Arivazhagan, M; Kavitha, R; Subhasini, V P
2014-07-15
The detailed HF and B3LYP/6-311++G(d,p) comparative studies on the complete FT-IR and FT-Raman spectra of 6-methoxy-1,2,3,4-tetrahydronaphthalene [MTHN] have been studied. In view of the special properties and uses, the present investigation has been undertaken to provide a satisfactorily vibrational analysis of 6-methoxy-1,2,3,4-tetrahydronaphthalene. Therefore, a thorough Raman, IR, molecular electrostatic potential (MESP), non-linear optical (NLO) properties, UV-VIS, HOMO-LUMO and NMR spectroscopic investigation are reported complemented by B3LYP theoretical predictions with basis set 6-311++G(d,p) to provide novel insight on vibrational assignments and conformational stability of MTHN. Potential energy surface scans (PES) of the CH3 group are undertaken to shed light on the rather complicated conformational interchanges in the compound under investigation. Copyright © 2014 Elsevier B.V. All rights reserved.
Deekonda, Srinivas; Rankin, David; Davis, Peg; Lai, Josephine; Vanderah, Todd W; Porecca, Frank; Hruby, Victor J
2016-01-15
Here, we report the design, synthesis and structure activity relationship of novel small molecule opioid ligands based on 5-amino substituted (tetrahydronaphthalen-2-yl)methyl moiety with N-phenyl-N-(piperidin-2-yl)propionamide derivatives. We synthesized various molecules including amino, amide and hydroxy substitution on the 5th position of the (tetrahydronaphthalen-2-yl)methyl moiety. In our further designs we replaced the (tetrahydronaphthalen-2-yl)methyl moiety with benzyl and phenethyl moiety. These N-phenyl-N-(piperidin-2-yl)propionamide analogues showed moderate to good binding affinities (850-4 nM) and were selective towards the μ opioid receptor over the δ opioid receptors. From the structure activity relationship studies, we found that a hydroxyl substitution at the 5th position of (tetrahydronapthalen-2yl)methyl group, ligands 19 and 20, showed excellent binding affinities 4 and 5 nM, respectively, and 1000 fold selectivity towards the μ opioid relative to the delta opioid receptor. The ligand 19 showed potent agonist activities 75±21 nM, and 190±42 nM in the GPI and MVD assays. Surprisingly the fluoro analogue 20 showed good agonist activities in MVD assays 170±42 nM, in contrast to its binding affinity results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Deekonda, Srinivas; Wugalter, Lauren; Kulkarni, Vinod; Rankin, David; Largent-Milnes, Tally M; Davis, Peg; Bassirirad, Neemah M; Lai, Josephine; Vanderah, Todd W; Porreca, Frank; Hruby, Victor J
2015-09-15
A new series of novel opioid ligands have been designed and synthesized based on the 4-anilidopiperidine scaffold containing a 5-substituted tetrahydronaphthalen-2yl)methyl group with different N-phenyl-N-(piperidin-4-yl)propionamide derivatives to study the biological effects of these substituents on μ and δ opioid receptor interactions. Recently our group reported novel 4-anilidopiperidine analogues, in which several aromatic ring-contained amino acids were conjugated with N-phenyl-N-(piperidin-4-yl)propionamide and examined their biological activities at the μ and δ opioid receptors. In continuation of our efforts in these novel 4-anilidopiperidine analogues, we took a peptidomimetic approach in the present design, in which we substituted aromatic amino acids with tetrahydronaphthalen-2yl methyl moiety with amino, amide and hydroxyl substitutions at the 5th position. In in vitro assays these ligands, showed very good binding affinity and highly selective toward the μ opioid receptor. Among these, the lead ligand 20 showed excellent binding affinity (2 nM) and 5000 fold selectivity toward the μ opioid receptor, as well as functional selectivity in GPI assays (55.20 ± 4.30 nM) and weak or no agonist activities in MVD assays. Based on the in vitro bioassay results the lead compound 20 was chosen for in vivo assessment for efficacy in naïve rats after intrathecal administration. Compound 20 was not significantly effective in alleviating acute pain. This discrepancy between high in vitro binding affinity, moderate in vitro activity, and low in vivo activity may reflect differences in pharmacodynamics (i.e., engaging signaling pathways) or pharmacokinetics (i.e., metabolic stability). In sum, our data suggest that further optimization of this compound 20 is required to enhance in vivo activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Croccolo, Fabrizio; Scheffold, Frank; Bataller, Henri
2013-04-01
We present preliminary near-field light scattering (NFS) data concerning the analysis of the static power spectrum and of the relaxation time constant as a function of the wave vector for non-equilibrium fluctuations (NEFs). The goal of these measurements is to obtain information about the Soret and the mass diffusion coefficients of a binary mixture undergoing thermodiffusion. In particular, we show how the interaction between NEFs and the gravity force gives rise to a critical wavelength that provides additional information about the Soret coefficient. We suggest that a quantitative analysis can be performed by means of this non-invasive optical technique. In our setup, the sample is monitored parallel to the imposed temperature gradient, thus being insensitive to the refractive index profile along the vertical axis, while at the same time we are able to detect the light scattered by the refractive index fluctuations in horizontal planes. We select a shadowgraph layout for the NFS setup due to the extremely small wave vectors we aim to analyze. From a double-frame differential analysis of the acquired images, we obtain both the static power spectrum and the dynamics of NEFs. As a proof-of-principle experiment, we present Soret and diffusion coefficient data on a liquid mixture of tetrahydronaphthalene/n-dodecane.
Leopoldo, Marcello; Lacivita, Enza; De Giorgio, Paola; Fracasso, Claudia; Guzzetti, Sara; Caccia, Silvio; Contino, Marialessandra; Colabufo, Nicola A; Berardi, Francesco; Perrone, Roberto
2008-09-25
Starting from the previously reported 5-HT 7 receptor agents 4-7 with N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinehexanamide structure, the 1-(2-methylthiophenyl)-, 1-(2-diphenyl)-, 1-(2-isopropylphenyl)-, and 1-(2-methoxyphenyl)piperazine derivatives 8-31 were designed with the primary aim to obtain new compounds endowed with suitable physicochemical properties for rapid and extensive penetration into the brain. The affinities for 5-HT 7, 5-HT 1A, and D 2 receptors of compounds 8-31 were assessed, and several compounds displayed 5-HT 7 receptor affinities in the nanomolar range. Among these, N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (25) showed high 5-HT 7 receptor affinity (Ki = 0.58 nM), high selectivity over 5-HT 1A and D 2 receptors (324- and 245-fold, respectively), and agonist properties (maximal effect = 82%, EC 50 = 0.60 microM). After intraperitoneal injection in mice, 25 rapidly reached the systemic circulation and entered the brain. Its brain concentration-time profile paralleled that in plasma, indicating that 25 rapidly and freely distributes across the blood-brain barrier. Compound 25 underwent N-dealkylation to the corresponding 1-arylpiperazine metabolite.
