; Funakubo, Hiroshi
2011-01-01
We have investigated the role of the Ti–O Coulomb repulsions in the appearance of the ferroelectric state in BaTiO3 as well as the role of the Zn–O Coulomb repulsions in BiZn0.5Ti0.5O3, using a first-principles calculation with optimized structures. In tetragonal BaTiO3, it is found that the Coulomb repulsions between Ti 3s and 3p states and O 2s and 2p states have an important role for the appearance of Ti ion displacement. In BiZn0.5Ti0.5O3, on the other hand, the stronger Zn–O Coulomb repulsions, which are due to the 3s, 3p, and 3d (d10) states of the Zn ion, have more important role than the Ti–O Coulomb repulsions for the appearance of the tetragonal structure. Our suggestion is consistent with the other ferroelectric perovskite oxides ABO3 in the appearance of tetragonal structures as well as rhombohedral structures. PMID:28879987
Miura, Kaoru; Azuma, Masaki; Funakubo, Hiroshi
2011-01-17
We have investigated the role of the Ti-O Coulomb repulsions in the appearance of the ferroelectric state in BaTiO3 as well as the role of the Zn-O Coulomb repulsions in BiZn0.5Ti0.5O3, using a first-principles calculation with optimized structures. In tetragonal BaTiO3, it is found that the Coulomb repulsions between Ti 3s and 3p states and O 2s and 2p states have an important role for the appearance of Ti ion displacement. In BiZn0.5Ti0.5O3, on the other hand, the stronger Zn-O Coulomb repulsions, which are due to the 3s, 3p, and 3d (d10) states of the Zn ion, have more important role than the Ti-O Coulomb repulsions for the appearance of the tetragonal structure. Our suggestion is consistent with the other ferroelectric perovskite oxides ABO3 in the appearance of tetragonal structures as well as rhombohedral structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliev, Ziya S., E-mail: ziyasaliev@gmail.com; Institute of Physics, ANAS, H.Javid ave. 131, AZ1143 Baku; Donostia International Physics Center
Single crystals of the ternary copper compounds CuTlS and CuTlSe have been successfully grown from stoichiometric melt by using vertical Bridgman-Stockbarger method. The crystal structure of the both compounds has been determined by powder and single crystal X-Ray diffraction. They crystallize in the PbFCl structure type with two formula units in the tetragonal system, space group P4/nmm, a=3.922(2); c=8.123(6); Z=2 and a=4.087(6); c=8.195(19) Å; Z=2, respectively. The band structure of the reported compounds has been analyzed by means of full-potential linearized augmented plane-wave (FLAPW) method based on the density functional theory (DFT). Both compounds have similar band structures and aremore » narrow-gap semiconductors with indirect band gap. The resistivity measurements agree with a semiconductor behavior although anomalies are observed at low temperature. - Graphical abstract: The crystal structures of CuTl and CuTlSe are isostructural with the PbFCl-type and the superconductor LiFeAs-type tetragonal structure. The band structure calculations confirmed that they are narrow-gap semiconductors with indirect band gaps of 0.326 and 0.083 eV. The resistivity measurements, although confirming the semiconducting behavior of both compounds exhibit unusual anomalies at low temperatures. - Highlights: • Single crystals of CuTlS and CuTlSe have been successfully grown by Bridgman-Stockbarger method. • The crystal structure of the both compounds has been determined by single crystal XRD. • The band structure of the both compounds has been analyzed based on the density functional theory (DFT). • The resistivity measurements have been carried out from room temperature down to 10 K.« less
Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure
Sachtler, W.M.H.; Huang, Y.Y.
1998-07-28
Methods are disclosed for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physical sorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics. 17 figs.
Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure
Sachtler, Wolfgang M. H.; Huang, Yin-Yan
1998-01-01
Methods for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physisorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics.
NASA Astrophysics Data System (ADS)
Nagano, Yuta; Kohno, Hideo
2017-11-01
Multiwalled carbon nanotubes with tetragonal cross section frequently form junctions with flattened multi-walled carbon nanotubes, a kind of carbon nanoribbon. The three-dimensional structure of the junctions is revealed by transmission-electron-microscopy-based tomography. Two types of junction, parallel and diagonal, are found. The formation mechanism of these two types of junction is discussed in terms of the origami mechanism that was previously proposed to explain the formation of carbon nanoribbons and nanotetrahedra.
Variation of oxygen content in selected potassium fluorido-oxido-tantalate phases
NASA Astrophysics Data System (ADS)
Boča, Miroslav; Moncoĺ, Ján; Netriová, Zuzana; Velič, Dušan; Jerigová, Monika; Nunney, Tim S.; Baily, Christopher J.; Kubíková, Blanka; Šimko, František; Janderka, Pavel
2011-12-01
The compound K 3[TaO 4]•K 3[TaF 4O 2] crystallises in a tetragonal system (space group I-4) with cell parameters a = 6.2220(3) Å and c = 8.7625(34) Å, respectively. The crystal structure consists of two anions, [TaO 4] 3- and [TaF 4O 2] 3- and cations K +. The tantalum atoms lie in special positions and serve as centres of both anions, which are substitution disorders. XPS measurements confirmed the existence of different binding energies corresponding to the different bonds of Ta sbnd O and Ta sbnd F. Oxygen is bound more strongly in [TaF 4O 2] 3-. By combination of single crystal analysis, XRD, SIMS and XPS it was suggested that previously reported cubic phase K 3TaOF 6 is in fact K 3TaO 2F 4 and previously reported tetragonal phase K 3TaO 2F 4 is in fact K 3[TaO 4]•K 3[TaF 4O 2].
NASA Astrophysics Data System (ADS)
Starikov, S. V.; Kolotova, L. N.; Kuksin, A. Yu.; Smirnova, D. E.; Tseplyaev, V. I.
2018-02-01
We studied structure and thermodynamic properties of cubic and tetragonal phases of pure uranium and U-Mo alloys using atomistic simulations: molecular dynamics and density functional theory. The main attention was paid to the metastable γ0 -phase that is formed in U-Mo alloys at low temperature. Structure of γ0 -phase is similar to body-centered tetragonal (bct) lattice with displacement of a central atom in the basic cell along [ 001 ] direction. Such displacements have opposite orientations for part of the neighbouring basic cells. In this case, such ordering of the displacements can be designated as antiferro-displacement. Formation of such complex structure may be interpreted through forming of short U-U bonds. At heating, the tetragonal structure transforms into cubic γs -phase, still showing ordering of central atom displacements. With rise in temperature, γs -phase transforms to γ-phase with a quasi body-centered cubic (q-bcc) lattice. The local positions of uranium atoms in γ-phase correspond to γs -phase, however, orientations of the central atom displacements become disordered. Transition from γ0 to γ can be considered as antiferro-to paraelastic transition of order-disorder type. This approach to the structure description of uranium alloy allows to explain a number of unusual features found in the experiments: anisotropy of lattice at low temperature; remarkably high self-diffusion mobility in γ-phase; decreasing of electrical resistivity at heating for some alloys. In addition, important part of this work is the development of new interatomic potential for U-Mo system made with taking into account details of studied structures.
NASA Astrophysics Data System (ADS)
Nakamachi, Eiji; Koga, Hirotaka; Morita, Yusuke; Yamamoto, Koji; Sakamoto, Hidetoshi
2018-01-01
We developed a PC12 cell trapping and patterning device by combining the dielectrophoresis (DEP) methodology and the micro electro mechanical systems (MEMS) technology for time-lapse observation of morphological change of nerve network to elucidate the generation mechanism of neural network. We succeeded a neural network generation, which consisted of cell body, axon and dendrites by using tetragonal and hexagonal cell patterning. Further, the time laps observations was carried out to evaluate the axonal extension rate. The axon extended in the channel and reached to the target cell body. We found that the shorter the PC12 cell distance, the less the axonal connection time in both tetragonal and hexagonal structures. After 48 hours culture, a maximum success rate of network formation was 85% in the case of 40 μm distance tetragonal structure.
NASA Astrophysics Data System (ADS)
Verma, Narendra Kumar; Patel, Sandeep Kumar Singh; Kumar, Dinesh; Singh, Chandra Bhal; Singh, Akhilesh Kumar
2018-05-01
We have investigated the effect of sintering temperature on the densification behaviour, grain size, structural and dielectric properties of BaTiO3 ceramics, prepared by high energy ball milling method. The Powder x-ray diffraction reveals the tetragonal structure with space group P4mm for all the samples. The samples were sintered at four different temperatures, (T = 900°C, 1000°C, 1100°C, 1200°C and 1300°C). Density increased with increasing sintering temperature, reaching up to 97% at 1300°C. A grain growth was observed with increasing sintering temperature. Impedance analyses of the sintered samples at various temperatures were performed. Increase in dielectric constant and Curie temperature is observed with increasing sintering temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhaka, R. S.; Jiang, Rui; Ran, S.
2014-01-31
We use angle-resolved photoemission spectroscopy and density functional theory calculations to study the electronic structure of CaFe 2As 2 in the collapsed tetragonal (CT) phase. This unusual phase of iron arsenic high-temperature superconductors was hard to measure as it exists only under pressure. By inducing internal strain, via the postgrowth thermal treatment of single crystals, we were able to stabilize the CT phase at ambient pressure. We find significant differences in the Fermi surface topology and band dispersion data from the more common orthorhombic-antiferromagnetic or tetragonal-paramagnetic phases, consistent with electronic structure calculations. The top of the hole bands sinks belowmore » the Fermi level, which destroys the nesting present in parent phases. The absence of nesting in this phase, along with an apparent loss of Fe magnetic moment, are now clearly experimentally correlated with the lack of superconductivity in this phase.« less
NASA Astrophysics Data System (ADS)
Lahoz, F.; Villacampa, B.; Alcalá, R.; Marquina, C.; Ibarra, M. R.
1997-04-01
The influence of crystal mixing on the structural phase transitions in Rb1-xCsxCaF3 (0
Ba 2TeO: A new layered oxytelluride
Besara, T.; Ramirez, D.; Sun, J.; ...
2015-02-01
For single crystals of the new semiconducting oxytelluride phase, Ba 2TeO, we synthesized from barium oxide powder and elemental tellurium in a molten barium metal flux. Ba 2TeO crystallizes in tetragonal symmetry with space group P4/nmm (#129), a=5.0337(1) Å, c=9.9437(4) Å, Z=2. The crystals were characterized by single crystal x-ray diffraction, heat capacity and optical measurements. Moreover, the optical measurements along with electronic band structure calculations indicate semiconductor behavior with a band gap of 2.93 eV. Resistivity measurements show that Ba 2TeO is highly insulating.
Whitfield, P. S.; Herron, N.; Guise, W. E.; ...
2016-10-21
Here, we examine the crystal structures and structural phase transitions of the deuterated, partially deuterated and hydrogenous organic-inorganic hybrid perovskite methyl ammonium lead iodide (MAPbI 3) using time-of-flight neutron and synchrotron X-ray powder diffraction. Near 330 K the high temperature cubic phases transformed to a body-centered tetragonal phase. The variation of the order parameter Q for this transition scaled with temperature T as Q (T c-T) , where T c is the critical temperature and the exponent was close to , as predicted for a tricritical phase transition. We also observed coexistence of the cubic and tetragonal phases over amore » range of temperature in all cases, demonstrating that the phase transition was in fact first-order, although still very close to tricritical. Upon cooling further, all the tetragonal phases transformed into a low temperature orthorhombic phase around 160 K, again via a first-order phase transition. Finally, based upon these results, we discuss the impact of the structural phase transitions upon photovoltaic performance of MAPbI 3 based solar cells.« less
Luminescence properties of Eu2+ in M2MgSi2O7 (M=Ca, Sr, and Ba) phosphors
NASA Astrophysics Data System (ADS)
Kim, T.; Kim, Y.; Kang, S.
2012-03-01
The photoluminescence properties of alkali-earth magnesium silicates (M2MgSi2O7, M=Ca, Sr, and Ba) doped with Eu2+ were investigated. Solid solutions of Ba x Sr2- x Si2O7, Ca2MgSi2O7, and Sr2MgSi2O7 were prepared. Ba x Sr2- x Si2O7 retained a tetragonal crystal structure similar to the structure of the other compounds up to a stoichiometry of x=1.6, which enabled a systematic study of the common structure. Monoclinic Ba2MgSi2O7 was prepared, and the luminescence properties were compared with those of other samples. The emission and excitation spectra of tetragonal M2MgSi2O7 (M=Ca, Sr, and Ba) changed as a function of the covalency, site symmetry, and crystal field strength. The luminescence properties showed excellent agreement with theoretical predictions based on these factors. The Stokes shift differentiated the emission behaviors of the tetragonal and monoclinic structures.
He, Heming; Shoesmith, David
2010-07-28
A method to determine the defect structures in hyper-stoichiometric UO(2+x) using a combination of XRD and Raman spectroscopy has been developed. A sequence of phase transitions, from cubic to tetragonal symmetry, occurs with increasing degree of non-stoichiometry. This sequence proceeds from a cubic phase through an intermediate t''-type tetragonal (axial ratio c/a = 1) phase to a final t-type tetragonal (c/a not = 1) phase. Four distinct structural defect regions can be identified in the stoichiometry range, UO(2) to U(3)O(7): (i) a random point defect structure (x (in UO(2+x)) < or = 0.05); (ii) a non-stoichiometry region (0.05 < or = x < or = 0.15) over which point defects are gradually eliminated and replaced by the Willis 2:2:2 cluster; (iii) a mixture of Willis and cuboctahedral clusters (0.15 < or = x < or = 0.23); (iv) the cuboctahedral cluster (x > or = 0.23). The geometry and steric arrangement of these defects is primarily determined by the concentration of the excess-oxygen interstitials.
Crystal structure and magnetism of layered perovskites compound EuBaCuFeO5
NASA Astrophysics Data System (ADS)
Lal, Surender; Mukherjee, K.; Yadav, C. S.
2018-04-01
Layered perovskite compounds have interesting multiferroic properties.YBaCuFeO5 is one of the layered perovskite compounds which have magnetic and dielectric transition above 200 K. The multiferroic properties can be tuned with the replacement of Y with some other rare earth ions. In this manuscript, structural and magnetic properties of layered perovskite compound EuBaCuFeO5 have been investigated. This compound crystallizes in the tetragonal structure with P4mm space group and is iso-structural with YBaCuFeO5. The magnetic transition has been found to shift to 120 K as compared to YBaCuFeO5 which has the transition at 200 K. This shift in the magnetic transition has been ascribed to the decrease in the chemical pressure that relaxes the magnetic moments.
NASA Astrophysics Data System (ADS)
Feng, Yu; Li, Wei-Li; Yu, Yang; Jia, He-Nan; Qiao, Yu-Long; Fei, Wei-Dong
2017-11-01
An approach to greatly enhance the piezoelectric properties (˜4 00 pC/N) of the tetragonal BaTi O3 polycrystal using a small number of A -site acceptor-donor substitutions [D. Xu et al., Acta Mater. 79, 84 (2014), 10.1016/j.actamat.2014.07.023] has been proposed. In this study, Pb (ZrTi ) O3 (PZT) based polycrystals with various crystal symmetries (tetragonal, rhombohedral, and so on) were chosen to investigate the piezoelectricity enhancement mechanism. X-ray diffraction results show that doping generates an intrinsic uniaxial compressive stress along the [001] pc direction in the A B O3 lattices. Piezoelectric maps in the parameter space of temperature and Ti concentration in the PZT and doped system show a more significant enhancement effect of L i+-A l3 + codoping in tetragonal PZT than in the rhombohedral phase. Phenomenological thermodynamic analysis indicates that the compressive stress results in more serious flattening of the free-energy profile in tetragonal PZT, compared with that in the rhombohedral phase. The chemical stress obtained by this acceptor-donor codoping can be utilized to optimize the piezoelectric performance on the tetragonal-phase site of the morphotropic phase boundary in the PZT system. The present study provides a promising route to the large piezoelectric effect induced by chemical-stress-driven flattening of the free-energy profile.
NASA Astrophysics Data System (ADS)
Ma, C.; Tschauner, O. D.
2016-12-01
The combination of FESEM-EDS-EBSD, EPMA, and synchrotron microdiffraction is developing into a powerful tool for identification of micron-scale minerals in rocks such as high-pressure phases in shocked meteorites. During a nanomineralogy investigation of the Shergotty meteorite using this approach, we have identified a new shock-induced high-pressure silicate, majoritic almandine with a tetragonal I41/a structure, in an impact melt pocket. The Shergotty meteorite, which fell in the Gaya district, Bihar, India in 1865, is a Martian basaltic shergottite with shock features. Tetragonal almandine in Shergotty occurs as aggregates of subhedral crystals, 0.8 - 2.5 µm in diameter, along with stishovite in the central region of a shock melt pocket, showing an empirical formula of (Fe1.16Ca0.75Mg0.61Na0.42Mn0.03K0.01)(Al1.16Si0.63Mg0.19Ti0.02)Si3O12. Its general formula is (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12. EBSD indicated this phase has a garnet-related structure. Synchrotron X-ray diffraction revealed that this garnet has actually a tetragonal structure (I41/a) with unit cell dimensions: a = 11.585(9) Å, c = 11.63(4) Å, V = 1561(7) Å3, and Z = 8. Tetragonal almandine is the polymorph of cubic almandine, a new high-pressure garnet mineral, formed by shock metamorphism via the Shergotty impact event on Mars. It apparently crystallized from Fe-rich shock-induced melt under high-pressure and high-temperature conditions.
Template assisted strain tuning and phase stabilization in epitaxial BiFeO3 thin films
NASA Astrophysics Data System (ADS)
Saj Mohan M., M.; Ramadurai, Ranjith
2018-04-01
Strain engineering is a key to develop novel properties in functional materials. We report a strain mediated phase stabilization and epitaxial growth of bismuth ferrite(BiFeO3) thin films on LaAlO3 (LAO) substrates. The strain in the epitaxial layer is controlled by controlling the thickness of bottom electrode where the thickness of the BFO is kept constant. The thickness of La0.7Sr0.3MnO3(LSMO) template layer was optimized to grow completely strained tetragonal, tetragonal/rhombohedral mixed phase and fully relaxed rhombohedral phase of BFO layers. The results were confirmed with coupled-θ-2θ scan, and small area reciprocal space mapping. The piezoelectric d33 (˜ 45-48 pm/V) coefficient of the mixed phase was relatively larger than the strained tetragonal and relaxed rhombohedral phase for a given thickness.
Crystal structure refinements of tetragonal (OH,F)-rich spessartine and henritermierite garnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antao, Sytle M.; Cruickshank, Laura A.
Cubic garnet (space group Ia\\overline 3 d) has the general formulaX 3Y 2Z 3O 12, whereX,YandZare cation sites. In the tetragonal garnet (space groupI4 1/acd), the corresponding cation sites areX1 andX2,Y, andZ1 andZ2. In both space groups only theYsite is the same. The crystal chemistry of a tetragonal (OH,F)-rich spessartine sample from Tongbei, near Yunxiao, Fujian Province, China, with composition X(Mn 2.82Fe^{2+}_{0.14}Ca 0.04) Σ3 Y{Al 1.95Fe^{3+}_{0.05}} Σ2 Z[(SiO 4) 2.61(O 4H 4) 0.28(F 4) 0.11] Σ3(Sps 94Alm 5Grs 1) was studied with single-crystal X-ray diffraction and space groupI4 1/acd. The deviation of the unit-cell parameters from cubic symmetry is smallmore » [a= 11.64463(1),c= 11.65481 (2) Å,c/a= 1.0009]. Point analyses and back-scattered electron images, obtained by electron-probe microanalysis, indicate a homogeneous composition. TheZ2 site is fully occupied, but theZ1 site contains vacancies. The occupiedZ1 andZ2 sites with Si atoms are surrounded by four O atoms, as in anhydrous cubic garnets. Pairs of split sites are O1 with F11 and O2 with O22. When theZ1 site is vacant, a larger [(O 2H 2)F 2] tetrahedron is formed by two OH and two F anions in the O22 and F11 sites, respectively. This [(O 2H 2)F 2] tetrahedron is similar to the O 4H 4tetrahedron in hydrogarnets. These results indicate ^{X}{{\\rm Mn}^ {2+}_{3}}\\,^{Y}{\\rm Al}_{2}^{Z}[({\\rm SiO}_{4})_{2}({\\rm O}_{2}{\\rm H}_{2})_{0.5}({\\rm F}_{2})_{0.5}]_{\\Sigma3} as a possible end member, which is yet unknown. The H atom that is bonded to the O22 site is not located because of the small number of OH groups. In contrast, tetragonal henritermierite, ideally ^{X}{\\rm Ca}_{3}\\,^{Y}{\\rm Mn}^{3+}_{2}\\,^{Z}[({\\rm SiO}_{4})_{2}({\\rm O}_{4}{\\rm H}_{4})_1]_{\\Sigma3}, has a vacantZ2 site that contains the O 4H 4tetrahedron. The H atom is bonded to an O3 atom [O3—H3 = 0.73 (2) Å]. Because of O2—Mn 3+—O2 Jahn–Teller elongation of the Mn 3+O 6octahedron, a weak hydrogen bond is formed to the under-bonded O2 atom. This causes a large deviation from cubic symmetry (c/a= 0.9534).« less
S = 1 on a Diamond Lattice in NiRh2O4
NASA Astrophysics Data System (ADS)
Chamorro, Juan; McQueen, Tyrel
An S = 1 system has the potential of rich physics, and has been the subject of intense theoretical work. Extensive work has been done on one-dimensional and two-dimensional S = 1 systems, yet three dimensional systems remain elusive. Experimental realizations of three-dimensional S = 1, however, are limited, and no system to date has been found to genuinely harbor this. Recent theoretical work suggests that S = 1 on a diamond lattice would enable a novel topological paramagnet state, generated by fluctuating Haldane chains within the structure, with topologically protected end states. Here we present data on NiRh2O4, a tetragonal spinel that has a structural phase transition from cubic to tetragonal at T = 380 K. High resolution XRD shows it to have a tetragonally distorted spinel structure, with Ni2+ (d8, S = 1) on the tetrahedral, diamond sublattice site. Magnetic susceptibility and specific heat measurements show that it does not order magnetically down to T = 0.1 K. Nearest neighbor interactions remain the same despite the cubic to tetragonal phase transition. Comparison to theoretical models indicate that this system might fulfill the requirements necessary to have both highly entangled and topological behaviors. IQM Is Funded by US Department of Energy, Office of Basic Energy Sciences, Division of Material Sciences and Engineering, under Grant No. DE-FG02-08ER46544.
Anisotropic physical properties of single-crystal U2Rh2Sn in high magnetic fields
NASA Astrophysics Data System (ADS)
Prokeš, K.; Gorbunov, D. I.; Reehuis, M.; Klemke, B.; Gukasov, A.; Uhlířová, K.; Fabrèges, X.; Skourski, Y.; Yokaichiya, F.; Hartwig, S.; Andreev, A. V.
2017-05-01
We report on the crystal and magnetic structures, magnetic, transport, and thermal properties of U2Rh2Sn single crystals studied in part in high magnetic fields up to 58 T. The material adopts a U3Si2 -related tetragonal crystal structure and orders antiferromagnetically below TN=25 K. The antiferromagnetic structure is characterized by a propagation vector k =(00 1/2 ) . The magnetism in U2Rh2Sn is found to be associated mainly with 5 f states. However, both unpolarized and polarized neutron experiments reveal at low temperatures in zero field non-negligible magnetic moments also on Rh sites. U moments of 0.50(2) μB are directed along the tetragonal axis while Rh moments of 0.06(4) μB form a noncollinear arrangement confined to the basal plane. The response to applied magnetic field is highly anisotropic. Above ˜15 K the easy magnetization direction is along the tetragonal axis. At lower temperatures, however, a stronger response is found perpendicular to the c axis. While for the a axis no magnetic phase transition is observed up to 58 T, for the field applied at 1.8 K along the tetragonal axis we observe above 22.5 T a field-polarized state. A magnetic phase diagram for the field applied along the c axis is presented.
Fabrication of dense and porous Li2ZrO3 nanofibers with electrospinning method
NASA Astrophysics Data System (ADS)
Yuan, Kangkang; Jin, Xiaotong; Xu, Chonghe; Wang, Xinqiang; Zhang, Guanghui; Zhu, Luyi; Xu, Dong
2018-06-01
Lithium zirconate (Li2ZrO3) has been extensively studied as CO2 capture material, electrolyte material and coating material. Most of the previous studies were focused on the powder structure, while seldom taking a consideration of fiber structure. In the present work, dense and porous Li2ZrO3 nanofibers with surface area of 16 m2 g-1 were prepared by electrospinning method. IR spectral results showed that lithium carbonate was the intermediate for the formation of Li2ZrO3. The phase transformation of Li2ZrO3 underwent the pathway of amorphous precursor fibers, tetragonal zirconia and Li2CO3, tetragonal Li2ZrO3, and monoclinic Li2ZrO3. XRD and XPS results further suggested that Li2O diffusion from the fiber body to surface occurred for Li2ZrO3 nanofibers when heat-treated above 900 °C, and the tetragonal Li2ZrO3 with high surface area could be obtained at 800 °C. Bamboo structure appeared both for the dense and porous nanofibers heat-treated at 1000 °C. The high surface area and high thermal stability of tetragonal phase of Li2ZrO3 make it a promising candidate in CO2 absorption, electrolyte and coating material.
Giant magnetostriction in nanoheterogeneous Fe-Al alloys
NASA Astrophysics Data System (ADS)
Han, Yongjun; Wang, Hui; Zhang, Tianli; He, Yangkun; Jiang, Chengbao
2018-02-01
As a potential magnetostrictive material, Fe-Al alloys exhibit excellent mechanical properties, low cost, and moderate magnetostriction, but the magnetostriction mechanism is still a mystery. Here, we elucidate the structural origin of magnetostriction in Fe-Al alloys and further improve the magnetostriction five-fold via Tb doping. Nanoinclusions with a size of 3-5 nm were found dispersed in the A2 matrix in Fe82Al18 ribbons. The structure of the nanoinclusions is identified to be tetragonally modified-D03 (L60), which are considered to create the tetragonal distortion of the matrix, leading to the enhanced magnetostriction. Furthermore, a drastic enhancement of the magnetostriction up to 5 times was achieved by trace Tb doping (0.2 at. %). Synchrotron X-ray diffraction directly revealed the increased tetragonal distortion of the matrix caused by these Tb dopants. The results further enrich the heterogeneous magnetostriction and guide the development of magnetostrictive materials.
Frandsen, Benjamin A.; Taddei, Keith M.; Yi, Ming; ...
2017-10-30
We report on temperature-dependent pair distribution function measurements of Sr 1-xNa xFe 2As 2, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C 4 phase. Quantitative refinements indicate that the instantaneous local structure in the C 4 phase comprises fluctuating orthorhombic regions with a length scale of similar to 2 nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. Furthermore, these results highlight the exceptionally large nematic susceptibility of iron-based superconductors andmore » have significant implications for the magnetic C 4 phase and the neighboring C 2 and superconducting phases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frandsen, Benjamin A.; Taddei, Keith M.; Yi, Ming
We report on temperature-dependent pair distribution function measurements of Sr 1-xNa xFe 2As 2, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C 4 phase. Quantitative refinements indicate that the instantaneous local structure in the C 4 phase comprises fluctuating orthorhombic regions with a length scale of similar to 2 nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. Furthermore, these results highlight the exceptionally large nematic susceptibility of iron-based superconductors andmore » have significant implications for the magnetic C 4 phase and the neighboring C 2 and superconducting phases.« less
Enhancement of electrical properties in polycrystalline BiFeO3 thin films
NASA Astrophysics Data System (ADS)
Yun, Kwi Young; Ricinschi, Dan; Kanashima, Takeshi; Okuyama, Masanori
2006-11-01
Ferroelectric BiFeO3 thin films were grown on Pt /TiO2/SiO2/Si substrates by pulsed-laser deposition. From the x-ray diffraction analysis, the BiFeO3 thin films consist of perovskite single phase, and the crystal structure shows the tetragonal structure with a space group P4mm. The BiFeO3 thin films show enhanced electrical properties with low leakage current density value of ˜10-4A /cm2 at a maximum applied voltage of 31V. This enhanced electrical resistivity allowed the authors to obtain giant ferroelectric polarization values such as saturation polarizations of 110 and 166μC/cm2 at room temperature and 80K, respectively.
High pressure synthesis, crystal growth and magnetic properties of TiOF
NASA Astrophysics Data System (ADS)
Cumby, J.; Burchell, M. B.; Attfield, J. P.
2018-06-01
Polycrystalline samples of TiOF have been prepared at 1300 °C and 8 GPa, with small single crystals grown at the same conditions. The crystal structure remains tetragonal rutile-type down to at least 90 K (space group P42/mnm, a = 4.6533 (2) Å and c = 3.0143 (2) Å at 90 K) and the Ti(O,F)6 octahedra are slightly compressed, consistent with Jahn-Teller distortion of 3d1 Ti3+. Diffuse scattering reveals disordered structural correlations that may arise from local cis-order of oxide anions driven by covalency. TiOF is paramagnetic down to 5 K and observation of a small paramagnetic moment and a substantial Pauli term indicates that the d-electrons are partially delocalised.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chezhina, N.V., E-mail: chezhina@nc2490.spb.edu; Zhuk, N.A.; Korolev, D.A.
2016-01-15
The comparative analysis of magnetic behavior of manganese-containing solid solutions Bi{sub 3}Nb{sub 1−x}Mn{sub x}O{sub 7−δ} (x=0.01−0.10) of cubic and tetragonal modifications was performed. Based on the results of magnetic susceptibility studies paramagnetic manganese atoms in solid solutions of cubic and tetragonal modifications were found to be in the form of Mn(III), Mn(IV) monomers and exchange-coupled dimers of Mn(III)–O–Mn(III), Mn(IV)–O–Mn(IV), Mn(III)–O–Mn(IV). The exchange parameters and the distribution of monomers and dimers in solid solutions as a function of the content of paramagnetic atoms were calculated. - Graphical abstract: Structural transition of cubic to tetragonal Bi{sub 3}NbO{sub 7−δ}.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Chen, Hua-Xin; Duan, Li; Fan, Ji-Bin; Ni, Lei; Ji, Vincent
2018-07-01
Using density-functional perturbation theory, we systematically investigate the Born effective charges and dielectric properties of cubic, tetragonal, monoclinic, ortho-I (Pbca), ortho-II (Pnma) and ortho-III (Pca21) phases of ZrO2. The magnitudes of the Born effective charges of the Zr and oxygen atoms are greater than their nominal ionic valences (+4 for Zr and -2 for oxygen), indicating a strong dynamic charge transfer from Zr atoms to O atoms and a mixed covalent-ionic bonding in six phases of ZrO2. For all six phases of ZrO2, the electronic contributions εij∞ to the static dielectric constant are rather small (range from 5 to 6.5) and neither strongly anisotropic nor strongly dependent on the structural phase, while the ionic contributions εijion to the static dielectric constant are large and not only anisotropic but also dependent on the structural phase. The average dielectric constant εbar0 of the six ZrO2 phases decreases in the sequence of tetragonal, cubic, ortho-II (Pnma), ortho-I (Pbca), ortho-III (Pca21) and monoclinic. So among six phases of ZrO2, the tetragonal and cubic phases are two suitable phases to replace SiO2 as the gate dielectric material in modern integrated-circuit technology. Furthermore, for the tetragonal ZrO2 the best orientation is [100].
Crystallization of Chicken Egg White Lysozyme from Assorted Sulfate Salts
NASA Technical Reports Server (NTRS)
Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.
1998-01-01
Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Four different crystal morphologies have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed, Crystals grown at 15 C were generally tetragonal, with space group P43212. Crystallization at 20 C typically resulted in the formation of orthorhombic crystals, space group P21212 1. The tetragonal much less than orthorhombic morphology transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20 C and between 100 and 125 mg/ml protein concentration. Crystallization from 0.8 -1.2M magnesium sulfate at pH 7.6 - 8.0 gave a hexagonal (trigonal) crystal form, space group P3121, which diffracted to 2.8 A. Ammonium sulfate was also found to result in a monoclinic form, space group C2. Small twinned monoclinic crystals of approx. 0.2 mm on edge were grown by dialysis followed by seeded sitting drop crystallization.
Uniaxial strain control of spin-polarization in multicomponent nematic order of BaFe 2As 2
Kissikov, T.; Sarkar, R.; Lawson, M.; ...
2018-03-13
The iron-based high temperature superconductors exhibit a rich phase diagram reflecting a complex interplay between spin, lattice, and orbital degrees of freedom. The nematic state observed in these compounds epitomizes this complexity, by entangling a real-space anisotropy in the spin fluctuation spectrum with ferro-orbital order and an orthorhombic lattice distortion. A subtle and less-explored facet of the interplay between these degrees of freedom arises from the sizable spin-orbit coupling present in these systems, which translates anisotropies in real space into anisotropies in spin space. We present nuclear magnetic resonance studies, which reveal that the magnetic fluctuation spectrum in the paramagneticmore » phase of BaFe 2As 2 acquires an anisotropic response in spin-space upon application of a tetragonal symmetry-breaking strain field. Lastly, our results unveil an internal spin structure of the nematic order parameter, indicating that electronic nematic materials may offer a route to magneto-mechanical control.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pani, M.; Manfrinetti, P.; Provino, A.
2014-02-15
Novel RNi{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure for R=La–Ce (tP52, space group P4/nbm N 125-1) and new YNi{sub 6}Si{sub 6}-type structure for R=Y, Sm, Gd–Yb (tP52, space group P4{sup ¯}b2N 117) that are tetragonal derivative of NaZn{sub 13}-type structure, like LaCo{sub 9}Si{sub 4}-type. The CeNi{sub 6}Si{sub 6}, GdNi{sub 6}Si{sub 6}, TbNi{sub 6}Si{sub 6}, DyNi{sub 6}Si{sub 6} and HoNi{sub 6}Si{sub 6} compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 5 K. However, the inverse paramagnetic susceptibility of LaNi{sub 6}Si{sub 6} does not follow Curie–Weiss law. The DyNi{sub 6}Si{sub 6}more » shows ferromagnetic-like saturation behaviour at 5 K in applied fields of 50 kOe, giving rise to a magnetic moment value of 6.5 μ{sub B}/f.u. in 50 kOe. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi{sub 6}Si{sub 6} with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. - Graphical abstract: Novel (La, Ce)Ni{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure and (Y, Sm, Gd–Yb) adopt the new YNi{sub 6}Si{sub 6}-type structure that are tetragonal derivative of NaZn{sub 13}-type structure, like LaCo{sub 9}Si{sub 4}-type. The CeNi{sub 6}Si{sub 6}, GdNi{sub 6}Si{sub 6}, TbNi{sub 6}Si{sub 6}, DyNi{sub 6}Si{sub 6} and HoNi{sub 6}Si{sub 6} compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 4.2 K. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi{sub 6}Si{sub 6} with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. Display Omitted - Highlights: • The new (La, Ce)Ni{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure. • The new (Y, Sm, Gd–Yb)Ni{sub 6}Si{sub 6} compounds adopt the new YNi{sub 6}Si{sub 6}-type structure. • TbNi{sub 6}Si{sub 6} has square modulated c-collinear antiferromagnetic ordering below ∼10 K.« less
Effect of off-center ion substitution in morphotropic lead zirconate titanate composition
NASA Astrophysics Data System (ADS)
Bhattarai, Mohan K.; Pavunny, Shojan P.; Instan, Alvaro A.; Scott, James F.; Katiyar, Ram S.
2017-05-01
A detailed study of the effect of off-center donor ion (Sc3+) substitution on structural, microstructural, optical, dielectric, electrical, and ferroelectric properties of morphotropic composition of lead zirconate titanate electroceramics with the stoichiometric formula Pb0.85Sc0.10Zr0.53Ti0.47O3 (PSZT) and synthesized using a high energy solid-state reaction technique was carried out. Powder x-ray diffractometry was used to identify the stabilized tetragonal phase (space group P 4 m m ) with considerably reduced tetragonal strain, c /a = 1.005. An analysis of the thermal dependence of the Raman results indicated a smooth displacive (ferroelectric-paraelectric) phase transition as revealed by the observed disappearance of the soft modes A1 (1TO) and A1 (2TO) above 460 K. The dielectric response of Pt/PSZT/Pt metal-ferroelectric-metal capacitors was probed over a wide range of thermal excursions (85-600 K) and ac signal frequencies (102-106 Hz). Thermally activated dynamic and static conduction processes indicate hopping conduction mechanism ( Ea c t ≤ 0.015 eV) and the formation of small polarons caused by the electron and/or hole-lattice (phonon) interaction ( Ea c t ≥ 0.1 eV) at low (100-300 K) and high temperatures (300-600 K), respectively. The reduction in remnant polarization obtained is in good agreement with the largely reduced tetragonal strain observed in this sample, ( Pr ∝ √{c /a -1 } ). DC conduction is dominated by Poole-Frenkel mechanism that assumes a Coulombic attraction between detrapped electrons and positively charged stationary defect species in the polycrystalline matrix.
Crystallographic and magnetic structure of UCu{sub 1.5}Sn{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purwanto, A.; Robinson, R.A.; Nakotte, H.
1996-04-01
We report on the crystallographic and magnetic structures of the antiferromagnet UCu{sub 1.5}Sn{sub 2}, as determined by x-ray and neutron powder diffraction. It crystallizes in the tetragonal CaBe{sub 2}Ge{sub 2} structure type, with space group P/4nmm, and we find no site disorder between two different Sn2{ital c} sites, in contrast with a previous report. UCu{sub 1.5}Sn{sub 2} orders antiferromagnetically with a N{acute e}el temperature of about 110 K. This is unusually high among uranium intermetallics. The uranium moments align along the {ital c} axis in a collinear arrangement but alternating along the {ital c} axis. The low-temperature uranium moment ismore » 2.01{mu}{sub {ital B}}. {copyright} {ital 1996 American Institute of Physics.}« less
La 3+ doping of the Sr 2CoWO 6 double perovskite: A structural and magnetic study
NASA Astrophysics Data System (ADS)
López, C. A.; Viola, M. C.; Pedregosa, J. C.; Carbonio, R. E.; Sánchez, R. D.; Fernández-Díaz, M. T.
2008-11-01
La-doped Sr 2CoWO 6 double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, λ=1.594 Å). At room temperature, the replacement of Sr 2+ by La 3+ induces a change of the tetragonal structure, space group I4/ m of the undoped Sr 2CoWO 6 into the distorted monoclinic crystal structure, space group P2 1/ n, Z=2. The structure of La-doped phases contains alternating CoO 6 and (Co/W)O 6 octahedra, almost fully ordered. On the other hand, the replacement of Sr 2+ by La 3+ induces a partial replacement of W 6+ by Co 2+ into the B sites, i.e. Sr 2-xLa xCoW 1-yCo yO 6 ( y= x/4) with segregation of SrWO 4. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below TN=24 K independently of the La-substitution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujihisa, Hiroshi; Yamawaki, Hiroshi; Sakashita, Mami
2004-10-01
The structure of high pressure phases, selenium-II{sup '} (Se-II{sup '}) and sulfur-II (S-II), for {alpha}-Se{sub 8} (monoclinic Se-I) and {alpha}-S{sub 8} (orthorhombic S-I) was studied by powder x-ray diffraction experiments. Se-II{sup '} and S-II were found to be isostructural and to belong to the tetragonal space group I4{sub 1}/acd, which is made up of 16 atoms in the unit cell. The structure consisted of unique spiral chains with both 4{sub 1} and 4{sub 3} screws. The results confirmed that the structure sequence of the pressure-induced phase transitions for the group VIb elements depended on the initial molecular form. The chemicalmore » bonds of the phases are also discussed from the interatomic distances that were obtained.« less
One pot synthesis of pure micro/nano photoactive α-PbO crystals
NASA Astrophysics Data System (ADS)
Bhagat, Dharini; Waldiya, Manmohansingh; Vanpariya, Anjali; Mukhopadhyay, Indrajit
2018-05-01
The present study reports a simple, fast and cost effective precipitation technique for synthesis of pure α-PbO powder. Lead monoxide powder with tetragonal structure was synthesized chemically at an elevated temperature using lead acetate and sodium hydroxide solution bath. XRD powder diffraction was used to find the structural properties as well as phase transition from alpha to beta. Study revealed that synthesized PbO powder was crystalline with tetragonal symmetry, having an average crystallite size of 70 nm and lattice constants; a=3.97Å, b=3.97Å, and c=5.02Å. Phase transition from tetragonal to orthorhombic structure was studied by comparing the XRD data of the annealed samples in the temperature range from 200 °C to 600 °C. UV-Visible spectroscopy was used to find out the optical properties of prepared PbO powder. Diffuse reflectance and absorbance spectra confirmed the formation of α-PbO with obtained direct band gap of 1.9 eV. Synthesized lead monoxide (α-PbO) powder has promising application in energy conversion as well as energy storage applications.
Electronic structure and electron-phonon coupling in TiH$$_2$$
Shanavas, Kavungal Veedu; Lindsay, Lucas R.; Parker, David S.
2016-06-15
Calculations using first principles methods and strong coupling theory are carried out to understand the electronic structure and superconductivity in cubic and tetragonal TiHmore » $$_2$$. A large electronic density of states at the Fermi level in the cubic phase arises from Ti-$$t_{2g}$$ states and leads to a structural instability against tetragonal distortion at low temperatures. However, constraining the in-plane lattice constants diminishes the energy gain associated with the tetragonal distortion, allowing the cubic phase to be stable at low temperatures. Furthermore, calculated phonon dispersions show decoupled acoustic and optic modes arising from Ti and H vibrations, respectively and frequencies of optic modes to be rather high. The cubic phase has a large electron-phonon coupling parameter $$\\lambda$$ and critical temperature of several K. Contribution of the hydrogen sublattice to $$\\lambda$$ is found to be small in this material, which we understand from strong coupling theory to be due to the small H-$s$ DOS at the Fermi level and high energy of hydrogen modes at the tetrahedral sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turchenko, V. A., E-mail: turchenko@jinr.ru; Kalanda, N. A.; Kovalev, L. V.
2017-01-15
The crystal and magnetic structures of a solid solution of double perovskite Ba{sub 2–} {sub x}Sr{sub x}FeMoO{sub 6} (x = 0–1.6) have been investigated by neutron diffraction. The high-resolution diffraction patterns have provided precise information about the changes in the crystal and magnetic structures with an increase in the strontium content and data on the behavior of the sample microstructure. Replacement of barium with strontium leads to a change in the lattice symmetry from cubic (x = 0, sp. gr. Fm3̄m)) to tetragonal (x = 0.4, sp. gr. I4/m). At x = 1.0, the symmetry is either tetragonal (sp. gr.more » I4/m) or orthorhombic (sp. gr. Fmmm), and at x = 1.6 the symmetry becomes again tetragonal (sp. gr. I4/m). The values of the Curie temperature and microstrain increase with an increase in the strontium content.« less
Influence of Sn doping in BaSnxTi1-xO3 ceramics on microstructural and dielectric properties
NASA Astrophysics Data System (ADS)
Ansari, Mohd. Azaj; Sreenivas, K.
2018-05-01
BaSnxTi1-x O3 solid solutions with varying Sn content (x = 0.00, 0.05, 0.15, 0.25) prepared by solid state reaction method have been studied for their structural and dielectric properties. X-ray diffraction and Raman spectroscopic analysis show composition induced modifications in the crystallographic structure, and with increasing Sn content the structure changes from tetragonal to cubic structure. The tetragonal distortion decreases with increasing Sn, and the structure becomes purely cubic for x =0.25. Changes in the structure are reflected in the temperature dependent dielectric properties. For increasing Sn content the peak dielectric constant is found to increase and the phase transition temperature (Tc) decreases to lower temperature. The purely cubic structure with x=0.25 shows a diffused phased transition.
Photo-induced Low Temperature Structural Transition in the "114" YbaFe 4O 7 oxide
Duffort, V.; Caignaert, Vincent; Pralong, V.; ...
2013-11-11
Synchrotron irradiation of the oxide YBaFe 4O 7.0 below 190 K converts the low temperature monoclinic structure to a higher symmetry tetragonal form analogous to the room temperature structure. This photo-induced metastable tetragonal form is stable even in the absence of irradiation over the range 4-60 K, however, above 60 K the photo-transition is reversible. These structural phenomena are correlated to the magnetic behaviour of this system, suggesting possible spin-lattice coupling. Lastly, a scenario explaining the low temperature photo-induced transition is proposed, based on the different distributions of the valence electrons in the iron sub-lattice of the monoclinic and tetragonalmore » phases.« less
Monitoring a Silent Phase Transition in CH 3NH 3PbI 3 Solar Cells via Operando X-ray Diffraction
Schelhas, Laura T.; Christians, Jeffrey A.; Berry, Joseph J.; ...
2016-10-13
The relatively modest temperature of the tetragonal-to-cubic phase transition in CH 3NH 3PbI 3 perovskite is likely to occur during real world operation of CH 3NH 3PbI 3 solar cells. In this work, we simultaneously monitor the structural phase transition of the active layer along with solar cell performance as a function of the device operating temperature. The tetragonal to cubic phase transition is observed in the working device to occur reversibly at temperatures between 60.5 and 65.4 degrees C. In these operando measurements, no discontinuity in the device performance is observed, indicating electronic behavior that is insensitive to themore » structural phase transition. Here, this decoupling of device performance from the change in long-range order across the phase transition suggests that the optoelectronic properties are primarily determined by the local structure in CH 3NH 3PbI 3. That is, while the average crystal structure as probed by X-ray diffraction shows a transition from tetragonal to cubic, the local structure generally remains well characterized by uncorrelated, dynamic octahedral rotations that order at elevated temperatures but are unchanged locally.« less
NASA Astrophysics Data System (ADS)
Hou, Dong; Usher, Tedi-Marie; Zhou, Hanhan; Raengthon, Natthaphon; Triamnak, Narit; Cann, David P.; Forrester, Jennifer S.; Jones, Jacob L.
2017-08-01
The existence of local tetragonal distortions is evidenced in the BaTiO3-xBi(Zn1/2Ti1/2)O3 (BT-xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2-3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transforms to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.
Non-Congruence of Thermally Induced Structural and Electronic Transitions in VO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nag, Joyeeta; HaglundJr., Richard F; Payzant, E Andrew
2012-01-01
The multifunctional properties of vanadium dioxide (VO2) arise from coupled first-order phase transitions: an insulator-to-metal transition (IMT) and a structural phase transition (SPT) from monoclinic to tetragonal. The characteristic signatures of the IMT and SPT are the hysteresis loops that track the phase transition from nucleation to stabilization of a new phase and back. A long-standing question about the mechanism of the VO2 phase transition is whether and how the almost-simultaneous electronic and structural transitions are related. Here we report independent measurements of the IMT and SPT hystereses in epitaxial VO2 films with differing morphologies. We show that, in bothmore » cases, the hystereses are not congruent, that the structural change requires more energy to reach completion. This result is independent of nanoscale morphology, so that the non- congruence is an intrinsic property of the VO2 phase transition. Our conclusion is supported by effective-medium calculations of the dielectric function incorporating the measured volume fractions of the monoclinic and tetragonal states. The results are consistent with the existence of an monoclinic correlated metallic state in which the electron- electron correlations characteristic of the monoclinic state begin to disappear before the transition to the tetragonal structural state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Dong; Usher, Tedi -Marie; Zhou, Hanhan
The existence of local tetragonal distortions is evidenced in the BaTiO 3–xBi(Zn 1/2Ti 1/2)O 3 (BT–xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2–3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transformsmore » to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.« less
Monitoring a Silent Phase Transition in CH 3NH 3PbI 3 Solar Cells via Operando X-ray Diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schelhas, Laura T.; Christians, Jeffrey A.; Berry, Joseph J.
The relatively modest temperature of the tetragonal-to-cubic phase transition in CH 3NH 3PbI 3 perovskite is likely to occur during real world operation of CH 3NH 3PbI 3 solar cells. In this work, we simultaneously monitor the structural phase transition of the active layer along with solar cell performance as a function of the device operating temperature. The tetragonal to cubic phase transition is observed in the working device to occur reversibly at temperatures between 60.5 and 65.4 degrees C. In these operando measurements, no discontinuity in the device performance is observed, indicating electronic behavior that is insensitive to themore » structural phase transition. Here, this decoupling of device performance from the change in long-range order across the phase transition suggests that the optoelectronic properties are primarily determined by the local structure in CH 3NH 3PbI 3. That is, while the average crystal structure as probed by X-ray diffraction shows a transition from tetragonal to cubic, the local structure generally remains well characterized by uncorrelated, dynamic octahedral rotations that order at elevated temperatures but are unchanged locally.« less
Atomic Origins of Monoclinic-Tetragonal (Rutile) Phase Transition in Doped VO2 Nanowires.
Asayesh-Ardakani, Hasti; Nie, Anmin; Marley, Peter M; Zhu, Yihan; Phillips, Patrick J; Singh, Sujay; Mashayek, Farzad; Sambandamurthy, Ganapathy; Low, Ke-Bin; Klie, Robert F; Banerjee, Sarbajit; Odegard, Gregory M; Shahbazian-Yassar, Reza
2015-11-11
There has been long-standing interest in tuning the metal-insulator phase transition in vanadium dioxide (VO2) via the addition of chemical dopants. However, the underlying mechanisms by which doping elements regulate the phase transition in VO2 are poorly understood. Taking advantage of aberration-corrected scanning transmission electron microscopy, we reveal the atomistic origins by which tungsten (W) dopants influence the phase transition in single crystalline WxV1-xO2 nanowires. Our atomically resolved strain maps clearly show the localized strain normal to the (122̅) lattice planes of the low W-doped monoclinic structure (insulator). These strain maps demonstrate how anisotropic localized stress created by dopants in the monoclinic structure accelerates the phase transition and lead to relaxation of structure in tetragonal form. In contrast, the strain distribution in the high W-doped VO2 structure is relatively uniform as a result of transition to tetragonal (metallic) phase. The directional strain gradients are furthermore corroborated by density functional theory calculations that show the energetic consequences of distortions to the local structure. These findings pave the roadmap for lattice-stress engineering of the MIT behavior in strongly correlated materials for specific applications such as ultrafast electronic switches and electro-optical sensors.
Hou, Dong; Usher, Tedi -Marie; Zhou, Hanhan; ...
2017-08-11
The existence of local tetragonal distortions is evidenced in the BaTiO 3–xBi(Zn 1/2Ti 1/2)O 3 (BT–xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2–3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transformsmore » to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.« less
The New Superconductor tP-SrPd2Bi2: Structural Polymorphism and Superconductivity in Intermetallics.
Xie, Weiwei; Seibel, Elizabeth M; Cava, Robert J
2016-04-04
We consider a system where structural polymorphism suggests the possible existence of superconductivity through the implied structural instability. SrPd2Bi2 has two polymorphs, which can be controlled by the synthesis temperature: a tetragonal form (CaBe2Ge2-type) and a monoclinic form (BaAu2Sb2-type). Although the crystallographic difference between the two forms may, at first, seem trivial, we show that tetragonal SrPd2Bi2 is superconducting at 2.0 K, whereas monoclinic SrPd2Bi2 is not. We rationalize this finding and place it in context with other 1-2-2 phases.
NASA Astrophysics Data System (ADS)
Aanchal, Kaur, Kiranpreet; Singh, Anupinder; Singh, Mandeep
2018-05-01
Ba(1-x) Mgx Ti O3 (BMT) samples were synthesised using solid state reaction route with `x' varying from 0.025 to 0.10. The structural and ferroelectric properties of the bulk samples were investigated. The XRD analysis shows the presence of two phases, the first phase being magnesium doped BT (space group P4mm) and the second phase being Ba2TiO4 (space group Pna21). The tetragonal phase was found to be the major phase in the samples. The double phase Rietveld refinement was done and the weight percentage of orthorhombic phase was found to vary from 3.43% to 6.96% for x varying from 0.025≤x≤0.10. The P - E measurements reveal that all the samples exhibit lossy behaviour.
NASA Astrophysics Data System (ADS)
Raviolo, Mónica A.; Williams, Patricia A. M.; Etcheverry, Susana B.; Piro, Oscar E.; Castellano, Eduardo E.; Gualdesi, Maria S.; Briñón, Margarita C.
2010-04-01
3'-Azido-3'-deoxythymidine (zidovudine, AZT), a synthetic analog of natural nucleoside thymidine, has been used extensively in AIDS treatments. We report here the synthesis, X-ray crystal and molecular structure, NMR, IR and Raman spectra and the thermal behavior of a novel carbonate of AZT [(AZT-O) 2C dbnd O], prepared by the reaction of zidovudine with carbonyldiimidazole. The carbonate compound, C 21H 24N 10O 9, crystallizes in the tetragonal space group P4 12 12 with a = b = 15.284(1), c = 21.695(1) Å, and Z = 8 molecules per unit cell. It consists of two AZT moieties of closely related conformations which are bridged by a carbonyl group to adopt a folded Z-like shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skálová, Tereza, E-mail: skalova@imc.cas.cz; Dohnálek, Jan; Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53 Praha 6
2007-12-01
The expression, purification and crystallization of the small laccase from S. coelicolor are reported. Diffraction data were collected to 3 Å resolution. The small bacterial laccase from the actinobacterium Streptomyces coelicolor which lacks the second of the three domains of the laccases structurally characterized to date was crystallized. This multi-copper phenol oxidase crystallizes in a primitive tetragonal lattice, with unit-cell parameters a = b = 179.8, c = 175.3 Å. The crystals belong to either space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2. The self-rotation function shows the presence of a noncrystallographic threefold axis in the structure. Phases willmore » be determined from the anomalous signal of the natively present copper ions.« less
TEM study on a new Zr-(Fe, Cu) phase in furnace-cooled Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cu alloy
NASA Astrophysics Data System (ADS)
Liu, Yushun; Qiu, Risheng; Luan, Baifeng; Hao, Longlong; Tan, Xinu; Tao, Boran; Zhao, Yifan; Li, Feitao; Liu, Qing
2018-06-01
A new Zr-(Fe, Cu) phase was found in furnace-cooled Zr-1.0Sn-0.3Nb-0.3Fe- 0.1Cu alloy and alloys aged at 580 °C for 10min, 2 h and 10 h. Electron diffraction experiment shows the crystal structure of this phase to be body-centered tetragonal with unit cell dimensions determined to be a = b = 6.49 Å, c = 5.37 Å. Its possible space groups have been discussed and the reason accounting for its formation is believed to be the addition of Cu according to the atom-level images. In addition, no crystal structural or chemical composition changes were observed throughout the aging process.
Room Temperature Monoclinic Phase in BaTiO3 Single Crystals
NASA Astrophysics Data System (ADS)
Denev, Sava; Kumar, Amit; Barnes, Andrew; Vlahos, Eftihia; Shepard, Gabriella; Gopalan, Venkatraman
2010-03-01
BaTiO3 is a well studied ferroelectric material for the last half century. It is well known to show phase transitions to tetragonal, orthorhombic and rhombohedral phases upon cooling. Yet, some old and some recent studies have argued that all these phases co-exist with a second phase with monoclinic distortion. Using optical second harmonic generation (SHG) at room temperature we directly present evidence for such monoclininc phase co-existing with tetragonal phase at room temperature. We observe domains with the expected tetragonal symmetry exhibiting 90^o and 180^o domain walls. However, at points of higher stress at the tips of the interpenetrating tetragonal domains we observe a well pronounced metastable ``staircase pattern'' with a micron-scale fine structure. Polarization studies show that this phase can be explained only by monoclinic symmetry. This phase is very sensitive to external perturbations such as temperature and fields, hence stabilizing this phase at room temperature could lead to large properties' tunability.
NASA Astrophysics Data System (ADS)
Han, Dan-Dan; Lu, Da-Yong; Meng, Fan-Ling; Yu, Xin-Yu
2018-03-01
Temperature-dependent electron paramagnetic resonance (EPR) study was employed to detect oxygen vacancy defects in the tetragonal Ba(Ti1-xCrx)O3 (x = 5%) ceramic for the first time. In the rhombohedral phase below -150 °C, an EPR signal at g = 1.955 appeared in the insulating Ba(Ti1-xCrx)O3 (x = 5%) ceramic with an electrical resistivity of 108 Ω cm and was assigned to ionized oxygen vacancy defects. Ba(Ti1-xCrx)O3 ceramics exhibited a tetragonal structure except Ba(Ti1-xCrx)O3 (x = 10%) with a tetragonal-hexagonal mixed phase and a first-order phase transition dielectric behavior (ε‧m > 11,000). Mixed valence Cr ions could coexist in ceramics, form CrTi‧-VOrad rad or CrTirad-TiTi‧ defect complexes and make no contribution to a dielectric peak shift towards low temperature.
Thermodynamic analysis of the formation of tetragonal bainite in steels
NASA Astrophysics Data System (ADS)
Mirzayev, D. A.; Mirzoev, A. A.; Buldashev, I. V.; Okishev, K. Yu.