Ryu, HyungChul; Lim, Ju-Ok; Kang, Dong Wook; Pearce, Larry V.; Tran, Richard; Toth, Attila; Lee, Jeewoo; Blumberg, Peter M.
2012-01-01
A series of bicyclic analogues having indan and tetrahydronaphthalene templates in the A-region were designed as conformationally constrained analogues of our previously reported potent TRPV1 antagonists (1, 3). The activities for rat TRPV1 of the conformationally restricted analogues were moderately or markedly diminished, particularly in the case of the tetrahydronaphthalene analogues. The analysis indicated that steric constraints at the benzylic position in the bicyclic analogues were an important factor for their unfavorable interaction with the receptor. PMID:18406014
Brown, Dennis A.; Mishra, Manoj; Zhang, Suhong; Biswas, Swati; Parrington, Ingrid; Antonio, Tamara; Reith, Maarten E. A.; Dutta, Aloke K.
2009-01-01
Here we report on the design and synthesis of several heterocyclic analogues belonging to the 5/ 7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol series of molecules. Compounds were subjected to [3H]spiperone binding assays, carried out with HEK-293 cells expressing either D2 or D3 dopamine receptors, in order to evaluate their inhibition constant (Ki) at these receptors. Results indicate that N-substitution on the piperazine ring can accommodate various substituted indole rings. The results also show that in order to maintain high affinity and selectivity for the D3 receptor the heterocyclic ring does not need to be connected directly to the piperazine ring as the majority of compounds included here are linked either via an amide or a methylene linker to the heterocyclic moiety. The enantiomers of the most potent racemic compound 10e exhibited differential activity with (-)-10e (Ki; D2 = 47.5 nM, D3 = 0.57 nM) displaying higher affinity at both D2 and D3 receptors compared to its enantiomer (+)-10e (Ki; D2 = 113 nM, D3 = 3.73 nM). Additionally, compound (-)-10e was more potent and selective for the D3 receptor compared to either 7-OH-DPAT or 5-OH-DPAT. Among the bioisosteric derivatives, the indazole derivative 10g and benzo[b]thiophene derivative 10i exhibited the highest affinity for D2 and D3 receptors. In the functional GTPγS binding study, one of the lead molecules, (-)-15, exhibited potent agonist activity at both D2 and D3 receptors with preferential activity at D3. PMID:19427222
2012-01-01
11C-labeled methylbenzoates [11C]4a–d were synthesized using Pd(0)-mediated rapid cross-coupling reactions employing [11C]carbon monoxide and arylboronic acid neopentyl glycol esters 3a–d under atmospheric pressure in methanol–dimethylformamide (MeOH–DMF), in radiochemical yields of 12 ± 5–26 ± 13% (decay-corrected based on [11C]O). The reaction conditions were highly favorable for the synthesis of [11C]Am80 ([11C]2) and [11C]methyl 4-((5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)carbamoyl)benzoate ([11C]2-Me) using 4-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)-N-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)benzamide (5), both of which produced a decay-corrected radiochemical yield (RCY) of 26 ± 13%, with >99% radiochemical purity and an average specific radioactivity of 44 GBq/μmol. The yields of [11C]4a, [11C]2-Me, and [11C]2 were improved by the use of a 2-fold excess of the solvents and reagents under the same conditions to give respective yields of 66 ± 8, 65 ± 7, and 48 ± 2%. PMID:24900383
Takashima-Hirano, Misato; Ishii, Hideki; Suzuki, Masaaki
2012-10-11
(11)C-labeled methylbenzoates [(11)C]4a-d were synthesized using Pd(0)-mediated rapid cross-coupling reactions employing [(11)C]carbon monoxide and arylboronic acid neopentyl glycol esters 3a-d under atmospheric pressure in methanol-dimethylformamide (MeOH-DMF), in radiochemical yields of 12 ± 5-26 ± 13% (decay-corrected based on [(11)C]O). The reaction conditions were highly favorable for the synthesis of [(11)C]Am80 ([(11)C]2) and [(11)C]methyl 4-((5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)carbamoyl)benzoate ([(11)C]2-Me) using 4-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)-N-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)benzamide (5), both of which produced a decay-corrected radiochemical yield (RCY) of 26 ± 13%, with >99% radiochemical purity and an average specific radioactivity of 44 GBq/μmol. The yields of [(11)C]4a, [(11)C]2-Me, and [(11)C]2 were improved by the use of a 2-fold excess of the solvents and reagents under the same conditions to give respective yields of 66 ± 8, 65 ± 7, and 48 ± 2%.
Genetic analysis of biodegradation of tetralin by a Sphingomonas strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernaez, M.J.; Santero, E.; Reineke, W.
Tetralin (1,2,3,4-tetrahydronaphthalene) is produced for industrial purposes from naphthalene by catalytic hydrogenation or from anthracene by cracking. A strain designated TFA which very efficiently utilizes tetralin has been isolated from the Rhine river. The strain has been identified as Sphingomonas macrogoltabidus, based on 16S rDNA sequence similarity. Genetic analysis of tetralin biodegradation has been performed by insertion mutagenesis and by physical analysis and analysis of complementation between the mutants. The genes involved in tetralin utilization are clustered in a region of 9 kb, comprising at least five genes grouped in two divergently transcribed operons.
Supercritical fluid extraction of the non-polar organic compounds in meteorites
NASA Astrophysics Data System (ADS)
Sephton, M. A.; Pillinger, C. T.; Gilmour, I.
2001-01-01
The carbonaceous chondrite meteorites contain a variety of extraterrestrial organic molecules. These organic components provide a valuable insight into the formation and evolution of the solar system. Attempts at obtaining and interpreting this information source are hampered by the small sample sizes available for study and the interferences from terrestrial contamination. Supercritical fluid extraction represents an efficient and contamination-free means of isolating extraterrestrial molecules. Gas chromatography-mass spectrometry analyses of extracts from Orgueil and Cold Bokkeveld reveal a complex mixture of free non-polar organic molecules which include normal alkanes, isoprenoid alkanes, tetrahydronaphthalenes and aromatic hydrocarbons. These organic assemblages imply contributions from both terrestrial and extraterrestrial sources.
Metabolism of tetralin (1,2,3,4-tetrahydronaphthalene) in Corynebacterium sp. strain C125
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikkema, J.; Bont, J.A.M. de
1993-02-01
Tetralin, widely used as a solvent in the petrochemical industry and in paints and waxes, degrades slowly in mixed cultures of microorganisms or in the presence of cosubstrates. This study reports on the metabolism of tetralin in the o-xylene-isolated Corynebacterium sp. strain C125. The researchers found that this organism attacks tetralin by an initial oxidation of the aromatic nucleus at positions C-5 and C-6 and they propose a four step inducible degradation pathway for tetralin starting at that point. The presence of the pathway makes this bacteria an excellent catalyst for the specific production of special cis-dihydro diols.
JBIR-12, a novel antioxidative agent from Penicillium sp. NBRC 103941.
Izumikawa, Miho; Nagai, Aya; Doi, Takayuki; Takagi, Motoki; Shin-Ya, Kazuo
2009-04-01
In the course of our screening program for active compounds from fungal metabolites, we isolated JBIR-12 (1) as a free radical scavenger from the culture broth of Penicillium sp. NBRC 103941. Structure elucidation of 1 was carried out using methylated and/or acetylated derivatives of 1. As a consequence, the structure of 1 was determined to be a novel highly oxygenated tetrahydronaphthalene species attached to an acyl chain moiety on the basis of NMR and other spectroscopic data. It was interesting that 1 was spontaneously methylated when left in methanol. Furthermore, isomerization or rearrangements could occur during the derivatization of 1. Compound 1 exhibited potent radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl radical with an IC(50) value of 75 microM.
Phosphonate–Phosphinate Rearrangement
2014-01-01
LiTMP metalated dimethyl N-Boc-phosphoramidates derived from 1-phenylethylamine and 1,2,3,4-tetrahydronaphthalen-1-ylamine highly selectively at the CH3O group to generate short-lived oxymethyllithiums. These isomerized to diastereomeric hydroxymethylphosphonamidates (phosphate–phosphonate rearrangement). However, s-BuLi converted the dimethyl N-Boc-phosphoramidate derived from 1-phenylethylamine to the N-Boc α-aminophosphonate preferentially. Only s-BuLi deprotonated dimethyl hydroxymethylphosphonamidates at the benzylic position and dimethyl N-Boc α-aminophosphonates at the CH3O group to induce phosphonate–phosphinate rearrangements. In the former case, the migration of the phosphorus substituent from the nitrogen to the carbon atom followed a retentive course with some racemization because of the involvement of a benzyllithium as an intermediate. PMID:25525945
Catalytic oxidation of toluene and tetralin in supercritical carbon dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, L.; Erkey, C.; Akgerman, A.
1995-09-01
The catalytic total oxidation of toluene and tetrahydronaphthalene (tetralin) in supercritical carbon dioxide over a 0.5% platinum {gamma}-alumina catalyst was studied in a fixed-bed reactor. Toluene oxidation experiments were performed at 618, 633, 648 and 663 K, and at 7.93, 9.31 and 10.7 MPa. Tetralin oxidation experiments were performed at 573, 598, 623 and 648 K and at 8.96 and 10.0 MPa. Inlet concentrations of toluene and tetralin were varied in the ranges 569 to 2,858 ppm (mass/mass) and 1,420 to 3,648 ppm, respectively. Reactions were run at excess oxygen with a 25:1 molar ratio of oxygen to toluene andmore » a 15:1 molar ratio of oxygen to tetralin. A stepwise mechanism was postulated for the oxidation reaction to describe the kinetics of toluene and tetralin oxidation in supercritical carbon dioxide, and the reaction orders and activation energies were determined.« less
Cheung, Mui; Tangirala, Raghuram S; Bethi, Sridhar R; Joshi, Hemant V; Ariazi, Jennifer L; Tirunagaru, Vijaya G; Kumar, Sanjay
2018-02-08
Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) plays an important role in triglyceride synthesis and is a target of interest for the treatment of metabolic disorders. Herein we describe the structure-activity relationship of a novel tetralone series of DGAT1 inhibitors and our strategies for overcoming genotoxic liability of the anilines embedded in the chemical structures, leading to the discovery of a candidate compound, ( S )-2-(6-(5-(3-(3,4-difluorophenyl)ureido)pyrazin-2-yl)-1-oxo-2-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydronaphthalen-2-yl)acetic acid (GSK2973980A, 26d ). Compound 26d is a potent and selective DGAT1 inhibitor with excellent DMPK profiles and in vivo efficacy in a postprandial lipid excursion model in mice. Based on the overall biological and developability profiles and acceptable safety profiles in the 7-day toxicity studies in rats and dogs, compound 26d was selected as a candidate compound for further development in the treatment of metabolic disorders.
Kim, In-Hae; Park, Yong-Kyu; Nishiwaki, Hisashi; Hammock, Bruce D; Nishi, Kosuke
2015-11-15
Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase (sEH) were investigated. First, a series of alkyl or aryl groups were substituted on the carbon alpha to the phosphonate function in amide compounds to see whether substituted phosphonates can act as a secondary pharmacophore. A tert-butyl group (16) on the alpha carbon was found to yield most potent inhibition on the target enzyme. A 4-50-fold drop in inhibition was induced by other substituents such as aryls, substituted aryls, cycloalkyls, and alkyls. Then, the modification of the O-substituents on the phosphonate function revealed that diethyl groups (16 and 23) were preferable for inhibition to other longer alkyls or substituted alkyls. In amide compounds with the optimized diethylphosphonate moiety and an alkyl substitution such as adamantane (16), tetrahydronaphthalene (31), or adamantanemethane (36), highly potent inhibitions were gained. In addition, the resulting potent amide-phosphonate compounds had reasonable water solubility, suggesting that substituted phosphonates in amide inhibitors are effective for both inhibition potency on the human sEH and water solubility as a secondary pharmacophore. Copyright © 2015 Elsevier Ltd. All rights reserved.