2017-06-01
In the articles of Bkhadeshia, a new class of high-strength steels based on the structure of carbidefree bainite with an enhanced carbon content has been developed. According to Bkhadeshia, the main factor responsible for the high solubility of carbon is the occurrence of a tetragonality of the bainite lattice. To check this effect, in this article, the theory of tetragonality of martensite of iron alloys developed by Zener and Khachaturyan was applied to bainite under the assumption that the precipitation of carbides is prohibited. Equations for the chemical potentials of carbon and iron in austenite and in tetragonal ferrite have been derived. The equilibrium of these phases has been considered, and the calculations of the boundary concentrations of carbon and iron at different temperatures (300-1000 K) and at different parameters of the deformation interaction λ0 have been performed. The rigorous calculations confirmed Bkhadeshia's hypothesis that the suppression of the carbide formation during the formation of bainite leads to an increase in the carbon solubility in the bcc phase.
Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.
Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a functionmore » of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.« less
NASA Astrophysics Data System (ADS)
Phan, The-Long; Zhang, P.; Grinting, D.; Yu, S. C.; Nghia, N. X.; Dang, N. V.; Lam, V. D.
2012-07-01
Polycrystalline samples of BaTiO3 doped with 2.0 at. % Mn were prepared by solid-state reaction at various temperatures (Tan) ranging from 500 to 1350 °C, used high-pure powders of BaCO3, TiO2, and MnCO3 as precursors. Experimental results obtained from x-ray diffraction patterns and Raman scattering spectra reveal that tetragonal Mn-doped BaTiO3 starts constituting as Tan ≈ 500 °C. The Tan increase leads to the development of this phase. Interestingly, there is the tetragonal-hexagonal transformation in the crystal structure of BaTiO3 as Tan ≈ 1100 °C. Such the variations influence directly magnetic properties of the samples. Besides paramagnetic contributions of Mn2+ centers traced to electron spin resonance, the room-temperature ferromagnetism found in the samples is assigned to exchange interactions taking place between Mn3+ and Mn4+ ions located in tetragonal BaTiO3 crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quijano, Ramiro; DeCoss, Romeo; Singh, David J
2009-01-01
The electronic structure and energetics of the tetragonal distortion for the fluorite-type dihydrides TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} are studied by means of highly accurate first-principles total-energy calculations. For HfH{sub 2}, in addition to the calculations using the scalar relativistic (SR) approximation, calculations including the spin-orbit coupling have also been performed. The results show that TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} in the cubic phase are unstable against tetragonal strain. For the three systems, the total energy shows two minima as a function of the c/a ratio with the lowest-energy minimum at c/a < 1 in agreementmore » with the experimental observations. The band structure of TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} (SR) around the Fermi level shows two common features along the two major symmetry directions of the Brillouin zone, {Lambda}?L and {Lambda}?K, a nearly flat doubly degenerate band, and a van Hove singularity, respectively. In cubic HfH{sub 2} the spin-orbit coupling lifts the degeneracy of the partially filled bands in the {Lambda}?L path, while the van Hove singularity in the {Lambda}?K path remains unchanged. The density of states of the three systems in the cubic phase shows a sharp peak at the Fermi level. We found that the tetragonal distortion produces a strong reduction in the density of states at the Fermi level resulting mainly from the splitting of the doubly-degenerate bands in the {Lambda}?L direction and the shift of the van Hove singularity to above the Fermi level. The validity of the Jahn-Teller model in explaining the tetragonal distortion in this group of dihydrides is discussed.« less
Orientation-resolved domain mapping in tetragonal SrTiO 3 using polarized Raman spectroscopy
Gray, Jr., Dodd J.; Merz, Tyler A.; Hikita, Yasuyuki; ...
2016-12-16
Here, we present microscopically resolved, polarized spectroscopy of Raman scattering collected from tetragonal SrTiO 3. The anisotropic response of first-order Raman peaks within a single tetragonal domain has been measured. From these data, we assign symmetries to the phonons seen in the first-order Raman spectrum which is normally complicated by uncontrolled domain structure. Using a translation stage, we map the local domain orientation of a 3–μm 3 crystal volume near the laser focus and compare it to wide-field polarized images. This technique can be performed with readily available instruments and is relevant to the study of a wide range ofmore » related materials, interfaces, and devices.« less
NASA Astrophysics Data System (ADS)
Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P. T.
2013-07-01
The new ternary metal-rich boride, Nb2OsB2, was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U3Si2-structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B2 dumbbells with B-B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB-LMTO-ASA), the homoatomic B-B interactions are optimized and very strong, but relatively strong heteroatomic Os-B, Nb-B and Nb-Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride.
The influence of high pressure to crystalline and magnetic structure of Ba 2 FeMoO 6
NASA Astrophysics Data System (ADS)
Turchenko, V. A.; Kalanda, N. A.; Kovalev, L. V.; Yarmolich, M. V.; Petrov, A. V.; Lukin, Ye V.; Doroshkevich, A. S.; Balasoiu, M.; Lupu, N.; Savenko, B. N.
2018-03-01
The behavior of the crystalline and magnetic structure of Ba 2 FeMoO 6 compound in a wide pressure range from 0 to 4.7 GPa was studied. The crystal structure of ceramic sample was described in the framework of SG I4/mmm (No 139) and contains less 10% of anti-site defects. The change of tetragonal structure (I4/mmm) was not observed in all measured pressure range. It was shown multidirectional influence of ambient pressure onto the average interionic distances of metal-ligand in oxygen octahedrons of FeO 6 and MoO 6. For tetragonal structure of Ba 2 FeMoO 6 were determined coefficients of the linear and all-round compressibility. The influence of ambient pressure on the value of magnetic moment of iron sublattice was shown.
NASA Astrophysics Data System (ADS)
Francillon, Wesley
This dissertation is an investigation of materials and processed under consideration for next generation thermal structural oxides with potential applications as thermal barrier coatings; wherein, high temperature stability and mechanical properties affect durability. Two notable next generation materials systems under investigation are pyrochlore and co-doped zirconia oxides. The motivation for this work is based on current limitations of the currently used thermal barrier material of yttria stabilized zirconia (YSZ) deposited by the plasma spray processes. The rapid quenching associated with the plasma spray process, results in a metastable structure that is a non-transformable tetragonal structure in the yttria partially stabilized zirconia system rather than the equilibrium anticipated two phase mixture of cubic and monoclinic phases. It has been shown that this metastable structure offers enhanced toughness and thus durability during thermomechanical cycling from the operating temperatures in excess of 1000C to ambient. However, the metastable oxides are susceptible to partitioning at temperatures greater than 1200C, thus resulting in a transformation of the tetragonal phase oxides. Transformations of the tetragonal prime phase into the parent cubic and tetragonal prime phase result in coating degradation. Several of the emerging oxides are based on rare earth additions to zirconia. However, there is limited information of the high temperature stability of these oxide coatings and more notably these compositions exhibit limited toughness for durable performance. A potential ternary composition based on the YSZ system that offers the ability to tailor the phase structure is based YO1.5-TiO2 -ZrO2. The ternary of YO1.5-TiO2-ZrO 2 has the current TBC composition of seven molar percent yttria stabilized zirconia, pyrochlore phase oxide and zirconia doped with yttria and titania additions (Ti-YSZ). The Ti-YSZ phase field is of interest because at equilibrium it is a single tetragonal phase. Thus, compositions are of single phase tetragonal phase, theoretically, should not undergo high temperature partitioning. Single Tetragonal phase oxides of Ti-YSZ also offer the possibility of enhanced toughness and higher temperature stability akin to those observed in yttria partially stabilized zirconia. Many pyrochlore oxides are under review because they have shown to have lower thermal conductivity than YSZ oxides. This study focused on chemically synthesizing homogeneous starting material compositions in a metastable state (preferably amorphous), following its evolution according to the phase hierarchy under conditions of kinetic constraints. The current equilibrium diagram of YO1.5-TiO2-ZrO 2 is based on theoretical calculations. One of the contributions of this work is the redefined phase fields in YO1.5-TiO2-ZrO 2 based on our experimental results. Investigated compositions were based on tie lines of Y2-xTi2ZrxO7+x/2 and Y2Ti2-yZryO7 representing substitution of Zr4+ for Y3+ and Zr4+ for Ti4+ respectively. More notably, we observed extended metastable phases in pyrochlore and fluorite oxides at low temperature. The significance of this result is that it offers a larger compositional range for investing pyrochlore oxides with associated high temperature phase stability for TBC applications. In tetragonal oxides, our results showed that Ti-YSZ results have slower partitioning kinetics in comparison to YSZ at high temperature. This study also emphasized the deposition of advanced ceramic coatings by plasma spray for tetragonal and pyrochlore systems, compositionally complex functional oxides that may potentially have lower thermal conductivity values compared to current YSZ oxides. Next generation thermal barrier coatings require powders with high chemical purity, chemical homogeneity, controlled particle size/shape and pertinent phase state. Thermal spray offers an avenue to create novel materials and deposits directly from the precursor and compositionally controlled powder feedstock. This study contributed to investigating an unexplored field that offers a variety of opportunities in materials synthesis that would not be possible by conventional methods. Understanding processing-microstructure-property correlations is of considerable importance in thermal spray of functional oxide materials. This thesis demonstrated by radio-frequency thermal spray that the complex pyrochlore oxide Y 2Ti2O7 could be deposited by directly injecting molecularly mixed precursors to form oxide coatings. Structural analysis revealed the metastable fluorite phase; however, with thermal treatments at relatively low temperature of 700°C the pyrochlore phase was obtained. For Ti-YSZ coatings, the tetragonal phase oxides were obtained with unique microstructures, however, the tetragonal prime destabilized at 1200°C. This dissertation explored novel oxide compositions through detailed structural analysis. The approach presented a comprehensive and integrated investigation as it pertains to phase evolution of oxides in powder feedstock to coating characteristics (phase/properties).
Structure symmetry determination and magnetic evolution in Sr 2Ir 1–xRh xO 4
Ye, Feng; Wang, Xiaoping; Hoffmann, Christina; ...
2015-11-23
We use single-crystal neutron diffraction to determine the crystal structure symmetry and to study the magnetic evolution in the rhodium doped iridates Sr 2Ir 1–xRh xO 4 (0 ≤ x ≤ 0.16). Throughout this doping range, the crystal structure retains a tetragonal symmetry (space group I4 1/a) with two distinct magnetic Ir sites in the unit cell forming staggered IrO 6 rotation. Upon Rh doping, the magnetic order is suppressed and the magnetic moment of Ir4+ is reduced from 0.21 μ B/Ir for x = 0 to 0.18 μ B/Ir for x = 0.12. As a result, the magnetic structuremore » at x = 0.12 is different from that of the parent compound while the moments remain in the basal plane.« less
Structural, optical and dielectric properties of Sn0.97Ce0.03O2 nanostructures
NASA Astrophysics Data System (ADS)
Ahmed, Ateeq; Siddique, M. Naseem; Ali, Tinku; Tripathi, P.
2018-05-01
In present work, 3% cerium doped SnO2 (Sn0.97Ce0.03O2) nanoparticles (NPs) have been synthesized by sol-gel method. The prepared sample has been characterized by using various techniques such as XRD, UV-visible absorption spectroscopy and LCR meter measurements. Structural Rietveld refinement of XRD data reveals that (Sn0.97Ce0.03O2) sample has a pure single phase tetragonal structure with space group (P42/mnm) without creating any impurity phase such as cerium oxide. UV-visible spectroscopy determines band gap value 3.47 eV for (Sn0.97Ce0.03O2) NPs using Tauc's relation. Dielectric constant and loss decreased with increase in frequency while ac conductivity was found to increase with increase in frequency. The observed dielectric results has been explained in the light of Maxwell-Wagner model.
Structural, dielectric and magnetic studies of magnetoelectric trirutile Fe{sub 2}TeO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaushik, S. D., E-mail: sdkaushik@csr.res.in; Sahu, B.; Mohapatra, S. R.
2016-05-23
We have investigated structural, magnetic and dielectric properties of Fe{sub 2}TeO{sub 6} which is a magnetoelectric antiferromagnet with the trirutile lattice. Rietveld analysis of room temperature X-ray diffraction data shows the phase purity of the sample with tetragonal trirutile structure (space group P4{sub 2}/mnm). The DC susceptibility measurement performed on polycrystalline powders exhibits antiferromagnetic ordering below transition temperature ~ 210K. The employment of Curie-Weiss law to inverse magnetic susceptibility only in the temperature range 350-260 K indicates the magnetic ordering starts developing before the transition temperature. The temperature dependent dielectric measurements show an intrinsic behavior of dielectric constant below 150more » K while a continuous increase in dielectric constant with temperature above 150 K may be attributed to a small increase in electrical conduction, known commonly in the literatures.« less
Hybridization gap in the semiconducting compound SrIr 4In 2Ge 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calta, Nicholas P.; Im, Jino; Fang, Lei
Here, large single crystals of SrIr 4In 2Ge 4 were synthesized using the In flux method. This compound is a hybridization gap semiconductor with an experimental optical band gap of E g = 0.25(3) eV. It crystallizes in the tetragonal EuIr 4In 2Ge 4 structure type with space group 1more » $$\\overline{4}$$2m and unit cell parameters a = 6.9004(5) Å and c = 8.7120(9) Å. The electronic structure is very similar to both EuIr 4In 2Ge 4 and the parent structure Ca 3Ir 4Ge 4, suggesting that these compounds comprise a new family of hybridization gap materials that exhibit indirect gap, semiconducting behavior at a valence electron count of 60 per formula unit, similar to the Heusler alloys.« less
Molten Salt Synthesis and Structural Characterization of BaTiO3 Nanocrystal Ceramics
NASA Astrophysics Data System (ADS)
Ahda, S.; Misfadhila, S.; Parikin, P.; Putra, T. Y. S. P.
2017-02-01
A new synthesis route to obtain high-purity barium titanate powder, BaTiO3, using the molten salt method by reacting the raw materials (BaCO3 and TiO2) in an atmosphere of molten NaCl and KCl, has been developed. The synthesized BaTiO3 ceramic particles have been successfully carried out at the sintering temperature 950°C for 4 hours. The Rietveld refinement of the XRD diffraction patterns was employed to characterize the structural information of the nanocrystalline BaTiO3 ceramics. The lattice parameters (a=4.0043 Å, b=4.0308Å with space group P4mm) of tetragonal perovskite structure, as an indication of piezoelectric characteristics, have been successfully determined by the Rietveld refinement. While the crystallitte particle size and strains have been obtained for the values of 110.6 nm and 0.74 % respectively
Hybridization gap in the semiconducting compound SrIr 4In 2Ge 4
Calta, Nicholas P.; Im, Jino; Fang, Lei; ...
2016-11-18
Here, large single crystals of SrIr 4In 2Ge 4 were synthesized using the In flux method. This compound is a hybridization gap semiconductor with an experimental optical band gap of E g = 0.25(3) eV. It crystallizes in the tetragonal EuIr 4In 2Ge 4 structure type with space group 1more » $$\\overline{4}$$2m and unit cell parameters a = 6.9004(5) Å and c = 8.7120(9) Å. The electronic structure is very similar to both EuIr 4In 2Ge 4 and the parent structure Ca 3Ir 4Ge 4, suggesting that these compounds comprise a new family of hybridization gap materials that exhibit indirect gap, semiconducting behavior at a valence electron count of 60 per formula unit, similar to the Heusler alloys.« less
NASA Astrophysics Data System (ADS)
Morozova, Natalia V.; Karkin, Alexander E.; Ovsyannikov, Sergey V.; Umerova, Yuliya A.; Shchennikov, Vladimir V.; Mittal, R.; Thamizhavel, A.
2015-12-01
We experimentally investigated the electronic transport properties of four iron pnictide crystals, namely, EuFe2As2, SrFe2As2, and CaFe2As2 parent compounds, and superconducting CaFe1.94Co0.06As2 at ambient and high pressures up to 20 GPa. At ambient pressure we examined the electrical resistivity, Hall and magnetoresistance effects of the samples in a temperature range from 1.5 to 380 K in high magnetic fields up to 13.6 T. In this work we carried out the first simultaneous investigations of the in-plane and out-of-plane Hall coefficients, and found new peculiarities of the low-temperature magnetic and structural transitions that occur in these materials. In addition, the Hall coefficient data suggested that the parent compounds are semimetals with a multi-band conductivity that includes hole-type and electron-type bands. We measured the pressure dependence of the thermoelectric power (the Seebeck effect) of these samples up to 20 GPa, i.e. across the known phase transition from the tetragonal to the collapsed tetragonal lattice. The high-pressure behavior of the thermopower of EuFe2As2 and CaFe2As2 showing the p-n sign inversions was consistent with the semimetal model described above. By means of thermopower, we found in single-crystalline CaFe2As2 direct evidence of the band structure crossover related to the formation of As-As bonds along the c-axis on the tetragonal → collapsed tetragonal phase transition near 2 GPa. We showed that this feature is distinctly observable only in high-quality samples, and already for re-pressurization cycles this crossover was strongly smeared because of the moderate deterioration of the sample. We also demonstrated by means of thermopower that the band structure crossover that should accompany the tetragonal → collapsed tetragonal phase transition in EuFe2As2 near 8 GPa is hardly visible even in high-quality single crystals. This behavior may be related to a gradual valence change of the Eu ions under pressure that leads to an injection of free electrons and the steady shift of the conduction to n-type.
X-ray and dielectric characterization of Co doped tetragonal BaTiO3 ceramics
NASA Astrophysics Data System (ADS)
Bujakiewicz-Koronska, R.; Vasylechko, L.; Markiewicz, E.; Nalecz, D. M.; Kalvane, A.
2017-01-01
The crystal structure modifications of BaTiO3 induced by cobalt doping were studied. The polycrystalline (1 - x)BaTiO3 + xCo2O3 samples, with x ≤ 10 wt.%, were prepared by high temperature sintering conventional method. According to X-ray phase and structural characterization, performed by full-profile Rietveld refinement technique, all synthesized samples showed tetragonal symmetry perovskite structure with minor amount of parasitic phases. Pure single-phase composition has been detected only in the low level of doping BaTiO3. It was indicated that substitution of Co for the Ti sites in the (1 - x)BaTiO3 + xCo2O3 series led to decrease of tetragonality (c/a) of the BaTiO3 perovskite structure. This effect almost vanished in the (1 - x)BaTiO3 + xCo2O3 samples with nominal Co content higher than ∼1 wt.%, in which precipitation of parasitic Co-containing phases CoO and Co2TiO4 has been observed. Based on the results, the solubility limit of Co in Ti sub-lattice in the (1 - x)BaTiO3 + xCo2O3 series is estimated as x = 0.75 wt.%.
Fe moments in the pressure-induced collapsed tetragonal phase of (Ca0.67Sr0.33) Fe2As2
NASA Astrophysics Data System (ADS)
Jeffries, Jason; Butch, Nicha; Bradley, Joseph; Xiao, Yuming; Chow, Paul; Saha, Shanta; Kirshenbaum, Kevin; Paglione, Johnpierre
2013-06-01
The tetragonal AEFe2As2 (AE =alkaline earth element) family of iron-based superconductors exhibits magnetic order at ambient pressure and low temperature. Under pressure, the magnetic order is suppressed, and an isostructural volume collapse is induced due to increased As-As bonding across the mirror plane of the structure. This collapsed tetragonal phase has been shown to support superconductivity under some conditions, and theoretical calculations suggest an unconventional origin. Theoretical calculations also reveal that enhanced As-As bonding and the magnitude of the Fe moments are correlated, suggesting that the Fe moments can be quenched in the collapsed tetragonal phase. Whether the Fe moments persist in the collapsed tetragonal phase has implications for the pairing mechanism of the observed, pressure-induced superconductivity in these compounds. We will present pressure- dependent x-ray emission spectroscopy (XES) measurements that probe the Fe moments through the volume collapse transition of (Ca0.67Sr0.33) Fe2As2. These measurements will be compared with previously reported phase diagrams that include superconductivity. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy (DOE), National Nuclear Security Administration under Contract No. DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lahoz, F.; Villacampa, B.; Alcala, R.
1997-04-01
The influence of crystal mixing on the structural phase transitions in Rb{sub 1{minus}x}Cs{sub x}CaF{sub 3} (0{lt}x{lt}1) fluoroperovskite crystals has been studied by thermal expansion and EPR measurements of Ni{sup 2+} and Ni{sup 3+} paramagnetic probes. A cubic-to-tetragonal phase transition has been detected in crystals with x=0, 0.1, 0.21, 0.27, and 0.35. The critical temperature and the tetragonal distortion decrease as x increases. No transition was observed for x{ge}0.44. This transition shows a weak first-order component in the x=0 and 0.1 samples, which is progressively smeared out for x{gt}0.1, indicating a spatial distribution of the critical temperature in those crystals withmore » high ionic substitution rate. In RbCaF{sub 3}, another structural phase transition was observed at 20 K with a thermal hysteresis between 20 and 40 K. This transition has not been found in any of the mixed crystals.« less
Structural analysis of PrBaMn2O5+δ under SOFC anode conditions by in-situ neutron powder diffraction
NASA Astrophysics Data System (ADS)
Tomkiewicz, Alex C.; Tamimi, Mazin A.; Huq, Ashfia; McIntosh, Steven
2016-10-01
The crystal structure and oxygen stoichiometry of the proposed double perovskite solid oxide fuel cell (SOFC) anode material PrBaMn2O5+δ were determined under SOFC anode conditions via in-situ neutron diffraction. Measurements were performed in reducing atmospheres between 692 K and 984 K. The structure was fit to a tetragonal (space group P4/mmm) layered double perovskite structure with alternating Pr and Ba A-site cation layers. Under all conditions examined, the oxygen sites in the Ba and Mn layers were fully occupied, while the sites in the Pr layer were close to completely vacant. The results of the neutron diffraction experiments are compared to previous thermogravimetric analysis experiments to verify the accuracy of both experiments. PrBaMn2O5+δ was shown to be stable over a wide range of reducing atmospheres similar to anode operating conditions in solid oxide fuel cells without significant structural changes.
NASA Astrophysics Data System (ADS)
Valenti, Roser
KFe2As2 shows an intricate behavior as a function of pressure. At ambient pressure the system is superconductor with a low critical temperature Tc=3.4 K and follows a V-shaped pressure dependence of Tc for moderate pressures with a local minimum at a pressure of 1.5 GPa. Under high pressures Pc=15 GPa, KFe2As2 exhibits a structural phase transition from a tetragonal to a collapsed tetragonal phase accompanied by a boost of the superconducting critical temperature up to 12 K. On the other hand, negative pressures realized through substitution of K by Cs or Rb decrease Tc down to 2.25K. In this talk we will discuss recent progress on the understanding of the microscopic origin of this pressure-dependent behavior by considering a combination of ab initio density functional theory with dynamical mean field theory and spin fluctuation theory calculations. We will argue that a Lifshitz transition associated with the structural collapse changes the pairing symmetry from d-wave (tetragonal) to s+/- (collapsed tetragonal) at high pressures while at ambient and negative pressures correlation effects appear to be detrimental for superconductivity. Further, we shall establish cross-links to the chalcogenide family, in particular FeSe under pressure. The Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged for financial support.
[Structure and properties of colored dental tetragonal zirconia stabilized by yttrium ceramics].
Yi, Yuan-fu; Wang, Chen; Wen, Ning; Lin, Yong-zhao; Tian, Jie-mo
2009-10-01
To investigate the structure, mechanical and low temperature aging properties of colored dental zirconia ceramics. 5 graded colored dental zirconia ceramics were made by adding colorants and their combinations into a 3Y-TZP (tetragonal zirconia stabilized by 3mol% yttrium) powder, the green body were compacted at 200 MPa, pre-sinter at 1,050 degrees C and maintained for 2 h, then densely sintered at 1,500 degrees C for 2 h. Specimens were cut from each of the 5 graded colored blocks. Physical, mechanical properties as well as chemical stability were tested, microstructure were observed, crystalline phase were identified by X-ray diffraction (XRD), aging properties were assessed by measurement of the relative content of monoclinic phase and bending strength testing. The overall density of colored zirconia ceramics was over 99.7%, linear shrinkage was about 20%, while thermal expansion coefficient was about 11 x 10(-6) x degrees C(-1), the crystalline phase was tetragonal, bending strength was over 900 MPa which was slightly lowered than that of the uncolored zirconia, fracture toughness was slightly higher. Good chemical stability in acetic acid was observed. After aging treatment, tetragonal-to-monoclinic phase transformation was detected up to 40%, while bending strength was not significantly degraded. The results showed that colored 3Y-TZP ceramics presented good mechanical properties even after aging treatments, and was suitable for dental clinical use.
Complex structures of different CaFe2As2 samples
Saparov, Bayrammurad; Cantoni, Claudia; Pan, Minghu; Hogan, Thomas C.; II, William Ratcliff; Wilson, Stephen D.; Fritsch, Katharina; Gaulin, Bruce D.; Sefat, Athena S.
2014-01-01
The interplay between magnetism and crystal structures in three CaFe2As2 samples is studied. For the nonmagnetic quenched crystals, different crystalline domains with varying lattice parameters are found, and three phases (orthorhombic, tetragonal, and collapsed tetragonal) coexist between TS = 95 K and 45 K. Annealing of the quenched crystals at 350°C leads to a strain relief through a large (~1.3%) expansion of the c-parameter and a small (~0.2%) contraction of the a-parameter, and to local ~0.2 Å displacements at the atomic-level. This annealing procedure results in the most homogeneous crystals for which the antiferromagnetic and orthorhombic phase transitions occur at TN/TS = 168(1) K. In the 700°C-annealed crystal, an intermediate strain regime takes place, with tetragonal and orthorhombic structural phases coexisting between 80 to 120 K. The origin of such strong shifts in the transition temperatures are tied to structural parameters. Importantly, with annealing, an increase in the Fe-As length leads to more localized Fe electrons and higher local magnetic moments on Fe ions. Synergistic contribution of other structural parameters, including a decrease in the Fe-Fe distance, and a dramatic increase of the c-parameter, which enhances the Fermi surface nesting in CaFe2As2, are also discussed. PMID:24844399
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bykova, E., E-mail: elena.bykova@uni-bayreuth.de; Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth; Gou, H.
2015-10-15
We present here a detailed description of the crystal structures of novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} with various iron content (x=1.01(1), 1.04(1), 1.32(1)), synthesized at high pressures and high temperatures. As revealed by high-pressure single-crystal X-ray diffraction, the structure of Fe{sub 2}B{sub 7} possesses short incompressible B–B bonds, which make it as stiff as diamond in one crystallographic direction. The volume compressibility of Fe{sub 2}B{sub 7} (the bulk modulus K{sub 0}= 259(1.8) GPa, K{sub 0}′= 4 (fixed)) is even lower than that of FeB{sub 4} and comparable with that of MnB{sub 4}, known for highmore » bulk moduli among 3d metal borides. Fe{sub x}B{sub 50} adopts the structure of the tetragonal δ-B, in which Fe atoms occupy an interstitial position. Fe{sub x}B{sub 50} does not show considerable anisotropy in the elastic behavior. - Graphical abstract: Crystal structures of novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} (x=1.01(1), 1.04(1), 1.32(1)). - Highlights: • Novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50}, were synthesized under HPHT conditions. • Fe{sub 2}B{sub 7} has a unique orthorhombic structure (space group Pbam). • Fe{sub 2}B{sub 7} possesses short incompressible B–B bonds that results in high bulk modulus. • Fe{sub x}B{sub 50} adopts the structure of the tetragonal δ-B composed of B{sub 12} icosahedra. • In Fe{sub x}B{sub 50} intraicosahedral bonds are stiffer than intericosahedral ones.« less
Ferromagnetism in tetragonally distorted LaCoO3 thin films
NASA Astrophysics Data System (ADS)
Mehta, Virat Vasav; Liberati, Marco; Wong, Franklin J.; Chopdekar, Rajesh Vilas; Arenholz, Elke; Suzuki, Yuri
2009-04-01
Thin films of epitaxial LaCoO3 were synthesized on SrTiO3 and (La ,Sr)(Al,Ta)O3 substrates, varying the oxygen background pressure in order to evaluate the impact of epitaxial growth as well as oxygen vacancies on the long range magnetic order. The epitaxial constraints from the substrate impose a tetragonal distortion compared to the bulk form. X-ray absorption and x-ray magnetic circular dichroism measurements confirmed that the ferromagnetism arises from the Co ions and persists through the entire thickness of the film. It was found that for the thin films to show ferromagnetic order they have to be grown under the higher oxygen pressures. A correlation of the structure and magnetism suggests that the tetragonal distortions induce the ferromagnetism.
NASA Astrophysics Data System (ADS)
Rahman, Gul; Rahman, Altaf Ur
2017-12-01
Thermoelectric properties of cubic (C) and tetragonal (T) BaTiO3 (BTO) and PbTiO3 (PTO) are investigated using density functional theory together with semiclassical Boltzmann's transport theory. Both electron and hole doped BTO and PTO are considered in 300-500 K temperature range. We observed that C-BTO has larger power factor(PF) when doped with holes, whereas n-type carrier concentration in C-PTO has larger PF. Comparing both BTO and PTO, C-PTO has larger figure of merit ZT. Tetragonal distortion reduces the Seebeck coefficient S in n-doped PTO, and the electronic structures revealed that such reduction in S is mainly caused by the increase in the optical band gaps (Γ - Γ and Γ-X).
Investigation of transport properties of FeTe compound
NASA Astrophysics Data System (ADS)
Lodhi, Pavitra Devi; Solanki, Neha; Choudhary, K. K.; Kaurav, Netram
2018-05-01
Transport properties of FeTe parent compound has been investigated by measurements of electrical resistivity, magnetic susceptibility and Seebeck coefficient. The sample was synthesized through a standard solid state reaction route via vacuum encapsulation and characterized by x-ray diffraction, which indicated a tetragonal phase with space group P4/nmm. The parent FeTe compound does not exhibit superconductivity but shows an anomaly in the resistivity measurement at around 67 K, which corresponds to a structural phase transition along with in the vicinity of a magnetic phase transition. In the low temperature regime, Seebeck coefficient, S(T), exhibited an anomalous dip feature and negative throughout the temperature range, indicating electron-like charge carrier conduction mechanism.
Formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation
Sun, Cheng; Sprouster, David J.; Hattar, K.; ...
2018-02-09
In this paper, we report the formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation at 573 K. The transmission electron microscopy study shows that the helium bubble lattice constant measured from the in-plane d-spacing is ~4.5 nm, while it is ~3.9 nm from the out-of-plane measurement. The results of synchrotron-based small-angle x-ray scattering agree well with the transmission electron microscopy results in terms of the measurement of bubble lattice constant and bubble size. The coupling of transmission electron microscopy and synchrotron high-energy X-ray scattering provides an effective approach to study defect superlattices in irradiated materials.
Formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Cheng; Sprouster, David J.; Hattar, K.
In this paper, we report the formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation at 573 K. The transmission electron microscopy study shows that the helium bubble lattice constant measured from the in-plane d-spacing is ~4.5 nm, while it is ~3.9 nm from the out-of-plane measurement. The results of synchrotron-based small-angle x-ray scattering agree well with the transmission electron microscopy results in terms of the measurement of bubble lattice constant and bubble size. The coupling of transmission electron microscopy and synchrotron high-energy X-ray scattering provides an effective approach to study defect superlattices in irradiated materials.
Moshopoulou, E G; Ibberson, R M; Sarrao, J L; Thompson, J D; Fisk, Z
2006-04-01
The room-temperature crystal structure of the heavy fermion antiferromagnet Ce2RhIn8, dicerium rhodium octaindide, has been studied by a combination of high-resolution synchrotron X-ray reciprocal-space mapping of single crystals and high-resolution time-of-flight neutron powder diffraction. The structure is disordered, exhibiting a complex interplay of non-periodic, partially correlated planar defects, coexistence and segregation of polytypic phases (induced by periodic planar ;defects'), mosaicity (i.e. domain misalignment) and non-uniform strain. These effects evolve as a function of temperature in a complicated way, but they remain down to low temperatures. The room-temperature diffraction data are best represented by a complex mixture of two polytypic phases, which are affected by non-periodic, partially correlated planar defects, differ slightly in their tetragonal structures, and exhibit different mosaicities and strain values. Therefore, Ce2RhIn8 approaches the paracrystalline state, rather than the classic crystalline state and thus several of the concepts of conventional single-crystal crystallography are inapplicable. The structural results are discussed in the context of the role of disorder in the heavy-fermion state and in the interplay between superconductivity and magnetism.
Structure of tetragonal martensite in the In95.42Cd4.58 cast alloy
NASA Astrophysics Data System (ADS)
Khlebnikova, Yu. V.; Egorova, L. Yu.; Rodionov, D. P.; Kazantsev, V. A.
2017-11-01
The structure of martensite in the In95.42Cd4.58 alloy has been studied by metallography, X-ray diffraction, dilatometry, and transmission electron microscopy. It has been shown that a massive structure built of colonies of tetragonal lamellar plates divided by a twin boundary {101}FCT is formed in the alloy under cooling below the martensite FCC → FCT transition temperature. The alloy recrystallizes after a cycle of FCT → FCC → FCT transitions with a decrease in the grain size by several times compared with the initial structure such fashion that the size of massifs and individual martensite lamella in the massif correlates with the change in the size of the alloy grain. Using thermal cycling, it has been revealed that the alloy tends to stabilize the high-temperature phase.
Ba 2TeO as an optoelectronic material: First-principles study
Sun, Jifeng; Shi, Hongliang; Du, Mao-Hua; ...
2015-05-21
The band structure, optical and defects properties of Ba 2TeO are systematically investigated using density functional theory with a view to understanding its potential as an optoelectronic or transparent conducting material. Ba 2TeO crystallizes with tetragonal structure (space group P4/nmm) and with a 2.93 eV optical band gap1. We find relatively modest band masses for both electrons and holes suggesting applications. Optical properties show a infrared-red absorption when doped. This could potentially be useful for combining wavelength filtering and transparent conducting functions. Furthermore, our defect calculations show that Ba 2TeO is intrinsically p-type conducting under Ba-poor condition. However, the spontaneousmore » formation of the donor defects may constrain the p-type transport properties and would need to be addressed to enable applications.« less
Structural investigation of the C-O complex in GaAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alt, H. Ch.; Kersch, A.; Wagner, H. E.
A carbon-oxygen complex occurring in gallium arsenide crystals after annealing at around 700 °C is studied. Fourier transform infrared absorption measurements on the associated vibrational band at 2060 cm-1 under uniaxial stress reveal that the center has tetragonal symmetry. From the intensity of the {sup 18}O-related satellite band it is concluded that four oxygen atoms are involved. Ab initio local density calculations show that a tetragonal CO{sub 4} molecule forms a stable entity in the gallium arsenide lattice.
Ferroelastic phase transitions in (NH4)2TaF7
NASA Astrophysics Data System (ADS)
Pogorel'tsev, E. I.; Mel'nikova, S. V.; Kartashev, A. V.; Molokeev, M. S.; Gorev, M. V.; Flerov, I. N.; Laptash, N. M.
2013-03-01
The heat capacity, unit cell parameters, permittivity, optical properties, and thermal expansion of the (NH4)2TaF7 compound with a seven-coordinated anion polyhedron have been measured. It has been found that the compound undergoes two successive phase transitions with the symmetry change: tetragonal → ( T 1 = 174 K) orthorhombic → ( T 2 = 156 K) tetragonal. The ferroelastic nature of structural transformations has been established, and their entropy and susceptibility to hydrostatic pressure have been determined.
NASA Astrophysics Data System (ADS)
Knight, Kevin S.; Price, G. David; Stuart, John A.; Wood, Ian G.
2015-01-01
The nature of the apparently continuous structural phase transition at 1,049 K in the perovskite-structured, MgSiO3 isomorph, neighborite (NaMgF3), from the orthorhombic ( Pbnm) hettotype phase to the cubic () aristotype structure, has been re-investigated using high-resolution, time-of-flight neutron powder diffraction. Using data collected at 1 K intervals close to the nominal phase transition temperature, the temperature dependence of the intensities of superlattice reflections at the M point and the R point of the pseudocubic Brillouin zone indicate the existence of a new intermediate tetragonal phase in space group P4/ mbm, with a narrow phase field extending from ~1,046.5 to ~1,048.5 K, at ambient pressure. Group theoretical analysis shows that the structural transitions identified in this study, Pbnm- P4/ mbm, and P4/ mbm-, are permitted to be second order. The observation of the tetragonal phase resolves the longstanding issue of why the high-temperature phase transition, previously identified as Pbnm-, and which would be expected to be first order under Landau theory, is in fact found to be continuous. Analysis of the pseudocubic shear strain shows it to vary with a critical exponent of 0.5 implying that the phase transition from Pbnm to P4/ mbm is tricritical in character. The large librational modes that exist in the MgF6 octahedron at high temperature, and the use of Gaussian probability density functions to describe atomic displacements, result in apparent bond shortening in the Mg-F distances, making mode amplitude determination an unreliable method for determination of the critical exponent from internal coordinates. Crystal structures are reported for the three phases of NaMgF3 at 1,033 K ( Pbnm), 1,047 K ( P4/ mbm) and 1,049 K ().
Ali, Roushown; Yashima, Masatomo
2003-05-01
Lattice parameters and the structural phase transition of La(0.68)(Ti(0.95),Al(0.05))O(3) have been investigated in situ in the temperature range 301-689 K by the synchrotron radiation powder diffraction (SR-PD) technique. High-angular-resolution SR-PD is confirmed to be a powerful technique for determining precise lattice parameters around a phase-transition temperature. The title compound exhibits a reversible phase transition between orthorhombic and tetragonal phases at 622.3 +/- 0.6 K. The following results were obtained: (i) the lattice parameters increased continuously with temperature, while the b/a ratio decreased continuously with temperature and became unity at the orthorhombic-tetragonal transition point; (ii) no hysteresis was observed between the lattice-parameter values measured on heating and on cooling. Results (i) and (ii) indicate that the orthorhombic-tetragonal phase transition is continuous and reversible. The b/a ratio is found to exhibit a more continuous temperature evolution than does the order parameter for a typical second-order phase transition based on Landau theory.
Tunable magnetic and transport properties of Mn3Ga thin films on Ta/Ru seed layer
NASA Astrophysics Data System (ADS)
Hu, Fang; Xu, Guizhou; You, Yurong; Zhang, Zhi; Xu, Zhan; Gong, Yuanyuan; Liu, Er; Zhang, Hongguo; Liu, Enke; Wang, Wenhong; Xu, Feng
2018-03-01
Hexagonal D019-type Mn3Z alloys that possess large anomalous and topological-like Hall effects have attracted much attention due to their great potential in antiferromagnetic spintronic devices. Herein, we report the preparation of Mn3Ga films in both tetragonal and hexagonal phases with a tuned Ta/Ru seed layer on a thermally oxidized Si substrate. Large coercivity together with large anomalous Hall resistivity is found in the Ta-only sample with a mixed tetragonal phase. By increasing the thickness of the Ru layer, the tetragonal phase gradually disappears and a relatively pure hexagonal phase is obtained in the Ta(5)/Ru(30) buffered sample. Further magnetic and transport measurements revealed that the anomalous Hall conductivity nearly vanishes in the pure hexagonal sample, while an abnormal asymmetric hump structure emerges in the low field region. The extracted additional Hall term is robust in a large temperature range and presents a sign reversal above 200 K. The abnormal Hall properties are proposed to be closely related to the frustrated spin structure of D019 Mn3Ga.
NASA Astrophysics Data System (ADS)
Juneja, J. K.; Thakur, O. P.; Prakash, Chandra
2003-10-01
The structural, dielectric and piezoelectric properties have been studied in detail for the samarium modified PZT system. The samples, with chemical formula Pb1-xSmxZr0.52Ti0.48O3 with x varying from 0 to 0.02 in steps of 0.0025, were prepared by standard double sintering ceramic method. XRD analysis showed all the samples to be of single phase with tetragonal structure. Tetragonality (c/a) decreases gradually with samarium concentration (x) and the experimental density increases with x. Dielectric properties were studied as a function of temperature and frequency. All the samples show well-defined ferroelectric behavior. The remanance ratio (Pr/Ps) was found to increase with increasing Sm3+ concentration. Piezoelectric charge coefficient d33 decreases with x.
NASA Astrophysics Data System (ADS)
Kim, Jinhyeok; Mizuguchi, Masaki; Inami, Nobuhito; Ueno, Tetsuro; Ueda, Shigenori; Takanashi, Koki
2018-04-01
An epitaxially grown Mn72Ge28 film with a tetragonal crystal structure was fabricated. It was clarified that the film had a perpendicular magnetization and a high perpendicular magnetic anisotropy energy of 14.3 Merg/cm3. The electronic structure was investigated by X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy. The obtained X-ray magnetic circular dichroism spectrum revealed that the Mn orbital magnetic moment governed the magnetocrystalline anisotropy of the Mn72Ge28 film. A doublet structure was observed for the Mn 2p3/2 peak of hard X-ray photoelectron spectrum, indicating the spin exchange interaction between the 2p core-hole and 3d valence electrons.
NASA Astrophysics Data System (ADS)
Puli, Venkata Sreenivas; Adireddy, Shiva; Elupula, Ravinder; Molugu, Sudheer; Shipman, Josh; Chrisey, Douglas B.
2017-05-01
We report the successful synthesis and structural characterization of barium lanthanum titanate Ba(1-x)LaxTiO3 (x=0.003,0.006,0.010) nanoparticles. The colloidal nanoparticles were prepared with high yield by a solvothermal method at temperatures as low as 150°C for 24h. The as-prepared nanopowders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The XRD studies revealed pseudo-cubic crystalline structure, with no impurity phases at room temperature. However ferroelectric tetragonal modes were clearly observed using Raman spectroscopy measurements. From TEM measurements, uniformly sized BLT nanoparticles were observed. Selected area diffraction TEM images revealed polycrystalline perovskite ring patterns, identified as corresponding to the tetragonal phase.
Crystallization of Chicken Egg-White Lysozyme from Ammonium Sulfate
NASA Technical Reports Server (NTRS)
Forsythe, Elizabeth L.; Snell, Edward H.; Pusey, Marc L.
1997-01-01
Chicken egg-white lysozyme was crystallized from ammonium sulfate over the pH range 4.0-7.8, with protein concentrations from 100 to 150 mg/ml. Crystals were obtained by vapor-diffusion or batch-crystallization methods. The protein crystallized in two morphologies with an apparent morphology dependence on temperature and protein concentration. In general, tetragonal crystals could be grown by lowering the protein concentration or temperature. Increasing the temperature or protein concentration resulted in the growth of orthorhombic crystals. Representative crystals of each morphology were selected for X-ray analysis. The tetragonal crystals belonged to the P4(sub 3)2(sub 1)2 space group with crystals grown at ph 4.4 having unit-cell dimensions of a = b = 78.7 1, c=38.6 A and diffracting to beyond 2.0 A. The orthorhombic crystals, grown at pH 4.8, were of space group P2(sub 1)2(sub 1)2 and had unit-cell dimensions of a = 30.51, b = 56.51 and c = 73.62 A.
Crystal structure refinement of ReSi1.75 with an ordered arrangement of silicon vacancies
NASA Astrophysics Data System (ADS)
Harada, Shunta; Hoshikawa, Hiroaki; Kuwabara, Kosuke; Tanaka, Katsushi; Okunishi, Eiji; Inui, Haruyuki
2011-08-01
The crystal structure and microstructure of ReSi1.75 were investigated by synchrotron X-ray diffraction combined with scanning transmission electron microscopy. ReSi1.75 contains an ordered arrangement of vacancies in Si sites in the underlying tetragonal C11b lattice of the MoSi2-type and the crystal structure is monoclinic with the space group Cm. Atomic positions of Si atoms near vacancies are considerably displaced from the corresponding positions in the parent C11b structure, and they exhibit anomalously large local thermal vibration accompanied by large values of atomic displacement parameter. There are four differently-oriented domains with two of them being related to each other by the 90° rotation about the c-axis of the underlying C11b lattice and the other two being their respective twins. The habit planes for domain boundaries observed experimentally are consistent with those predicted with ferroelastic theory.
Preparation and crystal structure of U3Fe2C5: An original uranium-iron carbide
NASA Astrophysics Data System (ADS)
Henriques, M. S.; Paixão, J. A.; Henriques, M. S. C.; Gonçalves, A. P.
2015-09-01
The U3Fe2C5 compound was prepared from the elements by arc-melting, followed by an heat-treatment in an induction furnace, at 1250 °C for 1 h and 1300 °C for 2 h. The crystal structure of this phase was determined by direct methods from single crystal X-ray diffraction data. U3Fe2C5 crystallizes in an original tetragonal crystal structure, with space group I4/mmm, a = 3.4980(3) Å and c = 19.8380(15) Å as lattice constants and two formula units per cell. This new type structure is characterized by the simultaneous presence of isolated and pairs of carbon atoms, the interatomic distances in the pairs being similar to a typical carbon-carbon double bond length found in a molecule. U3Fe2C5 is closely related to UC and UFeC2, and can be seen as build from two (distorted) UFeC2 unit cells and a UC layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maksimov, S. K., E-mail: maksimov-sk@comtv.ru; Maksimov, K. S., E-mail: kuros@rambler.ru; Sukhov, N. D.
Merohedry is considered an inseparable property of atomic structures, and uses for the refinement of structural data in a process of correct determination of structure of compounds. Transformation of faulty structures stimulated by decreasing of systemic cumulative energy leads to generation of merohedral twinning type. Ordering is accompanied by origin of antiphase domains. If ordering belongs to the CuAu type, it is accompanied by tetragonal distortions along different (100) directions. If a crystal consists of mosaic of nanodimensional antiphase domains, the conjugation of antiphase domains with different tetragonality leads to monoclinic distortions, at that, conjugated domains are distorted mirrorly. Similarmore » system undergoes further transformation by means of quasi-merohedral twinning. As a result of quasi-merohedry, straight-lines of lattices with different monoclinic distortions are transformed into coherent lattice broken-lines providing minimization of the cumulative energy. Structuring is controlled by regularities of the self-organization. However stochasticity of ordering predetermines the origin areas where few domains with different tetragonality contact which leads to the origin of faulty fields braking regular passage of structuring. Resulting crystal has been found structurally non-uniform, furthermore structural non-uniformity permits identifying elements and stages of a process. However there is no precondition preventing arising the origin of homogenous states. Effect has been revealed in Ca{sub 1–x}La{sub x}F{sub 2+x} solid solution, but it can be expected that distortions of regular alternation of ions similar to antiphase domains can be obtained in non-equilibrium conditions in compounds and similar effect of the quasi-merohedry can falsify results of structural analysis.« less
NASA Astrophysics Data System (ADS)
Awwadi, Firas F.; Hodali, Hamdallah A.
2018-02-01
Syntheses and crystal structures of two polymorphs of the complex [Co(II)(L)], where H2L = 2,2'-[cis-1,2-diaminocyclohexanediylbis (nitrilo-methylidyne)]bis (5-dimethyl-amino]phenol, have been studied. The two polymorphs concomitantly crystallized by vapour diffusion of solvent. The first polymorph (I) crystallized as a racemate in the centrosymmetric tetragonal I41/a space group. The second polymorph (II) crystallized in the chiral orthorhombic space group P212121. The chiral conformers of symmetrical cis-1,2-disubstituted cyclohexane molecules cannot be resolved in the liquid or gas phases, due to the rapid ring inversion. In the present study, the two chiral conformers are present in crystals of polymorph I, whereas, only one chiral conformer is present in crystals of polymorph II. Crystal structure analysis indicated that the formation of two different polymorphs of [Co(II)(L)] complex can be rationalized based on Csbnd H⋯Co anagostic interactions. Density Functional Theory (DFT) calculations indicated that Csbnd H⋯Co interactions are due to HOMO-LUMO interactions.
Crystal growth and physical properties of SrCu2As2, SrCu2Sb2, and BaCu2Sb2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, V.K.; Perera, P. Kanchana; Pandey, Abhishek
2012-06-25
We report the growth of single crystals of SrCu2As2, SrCu2Sb2, SrCu2(As0.84Sb0.16)2, and BaCu2Sb2 using the self-flux technique and their structural, magnetic, thermal, and transport properties that were investigated by powder x-ray diffraction (XRD), magnetic susceptibility χ, specific heat Cp, and electrical resistivity ρ measurements versus temperature T from 1.8 to 350 K. Rietveld refinements of XRD patterns for crushed crystals confirm that SrCu2As2 crystallizes in the ThCr2Si2-type body-centered tetragonal structure (space group I4/mmm) and SrCu2Sb2 crystallizes in the CaBe2Ge2-type primitive tetragonal structure (space group P4/nmm). However, as reported previously, BaCu2Sb2 is found to have a large unit cell consisting ofmore » three blocks. Here a ThCr2Si2-type block is sandwiched between two CaBe2Ge2-type blocks along the c axis with an overall symmetry of I4/mmm, as reported, but likely with a monoclinic distortion. The χ data of all these compounds are diamagnetic and reveal nearly T-independent anisotropic behavior. The χ of SrCu2As2 is found to be larger in the ab plane than along the c axis, as also previously reported for pure and doped BaFe2As2, whereas the χ values of SrCu2Sb2 and BaCu2Sb2 are larger along the c axis. This difference in anisotropy appears to arise from the differences between the crystal structures. The finite values of the Sommerfeld linear specific heat coefficients γ and the T dependences of ρ reveal metallic character of all four compounds. The electronic and magnetic properties indicate that these compounds are sp metals with Cu in the nonmagnetic 3d10 electronic configuration corresponding to the oxidation state Cu+1, as previously predicted theoretically for SrCu2As2 by Singh [ Phys. Rev. B 79 153102 (2009)]. We present a brief review of theoretical and experimental work on the doping character of transition metals for Fe in BaFe2As2. The As–As covalent interlayer bond distances in the collapsed-tetragonal (Ca,Sr,Ba)Cu2As2 compounds are much shorter than the nonbonding As–As distances in BaFe2As2. Thus, the electronic character of the Cu and the strength of the As–As interlayer bonding are both expected to drastically change between weakly Cu-substituted BaFe2As2 and pure BaCu2As2, perhaps via a first-order lattice instability such as a miscibility gap in the Ba(Fe1−xCux)2As2 system.« less
NASA Astrophysics Data System (ADS)
Moler, Kathryn
2014-03-01
Progress in the difficult task of growing oxide heterostructures has enabled the field of oxide interface engineering. The ability to control materials properties through interface engineering is demonstrated by the appearance of conductivity at the interface of certain insulators, most famously the {001}interface of the band insulators LaAlO3 (LAO) and TiO2-terminated SrTiO3 (STO). The prevailing explanation of conduction at the interface is electronic reconstruction due to a `polar catastrophe' in which charge migrates from the top LAO layer to the interface. Transport and other measurements in this system display a plethora of diverse physical phenomena. To better understand the interface conductivity, we used scanning superconducting quantum interference device (SQUID) microscopy to image the magnetic field locally generated by current in an interface. At low temperature, we found that the current flowed in conductive narrow paths oriented along the crystallographic axes, embedded in a less conductive background. The configuration of these paths changed upon thermal cycling above the STO cubic to tetragonal structural transition temperature, implying that the local conductivity is strongly modified by the STO tetragonal domain structure. In this talk, I will summarize these results and also report on measurements of conductivity and diamagnetism in related materials that firmly establish the influence of the STO tetragonal domains on electronic properties. Coauthors C. Bell, H.K. Sato, M. Hosoda, Y. Xie, Y. Hikita, & H.Y. Hwang (SIMES); R. Jany & C. Richter (Augsburg); C. Woltmann, G. Pfanzelt, & J. Mannhart (MP Stuttgart); B. Kalisky, E.M. Spanton, H. Noad, K.C. Nowack, A. Rosenberg, & J.R. Kirtley.
NASA Astrophysics Data System (ADS)
Zheng, Limei; Wang, Junjun; Liu, Xuedong; Yang, Liya; Lu, Xiaoyan; Li, Yanran; Huo, Da; Lü, Weiming; Yang, Bin; Cao, Wenwu
2017-10-01
A Li and Ta modified (K, Na)NbO3 lead-free single crystal with a large size (13 × 10 × 20 mm3) has been grown by using the top-seeded solution growth method. The large size allows us to carry out an extensive study on this tetragonal crystal. We have measured a complete set of elastic, dielectric, and piezoelectric constants for the [001]C poled crystal with the single domain state. The crystal exhibits high shear piezoelectricity with d15 = 518 pC/N and k15 = 0.733, showing excellent potential in shear electro-sonic energy transformation devices. It is found that the high shear piezoelectricity originates from the vicinity of orthorhombic-tetragonal phase transition, which favors polarization rotation greatly. The orientation dependence of longitudinal dielectric, piezoelectric, and elastic constants and electromechanical coupling factor in the 3-dimentional space were calculated based on the single domain dataset. We believe that this work is of great importance for both fundamental studies and device designs for lead-free materials.
Optical properties of tetragonal and nanoscale BiFeO3
NASA Astrophysics Data System (ADS)
Chen, P.; Xu, X. S.; Musfeldt, J. L.; Santulli, A. C.; Koenigsmann, C.; Wong, S. S.; Podraza, N. J.; Melville, A.; Vlahos, E.; Gopalan, V.; Schlom, D. G.; Ramesh, R.
2010-03-01
We measured the optical properties of tetragonal thin film and nanoscale rhombohedral BiFeO3 in the range from near infrared to the near ultraviolet. The absorption spectrum in the tetragonal film is overall blue-shifted compared with that of the rhombohedral BiFeO3 film. It shows an absorption onset near 2.25 eV, a direct 3.1 eV band gap, and charge transfer excitations that are ˜0.4 eV higher than those of the rhombohedral counterpart. In the nanoparticles, the band gap decreases from 2.7 eV to ˜2.3 eV, and the well-known 3.2 and 4.5 eV charge transfer excitations split into multiplets. We discuss these results in terms of structural strain, surface strain, and local symmetry breaking.
Rotaru, Andrei; Miller, Andrew J.; Arnold, Donna C.; Morrison, Finlay D.
2014-01-01
We discuss the strategy for development of novel functional materials with the tetragonal tungsten bronze structure. From the starting composition Ba6GaNb9O30, the effect of A- and B-site substitutions on the dielectric properties is used to develop an understanding of the origin and stability of the dipolar response in these compounds. Both tetragonal strain induced by large B-site cations and local strain variations created by isovalent A-site substitutions enhance dipole stability but result in a dilute, weakly correlated dipolar response and canonical relaxor behaviour. Decreasing cation size at the perovskite A2-site increases the dipolar displacements in the surrounding octahedra, but insufficiently to result in dipole ordering. Mechanisms introducing small A-site lanthanide cations and incorporation of A-site vacancies to induce ferroelectricity and magnetism are presented. PMID:24421377
NASA Astrophysics Data System (ADS)
Xia, Zhiguo; Li, Qiang
2007-05-01
Piezoelectric ceramics with compositions of (0.90- x)Pb(Mg 1/3Nb 2/3)O 3- xPbTiO 3-0.10PbZrO 3, x=0.28, 0.31, 0.34, 0.37, 0.40 and 0.43, were prepared using the conventional columbite precursor method, and their structural phase transformation and piezoelectric behaviors near the morphotropic phase boundary (MPB) have been systematically investigated as a function of PbTiO 3 content. X-ray diffraction (XRD) results demonstrate that the structure of the ceramics experiences a gradual transition process from rhombohedral phase to tetragonal phase with the increasing of PbTiO 3 content, and that compositions with x=0.34-0.40 lie in the MPB region of this ternary system. A Raman spectra investigation of the ceramic samples testified to the transformation process of rhombohedral phase to tetragonal phase by comparing the relative intensities of tetragonal E(2TO 1) mode and rhombohedral phase R h mode. The structure information was also correlated to the parabola change of the piezoelectric constant; the maximum piezoelectric constants were obtained near the MPB region.
Interfacial Octahedral Rotation Mismatch Control of the Symmetry and Properties of SrRuO 3
Gao, Ran; Dong, Yongqi; Xu, Han; ...
2016-05-24
We can use epitaxial strain to tune the properties of complex oxides with perovskite structure. Beyond just lattice mismatch, the use of octahedral rotation mismatch at heterointerfaces could also provide a route to manipulate material properties. We examine the evolution of the lattice (i.e., parameters, symmetry, and octahedral rotations) of SrRuO 3 films grown on substrates engineered to have the same lattice parameters, but 2 different octahedral rotations. SrRuO 3 films grown on SrTiO 3 (001) (no octahedral rotations) and GdScO 3-buffered SrTiO 3 (001) (with octahedral rotations) substrates are found to exhibit monoclinic and tetragonal symmetry, respectively. Electrical transportmore » and magnetic measurements reveal that the tetragonal films exhibit higher resistivity, lower magnetic Curie temperatures, and more isotropic magnetism as compared to those with monoclinic structure. Synchrotron-based half-order Bragg peak analysis reveals that the octahedral rotation pattern in both film variants is the same (albeit with slightly different magnitudes of in-plane rotation angles). Furthermore, the abnormal rotation pattern observed in tetragonal SrRuO 3 indicates a possible decoupling between the internal octahedral rotation and lattice symmetry, which could provide new opportunities to engineer thin-film structure and properties.« less
Theoretical study of local structure for Ni2+ ions at tetragonal sites in K2ZnF4:Ni2+ system.