Qian, Zhenhua; Jia, Wei; Li, Tao; Liu, Cuimei; Hua, Zhendong
2017-02-01
New psychoactive substances (NPS) have gained much popularity on the global market over the last number of years. The synthetic cathinone family is one of the most prominent groups and this paper reports on the analytical properties of four synthetic cathinone derivatives: (1) 1-(4-bromophenyl)-1-(methylamino)propan-2-one (iso-4-BMC or iso-brephedrone), (2) 2-(pyrrolidin-1-yl)-1-(5,6,7,8-tetrahydronaphthalen-2-yl)pentan-1-one (β-TH-naphyrone), (3) 3-methoxy-2-(methylamino)-1-(4-methylphenyl)propan-1-one (mexedrone), and (4) 2-(dimethylamino)-1-(4-methylphenyl)propan-1-one (4-MDMC). These identifications were based on liquid chromatography-quadrupole time-of-flight-mass spectrometry (LC-QTOF-MS), gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy. To our knowledge, no chemical or pharmacological data about compounds 1-3 have appeared until now, making this the first report on these compounds. The Raman and GC-MS data of 4 have been reported, but this study added the LC-MS and NMR data for additional characterization. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Raschke, Henning; Fleischmann, Thomas; Van Der Meer, Jan Roelof; Kohler, Hans-Peter E.
1999-01-01
cis-Chlorobenzene dihydrodiol dehydrogenase (CDD) from Pseudomonas sp. strain P51, cloned into Escherichia coli DH5α(pTCB149) was able to oxidize cis-dihydrodihydroxy derivatives (cis-dihydrodiols) of dihydronaphthalene, indene, and four para-substituted toluenes to the corresponding catechols. During the incubation of a nonracemic mixture of cis-1,2-indandiol, only the (+)-cis-(1R,2S) enantiomer was oxidized; the (−)-cis-(S,2R) enantiomer remained unchanged. CDD oxidized both enantiomers of cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene, but oxidation of the (+)-cis-(1S,2R) enantiomer was delayed until the (−)-cis-(1R,2S) enantiomer was completely depleted. When incubated with nonracemic mixtures of para-substituted cis-toluene dihydrodiols, CDD always oxidized the major enantiomer at a higher rate than the minor enantiomer. When incubated with racemic 1-indanol, CDD enantioselectively transformed the (+)-(1S) enantiomer to 1-indanone. This stereoselective transformation shows that CDD also acted as an alcohol dehydrogenase. Additionally, CDD was able to oxidize (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene, (+)-cis-monochlorobiphenyl dihydrodiols, and (+)-cis-toluene dihydrodiol to the corresponding catechols. PMID:10583971
Raschke, H; Fleischmann, T; Van Der Meer, J R; Kohler, H P
1999-12-01
cis-Chlorobenzene dihydrodiol dehydrogenase (CDD) from Pseudomonas sp. strain P51, cloned into Escherichia coli DH5alpha(pTCB149) was able to oxidize cis-dihydrodihydroxy derivatives (cis-dihydrodiols) of dihydronaphthalene, indene, and four para-substituted toluenes to the corresponding catechols. During the incubation of a nonracemic mixture of cis-1,2-indandiol, only the (+)-cis-(1R,2S) enantiomer was oxidized; the (-)-cis-(S,2R) enantiomer remained unchanged. CDD oxidized both enantiomers of cis-1,2-dihydroxy-1,2,3, 4-tetrahydronaphthalene, but oxidation of the (+)-cis-(1S,2R) enantiomer was delayed until the (-)-cis-(1R,2S) enantiomer was completely depleted. When incubated with nonracemic mixtures of para-substituted cis-toluene dihydrodiols, CDD always oxidized the major enantiomer at a higher rate than the minor enantiomer. When incubated with racemic 1-indanol, CDD enantioselectively transformed the (+)-(1S) enantiomer to 1-indanone. This stereoselective transformation shows that CDD also acted as an alcohol dehydrogenase. Additionally, CDD was able to oxidize (+)-cis-(1R,2S)-dihydroxy-1, 2-dihydronaphthalene, (+)-cis-monochlorobiphenyl dihydrodiols, and (+)-cis-toluene dihydrodiol to the corresponding catechols.
Liu, Ling; Li, Yan; Li, Li; Cao, Ya; Guo, Liangdong; Liu, Gang; Che, Yongsheng
2013-04-05
Chloropestolides B-G (1-6), six new metabolites featuring the chlorinated spiro[benzo[d][1,3]dioxine-2,7'-bicyclo[2.2.2]octane]-4,8'-dione (1-3) and spiro[benzo[d][1,3]dioxine-2,1'-naphthalene]-2',4-dione (4-6) skeletons, and their putative biosynthetic precursor dechloromaldoxin (7) were isolated from the scale-up fermentation cultures of the plant endophytic fungus Pestalotiopsis fici . The structures of 1-7 were determined mainly by NMR experiments. The absolute configurations of 1-3 were deduced by analogy to the previously isolated metabolites from the same fungus (9 and 13-18), whereas those of 4, 5, and 7 were assigned by electronic circular dichroism (ECD) calculations. Structurally, the spiroketal skeletons found in 1-3 and 4-6 could be derived from 2,6-dihydroxy-4-methylbenzoic acid with chlorinated bicyclo[2.2.2]oct-2-en-5-one and 4a,5,8,8a-tetrahydronaphthalen-2(1H)-one, respectively. Biogenetically, compounds 1-6 were derived from the same Diels-Alder precursors as the previously isolated 9 and 12-18. In addition, compounds 2 and 3 were proposed as the biosynthetic intermediates of 17 and 16, respectively. Compound 1 was cytotoxic to three human tumor cell lines.
Carro, Laura; Torrado, María; Raviña, Enrique; Masaguer, Christian F; Lage, Sonia; Brea, José; Loza, María I
2014-01-01
A series of novel α-tetralone and α-tetralol derivatives was synthesized, and their binding affinities for 5-HT(2A) and D₂ receptors, the most important targets implicated in the anti-schizophrenia drug action, were evaluated to elucidate how substitutions in the aromatic ring of the pharmacophore affect to the affinity or selectivity for these receptors. The replacement of the H-7 in the tetrahydronaphthalene system by an amino group resulted in privileged 5-HT(2A) affinity of the 6-fluorobenzo[d]isoxazol derivative 36 and the alcohol 25 both showing a pK(i) value for 5-HT(2A) higher than 8.3 and good binding affinities for D₂ receptor leading to a Meltzer's ratio characteristic of an atypical antipsychotic profile. Additionally, a small collection of 3-aminomethyltetralone derivatives was prepared and examined here for their affinities and selectivities as 5-HT(2A)/D₂ dual ligands. Compound 11 shows the best profile with good pKi values for 5-HT(2A) and D₂ receptors leading to a Meltzer's ratio characteristic of a typical antipsychotic behaviour. These three compounds behaved as competitive antagonists of both 5-HT(2A) and D₂ receptors, and might be promising pharmacological tools for the investigation of the dual function of the 5HT(2A)-D₂ ligands. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Gauchat, Eric; Nazarenko, Alexander Y
2017-01-01
(9 S ,13 S ,14 S )-3-Meth-oxy-17-methyl-morphinan (dextromethorphan) forms two isostructural salts with ( a ) tetra-chlorido-cobaltate, namely bis-[(9 S ,13 S ,14 S )-3-meth-oxy-17-methyl-morphinanium] tetra-chlorido-cobaltate, (C 18 H 26 NO) 2 [CoCl 4 ], and ( b ) tetra-chlorido-cuprate, namely bis-[(9 S ,13 S ,14 S )-3-meth-oxy-17-methyl-morphinanium] tetra-chlorido-cuprate, (C 18 H 26 NO) 2 [CuCl 4 ]. The distorted tetra-hedral anions are located on twofold rotational axes. The dextromethorphan cation can be described as being composed of two ring systems, a tetra-hydro-naphthalene system A + B and a deca-hydro-isoquinolinium subunit C + D , that are nearly perpendicular to one another: the angle between mean planes of the A + B and C + D moieties is 78.8 (1)° for ( a ) and 79.0 (1)° for ( b ). Two symmetry-related cations of protonated dextromethorphan are connected to the tetra-chlorido-cobaltate (or tetra-chlorido-cuprate) anions via strong N-H⋯Cl hydrogen bonds, forming neutral ion associates. These associates are packed in the (001) plane with no strong attractive bonding between them. Both compounds are attractive crystalline forms for unambiguous identification of the dextromethorphan and, presumably, of its optical isomer, levomethorphan.
Thermal diffusion forced Rayleigh scattering setup optimized for aqueous mixtures.
Wiegand, Simone; Ning, Hui; Kriegs, Hartmut
2007-12-27
We developed a thermal diffusion forced Rayleigh scattering (TDFRS) setup operating at a writing wavelength of 980 nm, which corresponds to an absorption band of water with an absorption coefficient of approximately 0.5 cm(-1). Therefore, aqueous mixtures require no dye to convert the light into heat energy. Especially for aqueous system with a complex phase behavior such as surfactant systems, the addition of a water soluble dye can cause artifacts. The infrared-TDFRS (IR-TDFRS) setup has been validated for water/ethanol mixtures with water weight fractions c = 0.5-0.95 and in a temperature range between T = 15 degrees C to T = 35 degrees C. Comparison with literature data shows an excellent agreement. The addition of a small amount (c(dye) approximately 10(-6) wt) of adsorbing dye at the writing wavelength allows also the investigation of organic mixtures. We investigated the three binary mixtures of dodecane, isobutylbenzene, and 1,2,3,4-tetrahydronaphthalene at a weight fraction of c = 0.5 at a temperature of 25 degrees C and found good agreement with the Soret coefficients, which had been obtained in a benchmark test under the same conditions. Therefore, the presented setup is suitable for the investigation of the thermal diffusion behavior in aqueous and organic mixtures, and in the case of aqueous systems, the addition of a dye can be avoided.
NASA Astrophysics Data System (ADS)
Maltseva, Elena; Mackie, Cameron J.; Candian, Alessandra; Petrignani, Annemieke; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan
2018-03-01
Aim. We aim to elucidate the spectral changes in the 3 μm region that result from chemical changes in the molecular periphery of polycyclic aromatic hydrocarbons (PAHs) with extra hydrogens (H-PAHs) and methyl groups (Me-PAHs). Methods: Advanced laser spectroscopic techniques combined with mass spectrometry were applied on supersonically cooled 1,2,3,4-tetrahydronaphthalene, 9,10-dihydroanthracene, 9,10-dihydrophenanthrene, 1,2,3,6,7,8-hexahydropyrene, 9-methylanthracene, and 9,10-dimethylanthracene, allowing us to record mass-selective and conformationally selective absorption spectra of the aromatic, aliphatic, and alkyl CH-stretches in the 3.175 - 3.636 µm region with laser-limited resolution. We compared the experimental absorption spectra with standard harmonic calculations and with second-order vibrational perturbation theory anharmonic calculations that use the SPECTRO program for treating resonances. Results: We show that anharmonicity plays an important if not dominant role, affecting not only aromatic, but also aliphatic and alkyl CH-stretch vibrations. The experimental high-resolution data lead to the conclusion that the variation in Me- and H-PAHs composition might well account for the observed variations in the 3 μm emission spectra of carbon-rich and star-forming regions. Our laboratory studies also suggest that heavily hydrogenated PAHs form a significant fraction of the carriers of IR emission in regions in which an anomalously strong 3 μm plateau is observed.
3D QSAR based design of novel oxindole derivative as 5HT7 inhibitors.
Chitta, Aparna; Sivan, Sree Kanth; Manga, Vijjulatha
2014-06-01
To understand the structural requirements of 5-hydroxytryptamine (5HT7) receptor inhibitors and to design new ligands against 5HT7 receptor with enhanced inhibitory potency, a three-dimensional quantitative structure-activity relationship study with comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) for a data set of 56 molecules consisting of oxindole, tetrahydronaphthalene, aryl ketone substituted arylpiperazinealkylamide derivatives was performed. Derived model showed good statistical reliability in terms of predicting 5HT7 inhibitory activity of the molecules, based on molecular property fields like steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond acceptor fields. This is evident from statistical parameters like conventional r2 and a cross validated (q2) values of 0.985, 0.743 for CoMFA and 0.970, 0.608 for CoMSIA, respectively. Predictive ability of the models to determine 5HT7 antagonistic activity is validated using a test set of 16 molecules that were not included in the training set. Predictive r2 obtained for the test set was 0.560 and 0.619 for CoMFA and CoMSIA, respectively. Steric, electrostatic fields majorly contributed toward activity which forms the basis for design of new molecules. Absorption, distribution, metabolism and elimination (ADME) calculation using QikProp 2.5 (Schrodinger 2010, Portland, OR) reveals that the molecules confer to Lipinski's rule of five in majority of the cases.
Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.M .