Wang, Su-Juan; Kuang, Xiao-Yu; Lu, Cheng
2008-12-15
A theoretical method for studying the local lattice structure of Ni2+ ions in (NiF6)(4-) coordination complex is presented. Using the ligand-field model, the formulas relating the microscopic spin Hamiltonian parameters with the crystal structure parameters are derived. Based on the theoretical formulas, the 45 x 45 complete energy matrices for d8 (d2) configuration ions in a tetragonal ligand-field are constructed. By diagonalizing the complete energy matrices, the local distortion structure parameters (R perpendicular and R || ) of Ni2+ ions in K2ZnF4:Ni2+ system have been investigated. The theoretical results are accorded well with the experimental values. Moreover, to understand the detailed physical and chemical properties of the fluoroperovskite crystals, the theoretical values of the g factor of K2ZnF4:Ni2+ system at 78 and 290 K are reported first.
Theoretical study of local structure for Ni 2+ ions at tetragonal sites in K 2ZnF 4:Ni 2+ system
NASA Astrophysics Data System (ADS)
Wang, Su-Juan; Kuang, Xiao-Yu; Lu, Cheng
2008-12-01
A theoretical method for studying the local lattice structure of Ni 2+ ions in (NiF 6) 4- coordination complex is presented. Using the ligand-field model, the formulas relating the microscopic spin Hamiltonian parameters with the crystal structure parameters are derived. Based on the theoretical formulas, the 45 × 45 complete energy matrices for d8 ( d2) configuration ions in a tetragonal ligand-field are constructed. By diagonalizing the complete energy matrices, the local distortion structure parameters ( R⊥ and R||) of Ni 2+ ions in K 2ZnF 4:Ni 2+ system have been investigated. The theoretical results are accorded well with the experimental values. Moreover, to understand the detailed physical and chemical properties of the fluoroperovskite crystals, the theoretical values of the g factor of K 2ZnF 4:Ni 2+ system at 78 and 290 K are reported first.
Pressure-induced Lifshitz and structural transitions in NbAs and TaAs: experiments and theory
NASA Astrophysics Data System (ADS)
Nath Gupta, Satyendra; Singh, Anjali; Pal, Koushik; Muthu, D. V. S.; Shekhar, C.; Elghazali, Moaz A.; Naumov, Pavel G.; Medvedev, Sergey A.; Felser, C.; Waghmare, U. V.; Sood, A. K.
2018-05-01
High pressure Raman, resistivity and synchrotron x-ray diffraction studies on Weyl semimetals NbAs and TaAs have been carried out along with density functional theoretical (DFT) analysis to explain pressure induced structural and electronic topological phase transitions. The frequencies of first order Raman modes harden with increasing pressure, exhibiting a slope change at GPa for NbAs and GPa for TaAs. The resistivities of NbAs and TaAs exhibit a minimum at pressures close to these transition pressures and also a change in the bulk modulus is observed. Our first-principles calculations reveal that the transition is associated with an electronic Lifshitz transition at for NbAs while it is a structural phase transition from body centered tetragonal to hexagonal phase at for TaAs. Further, our DFT calculations show a structural phase transition at 24 GPa from body centered tetragonal phase to hexagonal phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong; Tanatar, Makariy A.; Timmons, Erik
In this study, a sequence of structural/magnetic transitions on cooling is reported in the literature for hole-doped iron-based superconductor (Ba 1–xK x)Fe 2As 2 with x = 0.24. By using polarized light microscopy, we directly observe the formation of orthorhombic domains in (Ba 1–xK x)Fe 2As 2 (x = 0.24) single crystal below a temperature of simultaneous structural/magnetic transition T N ~ 80 K. The structural domains vanish below ~30 K, but reappear below T = 15 K. Our results are consistent with reentrance transformation sequence from high-temperature tetragonal (HTT) to low temperature orthorhombic (LTO1) structure at T N ~more » 80 K, LTO1 to low temperature tetragonal (LTT) structure at T c ~ 25 K, and LTT to low temperature orthorhombic (LTO2) structure at T ~ 15 K.« less
Liu, Yong; Tanatar, Makariy A.; Timmons, Erik; ...
2016-11-09
In this study, a sequence of structural/magnetic transitions on cooling is reported in the literature for hole-doped iron-based superconductor (Ba 1–xK x)Fe 2As 2 with x = 0.24. By using polarized light microscopy, we directly observe the formation of orthorhombic domains in (Ba 1–xK x)Fe 2As 2 (x = 0.24) single crystal below a temperature of simultaneous structural/magnetic transition T N ~ 80 K. The structural domains vanish below ~30 K, but reappear below T = 15 K. Our results are consistent with reentrance transformation sequence from high-temperature tetragonal (HTT) to low temperature orthorhombic (LTO1) structure at T N ~more » 80 K, LTO1 to low temperature tetragonal (LTT) structure at T c ~ 25 K, and LTT to low temperature orthorhombic (LTO2) structure at T ~ 15 K.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, T., E-mail: weitong.nju@gmail.com; Li, C.P.; Zhou, Q.J.
2015-04-15
Highlights: • TTB-type SLTN: Ho-Ybx with space group P4/mbm was determined. • UC photoluminescence of SLTN: Ho-Ybx ceramics was first reported. • Bright UC green emission was observed at room temperature. • Two-photon energy transfer process was confirmed for the UC processes. • Temperature stability of dielectric permittivity was improved for SLTN: Ho-Ybx. - Abstract: Ho{sup 3+}- and Yb{sup 3+}-codoped Sr{sub 4}La{sub 2}Ti{sub 4}Nb{sub 6}O{sub 30} (Sr{sub 4}La{sub 1.94–x}Ho{sub 0.06}Yb{sub x}Ti{sub 4}Nb{sub 6}O{sub 30}, abbreviated as SLTN: Ho-Ybx) ceramics have been synthesized, and their structural, up-conversion (UC) photoluminescence, and dielectric properties have been carefully investigated. Through Rietveld structural refinement, SLTN:more » Ho-Ybx samples are determined as single tetragonal tungsten bronze (TTB) phase with space group P4/mbm in which larger Sr{sup 2+} ions fill the A{sub 2}-sites, relative smaller La{sup 3+}, Ho{sup 3+}, and Yb{sup 3+} ions occupy the A{sub 1}-sites, while Ti{sup 4+} and Nb{sup 4+} ions fill the B-sites. Under 980 nm near infrared (NIR) excitation, bright UC green emission, relatively weak red and near-infrared (NIR) emissions, originating from {sup 5}F{sub 4}/{sup 5}S{sub 2} → {sup 5}I{sub 8}, {sup 5}F{sub 5} → {sup 5}I{sub 8}, and {sup 5}F{sub 4}/{sup 5}S{sub 2} → {sup 5}I{sub 7} transitions of Ho{sup 3+} ions, are confirmed for SLTN: Ho-Ybx. Two-photon energy transfer process is proved through pumping laser power dependence of emission intensity measurement. Furthermore, the influence of Ho{sup 3+}- and Yb{sup 3+}- ions on the dielectric properties of SLTN: Ho-Ybx is also investigated and the temperature stability of dielectric permittivity is improved.« less
X-ray diffraction and infrared spectroscopy studies of Ba(Fe1/2Nb1/2)O3-(Na1/2Bi1/2)TiO3 ceramics
NASA Astrophysics Data System (ADS)
Chandra, K. P.; Yadav, Anjana; Prasad, K.
2018-05-01
Ceramics (1-x)Ba(Fe1/2Nb1/2)O3-x(Na1/2Bi1/2)TiO3; 0≤x≤1.0 were prepared by conventional ceramic synthesis technique. Rietveld refinements of X-ray diffraction data of these ceramics were carried out using FullProf software and determined their crystal symmetry, space group and unit cell dimensions. Rietveld refinement revealed that Ba(Fe1/2Nb1/2)O3 has cubic structure with space group Pm 3 ¯ m and Na1/2Bi1/2)TiO3 has rhombohedral structure with space group R3c. Addition of (Na1/2Bi1/2)TiO3 to Ba(Fe1/2Nb1/2)O3 resulted in the change of unit cell structure from cubic to tetragonal (P4/mmm) for x = 0.75 and the X-Ray diffraction peaks slightly shift towards higher Bragg's angle, suggesting slight decrease in unit cell volume. SEM studies were carried out in order to access the quality of the prepared ceramics which showed a change in grain shapes with the increase of (Na1/2Bi1/2)TiO3 content. FTIR spectra confirmed the formation of perovskite type solid solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keates, Adam C.; Wang, Qianlong; Weller, Mark T., E-mail: m.t.weller@bath.ac.uk
2014-02-15
Single crystal and bulk polycrystalline forms of K{sub 2}MP{sub 2}O{sub 7} (M=Fe(II), Cu(II)) have been synthesised and their structures determined from single crystal X-ray diffraction data. Both compounds crystallize in the tetragonal system, space group P-42{sub 1}m. Their structures are formed from infinite sheets of linked oxopolyhedra of the stoichiometry [MP{sub 2}O{sub 7}]{sup 2−} with potassium cations situated between the layers. The MO{sub 4} tetrahedra share oxygen atoms with [P{sub 2}O{sub 7}]{sup 4−} diphosphate groups and the potassium ions have KO{sub 8} square prismatic geometry. In both compounds the M(II) centre has an unusual strongly flattened, tetrahedral coordination to oxygen,more » as a result of the Jahn–Teller (JT) effect for the high spin d{sup 6} Fe(II) and p-orbital mixing or a second order JT effect for d{sup 9} Cu(II) centres in four fold coordination. The uncommon transition metal ion environments found in these materials are reflected in their optical absorption spectra and magnetism data. - Graphical abstract: The structures of the tetragonal polymorphs of K{sub 2}MP{sub 2}O{sub 7}, M=Cu(II), Fe(II), consist of infinite sheets of stoichiometry [MP{sub 2}O{sub 7}]{sup 2−}, formed from linked pyrophosphate groups and MO{sub 4} tetrahedra, separated by potassium ions. In both compounds the unusual tetrahedral coordination of the M(II) centre is strongly flattened as a result of Jahn–Teller (JT) effects for high spin, d{sup 6} Fe(II) and p-orbital mixing and second-order JT effects for d{sup 9} Cu(II). Display Omitted - Highlights: • Tetrahedral copper and iron(II) coordinated by oxygen. • New layered phosphate structure. • Jahn–Teller and d{sup 10} distorted coordinations.« less
Adsorption of methane on Zn(bdc)(ted)0.5 microporous metal-organic framework
NASA Astrophysics Data System (ADS)
Krungleviciute, Vaiva; Pramanik, Sanhita; Migone, Aldo; Li, Jing
2011-03-01
Zn(bdc)(ted)0.5 is metal-organic framework crystallized in a tetragonal space group with a 3D porous structure containing intersecting channels of two different sizes. The larger channels are parallel to the c axis and have a cross section 7.5 × 7.5 AA. The smaller channels are along both the a- and b-axes and have a cross section of 4.8 × 3.2 AA. We measured methane adsorption isotherms at several different temperatures between 82 and 102 K. We calculated the effective specific surface area, isosteric heat and binding energy values. Two distinct substeps were observed in the isotherms corresponding to two different adsorption sites. The origin of the substeps will be discussed.
Impedance spectroscopy studies on lead free Ba1-xMgx(Ti0.9Zr0.1)O3 ceramics
NASA Astrophysics Data System (ADS)
Ben Moumen, S.; Neqali, A.; Asbani, B.; Mezzane, D.; Amjoud, M.; Choukri, E.; Gagou, Y.; El Marssi, M.; Luk'yanchuk, Igor A.
2018-06-01
Ba1-xMgx(Ti0.9Zr0.1)O3 (x = 0.01 and 0.02) ceramics were prepared using the conventional solid state reaction. Rietveld refinement performed on X-ray diffraction patterns indicates that the samples are tetragonal crystal structure with P4mm space group. By increasing Mg content from 1 to 2% the unit cell volume decreased. Likewise, the grains size is greatly reduced from 10 μm to 4 μm. The temperature dependence of dielectric constants at different frequencies exhibited typical relaxor ferroelectric characteristic, with sensitive dependence in frequency and temperature for ac conductivity. The obtained activation energy values were correlated to the proposed conduction mechanisms.
Roy Choudhury, Subhasree; Gomes, Aparna; Gomes, Antony; Dattagupta, Jiban K.; Sen, Udayaditya
2006-01-01
A cytotoxin (MW 7.2 kDa) from Indian Russell’s viper (Daboia russelli russelli) venom possessing antiproliferative activity, cardiotoxicity, neurotoxicity and myotoxicity has been purified, characterized and crystallized. The crystals belong to the tetragonal space group P41, with unit-cell parameters a = b = 47.94, c = 50.2 Å. Larger crystals, which diffracted to 1.5 Å, were found to be twinned; diffraction data were therefore collected to 2.93 Å resolution using a smaller crystal. Molecular-replacement calculations identified two molecules of the protein in the asymmetric unit, which is in accordance with the calculated V M value. PMID:16511326
Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.
Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G
2017-06-26
Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.
Crystal structure and phase transitions of sodium potassium niobate perovskites
NASA Astrophysics Data System (ADS)
Tellier, J.; Malic, B.; Dkhil, B.; Jenko, D.; Cilensek, J.; Kosec, M.
2009-02-01
This paper presents the crystal structure and the phase transitions of K xNa 1- xNbO 3 (0.4 ≤ x ≤ 0.6). X-ray diffraction measurements were used to follow the change of the unit-cell parameters and the symmetry in the temperature range 100-800 K. At room temperature all the compositions exhibited a monoclinic metric of the unit cell with a small monoclinic distortion (90.32° ≤ β ≤ 90.34°). No major change of symmetry was evidenced in the investigated compositional range, which should be characteristic of the morphotropic phase-boundary region. With increasing temperature, the samples underwent first-order monoclinic-tetragonal and tetragonal-cubic transitions. Only the potassium-rich phases were rhombohedral at 100 K.
Synthesis, structure and optical properties of two isotypic crystals, Na{sub 3}MO{sub 4}Cl (M=W, Mo)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Shujuan; Bai, Chunyan; Zhang, Bingbing
Two isotypic compounds, Na{sub 3}MO{sub 4}Cl (M = W, Mo) have been obtained from the high temperature solution, and their structures were determined by single-crystal X-ray diffraction. Both of them crystallize in the space group P4/nmm of tetragonal system with the unit cells: a=7.5181(15), c=5.360(2) for Na{sub 3}WO{sub 4}Cl and a=7.4942(12), c=5.3409(18) for Na{sub 3}MoO{sub 4}Cl. The structure exhibits a 3D network built up by the ClNa{sub 6} groups, and the MO{sub 4} groups reside in the tunnels of the 3D network. The structural similarities and differences between Na{sub 3}MO{sub 4}Cl (M=W, Mo) and Sr{sub 3}MO{sub 4}F (M=Al, Ga) havemore » been discussed. Meanwhile, detailed structure comparison analyses between Na{sub 3}MO{sub 4}Cl (M=W, Mo) and Na{sub 3}MO{sub 4}F (M=W, Mo) indicate that the different connection modes of ClNa{sub 6} and FNa{sub 6} make Na{sub 3}MO{sub 4}Cl and Na{sub 3}MO{sub 4}F crystallize in different structures. The IR spectra were used to verify the validity of the structure. The diffuse reflectance spectra show that the UV absorption edges are about 249 nm (4.99 eV) and 265 nm (4.69 eV) for Na{sub 3}WO{sub 4}Cl and Na{sub 3}MoO{sub 4}Cl, respectively. In addition, the first-principles theoretical studies are also carried out to aid the understanding of electronic structures and linear optical properties. - Graphical abstract: Two isotypic compounds, Na{sub 3}MO{sub 4}Cl (M=W, Mo) have been obtained from the high temperature solution. Both of them crystallize in the space group P4/nmm of tetragonal system. The structure exhibits a 3D network built up by the ClNa{sub 6} groups, and the MO{sub 4} groups reside in the tunnels of the 3D network. - Highlights: • Structure and properties of Na{sub 3}MO{sub 4}Cl (M=W, Mo) are reported for the first time. • They show a 3D network built by ClNa{sub 6}, and WO{sub 4} lies in the tunnels of the network. • IR spectra were used to verify the validity of the structure. • Band structures and density of states have been calculated.« less
NASA Astrophysics Data System (ADS)
Wrzeszcz, Grzegorz; Muzioł, Tadeusz M.; Tereba, Natalia
2015-03-01
In this paper we report the synthesis method and the structure of a one-dimensional thiocyanato bridged heterometallic compound, [Cu(en)2Zn(NCS)4]ṡH2O (1). Moreover, we compare the structure of (1) with the previously described structures of [Cu(en)2Zn(NCS)4]ṡ0.5H2O (2) and [Cu(en)2Zn(NCS)4]ṡCH3CN (3) Pryma et al. (2003) [7]. The compound (1) has been characterized by thermal decomposition, IR, Vis and EPR spectra, and magnetic studies. Structure has been determined by X-ray analysis. Described coordination polymer crystallizes in the orthorhombic Cmcm space group with a = 12.414(2), b = 10.3276(14), c = 14.967(2) Å, α = β = γ = 90°, V = 1918.8(5) Å3 and Z = 4. Each distorted tetrahedral zinc(II) centre (with N-bonded NCS-) links two tetragonally distorted octahedral copper(II) centres by two end-to-end thiocyanato bridges and vice versa forming a zigzag type of CuZn chain. The structures of (1), (2) and (3) differ in crystallographic system, space group and/or CuZn chain type as well as in details. Variable temperature magnetic susceptibility measurements show very weak antiferromagnetic interactions between the paramagnetic copper(II) ions for compound (1).
A new oxytelluride: Perovskite and CsCl intergrowth in Ba 3Yb 2O 5Te
Whalen, J. B.; Besara, T.; Vasquez, R.; ...
2013-04-27
The new oxytelluride Ba 3Yb 2O 5Te was obtained from an alkaline earth flux. Ba3Yb2O5Te crystallizes in the tetragonal space group P4/ mmm (#123), with a=4.3615(3) Å and c=11.7596(11) angstrom, Z=1. The structure combines two distinct building blocks, a Ba 2Yb 2O 5 perovskite-like double layer with square bipyramidal coordination of the ytterbium ions, and a CsCl-type BaTe layer. Short range magnetic order is apparent at below 5 K, with the magnetic behavior above this temperature dominated by crystal field effects. The structure may be considered as an analog to the Ruddlesden-Popper phases, where the NaCl-type layer has been replacedmore » by the CsCl-type layer. Finally, the two-dimensional magnetic behavior is expected based on the highly anisotropic nature of the structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffort, V.; Sarkar, T.; Caignaert, V., E-mail: vincent.caignaert@ensicaen.fr
2013-09-15
The possibility to lift the geometric frustration in the “114” stoichiomeric tetragonal oxide YBaFe{sub 4}O{sub 7.0} by decreasing the temperature has been investigated using neutron and synchrotron powder diffraction techniques. Besides the structural transition from tetragonal to monoclinic symmetry that appears at T{sub S}=180 K, a magnetic transition is observed below T{sub N}=95 K. The latter corresponds to a lifting of the 3D geometric frustration toward an antiferromagnetic long range ordering, never observed to date in a cubic based “114’” oxide. The magnetic structure, characterized by the propagation vector k{sub 1}=(0,0,½), shows that one iron Fe2 exhibits a larger magneticmore » moment than the three others, suggesting a possible charge ordering according to the formula YBaFe{sup 3+}Fe{sub 3}{sup 2+}O{sub 7.0}. The magnetic M(T) and χ′(T) curves, in agreement with neutron data, confirm the structural and magnetic transitions and evidence the coexistence of residual magnetic frustration. Moreover, the transport measurements show a resistive transition from a thermally activated conduction mechanism to a variable range hopping mechanism at T{sub S}=180 K, with a significant increase of the dependence of the resistivity vs. temperature. Mössbauer spectroscopy clearly evidences a change in the electronic configuration of the iron framework at the structural transition as well as coexistence of several oxidation states. The role of barium underbonding in these transitions is discussed. - Graphical abstract: Atomic displacements at the tetragonal-monoclinic transition in YBaFe{sub 4}O{sub 7}. Display Omitted - Highlights: • The structural and magnetic phase transitions of YBaFe{sub 4}O{sub 7} were studied below room temperature. • The tetragonal to monoclinic transition, characterized by NPD and SXRD, was studied using mode crystallography approach. • Monoclinic distortion allows the lifting of the geometrical frustration on the iron sublattice, leading to AF order at T=95 K.« less
Magnetically induced ferroelectricity in Bi2CuO4
NASA Astrophysics Data System (ADS)
Zhao, L.; Guo, H.; Schmidt, W.; Nemkovski, K.; Mostovoy, M.; Komarek, A. C.
2017-08-01
The tetragonal copper oxide Bi2CuO4 has an unusual crystal structure with a three-dimensional network of well separated CuO4 plaquettes. The spin structure of Bi2CuO4 in the magnetically ordered state below TN˜43 K remains controversial. Here we present the results of detailed studies of specific heat, magnetic, and dielectric properties of Bi2CuO4 single crystals grown by the floating zone technique, combined with the polarized neutron scattering and high-resolution x-ray measurements. Down to 3.5 K our polarized neutron scattering measurements reveal ordered magnetic Cu moments which are aligned within the a b plane. Below the onset of the long range antiferromagnetic ordering we observe an electric polarization induced by an applied magnetic field, which indicates inversion symmetry breaking by the ordered state of Cu spins. For the magnetic field applied perpendicular to the tetragonal axis, the spin-induced ferroelectricity is explained in terms of the linear magnetoelectric effect that occurs in a metastable magnetic state. A relatively small electric polarization induced by the field parallel to the tetragonal axis may indicate a more complex magnetic ordering in Bi2CuO4 .
One- and two-dimensional search of an equation of state using a newly released 2DRoptimize package
NASA Astrophysics Data System (ADS)
Jamal, M.; Reshak, A. H.
2018-05-01
A new package called 2DRoptimize has been released for performing two-dimensional searches of the equation of state (EOS) for rhombohedral, tetragonal, and hexagonal compounds. The package is compatible and available with the WIEN2k package. The 2DRoptimize package performs a convenient volume and c/a structure optimization. First, the package finds the best value for c/a and the associated energy for each volume. In the second step, it calculates the EoS. The package then finds the equation of the c/a ratio vs. volume to calculate the c/a ratio at the optimized volume. In the last stage, by using the optimized volume and c/a ratio, the 2DRoptimize package calculates a and c lattice constants for tetragonal and hexagonal compounds, as well as the a lattice constant with the α angle for rhombohedral compounds. We tested our new package based on several hexagonal, tetragonal, and rhombohedral structures, and the 2D search results for the EOS showed that this method is more accurate than 1D search. Our results agreed very well with the experimental data and they were better than previous theoretical calculations.
Epitaxial structure and transport in LaTiO3+x films on (001) SrTiO3
NASA Astrophysics Data System (ADS)
Kim, K. H.; Norton, D. P.; Budai, J. D.; Chisholm, M. F.; Sales, B. C.; Christen, D. K.; Cantoni, C.
2003-12-01
The structure and transport properties of LaTiO3+x epitaxial thin films grown on (001) SrTiO3 by pulsed-laser deposition is examined. Four-circle X-ray diffraction indicates that the films possess the defect perovskite LaTiO3 structure when deposited in vacuum, with the higher X compounds forming at moderate oxygen pressures. The crystal structure of the LaTiO3 films is tetragonal in the epitaxial films, in contrast to the orthorhombic structure observed in bulk materials. A domain structure is observed in the films, consisting of LaTiO3 oriented either with the [110] or [001] directions perpendicular to the substrate surface. Z-contrast scanning transmission electron microscopy reveals that this domain structure is not present in the first few unit cells of the film, but emerges approximately 2-3 nm from the SrTiO3/LaTiO3 interface. Upon increasing the oxygen pressure during growth, a shift in the lattice d-spacing parallel to the substrate surface is observed, and is consistent with the growth of the La2Ti2O7 phase. However, van der Pauw measurements show that the films with the larger d-spacing remain conductive, albeit with a resistivity that is significantly higher than that for the perovskite LaTiO3 films. The transport behavior suggests that the films grown at higher oxygen pressures are LaTiO3+x with 0.4 < x < 0.5. (
Rapp, L.; Haberl, B.; Pickard, C. J.; ...
2015-06-29
Ordinary materials can transform into novel phases with new crystal structures at extraordinary high pressure and temperature applied under both equilibrium and non-equilibrium conditions 1-6. The recently developed method of ultra-short laser-induced confined microexplosions 7-9 extends the range of possible new phases by initiating a highly non-equilibrium plasma state deep inside a bulk material 7-12. Ultra-high quenching rates can help to overcome kinetic barriers to the formation of new metastable phases, while the surrounding pristine crystal confines the affected material and preserves it for further study 10-12. Here we demonstrate that ultra-rapid pressure release from a completely disordered plasma statemore » in silicon produces several new metastable end phases quenched to ambient conditions. Their structure is determined from comparison to an ab initio random structure search which revealed six new energetically competitive potential phases, four tetragonal and two monoclinic ones. We show the presence of bt8 and st12, which have been predicted theoretically previously 13-15, but have not been observed in nature or in laboratory experiments. Additionally, the presence of the as yet unidentified silicon phase, Si-VIII and two of our other predicted tetragonal phases are highly likely within laser-affected zones. These findings pave the way for new materials with novel and exotic properties.« less
In-Depth View of the Structure and Growth of SnO2 Nanowires and Nanobrushes.
Stuckert, Erin P; Geiss, Roy H; Miller, Christopher J; Fisher, Ellen R
2016-08-31
Strategic application of an array of complementary imaging and diffraction techniques is critical to determine accurate structural information on nanomaterials, especially when also seeking to elucidate structure-property relationships and their effects on gas sensors. In this work, SnO2 nanowires and nanobrushes grown via chemical vapor deposition (CVD) displayed the same tetragonal SnO2 structure as revealed via powder X-ray diffraction bulk crystallinity data. Additional characterization using a range of electron microscopy imaging and diffraction techniques, however, revealed important structure and morphology distinctions between the nanomaterials. Tailoring scanning transmission electron microscopy (STEM) modes combined with transmission electron backscatter diffraction (t-EBSD) techniques afforded a more detailed view of the SnO2 nanostructures. Indeed, upon deeper analysis of individual wires and brushes, we discovered that, despite a similar bulk structure, wires and brushes grew with different crystal faces and lattice spacings. Had we not utilized multiple STEM diffraction modes in conjunction with t-EBSD, differences in orientation related to bristle density would have been overlooked. Thus, it is only through a methodical combination of several structural analysis techniques that precise structural information can be reliably obtained.
NASA Astrophysics Data System (ADS)
Saito, Tetsuro; Onari, Seiichiro; Kontani, Hiroshi
2011-04-01
We study the superconducting state in recently discovered high-Tc superconductor KxFe2Se2 based on the ten-orbital Hubbard-Holstein model without hole pockets. When the Coulomb interaction is large, a spin-fluctuation-mediated d-wave state appears due to the nesting between electron pockets. Interestingly, the symmetry of the body-centered tetragonal structure in KxFe2Se2 requires the existence of nodes in the d-wave gap, although a fully gapped d-wave state is realized in the case of a simple tetragonal structure. In the presence of moderate electron-phonon interaction due to Fe-ion optical modes, however, orbital fluctuations give rise to the fully gapped s++-wave state without sign reversal. Therefore, both superconducting states are distinguishable by careful measurements of the gap structure or the impurity effect on Tc.
NASA Astrophysics Data System (ADS)
Ding, Ch.-Ch.; Wu, Sh.-Y.; Xu, Y.-Q.; Zhang, L.-J.; He, J.-J.
2018-03-01
The spin Hamiltonian parameters (SHPs), i.e., g factors and hyperfine structure constants, and local structures are theoretically studied by analyzing tetragonally elongated 3d9 clusters for Cu2+ in xK2SO4-(50 - x)Na2SO4-50ZnSO4 glasses with various K2SO4 concentrations x. The concentration dependences of the SHPs are attributed to the parabolic decreases of the cubic field parameter Dq, orbital reduction factor k, relative tetragonal elongation ratio τ, and core polarization constant κ with x. The [CuO6]10- clusters are found to undergo significant elongations of about 17% due to the Jahn-Teller effect. The calculated cubic field splittings and the SHPs at various concentrations agree well with the experimental data.
Cubic martensite in high carbon steel
NASA Astrophysics Data System (ADS)
Chen, Yulin; Xiao, Wenlong; Jiao, Kun; Ping, Dehai; Xu, Huibin; Zhao, Xinqing; Wang, Yunzhi
2018-05-01
A distinguished structural characteristic of martensite in Fe-C steels is its tetragonality originating from carbon atoms occupying only one set of the three available octahedral interstitial sites in the body-centered-cubic (bcc) Fe lattice. Such a body-centered-tetragonal (bct) structure is believed to be thermodynamically stable because of elastic interactions between the interstitial carbon atoms. For such phase stability, however, there has been a lack of direct experimental evidence despite extensive studies of phase transformations in steels over one century. In this Rapid Communication, we report that the martensite formed in a high carbon Fe-8Ni-1.26C (wt%) steel at room temperature induced by applied stress/strain has actually a bcc rather than a bct crystal structure. This finding not only challenges the existing theories on the stability of bcc vs bct martensite in high carbon steels, but also provides insights into the mechanism for martensitic transformation in ferrous alloys.
Halogen bonds in some dihalogenated phenols: applications to crystal engineering.
Mukherjee, Arijit; Desiraju, Gautam R
2014-01-01
3,4-Dichlorophenol (1) crystallizes in the tetragonal space group I41/a with a short axis of 3.7926 (9) Å. The structure is unique in that both type I and type II Cl⋯Cl interactions are present, these contact types being distinguished by the angle ranges of the respective C-Cl⋯Cl angles. The present study shows that these two types of contacts are utterly different. The crystal structures of 4-bromo-3-chlorophenol (2) and 3-bromo-4-chlorophenol (3) have been determined. The crystal structure of (2) is isomorphous to that of (1) with the Br atom in the 4-position participating in a type II interaction. However, the monoclinic P21/c packing of compound (3) is different; while the structure still has O-H⋯O hydrogen bonds, the tetramer O-H⋯O synthon seen in (1) and (2) is not seen. Rather than a type I Br⋯Br interaction which would have been mandated if (3) were isomorphous to (1) and (2), Br forms a Br⋯O contact wherein its electrophilic character is clearly evident. Crystal structures of the related compounds 4-chloro-3-iodophenol (4) and 3,5-dibromophenol (5) were also determined. A computational survey of the structural landscape was undertaken for (1), (2) and (3), using a crystal structure prediction protocol in space groups P21/c and I41/a with the COMPASS26 force field. While both tetragonal and monoclinic structures are energetically reasonable for all compounds, the fact that (3) takes the latter structure indicates that Br prefers type II over type I contacts. In order to differentiate further between type I and type II halogen contacts, which being chemically distinct are expected to have different distance fall-off properties, a variable-temperature crystallography study was performed on compounds (1), (2) and (4). Length variations with temperature are greater for type II contacts compared with type I. The type II Br⋯Br interaction in (2) is stronger than the corresponding type II Cl⋯Cl interaction in (1), leading to elastic bending of the former upon application of mechanical stress, which contrasts with the plastic deformation of (1). The observation of elastic deformation in (2) is noteworthy; in that it finds an explanation based on the strengths of the respective halogen bonds, it could also be taken as a good starting model for future property design. Cl/Br isostructurality is studied with the Cambridge Structural Database and it is indicated that this isostructurality is based on shape and size similarity of Cl and Br, rather than arising from any chemical resemblance.
Iron vacancy in tetragonal Fe1-xS crystals and its effect on the structure and superconductivity.
Guo, Zhongnan; Sun, Fun; Han, Bingling; Lin, Kun; Zhou, Liang; Yuan, Wenxia
2017-03-29
Understanding the effects of non-stoichiometry on the structure and physical properties of tetragonal Fe chalcogenides is of great importance, especially for developing fascinating superconductivity in this system, which might be very sensitive to the non-stoichiometry. In this study, a series of Fe 1-x S single crystals were synthesized by a hydrothermal method, which show varying concentrations of Fe vacancies (0 ≤ x ≤ 0.1) in the structure. Based on the crystal samples, the effects of vacancies on the crystal structure and physical properties were studied. The vacancy-free sample (x = 0) showed a metallic state in resistance and superconductivity below 4.5 K, whereas for the samples with Fe vacancies (x ≥ 0.05), the SC was degraded and the sample exhibited semiconducting behavior. Structural analysis showed that the Fe vacancy decreases the lattice parameter a, but elongates c, leading to enhanced tetragonality in Fe 1-x S. Selected-area electron diffraction showed that the vacancy in Fe 1-x S was disordered, which is different from the scenario in FeSe-based materials. On combining the abovementioned results with the first-principles calculations, it was speculated that the disappearance of SC in non-stoichiometric Fe 1-x S resulted from the localization of the 3d electrons of Fe. Moreover, the accompanied metal-insulator transition induced by Fe vacancy mainly belonged to the Mott mechanism because the vacancy did not significantly alter the band structure. These results not only provide deep insight into the effect of Fe vacancy in Fe chalcogenides, but also provide a basis to effectively induce SC in Fe sulfides by decreasing the number of Fe vacancies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swierczek, Konrad; Materials Science Division, Argonne National Laboratory, Argonne, IL 60439; Dabrowski, Bogdan
2009-02-15
Structural and magnetic studies are presented for the perovskite type Sr{sub 1-x}La{sub x}Co{sub 0.5}Fe{sub 0.5}O{sub 3-{delta}} (0{<=}x{<=}0.5) materials annealed under moderately high-oxygen pressures of {approx}200 atm. A detailed analysis of the room temperature neutron time-of-flight diffraction data reveals that the crystal structure of the sample SrCo{sub 0.5}Fe{sub 0.5}O{sub 2.89(1)}, previously described as vacancy-disordered cubic, is similar to the formerly reported, oxygen-vacancy ordered Sr{sub 8}Fe{sub 8}O{sub 23} compound, i.e. Sr{sub 8}Co{sub 4}Fe{sub 4}O{sub 23} is tetragonal with the I4/mmm symmetry. With an increase of the La content the studied materials become nearly oxygen stoichiometric and a lowering of the crystal symmetrymore » is observed from cubic Pm3-barm (x=0.1 and 0.2) to tetragonal I4/mcm (x=0.3 and 0.4), and finally to monoclinic I12/c1 (x=0.5). Low-temperature structural and magnetic measurements show a ferromagnetic ordering with the maximum Curie temperature near 290 K at x=0.2. - Graphical Abstract: Room temperature Rietveld refinement profile using I4/mmm space group for the oxygen vacancy ordered SrCo{sub 0.5}Fe{sub 0.5}O{sub 2.89} (Sr{sub 8}Co{sub 4}Fe{sub 4}O{sub 23}). Top tick-marks denote allowed reflections in I4/mmm, bottom one emphasize the possibility of inexact indexing using Pm3-barm symmetry. Previous reports indicate that similar ordering is common for SrCo{sub 1-x}Fe{sub x}O{sub 3-{delta}} compounds possibly hindering their applications.« less
NASA Astrophysics Data System (ADS)
Keswani, Bhavna C.; Patil, S. I.; Kolekar, Y. D.
2018-04-01
Lead free ferroelectric with composition 0.55Ba0.92Ca0.08TiO3-0.45BaTi0.96Zr0.04O3 (BCT8-BZT4) was synthesized by solid state reaction method and investigated their structural, ferroelectric, piezoelectric and dielectric properties. X-ray diffraction analysis shows that BCT8-BZT4 ceramic possess both tetragonal (space group P4mm) and orthorhombic (space group Amm2) crystal structure which was further confirmed from Raman spectra spectroscopy. The micronized grains were observed from scanning electron micrographs while the presence of polarization-electric field hysteresis loop confirms ferroelectric nature of BCT8-BZT4 ceramic. Higher values of maximum polarization (Pmax = 22.27 μC/cm2), remnant polarization (Pr = 11.61 μC/cm2), coercive electric field (Ec = 4.77 kV/cm) and direct piezoelectric coefficient (d33) approximately 185 pC/N were observed. The real part of dielectric constant with frequency shows the usual dielectric dispersion behaviour at RT. The observed properties show that the lead free BCT8-BZT4 ceramic is suitable for ferroelectric memory device, piezoelectric sensor, capacitor, etc. applications.
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Clark, Eric B.; Schupp, John D.; Williams, Jennifer N.; Duraj, Stan A.; Fanwick, Philip E.
2013-01-01
We describe the structures of four related indium complexes obtained during synthesis of solid-state materials precursors. Indium adducts of halides and 4-methylpyridine, InX3(pic)3 (X = Cl, Br; pic = 4-methylpyridine) consist of octahedral molecules with meridional (mer) geometry. Crystals of mer-InCl3(pic)3 (1) are triclinic, space group P1(bar) (No. 2), with a = 9.3240(3), b = 13.9580(6), c = 16.7268 (7) A, alpha = 84.323(2), beta = 80.938(2), gamma = 78.274(3)Z = 4, R = 0.035 for 8820 unique reflections. Crystals of mer-InBr3(pic)3 (2) are monoclinic, space group P21/n (No. 14), with a = 15.010(2), b = 19.938(2), c = 16.593(3), beta = 116.44(1)Z = 8, R = 0.053 for 4174 unique reflections. The synthesis and structures of related compounds with phenylsulfide (chloride) (3) and a dimeric complex with bridging hydroxide (bromide) (4) coordination is also described. Crystals of trans-In(SC6H5)Cl2(pic)3 (3) are monoclinic, space group P21/n (No. 14), with a = 9.5265(2), b = 17.8729(6), c = 13.8296(4), beta = 99.7640(15)Z = 4, R = 0.048 for 5511 unique reflections. Crystals of [In(mu-OH)Br2(pic)22 (4) are tetragonal, space group = I41cd (No. 110) with a = 19.8560(4), b = 19.8560(4), c = 25.9528(6), Z = 8, R = 0.039 for 5982 unique reflections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Kuldeep Chand, E-mail: kuldeep0309@yahoo.co.in; Akal School of Physics, Eternal University, Baru Sahib, Himachal Pradesh 173101; Tripathi, S.K.
2015-08-15
Highlights: • Multiferroic Fe-doped BaTiO{sub 3} nanorods. • Sol–gel. • Magnetoelectric coefficient. • Transmission electron microscopy. • Cole–Cole plots. - Abstract: Multiferroic BaFe{sub 0.01}Ti{sub 0.99}O{sub 3} (BFT1) and BaFe{sub 0.015}Ti{sub 0.985}O{sub 3} (BFT15) nanorods were prepared by a sol–gel synthesis and annealed at 700 °C/2 h. The tetragonal phase and nano dimensions of BFT samples are identified by X-ray diffraction and transmission electron microscopy. The enhancement in ferroelectricity depends upon low porosity, tetragonal phase, space charge field, larger surface area and oriented growth. The ferromagnetism depends upon partially filled inner shells, surface spins and oxygen vacancies. The magnetoelectric coefficient ismore » explained on the basis of surface spins, short-range interactions near surface boundary, compressive stress and twin structure contributed by nano grains which can reside stress near grain boundaries. The frequency dependent real (Z′) and imaginary (Z″) parts of impedance spectra are confirmed by the variations that observed in dielectric properties. The values of resistance of grain boundaries, R{sub gb} is higher than grains, R{sub g} indicating that the effect of grain boundaries is dominant in BFT nanorods.« less
Optical properties of quasi-tetragonal BiFeO3 thin films
NASA Astrophysics Data System (ADS)
Chen, P.; Podraza, N. J.; Xu, X. S.; Melville, A.; Vlahos, E.; Gopalan, V.; Ramesh, R.; Schlom, D. G.; Musfeldt, J. L.
2010-03-01
Optical transmission spectroscopy and spectroscopic ellipsometry were used to extract the optical properties of an epitaxially grown quasi-tetragonal BiFeO3 thin film in the near infrared to near ultraviolet range. The absorption spectrum is overall blue shifted compared with that of rhombohedral BiFeO3, with an absorption onset near 2.25 eV, a direct 3.1 eV band gap, and charge transfer excitations that are ˜0.4 eV higher than those of the rhombohedral counterpart. We interpret these results in terms of structural strain and local symmetry breaking.
3D Photonic Crystals Build Up By Self-Organization Of Nanospheres
2006-05-23
variance for simple tetragonal Vst , of which general form is defined in Equation (5), could be an important parameter affecting band structure, and it is...plotted along with gap size both as a function of lattice parameter ratio c/a in Figure 2. Apparently, the inverse of variance, i.e. 1/ Vst , shows a...possible. 0.8 1.0 1.2 1.4 1.6 1.8 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 gap size (%) 1/ Vst c/a of simple tetragonal g ap s iz e (% ) 0.85 0.86
NASA Astrophysics Data System (ADS)
Kovalchuk, M. V.; Prosekov, P. A.; Marchenkova, M. A.; Blagov, A. E.; D'yakova, Yu. A.; Tereshchenko, E. Yu.; Pisarevskii, Yu. V.; Kondratev, O. A.
2014-09-01
The results of an in situ study of the growth of tetragonal lysozyme crystals by high-resolution X-ray diffractometry are considered. The crystals are grown by the sitting-drop method on crystalline silicon substrates of different types: both on smooth substrates and substrates with artificial surface-relief structures using graphoepitaxy. The crystals are grown in a special hermetically closed crystallization cell, which enables one to obtain images with an optical microscope and perform in situ X-ray diffraction studies in the course of crystal growth. Measurements for lysozyme crystals were carried out in different stages of the crystallization process, including crystal nucleation and growth, developed crystals, the degradation of the crystal structure, and complete destruction.
NASA Astrophysics Data System (ADS)
Guo, Jia-Xing; Wu, Shao-Yi; Kuang, Min-Quan; Peng, Li; Wu, Li-Na
2018-01-01
The local structures and spin Hamiltonian parameters are theoretically studied for Cu2+ in alkaline earth alumino borate (XAB, X = Mg, Ca and Sr) glasses by using the perturbation calculations for tetragonally elongated octahedral 3d9 groups. The [CuO6]10- groups are subject to the large relative tetragonal elongation ratios of 15.4%, 13.4% and 13.0% for MgAB, CaAB and SrAB glasses, respectively, arising from the Jahn-Teller effect. The decreasing cubic field parameter Dq, orbital reduction factor k and relative elongation ratio with the increase of the radius of alkaline earth ion X from Mg to Ca or Sr are analyzed for the studied systems in a uniform way.
Subbarao, Udumula; Rayaprol, Sudhindra; Dally, Rebecca; Graf, Michael J; Peter, Sebastian C
2016-01-19
The compounds RECuGa3 (RE = La-Nd, Sm-Gd) were synthesized by various techniques. Preliminary X-ray diffraction (XRD) analyses at room temperature suggested that the compounds crystallize in the tetragonal system with either the centrosymmetric space group I4/mmm (BaAl4 type) or the non-centrosymmetric space group I4mm (BaNiSn3 type). Detailed single-crystal XRD, neutron diffraction, and synchrotron XRD studies of selected compounds confirmed the non-centrosymmetric BaNiSn3 structure type at room temperature with space group I4mm. Temperature-dependent single-crystal XRD, powder XRD, and synchrotron beamline measurements showed a structural transition between centro- and non-centrosymmetry followed by a phase transition to the Rb5Hg19 type (space group I4/m) above 400 K and another transition to the Cu3Au structure type (space group Pm3̅m) above 700 K. Combined single-crystal and synchrotron powder XRD studies of PrCuGa3 at high temperatures revealed structural transitions at higher temperatures, highlighting the closeness of the BaNiSn3 structure to other structure types not known to the RECuGa3 family. The crystal structure of RECuGa3 is composed of eight capped hexagonal prism cages [RE4Cu4Ga12] occupying one rare-earth atom in each ring, which are shared through the edge of Cu and Ga atoms along the ab plane, resulting in a three-dimensional network. Resistivity and magnetization measurements demonstrated that all of these compounds undergo magnetic ordering at temperatures between 1.8 and 80 K, apart from the Pr and La compounds: the former remains paramagnetic down to 0.3 K, while superconductivity was observed in the La compound at T = 1 K. It is not clear whether this is intrinsic or due to filamentary Ga present in the sample. The divalent nature of Eu in EuCuGa3 was confirmed by magnetization measurements and X-ray absorption near edge spectroscopy and is further supported by the crystal structure analysis.
Origin of thickness dependence of structural phase transition temperatures in BiFeO 3 thin films
Yang, Yongsoo; Beekman, Christianne; Siemons, Wolter; ...
2016-03-28
In this study, two structural phase transitions are investigated in highly strained BiFeO 3 thin films grown on LaAlO 3 substrates, as a function of film thickness and temperature via synchrotron x-ray diffraction. Both transition temperatures (upon heating: monoclinic MC to monoclinic MA, and MA to tetragonal) decrease as the film becomes thinner. The existence of an interface layer at the film-substrate interface, deduced from half-order peak intensities, contributes to this behavior only for the thinnest samples; at larger thicknesses (above a few nanometers) the temperature dependence can be understood in terms of electrostatic considerations akin to size effects inmore » ferroelectric phase transitions, but observed here for structural phase transitions within the ferroelectric phase and related to the rearrangement rather than the formation of domains. For ultra-thin films, the tetragonal structure is stable at all investigated temperatures (down to 30 K).« less
Pressure-induced Lifshitz and structural transitions in NbAs and TaAs: experiments and theory.
Gupta, Satyendra Nath; Singh, Anjali; Pal, Koushik; Muthu, D V S; Shekhar, C; Elghazali, Moaz A; Naumov, Pavel G; Medvedev, Sergey A; Felser, C; Waghmare, U V; Sood, A K
2018-05-10
High pressure Raman, resistivity and synchrotron x-ray diffraction studies on Weyl semimetals NbAs and TaAs have been carried out along with density functional theoretical (DFT) analysis to explain pressure induced structural and electronic topological phase transitions. The frequencies of first order Raman modes harden with increasing pressure, exhibiting a slope change at [Formula: see text] GPa for NbAs and [Formula: see text] GPa for TaAs. The resistivities of NbAs and TaAs exhibit a minimum at pressures close to these transition pressures and also a change in the bulk modulus is observed. Our first-principles calculations reveal that the transition is associated with an electronic Lifshitz transition at [Formula: see text] for NbAs while it is a structural phase transition from body centered tetragonal to hexagonal phase at [Formula: see text] for TaAs. Further, our DFT calculations show a structural phase transition at 24 GPa from body centered tetragonal phase to hexagonal phase.
Transferable atomistic model to describe the energetics of zirconia
NASA Astrophysics Data System (ADS)
Wilson, Mark; Schönberger, Uwe; Finnis, Michael W.
1996-10-01
We have investigated the energies of a number of phases of ZrO2 using models of an increasing degree of sophistication: the simple ionic model, the polarizable ion model, the compressible ion model, and finally a model including quadrupole polarizability of the oxygen ions. The three structures which are observed with increasing temperatures are monoclinic, tetragonal, and cubic (fluorite). Besides these we have studied some hypothetical structures which certain potentials erroneously predict or which occur in other oxides with this stoichiometry, e.g., the α-PbO2 structure and rutile. We have also performed ab initio density functional calculations with the full-potential linear combination of muffin-tin orbitals method to investigate the cubic-tetragonal distortion. A detailed comparison is made between the results using classical potentials, the experimental data, and our own and other ab initio results. The factors which stabilize the various structure are analyzed. We find the only genuinely transferable model is the one including compressible ions and anion polarizability to the quadrupole level.
Equation of state of U2Mo up-to Mbar pressure range: Ab-initio study
NASA Astrophysics Data System (ADS)
Mukherjee, D.; Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.
2018-04-01
Experimentally, U2Mo is known to exist in tetragonal structure at ambient conditions. In contrast to experimental reports, the past theoretical studies carried out in this material do not find this phase to be stable structure at zero pressure. In order to examine this discrepancy between experiment and theory, we have performed ab-initio electronic band structure calculations on this material. In our theoretical study, we have attempted to search for lowest enthalpy structure at ambient as well at high pressure up to 200 GPa, employing evolutionary structure search algorithm in conjunction with ab-inito method. Our investigations suggest that a hexagonal structure with space group symmetry P6/mmm is the lowest enthalpy structure not only at ambient pressure but also up to pressure range of ˜200 GPa. To further, substantiate the results of these static lattice calculations the elastic and lattice dynamical stability has also been analysed. The theoretical isotherm derived from these calculations has been utilized to determine the Hugoniot of this material. Various physical properties such as zero pressure equilibrium volume, bulk modulus and its pressure derivative has also been derived from theoretical isotherm.
Observation of multiple dielectric relaxations in BaTiO3-Bi(Li1/3Ti2/3)O3 ceramics
NASA Astrophysics Data System (ADS)
Zhou, Changrong; Feteira, Antonio
2017-11-01
Dense (1 - x)BaTiO3- xBi(Li1/3Ti2/3)O3 ceramics were fabricated by the solid state reaction route. Powder X-ray diffraction analyses revealed an increase in the unit cell volume with increasing x and a change on the average crystal structure from tetragonal (space group P4mm) to cubic ( Pm\\bar{3}m ) at x > 0.10. Raman spectroscopy analyses corroborated a change of symmetry, but also showed the local structure for x > 0.10 to be inconsistent with the centrosymmetric ( Pm\\bar{3}m ) space group. The dielectric measurements revealed for the first time, to our knowledge, a double relaxor behaviour in a BaTiO3-based solid solution. Basically, with increasing x, the sharp ferroelectric anomaly at the Curie temperature ( T c) shifts towards lower temperatures until a relaxor-type response is observed, but simultaneously, another relaxation emerges above T c. The first arises from poor coupling between polar nanoregions, whereas the later obeys the Arrhenius Law and may be associated either with a defect-dipole reorientation or a Skanavi-type mechanism.
NASA Astrophysics Data System (ADS)
Novitskaya, Mariya; Makhnach, Leonid; Ivashkevich, Ludmila; Pankov, Vladimir; Klein, Holger; Rageau, Amélie; David, Jérémy; Gemmi, Mauro; Hadermann, Joke; Strobel, Pierre
2011-12-01
A new black quaternary oxide Sr 5BiNi 2O 9.6 was synthesized by solid state reaction at 1200 °C. Its structure was solved by electron crystallography and X-ray powder refinement, yielding a tetragonal structure with space group I4/ mmm, a=5.3637 (2) Å, c=17.5541(5) Å, Z=4. The structure can be described as a stacking of (Bi,Sr)-O rocksalt slabs and SrNiO 3- δ perovskite slabs. The initial nickel valence is close to +3.1. Thermogravimetry and high-temperature oxygen coulometry showed that this compound has variable oxygen content as a function of temperature and oxygen pressure, and ultimately decomposes when heated in low oxygen pressure above 800 °C. It is a metallic conductor with n-type conduction. Its thermoelectric power was determined and found to be -20 and -38 μV/K at 300 and 650 °C, respectively. Magnetic measurements confirm the nickel valence close to +3 and show evidence of magnetic ordering at 20 K.
Kim, Walter M.; Sigalov, Alexander B.; Stern, Lawrence J.
2010-01-01
HIV/SIV Nef mediates many cellular processes through interactions with various cytoplasmic and membrane-associated host proteins, including the signalling ζ subunit of the T-cell receptor (TCRζ). Here, the crystallization strategy, methods and refinement procedures used to solve the structures of the core domain of the SIVmac239 isolate of Nef (Nefcore) in complex with two different TCRζ fragments are described. The structure of SIVmac239 Nefcore bound to the longer TCRζ polypeptide (Leu51–Asp93) was determined to 3.7 Å resolution (R work = 28.7%) in the tetragonal space group P43212. The structure of SIVmac239 Nefcore in complex with the shorter TCRζ polypeptide (Ala63–Arg80) was determined to 2.05 Å resolution (R work = 17.0%), but only after the detection of nearly perfect pseudo-merohedral crystal twinning and proper assignment of the orthorhombic space group P212121. The reduction in crystal space-group symmetry induced by the truncated TCRζ polypeptide appears to be caused by the rearrangement of crystal-contact hydrogen-bonding networks and the substitution of crystallographic symmetry operations by similar noncrystallographic symmetry (NCS) operations. The combination of NCS rotations that were nearly parallel to the twin operation (k, h, −l) and a and b unit-cell parameters that were nearly identical predisposed the P212121 crystal form to pseudo-merohedral twinning. PMID:20124696
Spontaneous electric polarization in the B-site magnetic spinel GeCu2O4
NASA Astrophysics Data System (ADS)
Yanda, Premakumar; Ghara, Somnath; Sundaresan, A.
2018-04-01
We report the observation of a spontaneous electric polarization at the antiferromagnetic ordering temperature (TN ∼ 33 K) of Cu2+ ions in the B-site magnetic spinel GeCu2O4, synthesized at high pressure and high temperature. This compound is known to crystallize in a tetragonal structure (space group I41/amd) due to Jahn-Teller distortion of Cu2+ ions and exhibit a collinear up-up-down-down (↑↑↓↓) antiferromagnetic spin configuration below TN. We found a clear dielectric anomaly at TN, where an electric polarization appears in the absence of applied magnetic field. The electric polarization is suppressed by applied magnetic fields, which demonstrates that the compound GeCu2O4 is a type-II multiferroic.
NASA Astrophysics Data System (ADS)
Ding, Chang-Chun; Wu, Shao-Yi; Wu, Li-Na; Zhang, Li-Juan; Peng, Li; Wu, Ming-He; Teng, Bao-Hua
2018-02-01
The electron paramagnetic resonance (EPR) parameters and local structures for impurities VO2+ and Cu2+ in RO-Li2O-Na2O-K2O-B2O3 (RLNKB; R = Zn, Mg, Sr and Ba) glasses are theoretically investigated by using the perturbation formulas of the EPR parameters for tetragonally compressed octahedral 3d1 and tetragonally elongated octahedral 3d9 clusters, respectively. The VO2+ and Cu2+ dopants are found to undergo the tetragonal compression (characterized by the negative relative distortion ratios ρ ≈ -3%, -0.98%, -1% and -0.8% for R = Zn, Mg, Sr and Ba) and elongation (characterized by the positive relative distortion ratios ρ ≈ 29%, 17%, 16% and 28%), respectively, due to the Jahn-Teller effect. Both dopants show similar overall decreasing trends of cubic field parameter Dq and covalency factor N with decreasing electronegativity of alkali earth cation R. The conventional optical basicities Λth and local optical basicities Λloc are calculated for both systems, and the local Λloc are higher for Cu2+ than for VO2+ in the same RLNKB glass, despite the opposite relationship for the conventional Λth. This point is supported by the weaker covalency or stronger ionicity for Cu2+ than VO2+ in the same RLNKB system, characterized by the larger N in the former. The above comparative analysis on the spectral and local structural properties would be helpful to understand structures and spectroscopic properties for the similar oxide glasses with transition-metal dopants of complementary electronic configurations.
Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals
Li, Dehui; Wang, Gongming; Cheng, Hung-Chieh; Chen, Chih-Yen; Wu, Hao; Liu, Yuan; Huang, Yu; Duan, Xiangfeng
2016-01-01
Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirm that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Our findings offer significant fundamental insight on the temperature- and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials. PMID:27098114
Nanotwin and phase transformation in tetragonal Pb(Fe1/2Nb1/2)1-xTixO3 single crystal
NASA Astrophysics Data System (ADS)
Tu, C.-S.; Tseng, C.-T.; Chien, R. R.; Schmidt, V. Hugo; Hsieh, C.-M.
2008-09-01
This work is a study of phase transformation in (001)-cut Pb(Fe1/2Nb1/2)1-xTixO3 (x =48%) single crystals by means of dielectric permittivity, domain structure, and in situ x-ray diffraction. A first-order T(TNT)-C(TNT) phase transition was observed at the Curie temperature TC≅518 K upon zero-field heating. T, TNT, and C are tetragonal, tetragonal nanotwin, and cubic phases, respectively. T(TNT) and C(TNT) indicate that minor TNT domains reside in the T and C matrices. Nanotwins, which can cause broad diffraction peak, remain above TC≅518 K and give an average microscopic cubic symmetry in the polarizing microscopy. Colossal dielectric permittivity (>104) was observed above room temperature with strong frequency dispersion. This study suggests that nanotwins can play an important role in relaxor ferroelectric crystals while phase transition takes place. The Fe ion is a potential candidate as a B-site dopant for enhancing dielectric permittivity.
Barium Titanate Nanoparticles for Biomarker Applications
NASA Astrophysics Data System (ADS)
Matar, O.; Posada, O. M.; Hondow, N. S.; Wälti, C.; Saunders, M.; Murray, C. A.; Brydson, R. M. D.; Milne, S. J.; Brown, A. P.
2015-10-01
A tetragonal crystal structure is required for barium titanate nanoparticles to exhibit the nonlinear optical effect of second harmonic light generation (SHG) for use as a biomarker when illuminated by a near-infrared source. Here we use synchrotron XRD to elucidate the tetragonal phase of commercially purchased tetragonal, cubic and hydrothermally prepared barium titanate (BaTiO3) nanoparticles by peak fitting with reference patterns. The local phase of individual nanoparticles is determined by STEM electron energy loss spectroscopy (EELS), measuring the core-loss O K-edge and the Ti L3-edge energy separation of the t2g, eg peaks. The results show a change in energy separation between the t2g and eg peak from the surface and core of the particles, suggesting an intraparticle phase mixture of the barium titanate nanoparticles. HAADF-STEM and bright field TEM-EDX show cellular uptake of the hydrothermally prepared BaTiO3 nanoparticles, highlighting the potential for application as biomarkers.
Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals
Li, Dehui; Wang, Gongming; Cheng, Hung -Chieh; ...
2016-04-21
Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirmmore » that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Lastly, our findings offer significant fundamental insight on the temperature-and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials.« less
Real-time atomistic observation of structural phase transformations in individual hafnia nanorods
Hudak, Bethany M.; Depner, Sean W.; Waetzig, Gregory R.; ...
2017-05-12
High-temperature phases of hafnium dioxide have exceptionally high dielectric constants and large bandgaps, but quenching them to room temperature remains a challenge. Scaling the bulk form to nanocrystals, while successful in stabilizing the tetragonal phase of isomorphous ZrO 2, has produced nanorods with a twinned version of the room temperature monoclinic phase in HfO 2. Here we use in situ heating in a scanning transmission electron microscope to observe the transformation of an HfO 2 nanorod from monoclinic to tetragonal, with a transformation temperature suppressed by over 1000°C from bulk. When the nanorod is annealed, we observe with atomic-scale resolutionmore » the transformation from twinned-monoclinic to tetragonal, starting at a twin boundary and propagating via coherent transformation dislocation; the nanorod is reduced to hafnium on cooling. Unlike the bulk displacive transition, nanoscale size-confinement enables us to manipulate the transformation mechanism, and we observe discrete nucleation events and sigmoidal nucleation and growth kinetics.« less
Water polygons in high-resolution protein crystal structures.
Lee, Jonas; Kim, Sung-Hou
2009-07-01
We have analyzed the interstitial water (ISW) structures in 1500 protein crystal structures deposited in the Protein Data Bank that have greater than 1.5 A resolution with less than 90% sequence similarity with each other. We observed varieties of polygonal water structures composed of three to eight water molecules. These polygons may represent the time- and space-averaged structures of "stable" water oligomers present in liquid water, and their presence as well as relative population may be relevant in understanding physical properties of liquid water at a given temperature. On an average, 13% of ISWs are localized enough to be visible by X-ray diffraction. Of those, averages of 78% are water molecules in the first water layer on the protein surface. Of the localized ISWs beyond the first layer, almost half of them form water polygons such as trigons, tetragons, as well as expected pentagons, hexagons, higher polygons, partial dodecahedrons, and disordered networks. Most of the octagons and nanogons are formed by fusion of smaller polygons. The trigons are most commonly observed. We suggest that our observation provides an experimental basis for including these water polygon structures in correlating and predicting various water properties in liquid state.
Water polygons in high-resolution protein crystal structures
Lee, Jonas; Kim, Sung-Hou
2009-01-01
We have analyzed the interstitial water (ISW) structures in 1500 protein crystal structures deposited in the Protein Data Bank that have greater than 1.5 Å resolution with less than 90% sequence similarity with each other. We observed varieties of polygonal water structures composed of three to eight water molecules. These polygons may represent the time- and space-averaged structures of “stable” water oligomers present in liquid water, and their presence as well as relative population may be relevant in understanding physical properties of liquid water at a given temperature. On an average, 13% of ISWs are localized enough to be visible by X-ray diffraction. Of those, averages of 78% are water molecules in the first water layer on the protein surface. Of the localized ISWs beyond the first layer, almost half of them form water polygons such as trigons, tetragons, as well as expected pentagons, hexagons, higher polygons, partial dodecahedrons, and disordered networks. Most of the octagons and nanogons are formed by fusion of smaller polygons. The trigons are most commonly observed. We suggest that our observation provides an experimental basis for including these water polygon structures in correlating and predicting various water properties in liquid state. PMID:19551896
Determination of the structural phase and octahedral rotation angle in halide perovskites
NASA Astrophysics Data System (ADS)
dos Reis, Roberto; Yang, Hao; Ophus, Colin; Ercius, Peter; Bizarri, Gregory; Perrodin, Didier; Shalapska, Tetiana; Bourret, Edith; Ciston, Jim; Dahmen, Ulrich
2018-02-01
A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurement of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). The approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.
Pol, Vilas G; Thiyagarajan, P; Moreno, Jose M Calderon; Popa, Monica; Kessler, Vadim G; Gohil, Suresh; Seisenbaeva, Gulaim A
2009-07-06
The tetragonal BaTiO(3) nanopowder is synthesized in a solvent-less, efficient process by the thermolysis of a single [Ba(2)Ti(2)(thd)(4)(OnPr)(8)(nPrOH)(2)] precursor in a closed reactor at 700 degrees C under autogenous pressure, followed by combustion. This paper compiles the synthesis of the [Ba(2)Ti(2)(thd)(4)(OnPr)(8)(nPrOH)(2)] precursor, its analysis by mass spectrometry, and implementation for the fabrication of dielectric tetragonal BaTiO(3) nanopowder by controlled efficient thermal decomposition. The as-prepared, intermediate, and final forms of the obtained nanomaterials are systematically analysed by XRD, Raman, and EDS measurements to gain structural and compositional information. Employing HR-SEM, TEM, and HR-TEM techniques, the morphological changes during the structural evolution of all the phases are pursued. The mechanistic elucidation for the fabrication of BaTiO(3) nanopowder is developed on the basis of TGA and DTA data obtained for the initial [Ba(2)Ti(2)(thd)(4)(OnPr)(8)(nPrOH)(2)] reactant as well as the as-prepared BaCO(3) with amorphous Ti phase.
Collapsed tetragonal phase transition in LaRu 2 P 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drachuck, Gil; Sapkota, Aashish; Jayasekara, Wageesha T.
Here, the structural properties of LaRu 2P 2 under external pressure have been studied up to 14 GPa, employing high-energy x-ray diffraction in a diamond-anvil pressure cell. At ambient conditions, LaRu 2P 2 (I4/ mmm) has a tetragonal structure with a bulk modulus of B = 105(2) GPa and exhibits superconductivity at T c = 4.1 K. With the application of pressure, LaRu 2P 2 undergoes a phase transition to a collapsed tetragonal (cT) state with a bulk modulus of B = 175(5) GPa. At the transition, the c-lattice parameter exhibits a sharp decrease with a concurrent increase of themore » a-lattice parameter. The cT phase transition in LaRu 2P 2 is consistent with a second-order transition, and was found to be temperature dependent, increasing from P = 3.9(3) GPa at 160 K to P = 4.6(3) GPa at 300 K. In total, our data are consistent with the cT transition being near, but slightly above 2 GPa at 5 K where superconductivity is suppressed. Finally, we compare the effect of physical and chemical pressure in the RRu 2P 2 ( R = Y, La–Er, Yb) isostructural series of compounds and find them to be analogous.« less
Collapsed tetragonal phase transition in LaRu2P2
NASA Astrophysics Data System (ADS)
Drachuck, Gil; Sapkota, Aashish; Jayasekara, Wageesha T.; Kothapalli, Karunakar; Bud'ko, Sergey L.; Goldman, Alan I.; Kreyssig, Andreas; Canfield, Paul C.
2017-11-01
The structural properties of LaRu2P2 under external pressure have been studied up to 14 GPa, employing high-energy x-ray diffraction in a diamond-anvil pressure cell. At ambient conditions, LaRu2P2 (I4/mmm) has a tetragonal structure with a bulk modulus of B =105 (2 ) GPa and exhibits superconductivity at Tc=4.1 K. With the application of pressure, LaRu2P2 undergoes a phase transition to a collapsed tetragonal (cT) state with a bulk modulus of B =175 (5 ) GPa. At the transition, the c -lattice parameter exhibits a sharp decrease with a concurrent increase of the a -lattice parameter. The cT phase transition in LaRu2P2 is consistent with a second-order transition, and was found to be temperature dependent, increasing from P =3.9 (3 ) GPa at 160 K to P =4.6 (3 ) GPa at 300 K. In total, our data are consistent with the cT transition being near, but slightly above 2 GPa at 5 K where superconductivity is suppressed. Finally, we compare the effect of physical and chemical pressure in the RRu2P2 (R = Y, La -Er , Yb) isostructural series of compounds and find them to be analogous.
Collapsed tetragonal phase transition in LaRu 2 P 2
Drachuck, Gil; Sapkota, Aashish; Jayasekara, Wageesha T.; ...
2017-11-10
Here, the structural properties of LaRu 2P 2 under external pressure have been studied up to 14 GPa, employing high-energy x-ray diffraction in a diamond-anvil pressure cell. At ambient conditions, LaRu 2P 2 (I4/ mmm) has a tetragonal structure with a bulk modulus of B = 105(2) GPa and exhibits superconductivity at T c = 4.1 K. With the application of pressure, LaRu 2P 2 undergoes a phase transition to a collapsed tetragonal (cT) state with a bulk modulus of B = 175(5) GPa. At the transition, the c-lattice parameter exhibits a sharp decrease with a concurrent increase of themore » a-lattice parameter. The cT phase transition in LaRu 2P 2 is consistent with a second-order transition, and was found to be temperature dependent, increasing from P = 3.9(3) GPa at 160 K to P = 4.6(3) GPa at 300 K. In total, our data are consistent with the cT transition being near, but slightly above 2 GPa at 5 K where superconductivity is suppressed. Finally, we compare the effect of physical and chemical pressure in the RRu 2P 2 ( R = Y, La–Er, Yb) isostructural series of compounds and find them to be analogous.« less
Cranston, Laura J; Roszak, Aleksander W; Cogdell, Richard J
2014-06-01
LH2 from the purple photosynthetic bacterium Marichromatium (formerly known as Chromatium) purpuratum is an integral membrane pigment-protein complex that is involved in harvesting light energy and transferring it to the LH1-RC `core' complex. The purified LH2 complex was crystallized using the sitting-drop vapour-diffusion method at 294 K. The crystals diffracted to a resolution of 6 Å using synchrotron radiation and belonged to the tetragonal space group I4, with unit-cell parameters a=b=109.36, c=80.45 Å. The data appeared to be twinned, producing apparent diffraction symmetry I422. The tetragonal symmetry of the unit cell and diffraction for the crystals of the LH2 complex from this species reveal that this complex is an octamer.
Cranston, Laura J.; Roszak, Aleksander W.; Cogdell, Richard J.
2014-01-01
LH2 from the purple photosynthetic bacterium Marichromatium (formerly known as Chromatium) purpuratum is an integral membrane pigment–protein complex that is involved in harvesting light energy and transferring it to the LH1–RC ‘core’ complex. The purified LH2 complex was crystallized using the sitting-drop vapour-diffusion method at 294 K. The crystals diffracted to a resolution of 6 Å using synchrotron radiation and belonged to the tetragonal space group I4, with unit-cell parameters a = b = 109.36, c = 80.45 Å. The data appeared to be twinned, producing apparent diffraction symmetry I422. The tetragonal symmetry of the unit cell and diffraction for the crystals of the LH2 complex from this species reveal that this complex is an octamer. PMID:24915099
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darone, Gregory M.; Hmiel, Benjamin; Zhang, Jiliang
Fifteen ternary rare-earth metal gallium silicides have been synthesized using molten Ga as a molten flux. They have been structurally characterized by single-crystal and powder X-ray diffraction to form with three different structures—the early to mid-late rare-earth metals RE=La–Nd, Sm, Gd–Ho, Yb and Y form compounds with empirical formulae RE(Ga xSi 1–x)₂ (0.38≤x≤0.63), which crystallize with the tetragonal α-ThSi₂ structure type (space group I4₁/amd, No. 141; Pearson symbol tI12). The compounds of the late rare-earth crystallize with the orthorhombic α-GdSi₂ structure type (space group Imma, No. 74; Pearson symbol oI12), with refined empirical formula REGa xSi 2–x–y (RE=Ho, Er, Tm;more » 0.33≤x≤0.40, 0.10≤y≤0.18). LuGa₀.₃₂₍₁₎Si₁.₄₃₍₁₎ crystallizes with the orthorhombic YbMn₀.₁₇Si₁.₈₃ structure type (space group Cmcm, No. 63; Pearson symbol oC24). Structural trends are reviewed and analyzed; the magnetic susceptibilities of the grown single-crystals are presented. - Graphical abstract: This article details the exploration of the RE–Ga–Si ternary system with the aim to systematically investigate the structural “boundaries” between the α-ThSi₂ and α-GdSi₂-type structures, and studies of the magnetic properties of the newly synthesized single-crystalline materials. Highlights: • Light rare-earth gallium silicides crystallize in α-ThSi₂ structure type. • Heavy rare-earth gallium silicides crystallize in α-GdSi₂ structure type. • LuGaSi crystallizes in a defect variant of the YbMn₀.₁₇Si₁.₈₃ structure type.« less
Almond, Philip M; Albrecht-Schmitt, Thomas E
2002-10-21
The reactions of UO(2)(C(2)H(3)O(2))(2).2H(2)O with K(2)TeO(3).H(2)O, Na(2)TeO(3) and TlCl, or Na(2)TeO(3) and Sr(OH)(2).8H(2)O under mild hydrothermal conditions yield K[UO(2)Te(2)O(5)(OH)] (1), Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O (2) and beta-Tl(2)[UO(2)(TeO(3))(2)] (3), or Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2) (4), respectively. The structure of 1 consists of tetragonal bipyramidal U(VI) centers that are bound by terminal oxo groups and tellurite anions. These UO(6) units span between one-dimensional chains of corner-sharing, square pyramidal TeO(4) polyhedra to create two-dimensional layers. Alternating corner-shared oxygen atoms in the tellurium oxide chains are protonated to create short/long bonding patterns. The one-dimensional chains of corner-sharing TeO(4) units found in 1 are also present in 2. However, in 2 there are two distinct chains present, one where alternating corner-shared oxygen atoms are protonated, and one where the chains are unprotonated. The uranyl moieties in 2 are bound by five oxygen atoms from the tellurite chains to create seven-coordinate pentagonal bipyramidal U(VI). The structures of 3 and 4 both contain one-dimensional [UO(2)(TeO(3))(2)](2-) chains constructed from tetragonal bipyramidal U(VI) centers that are bridged by tellurite anions. The chains differ between 3 and 4 in that all of the pyramidal tellurite anions in 3 have the same orientation, whereas the tellurite anions in 4 have opposite orientations on each side of the chain. In 4, there are also additional isolated TeO(3)(2-) anions present. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 7.9993(5) A, b = 8.7416(6) A, c = 11.4413(8) A, Z = 4; 2, orthorhombic, space group Pbam, a = 10.0623(8) A, b = 23.024(2) A, c = 7.9389(6) A, Z = 4; 3, monoclinic, space group P2(1)/n, a = 5.4766(4) A, b = 8.2348(6) A, c = 20.849(3) A, beta = 92.329(1) degrees, Z = 4; 4, monoclinic, space group C2/c, a = 20.546(1) A, b = 5.6571(3) A, c = 13.0979(8) A, beta = 94.416(1) degrees, Z = 4.
The origin of transverse anisotropy in axially symmetric single molecule magnets.
Barra, Anne-Laure; Caneschi, Andrea; Cornia, Andrea; Gatteschi, Dante; Gorini, Lapo; Heiniger, Leo-Philipp; Sessoli, Roberta; Sorace, Lorenzo
2007-09-05
Single-crystal high-frequency electron paramagnetic resonance spectroscopy has been employed on a truly axial single molecule magnet of formula [Mn(12)O(12)(tBu-CH(2)CO(2))16(CH(3)OH)4].CH(3)OH to investigate the origin of the transverse magnetic anisotropy, a crucial parameter that rules the quantum tunneling of the magnetization. The crystal structure, including the absolute structure of the crystal used for EPR experiments, has been fully determined and found to belong to I4 tetragonal space group. The angular dependence of the resonance fields in the crystallographic ab plane shows the presence of high-order tetragonal anisotropy and strong dependence on the MS sublevels with the second-highest-field transition being angular independent. This was rationalized including competing fourth- and sixth-order transverse parameters in a giant spin Hamiltonian which describes the magnetic anisotropy in the ground S = 10 spin state of the cluster. To establish the origin of these anisotropy terms, the experimental results have been further analyzed using a simplified multispin Hamiltonian which takes into account the exchange interactions and the single ion magnetic anisotropy of the Mn(III) centers. It has been possible to establish magnetostructural correlations with spin Hamiltonian parameters up to the sixth order. Transverse anisotropy in axial single molecule magnets was found to originate from the multispin nature of the system and from the breakdown of the strong exchange approximation. The tilting of the single-ion easy axes of magnetization with respect to the 4-fold molecular axis of the cluster plays the major role in determining the transverse anisotropy. Counterintuitively, the projections of the single ion easy axes on the ab plane correspond to hard axes of magnetization.
Nanocomposites for Electronic Applications
1989-09-30
response. In the tungsten bronze structure relaxors a major breakthrough is the clear documentation of spin glass behaviour in an already polar matrix, for...MPB) this behaviour is seen in both ferroelectric tetragonal and orthorhombic species.
Variation of transition temperatures and residual resistivity ratio in vapor-grown FeSe
Böhmer, A. E.; Taufour, V.; Straszheim, W. E.; ...
2016-07-29
The study of the iron-based superconductor FeSe has blossomed with the availability of high-quality single crystals, obtained through flux/vapor-transport growth techniques below the structural transformation temperature of its tetragonal phase, T≈450°C. Here, we report on the variation of sample morphology and properties due to small modifications in the growth conditions. A considerable variation of the superconducting transition temperature T c, from 8.8 K to 3 K, which cannot be correlated with the sample composition, is observed. Instead, we point out a clear correlation between T c and disorder, as measured by the residual resistivity ratio. Notably, the tetragonal-to-orthorhombic structural transitionmore » is also found to be quite strongly disorder dependent (T s≈72–90K) and linearly correlated with T c.« less
Cubic to tetragonal phase transition of Tm{sup 3+} doped nanocrystals in oxyfluoride glass ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yiming; Fu, Yuting; Shi, Yahui
2016-02-15
Tm{sup 3+} ions doped β-PbF{sub 2} nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm{sup 3+} doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O{sub h} to D{sub 4h} site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm{sup 3+} doped nanocrystals at 800more » nm was modulated by the phase transition of the surrounding crystal field.« less
NASA Astrophysics Data System (ADS)
Kim, D. M.; Eom, C. B.; Nagarajan, V.; Ouyang, J.; Ramesh, R.; Vaithyanathan, V.; Schlom, D. G.
2006-04-01
We report the structural and longitudinal piezoelectric responses (d33) of epitaxial Pb(Zr0.52Ti0.48)O3 (PZT) films on (001) SrTiO3 and Si substrates in the thickness range of 40nm -4μm. With increasing film thickness the tetragonality of PZT was reduced. The increase in d33 value with increasing film thicknesses was attributed to the reduction of substrate constraints and softening of PZT due to reduced tetragonality. The d33 values of PZT films on Si substrates (˜330pm/V) are higher than those on SrTiO3 substrates (˜200pm /V). The epitaxial PZT films on silicon will lead to the fabrication of high performance piezoelectric microelectromechanical devices.
Stable tetragonal phase and magnetic properties of Fe-doped HfO2 nanoparticles
NASA Astrophysics Data System (ADS)
Sales, T. S. N.; Cavalcante, F. H. M.; Bosch-Santos, B.; Pereira, L. F. D.; Cabrera-Pasca, G. A.; Freitas, R. S.; Saxena, R. N.; Carbonari, A. W.
2017-05-01
In this paper, the effect in structural and magnetic properties of iron doping with concentration of 20% in hafnium dioxide (HfO2) nanoparticles is investigated. HfO2 is a wide band gap oxide with great potential to be used as high-permittivity gate dielectrics, which can be improved by doping. Nanoparticle samples were prepared by sol-gel chemical method and had their structure, morphology, and magnetic properties, respectively, investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with electron back scattering diffraction (EBSD), and magnetization measurements. TEM and SEM results show size distribution of particles in the range from 30 nm to 40 nm with small dispersion. Magnetization measurements show the blocking temperature at around 90 K with a strong paramagnetic contribution. XRD results show a major tetragonal phase (94%).
Theoretical investigations of the local distortion and spectral properties for VO2+ in SiO2 Glass
NASA Astrophysics Data System (ADS)
Li, Mu-Neng; Zhang, Zhi-Hong; Wu, Shao-Yi
2017-11-01
The local distortions and the spin Hamiltonian parameters g factors g∥, g⊥ and the hyperfine structure constants A∥ and A⊥ for isolated vanadyl ions VO2+ doped in SiO2 glass at 700°C are theoretically investigated from the perturbation formulas of these parameters for a 3d1 ion in tetragonally compressed octahedra. In these formulas, the relationships between local structure of VO2+ ions center and the tetragonal crystal field parameters are established. As a result, the distortion of the ligand octahedron is attributed to the strong axial crystal-fields associated with the short V4+-O2- bond due to the strong V=O bonding in the silica matrix. The theoretical spin Hamiltonian parameters obtained in this work show reasonable agreement with the experimental data.
The structure and optical properties of Sr{sub 1−x}Ca{sub x}MoO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopper, H.A.; Macphee, D.E.; Mclaughlin, A.C., E-mail: a.c.mclaughlin@abdn.ac.uk
2016-10-15
The solid solution Sr{sub 1−x}Ca{sub x}MoO{sub 3} (x=0.00, 0.05, 0.10, 0.13, 0.15 and 0.17) has successfully been synthesised and X-ray Powder diffraction has revealed the occurrence of structural phase transitions, from cubic Pm−3m to tetragonal I4/mcm, and then to orthorhombic Imma as the value of x increased. Discontinuities were observed in the cell parameters and bond lengths and angles at the transition from tetragonal to orthorhombic symmetry as a result of the switching of the octahedral rotation axis at the tetragonal to orthorhombic transition. The increased octahedral tilting could also be linked to the decrease in the band gap frommore » 2.20 eV to 2.10 eV as x increased from 0 to 0.17. - Graphical abstract: Table of Contents Figure Caption: Ultraviolet-visible absorbance spectra for Sr{sub 1−x}Ca{sub x}MoO{sub 3} showing a reduction in band gap upon increasing x as a result of increased octahedral tilting. - Highlights: • The solid solution Sr{sub 1−x}Ca{sub x}MoO{sub 3} has been synthesised. • Structural phase transitions are observed. • Discontinuities were observed in the cell parameters and bond lengths and angles. • Upon increasing x from 0 to 0.17 the band gap reduces from 2.20 eV to 2.10 eV.« less
Crystallization of chicken egg white lysozyme from assorted sulfate salts
NASA Astrophysics Data System (ADS)
Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.
1999-01-01
Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Crystals have also been grown at 4°C in the absence of any other added salts using isoionic lysozyme which was titrated to pH 4.6 with dilute sulfuric acid. Four different crystal forms have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed. Crystals grown at 15°C were generally tetragonal, with space group P4 32 12. Crystallization at 20°C typically resulted in the formation of orthorhombic crystals, space group P2 12 12 1. The tetragonal ↔ orthorhombic transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20°C and between 100 and 125 mg/ml protein concentration. Crystallization from 1.2 M magnesium sulfate at pH 7.8 gave a trigonal crystal, space group P3 12 1, a= b=87.4, c=73.7, γ=120°, which diffracted to 2.8 Å. Crystallization from ammonium sulfate at pH 4.6, generally at lower temperatures, was also found to result in a monoclinic form, space group C2, a=65.6, b=95.0, c=41.2, β=119.2°. A crystal of ˜0.2×0.2×0.5 mm grown from bulk solution diffracted to ˜3.5 Å.
Electron microscopy of a Gd-Ba-Cu-O superconductor
NASA Technical Reports Server (NTRS)
Ramesh, R.; Thomas, G.; Meng, R. L.; Hor, P. H.; Chu, C. W.
1989-01-01
An electron microscopy study has been carried out to characterize the microstructure of a sintered Gd-Ba-Cu-O superconductor alloy. The GdBa2Cu3O(7-x) phase in the oxygen annealed sample is orthorhombic, while in the vacuum annealed sample it is tetragonal. It is shown that the details of the fine structure in the 001-line zone axis convergent beam patterns can be used to distinguish between the orthorhombic form and the tetragonal form. In addition to this matrix phase, an amorphous phase is frequently observed at the triple grain junctions. Gd-rich inclusions have been observed inside the matrix phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalyani, Ajay Kumar; Brajesh, Kumar; Ranjan, Rajeev, E-mail: rajeev@materials.iisc.ernet.in
2014-06-23
The effect of Zr, Hf, and Sn in BaTiO{sub 3} has been investigated at close composition intervals in the dilute concentration limit. Detailed structural analysis by x-ray and neutron powder diffraction revealed that merely 2 mol. % of Zr, Sn, and Hf stabilizes a coexistence of orthorhombic (Amm2) and tetragonal (P4mm) phases at room temperature. As a consequence, all the three systems show substantial enhancement in the longitudinal piezoelectric coefficient (d{sub 33}), with Sn modification exhibiting the highest value ∼425 pC/N.
Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres.
Leib, Elisabeth W; Vainio, Ulla; Pasquarelli, Robert M; Kus, Jonas; Czaschke, Christian; Walter, Nils; Janssen, Rolf; Müller, Martin; Schreyer, Andreas; Weller, Horst; Vossmeyer, Tobias
2015-06-15
Zirconia microparticles produced by sol-gel synthesis have great potential for photonic applications. To this end, identifying synthetic methods that yield reproducible control over size uniformity is important. Phase transformations during thermal cycling can disintegrate the particles. Therefore, understanding the parameters driving these transformations is essential for enabling high-temperature applications. Particle morphology is expected to influence particle processability and stability. Yttria-doping should improve the thermal stability of the particles, as it does in bulk zirconia. Zirconia and YSZ particles were synthesized by improved sol-gel approaches using fatty acid stabilizers. The particles were heated to 1500 °C, and structural and morphological changes were monitored by SEM, ex situ XRD and high-energy in situ XRD. Zirconia particles (0.4-4.3 μm in diameter, 5-10% standard deviation) synthesized according to the modified sol-gel approaches yielded significantly improved monodispersities. As-synthesized amorphous particles transformed to the tetragonal phase at ∼450 °C with a volume decrease of up to ∼75% and then to monoclinic after heating from ∼650 to 850 °C. Submicron particles disintegrated at ∼850 °C and microparticles at ∼1200 °C due to grain growth. In situ XRD revealed that the transition from the amorphous to tetragonal phase was accompanied by relief in microstrain and the transition from tetragonal to monoclinic was correlated with the tetragonal grain size. Early crystallization and smaller initial grain sizes, which depend on the precursors used for particle synthesis, coincided with higher stability. Yttria-doping reduced grain growth, stabilized the tetragonal phase, and significantly improved the thermal stability of the particles. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Jian; An, Fei-fei; Cao, Fei
2014-05-01
In this paper, ferroelectric phase transitions of Pb0.6-xCaxBi0.4(Ti0.75Zn0.15Fe0.1)O3 with x ≤ 0.20 ceramics were experimentally measured and a change from first-order to relaxor was found at a critical composition x ˜ 0.19. With increasing Ca content of x ≤ 0.18, Curie temperature and tetragonality was found decrease but piezoelectric constant and dielectric constant increase in a quadratic polynomial relationship as a function of x, while the ferroic Curie temperature and ferroelastic ordering parameter of tetragonality are correlated in a quadratic polynomial relationship. Near the critical composition of ferroic phase transition from first-order to relaxor, the Pb0.42Ca0.18Bi0.4(Ti0.75Zn0.15Fe0.1)O3 and 1 mol % Nb + 0.5 mol % Mg co-doped Pb0.44Ca0.16Bi0.4(Ti0.75Zn0.15Fe0.1)O3 ceramics exhibit a better anisotropic piezoelectric properties than those commercial piezoceramics of modified-PbTiO3 and PbNb2O6. At last, those factors including reduced mass of unit cell, mismatch between cation size and anion cage size, which affect ferroic Curie temperature and ferroelastic ordering parameter (tetragonality) of tetragonal ABO3 perovskites, are analyzed on the basis of first principle effective Hamiltonian and the reduced mass of unit cell is argued a more universal variable than concentration to determine Curie temperature in a quadratic polynomial relationship over various perovskite-structured solid solutions.
Study of iridium silicide monolayers using density functional theory
NASA Astrophysics Data System (ADS)
Popis, Minh D.; Popis, Sylvester V.; Oncel, Nuri; Hoffmann, Mark R.; ćakır, Deniz
2018-02-01
In this study, we investigated physical and electronic properties of possible two-dimensional structures formed by Si (silicon) and Ir (iridium). To this end, different plausible structures were modeled by using density functional theory and the cohesive energies calculated for the geometry of optimized structures, with the lowest equilibrium lattice constants. Among several candidate structures, we identified three mechanically (via elastic constants and Young's modulus), dynamically (via phonon calculations), and thermodynamically stable iridium silicide monolayer structures. The lowest energy structure has a chemical formula of Ir2Si4 (called r-IrSi2), with a rectangular lattice (Pmmn space group). Its cohesive energy was calculated to be -0.248 eV (per IrSi2 unit) with respect to bulk Ir and bulk Si. The band structure indicates that the Ir2Si4 monolayer exhibits metallic properties. Other stable structures have hexagonal (P-3m1) and tetragonal (P4/nmm) cell structures with 0.12 and 0.20 eV/f.u. higher cohesive energies, respectively. Our calculations showed that Ir-Si monolayers are reactive. Although O2 molecules exothermically dissociate on the surface of the free-standing iridium silicide monolayers with large binding energies, H2O molecules bind to the monolayers with a rather weak interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
dos Reis, Roberto; Yang, Hao; Ophus, Colin
A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr 3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr 3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurementmore » of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). Finally, the approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.« less
Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; ...
2016-08-08
Pressure dependence of the electronic and crystal structures of K xFe 2–ySe 2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change ofmore » Fermi surface topology. Lastly, our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase.« less
NASA Astrophysics Data System (ADS)
Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; Okazaki, Hiroyuki; Ozaki, Toshinori; Takano, Yoshihiko; Lin, Jung-Fu; Fujita, Hidenori; Kagayama, Tomoko; Shimizu, Katsuya; Hiraoka, Nozomu; Ishii, Hirofumi; Liao, Yen-Fa; Tsuei, Ku-Ding; Mizuki, Jun'Ichiro
2016-08-01
Pressure dependence of the electronic and crystal structures of KxFe2-ySe2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change of Fermi surface topology. Our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase.
Raman effect in icosahedral boron-rich solids
Werheit, Helmut; Filipov, Volodymyr; Kuhlmann, Udo; Schwarz, Ulrich; Armbrüster, Marc; Leithe-Jasper, Andreas; Tanaka, Takaho; Higashi, Iwami; Lundström, Torsten; Gurin, Vladimir N; Korsukova, Maria M
2010-01-01
We present Raman spectra of numerous icosahedral boron-rich solids having the structure of α-rhombohedral, β-rhombohedral, α-tetragonal, β-tetragonal, YB66, orthorhombic or amorphous boron. The spectra were newly measured and, in some cases, compared with reported data and discussed. We emphasize the importance of a high signal-to-noise ratio in the Raman spectra for detecting weak effects evoked by the modification of compounds, accommodation of interstitial atoms and other structural defects. Vibrations of the icosahedra, occurring in all the spectra, are interpreted using the description of modes in α-rhombohedral boron by Beckel et al. The Raman spectrum of boron carbide is largely clarified. Relative intra- and inter-icosahedral bonding forces are estimated for the different structural groups and for vanadium-doped β-rhombohedral boron. The validity of Badger's rule is demonstrated for the force constants of inter-icosahedral B–B bonds, whereas the agreement is less satisfactory for the intra-icosahedral B–B bonds. PMID:27877328
New ruthenium carboxylate complexes having a 1-5-. eta. sup 5 -cyclooctadienyl ligand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osakada, Kohtaro; Grohmann, A.; Yamamoto, Akio
1990-07-01
Reaction of 3-butenoic acid with Ru(cod)(cot) (cod) = 1-2-{eta}{sup 2}:5-6-{eta}{sup 2}-cyclooctadiene; cot = 1-6-{eta}{sup 6}-cyclooctatriene in the presence of PMe{sub 3} gives a new ruthenium(II) complex formulated as Ru(1-5-{eta}{sup 5}-C{sub 8}H{sub 11}){eta}{sup 1}(O),{eta}{sup 2}(C,C{prime}-OCOCH{sub 2}CH{double bond}CH{sub 2})(PMe{sub 3}) (1). X-ray crystallography revealed its structure as having a piano-stool coordination around the ruthenium center. Crystals of 1 are tetragonal, space group P4{sub 3}2{sub 1}2, with a = 12.559 (3) {angstrom}, c = 20.455 (4) {angstrom}, and Z = 8. {sup 1}H and {sup 13}C({sup 1}H) NMR spectra of 1 agree well for the structure with the allyl entity of the carboxylatemore » {pi}-bonded through the C{double bond}C double bond to ruthenium.« less
NASA Astrophysics Data System (ADS)
Choukri, E.; Gagou, Y.; Mezzane, D.; Abkhar, Z.; El Moznine, R.; Luk'yanchuk, I.; Saint-Grégoire, P.; Kavokin, A. V.
2011-02-01
We studied the structural and dielectric properties of new Tetragonal Tungsten Bronze (TTB) ceramics Pb1.85K1.15Li0.15Nb5O15 that was synthesized by solid-state reaction. We pay a special attention to the diffuse phase transition (DPT) that occurs close to 425 °C. Using dielectric measurements in a frequency range of 10 Hz-1 MHz and in the temperature range 30-560 °C, we have shown that the real permittivity close to DPT is well described by Santos-Eiras phenomenological model. Space-charge polarization, relaxation phenomena and free charges conductivity have been analyzed using dielectric spectroscopy impedance and modulus characterization. Cole-Cole plots show a non-Debye (polydispersive) type relaxation. In paraelectric phase the Arrhenius activation energy was determined as Eτ = 0.72 eV. We demonstrated that frequency dependence of ac conductivity at different temperatures obeys the Jonscher's universal law: σac = σdc + A(ω)n.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Raka; Chakrabarti, Chandana, E-mail: chandana.chakrabarti@saha.ac.in
2005-08-01
A thaumatin-like antifungal protein, NP24-I, has been isolated from ripe tomato fruits. It was crystallized by the vapour-diffusion method and data were collected to 2.45 Å. The structure was solved by molecular replacement. NP24 is a 24 kDa (207-amino-acid) antifungal thaumatin-like protein (TLP) found in tomato fruits. An isoform of the protein, NP24-I, is reported to play a possible role in ripening of the fruit in addition to its antifungal properties. The protein has been isolated and purified and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the tetragonal space group P4{sub 3}, with unit-cell parameters a =more » b = 61.01, c = 62.90 Å and one molecule per asymmetric unit. X-ray diffraction data were processed to a resolution of 2.45 Å and the structure was solved by molecular replacement.« less
NASA Astrophysics Data System (ADS)
Zhao, Yuexing; Wang, Liang; Yang, Jiasheng; Li, Dachuan; Zhong, Xinghua; Zhao, Huayu; Shao, Fang; Tao, Shunyan
2015-02-01
7.5YSZ thermal barrier coatings (TBCs) were deposited onto the stainless steel substrates using axial suspension plasma spraying (ASPS). Free-standing coatings were isothermally aged in air from 1200 to 1600 °C for 24 h and at 1550 °C for 20 to 100 h, respectively. Thermal aging behavior such as phase composition, microstructure evolutions, grain growth, and mechanical properties for thermal-aged coatings were investigated. Results show that the as-sprayed metastable tetragonal (t'-ZrO2) phase decomposes into equilibrium tetragonal (t-ZrO2) and cubic (c-ZrO2) phases during high-temperature exposures. Upon further cooling, the c-ZrO2 may be retained or transform into another metastable tetragonal (t″-ZrO2) phase, and tetragonal → monoclinic phase transformation occurred after 1550 °C/40 h aging treatment. The coating exhibits a unique structure with segmentation cracks and micro/nano-size grains, and the grains grow gradually with increasing aging temperature and time. In addition, the hardness ( H) and Young's modulus ( E) significantly increased as a function of temperature due to healing of pores or cracks and grain growth of the coating. And a nonmonotonic variation is found in the coatings thermal aged at a constant temperature (1550 °C) with prolonged time, this is a synergetic effect of coating sintering and m-ZrO2 phase formation.
NASA Astrophysics Data System (ADS)
Li, Chun-Mei; Hu, Yan-Fei
2017-12-01
The composition-dependent properties and their correlation with the phase stability of Fe75+xPd25-x (- 10.0 ≤x ≤10.0 ) alloys are systematically investigated by using first-principles exact muffin-tin orbitals (EMTO)-coherent potential approximation (CPA) calculations. It is shown that the martensitic transformation (MT) from L 12 to body-centered-tetragonal (bct) occurs in the ordered alloys with about -5.0 ≤x ≤10.0 . In both the L 12 and bct phases, the evaluated a and c/a agree well with the available experimental data; the average magnetic moment per atom increases whereas the local magnetic moments of Fe atoms, dependent on both their positions and the structure of the alloy, decrease with increasing x. The tetragonal shear elastic constant of the L 12 phase ( C ' ) decreases whereas that of the bct phase (Cs) increases with x. The tetragonality of the martensite ( |1 -c /a | ) increases whereas its energy relative to the austenite with a negative value decreases with Fe addition. All these effects account for the increase of MT temperature (TM) with x. The MT from L 12 to bct is finally confirmed originating from the splitting of Fe 3d Eg and T2 g bands upon tetragonal distortion due to the Jahn-Teller effect.
NASA Astrophysics Data System (ADS)
Somaily, H.; Kolesnik, S.; Mais, J.; Brown, D.; Chapagain, K.; Dabrowski, B.; Chmaissem, O.
2018-05-01
We report the structure-property phase diagram of unique single-ion type-1 multiferroic pseudocubic Sr1 -xB axMn O3 perovskites. Employing a specially designed multistep reduction-oxidation synthesis technique, we have synthesized Sr1 -xB axMn O3 compositions in their polycrystalline form with a significantly extended Ba solubility limit that is only rivaled by a very limited number of crystals and thin films grown under nonequilibrium conditions. Understanding the multiferroic interplay with structure in Sr1 -xB axMn O3 is of great importance as it opens the door wide to the development of newer materials from the parent (A A' ) (B B' ) O3 system with enhanced properties. To this end, using a combination of time-of-flight neutron and synchrotron x-ray scattering techniques, we determined the exact structures and quantified the Mn and oxygen polar distortions above and below the ferroelectric Curie temperature TC and the Néel temperature TN. In its ferroelectric state, the system crystalizes in the noncentrosymmetric tetragonal P 4 m m space group, which gives rise to a large electric dipole moment Ps, in the z direction, of 18.4 and 29.5 μ C /c m2 for x =0.43 and 0.45, respectively. The two independently driven ferroelectric and magnetic order parameters are single-handedly accommodated by the Mn sublattice leading to a novel strain-assisted multiferroic behavior in agreement with many theoretical predictions. Our neutron diffraction results demonstrate the large and tunable suppression of the ferroelectric order at the onset of AFM ordering and confirm the coexistence and strong coupling of the two ferroic orders below TN. The refined magnetic moments confirm the strong covalent bonding between Mn and the oxygen anions, which is necessary for stabilizing the ferroelectric phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somaily, H.; Kolesnik, S.; Mais, J.
Here, we report a comprehensive structure-property phase diagram of unique single-ion type-1 multiferroic pseudocubic Sr 1-xBa xMnO 3 perovskites. Employing a specially designed multi-step reduction-oxidation synthesis technique, we describe the successful synthesis of previously unknown Sr 1-xBa xMnO 3 compositions in their polycrystalline form with a significantly extended Ba solubility limit that is only rivaled by a very limited number of crystals and thin films grown under non-equilibrium conditions. Understanding the multiferroic interplay with structure in Sr 1-xBa xMnO 3 is of great importance as it opens the door wide to the development of newer materials from the parent (AA’)(BB’)more » O 3 system with enhanced properties. To this end, using a combination of time-of-flight neutron and synchrotron x-ray scattering techniques, we determined the exact structures and quantified the Mn and oxygen polar distortions above and below T C and T N. In its ferroelectric state, the system crystalizes in the noncentrosymmetric tetragonal P4mm space group which gives rise to a large electric dipole moment P s, in the z-direction, of 18.4 and 29.5 µC/cm 2 for x = 0.43 and 0.45, respectively. The two independently driven ferroelectric and magnetic order parameters are single-handedly accommodated by the Mn sublattice leading to a novel strain-assisted multiferroic behavior in agreement with many theoretical predictions. Our neutron diffraction results demonstrate the large and tunable suppression of the ferroelectric order at the onset of AFM ordering and confirm the coexistence and strong coupling of the two ferroic orders below T N. The refined magnetic moments confirm the strong covalent bonding between Mn and the oxygen anions which is necessary for stabilizing the ferroelectric phase.« less
Somaily, H.; Kolesnik, S.; Mais, J.; ...
2018-05-17
Here, we report a comprehensive structure-property phase diagram of unique single-ion type-1 multiferroic pseudocubic Sr 1-xBa xMnO 3 perovskites. Employing a specially designed multi-step reduction-oxidation synthesis technique, we describe the successful synthesis of previously unknown Sr 1-xBa xMnO 3 compositions in their polycrystalline form with a significantly extended Ba solubility limit that is only rivaled by a very limited number of crystals and thin films grown under non-equilibrium conditions. Understanding the multiferroic interplay with structure in Sr 1-xBa xMnO 3 is of great importance as it opens the door wide to the development of newer materials from the parent (AA’)(BB’)more » O 3 system with enhanced properties. To this end, using a combination of time-of-flight neutron and synchrotron x-ray scattering techniques, we determined the exact structures and quantified the Mn and oxygen polar distortions above and below T C and T N. In its ferroelectric state, the system crystalizes in the noncentrosymmetric tetragonal P4mm space group which gives rise to a large electric dipole moment P s, in the z-direction, of 18.4 and 29.5 µC/cm 2 for x = 0.43 and 0.45, respectively. The two independently driven ferroelectric and magnetic order parameters are single-handedly accommodated by the Mn sublattice leading to a novel strain-assisted multiferroic behavior in agreement with many theoretical predictions. Our neutron diffraction results demonstrate the large and tunable suppression of the ferroelectric order at the onset of AFM ordering and confirm the coexistence and strong coupling of the two ferroic orders below T N. The refined magnetic moments confirm the strong covalent bonding between Mn and the oxygen anions which is necessary for stabilizing the ferroelectric phase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guloy, A.M.; Corbett, J.D.
1996-04-24
The new tetragonal phases La{sub 3}In{sub 4}Ge and La{sub 3}InGe are obtained from high-temperature reactions of the elements in welded Ta followed by annealing. The structures of both were established by single-crystal X-ray diffraction in tetragonal space group I4/mcm (Z = 4 and 16, {alpha} = 8.5165(3) and 12.3083(2) {Angstrom}, c = 11.9024(4) and 16.0776(4) {Angstrom}, respectively). La{sub 3}In{sub 4}Ge contains layers or slabs of three-connected indium built of puckered 8-rings and 4-rings, or of squashed tetrahedra ({open_quotes}butterflies{close_quotes}) interlinked at all vertices, and these are separated by layers of La and isolated Ge. The phase is deficient of being amore » Zintl phase by three electrons per formula unit and is better described in terms of an alternate optimized and delocalized bonding picture and an open-shell metallic better described in terms of an alternate optimized and delocalized bonding picture and an open-shell metallic behavior for the In slabs. The more complex La{sub 3}InGe, isostructural with Gd{sub 3}Ga{sub 2}, is also layered. This phase contains pairs of mixed-occupancy (0.75 In, 0.25 Ge) sites separated by 3.020 {Angstrom}, as well as isolated In and Ge atoms. The former appear to be fully reduced closed-shell atoms (relative to the bonded Ga dimers in Gd{sub 3}Ga{sub 2}) that are held in somewhat close proximity by cation matrix effects. The compound appears to be semiconducting and thus is a classical Zintl phase, (La{sup +3}){sub 3}In{sup {minus}5}Ge{sup {minus}4} in the simplest oxidation state notation. High Coulomb energies are presumably important for the nature of the bonding and the stabilities of both compounds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charkin, Dmitri O.; Black, Cameron; Downie, Lewis J.
Two new rare-earth – alkali – tellurium oxide halides were synthesized by a salt flux technique and characterized by single-crystal X-ray diffraction. The structures of the new compounds Cs{sub 7}Sm{sub 11}[TeO{sub 3}]{sub 12}Cl{sub 16} (I) and Rb{sub 7}Nd{sub 11}[TeO{sub 3}]{sub 12}Br{sub 16} (II) (both tetragonal, space group I4/mcm) correspond to the sequence of [MLn{sub 11}(TeO{sub 3}){sub 12}] and [M{sub 6}X{sub 16}] layers and bear very strong similarities to those of known selenite analogs. We discuss the trends in similarities and differences in compositions and structural details between the Se and Te compounds; more members of the family are predicted. -more » Graphical abstract: Two new rare-earth – alkali – tellurium oxide halides were predicted and synthesized. - Highlights: • Two new rare-earth – alkali – tellurium oxide halides were synthesized. • They adopt slab structure of rare earth-tellurium-oxygen and CsCl-like slabs. • The Br-based CsCl-like slabs have been observed first in this layered family.« less
Pressure-induced structural and semiconductor-semiconductor transitions in C o0.5M g0.5C r2O4
NASA Astrophysics Data System (ADS)
Rahman, S.; Saqib, Hajra; Zhang, Jinbo; Errandonea, D.; Menéndez, C.; Cazorla, C.; Samanta, Sudeshna; Li, Xiaodong; Lu, Junling; Wang, Lin
2018-05-01
The effect of pressure on the structural, vibrational, and electronic properties of Mg-doped Cr bearing spinel C o0.5M g0.5C r2O4 was studied up to 55 GPa at room-temperature using x-ray diffraction, Raman spectroscopy, electrical transport measurements, and ab initio calculations. We found that the ambient-pressure phase is cubic (spinel-type, F d 3 ¯m ) and underwent a pressure-induced structural transition to a tetragonal phase (space group I 4 ¯m 2 ) above 28 GPa. The ab initio calculation confirmed this first-order phase transition. The resistivity of the sample decreased at low pressures with the existence of a low-pressure (LP) phase and started to increase with the emergence of a high-pressure (HP) phase. The temperature dependent resistivity experiments at different pressures illustrated the wide band gap semiconducting nature of both the LP and HP phases with different activation energies, suggesting a semiconductor-semiconductor transition at HP. No evidence of chemical decomposition or a semiconductor-metal transition was observed in our studies.
Yb7Ni4InGe12: a quaternary compound having mixed valent Yb atoms grown from indium flux.
Subbarao, Udumula; Jana, Rajkumar; Chondroudi, Maria; Balasubramanian, Mahalingam; Kanatzidis, Mercouri G; Peter, Sebastian C
2015-03-28
The new intermetallic compound Yb7Ni4InGe12 was obtained as large silver needle shaped single crystals from reactive indium flux. Single crystal X-ray diffraction suggests that Yb7Ni4InGe12 crystallizes in the Yb7Co4InGe12 structure type, and tetragonal space group P4/m and lattice constants are a = b = 10.291(2) Å and c = 4.1460(8) Å. The crystal structure of Yb7Ni4InGe12 consists of columnar units of three different types of channels filled with the Yb atoms. The crystal structure of Yb7Ni4InGe12 is closely related to Yb5Ni4Ge10. The effective magnetic moment obtained from the magnetic susceptibility measurements in the temperature range 200-300 K is 3.66μB/Yb suggests mixed/intermediate valence behavior of ytterbium atoms. X-ray absorption near edge spectroscopy (XANES) confirms that Yb7Ni4InGe12 exhibits mixed valence.
Crystal structure of ilyukhinite, a new mineral of the eudialyte group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rastsvetaeva, R. K., E-mail: rast@crys.ras.ru; Rozenberg, K. A.; Chukanov, N. V.
The crystal structure of ilyukhinite, a new mineral of the eudialyte group, is studied by X-ray diffraction. The mineral found in pegmatite bodies of the Kukisvumchorr Mountain (Khibiny alkaline complex) is characterized by low sodium content, high degree of hydration, and predominance of manganese over iron. The trigonal cell has the following parameters: a = 14.1695(6) and c = 31.026(1) Å; space group R3m. The structure is refined to final R = 0.046 in the anisotropic approximation of atomic displacements using 1527F > 3σF. The idealized formula of ilyukhinite (Z = 3) is written as (H{sub 3}O,Na){sub 14}Ca{sub 6}Mn{sub 2}Zr{submore » 3}Si{sub 26}O{sub 72}(OH){sub 2} · 3H{sub 2}O. The new mineral differs from other representatives of the eudialyte group by the predominance of both oxonium in the N positions of extra-framework cations and manganese in the М2 position centering the tetragonal pyramid.« less
NASA Astrophysics Data System (ADS)
Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.
2008-09-01
The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).
NASA Astrophysics Data System (ADS)
Gonzalez Lazo, Eduardo; Cruz Inclán, Carlos M.; Rodríguez Rodríguez, Arturo; Guzmán Martínez, Fernando; Abreu Alfonso, Yamiel; Piñera Hernández, Ibrahin; Leyva Fabelo, Antonio
2017-09-01
A primary approach for evaluating the influence of point defects like vacancies on atom displacement threshold energies values Td in BaTiO3 is attempted. For this purpose Molecular Dynamics Methods, MD, were applied based on previous Td calculations on an ideal tetragonal crystalline structure. It is an important issue in achieving more realistic simulations of radiation damage effects in BaTiO3 ceramic materials. It also involves irradiated samples under severe radiation damage effects due to high fluency expositions. In addition to the above mentioned atom displacement events supported by a single primary knock-on atom, PKA, a new mechanism was introduced. It corresponds to the simultaneous excitation of two close primary knock-on atoms in BaTiO3, which might take place under a high flux irradiation. Therefore, two different BaTiO3 Td MD calculation trials were accomplished. Firstly, single PKA excitations in a defective BaTiO3 tetragonal crystalline structure, consisting in a 2×2×2 BaTiO3 perovskite like super cell, were considered. It contains vacancies on Ba and O atomic positions under the requirements of electrical charge balance. Alternatively, double PKA excitations in a perfect BaTiO3 tetragonal unit cell were also simulated. On this basis, the corresponding primary knock-on atom (PKA) defect formation probability functions were calculated at principal crystal directions, and compared with the previous one we calculated and reported at an ideal BaTiO3 tetrahedral crystal structure. As a general result, a diminution of Td values arises in present calculations in comparison with those calculated for single PKA excitation in an ideal BaTiO3 crystal structure.
First-principles study on the electronic structure and elastic properties of Mo2NiB2 doped with V
NASA Astrophysics Data System (ADS)
Li, Jinming; Li, Xiaobo; Gao, Haiyun; Peng, Dian
2018-04-01
The content of this study is to analyze the electronic structure and elastic properties that the different structures of Mo2NiB2 and doping with V of the tetragonal M3B2 (Mo2Ni1‑xVxB2 and Mo2‑yNi1‑yV2yB2) (x = 0.25, 0.5, 0.75 and y = 0.125, 0.25, 0.375) by first-principles calculations based on density functional theory (DFT) combined with the projection-plus-wave method. But the calculated formation energy shows that V atoms prefer to substitute the Mo and Ni atoms of the tetragonal Mo2NiB2. Moreover, with the increase of V content, the formation enthalpy of tetragonal Mo2NiB2 is reduced, and the formation enthalpy of Mo1.625Ni0.625V0.75B2 is the least as ‑53.23 kJ/mol. The calculated elastic constant suffices the condition of mechanical stability, indicate that they are stable. The calculated elastic modulus illustrates that Mo2NiB2 having better mechanical properties when V elements are at Mo and Ni sites instead of Ni sites. The calculated and analyzed density of states of Mo1.625Ni0.625V0.75B2 has the smallest the density of states at the Fermi level indicating that it has the more stable structure. For the theoretical analysis of the first-principles calculations, the addition of 15 atom% of the V and V doping modes of Mo and Ni are preferentially replaced by V atoms of Mo2NiB2 ternary boride has the best performance.
NASA Astrophysics Data System (ADS)
Singh, Devender; Sheoran, Suman; Bhagwan, Shri; Kadyan, Sonika
2016-12-01
A series of trivalent europium-doped M3SiO5 (M = Sr, Ca and Mg) phosphors were synthesized using sol-gel process at 950°C. Samples were further reheated at high temperature to study the effect of reheating on crystal structure and optical characteristics. X-ray diffraction measurement of these materials was carried out to know the crystal structure. Diffraction pattern showed monoclinic structure having space group Cm for Ca3SiO5 materials. However, tetragonal phase with space group P4/ncc was observed for Sr3SiO5 materials. Mg3SiO5 material show mixed diffraction peaks at 950 and 1,150°C. Transmission electron microscopic analysis was used to estimate the particle size of silicates. Photoluminescence emission spectra were recorded to check the luminescence properties of prepared materials. These phosphors exhibited a strong orange-red light under excitation at 395 nm. The prepared phosphors exhibited most intense peak in 610-620 nm region due to the 5D0→7F2 transition of europium (III) ion available in lattice. To overcome the deficiency of red silicates, M3SiO5 materials were explored and they might be integrated with ultraviolet LEDs to generate light which may be suitable for display applications.
NASA Astrophysics Data System (ADS)
Ma, Chi; Tschauner, Oliver; Beckett, John R.; Rossman, George R.; Prescher, Clemens; Prakapenka, Vitali B.; Bechtel, Hans A.; MacDowell, Alastair
2018-01-01
In this paper, we discuss the occurrence of liebermannite (IMA 2013-128), KAlSi3O8, a new, shock-generated, high-pressure tetragonal hollandite-type structure silicate mineral, in the Zagami basaltic shergottite meteorite. Liebermannite crystallizes in space group I4/m with Z = 2, cell dimensions of a = 9.15 ± 0.14 (1σ) Å, c = 2.74 ± 0.13 Å, and a cell volume of 229 ± 19 Å3 (for the type material), as revealed by synchrotron diffraction. In Zagami, liebermannite likely formed via solid-state transformation of primary igneous K-feldspar during an impact event that achieved pressures of 20 GPa or more. The mineral name is in honor of Robert C. Liebermann, a high-pressure mineral physicist at Stony Brook University, New York, USA.
An open-framework thorium sulfate hydrate with 11.5 A voids.
Wilson, Richard E; Skanthakumar, S; Knope, Karah E; Cahill, Christopher L; Soderholm, L
2008-10-20
We report the synthesis of a thorium sulfate hydrate with 11.5 A open channels that propagate through the structure. The compound crystallizes in the tetragonal space group P4(2)/nmc, a = b = 25.890(4) A, c = 9.080(2) A, Z = 8, V = 6086.3(2) A(3). The thermal stability of the compound was investigated using thermogravimetric analysis and high-energy X-ray scattering (HEXS) revealing that the compound begins to undergo decomposition near 200 degrees C with an accompanied loss in crystallinity. The immediate coordination environment about the thorium atoms remains intact through heating to 500 degrees C as demonstrated by HEXS. Further heating reveals the formation of at least two crystalline phases, Th(SO4)2 and ThO2, which ultimately decompose to ThO2.
Fabrication of luminescent SrWO{sub 4} thin films by a novel electrochemical method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Lianping; Gao Yuanhong
2007-10-02
Highly crystallized SrWO{sub 4} thin films with single scheelite structure were prepared within 60 min by a cell electrochemical method. X-ray diffraction analysis shows that SrWO{sub 4} thin films have a tetragonal structure. Scanning electron microscopy examinations reveal that SrWO{sub 4} grains grow well in tetragonal tapers and grains like flowers or bunches, which can usually form by using the electrolysis electrochemical method, have disappeared under cell electrochemical conditions. X-ray photoelectron spectra and energy dispersive X-ray microanalysis examinations demonstrate that the composition of the film is consistent with its stoichiometry. These SrWO{sub 4} films show a single blue emission peakmore » (located at 460 nm) using an excitation wave of 230 nm. The speed of cell electrochemical method can be controlled by changing temperature. The optimum treatment temperature is about 50-60 deg. C.« less
Fabini, Douglas H; Stoumpos, Constantinos C; Laurita, Geneva; Kaltzoglou, Andreas; Kontos, Athanassios G; Falaras, Polycarpos; Kanatzidis, Mercouri G; Seshadri, Ram
2016-12-05
The structure of the hybrid perovskite HC(NH 2 ) 2 PbI 3 (formamidinium lead iodide) reflects competing interactions associated with molecular motion, hydrogen bonding tendencies, thermally activated soft octahedral rotations, and the propensity for the Pb 2+ lone pair to express its stereochemistry. High-resolution synchrotron X-ray powder diffraction reveals a continuous transition from the cubic α-phase (Pm3‾ m, #221) to a tetragonal β-phase (P4/mbm, #127) at around 285 K, followed by a first-order transition to a tetragonal γ-phase (retaining P4/mbm, #127) at 140 K. An unusual reentrant pseudosymmetry in the β-to-γ phase transition is seen that is also reflected in the photoluminescence. Around room temperature, the coefficient of volumetric thermal expansion is among the largest for any extended crystalline solid. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Half-metallicity and tetragonal distortion in semi-Heusler alloy FeCrSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, H. M., E-mail: smilehhm@163.com; Luo, S. J.; Yao, K. L.
2014-01-28
Full-potential linearized augmented plane wave methods are carried out to investigate the electronic structures and magnetic properties in semi-Heusler alloy FeCrSe. Results show that FeCrSe is half-metallic ferromagnet with the half-metallic gap 0.31 eV at equilibrium lattice constant. Calculated total magnetic moment of 2.00μ{sub B} per formula unit follows the Slater-Pauling rule quite well. Two kinds of structural changes are used to investigate the sensitivity of half-metallicity. It is found that the half-metallicity can be retained when lattice constant is changed by −4.56% to 3.52%, and the results of tetragonal distortion indicate the half-metallicity can be kept at the range ofmore » c/a ratio from 0.85 to 1.20. The Curie temperature, cohesive energy, and heat of formations of FeCrSe are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Yingge; Gu, Meng; Varga, Tamas
2014-08-27
In this paper, we show that compared to other BO6 octahedra in ABO3 structured perovskite oxides, the WO6 octahedra in tungsten trioxide (WO3) can withstand a much larger degree of distortion and tilting to accommodate interfacial strain, which in turn strongly impact the nucleation, structure, and defect formation during the epitaxial growth of WO3 on SrTiO3(001). A meta-stable tetragonal phase can be stabilized by epitaxy and a thickness dependent phase transition (tetragonal to monoclinic) is observed. In contrast to misfit dislocations to accommodate the interfacial stain, the facial WO6 octahedral distortion and tilting give rise to three types of planarmore » defects that affect more than 15 monolayers from the interface. These atomically resolved, unusual interfacial defects may significantly alter the electronic, electrochromic, and mechanical properties of the epitaxial films.« less
Magnetic properties of ultrathin tetragonal Heusler D022-Mn3Ge perpendicular-magnetized films
NASA Astrophysics Data System (ADS)
Sugihara, A.; Suzuki, K. Z.; Miyazaki, T.; Mizukami, S.
2015-05-01
We investigated the crystal structure and magnetic properties of Manganese-germanium (Mn3Ge) films having the tetragonal D022 structure, with varied thicknesses (5-130 nm) prepared on chromium (Cr)-buffered single crystal MgO(001) substrates. A crystal lattice elongation in the in-plane direction, induced by the lattice mismatch between the D022-Mn3Ge and the Cr buffer layer, increased with decreasing thickness of the D022-Mn3Ge layer. The films exhibited clear magnetic hysteresis loops with a squareness ratio close to unity, and a step-like magnetization reversal even at a 5-nm thickness under an external field perpendicular to the film's plane. The uniaxial magnetic anisotropy constant of the films showed a reduction to less than 10 Merg/cm3 in the small thickness range (≤20 nm), likely due to the crystal lattice elongation in the in-plane direction.
Sahlberg, Martin; Andersson, Yvonne
2009-03-01
Scandium magnesium gallide, Sc(2)MgGa(2), and yttrium magnesium gallide, Y(2)MgGa(2), were synthesized from the corresponding elements by heating under an argon atmosphere in an induction furnace. These intermetallic compounds crystallize in the tetragonal Mo(2)FeB(2)-type structure. All three crystallographically unique atoms occupy special positions and the site symmetries of (Sc/Y, Ga) and Mg are m2m and 4/m, respectively. The coordinations around Sc/Y, Mg and Ga are pentagonal (Sc/Y), tetragonal (Mg) and triangular (Ga) prisms, with four (Mg) or three (Ga) additional capping atoms leading to the coordination numbers [10], [8+4] and [6+3], respectively. The crystal structure of Sc(2)MgGa(2 )was determined from single-crystal diffraction intensities and the isostructural Y(2)MgGa(2) was identified from powder diffraction data.
Chen, Zhang-Gai; Huang, Xia; Zhuang, Rong-Chuan; Zhang, Yu; Liu, Xin; Shi, Tao; Wang, Shuai-Hua; Wu, Shao-Fan; Mi, Jin-Xiao; Huang, Ya-Xi
2017-09-12
Germanophosphates, in comparison with other metal phosphates, have been less studied but potentially exhibit more diverse structural chemistry with wide applications. Herein we applied a hydro-/solvo-fluorothermal route to make use of both the "tailor effect" of fluoride for the formation of low dimensional anionic clusters and the presence of alkali cations of different sizes to align the anionic clusters to control the overall crystal symmetries of germanophosphates. The synergetic effects of fluoride and alkali cations led to structural changes from chain-like structures to layered structures in a series of five novel fluorogermanophosphates: A 2 [GeF 2 (HPO 4 ) 2 ] (A = Na, K, Rb, NH 4 , and Cs, denoted as Na, K, Rb, NH4, and Cs). Although these fluorogermanophosphates have stoichiometrically equivalent formulas, they feature different anionic clusters, diverse structural dimensionalities, and contrasting crystal symmetries. Chain-like structures were observed for the compounds with the smaller sized alkali ions (Na + , K + , and Rb + ), whereas layered structures were found for those containing the larger sized cations ((NH 4 ) + and Cs + ). Specifically, monoclinic space groups were observed for the Na, K, Rb, and NH4 compounds, whereas a tetragonal space group P4/mbm was found for the Cs compound. These compounds provide new insights into the effects of cation sizes on the anionic clusters built from GeO 4 F 2 octahedra and HPO 4 tetrahedra as well as their influences on the overall structural symmetries in germanophosphates. Further characterization including IR spectroscopy and thermal analyses for all five compounds is also presented.
The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation
NASA Technical Reports Server (NTRS)
Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.
2001-01-01
Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study, we show that possible conformational changes induced by heating are stable and apparently non-reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for four weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 hours at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.
The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation
NASA Technical Reports Server (NTRS)
Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study we show that possible conformational changes induced by heating are stable and apparently non- reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for 4 weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 h at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.
NASA Astrophysics Data System (ADS)
Zeng, Lingkun
We performed an angle-resolved photoemission spectroscopy (ARPES) study of the CaFe2(As0.935P0.065)2 in the collapse tetragonal(CT) phase and uncollapse tetragonal(UCT) phase. We find in the CT phase the electronic correlation dramatically reduces respective to UCT phase. Meanwhile, the reduction of correlation in CT phase show an orbital selective effect: correlation in dxy reduces the most, and then dxz/yz, while the one in dz2-r2 almost keeps the same. In CT phase, almost all bands sink downwards to higher binding energy, leading to the hole like bands around Brillouin zone(BZ) center sink below EF compared with UCT phase. However, the electron pocket around Brillouin Zone(BZ) corner(M) in UCT phase, forms a hole pocket around BZ center(Z point) in CT phase. Moreover, the dxy exhibits larger movement down to higher binding energy, resulting in farther away from dyz/xz and closer to dxy.We propose the electron filling ,namely high spin state in UCT phase to low spin state in CT phase(due to competing between crystal structure field and Hund's coupling), other than the Fermi surface nesting might be responsible for the absent of magnetic ordering.
Search for unconventional superconductors among the YTE 2Si2 compounds (TE = Cr, Co, Ni, Rh, Pd, Pt)
NASA Astrophysics Data System (ADS)
Pikul, A. P.; Samsel–Czekała, M.; Chajewski, G.; Romanova, T.; Hackemer, A.; Gorzelniak, R.; Wiśniewski, P.; Kaczorowski, D.
2017-05-01
Motivated by the recent discovery of exotic superconductivity in YFe2Ge2 we undertook reinvestigation of formation and physical properties of yttrium-based 1:2:2 silicides. Here we report on syntheses and crystal structures of the YTE 2Si2 compounds with TE = Cr, Co, Ni, Rh, Pd and Pt, and their low-temperature physical properties measurements, supplemented by results of fully relativistic full-potential local-orbital minimum basis band structure calculations. We confirm that most of the members of that family crystallize in a tetragonal ThCr2Si2-type structure (space group I4/mmm) and have three-dimensional Fermi surface, while only one of them (YPt2Si2) forms with a closely-related primitive CaBe2Ge2-type unit cell (space group P4/nmm) and possess quasi-two-dimensional Fermi surface sheets. Physical measurements indicated that BCS-like superconductivity is observed only in YPt2Si2 (T c = 1.54 K) and YPd2Si2 (T c = 0.43 K), while no superconducting phase transition was found in other systems at least down to 0.35 K. Thermal analysis showed no polymorphism in both superconducting phases. No clear relation between the superconductivity and the crystal structure (and dimensionality of the Fermi surface) was observed.
NASA Astrophysics Data System (ADS)
Wei, T.; Dong, Z.; Zhao, C. Z.; Guo, Y. Y.; Zhou, Q. J.; Li, Z. P.
2016-03-01
New unfilled tetragonal tungsten bronze (TTB) oxides, Ba5-5xSm5xTi5xNb10-5xO30 (BSTN-x), where 0.10 ≤ x ≤ 0.35, have been synthesized in this work. Their crystal structure was determined and analyzed based on Rietveld structural refinement. It is found that single TTB phase can be formed in a particular x range (i.e., 0.15 ≤ x ≤ 0.3) due to the competition interaction between tolerance factor and electronegativity difference. Furthermore, dielectric and ferroelectric results indicate that phase transitions and ferroelectric states are sensitive to x. Referring to the local chemistry, we suggest that the raise of vacancies at the A2-site compared with that of A1-site will intensely depress the normal ferroelectric phase and is in favor of relaxor ferroelectric state. Macroscopically, previous A-site size difference standpoint on fill TTB compounds cannot give a reasonable explanation about the variation of dielectric maximum temperature (Tm) for present BSTN-x compounds. Alternatively, tetragonality (c/a) is adopted which can well describe the variation of Tm in whole x range. In addition, one by one correspondence between tetragonality and electrical features can be found, and the compositions involving high c/a are usually stabilized in normal ferroelectric phase. It is believed that c/a is a more appropriate parameter to illustrate the variation of ferroelectric properties for unfilled TTB system.
NASA Astrophysics Data System (ADS)
Balakrishnan, G.; Sastikumar, D.; Kuppusami, P.; Babu, R. Venkatesh; Song, Jung Il
2018-02-01
Single layer aluminium oxide (Al2O3), zirconium oxide (ZrO2) and Al2O3/ZrO2 nano multilayer films were deposited on Si (100) substrates at room temperature by pulsed laser deposition. The development of Al2O3/ZrO2 nanolayered structure is an important method used to stabilize the high temperature phase (tetragonal and cubic) of ZrO2 at room temperature. In the Al2O3/ZrO2 multilayer structure, the Al2O3 layer was kept constant at 5 nm, while the ZrO2 layer thickness varied from 5 to 20 nm (5/5, 5/10, 5/15 and 5/20 nm) with a total of 40 bilayers. The X-ray diffraction studies of single layer Al2O3 indicated the γ-Al2O3 of cubic structure, while the single layer ZrO2 indicated both monoclinic and tetragonal phases. The 5/5 and 5/10 nm multilayer films showed the nanocrystalline nature of ZrO2 with tetragonal phase. The high resolution transmission electron microscopy studies indicated the formation of well-defined Al2O3 and ZrO2 layers and that they are of uniform thickness. The atomic force microscopy studies revealed the uniform and dense distribution of nanocrystallites. The nanoindentation studies indicated the hardness of 20.8 ± 1.10 and 10 ± 0.60 GPa, for single layer Al2O3 and ZrO2, respectively, and the hardness of multilayer films varied with bilayer thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yin; Chen, Chen; Gao, Ran
2015-11-02
Phase stability of the ferroelectric materials at high temperature is extremely important to their device performance. Ba{sub x}Sr{sub 1−x}TiO{sub 3} (BST) nanoparticles with different Sr contents (x = 1, 0.91, 0.65, 0.4, and 0) are prepared by a facile hydrothermal method. Using Raman spectroscopy and transmission electron microscopy (TEM) analyses under in situ heating conditions (up to 300 °C), the phase transitions of BST nanoparticles between 25 °C and 280 °C are comprehensively investigated. The original Curie temperature of BST nanoparticles decreases abruptly with the increase in Sr content, which is more obvious than in the bulk or film material. Besides, an abnormal phase transitionmore » from cubic to tetragonal structure is observed from BST nanoparticles and the transition temperature rises along with the increase in Sr content. Direct TEM evidences including a slight lattice distortion have been provided. Differently, BaTiO{sub 3} nanoparticles remained in the tetragonal phase during the above temperature ranges.« less
Spin-orbital model of stoichiometric LaMnO3 with tetragonal distortions
NASA Astrophysics Data System (ADS)
Snamina, Mateusz; Oleś, Andrzej M.
2018-03-01
The spin-orbital superexchange model is derived for the cubic (perovskite) symmetry of LaMnO3, whereas real crystal structure is strongly deformed. We identify and explain three a priori important physical effects arising from tetragonal deformation: (i) the splitting of eg orbitals ∝Ez , (ii) the directional renormalization of d -p hybridization tp d, and (iii) the directional renormalization of charge excitation energies. Using the example of LaMnO3 crystal we evaluate their magnitude. It is found that the major effects of deformation are an enhanced amplitude of x2-y2 orbitals induced in the orbital order by Ez≃300 meV and anisotropic tp d≃2.0 (2.35) eV along the a b (c ) cubic axis, in very good agreement with Harrison's law. We show that the improved tetragonal model analyzed within mean field approximation provides a surprisingly consistent picture of the ground state. Excellent agreement with the experimental data is obtained simultaneously for: (i) eg orbital mixing angle, (ii) spin exchange constants, and (iii) the temperatures of spin and orbital phase transition.
Modeling the SHG activities of diverse protein crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haupert, Levi M.; DeWalt, Emma L.; Simpson, Garth J.
2012-10-18
A symmetry-additiveab initiomodel for second-harmonic generation (SHG) activity of protein crystals was applied to assess the likely protein-crystal coverage of SHG microscopy. Calculations were performed for 250 proteins in nine point-group symmetries: a total of 2250 crystals. The model suggests that the crystal symmetry and the limit of detection of the instrument are expected to be the strongest predictors of coverage of the factors considered, which also included secondary-structural content and protein size. Much of the diversity in SHG activity is expected to arise primarily from the variability in the intrinsic protein response as well as the orientation within themore » crystal lattice. Two or more orders-of-magnitude variation in intensity are expected even within protein crystals of the same symmetry. SHG measurements of tetragonal lysozyme crystals confirmed detection, from which a protein coverage of ~84% was estimated based on the proportion of proteins calculated to produce SHG responses greater than that of tetragonal lysozyme. Good agreement was observed between the measured and calculated ratios of the SHG intensity from lysozyme in tetragonal and monoclinic lattices.« less
NASA Astrophysics Data System (ADS)
Dwivedi, G. D.; Kumar, Abhishek; Yang, K. S.; Chen, B. Y.; Liu, K. W.; Chatterjee, Sandip; Yang, H. D.; Chou, H.
2016-05-01
Structural phase transition and Néel temperature (TN) enhancement were observed in Cr-substituted Mn3O4 spinels. Structural, magnetic, and dielectric properties of (Mn1-xCrx)3O4 (where x = 0.00, 0.10, 0.20, 0.25, 0.30, 0.40, and 0.50) were investigated. Cr-substitution induces room temperature structural phase transition from tetragonally distorted I41/amd (x = 0.00) to cubic Fd 3 ¯ m (x = 0.50). TN is found to increase from 43 K (x = 0.00) to 58 K (x = 0.50) with Cr-substitution. The spin ordering-induced dielectric anomaly near TN ensures that magneto-dielectric coupling persists in the cubic x = 0.50 system. X-ray absorption spectra reveal that Cr exists in a trivalent oxidation state and prefers the octahedral (Oh)-site, replacing Mn3+. Due to a reduction in the Jahn-Teller active Mn3+ cation and an increase in the smaller Cr3+ cation, the system begins to release the geometrical frustration by lowering its degeneracy. Consequently, a phase transition, from distorted tetragonal structure to the more symmetric cubic phase, occurs.
Structural and low temperature transport properties of Fe2B and FeB systems at high pressure
NASA Astrophysics Data System (ADS)
Kumar, P. Anand; Satya, A. T.; Reddy, P. V. Sreenivasa; Sekar, M.; Kanchana, V.; Vaitheeswaran, G.; Mani, Awadhesh; Kalavathi, S.; Shekar, N. V. Chandra
2017-10-01
The evolution of crystal structure and the ground state properties of Fe2B and FeB have been studied by performing high pressure X-ray diffraction up to a pressure of ∼24 GPa and temperature dependent (4.2-300 K range) high-pressure resistivity measurements up to ∼ 2 GPa. While a pressure induced reversible structural phase transition from tetragonal to orthorhombic structure is observed at ∼6.3 GPa in Fe2B, FeB has been found to be stable in its orthorhombic phase up to the pressure of 24 GPa. In the case of Fe2B, both parent and daughter phases coexist beyond the transition pressure. The bulk modulus of FeB and Fe2B (tetragonal) have been found to be 248 GPa and 235 GPa respectively. First principle electronic structure calculations have been performed using the present experimental inputs and the calculated ground state properties agree quite well with the major findings of the experiments. Debye temperature extracted from the analysis of low temperature resistivity data is observed to decrease with pressure indicating softening of phonons in both the systems.
High-pressure protein crystallography of hen egg-white lysozyme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Hiroyuki; Nagae, Takayuki; Watanabe, Nobuhisa, E-mail: nobuhisa@nagoya-u.jp
The crystal structure of hen egg-white lysozyme (HEWL) was analyzed under pressures of up to 950 MPa. The high pressure modified the conformation of the molecule and induced a novel phase transition in the tetragonal crystal of HEWL. Crystal structures of hen egg-white lysozyme (HEWL) determined under pressures ranging from ambient pressure to 950 MPa are presented. From 0.1 to 710 MPa, the molecular and internal cavity volumes are monotonically compressed. However, from 710 to 890 MPa the internal cavity volume remains almost constant. Moreover, as the pressure increases to 950 MPa, the tetragonal crystal of HEWL undergoes a phasemore » transition from P4{sub 3}2{sub 1}2 to P4{sub 3}. Under high pressure, the crystal structure of the enzyme undergoes several local and global changes accompanied by changes in hydration structure. For example, water molecules penetrate into an internal cavity neighbouring the active site and induce an alternate conformation of one of the catalytic residues, Glu35. These phenomena have not been detected by conventional X-ray crystal structure analysis and might play an important role in the catalytic activity of HEWL.« less
Jiang, Shanshan; Zhou, Wei; Niu, Yingjie; Zhu, Zhonghua; Shao, Zongping
2012-10-01
It is generally recognized that the phase transition of a perovskite may be detrimental to the connection between cathode and electrolyte. Moreover, certain phase transitions may induce the formation of poor electronic and ionic conducting phase(s), thereby lowering the electrochemical performance of the cathode. Here, we present a study on the phase transition of a cobalt-free perovskite (SrNb(0.1)Fe(0.9)O(3-δ), SNF) and evaluate its effect on the electrochemical performance of the fuel cell. SNF exists as a primitive perovskite structure with space group P4mm (99) at room temperature. As evidenced by in situ high-temperature X-ray diffraction measurements over the temperature range of 600 to 1000 °C, SNF undergoes a transformation to a tetragonal structure with a space group I4/m (87). This phase transition is accompanied by a moderate change in the volume, allowing a good cathode/electrolyte interface on thermal cycling. According to the electrochemical impedance spectroscopy evaluation, the I4/m phase exhibits positive effects on the cathode's performance, showing the highest oxygen reduction reaction activity of cobalt-free cathodes reported so far. This activity improvement is attributed to enhanced oxygen surface processes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions
NASA Astrophysics Data System (ADS)
Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar
2018-05-01
We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.
Structural and thermoelectric properties of A-site substituted (Sr1-x-yCaxNdy)TiO3 perovskites
NASA Astrophysics Data System (ADS)
Somaily, Hamoud H.
Detailed structural results and models are reported for a special class of A-site substituted perovskites, (Sr1-x-yCaxNd y)TiO3, obtained with high resolution NPD data as a function of temperature and Nd composition. Two series with various A-site concentrations were synthesized and investigated. Each series was designed to have a nominally constant tolerance factor. At room temperature (RT), I determine the space groups of the Sr-rich and Sr poor series as being tetragonal I4/mcm and orthorhombic Pbnm, respectively. The RT structures remain unchanged upon increasing the Nd3+ content. However, three different orthorhombic phases, Pbnm, Ibmm, Pbcm, are determined for the Sr-rich series as a function of decreasing temperature; whereas, for the Sr-poor series the orthorhombic Pbnm structure is found to persist throughout the full range of measured temperatures. A phase diagram is constructed and proposed in the temperature range 0-1000 K. Thermoelectric properties of (Sr 1-x-yCaxNdy)TiO3 were also investigated and the best figure of merit ZT=0.07 was obtained with the Sr-rich series.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ruixue; Xu, Han; Yang, Bin
The crystalline phases and domain configuration in the morphotropic phase boundary composition Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 (PMN-0.34PT) single crystal have been investigated by synchrotronbased X-ray 3D Reciprocal Space Mapping (3D-RSM) and Piezoresponse Force Microscopy. The coexistence of tetragonal (T) and monoclinic MC phases in this PMN-0.34PT single crystal is confirmed. The affiliation of each diffraction spot in the 3D-RSM was identified with the assistance of qualitative simulation. Most importantly, the twinning structure between different domains in such a mixed phase PMN-PT crystal is firmly clarified, and the spatial distribution of different twin domains is demonstrated. In addition, the lattice parameters of T andmore » MC phases in PMN-0.34PT single crystal as well as the tilting angles of crystal lattices caused by the interfacial lattice mismatch are determined.« less
NASA Astrophysics Data System (ADS)
Gong, Yun; Liu, Jinzhi; Tang, Wang; Hu, Changwen
2008-03-01
In the presence of N, N'-dimethyllformamide (DMF), two isostructural metal (II)-milrinone complexes formulated as M(C 12H 8N 3O) 2 (M = Co 1 and Ni 2) have been synthesized and characterized by elemental analysis, IR, TG and single crystal X-ray diffraction. The two compounds crystallize in the tetragonal system, chiral space group P4 32 12. They exhibit similar two dimensional (2D) square grid-like framework, in which milrinone acts as a ditopic ligand with its terminal pyridine and intra-annular acylamide groups covalently bridging different metal centers. The intra-annular acylamide ligand shows a chelate-coordinated mode. Compounds 1 and 2 are stable under 200 °C. Compound 3 formulated as (C 12H 9N 3O) 4·H 2O was obtained in the presence of water, the water molecule in the structure leads to the racemization of compound 3 and it crystallizes in the monoclinic system, non-chiral space group P2 1/ c. Milrinone exhibits a keto-form in the three compounds and compounds 1- 3 exhibit different photoluminescence properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy Choudhury, Subhasree; Gomes, Aparna; Gomes, Antony
2006-03-01
A cytotoxin from Indian Russell’s viper (D. russelli russelli) venom having multifunctional activity has been crystallized in space group P4{sub 1}. Larger crystals diffracted to 1.5 Å but were found to be twinned; preliminary data were therefore collected (2.93 Å) from a smaller crystal. A cytotoxin (MW 7.2 kDa) from Indian Russell’s viper (Daboia russelli russelli) venom possessing antiproliferative activity, cardiotoxicity, neurotoxicity and myotoxicity has been purified, characterized and crystallized. The crystals belong to the tetragonal space group P4{sub 1}, with unit-cell parameters a = b = 47.94, c = 50.2 Å. Larger crystals, which diffracted to 1.5 Å, weremore » found to be twinned; diffraction data were therefore collected to 2.93 Å resolution using a smaller crystal. Molecular-replacement calculations identified two molecules of the protein in the asymmetric unit, which is in accordance with the calculated V{sub M} value.« less
NASA Astrophysics Data System (ADS)
Kumar, Amit; Denev, Sava; Zeches, Robert J.; Vlahos, Eftihia; Podraza, Nikolas J.; Melville, Alexander; Schlom, Darrell G.; Ramesh, R.; Gopalan, Venkatraman
2010-09-01
Epitaxial strain can induce the formation of morphotropic phase boundary in lead free ferroelectrics like bismuth ferrite, thereby enabling the coexistence of tetragonal and rhombohedral phases in the same film. The relative ratio of these phases is governed by the film thickness and theoretical studies suggest that there exists a monoclinic distortion of both the tetragonal as well as the rhombohedral unit cells due to imposed epitaxial strain. In this work we show that optical second harmonic generation can distinguish the tetragonal-like phase from the rhombohedral-like phase and enable detection of monoclinic distortion in only a pure tetragonal-like phase.
Crystallization of Chicken Egg White Lysozyme from Assorted Sulfate Salts
NASA Technical Reports Server (NTRS)
Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.
1999-01-01
Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Crystals have also been grown at 4 C in the absence of any other added salts using isoionic lysozyme which was titrated to pH 4.6 with dilute sulfuric acid. Four different crystal forms have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed. Crystals grown at 15 C were generally tetragonal, with space group P4(sub 3)2(sub 1)2. Crystallization at 20 C typically resulted in the formation of orthorhombic crystals, space group P2(sub 1)2(sub 1)2(sub 1). The tetragonal reversible reaction orthorhombic transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20 C and between 100 and 125 mg/ml protein concentration. Crystallization from 1.2 M magnesium sulfate at pH 7.8 gave a trigonal crystal, space group P3(sub 1)2(sub 1), a = b = 87.4, c = 73.7, gamma = 120 deg, which diffracted to 2.8 A. Crystallization from ammonium sulfate at pH 4.6, generally at lower temperatures, was also found to result in a monoclinic form. space group C2, a = 65.6, b = 95.0, c = 41.2, beta = 119.2 deg. A crystal of approximately 0.2 x 0.2 x 0.5 mm grown from bulk solution diffracted to approximately 3.5 A.
Synthesis and characterization of iron based superconductor Nd-1111
NASA Astrophysics Data System (ADS)
Alborzi, Z.; Daadmehr, V.
2018-06-01
Polycrystalline sample of NdFeAsO0.8F0.2 was prepared by one-step solid-state reaction method. The structural and electrical properties of sample were characterized through XRD pattern and the 4-probe method. The critical temperature was obtained at 56 K. The crystal structure was tetragonal with P4/nmm:2 symmetry group.
Observation of Superconductivity in Tetragonal FeS.
Lai, Xiaofang; Zhang, Hui; Wang, Yingqi; Wang, Xin; Zhang, Xian; Lin, Jianhua; Huang, Fuqiang
2015-08-19
The possibility of superconductivity in tetragonal FeS has attracted considerable interest because of its similarities to the FeSe superconductor. However, all efforts made to pursue superconductivity in tetragonal FeS have failed so far, and it remains controversial whether tetragonal FeS is metallic or semiconducting. Here we report the observation of superconductivity at 5 K in tetragonal FeS that is synthesized by the hydrothermal reaction of iron powder with sulfide solution. The obtained samples are highly crystalline and less air-sensitive, in contrast to those reported in the literature, which are meta-stable and air-sensitive. Magnetic and electrical properties measurements show that the samples behave as a paramagnetic metal in the normal state and exhibit superconductivity below 5 K. The high crystallinity and the stoichiometry of the samples play important roles in the observation of superconductivity. The present results demonstrate that tetragonal FeS is a promising new platform to realize high-temperature superconductors.
Determination of the structural phase and octahedral rotation angle in halide perovskites
dos Reis, Roberto; Yang, Hao; Ophus, Colin; ...
2018-02-12
A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr 3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr 3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurementmore » of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). Finally, the approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.« less
Ab initio prediction of superdense tetragonal and monoclinic polymorphs of carbon
Li, Zhen -Zhen; Wang, Jian -Tao; Xu, Li -Fang; ...
2016-11-02
The design and synthesis of three-dimensional denser carbons are one of the hot issues in condensed matter physics because of their fascinating properties. Here we identify by ab initio calculations several tetragonal and monoclinic polymorphs of carbon that adopt the t32, t32*, m32, and m32* structures in P4¯2 1c, P4 32 12, P2 1/c, and C2 symmetry, respectively. These carbon polymorphs have large 32-atom unit cells in all-sp 3 bonding networks comprising five- and six-membered rings that are dynamically stable, as verified by a phonon mode analysis. Electronic band structure calculations show that they are insulators with band gaps inmore » the range of 5.19–5.41 eV, close to the calculated band gap of 5.34 eV for diamond. Remarkably, these carbon phases possess an extremely high atom number density exceeding that of diamond. Lastly, the present results establish different types of carbon phases and offer insights into their outstanding structural and electronic properties.« less
Role of organic cations on hybrid halide perovskite CH3NH3PbI3 surfaces
NASA Astrophysics Data System (ADS)
Teng, Qiang; Shi, Ting-Ting; Tian, Ren-Yu; Yang, Xiao-Bao; Zhao, Yu-Jun
2018-02-01
Organic-inorganic hybrid halide perovskite CH3NH3PbI3 (MAPbI3) has received rapid progress in power conversion efficiency as promising photovoltaic materials, yet the surface structures and the role of MA cations are not well understood. In this work, we investigated the structural stability and electronic properties of (001) surface of cubic, (001) and (110) surfaces of tetragonal and orthorhombic phases of MAPbI3 with considering the orientation of MA cations, by density functional theory calculations. We demonstrate that the orientation of MA cations has profound consequences on the structural stability and the electronic properties of the surfaces, in contrast to the bulk phases. Compared with the MA-I terminated surfaces, the Pb-I2 terminated ones generally have smaller band gaps and the advantage to enable the photo-excited holes to transfer to the hole-transport materials in both tetragonal and orthorhombic phases. Overall, we suggest that the films with Pb-I2 terminated surfaces would prevail in high performance solar energy absorbers.
NASA Astrophysics Data System (ADS)
Kurpaska, L.; Jasinski, J.; Wyszkowska, E.; Nowakowska-Langier, K.; Sitarz, M.
2018-04-01
In this study, structural and nanomechanical properties of zirconia polymorphs induced by ion irradiation were investigated by means of Raman spectroscopy and nanoindentation techniques. The zirconia layer have been produced by high temperature oxidation of pure zirconium at 600 °C for 5 h at normal atmospheric pressure. In order to distinguish between the internal and external parts of zirconia, the spherical metallographic sections have been prepared. The samples were irradiated at room temperature with 150 keV Ar+ ions at fluences ranging from 1 × 1015 to 1 × 1017 ions/cm2. The main objective of this study was to distinguish and confirm different structural and mechanical properties between the interface layer and fully developed scale in the internal/external part of the oxide. Conducted studies suggest that increasing ion fluence impacts Raman bands positions (especially characteristic for tetragonal phase) and increases the nanohardness and Young's modulus of individual phases. This phenomenon has been examined from the point of view of stress-induced hardening effect and classical monoclinic → tetragonal (m → t) martensitic phase transformation.
Kyono, Atsushi; Gramsch, Stephen A.; Nakamoto, Yuki; ...
2015-08-14
The Jahn-Teller-effect at Cu 2+ in cuprospinel CuFe 2O 4 was investigated using high-pressure, single crystal synchrotron x-ray diffraction (XRD) techniques at beamline BL10A at the Photon Factory, KEK, Japan. Six data sets were collected in the pressure range from ambient to 5.9 GPa at room temperature. Structural refinements based on the data were performed at 0.0, 1.8, 2.7, and 4.6 GPa. The unit cell volume of cuprospinel decreases continuously from 590.8 (6) Å 3 to 579.5 (8) Å 3 up to 3.8 GPa. Leastsquares fitting to a third-order Birch-Murnaghan equation of state yields zero-pressure volume V 0 = 590.7more » (1) Å 3 and bulk modulus K 0 = 188.1 (4.4) GPa with K’ fixed at 4.0. The crystal chemical composition determined by electron-probe analysis and x-ray site-occupancy refinement is represented as [Cu 0.526Fe 0.474] [6][Cu 0.074Fe 1.926]O 4. Most of the Cu 2+ are preferentially distributed onto the tetrahedral (T) site of the spinel structure. At 4.6 GPa, a cubic-tetragonal phase transition is indicated by a splitting of the a axis of the cubic structure into a smaller a axis and a longer c axis, with unit cell parameters a = 5.882 (1) Å and c = 8.337 (1) Å. The tetragonal crystal structure with space group I4 1/amd was refined to R1 = 0.0182 and wR2 = 0.0134 using observed 35 x-ray reflections. At the T site, the tetrahedral O-T-O bond angles along the c-axis direction of the unit cell decreases slightly from 109.47 ° to 108.7 (4) °, which generates a stretched tetrahedral geometry along the c-axis. The cubic-totetragonal transition induced by the Jahn-Teller effect at Cu 2+ is attributable to the angular distortion at the tetrahedral site. At the octahedral (M) site, on the other hand, the two M-O bonds parallel to the caxis are shortened with respect to the four M-O bonds parallel to the ab-plane, which are lengthened as a result of the phase transition, leading to a compressed octahedral geometry along the c-axis. With the competing distortions between the stretched tetrahedron and the compressed octahedron along the c-axis, the a unit cell parameter is shortened with respect to the c unit cell parameter, giving a c/a ratio slightly greater than unity as referred to cubic lattice (c/a = 1.002). The c/a value increases to 1.007 with pressure, suggesting a further evolution of the stretched tetrahedron and the compressed octahedron. The variation of c/a ratio of the cuprospinel is similar to that observed in the tetragonally distorted cuprospinel with Cu 2+ fully occupying the octahedral site of the structure.« less
Nematic fluctuations and phase transitions in LaFeAsO: A Raman scattering study
Kaneko, U. F.; Gomes, P. F.; Garcia-Flores, A. F.; ...
2017-07-10
Raman scattering experiments on LaFeAsO with distinct antiferromagnetic ( T AFM=140 K) and tetragonal-orthorhombic ( T S=155 K) transitions show a quasielastic peak (QEP) in B 2g symmetry (2 Fe tetragonal cell) that fades away below ~ T AFM and is ascribed to electronic nematic fluctuations. A scaling of the reported shear modulus with the T dependence of the QEP height rather than the QEP area indicates that magnetic degrees of freedom drive the structural transition. As a result, the large separation between T S and T AFM in LaFeAsO compared to BaFe 2As 2 manifests itself in slower dynamicsmore » of nematic fluctuations in the former.« less
Observation of shift in band gap with annealing in hydrothermally synthesized TiO2-thin films
NASA Astrophysics Data System (ADS)
Pawar, Vani; Jha, Pardeep K.; Singh, Prabhakar
2018-05-01
Anatase TiO2 thin films were synthesized by hydrothermal method. The films were fabricated on a glass substrate by spin coating unit and annealed at 500 °C for 2 hours in ambient atmosphere. The effect of annealing on microstructure and optical properties of TiO2 thin films namely, just deposited and annealed thin film were investigated. The XRD data confirms the tetragonal crystalline structure of the films with space group I41/amd. The surface morphology suggests that TiO2 particles are almost homogeneous in size and annealing of the film affect the grain growth of the particles. The band gap energy increases from 2.81 to 3.34 eV. On the basis of our observation, it can be concluded that the annealing of TiO2 thin films enhances the absorption range and it may find potential application in the field of solar cells.
NASA Astrophysics Data System (ADS)
Jindal, Shilpi; Devi, Sheela; Vasishth, Ajay; Batoo, Khalid Mujasam; Kumar, Gagan
Polycrystalline cobalt-substituted tungsten bronze ferroelectric ceramics with chemical composition Ba5CaTi2-xCoXNb8O30 (x=0.00, 0.02, 0.04 and 0.08) were synthesized by solid state reaction technique. X-ray diffraction (XRD) technique was used to confirm the phase formation and it revealed the formation of single phase tetragonal structure with space group P4bm. The surface morphology of the samples was studied by using the scanning electron microscopy (SEM) technique. The dielectric properties such as dielectric constant and dielectric loss have been investigated as a function of temperature and frequency. The P-E and M-H studies confirmed the coexistent of ferroelectricity and magnetism at room temperature. The P-E loop study indicated an increase in the coercive field while the M-H study depicted a decrease in the magnetization with the incorporation of cobalt ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sypek, John T.; Yu, Hang; Dusoe, Keith J.
Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. But, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. We report a unique shape memory behavior in CaFe 2As 2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonalmore » phase transformation. These results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr 2Si 2-structured intermetallic compounds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bugaris, Daniel E.; Malliakas, Christos D.; Han, Fei
A new polymorph of the RE 2Ru 3Ge 5 (RE = Pr, Sm, Dy) compounds has been grown as single crystals via an indium flux. These compounds crystallize in tetragonal space group P4/mnc with the Sc 2Fe 3Si 5-type structure, having lattice parameters a = 11.020(2) Å and c = 5.853(1) Å for RE = Pr, a = 10.982(2) Å and c = 5.777(1) Å for RE = Sm, and a = 10.927(2) Å and c = 5.697(1) Å for RE = Dy. These materials exhibit a structural transition at low temperature, which is attributed to an apparent charge densitymore » wave (CDW). Both the high-temperature average crystal structure and the low-temperature incommensurately modulated crystal structure (for Sm 2Ru 3Ge 5 as a representative) have been solved. The charge density wave order is manifested by periodic distortions of the onedimensional zigzag Ge chains. From X-ray diffraction, charge transport (electrical resistivity, Hall effect, magnetoresistance), magnetic measurements, and heat capacity, the ordering temperatures (T CDW) observed in the Pr and Sm analogues are ~200 and ~175 K, respectively. The charge transport measurement results indicate an electronic state transition happening simultaneously with the CDW transition. X-ray absorption near-edge spectroscopy (XANES) and electronic band structure results are also reported.« less
Neutron Powder Diffraction Study on the Magnetic Structure of NdPd 5 Al 2
Metoki, Naoto; Yamauchi, Hiroki; Kitazawa, Hideaki; ...
2017-02-24
The magnetic structure of NdPd 5Al 2 has been studied by neutron powder diffraction. Here, we observed the magnetic reflections with the modulation vector q=(1/2,0,0)q=(1/2,0,0) below the ordering temperature T N. We also found a collinear magnetic structure with a Nd moment of 2.7(3) μB at 0.5 K parallel to the c-axis, where the ferromagnetically ordered a-planes stack with a four-Nd-layer period having a ++-- sequence along the a-direction with the distance between adjacent Nd layers equal to a/2 (magnetic space group P anma). This “stripe”-like modulation is very similar to that in CePd 5Al 2 with q=(0.235,0.235,0)q=(0.235,0.235,0) with themore » Ce moment parallel to the c-axis. These structures with in-plane modulation are a consequence of the two-dimensional nature of the Fermi surface topology in this family, originating from the unique crystal structure with a very long tetragonal unit cell and a large distance of >7 Å between the rare-earth layers separated by two Pd and one Al layers.« less
Neutron Powder Diffraction Study on the Magnetic Structure of NdPd 5 Al 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metoki, Naoto; Yamauchi, Hiroki; Kitazawa, Hideaki
The magnetic structure of NdPd 5Al 2 has been studied by neutron powder diffraction. Here, we observed the magnetic reflections with the modulation vector q=(1/2,0,0)q=(1/2,0,0) below the ordering temperature T N. We also found a collinear magnetic structure with a Nd moment of 2.7(3) μB at 0.5 K parallel to the c-axis, where the ferromagnetically ordered a-planes stack with a four-Nd-layer period having a ++-- sequence along the a-direction with the distance between adjacent Nd layers equal to a/2 (magnetic space group P anma). This “stripe”-like modulation is very similar to that in CePd 5Al 2 with q=(0.235,0.235,0)q=(0.235,0.235,0) with themore » Ce moment parallel to the c-axis. These structures with in-plane modulation are a consequence of the two-dimensional nature of the Fermi surface topology in this family, originating from the unique crystal structure with a very long tetragonal unit cell and a large distance of >7 Å between the rare-earth layers separated by two Pd and one Al layers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, T., E-mail: weitong.nju@gmail.com, E-mail: weitong-nju@163.com; Dong, Z.; Zhou, Q. J.
2016-03-28
New unfilled tetragonal tungsten bronze (TTB) oxides, Ba{sub 5−5x}Sm{sub 5x}Ti{sub 5x}Nb{sub 10−5x}O{sub 30} (BSTN-x), where 0.10 ≤ x ≤ 0.35, have been synthesized in this work. Their crystal structure was determined and analyzed based on Rietveld structural refinement. It is found that single TTB phase can be formed in a particular x range (i.e., 0.15 ≤ x ≤ 0.3) due to the competition interaction between tolerance factor and electronegativity difference. Furthermore, dielectric and ferroelectric results indicate that phase transitions and ferroelectric states are sensitive to x. Referring to the local chemistry, we suggest that the raise of vacancies at the A{sub 2}-site compared with that of A{sub 1}-sitemore » will intensely depress the normal ferroelectric phase and is in favor of relaxor ferroelectric state. Macroscopically, previous A-site size difference standpoint on fill TTB compounds cannot give a reasonable explanation about the variation of dielectric maximum temperature (T{sub m}) for present BSTN-x compounds. Alternatively, tetragonality (c/a) is adopted which can well describe the variation of T{sub m} in whole x range. In addition, one by one correspondence between tetragonality and electrical features can be found, and the compositions involving high c/a are usually stabilized in normal ferroelectric phase. It is believed that c/a is a more appropriate parameter to illustrate the variation of ferroelectric properties for unfilled TTB system.« less
Transverse anisotropic magnetoresistance effects in pseudo-single-crystal γ'-Fe4N thin films
NASA Astrophysics Data System (ADS)
Kabara, Kazuki; Tsunoda, Masakiyo; Kokado, Satoshi
2016-05-01
Transverse anisotropic magnetoresistance (AMR) effects, for which magnetization is rotated in an orthogonal plane to the current direction, were investigated at various temperatures, in order to clarify the structural transformation from a cubic to a tetragonal symmetry in a pseudo-single-crystal Fe4N film, which is predicted from the usual in-plane AMR measurements by the theory taking into account the spin-orbit interaction and crystal field splitting of 3d bands. According to a phenomenological theory of AMR, which derives only from the crystal symmetry, a cos 2θ component ( C2 tr ) exists in transverse AMR curves for a tetragonal system but does not for a cubic system. In the Fe4N film, the C2 tr shows a positive small value (0.12%) from 300 K to 50 K. However, the C2 t r increases to negative value below 50 K and reaches to -2% at 5 K. The drastic increasing of the C2 tr demonstrates the structural transformation from a cubic to a tetragonal symmetry below 50 K in the Fe4N film. In addition, the out-of-plane and in-plane lattice constants (c and a) were precisely determined with X-ray diffraction at room temperature using the Nelson-Riely function. As a result, the positive small C2 t r above 50 K is attributed to a slightly distorted Fe4N lattice (c/a = 1.002).
Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems
NASA Astrophysics Data System (ADS)
de La Cruz, Clarina; Huang, Q.; Lynn, J. W.; Li, Jiying; , W. Ratcliff, II; Zarestky, J. L.; Mook, H. A.; Chen, G. F.; Luo, J. L.; Wang, N. L.; Dai, Pengcheng
2008-06-01
Following the discovery of long-range antiferromagnetic order in the parent compounds of high-transition-temperature (high-Tc) copper oxides, there have been efforts to understand the role of magnetism in the superconductivity that occurs when mobile `electrons' or `holes' are doped into the antiferromagnetic parent compounds. Superconductivity in the newly discovered rare-earth iron-based oxide systems ROFeAs (R, rare-earth metal) also arises from either electron or hole doping of their non-superconducting parent compounds. The parent material LaOFeAs is metallic but shows anomalies near 150K in both resistivity and d.c. magnetic susceptibility. Although optical conductivity and theoretical calculations suggest that LaOFeAs exhibits a spin-density-wave (SDW) instability that is suppressed by doping with electrons to induce superconductivity, there has been no direct evidence of SDW order. Here we report neutron-scattering experiments that demonstrate that LaOFeAs undergoes an abrupt structural distortion below 155K, changing the symmetry from tetragonal (space group P4/nmm) to monoclinic (space group P112/n) at low temperatures, and then, at ~137K, develops long-range SDW-type antiferromagnetic order with a small moment but simple magnetic structure. Doping the system with fluorine suppresses both the magnetic order and the structural distortion in favour of superconductivity. Therefore, like high-Tc copper oxides, the superconducting regime in these iron-based materials occurs in close proximity to a long-range-ordered antiferromagnetic ground state.
Momentum-resolved hidden-order gap reveals symmetry breaking and origin of entropy loss in URu2Si2
NASA Astrophysics Data System (ADS)
Bareille, C.; Boariu, F. L.; Schwab, H.; Lejay, P.; Reinert, F.; Santander-Syro, A. F.
2014-07-01
Spontaneous symmetry breaking in physical systems leads to salient phenomena at all scales, from the Higgs mechanism and the emergence of the mass of the elementary particles, to superconductivity and magnetism in solids. The hidden-order state arising below 17.5 K in URu2Si2 is a puzzling example of one of such phase transitions: its associated broken symmetry and gap structure have remained longstanding riddles. Here we directly image how, across the hidden-order transition, the electronic structure of URu2Si2 abruptly reconstructs. We observe an energy gap of 7 meV opening over 70% of a large diamond-like heavy-fermion Fermi surface, resulting in the formation of four small Fermi petals, and a change in the electronic periodicity from body-centred tetragonal to simple tetragonal. Our results explain the large entropy loss in the hidden-order phase, and the similarity between this phase and the high-pressure antiferromagnetic phase found in quantum-oscillation experiments.
NASA Astrophysics Data System (ADS)
Cassir, Michel; Goubin, Fabrice; Bernay, Cécile; Vernoux, Philippe; Lincot, Daniel
2002-06-01
Ultra thin films of ZrO 2 were synthesized on soda lime glass and SnO 2-coated glass, using ZrCl 4 and H 2O precursors by atomic layer deposition (ALD), a sequential CVD technique allowing the formation of dense and homogeneous films. The effect of temperature on the film growth kinetics shows a first temperature window for ALD processing between 280 and 350 °C and a second regime or "pseudo-window" between 380 and 400 °C, with a growth speed of about one monolayer per cycle. The structure and morphology of films of less than 1 μm were characterized by XRD and SEM. From 275 °C, the ZrO 2 film is crystallized in a tetragonal form while a mixture of tetragonal and monoclinic phases appears at 375 °C. Impedance spectroscopy measurements confirmed the electrical properties of ZrO 2 and the very low porosity of the deposited layer.
Conventional empirical law reverses in the phase transitions of 122-type iron-based superconductors
Yu, Zhenhai; Wang, Lin; Wang, Luhong; ...
2014-11-24
Phase transition of solid-state materials is a fundamental research topic in condensed matter physics, materials science and geophysics. It has been well accepted and widely proven that isostructural compounds containing different cations undergo same pressure-induced phase transitions but at progressively lower pressures as the cation radii increases. However, we discovered that this conventional law reverses in the structural transitions in 122-type iron-based superconductors. In this report, a combined low temperature and high pressure X-ray diffraction (XRD) measurement has identified the phase transition curves among the tetragonal (T), orthorhombic (O) and the collapsed-tetragonal (cT) phases in the structural phase diagram ofmore » the iron-based superconductor AFe 2As 2 (A = Ca, Sr, Eu, and Ba). As a result, the cation radii dependence of the phase transition pressure (T → cT) shows an opposite trend in which the compounds with larger ambient radii cations have a higher transition pressure.« less
Strain-induced intervortex interaction and vortex lattices in tetragonal superconductors
Lin, Shi -Zeng; Kogan, Vladimir G.
2017-02-22
In superconductors with strong coupling between superconductivity and elasticity manifested in a strong dependence of transition temperature on pressure, there is an additional contribution to intervortex interactions due to the strain field generated by vortices. When vortex lines are along the c axis of a tetragonal crystal, a square vortex lattice (VL) is favored at low vortex densities, because the vortex-induced strains contribution to the intervortex interactions is long range. At intermediate magnetic fields, the triangular lattice is stabilized. Furthermore, the triangular lattice evolves to the square lattice upon increasing magnetic field, and eventually the system locks to the squaremore » structure. We argue, however, that as magnetic field approaches the upper critical field H c2 the elastic intervortex interactions disappear faster than the standard London interactions, so that VL should return to the triangular structure. Our results are compared to VLs observed in the heavy fermion superconductor CeCoIn 5.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubaidulina, Tatiana A., E-mail: goub2002@mail.ru; Sergeev, Viktor P., E-mail: vserg@mail.tomsknet.ru; Fedorischeva, Marina V., E-mail: fmw@ispms.tsc.ru
2015-10-27
The work describes the microplasma oxidation (MPO) of zirconium surface resulting in the formation of zirconium oxide Zr-Al-Nb-O. We have used novel power supply to deposit oxide ceramic coatings by MPO and studied the effect of current density on the phase structure of oxide ceramic coatings. The size of microcracks in the coatings was determined at different frequencies. We have also used EVO50c scanning election microscope with an attachment for elemental analysis to study the morphology and elemental composition of oxide ceramic coating. In addition, we have established the influence of the frequency on the phase composition of the coating:more » at the frequency of 2500 Hz, the fraction of monoclinic phase was 18%, while the fraction of tetragonal phase amounted to 72%. The oxide ceramic coating produced at 250 Hz contained 38% of monoclinic phase and 62% of tetragonal phase; in addition, it had no buildups and craters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brüx, Christian; Niefind, Karsten; Ben-David, Alon
2005-12-01
The crystallization and preliminary X-ray analysis of a β-d-xylosidase from G. stearothermophilus T-6, a family 43 glycoside hydrolase, is described. Native and catalytic inactive mutants of the enzymes were crystallized in two different space groups, orthorhombic P2{sub 1}2{sub 1}2 and tetragonal P4{sub 1}2{sub 1}2 (or the enantiomorphic space group P4{sub 3}2{sub 1}2), using a sensitive cryoprotocol. The latter crystal form diffracted X-rays to a resolution of 2.2 Å. β-d-Xylosidases (EC 3.2.1.37) are hemicellulases that cleave single xylose units from the nonreducing end of xylooligomers. In this study, the crystallization and preliminary X-ray analysis of a β-d-xylosidase from Geobacillus stearothermophilus T-6more » (XynB3), a family 43 glycoside hydrolase, is described. XynB3 is a 535-amino-acid protein with a calculated molecular weight of 61 891 Da. Purified recombinant native and catalytic inactive mutant proteins were crystallized and cocrystallized with xylobiose in two different space groups, P2{sub 1}2{sub 1}2 (unit-cell parameters a = 98.32, b = 99.36, c = 258.64 Å) and P4{sub 1}2{sub 1}2 (or the enantiomorphic space group P4{sub 3}2{sub 1}2; unit-cell parameters a = b = 140.15, c = 233.11 Å), depending on the detergent. Transferring crystals to cryoconditions required a very careful protocol. Orthorhombic crystals diffract to 2.5 Å and tetragonal crystals to 2.2 Å.« less
Pressure-induced collapsed-tetragonal phase in SrCo2As2 at ambient temperature
NASA Astrophysics Data System (ADS)
Jayasekara, W. T.; Kaluarachchi, U. S.; Ueland, B. G.; Pandey, A.; Lee, Y. B.; Taufour, V.; Sapkota, A.; Kothapalli, K.; Sangeetha, N. S.; Bud'Ko, S. L.; Harmon, B. N.; Canfield, P. C.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.; Fabbris, G.; Feng, Y.; Veiga, L. S. I.; Dos Santos, A. M.
Our recent high-energy (HE) high-pressure (HP) x-ray powder diffraction measurements on tetragonal (T) SrCo2As2 have revealed a first-order pressure-induced structural phase transition to a collapsed tetragonal (cT) phase with a reduction in c by -7.9% and the c / a ratio by -9.9%. The T and cT phases coexist for applied pressures 6 GPa to 18 GPa at 7 K. Resistance measurements up to 5.9 GPa and down to 1.8 K signatures likely associated with the cT phase above 5.5 GPa and found no evidence for superconductivity. Neutron diffraction data show no evidence of magnetic order up to 1.1 GPa. Here, we show that the T to cT transition occurs around 6.8 GPa at ambient temperature, and that the transition is nearly temperature-independent from 300 K down to 7 K, which indicates a steep p - T phase line. Work at Ames Lab. was supported by US DOE, BES, DMSE under DE-AC02-07CH11358. This research used resources at the APS and ORNL, US DOE, SC, User Facilities.
Effects of Purification on the Crystallization of Lysozyme
NASA Technical Reports Server (NTRS)
Ewing, Felecia L.; Forsythe, Elizabeth L.; Van Der Woerd, Mark; Pusey, Marc L.
1996-01-01
We have additionally purified a commercial lysozyme preparation by cation exchange chromatography, followed by recrystallization. This material is 99.96% pure with respect to macromolecular impurities. At basic pH, the purified lysozyme gave only tetragonal crystals at 20 C. Protein used directly from the bottle, prepared by dialysis against distilled water, or which did not bind to the cation exchange column had considerably altered crystallization behavior. Lysozyme which did not bind to the cation exchange column was subsequently purified by size exclusion chromatography. This material gave predominately bundles of rod-shaped crystals with some small tetragonal crystals at lower pHs. The origin of the bundled rod habit was postulated to be a thermally dependent tetragonal- orthorhombic change in the protein structure. This was subsequently ruled out on the basis of crystallization behavior and growth rate experiments. This suggests that heterogeneous forms of lysozyme may be responsible. These results demonstrate three classes of impurities: (1) small molecules, which may be removed by dialysis; (2) macromolecules, which are removable by chromatographic techniques; and (3) heterogeneous forms of the protein, which can be removed in this case by cation exchange chromatography. Of these, heterogeneous forms of the lysozyme apparently have the greatest affect on its crystallization behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wongmaneerung, R., E-mail: re_nok@yahoo.com; Tipakontitikul, R.; Jantaratana, P.
2016-03-15
Highlights: • The multiferroic ceramics consisted of PFT and PZT. • Crystal structure changed from cubic to mixedcubic and tetragonal with increasing PZT content. • Dielectric showed the samples underwent a typical relaxor ferroelectric behavior. • Magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops. - Abstract: Multiferroic (1 − x)Pb(Fe{sub 0.5}Ta{sub 0.5})O{sub 3}–xPb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3} (or PFT–PZT) ceramics were synthesized by solid-state reaction method. The crystal structure and phase formation of the ceramics were examined by X-ray diffraction (XRD). The local structure surrounding Fe and Ti absorbing atoms was investigated by synchrotron X-ray Absorption Near-Edgemore » Structure (XANES) measurement. Dielectric properties were studied as a function of frequency and temperature using a LCR meter. A vibrating sample magnetometer (VSM) was used to determine the magnetic hysteresis loops. XRD study indicated that the crystal structure of the sample changed from pure cubic to mixed cubic and tetragonal with increasing PZT content. XANES measurements showed that the local structure surrounding Fe and Ti ions was similar. Dielectric study showed that the samples underwent a typical relaxor ferroelectric behavior while the magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops.« less
NASA Astrophysics Data System (ADS)
Jindal, Shilpi; Devi, Sheela; Batoo, Khalid Mujasam; Kumar, Gagan; Vasishth, Ajay
2018-05-01
The copper substituted tungsten bronze ceramics with generic formula Ba5CaCuXTi2-xNb8O30(x = 0.0, 0.02, 0.04, 0.06 and 0.08) were successfully synthesized for the first time by solid state reaction method. X-ray diffraction (XRD), Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) were utilized to examine the different structural parameters and elemental compositions. XRD study depicted the single phase tetragonal structure having space group P4bm. The crystallite size was observed to be in the range 14.4-30.23 nm. The coexistent of ferroelectricity and magnetism was established by P-E and M-H measurements. The P-E loop study indicated an increase in the coercive field (11.805-23.736 kVcm-1) while the M-H study depicted adecrease in the magnetization (7.65 × 10-4-5.32 × 10-4 emu/g) with the incorporation of Cu2+ ions. Raman spectrum depicted that there is shift in the position of Raman modes with the substitution of copper which revealed one-mode behavior in the synthesized ceramics.
Xu, Yun; Wen, Yi; Grote, Rob; Amoroso, Jake; Shuller Nickles, Lindsay; Brinkman, Kyle S.
2016-01-01
The hollandite structure is a promising crystalline host for Cs immobilization. A series of Ga-doped hollandite BaxCsyGa2x+yTi8−2x−yO16 (x = 0, 0.667, 1.04, 1.33; y = 1.33, 0.667, 0.24, 0) was synthesized through a solid oxide reaction method resulting in a tetragonal hollandite structure (space group I4/m). The lattice parameter associated with the tunnel dimension was found to increases as Cs substitution in the tunnel increased. A direct investigation of cation mobility in tunnels using electrochemical impedance spectroscopy was conducted to evaluate the ability of the hollandite structure to immobilize cations over a wide compositional range. Hollandite with the largest tunnel size and highest aspect ratio grain morphology resulting in rod-like microstructural features exhibited the highest ionic conductivity. The results indicate that grain size and optimized Cs stoichiometry control cation motion and by extension, the propensity for Cs release from hollandite. PMID:27273791
NASA Astrophysics Data System (ADS)
Jethva, Sadaf; Katba, Savan; Udeshi, Malay; Kuberkar, D. G.