2007-01-01
Selected organic wastewater compounds, such as household, industrial, and agricultural-use compounds, sterols, pharmaceuticals, and antibiotics, were measured at eight sites classified as drinking-water supplies in the Triangle Area of North Carolina. From October 2002 through July 2005, seven of the sites were sampled twice, and one site was sampled 28 times, for a total of 42 sets of environmental samples. Samples were analyzed for as many as 126 compounds using three laboratory analytical methods. These methods were developed by the U.S. Geological Survey to detect low levels (generally less than or equal to 1.0 microgram per liter) of the target compounds in filtered water. Because analyses were conducted on filtered samples, the results presented in this report may not reflect the total concentration of organic wastewater compounds in the waters that were sampled. Various quality-control samples were used to quality assure the results in terms of method performance and possible laboratory or field contamination. Of the 108 organic wastewater compounds that met method performance criteria, 24 were detected in at least one sample during the study. These 24 compounds included 3 pharmaceutical compounds, 6 fire retardants and plasticizers, 3 antibiotics, 3 pesticides, 6 fragrances and flavorants, 1 disinfectant, and 2 miscellaneous-use compounds, all of which likely originated from a variety of domestic, industrial, and agricultural sources. The 10 most frequently detected compounds included acetyl-hexamethyl tetrahydronaphthalene and hexahydro-hexamethyl cyclopentabenzopyran (synthetic musks that are widely used in personal-care products and are known endocrine disruptors); tri(2-chloroethyl) phosphate, tri(dichloroisopropyl) phosphate, and tributyl phosphate (fire retardants); metolachlor (herbicide); caffeine (nonprescription stimulant); cotinine (metabolite of nicotine); acetaminophen (nonprescription analgesic); and sulfamethoxazole (prescription antibiotic
An Alpha-1A Adrenergic Receptor Agonist Prevents Acute Doxorubicin Cardiomyopathy in Male Mice.
Montgomery, Megan D; Chan, Trevor; Swigart, Philip M; Myagmar, Bat-Erdene; Dash, Rajesh; Simpson, Paul C
2017-01-01
Alpha-1 adrenergic receptors mediate adaptive effects in the heart and cardiac myocytes, and a myocyte survival pathway involving the alpha-1A receptor subtype and ERK activation exists in vitro. However, data in vivo are limited. Here we tested A61603 (N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl]methanesulfonamide), a selective imidazoline agonist for the alpha-1A. A61603 was the most potent alpha-1-agonist in activating ERK in neonatal rat ventricular myocytes. A61603 activated ERK in adult mouse ventricular myocytes and protected the cells from death caused by the anthracycline doxorubicin. A low dose of A61603 (10 ng/kg/d) activated ERK in the mouse heart in vivo, but did not change blood pressure. In male mice, concurrent subcutaneous A61603 infusion at 10 ng/kg/d for 7 days after a single intraperitoneal dose of doxorubicin (25 mg/kg) increased survival, improved cardiac function, heart rate, and cardiac output by echocardiography, and reduced cardiac cell necrosis and apoptosis and myocardial fibrosis. All protective effects were lost in alpha-1A-knockout mice. In female mice, doxorubicin at doses higher than in males (35-40 mg/kg) caused less cardiac toxicity than in males. We conclude that the alpha-1A-selective agonist A61603, via the alpha-1A adrenergic receptor, prevents doxorubicin cardiomyopathy in male mice, supporting the theory that alpha-1A adrenergic receptor agonists have potential as novel heart failure therapies.
Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, January--March 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, C.W.
Previous research has suggested that using a more effective hydrogen donor solvent in the low severity coal liquefaction reaction improves coal conversion. In order to understand the results of these methods, both independently and combined, a factorial experiment was designed. Pretreating coal with hydrochloric and sulfurous acid solutions in both water and methanol is compared with pretreating coal using only methanol and with no pretreatment. The effects of these pretreatments on coal liquefaction behavior are contrasted with the ammonium acetate pretreatment. Within each of these, individual reactions are performed with the hydroaromatic 1,2,3,4-tetrahydronaphthalene (tetralin, TET) and the cyclic olefin 1,4,5,8-tetrahydronaphthalenemore » (isotetralin, ISO). The final aspect of the factorial experiment is the comparison of Wyodak subbituminous coal (WY) from the Argonne Premium Sample Bank and Black Thunder subbituminous coal (BT) provided by Amoco. Half of the reactions in the matrix have now been completed. In all but one case, Black Thunder-HCl/H{sub 2}O, the ISO proved to be more reactive than TET. After the other four reactions using this combination are complete, the average conversion may be greater with the cyclic olefin. The second part of this paper describes the current and future work with Fourier transform infrared spectroscopy. The objective of this work is to determine the kinetics of reaction of isotetralin at high temperatures and pressures. This quarter combinations of three products typically produced from isotetralin were used in spectral subtraction.« less
Roosens, Laurence; Covaci, Adrian; Neels, Hugo
2007-11-01
Synthetic musks, such as 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN) and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-gamma-2-benzopyran (HHCB), musk ketone (MK) and musk xylene (MX), are used as an alternative for natural musk. Due to their widespread use, these synthetic compounds turned up in different environmental compartments, such as wastewater, human and animal tissues. Yet, little is known about their distribution and occurrence in personal care and household products, information needed in order to evaluate the different human exposure routes. This paper gives an overview of the synthetic musk levels in six different product categories: body lotions, perfumes, deodorants, hair care products, shower products and sanitation products. Especially body lotions, perfumes and deodorants contained high levels of synthetic musks. Maximum concentrations of HHCB, AHTN, MX and MK were 22 mg g(-1), 8 mg g(-1), 26 microg g(-1) and 0.5 microg g(-1), respectively. By combining these results with the average usage of consumer products, low-, medium- and high-exposure profiles through dermal application could be estimated. HHCB was the highest contributor to the total amount of synthetic musks in every exposure profile (18-23 700 microg d(-1)). Exposure to MK and MX did not increase substantially (10-20-fold) between low- and high-exposure profiles, indicating that these compounds cover a less broad range. In comparison, exposure to HHCB and AHTN increased up to 10 000 fold between low- and high-exposure.
Enantioselective Determination of Polycyclic Musks in River and Wastewater by GC/MS/MS
Lee, Injung; Gopalan, Anantha-Iyengar; Lee, Kwang-Pill
2016-01-01
The separation of chiral compounds is an interesting and challenging topic in analytical chemistry, especially in environmental fields. Enantioselective degradation or bioaccumulation has been observed for several chiral pollutants. Polycyclic musks are chiral and are widely used as fragrances in a variety of personal care products such as soaps, shampoos, cosmetics and perfumes. In this study, the gas chromatographic separation of chiral polycyclic musks, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclo-penta-γ-2-benzopyrane (HHCB), 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetra-hydronaphthalene (AHTN), 6-acetyl-1,1,2,3,3,5-hexamethylindane (AHDI), 5-acetyl-1,1,2,6-tetramethyl-3-iso-propylindane (ATII), and 6,7-dihydro-1,1,2,3,3-pentamethyl-4(5H)-indanone (DPMI) was achieved on modified cyclodextrin stationary phase (heptakis (2,3-di-O-methyl-6-O-tert-butyl-dimethylsilyl-β-CD in DV-1701)). Separation techniques are coupled to tandem mass spectrometry (MS-MS), as it provides the sensitivity and selectivity needed. River and wastewaters (influents and effluents of wastewater treatment plants (WWTPs)) in the Nakdong River were investigated with regard to the concentrations and the enantiomeric ratios of polycyclic musks. HHCB was most frequently detected in river and wastewaters, and an enantiomeric enrichment was observed in the effluents of one of the investigated wastewater treatment plants (WWTPs). We reported the contamination of river and wastewaters in Korea by chiral polycyclic musks. The results of this investigation suggest that enantioselective transformation may occur during wastewater treatment. PMID:27011195
Personal care compounds in a reed bed sludge treatment system.
Chen, Xijuan; Pauly, Udo; Rehfus, Stefan; Bester, Kai
2009-08-01
Sewage sludge (also referred to as biosolids) has long been used as fertilizer on agricultural land. The usage of sludge as fertilizer is controversial because of possible high concentration of xenobiotic compounds, heavy metals as well as pathogens. In this study, the fate of the xenobiotic compounds triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol), OTNE (1-(2,3,8,8-tetramethyl-1,2,3,4,5,6,7,8-octahydro-naphthalen-2-yl)ethan-1-one), HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran), HHCB-lactone, AHTN (7-acetyl-1,1,3,4,4,6 hexamethyl-1,2,3,4 tetrahydronaphthalene), and DEHP (bis(2-ethylhexyl)phthalate) in advanced biological treatment of sludge was determined. During 13months of field-incubation of the sludge in reed beds, the xenobiotic compounds were analysed. The bactericide triclosan was reduced to 60%, 45%, and 32% of its original concentration in the top, middle, and bottom layer. The fragrance OTNE was decreased to 42% in the top layer, 53% in the middle layer, and 70% in the bottom layer, respectively. For DEHP a reduction of 70%, 71%, and 40% was observed in the top, middle, and bottom layer, respectively. The polycyclic musk compounds HHCB, AHTN, and the primary metabolite of HHCB, i.e., HHCB-lactone showed no degradation in 13months during the experimental period in this installation. Tentative half-lives of degradation of triclosan, OTNE and DEHP were estimated to be 315-770d, 237-630d, and 289-578d, respectively.
NASA Astrophysics Data System (ADS)
Matsuura, H.; Nagasaka, Y.
2018-02-01
We describe an instrument for the measurement of the Soret and thermodiffusion coefficients in ternary systems based on the transient holographic grating technique, which is called Soret forced Rayleigh scattering (SFRS) or thermal diffusion forced Rayleigh scattering (TDFRS). We integrated the SFRS technique and the two-wavelength detection technique, which enabled us to obtain two different signals to determine the two independent Soret coefficients and thermodiffusion coefficients in ternary systems. The instrument has been designed to read the mass transport simultaneously by two-wavelength lasers with wavelengths of λ = 403 nm and λ = 639 nm. The irradiation time of the probing lasers is controlled to reduce the effect of laser absorption to the sample with dye (quinizarin), which is added to convert the interference pattern of the heating laser of λ = 532 nm to the temperature grating. The result of the measurement of binary benchmark mixtures composed of 1,2,3,4-tetrahydronaphthalene (THN), isobutylbenzene (IBB), and n-dodecane (nC12) shows that the simultaneous two-wavelength observation of the Soret effect and the mass diffusion are adequately performed. To evaluate performance in the measurement of ternary systems, we carried out experiments on the ternary benchmark mixtures of THN/IBB/nC12 with the mass fractions of 0.800/0.100/0.100 at a temperature of 298.2 K. The Soret coefficient and thermodiffusion coefficient agreed with the ternary benchmark values within the range of the standard uncertainties (23% for the Soret coefficient of THN and 30% for the thermodiffusion coefficient of THN).
NASA Astrophysics Data System (ADS)
Soldatov, A. P.
2017-05-01
As part of ongoing studies aimed at designing the next generation of nanosized membrane reactors (NMRs) with accumulated hydrogen, the noncatalytic hydrogenation of naphthalene in pores of ceramic membranes (TRUMEM ultrafiltration membranes with D av = 50 and 90 nm) is performed for the first time, using hydrogen preadsorbed in a hybrid carbon nanostructure: mono- and multilayered oriented carbon nanotubes with graphene walls (OCNTGs) that form on inner pore surfaces. In this technique, the reaction proceeds in the temperature range of 330-390°C at contact times of 10-16 h. The feedstock is an 8% naphthalene solution in decane. The products are analyzed via chromatography on a quartz capillary column coated with polydimethylsiloxane (SE-30). It is established for the first time that in NMRs, the noncatalytic hydrogenation of naphthalene occurs at 370-390°C, forming 1,2,3,4-tetrahydronaphthalene in amounts of up to 0.61%. The rate constants and activation energy (123.5 kJ/mol) of the noncatalytic hydrogenation reaction are determined for the first time. The possibility of designing an NMR with an adjustable reaction zone volume is explored. Changes in the pore structure of the membranes after their modification with pyrocarbon nanosized crystallites (PNCs) are therefore studied as well. It is shown that lengthening the process time reduces pore size: within 23 h after the deposition of PNCs, the average pore radius ( r av) falls from 25 to 3.1 nm. The proposed approach would allow us to design nanoreactors of molecular size and conduct hydrogenation reactions within certain guidelines to synthesize new chemical compounds.
NASA Astrophysics Data System (ADS)
Gebhardt, M.; Köhler, W.