2017-09-01
We report the results of the structural, transport and magnetotransport studies on polycrystalline La0.5Sr0.5Mn1-xRuxO3 (x = 0.0 and 0.05) manganite investigated using XRD and resistivity (with and without field) measurements. Rietveld refinement of XRD patterns confirms the single phasic tetragonal structure for both the samples crystalizing in I4/mcm space group (No. 140). Low-temperature resistivity and MR measurements with H = 0 T & 5 T field show thermal hysteresis which has been attributed to the first order phase transition. The increase in resistivity and decrease in metal - insulator transition temperature (TMI) with Ru - doping concentration in La0.5Sr0.5MnO3 (LSMO) has been understood in the context of superexchange interaction between Mn and Ru ions. The observed upturn in resistivity at low temperature under field has been explained using combined effect of electron - electron (e - e) interaction, Kondo-like spin-dependent scattering and electron - phonon interaction while the variation in resistivity at high temperature (T > Tp) has been explained using adiabatic small polaron hopping model.
Grzywa, Maciej; Geßner, Christof; Denysenko, Dmytro; Bredenkötter, Björn; Gschwind, Fabienne; Fromm, Katharina M; Nitek, Wojciech; Klemm, Elias; Volkmer, Dirk
2013-05-21
The syntheses of H2-phbpz, [Cu2(phbpz)]·2DEF·MeOH (CFA-2) and [Ag2(phbpz)] (CFA-3) (H2-phbpz = 3,3',5,5'-tetraphenyl-1H,1'H-4,4'-bipyrazole) compounds and their crystal structures are described. The Cu(I) containing metal-organic framework CFA-2 crystallizes in the tetragonal crystal system, within space group I4(1)/a (no. 88) and the following unit cell parameters: a = 30.835(14), c = 29.306(7) Å, V = 27 865(19) Å(3). CFA-2 features a flexible 3-D three-connected two-fold interpenetrated porous structure constructed of triangular Cu(I) subunits. Upon exposure to different kinds of liquids (MeOH, EtOH, DMF, DEF) CFA-2 shows pronounced breathing effects. CFA-3 crystallizes in the monoclinic crystal system, within space group P2(1)/c (no. 14) and the following unit cell parameters: a = 16.3399(3), b = 32.7506(4), c = 16.2624(3) Å, β = 107.382(2)°, V = 8305.3(2) Å(3). In contrast to the former compound, CFA-3 features a layered 2-D three-connected structure constructed from triangular Ag(i) subunits. Both compounds are characterized by elemental and thermogravimetric analyses, single crystal structure analysis and X-ray powder diffraction, FTIR- and fluorescence spectroscopy. Preliminary results on oxygen activation in CFA-2 are presented and potential improvements in terms of framework robustness and catalytic efficiency are discussed.
Influence of Cobalt Substitution on the Magnetic Properties of Fe5PB2.
Cedervall, Johan; Nonnet, Elise; Hedlund, Daniel; Häggström, Lennart; Ericsson, Tore; Werwiński, Mirosław; Edström, Alexander; Rusz, Ján; Svedlindh, Peter; Gunnarsson, Klas; Sahlberg, Martin
2018-01-16
The substitutional effects of cobalt in (Fe 1-x Co x ) 5 PB 2 have been studied with respect to crystalline structure and chemical order with X-ray diffraction and Mössbauer spectroscopy. The magnetic properties have been determined from magnetic measurements, and density functional theory calculations have been performed for the magnetic properties of both the end compounds, as well as the chemically disordered intermediate compounds. The crystal structure of (Fe 1-x Co x ) 5 PB 2 is tetragonal (space group I4/mcm) with two different metal sites, with a preference for cobalt atoms in the M(2) position (4c) at higher cobalt contents. The substitution also affects the magnetic properties with a decrease of the Curie temperature (T C ) with increasing cobalt content, from 622 to 152 K for Fe 5 PB 2 and (Fe 0.3 Co 0.7 ) 5 PB 2 , respectively. Thus, the Curie temperature is dependent on composition, and it is possible to tune T C to a temperature near room temperature, which is one prerequisite for magnetic cooling materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Sumit K., E-mail: sumit.sxc13@gmail.com; Singh, S. N., E-mail: snsphyru@gmail.com; Prasad, K., E-mail: k.prasad65@gmail.com
2016-05-06
Lead-free solid solutions (1-x)Ba{sub 0.06}(Na{sub 1/2}Bi{sub 1/2}){sub 0.94}TiO{sub 3}-xNaNbO{sub 3} (0 ≤ x ≤ 1.0) were prepared by conventional ceramic fabrication technique. X-ray diffraction and Rietveld refinement analyses of these ceramics were carried out using X’Pert HighScore Plus software to determine the crystal symmetry, space group and unit cell dimensions. Rietveld refinement revealed that NaNbO{sub 3} with orthorhombic structure was completely diffused into Ba{sub 0.06}(Na{sub 1/2}Bi{sub 1/2}){sub 0.94}TiO{sub 3} lattice having the rhombohedral-tetragonal symmetry. EDS and SEM studies were carried out in order to evaluate the quality and purity of the compounds. SEM images showed a change in grain shapemore » with the increase of NaNbO{sub 3} content. FTIR spectra confirmed the formation of solid solution.« less
Multimetallic nanoparticle catalysts with enhanced electrooxidation
Sun, Shouheng; Zhang, Sen; Zhu, Huiyuan; Guo, Shaojun
2015-07-28
A new structure-control strategy to optimize nanoparticle catalysis is provided. The presence of Au in FePtAu facilitates FePt structure transformation from chemically disordered face centered cubic (fcc) structure to chemically ordered face centered tetragonal (fct) structure, and further promotes formic acid oxidation reaction (FAOR). The fct-FePtAu nanoparticles show high CO poisoning resistance, achieve mass activity as high as about 2810 mA/mg Pt, and retain greater than 90% activity after a 13 hour stability test.
Neutron diffraction studies of some rare earth-transition metal deuterides
NASA Astrophysics Data System (ADS)
James, W. J.
1984-04-01
Neutron diffraction studies of the ternary alloy system Y6(Fel-xMnx)23 reveal that the unusual magnetic behavior upon substitution of Mn or Fe into the end members, is a consequence of atomic ordering wherein there is strong site preference of Mn for the f sub 2 sites and of Fe for the f sub 1 sites. In the Mn-rich compositions, Fe is found to have no spontaneous moments. Therefore, the long range magnetic ordering arises solely from Mn-Mn interactions. Upon substitution of Mn into the Fe-rich ternaries, the Fe moments are considerably reduced. Neutron diffraction studies of Y6Mn23D23 show that a transition occurs below 180K from a fcc structure to a primitive tetragonal structure, space group P4/mmm with the onset of antiferromagnetic ordering. The Mn moments are directed along the c-axis. The transition probably results from atomic ordering of the D atoms at low temperature which induces c axis magnetic ordering. The question of the appropriate space group of LaNi4.5Al0.5D4.5, P6/mmm or P3/m has been resolved by a careful refinement and analysis of neutron diffraction data. The preferred space group is P6/mmm. Neutron powder diffraction and thermal magnetization measurements on small single crystals of ErNi3, ErCo3, and ErFe3 (space group R3m) show that the magnetocrystalline properties are a consequence of competing local site anisotropies between the two non-equivalent crystallographic sites of Er and two of the three non-equivalent sites of the 3d-transition metal.
Magnetostructural coupling behavior at the ferromagnetic transition in double-perovskite S r2FeMo O6
NASA Astrophysics Data System (ADS)
Yang, Dexin; Harrison, Richard J.; Schiemer, Jason A.; Lampronti, Giulio I.; Liu, Xueyin; Zhang, Fenghua; Ding, Hao; Liu, Yan'gai; Carpenter, Michael A.
2016-01-01
The ordered double-perovskite S r2FeMo O6 (SFMO) possesses remarkable room-temperature low-field colossal magnetoresistivity and transport properties which are related, at least in part, to combined structural and magnetic instabilities that are responsible for a cubic-tetragonal phase transition near 420 K. A formal strain analysis combined with measurements of elastic properties from resonant ultrasound spectroscopy reveal a system with weak biquadratic coupling between two order parameters belonging to Γ4+ and m Γ4+ of parent space group F m 3 ¯m . The observed softening of the shear modulus by ˜50% is due to the classical effects of strain/order parameter coupling at an improper ferroelastic (Γ4+) transition which is second order in character, while the ferromagnetic order parameter (m Γ4+ ) couples only with volume strain. The influence of a third order parameter, for ordering of Fe and Mo on crystallographic B sites, is to change the strength of coupling between the Γ4+ order parameter and the tetragonal shear strain due to the influence of changes in local strain heterogeneity at a unit cell scale. High anelastic loss below the transition point reveals the presence of mobile ferroelastic twin walls which become pinned by oxygen vacancies in a temperature interval near 340 K. The twin walls must be both ferroelastic and ferromagnetic, but due to the weak coupling between the magnetic and structural order parameters it should be possible to pull them apart with a weak magnetic field. These insights into the role of strain coupling and relaxational effects in a system with only weak coupling between three order parameters allow rationalization and prediction of how static and dynamic properties of the material might be tuned in thin film form by choice of strain contrast with a substrate.
Synthesis and magnetic properties of the high-pressure scheelite-type GdCrO{sub 4} polymorph
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dos santos-Garcia, A.J., E-mail: adossant@quim.ucm.es; Climent-Pascual, E.; Gallardo-Amores, J.M.
The scheelite-type polymorph of GdCrO{sub 4} has been obtained from the corresponding zircon-type compound under high pressure and temperature conditions, namely 4 GPa and 803 K. The crystal structure has been determined by X-ray powder diffraction. This GdCrO{sub 4} scheelite crystallizes in a tetragonal symmetry with space group I4{sub 1}/a (No. 88, Z=4), a=5.0501(1) A, c=11.4533(2) A and V=292.099(7) A{sup 3}. The thermal decomposition leads to the formation of the zircon-polymorph as intermediate phase at 773 K to end in the corresponding GdCrO{sub 3} distorted perovskite-structure at higher temperatures. Magnetic susceptibility and magnetization measurements suggest the existence of long-range antiferromagneticmore » interactions which have been also confirmed from specific heat measurements. Neutron powder diffraction data reveal the simultaneous antiferromagnetic Gd{sup 3+} and Cr{sup 5+} ordering in the scheelite-type GdCrO{sub 4} with a T{sub N}{approx}20 K. The magnetic propagation vector was found to be k=(0 0 0). Combined with group theory analysis, the best neutron powder diffraction fit was obtained with a collinear antiferromagnetic coupling in which the m{sub Cr{sup 5}{sup +}} and m{sub Gd{sup 3}{sup +}} magnetic moments are confined in the tetragonal basal plane according to the mixed representation {Gamma}{sub 6} Circled-Plus {Gamma}{sub 8}. Thermal decomposition of the GdCrO{sub 4} high pressure polymorph, from the scheelite-type through the zircon-type structure as intermediate to end in the GdCrO{sub 3} perovskite. Highlights: Black-Right-Pointing-Pointer New high pressure GdCrO{sub 4} polymorph crystallizing in the scheelite type structure. Black-Right-Pointing-Pointer It is an antiferromagnet with a metamagnetic transition at low magnetic fields. Black-Right-Pointing-Pointer We have determined its magnetic structure from powder neutron diffraction data. Black-Right-Pointing-Pointer Otherwise, the room pressure zircon-polymorph is a ferromagnet. Black-Right-Pointing-Pointer The paper will be a great contribution in the study of 3d-4f magnetic interactions.« less
On the metal-insulator-transition in vanadium dioxide
NASA Astrophysics Data System (ADS)
Jovaini, Azita; Fujita, Shigeji; Godoy, Salvador; Suzuki, Akira
2012-02-01
Vanadium dioxide (VO2) undergoes a metal-insulator transition (MIT) at 340 K with the structural change from tetragonal to monoclinic crystal. The conductivity σ drops at MIT by four orders of magnitude. The low temperature monoclinic phase is known to have a lower ground-state energy. The existence of the k-vector k is prerequisite for the conduction since the k appears in the semiclassical equation of motion for the conduction electron (wave packet). The tetragonal (VO2)3 unit is periodic along the crystal's x-, y-, and z-axes, and hence there is a three-dimensional k-vector. There is a one-dimensional k for a monoclinic crystal. We believe this difference in the dimensionality of the k-vector is the cause of the conductivity drop.
Giant electric-field-induced strain in lead-free piezoelectric materials
Chen, Lan; Yang, Yurong; Meng, X. K.
2016-01-01
First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure – reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect. PMID:27139526
Qiu, Chaoqun; He, Zhangzhen; Cui, Meiyan; Tang, Yingying; Chen, Sihuai
2017-03-27
Two new compounds Sr 2 Cu 5 (PO 4 ) 4 X 2 ·8H 2 O (X = Cl and Br) are synthesized by a conventional hydrothermal method. Sr 2 Cu 5 (PO 4 ) 4 Cl 2 ·8H 2 O crystallizes in the tetragonal system with a space group of P42 1 2, while Sr 2 Cu 5 (PO 4 ) 4 Br 2 ·8H 2 O crystallizes in the space group P4/nmm, which are found to have a similar framework of layered structure, in which the crown-like {Cu 5 (PO 4 ) 4 X 2 } building units connect to each other forming a 2D corrugated sheet with vacancies, while the Sr 2+ cations are located along the vacancies. The spin lattice of two compounds built by Cu 2+ ions shows a new type of corrugated square. Magnetic measurements confirmed that both Sr 2 Cu 5 (PO 4 ) 4 X 2 ·8H 2 O (X = Cl and Br) exhibit antiferromagnetic ordering at low temperatures. A fit of theoretical model shows exchange interaction J = -25.62 K for the Cl-analogue and J/k B = -26.47 K for the Br-analogue.
Crystal growth and magnetic characterization of a tetragonal polymorph of NiNb2O6
NASA Astrophysics Data System (ADS)
Munsie, T. J. S.; Millington, A.; Dube, P. A.; Dabkowska, H. A.; Britten, J.; Luke, G. M.; Greedan, J. E.
2016-04-01
A previously unidentified polymorph of nickel niobate, NiNb2O6, was grown and stabilized in single crystalline form using an optical floating zone furnace. Key parameters of the growth procedure involved use of a slight excess of NiO (1.2% by mol), an O2 atmosphere and a growth rate of 25 mm/h. The resulting boule consisted of a polycrystalline exterior shell of the columbite structure - columbite is the thermodynamically stable form of NiNb2O6 under ambient conditions - and a core region consisting of transparent yellow-green single crystals up to 5 mm×2 mm×1 mm in dimension of the previously unidentified phase. The crystal structure, solved from single crystal x-ray diffraction data, is described in the P42/n space group. Interestingly, this is not a subgroup of P42/mnm, the rutile space group. The Ni2+ ions form layers which are displaced such that interlayer magnetic frustration is anticipated. Magnetic susceptibility data shows a broad maximum at approximately 22 K and evidence for long range antiferromagnetic order at approximately 14 K, obtained by Fisher heat capacity analysis as well as heat capacity measurements. The susceptibility data for T > 25 K are well fit by a square lattice S = 1 model, consistent with the Ni sublattice topology.
NASA Astrophysics Data System (ADS)
Mitchell, Roger H.; Kennedy, Brendan J.; Knight, Kevin S.
2018-01-01
Refinement of time-of-flight high-resolution neutron powder diffraction data for lueshite (Na, Ca)(Nb, Ta, Ti)O3, the natural analogue of synthetic NaNbO3, demonstrates that lueshite at room temperature (298 K) adopts an orthorhombic structure with a 2 a p × 2 a p × 4 a p superlattice described by space group Pmmn [#59: a = 7.8032(4) Å; b = 7.8193(4) Å; c = 15.6156(9) Å]. This structure is analogous to that of phase S of synthetic NaNbO3 observed at 753-783 K (480-510 °C). In common with synthetic NaNbO3, lueshite exhibits a series of phase transitions with decreasing temperature from a cubic (Pm\\bar{3}m) aristotype through tetragonal ( P4/ mbm) and orthorhombic ( Cmcm) structures. However, the further sequence of phase transitions differs in that for lueshite the series terminates with the room temperature S ( Pmmn) phase, and the R ( Pmmn or Pnma) and P ( Pbcm) phases of NaNbO3 are not observed. The appearance of the S phase in lueshite at a lower temperature, relative to that of NaNbO3, is attributable to the effects of solid solution of Ti, Ta and Ca in lueshite.
Structural, magnetic, and magnetocaloric properties of bilayer manganite La1.38Sr1.62Mn2O7
NASA Astrophysics Data System (ADS)
Yang, Yu-E.; Xie, Yunfei; Xu, Lisha; Hu, Dazhi; Ma, Chunlan; Ling, Langsheng; Tong, Wei; Pi, Li; Zhang, Yuheng; Fan, Jiyu
2018-04-01
In this study, we investigated the structural, magnetic phase transition, and magnetocaloric properties of bilayer perovskite manganite La1.38Sr1.62Mn2O7 based on X-ray diffraction, electron paramagnetic resonance, and temperature-/magnetic field-dependent magnetization measurements. The structural characterization results showed the prepared sample had a tetragonal structure with the space group I4/mmm. The Curie temperature was determined as 114 K in the magnetization studies and a second-order paramagnetic-ferromagnetic transition was confirmed by the Arrott plot, which showed that the slopes were positive for all the curves. According to the variation in the electron paramagnetic resonance spectrum, we detected obvious electronic phase separation across a broad temperature range from 220 to 80 K in this magnetic material, thereby indicating that the paramagnetic and ferromagnetic phases coexist above as well as below the Curie temperature. Based on a plot of the isothermal magnetization versus the magnetic applied field, we deduced the maximum magnetic entropy change, which only reached 1.89 J/kg.K under an applied magnetic field of 7.0 T. These theoretical investigations indicated that in addition to the magnetoelastic couplings and electron interaction, electronic phase separation and anisotropic exchange interactions also affect the magnetic entropy changes in this bilayer manganite.
Yang, Mengmeng; Yang, Yuanjun; Bin Hong; Wang, Liangxin; Hu, Kai; Dong, Yongqi; Xu, Han; Huang, Haoliang; Zhao, Jiangtao; Chen, Haiping; Song, Li; Ju, Huanxin; Zhu, Junfa; Bao, Jun; Li, Xiaoguang; Gu, Yueliang; Yang, Tieying; Gao, Xingyu; Luo, Zhenlin; Gao, Chen
2016-01-01
Mechanism of metal-insulator transition (MIT) in strained VO2 thin films is very complicated and incompletely understood despite three scenarios with potential explanations including electronic correlation (Mott mechanism), structural transformation (Peierls theory) and collaborative Mott-Peierls transition. Herein, we have decoupled coactions of structural and electronic phase transitions across the MIT by implementing epitaxial strain on 13-nm-thick (001)-VO2 films in comparison to thicker films. The structural evolution during MIT characterized by temperature-dependent synchrotron radiation high-resolution X-ray diffraction reciprocal space mapping and Raman spectroscopy suggested that the structural phase transition in the temperature range of vicinity of the MIT is suppressed by epitaxial strain. Furthermore, temperature-dependent Ultraviolet Photoelectron Spectroscopy (UPS) revealed the changes in electron occupancy near the Fermi energy EF of V 3d orbital, implying that the electronic transition triggers the MIT in the strained films. Thus the MIT in the bi-axially strained VO2 thin films should be only driven by electronic transition without assistance of structural phase transition. Density functional theoretical calculations further confirmed that the tetragonal phase across the MIT can be both in insulating and metallic states in the strained (001)-VO2/TiO2 thin films. This work offers a better understanding of the mechanism of MIT in the strained VO2 films. PMID:26975328
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowley, S.; Okumura, N; Lord, S
'A:a' knob-hole interactions and D:D interfacial interactions are important for fibrin polymerization. Previous studies with recombinant ?N308K fibrinogen, a substitution at the D:D interface, showed impaired polymerization. We examined the molecular basis for this loss of function by solving the crystal structure of ?N308K fragment D. In contrast to previous fragment D crystals, the ?N308K crystals belonged to a tetragonal space group with an unusually long unit cell (a = b = 95 Angstroms, c = 448.3 Angstroms). Alignment of the normal and ?N308K structures showed the global structure of the variant was not changed and the knob 'A' peptidemore » GPRP was bound as usual to hole 'a'. The substitution introduced an elongated positively charged patch in the D:D region. The structure showed novel, symmetric D:D crystal contacts between ?N308K molecules, indicating the normal asymmetric D:D interface in fibrin would be unstable in this variant. We examined GPRP binding to ?N308K in solution by plasmin protection assay. The results showed weaker peptide binding, suggesting that 'A:a' interactions were altered. We examined fibrin network structures by scanning electron microscopy and found the variant fibers were thicker and more heterogeneous than normal fibers. Considered together, our structural and biochemical studies indicate both 'A:a' and D:D interactions are weaker. We conclude that stable protofibrils cannot assemble from ?N308K monomers, leading to impaired polymerization.« less
Gui, Xin; Zhao, Xin; Sobczak, Zuzanna; ...
2018-02-14
A combination of theoretical calculation and the experimental synthesis to explore the new ternary compound is demonstrated in the Sr–Pt–Bi system. Because Pt–Bi is considered as a new critical charge-transfer pair for superconductivity, it inspired us to investigate the Sr–Pt–Bi system. With a thorough calculation of all the known stable/metastable compounds in the Sr–Pt–Bi system and crystal structure predictions, the thermodynamic stability of hypothetical stoichiometry, SrPtBi2, is determined. Following the high-temperature synthesis and crystallographic analysis, the first ternary bismuthide in Sr–Pt–Bi, SrPtBi2 was prepared, and the stoichiometry was confirmed experimentally. SrPtBi 2 crystallizes in the space group Pnma (S.G. 62,more » Pearson Symbol oP48), which matches well with theoretical prediction using an adaptive genetic algorithm. Using first-principles calculations, we demonstrate that the orthorhombic structure has lower formation energies than other 112 structure types, such as tetragonal BaMnBi 2 (CuSmP 2) and LaAuBi 2 (CuHfSi 2) structure types. The bonding analysis indicates that the Pt–Bi interactions play a critical role in structural stability. The physical property measurements show the metallic properties at the low temperature, which agrees with the electronic structure assessment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ruixue; Yang, Bin, E-mail: binyang@hit.edu.cn; Sun, Enwei
The crystalline phases and domain configuration in the morphotropic phase boundary composition Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.34PbTiO{sub 3} (PMN-0.34PT) single crystal have been investigated by synchrotron-based X-ray 3D Reciprocal Space Mapping (3D-RSM) and Piezoresponse Force Microscopy. The coexistence of tetragonal (T) and monoclinic M{sub C} phases in this PMN-0.34PT single crystal is confirmed. The affiliation of each diffraction spot in the 3D-RSM was identified with the assistance of qualitative simulation. Most importantly, the twinning structure between different domains in such a mixed phase PMN-PT crystal is firmly clarified, and the spatial distribution of different twin domains is demonstrated. In addition, themore » lattice parameters of T and M{sub C} phases in PMN-0.34PT single crystal as well as the tilting angles of crystal lattices caused by the interfacial lattice mismatch are determined.« less
Effect of Nd Doping on Dielectric and Impedance Properties of PZT Nanoceramics
NASA Astrophysics Data System (ADS)
Kour, P.; Pradhan, S. K.; Kumar, Pawan; Sinha, S. K.; Kar, Manoranjan
2018-02-01
Neodymium-doped lead zirconate tianate, i.e. Pb1-x Nd x Zr0.52Ti0.48O3 (PNZT) ceramics, with x = 0-10 mol.% has been prepared by the sol-gel process. X-ray diffraction pattern at room temperature shows the pyrochlore free phase for all samples. The structural analysis suggests the coexistence of both rhombohedral (R3m space group) and tetragonal (P4 mm space group) crystal symmetries. Scanning electron micrographs of the samples show uniform distribution of grain and grain boundaries. Dielectric constant increases with the increase in neodymium concentration in the crystal lattice. Degree of diffuse phase transition increases with the increase in Nd3+ concentration in the sample. Nd3+ incorporation into the lead zirconatetitanate (PZT) lattice enhances the spreading factor. Interaction between neighbouring dipoles decreases with the increase of Nd3+ in PZT lattice. The conduction mechanism of the sample can be attributed to the overlapping large polar tunnelling. Second-order dielectric phase transition has been observed at the Curie temperature. The electrical properties of the sample can be explained by considering grain and grain boundaries contributions. All the samples show the poly-dispersive non-Debye type relaxation.
Phase field modeling of tetragonal to monoclinic phase transformation in zirconia
NASA Astrophysics Data System (ADS)
Mamivand, Mahmood
Zirconia based ceramics are strong, hard, inert, and smooth, with low thermal conductivity and good biocompatibility. Such properties made zirconia ceramics an ideal material for different applications form thermal barrier coatings (TBCs) to biomedicine applications like femoral implants and dental bridges. However, this unusual versatility of excellent properties would be mediated by the metastable tetragonal (or cubic) transformation to the stable monoclinic phase after a certain exposure at service temperatures. This transformation from tetragonal to monoclinic, known as LTD (low temperature degradation) in biomedical application, proceeds by propagation of martensite, which corresponds to transformation twinning. As such, tetragonal to monoclinic transformation is highly sensitive to mechanical and chemomechanical stresses. It is known in fact that this transformation is the source of the fracture toughening in stabilized zirconia as it occurs at the stress concentration regions ahead of the crack tip. This dissertation is an attempt to provide a kinetic-based model for tetragonal to monoclinic transformation in zirconia. We used the phase field technique to capture the temporal and spatial evolution of monoclinic phase. In addition to morphological patterns, we were able to calculate the developed internal stresses during tetragonal to monoclinic transformation. The model was started form the two dimensional single crystal then was expanded to the two dimensional polycrystalline and finally to the three dimensional single crystal. The model is able to predict the most physical properties associated with tetragonal to monoclinic transformation in zirconia including: morphological patterns, transformation toughening, shape memory effect, pseudoelasticity, surface uplift, and variants impingement. The model was benched marked with several experimental works. The good agreements between simulation results and experimental data, make the model a reliable tool for predicting tetragonal to monoclinic transformation in the cases we lack experimental observations.
NASA Astrophysics Data System (ADS)
Rendtorff, N. M.; Suárez, G.; Sakka, Y.; Aglietti, E. F.
2011-10-01
The mechanochemical activation processing has proved to be an effective technique to enhance a solid-state reaction at relatively low temperatures. In such a process, the mechanical effects of milling, such as reduction of particle size and mixture homogenization, are accompanied by chemical effects, such as partial decomposition of salts or hydroxides resulting in very active reactants. The objective of the present work is to obtain (ZrO2)0.97(Y2O3)0.03 nanocrystalline tetragonal solid solution powders directly using a high energy milling on a mixture of the pure oxides. A second objective is to evaluate the efficiency of the processing proposed and to characterize both textural and structural evolution of the mixtures during the milling processes and throughout posterior low temperature treatments. The Textural and structural evolution were studied by XRD analysis, specific area measurements (BET) and SEM. Firstly a decrease of the crystallinity of the reactants was observed, followed by the disappearance of Y2O3 diffraction peaks and the partial appearance of the tetragonal phase at room temperature. The solid solution proportion was increased with the high energy milling time, obtaining complete stabilization of the tetragonal solid solution with long milling treatments (60 min).The obtained powders were uniaxially pressed and sintered at different temperatures (600-1400°C) the influence of the milling time was correlated with the sinterization degree and final crystalline composition of the materials. Finally, fully stabilized nanocrystalline zirconia materials were obtained satisfactorily by the proposed method.
Raman Spectrum of Er-Y-codoped ZrO2 and Fluorescence Properties of Er3+
NASA Astrophysics Data System (ADS)
He, Jun; Luo, Meng-fei; Jin, Ling-yun; He, Mai; Fang, Ping; Xie, Yun-long
2007-02-01
Er-Y-codoped ZrO2 mixed oxides with monoclinic, tetragonal and cubic structures were prepared by a sol-gel method. The crystal structure of ZrO2 matrix and the effect of the ZrO2 phases on the fluorescence properties of Er3+ were studied using Raman spectroscopy. The results indicated that the fluorescence properties of Er3+ depend on its local ZrO2 crystal structures. As ZrO2 matrix transferred from monoclinic to tetragonal and cubic phase, the Raman and fluorescence bands of Er3+ decreased in intensities and tended to form a single peak. With 632.8 nm excitation, the bands between 640 and 680 nm were attributed to the fluorescence of Er3+ in the ZrO2 environment. However, only the fluorescence was observed and no Raman spectra were seen under 514.5 nm excitation, while only Raman spectra were observed under 325 nm excitation. UV Raman spectroscopy was found to be more sensitive in the surface region while the information provided by XRD mainly came from the bulk. The phase with lower symmetry forms more easily on the surface than in the bulk.
Tetragonal bismuth bilayer: A stable and robust quantum spin hall insulator
Kou, Liangzhi; Tan, Xin; Ma, Yandong; ...
2015-11-23
In this study, topological insulators (TIs) exhibit novel physics with great promise for new devices, but considerable challenges remain to identify TIs with high structural stability and large nontrivial band gap suitable for practical applications. Here we predict by first-principles calculations a two-dimensional (2D) TI, also known as a quantum spin Hall (QSH) insulator, in a tetragonal bismuth bilayer (TB-Bi) structure that is dynamically and thermally stable based on phonon calculations and finite-temperature molecular dynamics simulations. Density functional theory and tight-binding calculations reveal a band inversion among the Bi-p orbits driven by the strong intrinsic spin–orbit coupling, producing a largemore » nontrivial band gap, which can be effectively tuned by moderate strains. The helical gapless edge states exhibit a linear dispersion with a high Fermi velocity comparable to that of graphene, and the QSH phase remains robust on a NaCl substrate. These remarkable properties place TB-Bi among the most promising 2D TIs for high-speed spintronic devices, and the present results provide insights into the intriguing QSH phenomenon in this new Bi structure and offer guidance for its implementation in potential applications.« less
Crystal structures and transition mechanism of VO{sub 2}(A)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oka, Yoshio; Yao, Takeshi; Yamamoto, Naoichi
1998-12-01
Structures of VO{sub 2}(A) have been redetermined by single-crystal diffractometry for low- (LTP) and high-temperature (HTP) phases at 298 and 473 K, respectively. The LTP adopts the tetragonal system P4/ncc with a = 8.4403(9) {angstrom}, c = 7.666(1) {angstrom}, and Z = 16, whereas the HTP adopts the body-centered tetragonal system I4/m with a = 8.476(2) {angstrom}, c = 3.824(2) {angstrom}, and Z = 8. The refinements led to R/R{sub w} = 0.031/0.032 for LTP and 0.012/0.033 for HTP. The structures of both phases consist of edge-sharing VO{sub 6} octahedra and exhibit quite similar oxygen frameworks. Through the transition themore » V{sup 4+}-V{sup 4+} bonding in LTP with a distance of 2.7695(8) {angstrom} is dissociated in HTP to a distance of 3.0794(3) {angstrom}. The transition occurs with cooperative movements of the V atoms, namely, a rotation around the c axis and a shift along the c axis. Strangely, twinning is induced on the LTP to HTP transition but disappears on the reverse transition.« less
NASA Astrophysics Data System (ADS)
Recarte, V.; Pérez-Landazábal, J. I.; Sánchez-Alarcos, V.; Rodríguez-Velamazán, J. A.
2014-11-01
Ni-Mn-Ga alloys show the highest magnetic-field-induced strain among ferromagnetic shape memory alloys. A great effort is being done in this alloy system to increase the application temperature range. In this sense, the addition of small amounts of Cobalt to NiMnGa alloys has been proved to increase the MT temperatures through the increase of the electron per atom relation (e/a). In this work, the analysis of the crystal structure of the present phases and the phase transformations has been performed on a Ni-Mn-Ga-Co alloy by neutron diffraction measurements from 10 K to 673 K. The study has been completed by means of calorimetric and magnetic measurements. On cooling the alloy undergoes a martensitic transformation from a face centered cubic structure to a nonmodulated tetragonal martensite. The appearance of intermartensite transformations can be disregarded in the whole temperature range below the martensitic transformation. However, a jump in the unit-cell volume of the tetragonal martensite has been observed at 325 K. Since this temperature is close to the Curie temperature of the alloy both, the structural and magnetic contributions are taken into account to explain the results.
NASA Astrophysics Data System (ADS)
Prades, Marta; Beltrán, Héctor; Masó, Nahum; Cordoncillo, Eloisa; West, Anthony R.
2008-11-01
The ferroelectric tetragonal tungsten bronze (TTB) phases, Ba2RETi2Nb3O15:RE=Nd,Sm, were prepared by low temperature solvothermal synthesis. The permittivity versus temperature data of sintered ceramics show two unusual features: first, a hysteresis of 50-100 °C between values of the Curie temperature Tc on heat-cool cycles and second: a huge depression in the Curie-Weiss temperature T0. Both effects are attributed to the complex nature of their TTB-related crystal structures with different superstructures above and below Tc and the difficulty in nucleating ferroelectric domains on cooling through Tc. Several factors may contribute to the latter difficulty: first, the structures contain two sets of crystallographic sites for the "active" Ti, Nb ions; second, the distribution of Ti and Nb over these two sets of sites is not random but partially ordered; and third, below Tc a weak commensurate superstructure perpendicular to the polar c&barbelow; axis is present, but above Tc a weak incommensurate superstructure in a similar orientation is present. Hence the formation of the ferroelectric structure on cooling requires both nucleation of polar domains involving two sets of cation sites and structural change from an incommensurate to a commensurate supercell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brzezinski, Krzysztof; Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan; Bujacz, Grzegorz
2008-07-01
Single crystals of recombinant S-adenosyl-l-homocysteine hydrolase from L. luteus in complex with adenosine diffract X-rays to 1.17 Å resolution at 100 K. The crystals are tetragonal, space group P4{sub 3}2{sub 1}2, and contain one copy of the dimeric enzyme in the asymmetric unit. By degrading S-adenosyl-l-homocysteine, which is a byproduct of S-adenosyl-l-methionine-dependent methylation reactions, S-adenosyl-l-homocysteine hydrolase (SAHase) acts as a regulator of cellular methylation processes. S-Adenosyl-l-homocysteine hydrolase from the leguminose plant yellow lupin (Lupinus luteus), LlSAHase, which is composed of 485 amino acids and has a molecular weight of 55 kDa, has been cloned, expressed in Escherichia coli and purified.more » Crystals of LlSAHase in complex with adenosine were obtained by the hanging-drop vapour-diffusion method using 20%(w/v) PEG 4000 and 10%(v/v) 2-propanol as precipitants in 0.1 M Tris–HCl buffer pH 8.0. The crystals were tetragonal, space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = 122.4, c = 126.5 Å and contained two protein molecules in the asymmetric unit, corresponding to the functional dimeric form of the enzyme. Atomic resolution (1.17 Å) X-ray diffraction data have been collected using synchrotron radiation.« less
Pressure-induced half-collapsed-tetragonal phase in CaKFe 4 As 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaluarachchi, Udhara S.; Taufour, Valentin; Sapkota, Aashish
Here, we report the temperature-pressure phase diagram of CaKFe 4As 4 established using high-pressure electrical resistivity, magnetization, and high-energy x-ray diffraction measurements up to 6 GPa. With increasing pressure, both resistivity and magnetization data show that the bulk superconducting transition of CaKFe 4As 4 is suppressed and then disappears at p ≳ 4 GPa. High-pressure x-ray data clearly indicate a phase transition to a collapsed tetragonal phase in CaKFe 4As 4 under pressure that coincides with the abrupt loss of bulk superconductivity near 4 GPa. The x-ray data, combined with resistivity data, indicate that the collapsed tetragonal transition line ismore » essentially independent of pressure, occurring at 4.0(5) GPa for temperatures below 150 K. Density functional theory calculations also find a sudden transition to a collapsed tetragonal state near 4 GPa, as As-As bonding develops across the Ca layer. Bonding across the K layer only occurs for p ≥ 12 GPa. These findings demonstrate a different type of collapsed tetragonal phase in CaKFe 4As 4 as compared to CaFe 2As 2: a half-collapsed tetragonal phase.« less
Pressure-induced half-collapsed-tetragonal phase in CaKFe 4 As 4
Kaluarachchi, Udhara S.; Taufour, Valentin; Sapkota, Aashish; ...
2017-10-02
Here, we report the temperature-pressure phase diagram of CaKFe 4As 4 established using high-pressure electrical resistivity, magnetization, and high-energy x-ray diffraction measurements up to 6 GPa. With increasing pressure, both resistivity and magnetization data show that the bulk superconducting transition of CaKFe 4As 4 is suppressed and then disappears at p ≳ 4 GPa. High-pressure x-ray data clearly indicate a phase transition to a collapsed tetragonal phase in CaKFe 4As 4 under pressure that coincides with the abrupt loss of bulk superconductivity near 4 GPa. The x-ray data, combined with resistivity data, indicate that the collapsed tetragonal transition line ismore » essentially independent of pressure, occurring at 4.0(5) GPa for temperatures below 150 K. Density functional theory calculations also find a sudden transition to a collapsed tetragonal state near 4 GPa, as As-As bonding develops across the Ca layer. Bonding across the K layer only occurs for p ≥ 12 GPa. These findings demonstrate a different type of collapsed tetragonal phase in CaKFe 4As 4 as compared to CaFe 2As 2: a half-collapsed tetragonal phase.« less
Pressure-induced half-collapsed-tetragonal phase in CaKFe4As4
NASA Astrophysics Data System (ADS)
Kaluarachchi, Udhara S.; Taufour, Valentin; Sapkota, Aashish; Borisov, Vladislav; Kong, Tai; Meier, William R.; Kothapalli, Karunakar; Ueland, Benjamin G.; Kreyssig, Andreas; Valentí, Roser; McQueeney, Robert J.; Goldman, Alan I.; Bud'ko, Sergey L.; Canfield, Paul C.
2017-10-01
We report the temperature-pressure phase diagram of CaKFe4As4 established using high-pressure electrical resistivity, magnetization, and high-energy x-ray diffraction measurements up to 6 GPa. With increasing pressure, both resistivity and magnetization data show that the bulk superconducting transition of CaKFe4As4 is suppressed and then disappears at p ≳4 GPa. High-pressure x-ray data clearly indicate a phase transition to a collapsed tetragonal phase in CaKFe4As4 under pressure that coincides with the abrupt loss of bulk superconductivity near 4 GPa. The x-ray data, combined with resistivity data, indicate that the collapsed tetragonal transition line is essentially independent of pressure, occurring at 4.0(5) GPa for temperatures below 150 K. Density functional theory calculations also find a sudden transition to a collapsed tetragonal state near 4 GPa, as As-As bonding develops across the Ca layer. Bonding across the K layer only occurs for p ≥12 GPa. These findings demonstrate a different type of collapsed tetragonal phase in CaKFe4As4 as compared to CaFe2As2 : a half-collapsed tetragonal phase.
Effect of Cs content on K1-xCsxAlSi2O6 ceramic solidification forms
NASA Astrophysics Data System (ADS)
Li, Jun; Duan, Jianxia; Hou, Li; Lu, Zhongyuan
2018-02-01
K1-xCsx-geopolymers with chemical compositions of about K1-xCsxAlSi2O6·nH2O were used as precursors to prepare K1-xCsxAlSi2O6 ceramic solidification forms through the thermal treatment method. The structures of K1-xCsxAlSi2O6 ceramic solidification forms obtained at different sintering temperatures have been characterized by X-ray diffraction, scanning electron microscopy and fourier transform infrared spectroscopy. It has been observed that the crystallization temperature and phase of K1-xCsxAlSi2O6 ceramic were significantly influenced by the Cs content. An increase in the Cs content resulted in a decrease in the crystallization temperature of the K1-xCsxAlSi2O6 cubic phase. K1-xCsxAlSi2O6 ceramic obtained at 850 °C was lecucite cubic or pollucite cubic phase when x ≥ 0.2, and the lattice parameters of cubic phase increased with increasing of Cs content. However, leucite tetragonal phase formed at elevated heating temperature (1100 °C and 1300 °C) except for the case x = 0.3, 0.4, 0.5 and 1. The c/a ratio of leucite tetragonal phase obtained at 1100 °C and 1300 °C was much more closed to 1 with Cs content increased, which made it hard to be indexed between cubic and tetragonal phase. In this case, leucite tetragonal phase could also be considered as pseudo-cubic phase. Additionally, the product consistency test leaching results showed that K1-xCsxAlSi2O6 ceramics possessed superior chemical durability.
Substrate-dependent structural and CO sensing properties of LaCoO3 epitaxial films
NASA Astrophysics Data System (ADS)
Liu, Haifeng; Sun, Hongjuan; Xie, Ruishi; Zhang, Xingquan; Zheng, Kui; Peng, Tongjiang; Wu, Xiaoyu; Zhang, Yanping
2018-06-01
LaCoO3 thin films were grown on different (0 0 1) oriented LaAlO3, SrTiO3 and (LaAlO3)0.3(Sr2AlTaO6)0.7 by the polymer assisted deposition method, respectively. All the LaCoO3 thin films are in epitaxial growth on these substrates, with tetragonal distortion of CoO6 octahedrons. Due to different in-plane lattice mismatch, the LaCoO3 film on LaAlO3 has the largest tetragonal distortion of CoO6 octahedrons while the film grown on (LaAlO3)0.3(Sr2AlTaO6)0.7 has the smallest tetragonal distortion. The relative contents of the surface absorbed oxygen species are found to increase for the LaCoO3 epitaxial films grown on (0 0 1) oriented (LaAlO3)0.3(Sr2AlTaO6)0.7, SrTiO3 and LaAlO3 substrates, sequentially. The film sensors exhibit good CO sensing properties at 150 °C, and the LaCoO3 film on LaAlO3 shows the highest response but the film on (LaAlO3)0.3(Sr2AlTaO6)0.7 shows the lowest. It reveals that the larger degree of Jahn-Teller-like tetragonal distortion of CoO6 octahedrons may greatly improve the surface absorbing and catalytic abilities, corresponding to more excellent CO sensing performance. The present study suggests that the formation of epitaxial films is an efficient methodology for controlling the octahedral distortion and thereby improving the gas sensing performance of perovskite transition metal oxides.
NASA Astrophysics Data System (ADS)
Berdonosov, Peter S.; Charkin, Dmitry O.; Kusainova, Ardak M.; Hervoches, Charles H.; Dolgikh, Valeriy A.; Lightfoot, Philip
2000-09-01
Four new layered oxyhalides related to the Sillen family have been prepared and characterized by Rietveld refinement of powder X-ray and neutron diffraction data. BiTeO 3I and NdTeO 3Br both adopt tetragonal symmetry, space group P4/ nmm (for BiTeO 3I, a=4.10811(8), c=27.988(1) Å; NdTeO 3Br, a=4.06603(7), c=26.922(1) Å, at 25°C). The structures are composed of triple and double fluorite-related mixed metal oxide layers separated by single and double halogen layers, in the sequence MTe 2O 5XXMTe 2O 5XM 2O 2X, which may be represented by the symbol X 13X 13X 22, where the subscript signifies the number of halogen layers and the superscript the number of metal sublayers within the fluorite block, by analogy with Sillen's notation. The double fluorite layers are occupied exclusively by Bi, whereas there is an ordered arrangement of Bi/Te within the triple fluorite layers, with Te exclusively occupying the outer sublayers of the block. NdTeO 3Cl adopts an orthorhombically distorted form of this structure type, space group Pmmn, a=4.08096(8), b=4.03441(8), c=25.7582(7) Å at 25°C. Bi 5TeO 8.5I 2 adopts a distorted, non-centrosymmetric version of the simpler X 13 structure type, space group Cmm2, a=5.6878(3), b=5.7230(3), c=9.7260(6) Å, consisting of single halogen layers sandwiched between triple fluorite layers, in which there is partial ordering of the Bi/Te cations.
First determination of the valence band dispersion of CH3NH3PbI3 hybrid organic-inorganic perovskite
NASA Astrophysics Data System (ADS)
Lee, Min-I.; Barragán, Ana; Nair, Maya N.; Jacques, Vincent L. R.; Le Bolloc'h, David; Fertey, Pierre; Jemli, Khaoula; Lédée, Ferdinand; Trippé-Allard, Gaëlle; Deleporte, Emmanuelle; Taleb-Ibrahimi, Amina; Tejeda, Antonio
2017-07-01
The family of hybrid organic-inorganic halide perovskites is in the limelight because of their recently discovered high photovoltaic efficiency. These materials combine photovoltaic energy conversion efficiencies exceeding 22% and low-temperature and low-cost processing in solution; a breakthrough in the panorama of renewable energy. Solar cell operation relies on the excitation of the valence band electrons to the conduction band by solar photons. One factor strongly impacting the absorption efficiency is the band dispersion. The band dispersion has been extensively studied theoretically, but no experimental information was available. Herein, we present the first experimental determination of the valence band dispersion of methylammonium lead halide in the tetragonal phase. Our results pave the way for contrasting the electronic hopping or the electron effective masses in different theories by comparing to our experimental bands. We also show a significant broadening of the electronic states, promoting relaxed conditions for photon absorption, and demonstrate that the tetragonal structure associated to the octahedra network distortion below 50 °C induces only a minor modification of the electronic bands, with respect to the cubic phase at high temperature, thus minimizing the impact of the cubic-tetragonal transition on solar cell efficiencies.
A systematic probe in the properties of spray coated mixed spinel films of cobalt and manganese
NASA Astrophysics Data System (ADS)
Grace Victoria, S.; Moses Ezhil Raj, A.
2018-01-01
The multiple oxidation states of manganese and cobalt in cobalt manganese oxides play a crucial role in shaping up the vivid properties thus evoking curiosity among researchers. In the present work, mixed spinel films of CoMn(CoMn)2O4 were coated on glass substrates by the spray pyrolysis technique with different precursor concentrations of the acetate salts of the metals in ethyl alcohol. XRD investigations revealed an intermediate tetragonal spinel structure between cubic MnCo2O4 and tetragonal Mn3O4 (JCPDS 18-0410) with predominant orientation along (311) plane. The tetragonal distortion from cubic symmetry may be due to high Mn2+ ion content at octahedral sites. Raman spectroscopy highlighted two typical emission peaks characteristic of the deposited mixed spinel oxides. Functional groups were assigned with the aid of FTIR spectral analysis to the observed absorption bands. The binding energies of the photo-electron peaks observed for the transition metal ions and the oxygenated ions were recorded by XPS. The results indicated that the divalent and trivalent ions of cobalt co-existed with the divalent manganese ions. AFM images revealed vertically aligned columnar grains. The electrical measurements indicated conduction mechanism through jumps of polarons. Optical absorption revealed wide band gap energy of 3.76 eV.
Modeling the SHG activities of diverse protein crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haupert, Levi M.; DeWalt, Emma L.; Simpson, Garth J., E-mail: gsimpson@purdue.edu
2012-11-01
The origins of the diversity in the SHG signal from protein crystals are investigated and potential protein-crystal coverage by SHG microscopy is assessed. A symmetry-additive ab initio model for second-harmonic generation (SHG) activity of protein crystals was applied to assess the likely protein-crystal coverage of SHG microscopy. Calculations were performed for 250 proteins in nine point-group symmetries: a total of 2250 crystals. The model suggests that the crystal symmetry and the limit of detection of the instrument are expected to be the strongest predictors of coverage of the factors considered, which also included secondary-structural content and protein size. Much ofmore » the diversity in SHG activity is expected to arise primarily from the variability in the intrinsic protein response as well as the orientation within the crystal lattice. Two or more orders-of-magnitude variation in intensity are expected even within protein crystals of the same symmetry. SHG measurements of tetragonal lysozyme crystals confirmed detection, from which a protein coverage of ∼84% was estimated based on the proportion of proteins calculated to produce SHG responses greater than that of tetragonal lysozyme. Good agreement was observed between the measured and calculated ratios of the SHG intensity from lysozyme in tetragonal and monoclinic lattices.« less
NASA Astrophysics Data System (ADS)
Mishra, D. K.; Prusty, Sasmita; Mohapatra, B. K.; Singh, S. K.; Behera, S. N.
2012-07-01
Zirconia mullite (MUZ), Y2O3-MUZ, CaO-MUZ and MgO-MUZ composites, synthesized through plasma fusion technique, are becoming important due to their commercial scale of production within five minutes of plasma treatment from sillimanite, zircon and alumina mixture. The X-ray diffraction studies reveal the monoclinic zirconia phase in MUZ composite whereas mixed monoclinic, tetragonal and cubic phases of zirconia have been observed in Y2O3, CaO, MgO added MUZ composites. The Y2O3, CaO and MgO additives act as sintering aids to favour the transformation and stabilisation of tetragonal and cubic zirconia phases at room temperature. These additives also play a key role in the development of various forms of microstructure to achieve dense MUZ composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, David S.
2017-06-13
We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although amore » large T c value is unlikely.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodríguez, Héctor; Rivas, Blanca de las; Muñoz, Rosario
2007-04-01
The enzyme p-coumaric acid decarboxylase (PDC) from L. plantarum has been recombinantly expressed, purified and crystallized. The structure has been solved at 2.04 Å resolution by the molecular-replacement method. The substrate-inducible p-coumaric acid decarboxylase (PDC) from Lactobacillus plantarum has been overexpressed in Escherichia coli, purified and confirmed to possess decarboxylase activity. The recombinant His{sub 6}-tagged enzyme was crystallized using the hanging-drop vapour-diffusion method from a solution containing 20%(w/v) PEG 4000, 12%(w/v) 2-propanol, 0.2 M sodium acetate, 0.1 M Tris–HCl pH 8.0 with 0.1 M barium chloride as an additive. Diffraction data were collected in-house to 2.04 Å resolution. Crystals belongedmore » to the tetragonal space group P4{sub 3}, with unit-cell parameters a = b = 43.15, c = 231.86 Å. The estimated Matthews coefficient was 2.36 Å{sup 3} Da{sup −1}, corresponding to 48% solvent content, which is consistent with the presence of two protein molecules in the asymmetric unit. The structure of PDC has been determined by the molecular-replacement method. Currently, the structure of PDC complexed with substrate analogues is in progress, with the aim of elucidating the structural basis of the catalytic mechanism.« less
New structure type in the mixed-valent compound YbCu4Ga8.
Subbarao, Udumula; Gutmann, Matthias J; Peter, Sebastian C
2013-02-18
The new compound YbCu(4)Ga(8) was obtained as large single crystals in high yield from reactions run in liquid gallium. Preliminary investigations suggest that YbCu(4)Ga(8) crystallizes in the CeMn(4)Al(8) structure type, tetragonal space group I4/mmm, and lattice constants are a = b = 8.6529(4) Å and c = 5.3976(11) Å. However, a detailed single-crystal XRD revealed a tripling of the c axis and crystallizing in a new structure type with lattice constants of a = b = 8.6529(4) Å and c = 15.465(1) Å. The structural model was further confirmed by neutron diffraction measurements on high-quality single crystal. The crystal structure of YbCu(4)Ga(8) is composed of pseudo-Frank-Kasper cages occupying one ytterbium atom in each ring which are shared through the corner along the ab plane, resulting in a three-dimensional network. The magnetic susceptibility of YbCu(4)Ga(8) investigated in the temperature range 2-300 K showed Curie-Weiss law behavior above 100 K, and the experimentally measured magnetic moment indicates mixed-valent ytterbium. Electrical resistivity measurements show the metallic nature of the compound. At low temperatures, variation of ρ as a function of T indicates a possible Fermi-liquid state at low temperatures.
Magnetic structure of the ferromagnetic new ternary silicide Nd5CoSi2.
Mayer, C; Gaudin, E; Gorsse, S; Porcher, F; André, G; Chevalier, B
2012-04-04
Nd(5)CoSi(2) was obtained from the elements by arc-melting followed by annealing at 883 K. Its investigation by single-crystal x-ray and neutron powder diffraction shows that this ternary silicide crystallizes as Nd(5)Si(3) in a tetragonal structure deriving from the Cr(5)B(3)-type (I4/mcm space group; a = 7.7472(2) and c = 13.5981(5) Å as unit cell parameters). The structural refinements confirm the mixed occupancy on the 8h site between Si and Co atoms, as already observed for Gd(5)CoSi(2). Magnetization and specific heat measurements reveal a ferromagnetic behavior below T(C) = 55 K for Nd(5)CoSi(2). This magnetic ordering is further evidenced by neutron powder diffraction investigation revealing between 1.8 K and T(C) a canted ferromagnetic structure in the direction of the c-axis described by a propagation vector k = (0 0 0). At 1.8 K, the two Nd(3+) ions carry ordered magnetic moments equal respectively to 1.67(7) and 2.37(7) μ(B) for Nd1 and Nd2; these two moments exhibit a canting angle of θ = 4.3(6)°. This magnetic structure presents some similarities with that reported for Nd(5)Si(3). © 2012 IOP Publishing Ltd
NASA Astrophysics Data System (ADS)
Knight, Kevin S.; Marshall, William G.; Hawkins, Philip M.
2014-06-01
The fluoroperovskite phase RbCaF3 has been investigated using high-pressure neutron powder diffraction in the pressure range ~0-7.9 GPa at room temperature. It has been found to undergo a first-order high-pressure structural phase transition at ~2.8 GPa from the cubic aristotype phase to a hettotype phase in the tetragonal space group I4/ mcm. This transition, which also occurs at ~200 K at ambient pressure, is characterised by a linear phase boundary and a Clapeyron slope of 2.96 × 10-5 GPa K-1, which is in excellent agreement with earlier, low-pressure EPR investigations. The bulk modulus of the high-pressure phase (49.1 GPa) is very close to that determined for the low-pressure phase (50.0 GPa), and both are comparable with those determined for the aristotype phases of CsCdF3, TlCdF3, RbCdF3, and KCaF3. The evolution of the order parameter with pressure is consistent with recent modifications to Landau theory and, in conjunction with polynomial approximations to the pressure dependence of the lattice parameters, permits the pressure variation of the bond lengths and angles to be predicted. On entering the high-pressure phase, the Rb-F bond lengths decrease from their extrapolated values based on a third-order Birch-Murnaghan fit to the aristotype equation of state. By contrast, the Ca-F bond lengths behave atypically by exhibiting an increase from their extrapolated magnitudes, resulting in the volume and the effective bulk modulus of the CaF6 octahedron being larger than the cubic phase. The bulk moduli for the two component polyhedra in the tetragonal phase are comparable with those determined for the constituent binary fluorides, RbF and CaF2.
Anisotropic magnetic properties of the KMo4O6
NASA Astrophysics Data System (ADS)
Andrade, M.; Maffei, M. L.; Dos Santos, C. A. M.; Ferreira, B.; Sartori, A. F.
2012-02-01
Electrical resistivity measurements in the tetragonal KMo4O6 single crystals show a metal-insulator transition (MIT) near 100K. Magnetization measurements as a function of temperature show no evidence of magnetic ordering at this MIT [1]. Single crystals of KMo4O6 were obtained by electrolysis of a melt with a molar ratio of K2MoO4:MoO3 = 6:1. The process were carried out at 930 C with a current of 20-25mA for 52h in argon atmosphere. After that, electrodes were removed from the melt alloying the crystals to cool down to room temperature rapidly. Scanning Electron Microscopy (SEM) showed that the black single crystals were grown on the platinum cathode. Typical dimensions of the single crystals are 1x0.2x0.2mm^3. X-ray diffractometry confirmed that the single crystals have KMo4O6 tetragonal crystalline structure with space group P4. Magnetization measurements were performed parallel and perpendicular to the c-axis from 2 to 300K. The results show anisotropic behavior between both directions. Furthermore, the temperature independence of the magnetization at high temperature and the upturn at low temperature are observed in agreement with previous results [1]. MxH curves measured at several temperatures show nonlinear behavior and a small magnetic ordering. The magnetic ordering seems to be related to the MIT near 100K. This material is based upon support by FAPESP (2009/14524-6 and 2009/54001-6) and CNPq/NSF (490182/2009-7). M. Andrade is CAPES fellow and C.A.M. dos Santos is CNPq fellow. [4pt] [1] K. V. Ramanujachary et al., J. Sol. State Chem.102 (1993) 69.
Hole doping and structural transformation in CsTl1-xHgxCl3.
Retuerto, Maria; Yin, Zhiping; Emge, Thomas J; Stephens, Peter W; Li, Man-Rong; Sarkar, Tapati; Croft, Mark C; Ignatov, Alexander; Yuan, Z; Zhang, S J; Jin, Changqing; Paria Sena, Robert; Hadermann, Joke; Kotliar, Gabriel; Greenblatt, Martha
2015-02-02
CsTlCl(3) and CsTlF(3) perovskites have been theoretically predicted to be superconductors when properly hole-doped. Both compounds have been previously prepared as pure compounds: CsTlCl(3) in a tetragonal (I4/m) and a cubic (Fm3̅m) perovskite polymorph and CsTlF(3) as a cubic perovskite (Fm3̅m). In this work, substitution of Tl in CsTlCl(3) with Hg is reported, in an attempt to hole-dope the system and induce superconductivity. The whole series CsTl(1-x)HgxCl(3) (x = 0.0, 0.1, 0.2, 0.4, 0.6, and 0.8) was prepared. CsTl(0.9)Hg(0.1)Cl(3) is tetragonal as the more stable phase of CsTlCl(3). However, CsTl(0.8)Hg(0.2)Cl(3) is already cubic with the space group Fm3̅m and with two different positions for Tl(+) and Tl(3+). For x = 0.4 and 0.5, solid solutions could not be formed. For x ≥ 0.6, the samples are primitive cubic perovskites with one crystallographic position for Tl(+), Tl(3+), and Hg(2+). All of the samples formed are insulating, and there is no signature of superconductivity. X-ray absorption spectroscopy indicates that all of the samples have a mixed-valence state of Tl(+) and Tl(3+). Raman spectroscopy shows the presence of the active Tl-Cl-Tl stretching mode over the whole series and the intensity of the Tl-Cl-Hg mode increases with increasing Hg content. First-principle calculations confirmed that the phases are insulators in their ground state and that Hg is not a good dopant in the search for superconductivity in this system.
NASA Astrophysics Data System (ADS)
Amonpattaratkit, P.; Jantaratana, P.; Ananta, S.
2015-09-01
In this work, the investigation of phase formation, crystal structure, microstructure, microchemical composition and magnetic properties of perovskite (1-x)PFN-xPZT (x=0.1-0.5) multiferroic ceramics derived from a combination of perovskite stabilizer PZT and a wolframite-type FeNbO4 B-site precursor was carried out by using a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analyzer and vibrating sample magnetometer (VSM) techniques. The addition of PZT phase and its concentration have been found to have pronounced effects on the perovskite phase formation, densification, grain growth and magnetic properties of the sintered ceramics. XRD spectra from these ceramics reveal transformation of the (pseudo) cubic into the tetragonal perovskite structure. When increasing PZT content, the degree of perovskite phase formation and the tetragonality value of the ceramics increase gradually accompanied with the variation of cell volume, the M-H hysteresis loops, however, become narrower accompanied by the decrease of maximum magnetization (Mmax), remanent polarization (Mr), and coercive field (HC).
Arya, S K; Danewalia, S S; Arora, Manju; Singh, K
2016-12-01
In the present study, the effect of variable vanadium oxidation states on the structural, optical, and dielectric properties of vanadium oxide containing lithium borate glasses has been investigated. Electron paramagnetic resonance studies indicate that vanadium in these glasses is mostly in the V 4+ state, having a tetragonal symmetry. As the glass composition of V 2 O 5 increases, tetragonality also increases at the cost of octahedral symmetry. The photoluminescence (PL) spectra of these glasses are dominated by zinc oxide transition, whereas the peaks pertaining to the vanadyl group are not visible in the PL spectra. The optical absorption spectra show a single wide absorption band, which is attributed to V 4+ ions in these glasses. The ac conductivity of the glasses increases with an increase in vanadium content. The highest electrical conductivity observed is ∼10 -5 S cm -1 at 250 °C for the glass with 2.5 mol % V 2 O 5 . Electrical conductivity is dominated by electron conduction, as indicated by the activation energy calculation.
NASA Astrophysics Data System (ADS)
Sehdev, Neeru; Medwal, Rohit; Malik, Rakesh; Kandasami, Asokan; Kanjilal, Dinakar; Annapoorni, S.
2018-04-01
Present study investigates the importance of thermal annealing and transient electronic excitations (using 100 MeV oxygen ions) in assisting the interfacial atomic diffusion, alloy composition, and magnetic switching field distributions in Pt/Co/Pt stacked trilayer. X-ray diffraction analysis reveals that thermal annealing results in the formation of the face centered tetragonal L1°CoPt phase. The Rutherford back scattering spectra shows a trilayer structure for as-deposited and as-irradiated films. Interlayer mixing on the thermally annealed films further improves by electronic excitations produced by high energy ion irradiation. Magnetically hard face centered tetragonal CoPt alloy retains its hard phase after ion irradiation and reveals an enhancement in the structural ordering and magnetic stability. Enhancement in the homogeneity of alloy composition and its correlation with the magnetic switching field is evident from this study. A detailed investigation of the contributing parameters shows that the magnetic switching behaviour varies with the type of thermal annealing, transient electronic excitations of ion beams and combination of these processes.
NASA Astrophysics Data System (ADS)
Park, Young-Bae; Ruglovsky, Jennifer L.; Atwater, Harry A.
2004-07-01
Single crystal BaTiO3 thin films have been transferred onto Pt-coated and Si3N4-coated substrates by the ion implantation-induced layer transfer method using H + and He+ ion coimplantation and subsequent annealing. The transferred BaTiO3 films are single crystalline with root mean square roughness of 17nm. Polarized optical and piezoresponse force microscopy (PFM) indicate that the BaTiO3 film domain structure closely resembles that of bulk tetragonal BaTiO3 and atomic force microscopy shows a 90° a -c domain structure with a tetragonal angle of 0.5°-0.6°. Micro-Raman spectroscopy indicates that the local mode intensity is degraded in implanted BaTiO3 but recovers during anneals above the Curie temperature. The piezoelectric coefficient, d33, is estimated from PFM to be 80-100pm/V and the coercive electric field (Ec) is 12-20kV/cm, comparable to those in single crystal BaTiO3.
NASA Astrophysics Data System (ADS)
Itasaka, Hiroki; Mimura, Ken-ichi; Nishi, Masayuki; Kato, Kazumi
2018-05-01
We investigated the influence of heat treatment on the crystallographic structure and ferroelectric phase transition behavior of barium titanate (BaTiO3, BT) nanocubes assembled into highly ordered monolayers, using tip-enhanced Raman spectroscopy (TERS), temperature-dependent micro-Raman spectroscopy, and scanning transmission electron microscopy (STEM). TER spectra from individual BT nanocubes with the size of about 20 nm were obtained with a side-illumination optical setup, and revealed that heat treatment enhances their tetragonality. The result of temperature-dependent micro-Raman spectroscopy showed that the ferroelectric phase transition behavior of the monolayers becomes similar to that of bulk BT through heat treatment in spite of their thickness. STEM observation for the cross-section of the heated BT nanocube monolayer showed that amorphous layers exist at the interface between BT nanocubes in face-to-face contact. These results indicate that the tetragonal crystal structure of BT nanocubes is stabilized by heat treatment and the formation of the interfacial amorphous layer during heat treatment may be a key to this phenomenon.
Photoluminescent spectroscopy measurements in nanocrystalline praseodymium doped zirconia powders
NASA Astrophysics Data System (ADS)
Ramos-Brito, F.; Murrieta S, H.; Hernández A, J.; Camarillo, E.; García-Hipólito, M.; Martínez-Martínez, R.; Álvarez-Fragoso, O.; Falcony, C.
2006-05-01
Praseodymium doped zirconia powder (ZrO2: (0.53 at%) Pr3+) was prepared by a co-precipitation technique and annealed in air at a temperature Ta = 950 °C. The x-ray diffraction pattern shows a nanocrystalline structure composed of 29.6% monoclinic and 70.4% cubic-tetragonal phases. Medium infrared and Raman analysis confirms the monoclinic/cubic-tetragonal crystalline structure and proves the absence of praseodymium aggregates in the material. Photoluminescent spectroscopy over excitations of 457.9 and 514.9 nm (at 20 K), shows two emission spectra composed of many narrow peaks in the visible-near infrared region (VIS-NIR) of the electromagnetic spectrum, associated with 4f inter-level electronic transitions in praseodymium ions incorporated in the zirconia. Excitation and emission spectra show the different mechanisms of the direct and non-direct excitation of the dopant ion (Pr3+), and the preferential relaxation of the material by charge transfer from the host (zirconia) to the 4f5d band and the 4f inter-level of the dopant ion (Pr3+). No evidence of energy transfer from the host to the dopant was observed.
Optical Characterization of Lead Monoxide Films Grown by Laser-Assisted Deposition
NASA Astrophysics Data System (ADS)
Baleva, M.; Tuncheva, V.
1994-05-01
The Raman spectra of PbO films, grown by laser-assisted deposition (LAD) at different substrate temperatures are investigated. The spectra of the films, deposited on amorphous, single crystal quartz and polycrystal PbTe substrates, are compared with the Raman spectra of tetragonal and orthorhombic powder samples. The phonon frequencies determined in our experiment with powder samples coincide fairly well with those obtained by Adams and Stevens, J. Chem. Soc., Dalton Trans., 1096 (1977). Thus the Raman spectra of the powder samples presented in this paper can be considered as unambiguous characteristics of the two different PbO crystal phases. It was concluded that the Raman scattering may serve as a tool for identification of PbO films and their crystal modifications. On the basis of this investigation it was concluded that the film structure changes from orthorhombic to tetragonal with increased substrate temperature, and that the nature of the substrate influences the crystal structure of the films. On the basis of the Raman spectra of the β-PbO films with prevailing (001) orientation of crystallization, an assignment of the modes is proposed.
High-pressure behaviour of Cs{sub 2}V{sub 3}O{sub 8} fresnoite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grzechnik, Andrzej, E-mail: grzechnik@xtal.rwth-aachen.de; Yeon, Jeongho; Zur Loye, Hans-Conrad
2016-06-15
Crystal structure of Cs{sub 2}V{sub 3}O{sub 8} fresnoite (P4bm, Z=2) has been studied using single-crystal X-ray diffraction in a diamond anvil cell to 8.6 GPa at room temperature. Cs{sub 2}V{sub 3}O{sub 8} undergoes a reversible first-order phase transition at about 4 GPa associated with anomalies in the pressure dependencies of the lattice parameters and unit-cell volume but without any symmetry change. Both structures consist of layers of corner-sharing V{sup 5+}O{sub 4} tetrahedra and V{sup 4+}O{sub 5} tetragonal pyramids separated by the Cs{sup +} cations located between the layers. At low pressures, the compression has little effect on the polarity ofmore » the structure. Above 4 GPa, the pseudosymmetry with respect to the corresponding centrosymmetric space group P4/mbm abruptly increases. The effects of external pressure and of the A{sup +} cation substitution in the vanadate fresnoites A{sub 2}V{sub 3}O{sub 8} (A{sup +}: K{sup +}, Rb{sup +}, NH{sub 4}{sup +}, Cs{sup +}) are discussed. - Graphical abstract: Non-centrosymmetric Cs{sub 2}V{sub 3}O{sub 8} undergoes a reversible first-order phase transition at about 4 GPa associated with an abrupt change of the pseudosymmetry with respect to the centrosymmetric space group P4/mbm. Display Omitted - Highlights: • High-pressure behaviour of vanadate fresnoites depends on alkali metal cations. • The size of the alkali metal cation determines whether the high-pressure phase is centrosymmetric. • No incommensurate structures are observed upon compression.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furukawa, Yuji; Roy, Beas; Ran, Sheng
2014-03-20
The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magneticmore » susceptibility χ and the T dependence of 1/T1Tχ, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.« less
NASA Technical Reports Server (NTRS)
Casale, Elena; He, Xiao-Min; Snyder, Robert S.; Carter, Daniel C.; Wenisch, Elisabeth; Jungbauer, Alois; Tauer, Christa; Ruker, Florian; Righetti, Pier Giorgio
1990-01-01
A monoclonal IgG antibody directed against gp 41 from the human immunodeficiency virus (HIV-1) has been crystallized in both intact and Fab forms. Crystals of the intact antibody grow as tetragonal-like prisms too small for conventional X-ray analysis. However, the Fab portion of the antibody produces suitable platelike crystals which belong to the space group P2(1)2(1)2(1) with unit cell constants of a = 66.5 A, b = 74.3 A, and c = 105.3 A. There is one molecule of Fab in the asymmetric unit. The Fab crystals show diffraction to d-spacings less than 3.0 A.
NASA Astrophysics Data System (ADS)
Iikubo, S.; Kodama, K.; Takenaka, K.; Takagi, H.; Shamoto, S.
2010-11-01
Magnetic and local structures in an antiperovskite system, Mn3Cu1-xGexN, with a giant negative thermal expansion have been studied by neutron powder diffraction measurement. We discuss (1) an importance of an averaged cubic crystal structure and a ΓG5g antiferromagnetic spin structure for the large magneto-volume effect (MVE) in this itinerant electron system, (2) an unique role of a local lattice distortion well described by the low temperature tetragonal structure of Mn3GeN for the broadening of MVE.
Superficial Macromolecular Arrays on the Cell Wall of Spirillum putridiconchylium
Beveridge, T. J.; Murray, R. G. E.
1974-01-01
Electron microscopy of the cell envelope of Spirillum putridiconchylium, using negatively stained, thin-sectioned, and replicated freeze-etched preparations, showed two superficial wall layers forming a complex macromolecular pattern on the external surface. The outer structured layer was a linear array of particles overlying an inner tetragonal array of larger subunits. They were associated in a very regular fashion, and the complex was bonded to the outer, pitted surface of the lipopolysaccharide tripartite layer of the cell wall. The relationship of the components of the two structured layers was resolved with the aid of optical diffraction, combined with image filtering and reconstruction and linear and rotary integration techniques. The outer structural layer consisted of spherical 1.5-nm units set in double lines determined by the size and arrangement of 6- by 3-nm inner structural layer subunits, which bore one outer structural layer unit on each outer corner. The total effect of this arrangement was a double-ridged linear structure that was evident in surface replicas and negatively stained fragments of the whole wall. The packing of these units was not square but skewed by 2° off the perpendicular so that the “unit array” described by optical diffraction and linear integration appeared to be a deformed tetragon. The verity of the model was checked by using a photographically reduced image to produce an optical diffraction pattern for comparison with that of the actual layers. The correspondence was nearly perfect. Images PMID:4137219
Review of high pressure phases of calcium by first-principles calculations
NASA Astrophysics Data System (ADS)
Ishikawa, T.; Nagara, H.; Suzuki, N.; Tsuchiya, J.; Tsuchiya, T.
2010-03-01
We review high pressure phases of calcium which have obtained by recent experimental and first-principles studies. In this study, we investigated the face-centered cubic (fcc) structure, the body-centered cubic (bcc) structure, the simple cubic (sc) structure, a tetragonal P43212 [Ishikawa T et al. 2008 Phys. Rev. B 77 020101(R)], an orthorhombic Cmca [Ishikawa T et al. 2008 Phys. Rev. B 77 020101(R)], an orthorhombic Cmcm [Teweldeberhan A M and Bonev S A 2008 Phys. Rev. B 78 140101(R)], an orthorhombic Pnma [Yao Y et al. 2008 Phys. Rev. B 78 054506] and a tetragonal I4/mcm(00) [Arapan S et al. 2008 Proc. Natl. Acad. Sci. USA 105 20627]. We compared the enthalpies among the structures up to 200 GPa and theoretically determined the phase diagram of calcium. The sequence of the structural transitions is fcc (0- 3.5 GPa) → bcc (3.5 - 35.7 GPa) → Cmcm (35.7- 52GPa) → P43212 (52-109 GPa) → Cmca (109-117.4GPa) → Pnma (117.4-134.6GPa) → I4/mcm(00) (134.6 GPa -). The sc phase is experimentally observed in the pressure range from 32 to 113 GPa but, in our calculation, there is no pressure region where the sc phase is the most stable. In addition, we found that the enthalpy of the hexagonal close-packed (hcp) structure is lower than that of I4/mcm(00) above 495 GPa.
Yeon, Jeongho; Kim, Sang-Hwan; Halasyamani, P Shiv
2010-08-02
Three polar noncentrosymmetric (NCS) oxide materials, A(3)V(5)O(14) (A = K(+), Rb(+), or Tl(+)), have been synthesized by hydrothermal and conventional solid state techniques. Their crystal structures and functional properties (second-harmonic generation, piezoelectricity, and polarization) have been determined. The iso-structural materials exhibit a layered structural topology that consists of corner-sharing VO(4) tetrahedra and VO(5) square pyramids. The layers stack parallel to the c-axis direction and are separated by the K(+), Rb(+), or Tl(+) cations. Powder second-harmonic generation (SHG) measurements using 1064 nm radiation indicate the materials exhibit moderate SHG efficiencies of approximately 100 x alpha-SiO(2). Additional SHG measurements, that is, particle size versus SHG efficiency, indicate the materials are type-I phase-matchable. Converse piezoelectric measurements for K(3)V(5)O(14), Rb(3)V(5)O(14), and Tl(3)V(5)O(14) revealed d(33) values of 28, 22, and 26 pm/V, respectively. Pyroelectric measurements, that is, temperature-dependent polarization measurements, resulted in pyroelectric coefficients of -2.2, -2.9, and -2.8 microC/m(2) x K at 65 degrees C, for K(3)V(5)O(14), Rb(3)V(5)O(14), and Tl(3)V(5)O(14) respectively. Frequency-dependent polarization measurements confirmed that all of the materials are nonferroelectric, consistent with our first principle density functional theory (DFT) electronic structure calculations. Infrared, UV-vis, thermogravimetric, and differential scanning calorimetry measurements were also performed. Crystal data: K(3)V(5)O(14), trigonal, space group P31m (No. 157), a = 8.6970(16) A, c = 4.9434(19) A, V = 323.81(15), and Z = 1; Rb(3)V(5)O(14), trigonal, space group P31m (No. 157), a = 8.7092(5) A, c = 5.2772(7) A, V = 346.65(5), and Z = 1; Tl(3)V(5)O(14), trigonal, space group P31m (No. 157), a = 8.7397(8) A, c = 5.0846(10) A, V = 336.34(8), and Z = 1.
Wang, X P; Gao, Y X; Xia, Y P; Zhuang, Z; Zhang, T; Fang, Q F
2014-04-21
The correlation and transport mechanism of lithium ions with the crystal structure of a fast lithium ion conductor Li7La3Zr2O12 are mainly investigated by internal friction (IF) and AC impedance spectroscopy techniques. Compared with the poor conductivity of tetragonal Li7La3Zr2O12, the Al stabilized cubic phase exhibits a good ionic conductivity that can be up to 1.9 × 10(-4) S cm(-1) at room temperature, which can be ascribed to the disordered distribution of lithium ions in the cubic phase. A well-pronounced relaxation IF peak (labeled as peak PC) is observed in the cubic phase while a very weak IF peak (labeled as PT) is observed in the tetragonal phase, further evidencing the difference in lithium ion migration in the two phases. Peak PC can be decomposed into two sub-peaks with the activation energy and the pre-exponential factor of relaxation time being E1 = 0.41 eV and τ01 = 1.2 × 10(-14) s for the lower temperature peak PC1 and E2 = 0.35 eV and τ02 = 1.9 × 10(-15) s for the higher temperature PC2 peak, respectively. Based on the crystalline structure of a cubic garnet-type Li7La3Zr2O12 compound, an atomistic mechanism of lithium ion diffusion via vacancies is suggested, i.e. 48g(96h) ↔ 48g(96h) for peak PC1 and 48g(96h) ↔ 24d for peak PC2, respectively. The weak PT peak in the tetragonal phase is preliminarily interpreted as due to the short jump process among neighboring octahedral sites and vacant tetrahedral sites.
NASA Astrophysics Data System (ADS)
Varanasi, Venu Gopal
The gas turbine engine uses an yttria-stabilized zirconia (YSZ) coating to provide thermal insulation for its turbine blades. This YSZ coating must be tetragonal in crystal structure, columnar in microstructure, and be 100--250 mum thick to provide for adequate protection for the turbine blades in the severe engine environment. Currently, YSZ coatings are fabricated by electron-beam physical vapor deposition (EB-PVD), but this fabrication method is cost intensive. Chemical vapor deposition (CVD) is a more commercially viable processing method and a possible alternative to EB-PVD. The deposition of tetragonal YSZ from gaseous metal and oxidation sources were studied. A chemical equilibrium analysis modeled the feasibility of depositing tetragonal YSZ for both chloride CVD (Zr-Y-C-O-Cl-H-Inert system) and metal-organic CVD (MOCVD) (Zr-Y-C-O-H system). Pure thermochemical properties and the assessed YSZ phase diagram were used in this analysis. Using the molar input of metals ((nY + nZr) and ( nY/(nY + nZr ) = 0.08)) as bases, equilibrium calculations showed that tetragonal YSZ formation was feasible. Tetragonal YSZ formation was feasible with high oxygen content (nO/(nY + nZr) > 8) and high temperature (T > 100°C) in the case of chloride CVD (Zr-Y-C-O-Cl-H-Inert). Tetragonal YSZ formation was feasible with high oxygen content (nO/( nY + nZr) > 5) and high temperature (T > 950°C) in the case of MOCVD (Zr-Y-C-O-H). Although solid carbon formation did not appear in chloride CVD, additional oxygen (nO/( nY + nZr) > 32) and low hydrogen content relative to carbon (nH/nC < 2) were required to avoid solid carbon formation in MOCVD. Coatings were deposited using a set of base conditions derived from the chemical equilibrium analysis. In chloride CVD, YCl3 was not included because of its low vapor pressure, thus, ZrCl4 was oxidized with the H2-CO2 gas mixture. Monoclinic ZrO2 coatings were deposited at the thermochemically optimized conditions (n O/(nY + nZr) > 8, T > 1004°C) with approximately 5.5 mum h-1 growth rate. In metal-organic CVD (MOCVD), liquid precursor solutions of Y- and Zr-beta-diketonate and Y- and Zr-n-butoxide precursors were used as the metal sources and O2 gas was used as the oxidation source. Using the Y- and Zr-beta-diketonate liquid precursor solution, tetragonal YSZ was deposited with a layered microstructure apparent and a maximum growth rate of approximately 14 mum h-1 (activation energy (E a) of 50.9 +/- 4.3 kJ mol-1). The growth rate (approximately 43 mum h-1 with Ea = 53.8 +/- 7.9 kJ mol-1) was improved using Y- and Zr- n-butoxide liquid precursor solutions, and the microstructure was columnar. Yet, two-phase deposition of monoclinic ZrO2 and tetragonal YSZ occurred. Results of electron-probe micro-analysis showed that the nY/(nY + nZr ) ratio was less than 45% of the nY/( nY + nZr) ratio in the liquid precursor solution.
Crystal structures of the free and inhibited forms of plasmepsin I (PMI) from Plasmodium falciparum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaumik, Prasenjit; Horimoto, Yasumi; Xiao, Huogen
2011-09-06
Plasmepsin I (PMI) is one of the four vacuolar pepsin-like proteases responsible for hemoglobin degradation by the malarial parasite Plasmodium falciparum, and the only one with no crystal structure reported to date. Due to substantial functional redundancy of these enzymes, lack of inhibition of even a single plasmepsin can defeat efforts in creating effective antiparasitic agents. We have now solved crystal structures of the recombinant PMI as apoenzyme and in complex with the potent peptidic inhibitor, KNI-10006, at the resolution of 2.4 and 3.1 {angstrom}, respectively. The apoenzyme crystallized in the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} with twomore » molecules in the asymmetric unit and the structure has been refined to the final R-factor of 20.7%. The KNI-10006 bound enzyme crystallized in the tetragonal space group P4{sub 3} with four molecules in the asymmetric unit and the structure has been refined to the final R-factor of 21.1%. In the PMI-KNI-10006 complex, the inhibitors were bound identically to all four enzyme molecules, with the opposite directionality of the main chain of KNI-10006 relative to the direction of the enzyme substrates. Such a mode of binding of inhibitors containing an allophenylnorstatine-dimethylthioproline insert in the P1-P1' positions, previously reported in a complex with PMIV, demonstrates the importance of satisfying the requirements for the proper positioning of the functional groups in the mechanism-based inhibitors towards the catalytic machinery of aspartic proteases, as opposed to binding driven solely by the specificity of the individual enzymes. A comparison of the structure of the PMI-KNI-10006 complex with the structures of other vacuolar plasmepsins identified the important differences between them and may help in the design of specific inhibitors targeting the individual enzymes.« less
Silambarasan, A; Rajesh, P; Ramasamy, P
2015-01-05
The single crystal of guanidine carbonate doped nickel sulfate hexahydrate was grown from solution for ultraviolet filters. The single crystal XRD confirms that the grown single crystal belongs to the tetragonal system with the space group of P4₁2₁2. The crystallinity of the grown crystal was estimated by powder X-ray diffraction studies. The optical transmission and thermal stability of as-grown guanidine carbonate doped nickel sulfate single crystals have been studied. The optical transmission spectrum demonstrates the characteristics of ultraviolet filters. The TG/DTA studies confirm the thermal properties of grown crystals. Thermo-gravimetric analysis showed that the dehydration temperature of the guanidine carbonate doped nickel sulfate crystal is about 100 °C, which is much higher than that of pure nickel sulfate hexahydrate (NSH) crystals which is 72 °C. The growth behaviors and dislocation density were detected under the high resolution XRD and etching studies respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
Choubrac, L; Lafond, A; Guillot-Deudon, C; Moëlo, Y; Jobic, S
2012-03-19
Here we present for the very first time a single-crystal investigation of the Cu-poor Zn-rich derivative of Cu(2)ZnSnS(4). Nowadays, this composition is considered as the one that delivers the best photovoltaic performances in the specific domain of Cu(2)ZnSnS(4)-based thin-film solar cells. The existence of this nonstoichiometric phase is definitely demonstrated here in an explicit and unequivocal manner on the basis of powder and single-crystal X-ray diffraction analyses coupled with electron microprobe analyses. Crystals are tetragonal, space group I ̅4, Z = 2, with a = 5.43440(15) Å and c = 10.8382(6) Å for Cu(2)ZnSnS(4) and a = 5.43006(5) Å and c = 10.8222(2) Å for Cu(1.71)Zn(1.18)Sn(0.99)S(4). © 2012 American Chemical Society
Superelasticity and cryogenic linear shape memory effects of CaFe 2As 2
Sypek, John T.; Yu, Hang; Dusoe, Keith J.; ...
2017-10-20
Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. But, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. We report a unique shape memory behavior in CaFe 2As 2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonalmore » phase transformation. These results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr 2Si 2-structured intermetallic compounds.« less
Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics
NASA Astrophysics Data System (ADS)
Jo, Wook; Daniels, John E.; Jones, Jacob L.; Tan, Xiaoli; Thomas, Pamela A.; Damjanovic, Dragan; Rödel, Jürgen
2011-01-01
The correlation between structure and electrical properties of lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 (BNT-100xBT) polycrystalline piezoceramics was investigated systematically by in situ synchrotron diffraction technique, combined with electrical property characterization. It was found that the morphotropic phase boundary (MPB) between a rhombohedral and a tetragonal phase evolved into a morphotropic phase region with electric field. In the unpoled material, the MPB was positioned at the transition from space group R3m to P4mm (BNT-11BT) with optimized permittivity throughout a broad single-phase R3m composition regime. Upon poling, a range of compositions from BNT-6BT to BNT-11BT became two-phase mixture, and maximum piezoelectric coefficient was observed in BNT-7BT. It was shown that optimized electrical properties are related primarily to the capacity for domain texturing and not to phase coexistence.
Upconversion luminescence of CsScF4 crystals doped with erbium and ytterbium
NASA Astrophysics Data System (ADS)
Ikonnikov, D. A.; Voronov, V. N.; Molokeev, M. S.; Aleksandrovsky, A. S.
2016-10-01
Tetragonal CsScF4 crystals doped with (5 at.%) Er and Er/Yb (0.5 at.%/5 at.%) are grown and their crystal structure is determined to belong to Pmmn space group. Er and Yb ions are shown to occupy distorted octahedral Sc sites with the center of inversion. Bright visible upconversion luminescence was observed under 970-980 nm pumping with red (4F9/2), yellow (4S3/2) and green (2H11/2) bands of comparable intensity. UCL tuning curves maximize at 972 nm (CSF:Er) and at 969.7 nm (CSF:Er,Yb) pumping wavelengths. Different ratios between yellow-green and red luminescence intensities in CSF:Er and CSF:Er, Yb are explained by contribution of cross-relaxation in CSF:Er UCL. UC in CSF:Er is a three stage process while UC in CSF:Er, Yb is a two stage process. The peculiarities of power dependences are explained by the power-dependent repopulation between starting levels of UC.
Tuning the ground state of the Kondo lattice in UT Bi2 (T = Ag, Au) single crystals
NASA Astrophysics Data System (ADS)
Rosa, Priscila; Luo, Yongkang; Pagliuso, Pascoal; Bauer, Eric; Thompson, Joe; Fisk, Zachary
2015-03-01
Motivated by the interesting magnetic anisotropy found in the Ce-based heavy fermion family Ce TX2 (T = transition metal, X = pnictogen), here we study the novel U-based parent compounds U TBi2 (T = Ag, Au) by combining magnetization, electrical resistivity, and heat-capacity measurements. The single crystals, synthesized by the self-flux method, also crystallize in the tetragonal HfCuSi2-type structure (space group P4/nmm). Interestingly, although UAgBi2 is a low- γ antiferromagnet below TN = 181 K, UAuBi2 is a moderately heavy uniaxial ferromagnet below Tc = 22 K. Nevertheless, both compounds display the easy-magnetization direction along the c-axis and a large magnetocrystalline anisotropy. Our results point out to an incoherent Kondo behaviour in the paramagnetic state and an intricate competition between crystal field effects and two anisotropic exchange interactions, which lead to the remarkable difference in the observed ground states.
NASA Astrophysics Data System (ADS)
Kitagawa, Kentaro; Mezaki, Yuji; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Takigawa, Masashi
2011-03-01
We report the results of 23Na and 75As nuclear magnetic resonance (NMR) experiments on a self-flux grown high-quality single crystal of stoichiometric NaFeAs. The NMR spectra reveal a tetragonal to twinned-orthorhombic structural phase transition at TO = 57 K and an antiferromagnetic (AF) transition at TAF = 45 K. The divergent behavior of nuclear relaxation rate near TAF shows significant anisotropy, indicating that the critical slowing down of stripe-type AF fluctuations are strongly anisotropic in spin space. The NMR spectra at sufficiently low temperatures consist of sharp peaks showing a commensurate stripe AF order with a small moment of ˜0.3 μB. However, the spectra just below TAF exhibit a highly asymmetric broadening pointing to an incommensurate modulation. The commensurate-incommensurate crossover in NaFeAs shows a certain similarity to the behavior of SrFe2As2 under high pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Abul K., E-mail: aka7@st-andrews.ac.uk; Khan, Abdullah; Eriksson, Sten-G.
2009-12-15
Polycrystalline Sr{sub 2}Fe{sub 1-x}Ga{sub x}MoO{sub 6} (0 {<=} x {<=} 0.6) materials have been synthesized by solid state reaction method and studied by neutron powder diffraction (NPD) and magnetization measurements. Rietveld analysis of the temperature dependent NPD data shows that the compounds crystallize in the tetragonal symmetry in the space group I4/m. The anti-site (AS) defects concentration increases with Ga doping, giving rise to highly B-site disordered materials. Ga doping at the Fe-site decreases the cell volume. The evolution of bond lengths and the cation oxidation states was determined from the Rietveld refinement data. The saturation magnetization and Curie temperaturemore » decreased with the increasing Ga content in the samples. Low temperature neutron diffraction data analysis and magnetization measurements confirm the magnetic interaction as ferrimagnetic in the sample.« less
Effect of Fe doping on structural and impedance properties of PZTFN ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Arvind, E-mail: arvindmse07311209.in@gmail.com; Pal, Vijayeta; Mishra, S. K.
2016-05-06
An attempts have been made to synthesis the ceramics Pb{sub 1-3x/2} Fe{sub x}(Zr{sub 0.52}Ti{sub 0.48}){sub 1-5y/4} NbyO{sub 3} abbreviated as (PFZTN) for x = 1-6 mol% and y = 5.5 mol% by a semi-wet route. In the present paper, we have investigated the effect of Fe doping on structural and electrical properties of the PFZTN ceramics. X-ray diffraction (XRD) patterns reveal that PFZTN ceramics are single phase in nature. However, for x = 0.05 and 0.06, a secondary phase appears as discernible from the XRD profiles. Rietveld analysis of the powder diffraction data shows the presence of coexistence of tetragonal (P4mm spacemore » group) and rhombohedral phases (R3c space group) occurs near the morphotropic phase boundary (MPB) at x ≥ = 0.05. The log-log plots show that the conductivity increases with increase of temperature. The ac conductivity becomes sensitive at high frequency region and shifted towards higher frequency side with increasing temperature. It is observed that the activation energy (Ea) decreases with increasing frequency. This complex perovskite structure can be used as a multilayer ceramic capacitors and electromechanical transducers.« less
Magnetostructural transition in Fe{sub 5}SiB{sub 2} observed with neutron diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cedervall, Johan, E-mail: johan.cedervall@kemi.uu.se; Kontos, Sofia; Hansen, Thomas C.
2016-03-15
The crystal and magnetic structure of Fe{sub 5}SiB{sub 2} has been studied by a combination of X-ray and neutron diffraction. Also, the magnetocrystalline anisotropy energy constant has been estimated from magnetisation measurements. High quality samples have been prepared using high temperature synthesis and subsequent heat treatment protocols. The crystal structure is tetragonal within the space group I4/mcm and the compound behaves ferromagnetically with a Curie temperature of 760 K. At 172 K a spin reorientation occurs in the compound and the magnetic moments go from aligning along the c-axis (high T) down to the ab-plane (low T). The magnetocrystalline anisotropymore » energy constant has been estimated to 0.3 MJ/m{sup 3} at 300 K. - Highlights: • The crystal and magnetic structure of Fe{sub 5}SiB{sub 2} has been studied by diffraction. • At 172 K a spin reorientation occurs in the compound. • The magnetic moments are aligned along the c-axis at high T. • The magnetic moments are aligned in the ab-plane at low T. • The magnetocrystalline anisotropy energy constant has been estimated to 0.3 MJ/m{sup 3}.« less
Phase transition studies in bismuth ferrite thin films synthesized via spray pyrolysis technique
NASA Astrophysics Data System (ADS)
Goyal, Ankit; Lakhotia, Harish
2013-06-01
Multiferroic are the materials, which combine two or more "ferroic" properties, ferromagnetism, ferroelectricity or ferroelasticity. BiFeO3 is the only single phase multiferroic material which possesses a high Curie temperature (TC ˜ 1103 K), and a high Neel temperature (TN ˜ 643 K) at room temperature. Normally sophisticated methods are being used to deposit thin films but here we have tried a different method Low cost Spray Pyrolysis Method to deposit BiFeO3 thin film of Glass Substrate with rhombohedral crystal structure and R3c space group. Bismuth Ferrite thin films are synthesized using Bismuth Nitrate and Iron Nitrate as precursor solutions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) were used to study structural analysis of prepared thin films. XRD pattern shows phase formation of BiFeO3 and SEM analysis shows formation of nanocrystals of 200 nm. High Temperature Resistivity measurements were done by using Keithley Electrometer (Two Probe system). Abrupt behavior in temperature range (313 K - 400K) has been observed in resistance studies which more likely suggests that in this transition the structure is tetragonal rather than rhombohedral. BiFeO3 is the potential active material in the next generation of ferroelectric memory devices.
NASA Astrophysics Data System (ADS)
Pradines, B.; Arras, R.; Calmels, L.
2017-05-01
We present an ab initio study of the influence of the tetragonal distortion, on the static and dynamic (Gilbert damping parameter) magnetic properties of a Co2MnSi crystal. This tetragonal distortion can for instance be due to strain, when Co2MnSi is grown on a substrate with a small lattice mismatch. Using fully relativistic Korringa-Kohn-Rostoker (KKR) calculations, in conjunction with the coherent potential approximation (CPA) to describe atomic disorder and the linear response formalism to compute the Gilbert damping parameter, we show that a tetragonal distortion can substantially change the properties of Co2MnSi, in a way which depends on the kind of atomic disorder.
Navas, Javier; Sánchez-Coronilla, Antonio; Gallardo, Juan Jesús; Hernández, Norge Cruz; Piñero, Jose Carlos; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; De los Santos, Desireé M; Aguilar, Teresa; Martín-Calleja, Joaquín
2015-04-14
This paper presents the synthesis of the organic-inorganic hybrid perovskite, CH3NH3PbI3, doped in the Pb(2+) position with Sn(2+), Sr(2+), Cd(2+) and Ca(2+). The incorporation of the dopants into the crystalline structure was analysed, observing how the characteristics of the dopant affected properties such as the crystalline phase, emission and optical properties. XRD showed how doping with Sn(2+), Sr(2+) and Cd(2+) did not modify the normal tetragonal phase. When doping with Ca(2+), the cubic phase was obtained. Moreover, DR-UV-Vis spectroscopy showed how the band gap decreased with the dopants, the values following the trend Sr(2+) < Cd(2+) < Ca(2+) < CH3NH3PbI3 ≈ Sn(2+). The biggest decrease was generated by Sr(2+), which reduced the CH3NH3PbI3 value by 4.5%. In turn, cathodoluminescence (CL) measurements confirmed the band gap obtained. Periodic-DFT calculations were performed to understand the experimental structures. The DOS analysis confirmed the experimental results obtained using UV-Vis spectroscopy, with the values calculated following the trend Sn(2+) ≈ Pb(2+) > Cd(2+) > Sr(2+) for the tetragonal structure and Pb(2+) > Ca(2+) for the cubic phase. The electron localization function (ELF) analysis showed similar electron localizations for undoped and Sn(2+)-doped tetragonal structures, which were different from those doped with Sr(2+) and Cd(2+). Furthermore, when Cd(2+) was incorporated, the Cd-I interaction was strengthened. For Ca(2+) doping, the Ca-I interaction had a greater ionic nature than Cd-I. Finally, an analysis based on the non-covalent interaction (NCI) index is presented to determine the weak-type interactions of the CH3NH3 groups with the dopant and I atoms. To our knowledge, this kind of analysis with these hybrid systems has not been performed previously.
NASA Astrophysics Data System (ADS)
Xu, W. M.; Hearne, G. R.; Layek, S.; Levy, D.; Pasternak, M. P.; Rozenberg, G. Kh.; Greenberg, E.
2018-02-01
X-ray diffraction pressure studies at room temperature demonstrate that the spinel FeA l2O4 transforms to a tetragonal phase at ˜18 GPa. This tetragonal phase has a highly irregular unit-cell volume versus pressure dependence up to ˜45 GPa, after which a transformation to a Cmcm postspinel phase is onset. This is attributable to pressure driven Fe↔Al site inversion at room temperature, corroborated by signatures in the 57Fe Mössbauer spectroscopy pressure data. At the tetragonal→postspinel transition, onset in the range 45-50 GPa, there is a concurrent emergence of a nonmagnetic spectral component in the Mössbauer data at variable cryogenic temperatures. This is interpreted as spin crossover at sixfold coordinated Fe locations emanated from site inversion. Spin crossover commences at the end of the pressure range of the tetragonal phase and progresses in the postspinel structure. There is also a much steeper volume change ΔV /V ˜ 10% in the range 45-50 GPa compared to the preceding pressure regime, from the combined effects of the structural transition and spin crossover electronic change. At the highest pressure attained, ˜106 GPa, the Mössbauer data evidence a diamagnetic Fe low-spin abundance of ˜50%. The rest of the high-spin Fe in eightfold coordinated sites continue to experience a relatively small internal magnetic field of ˜33 T. This is indicative of a magnetic ground state associated with strong covalency, as well as substantive disorder from site inversion and the mixed spin-state configuration. Intriguingly, magnetism survives in such a spin-diluted postspinel lattice at high densities. The R (300 K) data decrease by only two orders of magnitude from ambient pressure to the vicinity of ˜100 GPa. Despite a ˜26% unit-cell volume densification from the lattice compressibility, structural transitions, and spin crossover, FeA l2O4 is definitively nonmetallic with an estimated gap of ˜400 meV at ˜100 GPa. At such high densification appreciable bandwidth broadening and gap closure would be anticipated. Reasons for the resilient nonmetallic behavior are briefly discussed.
Structure and dielectric properties of (Ba0.7Sr0.3)1- x Na x (Ti0.9Sn0.1)1- x Nb x O3 ceramics
NASA Astrophysics Data System (ADS)
Ghoudi, Hanen; Chkoundali, Souad; Aydi, Abdelhedi; Khirouni, Kamel
2017-11-01
(Ba0.7Sr0.3)1- x Na x (Ti0.9Sn0.1)1- x Nb x O3 ceramics with compositions x = 0.6, 0.7, 0.8 and 0.9 were synthesized using the solid-state reaction method. These ceramics were examined by X-ray diffraction and dielectric measurements over a broad temperature and frequency ranges. X-ray diffraction patterns revealed a single-perovskite phase crystallized in a cubic structure, for x < 0.8, and in tetragonal, for x ≥ 0.8, with Pm3m and P4mm spaces groups, respectively. Two types of behaviors, classical ferroelectric or relaxor, were observed depending on the x composition. It is noted that temperatures T C (the Curie temperature) or T m (the temperature of maximum permittivity) rise when x increases and the relaxor character grows more significantly when x composition decreases. To analyze the dielectric relaxation degree of relaxor, various models were considered. It was proven that an exponential function could well describe the temperature dependence of the static dielectric constant and relaxation time.
Baiocco, Paola; Franceschini, Stefano; Ilari, Andrea; Colotti, Gianni
2009-01-01
The most promising targets for Leishmania-specific drug design are two key enzymes involved in the unique thiol-based metabolism, common to all parasites of the Trypanosomatidae family: trypanothione synthetase (TryS) and trypanothione reductase (TR). Recently, new inhibitors of TR have been identified such as polyamines and tricyclic compounds. The knowledge of the three-dimensional structure of Leishmania TR will shed light on the mechanism of interaction of these inhibitors with TR and will be the starting point to design novel lead candidates to facilitate the development of new effective and affordable drugs. Trypanothione reductase from Leishmania infantum has been cloned, expressed in E. coli and purified. Crystals were obtained at 294 K by the hanging drop vapour diffusion method using ammonium sulfate as precipitant agent and diffract to better than 2.95 A resolution using a synchrotron radiation source. The crystals exhibit an unusually high solvent content of 74 %, belong to the tetragonal space group P41 with units cell parameters a=b=103.45 A, c=192.62 A and two molecules in the asymmetric unit. The protein X-ray structure has been solved by Molecular Replacement and the model is under construction.
Strain Phase Diagram of SrTiO3 Thin Films
NASA Astrophysics Data System (ADS)
He, Feizhou; Shapiro, S. M.
2005-03-01
SrTiO3 thin films were used as a model system to study the effects of strain and epitaxial constraint on structural phase transitions of oxide films. The basic phenomena revealed will apply to a variety of important structural transitions including the ferroelectric transition. Highly strained, epitaxial films of SrTiO3 were grown on different substrates. The structural phase transition temperature Tc increases from 105 K in bulk STO to 167 K for films under tensile strain and 330 K for films with compressive strain. The measured temperature-strain phase diagram is qualitatively consistent with theory [1], however the increase in Tc is much larger than predicted in all cases. The symmetry of the phases involved in the transition is different from the corresponding bulk structures largely because of epitaxial constraint, the clamping effect. Thus the shape of the STO unit cell is tetragonal at all temperatures. The possibility exists of a very unique low temperature phase with orthorhombic symmetry (Cmcm) but tetragonal unit cell shape. More generally, we have characterized at least three different manifestations of the clamping effect, showing it is much more subtle than usually recognized. This work is supported through NSF DMR-0239667, DMR-0132918, by the Research Corp, and at BNL by the US DOE DE-AC02-98CH10886. [1] N. A. Pertsev, A. K. Tagantsev and N. Setter, Phys. Rev. B61, R825 (2000).
NASA Astrophysics Data System (ADS)
Jao, M.-H.; Teague, M. L.; Huang, J.-S.; Tseng, W.-S.; Yeh, N.-C.
Organic-inorganic hybrid perovskites, arising from research of low-cost high performance photovoltaics, have become promising materials not only for solar cells but also for various optoelectronic and spintronic applications. An interesting aspect of the hybrid perovskites is that their material properties, such as the band gap, can be easily tuned by varying the composition, temperature, and the crystalline phases. Additionally, the surface structure is critically important for their optoelectronic applications. It is speculated that different crystalline facets could show different trap densities, thus resulting in microscopically inhomogeneous performance. Here we report direct studies of the surface structures and electronic properties of hybrid perovskite CH3NH3PbI3 single crystals by scanning tunneling microscopy and spectroscopy (STM/STS). We found long-range spatially homogeneous tunneling conductance spectra with a well-defined energy gap of (1.55 +/- 0.1) eV at 300 K in the tetragonal phase, suggesting high quality of the single crystals. The energy gap increased to (1.81 +/- 0.1) eV in the orthorhombic phase, below the tetragonal-to-orthorhombic phase transition temperature at 150 K. Detailed studies of the temperature evolution in the spatially resolved surface structures and local density of states will be discussed to elucidate how these properties may influence the optoelectronic performance of the hybrid perovskites. We thank the support from NTU in Taiwan and from NSF in the US.
High pressure ferroelastic phase transition in SrTiO3
NASA Astrophysics Data System (ADS)
Salje, E. K. H.; Guennou, M.; Bouvier, P.; Carpenter, M. A.; Kreisel, J.
2011-07-01
High pressure measurements of the ferroelastic phase transition of SrTiO3 (Guennou et al 2010 Phys. Rev. B 81 054115) showed a linear pressure dependence of the transition temperature between the cubic and tetragonal phase. Furthermore, the pressure induced transition becomes second order while the temperature dependent transition is near a tricritical point. The phase transition mechanism is characterized by the elongation and tilt of the TiO6 octahedra in the tetragonal phase, which leads to strongly nonlinear couplings between the structural order parameter, the volume strain and the applied pressure. The phase diagram is derived from the Clausius-Clapeyron relationship and is directly related to a pressure dependent Landau potential. The nonlinearities of the pressure dependent strains lead to an increase of the fourth order Landau coefficient with increasing pressure and, hence, to a tricritical-second order crossover. This behaviour is reminiscent of the doping related crossover in isostructural KMnF3.
Generalized One-Band Model Based on Zhang-Rice Singlets for Tetragonal CuO.
Hamad, I J; Manuel, L O; Aligia, A A
2018-04-27
Tetragonal CuO (T-CuO) has attracted attention because of its structure similar to that of the cuprates. It has been recently proposed as a compound whose study can give an end to the long debate about the proper microscopic modeling for cuprates. In this work, we rigorously derive an effective one-band generalized t-J model for T-CuO, based on orthogonalized Zhang-Rice singlets, and make an estimative calculation of its parameters, based on previous ab initio calculations. By means of the self-consistent Born approximation, we then evaluate the spectral function and the quasiparticle dispersion for a single hole doped in antiferromagnetically ordered half filled T-CuO. Our predictions show very good agreement with angle-resolved photoemission spectra and with theoretical multiband results. We conclude that a generalized t-J model remains the minimal Hamiltonian for a correct description of single-hole dynamics in cuprates.
Effect of the CTAB concentration on the upconversion emission of ZrO 2:Er 3+ nanocrystals
NASA Astrophysics Data System (ADS)
López-Luke, T.; De la Rosa, E.; Sólis, D.; Salas, P.; Angeles-Chavez, C.; Montoya, A.; Díaz-Torres, L. A.; Bribiesca, S.
2006-10-01
Upconversion emission of ZrO 2:Er 3+ (0.2 mol%) nanophosphor were studied as function of surfactant concentration after excitation at 968 nm. The strong green emission was produced by the transition 2H 11/2 + 4S 3/2 → 4I 15/2 and was explained in terms of cooperative energy transfer between neighboring ions. The upconverted signal was enhanced but the fluorescence decay time was reduced as either the surfactant concentration increases or the annealing time reduces. Experimental results show that surfactant concentration controls the particle size and morphology while annealing time control the phase composition and crystallite size. The highest intensity was obtained for a sample composed of a mixture of tetragonal (33 wt.%) and monoclinic (67 wt.%) phase with crystallite size of 31 and 59 nm, respectively. This result suggests that tetragonal crystalline structure and small crystallite size are more favorable for the upconversion emission.
NASA Astrophysics Data System (ADS)
Piosik, A.; Żurowski, K.; Pietralik, Z.; Hędzelek, W.; Kozak, M.
2017-11-01
Zirconium dioxide has been widely used in dental prosthetics. However, the improper mechanical treatment can induce changes in the microstructure of zirconium dioxide. From the viewpoint of mechanical properties and performance, the phase transitions of ZrO2 from the tetragonal to the monoclinic phase induced by mechanical processing, are particularly undesirable. In this study, the phase transitions of yttrium stabilized zirconium dioxide (Y-TZP) induced by mechanical treatment are investigated by the scanning electron microscopy (SEM), atomic force microscopy (AFM) and powder diffraction (XRD). Mechanical stress was induced by different types of drills used presently in dentistry. At the same time the surface temperature was monitored during milling using a thermal imaging camera. Diffraction analysis allowed determination of the effect of temperature and mechanical processing on the scale of induced changes. The observed phase transition to the monoclinic phase was correlated with the methods of mechanical processing.
Eco-friendly p-type Cu2SnS3 thermoelectric material: crystal structure and transport properties
Shen, Yawei; Li, Chao; Huang, Rong; Tian, Ruoming; Ye, Yang; Pan, Lin; Koumoto, Kunihito; Zhang, Ruizhi; Wan, Chunlei; Wang, Yifeng
2016-01-01
As a new eco-friendly thermoelectric material, copper tin sulfide (Cu2SnS3) ceramics were experimentally studied by Zn-doping. Excellent electrical transport properties were obtained by virtue of 3-dimensionally conductive network for holes, which are less affected by the coexistence of cubic and tetragonal phases that formed upon Zn subsitition for Sn; a highest power factors ~0.84 mW m−1 K−2 at 723 K was achieved in the 20% doped sample. Moreover, an ultralow lattice thermal conductivity close to theoretical minimum was observed in these samples, which could be related to the disordering of atoms in the coexisting cubic and tetragonal phases and the interfaces. Thanks to the phonon-glass-electron-crystal features, a maximum ZT ~ 0.58 was obtained at 723 K, which stands among the tops for sulfide thermoelectrics at the same temperature. PMID:27666524
NASA Astrophysics Data System (ADS)
Jiao, Zhen; Liu, Qi-Jun; Liu, Fu-Sheng; Tang, Bin
2018-06-01
Using the density functional theory calculations, the mechanical and electronic properties of NbAl3 under different tensile loads were investigated. The calculated lattice parameters, elastic constants and mechanical properties (bulk modulus, shear modulus, Young's modulus, Poisson's ratio, Pugh's criterion and Cauchy's pressure) indicated that our results were in agreement with the published experimental and theoretical data at zero tension. With respect to NbAl3 under tension in this paper, the crystal structure was changed from tetragonal to orthorhombic under tension along the [100] and [101] directions. The NbAl3 crystal has been classified as brittle material under tension from 0 to 20 GPa. The obtained Young's modulus and Debye temperature monotonically decreased with increasing tension stress. Combining with mechanical and electronic properties in detail, the decreased mechanical properties were mainly due to the weakening of covalency.
Generalized One-Band Model Based on Zhang-Rice Singlets for Tetragonal CuO
NASA Astrophysics Data System (ADS)
Hamad, I. J.; Manuel, L. O.; Aligia, A. A.
2018-04-01
Tetragonal CuO (T-CuO) has attracted attention because of its structure similar to that of the cuprates. It has been recently proposed as a compound whose study can give an end to the long debate about the proper microscopic modeling for cuprates. In this work, we rigorously derive an effective one-band generalized t -J model for T-CuO, based on orthogonalized Zhang-Rice singlets, and make an estimative calculation of its parameters, based on previous ab initio calculations. By means of the self-consistent Born approximation, we then evaluate the spectral function and the quasiparticle dispersion for a single hole doped in antiferromagnetically ordered half filled T-CuO. Our predictions show very good agreement with angle-resolved photoemission spectra and with theoretical multiband results. We conclude that a generalized t -J model remains the minimal Hamiltonian for a correct description of single-hole dynamics in cuprates.
Absence of metastable states in strained monoatomic cubic crystals.
NASA Astrophysics Data System (ADS)
Aguayo, Aarón; Mehl, Michael L.; de Coss, Romeo
2005-03-01
The Bain path distortion of a metal with an fcc (bcc) ground state toward the bcc (fcc) structure initially requires an increase in energy, but at some point along the Bain path the energy will again decrease until a local minimum is reached. We have studied the tetragonal distortion (Bain path) of monoatomic cubic crystals, using a combination of parametrized tight-binding and first-principles linearized augmented plane wave calculations. We show that this local minimum is unstable with respect to an elastic distortion, except in the rare case that the minimum is at the bcc (fcc) point on the Bain path. This shows that body-centered-tetragonal phases of these materials, which have been seen in epitaxially grown thin films, must be stabilized by the substrate and cannot be freestanding films. This work was partially supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant No. 43830-F.
A self-ordered, body-centered tetragonal superlattice of SiGe nanodot growth by reduced pressure CVD
NASA Astrophysics Data System (ADS)
Yamamoto, Yuji; Zaumseil, Peter; Capellini, Giovanni; Schubert, Markus Andreas; Hesse, Anne; Albani, Marco; Bergamaschini, Roberto; Montalenti, Francesco; Schroeder, Thomas; Tillack, Bernd
2017-12-01
Self-ordered three-dimensional body-centered tetragonal (BCT) SiGe nanodot structures are fabricated by depositing SiGe/Si superlattice layer stacks using reduced pressure chemical vapor deposition. For high enough Ge content in the island (>30%) and deposition temperature of the Si spacer layers (T > 700 °C), we observe the formation of an ordered array with islands arranged in staggered position in adjacent layers. The in plane periodicity of the islands can be selected by a suitable choice of the annealing temperature before the Si spacer layer growth and of the SiGe dot volume, while only a weak influence of the Ge concentration is observed. Phase-field simulations are used to clarify the driving force determining the observed BCT ordering, shedding light on the competition between heteroepitaxial strain and surface-energy minimization in the presence of a non-negligible surface roughness.
Epitaxial ternary nitride thin films prepared by a chemical solution method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Hongmei; Feldmann, David M; Wang, Haiyan
2008-01-01
It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.
Structural and Na-ion conduction characteristics of Na 3PS xSe 4–x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bo, Shou -Hang; Wang, Yan; Ceder, Gerbrand
The recent discovery of the isostructrual cubic Na 3PS 4 and Na 3PSe 4 as fast Na-ion conductors provided a general structural framework for the exploration of new sodium superionic conductors. In this work, we systematically investigated the structures and ionic conduction characteristics of a series of compounds with the general chemical formula of Na 3PS xSe 4–x. Synthesis of Na 3PS 4 under different conditions (e.g., temperature, reaction vessel, mass of the precursors) reveals the reactivity of the precursors with the reaction tubes, producing different polymorphs. X-ray diffraction studies on the solid solution phases Na 3PS xSe 4–x identifiedmore » a tetragonal-to-cubic phase transition with increasing Se concentration. This observation is consistent with the computed stability of the tetragonal and cubic polymorphs, where the energy difference between the two polymorphs becomes very close to zero in Se-rich compositions. Furthermore, ab initio molecular dynamic simulations suggest that the fast Na-ion conduction in Na 3PS xSe 4–x may not be causally related with the symmetry or the composition of these phases. The formation of defects, instead, enables fast Na-ion conduction in this class of materials.« less
Structural and Na-ion conduction characteristics of Na 3 PS x Se 4-x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bo, Shou-Hang; Wang, Yan; Ceder, Gerbrand
The recent discovery of the isostructrual cubic Na 3PS 4 and Na 3PSe 4 as fast Na-ion conductors provided a general structural framework for the exploration of new sodium superionic conductors. In this work, we systematically investigated the structures and ionic conduction characteristics of a series of compounds with the general chemical formula of Na 3PS xSe 4-x. Synthesis of Na 3PS 4 under different conditions (e.g., temperature, reaction vessel, mass of the precursors) reveals the reactivity of the precursors with the reaction tubes, producing different polymorphs. X-ray diffraction studies on the solid solution phases Na 3PS xSe 4-x more » identified a tetragonal-to-cubic phase transition with increasing Se concentration. This observation is consistent with the computed stability of the tetragonal and cubic polymorphs, where the energy difference between the two polymorphs becomes very close to zero in Se-rich compositions. Furthermore, ab initio molecular dynamic simulations suggest that the fast Na-ion conduction in Na 3PS xSe 4-x may not be causally related with the symmetry or the composition of these phases. The formation of defects, instead, enables fast Na-ion conduction in this class of materials.« less
Noad, Hilary; Spanton, Eric M.; Nowack, Katja C.; ...
2016-11-28
Strontium titanate is a low-temperature, non–Bardeen-Cooper-Schrieffer superconductor that superconducts to carrier concentrations lower than in any other system and exhibits avoided ferroelectricity at low temperatures. Neither the mechanism of superconductivity in strontium titanate nor the importance of the structure and dielectric properties for the superconductivity are well understood. We studied the effects of twin structure on superconductivity in a 5.5-nm-thick layer of niobium-doped SrTiO 3 embedded in undoped SrTiO 3. We used a scanning superconducting quantum interference device susceptometer to image the local diamagnetic response of the sample as a function of temperature. We observed regions that exhibited a superconductingmore » transition temperature T c ≳ 10% higher than the temperature at which the sample was fully superconducting. The pattern of these regions varied spatially in a manner characteristic of structural twin domains. Some regions are too wide to originate on twin boundaries; therefore, we propose that the orientation of the tetragonal unit cell with respect to the doped plane affects T c. Finally, our results suggest that the anisotropic dielectric properties of SrTiO 3 are important for its superconductivity and need to be considered in any theory of the mechanism of the superconductivity.« less
NASA Astrophysics Data System (ADS)
Brajesh, Kumar; Tanwar, Khagesh; Abebe, Mulualem; Ranjan, Rajeev
2015-12-01
There is great interest in lead-free (B a0.85C a0.15 ) (T i0.90Z r0.10 ) O3 (15/10BCTZ) because of its exceptionally large piezoelectric response [Liu and Ren, Phys. Rev. Lett. 103, 257602 (2009), 10.1103/PhysRevLett.103.257602]. In this paper, we have analyzed the nature of: (i) crystallographic phase coexistence at room temperature, (ii) temperature- and field-induced phase transformation to throw light on the atomistic mechanisms associated with the large piezoelectric response of this system. A detailed temperature-dependent dielectric and lattice thermal expansion study proved that the system exhibits a weak dielectric relaxation, characteristic of a relaxor ferroelectric material on the verge of exhibiting a normal ferroelectric-paraelectric transformation. Careful structural analysis revealed that a ferroelectric state at room temperature is composed of three phase coexistences, tetragonal (P 4 m m )+ orthorhombic(Amm 2 )+rhombohedral(R 3 m ) . We also demonstrate that the giant piezoresponse is associated with a significant fraction of the tetragonal phase transforming to rhombohedral. It is argued that the polar nanoregions associated with relaxor ferroelectricity amplify the piezoresponse by providing an additional degree of intrinsic structural inhomogeneity to the system.
Structural and Na-ion conduction characteristics of Na 3PS xSe 4–x
Bo, Shou -Hang; Wang, Yan; Ceder, Gerbrand
2016-05-19
The recent discovery of the isostructrual cubic Na 3PS 4 and Na 3PSe 4 as fast Na-ion conductors provided a general structural framework for the exploration of new sodium superionic conductors. In this work, we systematically investigated the structures and ionic conduction characteristics of a series of compounds with the general chemical formula of Na 3PS xSe 4–x. Synthesis of Na 3PS 4 under different conditions (e.g., temperature, reaction vessel, mass of the precursors) reveals the reactivity of the precursors with the reaction tubes, producing different polymorphs. X-ray diffraction studies on the solid solution phases Na 3PS xSe 4–x identifiedmore » a tetragonal-to-cubic phase transition with increasing Se concentration. This observation is consistent with the computed stability of the tetragonal and cubic polymorphs, where the energy difference between the two polymorphs becomes very close to zero in Se-rich compositions. Furthermore, ab initio molecular dynamic simulations suggest that the fast Na-ion conduction in Na 3PS xSe 4–x may not be causally related with the symmetry or the composition of these phases. The formation of defects, instead, enables fast Na-ion conduction in this class of materials.« less
Agarwal, A; Sheoran, A; Sanghi, S; Bhatnagar, V; Gupta, S K; Arora, M
2010-03-01
Glasses with compositions xNb(2)O(5).(30-x)M(2)O.69B(2)O(3) (where M=Li, Na, K; x=0, 4, 8 mol%) doped with 1 mol% V(2)O(5) have been prepared using normal melt quench technique. The IR transmission spectra of the glasses have been studied over the range 400-4000 cm(-1). The changes caused by the addition of Nb(2)O(5) on the structure of these glasses have been reported. The electron paramagnetic resonance spectra of VO(2+) ions in these glasses have been recorded in X-band (9.14 GHz) at room temperature (300 K). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) due to V(4+) ions which exist as VO(2+) ions in octahedral coordination with a tetragonal compression in the present glasses. The tetragonality of V(4+)O(6) complex decreases with increasing concentration of Nb(2)O(5). The 3d(xy) orbit contracts with increase in Nb(2)O(5):M(2)O ratio. Values of the theoretical optical basicity, Lambda(th), have also been reported. Copyright 2009 Elsevier B.V. All rights reserved.
Static high pressure studies on Nd and Sc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akella, J.; Xu, J.; Smith, G.S.
1985-06-24
We have investigated the crystal structural transformations in neodymium and scandium up to 4.0 GPa pressure and at room temperature, in a diamond-anvil high pressure apparatus. Nd has a double hexagonal-close packed (dhcp) structure at ambient pressure and temperature. Then it transforms to a face-centered cubic (fcc) structure at 3.8 GPa, which further transforms to a triple hexagonal-close packed structure (thcp) at about 18.0 GPa. In scandium we observed only one transformation from the hexagonal-close packed (hcp) structure at room temperature to a tetragonal structure. This transformation occurs between 19.0 and 23.2 GPa pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yongkun; Tang, Kaibin, E-mail: kbtang@ustc.edu.cn; Zhu, Baichuan
2015-05-15
Highlights: • A new oxyfluoride compound Sr{sub 2}ScO{sub 3}F was prepared by a solid state route. • The structure of this compound was determined by GSAS program based on XRD data. • The photocatalytic property was investigated under UV irradiation. - Abstract: A new Ruddlesden–Popper type scandium oxyfluoride, Sr{sub 2}ScO{sub 3}F, was synthesized by a conventional solid state reaction route. The detailed structure of Sr{sub 2}ScO{sub 3}F was investigated using X-ray diffraction (XRD) and selected area electron diffraction (SAED). The disorder distribution pattern of fluorine anions was determined by the {sup 19}F nuclear magnetic resonance (NMR) spectrum. The compound crystallizesmore » in a K{sub 2}NiF{sub 4}-type tetragonal structure (space group I4/mmm) with O/F anions disordered over the apical sites of the perovskite-type Sc(O,F){sub 6} octahedron layers interleaved with strontium cations. Ultraviolet–visible (UV–vis) diffuse reflection spectrum of the prepared Sr{sub 2}ScO{sub 3}F indicates that it has an absorption in the UV–vis region. The photocatalytic activity of Sr{sub 2}ScO{sub 3}F was further investigated, showing an effective photodegradation of Rhodamine-B (RB) within 2 h under UV light irradiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrote, Ana M.; Redondo, Pilar; Montoya, Guillermo, E-mail: gmontoya@cnio.es
2014-02-19
The C-terminal kinase domain of TLK2 (a human tousled-like kinase) has been cloned and overexpressed in Escherichia coli followed by purification to homogeneity. Crystallization experiments in the presence of ATP-γ-S yielded crystals suitable for X-ray diffraction analysis belonging to two different space groups: tetragonal I4{sub 1}22 and cubic P2{sub 1}3. Tousled-like kinases (TLKs) are an evolutionarily conserved family of serine/threonine protein kinases involved in chromatin dynamics, including DNA replication and repair, transcription and chromosome segregation. The two members of the family reported in humans, namely TLK1 and TLK2, localize to the cell nucleus and are capable of forming homo- ormore » hetero-oligomers by themselves. To characterize the role of TLK2, its C-terminal kinase domain was cloned and overexpressed in Escherichia coli followed by purification to homogeneity. Crystallization experiments in the presence of ATP-γ-S yielded crystals suitable for X-ray diffraction analysis belonging to two different space groups: tetragonal I4{sub 1}22 and cubic P2{sub 1}3. The latter produced the best diffracting crystal (3.4 Å resolution using synchrotron radiation), with unit-cell parameters a = b = c = 126.05 Å, α = β = γ = 90°. The asymmetric unit contained one protein molecule, with a Matthews coefficient of 4.59 Å{sup 3} Da{sup −1} and a solvent content of 73.23%.« less
NASA Astrophysics Data System (ADS)
Srikant, V.; Tarsa, E. J.; Clarke, D. R.; Speck, J. S.
1995-02-01
Expitaxial ferroelectric BaTiO3 thin films have been grown on (001) MgO and MgO-buffered (001) GaAs substrates by pulsed laser deposition to explore the effect of substrate lattice parameter. X-ray-diffraction studies showed that the BaTiO3 films on both MgO single-crystal substrates and MgO-buffered (001) GaAs substrates have a cube-on-cube epitaxy; however, for the BaTiO3 films grown on MgO the spacing of the planes parallel to the substrate was close to the c-axis dimension of the unconstrained tetragonal phase, whereas the BaTiO3 films on MgO/GaAs exhibited a spacing closer to the a-axis dimension of the unconstrained tetragonal phase. The cube-on-cube epitaxy was maintained through the heterostructures even when thin epitaxial intermediate buffer layers of SrTiO3 and La(0.5)Sr(0.5)CoO3 were used. The intermediate layers had no effect on the position of the BaTiO3 peak in theta - 2 theta scans. Together, these observations indicate that, for the materials combinations studied, it is the thermal-expansion mismatch between the film and the underlying substrate that determines the crystallographic orientation of the BaTiO3 film. Preliminary measurements indicate that the BaTiO3 films are 'weakly' ferroelectric.
Raman scattering in HfxZr1-xO2 nanoparticles
NASA Astrophysics Data System (ADS)
Robinson, Richard D.; Tang, Jing; Steigerwald, Michael L.; Brus, Louis E.; Herman, Irving P.
2005-03-01
Raman spectroscopy demonstrates that ˜5nm dimension HfxZr1-xO2 nanocrystals prepared by a nonhydrolytic sol-gel synthesis method are solid solutions of hafnia and zirconia, with no discernable segregation within the individual nanoparticles. Zirconia-rich particles are tetragonal and ensembles of hafnia-rich particles show mixed tetragonal/monoclinic phases. Sintering at 1200 °C produces larger particles (20-30 nm) that are monoclinic. A simple lattice dynamics model with composition-averaged cation mass and scaled force constants is used to understand how the Raman mode frequencies vary with composition in the tetragonal HfxZr1-xO2 nanoparticles. Background luminescence from these particles is minimized after oxygen treatment, suggesting possible oxygen defects in the as-prepared particles. Raman scattering is also used to estimate composition and the relative fractions of tetragonal and monoclinic phases. In some regimes there are mixed phases, and Raman analysis suggests that in these regimes the tetragonal phase particles are relatively rich in zirconium and the monoclinic phase particles are relatively rich in hafnium.
NASA Astrophysics Data System (ADS)
Yamada, Hideto; Matsuoka, Takayuki; Yamazaki, Masato; Ohbayashi, Kazushige; Ida, Takashi
2018-01-01
The structures of the main (K1- x Na x )NbO3 perovskite in a high-performance lead-free piezoelectric ceramic composite (K1- x Na x )0.86Ca0.04Li0.02Nb0.85O3-δ-K0.85Ti0.85Nb1.15O5-BaZrO3-MgO-Fe2O3 (x = 0.52 and 0.70) with trace amounts of LiMgFeTiO4 inverse spinel and (Li,K)2(Mg,Fe,Ti,Nb)6O13 layered structure have been investigated by transmission electron microscopy (TEM) and synchrotron powder X-ray diffractometry (XRD) with varying temperatures. The bright-field TEM images have shown tetragonal 90°-domain contrasts at 80 and 40 °C, and the XRD profile has been simulated by adding an average structure of two differently oriented tetragonal structures bound by a 90°-domain wall for the x = 0.52 sample. Aggregates of tilted NbO6 nanodomains have been observed in a high-resolution TEM image, and the crossover of P4mm-Amm2 features from 60 to 20 °C and diffuse 2 × 2 × 2 superlattice reflections of the tilted NbO6 Imm2 structure have been observed in XRD data for the x = 0.70 sample.
La{sup 3+} doping of the Sr{sub 2}CoWO{sub 6} double perovskite: A structural and magnetic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, C.A.; Viola, M.C.; Pedregosa, J.C.
2008-11-15
La-doped Sr{sub 2}CoWO{sub 6} double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, {lambda}=1.594 A). At room temperature, the replacement of Sr{sup 2+} by La{sup 3+} induces a change of the tetragonal structure, space group I4/m of the undoped Sr{sub 2}CoWO{sub 6} into the distorted monoclinic crystal structure, space group P2{sub 1}/n, Z=2. The structure of La-doped phases contains alternating CoO{sub 6} and (Co/W)O{sub 6} octahedra,more » almost fully ordered. On the other hand, the replacement of Sr{sup 2+} by La{sup 3+} induces a partial replacement of W{sup 6+} by Co{sup 2+} into the B sites, i.e. Sr{sub 2-x}La{sub x}CoW{sub 1-y}Co{sub y}O{sub 6} (y=x/4) with segregation of SrWO{sub 4}. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below T{sub N}=24 K independently of the La-substitution. - Graphical abstract: La-doped Sr{sub 2}CoWO{sub 6} double perovskites have been prepared in polycrystalline form by solid-state reaction. The general formula of these compounds is Sr{sub 2-x}La{sub x}CoW{sub 1-y}Co{sub y}O{sub 6} (y=x/4). XRPD, NPD and magnetic susceptibility studies were performed. The structure of monoclinic La-doped phases contains alternating CoO{sub 6} and (Co/W)O{sub 6} octahedra, almost fully ordered. NPD and magnetic measurements indicate an antiferromagnetic ordering at low temperature.« less
NASA Astrophysics Data System (ADS)
Kim, Su Yeon; Jeong, Jong Seok; Mkhoyan, K. Andre; Jang, Ho Seong
2016-05-01
Highly efficient downconversion (DC) green-emitting LiYF4:Ce,Tb nanophosphors have been synthesized for bright dual-mode upconversion (UC) and DC green-emitting core/double-shell (C/D-S) nanophosphors--Li(Gd,Y)F4:Yb(18%),Er(2%)/LiYF4:Ce(15%),Tb(15%)/LiYF4--and the C/D-S structure has been proved by extensive scanning transmission electron microscopy (STEM) analysis. Colloidal LiYF4:Ce,Tb nanophosphors with a tetragonal bipyramidal shape are synthesized for the first time and they show intense DC green light via energy transfer from Ce3+ to Tb3+ under illumination with ultraviolet (UV) light. The LiYF4:Ce,Tb nanophosphors show 65 times higher photoluminescence intensity than LiYF4:Tb nanophosphors under illumination with UV light and the LiYF4:Ce,Tb is adapted into a luminescent shell of the tetragonal bipyramidal C/D-S nanophosphors. The formation of the DC shell on the core significantly enhances UC luminescence from the UC core under irradiation of near infrared light and concurrently generates DC luminescence from the core/shell nanophosphors under UV light. Coating with an inert inorganic shell further enhances the UC-DC dual-mode luminescence by suppressing the surface quenching effect. The C/D-S nanophosphors show 3.8% UC quantum efficiency (QE) at 239 W cm-2 and 73.0 +/- 0.1% DC QE. The designed C/D-S architecture in tetragonal bipyramidal nanophosphors is rigorously verified by an energy dispersive X-ray spectroscopy (EDX) analysis, with the assistance of line profile simulation, using an aberration-corrected scanning transmission electron microscope equipped with a high-efficiency EDX. The feasibility of these C/D-S nanophosphors for transparent display devices is also considered.Highly efficient downconversion (DC) green-emitting LiYF4:Ce,Tb nanophosphors have been synthesized for bright dual-mode upconversion (UC) and DC green-emitting core/double-shell (C/D-S) nanophosphors--Li(Gd,Y)F4:Yb(18%),Er(2%)/LiYF4:Ce(15%),Tb(15%)/LiYF4--and the C/D-S structure has been proved by extensive scanning transmission electron microscopy (STEM) analysis. Colloidal LiYF4:Ce,Tb nanophosphors with a tetragonal bipyramidal shape are synthesized for the first time and they show intense DC green light via energy transfer from Ce3+ to Tb3+ under illumination with ultraviolet (UV) light. The LiYF4:Ce,Tb nanophosphors show 65 times higher photoluminescence intensity than LiYF4:Tb nanophosphors under illumination with UV light and the LiYF4:Ce,Tb is adapted into a luminescent shell of the tetragonal bipyramidal C/D-S nanophosphors. The formation of the DC shell on the core significantly enhances UC luminescence from the UC core under irradiation of near infrared light and concurrently generates DC luminescence from the core/shell nanophosphors under UV light. Coating with an inert inorganic shell further enhances the UC-DC dual-mode luminescence by suppressing the surface quenching effect. The C/D-S nanophosphors show 3.8% UC quantum efficiency (QE) at 239 W cm-2 and 73.0 +/- 0.1% DC QE. The designed C/D-S architecture in tetragonal bipyramidal nanophosphors is rigorously verified by an energy dispersive X-ray spectroscopy (EDX) analysis, with the assistance of line profile simulation, using an aberration-corrected scanning transmission electron microscope equipped with a high-efficiency EDX. The feasibility of these C/D-S nanophosphors for transparent display devices is also considered. Electronic supplementary information (ESI) available: XRD patterns, PL and PLE spectra, SEM and HR-TEM images, PL decay times, photographs showing the transparent nanophosphor solutions and their dual-mode luminescence, and additional EDX data. See DOI: 10.1039/c5nr05722a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tao; Du, Zehui; Tamura, Nobumichi
(1-x)Pb(Zn 1/3Nb 2/3)O 3-xPbTiO 3 ((1-x)PZN-xPT in short) is one of the most important piezoelectric materials. In this study, we extensively investigated (1-x)PZN-xPT (x = 0.07–0.11) ferroelectric single crystals using in-situ synchrotron μXRD, complemented by TEM and PFM, to correlate microstructures with phase transitions. The results reveal that (i) at 25°C, the equilibrium state of (1-x)PZN-xPT is a metastable orthorhombic phase for x = 0.07 and 0.08, while it shows coexistence of orthorhombic and tetragonal phases for x = 0.09 and x = 0.11, with all ferroelectric phases accompanied by ferroelastic domains; (ii) upon heating, the phase transformation in xmore » = 0.07 is Orthorhombic → Monoclinic → Tetragonal → Cubic. The coexistence of ferroelectric tetragonal and paraelectric cubic phases was in-situ observed in x = 0.08 above Curie temperature (T C), and (iii) phase transition can be explained by the evolution of the ferroelectric and ferroelastic domains. These results disclose that (1-x)PZN-xPT are in an unstable regime, which is possible factor for its anomalous dielectric response and high piezoelectric coefficient.« less
Li, Tao; Du, Zehui; Tamura, Nobumichi; ...
2017-11-10
(1-x)Pb(Zn 1/3Nb 2/3)O 3-xPbTiO 3 ((1-x)PZN-xPT in short) is one of the most important piezoelectric materials. In this study, we extensively investigated (1-x)PZN-xPT (x = 0.07–0.11) ferroelectric single crystals using in-situ synchrotron μXRD, complemented by TEM and PFM, to correlate microstructures with phase transitions. The results reveal that (i) at 25°C, the equilibrium state of (1-x)PZN-xPT is a metastable orthorhombic phase for x = 0.07 and 0.08, while it shows coexistence of orthorhombic and tetragonal phases for x = 0.09 and x = 0.11, with all ferroelectric phases accompanied by ferroelastic domains; (ii) upon heating, the phase transformation in xmore » = 0.07 is Orthorhombic → Monoclinic → Tetragonal → Cubic. The coexistence of ferroelectric tetragonal and paraelectric cubic phases was in-situ observed in x = 0.08 above Curie temperature (T C), and (iii) phase transition can be explained by the evolution of the ferroelectric and ferroelastic domains. These results disclose that (1-x)PZN-xPT are in an unstable regime, which is possible factor for its anomalous dielectric response and high piezoelectric coefficient.« less
The Effect of Solution Conditions on the Nucleation Kinetics of Tetragonal Lysozyme Crystals
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Baird, James K.; Pusey, Marc L.
1998-01-01
An understanding of protein crystal nucleation rates and the effect of solution conditions upon them, is fundamental to the preparation of protein crystals of the desired size and shape for X-ray diffraction analysis. The ability to predict the effect of supersaturation, temperature, pH and precipitant concentration on the number and size of crystals formed is of great benefit in the pursuit of protein structure analysis. In this study we experimentally examine the effect of supersaturation, temperature, pH and sodium chloride concentration on the nucleation rate of tetragonal chicken egg white lysozyme crystals. In order to do this batch crystallization plates were prepared at given solution concentrations and incubated at three different temperatures over the period of one week. The number of crystals per well with their size and dimensions were recorded and correlated against solution conditions. Duplicate experiments indicate the reproducibility of the technique. Although it is well known that crystal numbers increase with increasing supersaturation, large changes in crystal number were also correlated against solution conditions of temperature, pH and salt concentration over the same supersaturation ranges. Analysis of these results enhance our understanding of the effect of solution conditions such as the dramatic effect that small changes in charge and ionic strength can have on the number of tetragonal lysozyme crystals that form and grow in solution.
Yokosawa, Tadahiro; Awana, V P S Veer Pal Singh; Kimoto, Koji; Takayama-Muromachi, Eiji; Karppinen, Maarit; Yamauchi, Hisao; Matsui, Yoshio
2004-01-01
Microstructures of the RuSr(2)Gd(1.5)Ce(0.5)Cu(2)O(10-delta) (Ru-1222) and RuSr(2)GdCu(2)O(8) (Ru-1212) magneto-superconductors have been investigated by using selected-area electron diffraction, convergent-beam electron diffraction, dark-field electron microscopy and high-resolution electron microscopy at room temperature. Both Ru-1212 and Ru-1222 consist of nm-size domains stacked along the [Formula: see text] direction, where the domains are formed by two types of superstructures due to ordering of rotated RuO(6) octahedra about the c-axis. In Ru-1212, both primitive-and body-centered tetragonal superstructures (the possible space groups: P4/mbm and I4/mcm) are derived to form the corresponding nm-domains. It is of great interest that Ru-1212 consists of domains of two crystallographically different superstructures, while the similar domains observed in Ru-1222 have crystallographically identical superstructure with an orthorhombic symmetry (possible space group: Aeam), related by 90 degrees rotation around the c-axis (Yokosawa et al., 2003, submitted for publication).
NASA Astrophysics Data System (ADS)
Yaduvanshi, Namrata; Kapoor, Shilpa; Singh, Sadhna
2018-05-01
We have investigated the structural and mechanical properties of Cerium and Praseodymium Bismuthides under pressure by means of a three body interaction potential model which includes long range columbic interaction, three body interactions and short range overlap repulsive interaction operative up to second nearest neighbor. These compounds shows transition from NaCl structure to body-centered tetragonal (BCT) structure (distorted CsCl-type P4/mmm). The elastic constants and their properties are also reported. Our calculated results of phase transitions and volume collapses of these compounds show a good agreement with available theoretical and experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Hernandez, J.; Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana; Lemus-Santana, A.A.
2010-01-15
The materials under study are pillared solids T[Ni(CN){sub 4}].xpyz with one and two (x=1,2) pyrazine (pyz) molecules and where T=Mn, Co, Ni, Zn, Cd. Stimulated by their structural features and potential role as prototype of porous solids for hydrogen storage, the structural stability under cryogenic conditions for this series of pillared solids was studied. At low temperature, in the 100-200 K range, the occurrence of a reversible structural transformation was found. For T=Mn, Co, Zn, Cd, with x=2, the structural transformation was observed to occur around 185 K, and the low temperature phase crystallizes with a monoclinic unit cell (spacemore » group Pc). This structure change results from certain charge redistribution on cooling within the involved ligands. For T=Ni with x=1, both the low and high temperature phases crystallize with unit cells of tetragonal symmetry, within the same space group but with a different unit cell volume. In this case the structure change is observed around 120 K. Above that temperature the rotational states for the pyrazine molecule are thermally excited and all the pyrazine molecules in the structure become equivalent. Under this condition the material structure is described using a smaller structural unit. The structural study using X-ray powder diffraction data was complemented with calorimetric and Raman spectroscopy measurements. For the low temperature phases the crystal structures were solved from Patterson methods and then refined using the Rietveld method. - Graphical abstract: Low temperature ordered structure for pyrazine in T[Ni(CN){sub 4}].pyz.« less
Effect of high intensity ultrasound on the mesostructure of hydrated zirconia
NASA Astrophysics Data System (ADS)
Kopitsa, G. P.; Baranchikov, A. E.; Ivanova, O. S.; Yapryntsev, A. D.; Grigoriev, S. V.; Pranzas, P. Klaus; Ivanov, V. K.
2012-02-01
We report structural changes in amorphous hydrated zirconia caused by high intensity ultrasonic treatment studied by means of small-angle neutron scattering (SANS) and X-ray diffraction (XRD). It was established that sonication affects the mesostructure of ZrO2×xH2O gels (i.e. decreases their homogeneity, increases surface fractal dimension and the size of monomer particles). Ultrasound induced structural changes in hydrated zirconia governs its thermal behaviour, namely decreases the rate of tetragonal to monoclinic zirconia phase transition.
Rietveld analysis of the cubic crystal structure of Na-stabilized zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fagherazzi, G.; Canton, P.; Benedetti, A.
Using x-ray Rietveld analysis the fcc (fluorite-type) structure of a Na-containing nanocrystalline zirconia powder (9.5 nm estimated of crystallite size) obtained by precipitation and subsequent calcination has been confirmed. The result shows that using conventional x-ray diffraction techniques the cubic crystallographic form of ZrO{sub 2} from the tetragonal one in nanosized powders. These conclusions are supported by the findings of independent Raman scattering experiments. {copyright} {ital 1997 Materials Research Society.}
The Crystal Structure of Thorium and Zirconium Dihydrides by X-ray and Neutron Diffraction
DOE R&D Accomplishments Database
Rundle, R.E.; Shull, C.G.; Wollan, E.O.
1951-04-20
Thorium forms a tetragonal lower hydride of composition ThH{sub 2}. The hydrides ThH{sub 2}, ThD{sub 2}, and ZrD{sub 2} have been studied by neutron diffraction in order that hydrogen positions could be determined. The hydrides are isomorphous, and have a deformed fluorite structure. Metal-hydrogen distances in thorium hydride are unusually large, as in UH{sub 3}. Thorium and zirconium scattering amplitudes and a revised scattering amplitude for deuterium are reported.
NASA Astrophysics Data System (ADS)
Skornyakov, S. L.; Anisimov, V. I.; Vollhardt, D.; Leonov, I.
2018-03-01
We report a detailed theoretical study of the electronic structure, spectral properties, and lattice parameters of bulk FeSe under pressure using a fully charge self-consistent implementation of the density functional theory plus dynamical mean-field theory method (DFT+DMFT). In particular, we perform a structural optimization and compute the evolution of the lattice parameters (volume, c /a ratio, and the internal z position of Se) and the electronic structure of the tetragonal (space group P 4 /n m m ) unit cell of paramagnetic FeSe. Our results for the lattice parameters obtained by structural optimization using DFT+DMFT are in good quantitative agreement with experiment, implying a crucial importance of electron correlations in determining the correct lattice properties of FeSe. Most importantly, upon compression to 10 GPa our results reveal a topological change in the Fermi surface (Lifshitz transition) which is accompanied by a two- to three-dimensional crossover and a small reduction of the quasiparticle mass renormalization compared to ambient pressure. The behavior of the momentum-resolved magnetic susceptibility χ (q ) shows no topological changes of magnetic correlations under pressure but demonstrates a reduction of the degree of the in-plane (π ,π ) stripe-type nesting. Our results for the electronic structure and lattice parameters of FeSe are in good qualitative agreement with recent experiments on its isoelectronic counterpart FeSe1 -xSx .
Coffinberry, A.S.; Schonfeld, F.W.
1959-09-01
Pu-U-Fe and Pu-U-Co alloys suitable for use as fuel elements tn fast breeder reactors are described. The advantages of these alloys are ease of fabrication without microcracks, good corrosion restatance, and good resistance to radiation damage. These advantages are secured by limitation of the zeta phase of plutonium in favor of a tetragonal crystal structure of the U/sub 6/Mn type.
Crystal Structure and Transport Properties of Oxygen-Deficient Perovskite Sr 0.9Y 0.1CoO 3-δ
Yang, Tianrang; Mattick, Victoria F.; Chen, Yan; ...
2018-01-29
The present work reports a systematic study on temperature-dependent local crystal structure, oxygen stoichiometry, and electrical/electrochemical properties of an oxygen-deficient Sr 0.9Y 0.1CoO 3-δ (SYC10) perovskite using variable-temperature neutron diffraction (VTND), thermal gravimetric analysis, and electrical/electrochemical methods, respectively. The VTND reveals that the crystal symmetry of SYC10 remains P4/mmm tetragonal up to 900 °C. The tetragonal symmetry reflects the net effects of temperature and oxygen stoichiometry on crystal symmetry. The observed p-type electronic conductivity behavior originates from the charge-ordering between the two distinctive Co-sites. The partial oxide-ion conductivity and diffusivity obtained from oxygen permeation measurements are 2.3 × 10 –2more » S cm –1 and 7.98 × 10–8 cm 2/s at 800 °C in air, respectively. The electrochemical oxygen reduction reaction kinetics of the SYC10 cathode is primarily limited by the charge-transfer process at low temperatures (600–650 °C) and oxide-ion migration from the cathode into the electrolyte at high temperatures (700–800 °C).« less
Structural and magnetic properties of SrMn1-xRuxO3 perovskites
NASA Astrophysics Data System (ADS)
Dabrowski, B.; Kolesnik, S.; Chmaissem, O.; Maxwell, T.
2007-03-01
Ferromagnetism of SrRuO3 is unique among 4d transition metal based perovskite oxides. On substitution of Mn its TC decreases from 163 K to 0 for x˜0.5-0.6 followed by a formation of an antiferromagnetic insulating state at a quantum critical point. The other end member of the SrMn1-xRuxO3 family, a cubic perovskite SrMnO3 is a G-type antiferromagnet with TN=233 K. We have synthesized the complete SrMn1-xRuxO3 solid solution. The polycrystalline samples were characterized by neutron difraction, magnetic, and transport experiments. The incorporation of Ru in the SrMnO3 matrix (0.1<=x<=0.4) results in a phase transition to a C-type antiferromagnetic state accompanied by a cubic-tetragonal transition. The intermediate substitution level induces a spin-glass behavior, due to competing ferro- and antiferromagnetic interactions. Mixed valence Mn^3+/Mn^4+ and Ru^4+/Ru^5+ pairs introduce additional frustration to the magnetic states. The glassy behavior can be observed for x up to 0.7 in the tetragonal structure. Supported by NSF (DMR-0302617) and the U.S. Department of Education
NASA Astrophysics Data System (ADS)
Patle, L. B.; Labhane, P. K.; Huse, V. R.; Gaikwad, K. D.; Chaudhari, A. L.
2018-05-01
The nanoparticles of Pure and doped Ti1-xFexO were synthesized by modified co-precipitation method successfully with nominal composite of x=0.0, 0.01, 0.03 and 0.05 at room temperature. The precursors were further calcined at 500°C for 6hrs in muffle furnace which results in the formation of different TiO2 phase compositions. The structural analysis carried out by XRD (Bruker D8 Cu-Kα1). X-ray peak broadening analysis was used to evaluate the crystalline sizes, the lattice parameters, atomic packing fraction, c/a ratio, X-ray density and Volume of unit cell. The Williamson Hall analysis is used to find grain size and Strain of prepared TiO2 nano particles. Crystalline TiO2 with a Tetragonal Anatase phase is confirmed by XRD results. The grain size of pure and Fe doped samples were found in the range of 10nm to 18nm. All the physical parameters of anatase tetragonal TiO2 nanoparticles were calculated more precisely using modified W-H plot a uniform deformation model (UDM). The results calculated from both the techniques were approximately similar.
Structural investigations of vanadyl doped Nb2O5·K2O·B2O3 glasses
NASA Astrophysics Data System (ADS)
Anshu; Sanghi, S.; Agarwal, A.; Lather, M.; Bhatnagar, V.; Khasa, S.
2009-07-01
Pottasium nioborate glasses of composition xNb2O5·(30-x)K2O·69B2O3 containing 1 mol % of V2O5 were prepared by melt quench technique (1473K, 1h). The electron paramagnetic resonance spectra of VO2+ in these glasses have been recorded in X- band (v approx 9.14 GHz) at room temperature (RT). The spin Hamiltonian parameters, dipolar hyperfine coupling parameters, P and Fermi contact interaction parameter, K have been calculated. It is found that V4+ ions in these glasses exist as VO2+ in octahedral coordination with a tetragonal distortion. The tetragonality of V4+O6 complex decreases with increasing Nb2O5: K2O ratio and also there is an expansion of 3dXY orbit of unpaired electron in the vanadium ion. The study of IR transmission spectra over a range 400- 4000 cm-1 depicts the presence of both BO3 and BO4 structural units and Nb5+ ions are incorporated into the glass network as NbO6 octahedra, substituting BO4 groups.
NASA Astrophysics Data System (ADS)
Sheoran, A.; Agarwal, A.; Sanghi, S.; Seth, V. P.; Gupta, S. K.; Arora, M.
2011-12-01
Glasses with composition xWO3·(30-x)M2O·70B2O3 (M=Li, Na; 0≤x≤15) doped with 2 mol% V2O5 have been prepared using the melt-quench technique. The electron paramagnetic resonance spectra have been recorded in X-band (ν≈9.14 GHz) at room temperature (RT). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) only due to V4+ ions, which exist as VO2+ ions in octahedral coordination with a tetragonal compression in the present glass system. The tetragonality increases with WO3:M2O ratio and also there is an expansion of 3dxy orbit of unpaired electron in the vanadium ion. The study of IR transmission spectra over a range 400-4000 cm-1 depicts the presence of WO6 group. The DC conductivity (σ) has been measured in the temperature range 423-623 K and is found to be predominantly ionic.
Local Chemical Ordering and Negative Thermal Expansion in PtNi Alloy Nanoparticles.
Li, Qiang; Zhu, He; Zheng, Lirong; Fan, Longlong; Wang, Na; Rong, Yangchun; Ren, Yang; Chen, Jun; Deng, Jinxia; Xing, Xianran
2017-12-13
An atomic insight into the local chemical ordering and lattice strain is particular interesting to recent emerging bimetallic nanocatalysts such as PtNi alloys. Here, we reported the atomic distribution, chemical environment, and lattice thermal evolution in full-scale structural description of PtNi alloy nanoparticles (NPs). The different segregation of elements in the well-faceted PtNi nanoparticles is convinced by extended X-ray absorption fine structure (EXAFS). Atomic pair distribution function (PDF) study evidences the coexistence of the face-centered cubic and tetragonal ordering parts in the local environment of PtNi nanoparticles. Further reverse Monte Carlo (RMC) simulation with PDF data obviously exposed the segregation as Ni and Pt in the centers of {111} and {001} facets, respectively. Layer-by-layer statistical analysis up to 6 nm for the local atomic pairs revealed the distribution of local tetragonal ordering on the surface. This local coordination environment facilitates the distribution of heteroatomic Pt-Ni pairs, which plays an important role in the negative thermal expansion of Pt 41 Ni 59 NPs. The present study on PtNi alloy NPs from local short-range coordination to long-range average lattice provides a new perspective on tailoring physical properties in nanomaterials.
Crystal Structure and Transport Properties of Oxygen-Deficient Perovskite Sr 0.9Y 0.1CoO 3-δ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tianrang; Mattick, Victoria F.; Chen, Yan
The present work reports a systematic study on temperature-dependent local crystal structure, oxygen stoichiometry, and electrical/electrochemical properties of an oxygen-deficient Sr 0.9Y 0.1CoO 3-δ (SYC10) perovskite using variable-temperature neutron diffraction (VTND), thermal gravimetric analysis, and electrical/electrochemical methods, respectively. The VTND reveals that the crystal symmetry of SYC10 remains P4/mmm tetragonal up to 900 °C. The tetragonal symmetry reflects the net effects of temperature and oxygen stoichiometry on crystal symmetry. The observed p-type electronic conductivity behavior originates from the charge-ordering between the two distinctive Co-sites. The partial oxide-ion conductivity and diffusivity obtained from oxygen permeation measurements are 2.3 × 10 –2more » S cm –1 and 7.98 × 10–8 cm 2/s at 800 °C in air, respectively. The electrochemical oxygen reduction reaction kinetics of the SYC10 cathode is primarily limited by the charge-transfer process at low temperatures (600–650 °C) and oxide-ion migration from the cathode into the electrolyte at high temperatures (700–800 °C).« less
NASA Astrophysics Data System (ADS)
Yan, Tianxiang; Han, Feifei; Ren, Shaokai; Ma, Xing; Fang, Liang; Liu, Laijun; Kuang, Xiaojun; Elouadi, Brahim
2018-04-01
(1 - x)K0.5Na0.5NbO3- x(Bi0.5Li0.5)ZrO3 (labeled as (1 - x)KNN- xBLZ) lead-free ceramics were fabricated by a solid-state reaction method. A research was conducted on the effects of BLZ content on structure, dielectric properties and relaxation behavior of KNN ceramics. By combining the X-ray diffraction patterns with the temperature dependence of dielectric properties, an orthorhombic-tetragonal phase coexistence was identified for x = 0.03, a tetragonal phase was determined for x = 0.05, and a single rhombohedral structure occurred at x = 0.08. The 0.92KNN-0.08BLZ ceramic exhibits a high and stable permittivity ( 1317, ± 15% variation) from 55 to 445 °C and low dielectric loss (≤ 6%) from 120 to 400 °C, which is hugely attractive for high-temperature capacitors. Activation energies of both high-temperature dielectric relaxation and dc conductivity first increase and then decline with the increase of BLZ, which might be attributed to the lattice distortion and concentration of oxygen vacancies.
NASA Astrophysics Data System (ADS)
Aidoud, Amina; Maroutian, Thomas; Matzen, Sylvia; Agnus, Guillaume; Amrani, Bouhalouane; Driss-Khodja, Kouider; Aubert, Pascal; Lecoeur, Philippe
2018-01-01
This study is focused on the link between the structural and electric properties of BaTiO3 thin films grown on SrRuO3-buffered (001) SrTiO3 substrates, SrRuO3 acting as bottom electrode. The growth regime and film structure are here tuned through the growth pressure for pulsed laser deposition in the 1-200 mTorr range. The dielectric, ferroelectric and leakage current properties are systematically measured for the different strain states of the BaTiO3 thin films on SrRuO3. The results are discussed with the help of ab initio calculations on the effects of Ba- and Ti-vacancies on BaTiO3 lattice parameters. A sharp increase of the dielectric constant is evidenced in the high pressure region, where the tetragonality of the BaTiO3 is decreasing rapidly with growth pressure. We interpret this divergence of the dielectric function as the signature of the vicinity of the phase boundary between the out-of-plane and in-plane orientations of the tetragonal BTO films.
Self-assembled DNA Structures for Nanoconstruction
NASA Astrophysics Data System (ADS)
Yan, Hao; Yin, Peng; Park, Sung Ha; Li, Hanying; Feng, Liping; Guan, Xiaoju; Liu, Dage; Reif, John H.; LaBean, Thomas H.
2004-09-01
In recent years, a number of research groups have begun developing nanofabrication methods based on DNA self-assembly. Here we review our recent experimental progress to utilize novel DNA nanostructures for self-assembly as well as for templates in the fabrication of functional nano-patterned materials. We have prototyped a new DNA nanostructure known as a cross structure. This nanostructure has a 4-fold symmetry which promotes its self-assembly into tetragonal 2D lattices. We have utilized the tetragonal 2D lattices as templates for highly conductive metallic nanowires and periodic 2D protein nano-arrays. We have constructed and characterized a DNA nanotube, a new self-assembling superstructure composed of DNA tiles. We have also demonstrated an aperiodic DNA lattice composed of DNA tiles assembled around a long scaffold strand; the system translates information encoded in the scaffold strand into a specific and reprogrammable barcode pattern. We have achieved metallic nanoparticle linear arrays templated on self-assembled 1D DNA arrays. We have designed and demonstrated a 2-state DNA lattice, which displays expand/contract motion switched by DNA nanoactuators. We have also achieved an autonomous DNA motor executing unidirectional motion along a linear DNA track.
NASA Astrophysics Data System (ADS)
Mbarki, Mohammed; Touzani, Rachid St.; Rehorn, Christian W. G.; Gladisch, Fabian C.; Fokwa, Boniface P. T.
2016-10-01
The new ternary transition metal-rich borides Ta2OsB2 and TaRuB have been successfully synthesized by arc-melting the elements in a water-cooled crucible under an argon atmosphere. The crystal structures of both compounds were solved by single-crystal X-ray diffraction and their metal compositions were confirmed by EDX analysis. It was found that Ta2OsB2 and TaRuB crystallize in the tetragonal Nb2OsB2 (space group P4/mnc, no. 128) and the orthorhombic NbRuB (space group Pmma, no. 51) structure types with lattice parameters a=5.878(2) Å, c=6.857(2) Å and a=10.806(2) Å, b=3.196(1) Å, c=6.312(2) Å, respectively. Furthermore, crystallographic, electronic and bonding characteristics have been studied by density functional theory (DFT). Electronic structure relaxation has confirmed the crystallographic parameters while COHP bonding analysis indicates that B2-dummbells are the strongest bonds in both compounds. Moreover, the formation of osmium dumbbells in Ta2OsB2 through a Peierls distortion along the c-axis, is found to be the origin of superstructure formation. Magnetic susceptibility measurements reveal that the two phases are Pauli paramagnets, thus confirming the theoretical DOS prediction of metallic character. Also hints of superconductivity are found in the two phases, however lack of single phase samples has prevented confirmation. Furthermore, the thermodynamic stability of the two modifications of AMB (A=Nb, Ta; M =Ru, Os) are studied using DFT, as new possible phases containing either B4- or B2-units are predicted, the former being the most thermodynamically stable modification.
NASA Astrophysics Data System (ADS)
Yang, Kengran; Özçelik, V. Ongun; Garg, Nishant; Gong, Kai; White, Claire E.
Conventional drying of colloidal materials and gels (including cement) can lead to detrimental effects due to the buildup of internal stresses as water evaporates from the nano/microscopic pores. However, the underlying nanoscopic alterations in these gel materials that are, in part, responsible for macroscopically-measured strain values, especially at low relative humidity, remain a topic of open debate in the literature. In this study, sodium-based calcium-alumino-silicate-hydrate (C-(N)-A-S-H) gel, the major binding phase of silicate-activated blast furnace slag (one type of low-CO$_2$ cement), is investigated from a drying perspective, since it is known to suffer extensively from drying-induced microcracking. By employing in situ synchrotron X-ray total scattering measurements and pair distribution function (PDF) analysis we show that the significant contributing factor to the strain development in this material at extremely low relative humidity (0%) is the local atomic structural rearrangement of the C-(N)-A-S-H gel, including collapse of interlayer spacing and slight disintegration of the gel. Moreover, analysis of the medium range (1.0 - 2.2 nm) ordering in the PDF data reveals that the PDF-derived strain values are in much closer agreement (same order of magnitude) with the macroscopically measured strain data, compared to previous results based on reciprocal space X-ray diffraction data. From a mitigation standpoint, we show that small amounts of ZrO$_2$ nanoparticles are able to actively reinforce the structure of silicate-activated slag during drying, preventing atomic level strains from developing. Mechanistically, these nanoparticles induce growth of a silica-rich gel during drying, which, via density functional theory calculations, we show is attributed to the high surface reactivity of tetragonal ZrO$_2$.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berastegui, P.; Hull, S., E-mail: stephen.hull@stfc.ac.u; Eriksson, S.G.
The compound CsSn{sub 2}F{sub 5} has been investigated over the temperature range from ambient to 545 K using differential scanning calorimetry, impedance spectroscopy and neutron powder diffraction methods. A first-order phase transition is observed from DSC measurements at 510(2) K, to a phase possessing a high ionic conductivity ({sigma}{approx}2.5x10{sup -2} {Omega}{sup -1} cm{sup -1} at 520 K). The crystal structure of the high temperature superionic phase (labelled {alpha}) has been determined to be tetragonal (space group I4/mmm, a=4.2606(10) A, c=19.739(5) A and Z=2) in which the cations form layers perpendicular to the [001] direction, with a stacking sequence CsSnSnCsSnSn... Allmore » the anions are located in two partially occupied sites in the gap between the Cs and Sn layers, whilst the space between the Sn cations is empty, due to the orientation of the lone-pair electrons associated with the Sn{sup 2+}. The structure of {alpha}-CsSn{sub 2}F{sub 5} is discussed in relation to two other layered F{sup -} conducting superionic phases containing Sn{sup 2+} cations, {alpha}-RbSn{sub 2}F{sub 5} and {alpha}-PbSnF{sub 4} and, to facilitate this comparison, an improved structural characterisation of the former is also presented. The wider issue of the role of lone-pair cations such as Sn{sup 2+} in promoting dynamic disorder within an anion substructure is also briefly addressed. - Graphical abstract: CsSn{sub 2}F{sub 5} is shown to undergo a first order phase transition at 510(2) K to a superionic phase in which the specific electronic configuration of the Sn{sup 2+} plays a key role in promoting extensive disorder of the anions.« less
RRh2Al10 (R = Ce, Yb): New intermetallic compounds in the 1 : 2 : 10 stoichiometry series
NASA Astrophysics Data System (ADS)
Strydom, A. M.; Djoumessi, R. F.; Blinova, M.; Tursina, A.; Nesterenko, S.; Avzuragova, V.
2018-05-01
The orthorhombic, space group Cmcm YbFe2Al10 structure type series of compounds are known to form with practically the entire series of rare-earth elements R, but only with the three d - electron elements Fe, Ru, and Os. The Ce-derivatives in particular have been of much interest since the first reports of their highly unusual physical properties. Classified as Kondo insulators, CeRu2Al10 and CeOs2Al10 controversially order magnetically and with uncharacteristically high Néel temperatures of ≃ 28 K. CeFe2Al10 on the other hand shows pronounced semiconducting and Kondo features but remains paramagnetic. As part of our ongoing studies into the rich physics of this class of materials we have succeeded in synthesizing new members of the 1:2:10 stoichiometry involving the chemical element Rh for the first time. CeRh2Al10 is found to crystallize in the tetragonal system with space group I41 / amd . Yb Rh2Al10 on the other hand forms in the serial Cmcm orthorhombic structure type. We discuss important similarities between the two types. At 5.310 Å the shortest Ce-Ce distance is, likewise to the situation in CeRu2Al10 and CeOs2Al10 , also well above the Hill limit of 3.40 Å. Despite the cage-like structure and large rare-earth separation distances, this study reveals the onset of long-range magnetic ordering in CeRh2Al10 at 3.9 K. The magnetic ordering develops out of an incoherent Kondo state that dominates the electrical resistivity below about 40 K.
Correia, T. M.
2016-01-01
Full-perovskite Pb0.87Ba0.1La0.02(Zr0.6Sn0.33Ti0.07)O3 (PBLZST) thin films were fabricated by a sol–gel method. These revealed both rhombohedral and tetragonal phases, as opposed to the full-tetragonal phase previously reported in ceramics. The fractions of tetragonal and rhombohedral phases are found to be strongly dependent on film thickness. The fraction of tetragonal grains increases with increasing film thickness, as the substrate constraint throughout the film decreases with film thickness. The maximum of the dielectric constant (εm) and the corresponding temperature (Tm) are thickness-dependent and dictated by the fraction of rhombohedral and tetragonal phase, with εm reaching a minimum at 400 nm and Tm shifting to higher temperature with increasing thickness. With the thickness increase, the breakdown field decreases, but field-induced antiferroelectric–ferroelectric (EAFE−FE) and ferroelectric–antiferroelectric (EFE−AFE) switch fields increase. The electrocaloric effect increases with increasing film thickness. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402937
NASA Astrophysics Data System (ADS)
Barman, Nabadyuti; Varma, K. B. R.
Double perovskite structured dielectric ceramic CaCu3Ti4- x TexO12 (CCTTO) (x = 0, 0.05, 0.1, 0.15, 0.2) was fabricated from the powder obtained by conventional solid state synthetic route. The room temperature XRD patterns for the x = 0, 0.05, 0.075 modified samples were confirmed to possess a single phase with cubic space group Im3by Rietveld refinement. But, the Rietveld refinement performed on XRD patterns recorded for the compositions corresponding to x = 0.1, 0.15, 0.2 shows the coexistence of the cubic phase (space group Im3; a = 7.4065Å) and tetragonal phase (space group I4/mcm; a = 7.369 Å and c = 6.967 Å). The dielectric properties of these ceramics were studied over a wide frequency (40Hz-2MHz) and temperature range (30-400K). The Te4+ doped samples (CCTTO) exhibited dielectric permittivity (?r) value of ~23-33X103 which is more than twice that of undoped CCTO (~11x103) at 1kHz. A decreasing trend in dielectric permittivity with increasing temperature, a signature of incipient ferroelectricity, was observed for all the samples. Barrett's formula was invoked to rationalize the dielectric permittivity variation as a function of temperature. The incipient ferroelectric behavior is correlated with soft phonon mode observed in temperature dependent Raman Spectroscopic studies. .
NASA Astrophysics Data System (ADS)
Munsie, T. J. S.; Millington, A.; Dube, P. A.; Dabkowska, H. A.; Britten, J.; Luke, G. M.; Greedan, J. E.
2016-07-01
We have become aware of an error in this published manuscript. In it we stated that the space group of NiNb2O6, P42/n, is not a subgroup of the tri-rutile space group, P42/mnm. This is not correct. While the two space groups are not directly related, i.e. by a single step, they are connected via the intermediate symmetry P42/m, as shown below and which can be determined from a careful perusal of the International Tables for Crystallography (Vol. A) and of course the Bilbao Server. P42/m (#86) is a maximal non-isomorphic subgroup of P42/mnm (#186) and a minimal non-isomorphic supergroup of P42/n (#84). We thank Prof. J.M. Perez-Mato for guiding our understanding of these relationships.
The p- T phase diagram of KNbO 3 by a dielectric constant measurement
NASA Astrophysics Data System (ADS)
Kobayashi, Y.; Endo, S.; Deguchi, K.; Ming, L. C.; Zou, G.
2001-11-01
A dielectric constant measurement was carried out on perovskite-type ferroelectrics KNbO 3 over a wide range of temperature under high pressure. The temperature- and pressure-dependence of the dielectric constant clarified that all temperatures of the transitions from the ferroelectric rhombohedral to orthorhombic, to tetragonal and then to the paraelectric cubic phase, decrease with increasing pressure. These results indicate that the orthorhombic-tetragonal transition takes place at 8.5 GPa and the tetragonal-cubic transition at 11 GPa, at room temperature.
Bisht, Shveta; Rajaram, Venkatesan; Bharath, Sakshibeedu R; Kalyani, Josyula Nitya; Khan, Farida; Rao, Appaji N; Savithri, Handanahal S; Murthy, Mathur R N
2012-06-08
Pyridoxal 5'-phosphate (PLP)-dependent enzymes utilize the unique chemistry of a pyridine ring to carry out diverse reactions involving amino acids. Diaminopropionate (DAP) ammonia-lyase (DAPAL) is a prokaryotic PLP-dependent enzyme that catalyzes the degradation of d- and l-forms of DAP to pyruvate and ammonia. Here, we report the first crystal structure of DAPAL from Escherichia coli (EcDAPAL) in tetragonal and monoclinic forms at 2.0 and 2.2 Å resolutions, respectively. Structures of EcDAPAL soaked with substrates were also determined. EcDAPAL has a typical fold type II PLP-dependent enzyme topology consisting of a large and a small domain with the active site at the interface of the two domains. The enzyme is a homodimer with a unique biological interface not observed earlier. Structure of the enzyme in the tetragonal form had PLP bound at the active site, whereas the monoclinic structure was in the apo-form. Analysis of the apo and holo structures revealed that the region around the active site undergoes transition from a disordered to ordered state and assumes a conformation suitable for catalysis only upon PLP binding. A novel disulfide was found to occur near a channel that is likely to regulate entry of ligands to the active site. EcDAPAL soaked with dl-DAP revealed density at the active site appropriate for the reaction intermediate aminoacrylate, which is consistent with the observation that EcDAPAL has low activity under crystallization conditions. Based on the analysis of the structure and results of site-directed mutagenesis, a two-base mechanism of catalysis involving Asp(120) and Lys(77) is suggested.
NASA Astrophysics Data System (ADS)
Ram, S.; Jana, A.; Kundu, T. K.
The phase formation and thermal-induced phase transformation are studied in BaTiO3 nanoparticles. 2 h of heating a polymer precursor at 550°C in air formed a single phase BaTiO3 of 15 nm average crystallite size D. The X-ray diffraction peaks are analyzed assuming a Pnma orthorhombic (o) crystal structure of lattice parameters a = 0.6435 nm, b = 0.5306 nm, and c = 0.8854 nm. The lattice volume V = 0.3023 nm3, with z = 4 formula units, yields a density ρ = 5.124 g/cm3. This is a new polymorph in comparison to well-known Pm3m tetragonal (t) structure, V = 0.0644 nm3 or ρ = 6.016 g/cm3 (z = 1). An o ↦ t transformation appears on heating at temperature as high as 650°C in air. A proposed model explains the transformation above a certain D value in terms of the Gibbs free energy. Unless heating above 750°C, the two phases coexist in a composite structure (D≤27 nm), with as much residual o-phase trace as ~28 vol%. As a function of temperature both the phases decrease in the V values up to 0.2975 and 0.0643 nm3 at 750°C respectively (0.0650 nm3 at 650°C). This is an important parameter for designing useful ferroelectric and other properties in a hybrid composite structure.
Local geometric and electronic structures and origin of magnetism in Co-doped BaTiO3 multiferroics
NASA Astrophysics Data System (ADS)
Phan, The-Long; Thang, P. D.; Ho, T. A.; Manh, T. V.; Thanh, Tran Dang; Lam, V. D.; Dang, N. T.; Yu, S. C.
2015-05-01
We have prepared polycrystalline samples BaTi1-xCoxO3 (x = 0-0.1) by solid-state reaction. X-ray diffraction and Raman-scattering studies reveal the phase separation in crystal structure as changing Co-doping content (x). The samples with x = 0-0.01 are single phase in a tetragonal structure. At higher doping contents (x > 0.01), there is the formation and development of a secondary hexagonal phase. Magnetization measurements at room temperature indicate a coexistence of paramagnetic and weak-ferromagnetic behaviors in BaTi1-xCoxO3 samples with x > 0, while pure BaTiO3 is diamagnetic. Both these properties increase with increasing x. Analyses of X-ray absorption spectra recorded from BaTi1-xCoxO3 for the Co and Ti K-edges indicate the presence of Co2+ and Co3+ ions. They locate in the Ti4+ site of the tetragonal and hexagonal BaTiO3 structures. Particularly, there is a shift of oxidation state from Co2+ to Co3+ when Co-doping content increases. We believe that the paramagnetic nature in BaTi1-xCoxO3 samples is due to isolated Co2+ and Co3+ centers. The addition of Co3+ ions enhances the paramagnetic behavior. Meanwhile, the origin of ferromagnetism is due to lattice defects, which is less influenced by the changes caused by the variation in concentration of Co2+ and Co3+ ions.
NASA Astrophysics Data System (ADS)
Sahoo, Sushrisangita; Mahapatra, P. K.; Choudhary, R. N. P.; Alagarsamy, Perumal
2018-01-01
The effect of composition variation of (Ba1-x Gd x )(Ti1-x Fe x )O3 (0.2 ≤ x ≤ 0.5) on structural, optical, electrical and multiferroic properties was investigated. The polycrystalline samples were fabricated by a chemico-thermal route. While the compound with composition x ≤ 0.3 has a tetragonal structure akin to BaTiO3, the higher compositions (x > 0.3) crystallize in a mixed phase of the tetragonal and orthorhombic structure. The different polarization mechanisms in the compound were analyzed on the basis of ferroelectric-paraelectric phase transition at 120 °C, magnetic reorientation mediated by Gd3+ ↔ Fe3+ exchange interaction at 200 °C and that induced by antiferromagnetic ordering mediated through the Fe3+ ↔ Fe3+ exchange interactions at 380 °C. Analysis of ac conductivity on the basis of Jonscher’s power law indicates the presence of correlated barrier hopping conduction mechanism in the samples. Among the studied samples, the composition with x = 0.3 exhibiting improved material properties like lower optical band gap and higher optical absorption, high dielectric constant (830 at room temperature and peak value of 3944 at 160 °C and 6478 at 377.5 °C), and the room temperature ME coefficient of 1.53 mV cm-1 Oe-1 have promising technological applications.
Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via in Situ Electron Microscopy.
Ma, Cheng; Cheng, Yongqiang; Yin, Kuibo; Luo, Jian; Sharafi, Asma; Sakamoto, Jeff; Li, Juchuan; More, Karren L; Dudney, Nancy J; Chi, Miaofang
2016-11-09
Despite their different chemistries, novel energy-storage systems, e.g., Li-air, Li-S, all-solid-state Li batteries, etc., face one critical challenge of forming a conductive and stable interface between Li metal and a solid electrolyte. An accurate understanding of the formation mechanism and the exact structure and chemistry of the rarely existing benign interfaces, such as the Li-cubic-Li 7-3x Al x La 3 Zr 2 O 12 (c-LLZO) interface, is crucial for enabling the use of Li metal anodes. Due to spatial confinement and structural and chemical complications, current investigations are largely limited to theoretical calculations. Here, through an in situ formation of Li-c-LLZO interfaces inside an aberration-corrected scanning transmission electron microscope, we successfully reveal the interfacial chemical and structural progression. Upon contact with Li metal, the LLZO surface is reduced, which is accompanied by the simultaneous implantation of Li + , resulting in a tetragonal-like LLZO interphase that stabilizes at an extremely small thickness of around five unit cells. This interphase effectively prevented further interfacial reactions without compromising the ionic conductivity. Although the cubic-to-tetragonal transition is typically undesired during LLZO synthesis, the similar structural change was found to be the likely key to the observed benign interface. These insights provide a new perspective for designing Li-solid electrolyte interfaces that can enable the use of Li metal anodes in next-generation batteries.