2015-02-01
A number of optical techniques have been developed during the recent years for the investigation of diffusion and thermodiffusion in ternary fluid mixtures, both on ground and on-board the International Space Station. All these methods are based on the simultaneous measurement of refractive index changes at two different wavelengths. Here, we discuss and compare different techniques with the emphasis on optical beam deflection (OBD), optical digital interferometry, and thermal diffusion forced Rayleigh scattering (TDFRS). We suggest to formally split the data evaluation into a phenomenological parameterization of the measured transients and a subsequent transformation from the refractive index into the concentration space. In all experiments, the transients measured at two different detection wavelengths can be described by four amplitudes and two eigenvalues of the diffusion coefficient matrix. It turns out that these six parameters are subjected to large errors and cannot be determined reliably. Five good quantities, which can be determined with a high accuracy, are the stationary amplitudes, the initial slopes as defined in TDFRS experiments and by application of a heuristic criterion for similar curves, a certain mean diffusion coefficient. These amplitudes and slopes are directly linked to the Soret and thermodiffusion coefficients after transformation with the inverse contrast factor matrix, which is frequently ill-conditioned. Since only five out of six free parameters are reliably determined, including the single mean diffusion coefficient, the determination of the four entries of the diffusion matrix is not possible. We apply our results to new OBD measurements of the symmetric (mass fractions 0.33/0.33/0.33) ternary benchmark mixture n-dodecane/isobutylbenzene/1,2,3,4-tetrahydronaphthalene and existing literature data for the same system.
The anharmonic quartic force field infrared spectra of hydrogenated and methylated PAHs.
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M
2018-01-03
Polycyclic aromatic hydrocarbons (PAHs) have been shown to be ubiquitous in a large variety of distinct astrophysical environments and are therefore of great interest to astronomers. The majority of these findings are based on theoretically predicted spectra, which make use of scaled DFT harmonic frequencies for band positions and the double harmonic approximation for intensities. However, these approximations have been shown to fail at predicting high-resolution gas-phase infrared spectra accurately, especially in the CH-stretching region (2950-3150 cm -1 , 3 μm). This is particularly worrying for the subset of hydrogenated or methylated PAHs to which astronomers attribute the observed non-aromatic features that appear in the CH-stretching region of spectral observations of the interstellar medium (ISM). In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs and five non-linear PAHs, demonstrating the importance of including anharmonicities into theoretical calculations. In this work we extend these techniques to two methylated PAHs (9-methylanthracene, and 9,10-dimethylanthracene) and four hydrogenated PAHs (9,10-dihydroanthracene, 9,10-dihydrophenanthrene, 1,2,3,4-tetrahydronaphthalene, and 1,2,3,6,7,8-hexahydropyrene) in order to better understand the aliphatic IR features of substituted PAHs. The theoretical spectra are compared with the spectra obtained under matrix isolation low-temperature conditions for the full vibrational fundamental range and under high-resolution, low-temperature gas-phase conditions for the CH-stretching region. Excellent agreement is observed between the theoretical and high-resolution experimental spectra with a deviation of 0.00% ± 0.17%, and changes to the spectra of PAHs upon methylation and hydrogenated are tracked accurately and explained.
Heilmann, Jens; Boulyga, Sergei F; Heumann, Klaus G
2004-09-01
Inductively coupled plasma isotope-dilution mass spectrometry (ICP-IDMS) with direct injection of isotope-diluted samples into the plasma, using a direct injection high-efficiency nebulizer (DIHEN), was applied for accurate sulfur determinations in sulfur-free premium gasoline, gas oil, diesel fuel, and heating oil. For direct injection a micro-emulsion consisting of the corresponding organic sample and an aqueous 34S-enriched spike solution with additions of tetrahydronaphthalene and Triton X-100, was prepared. The ICP-MS parameters were optimized with respect to high sulfur ion intensities, low mass-bias values, and high precision of 32S/34S ratio measurements. For validation of the DIHEN-ICP-IDMS method two certified gas oil reference materials (BCR 107 and BCR 672) were analyzed. For comparison a wet-chemical ICP-IDMS method was applied with microwave-assisted digestion using decomposition of samples in a closed quartz vessel inserted into a normal microwave system. The results from both ICP-IDMS methods agree well with the certified values of the reference materials and also with each other for analyses of other samples. However, the standard deviation of DIHEN-ICP-IDMS was about a factor of two higher (5-6% RSD at concentration levels above 100 mircog g(-1)) compared with those of wet-chemical ICP-IDMS, mainly due to inhomogeneities of the micro-emulsion, which causes additional plasma instabilities. Detection limits of 4 and 18 microg g(-1) were obtained for ICP-IDMS in connection with microwave-assisted digestion and DIHEN-ICP-IDMS, respectively, with a sulfur background of the used Milli-Q water as the main limiting factor for both methods.
Development of an ultrasensitive PCR assay for polycyclic musk determination in fish.
Zhang, Xiaohan; Zhuang, Huisheng
2018-05-01
Polycyclic musks (PCMs) in the aquatic environment and organisms have become an emerging environmental issue because of their potential risk. The most used method for polycyclic musk determination is gas chromatography-mass spectrometry (GC-MS) with different sample extractions, which are somewhat expensive to operate, complex and laborious. In this study, a novel and ultrasensitive real-time polymerase chain reaction (PCR) assay with multiple signal amplification of carboxylic-DNA by gold nanoparticle-polyamidoamine conjugation (Au-PAMAM) was developed for determining polycyclic musks in fish. Hapten and immunogen were specially prepared. Polyclonal antibodies were produced based on the optimal immunisation, and the antibodies were characterised. Due to PAMAM's unique nanostructure of numerous functional amino groups, polyclonal antibody and carboxylic-DNA were immobilised by Au-PAMAM conjugation to develop the antibody-Au-PAMAM-DNA probes, which were used as a signal DNA amplifier in the PCR system. Compared with real-time immuno-PCR, this biological probe-amplified immuno-PCR (BPAI-PCR) assay had higher sensitivity due to the probes' higher ratio of signal DNA. Finally, the BPAI-PCR assay was applied to analyse AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene,Tonalide) concentrations in fish samples in the range from 1 pg/L to 10 ng/L, giving an of LOD 0.61 pg/L. In general, due to the specificity of the antibody and novel nanoprobe design, this BPAI-PCR assay provided a potential way for trace analysis of AHTN in the aquatic organisms. The high concentrations of AHTN found in cultivated fish should encourage further toxicological studies.
Sakhuja, Rajeev; Kondabolu, Krishnakanth; Córdova-Sintjago, Tania; Travers, Sean; Vincek, Adam S.; Kim, Myong Sang; Abboud, Khalil A.; Fang, Lijuan; Sun, Zhuming; Canal, Clinton E.; Booth, Raymond G.
2015-01-01
Syntheses were undertaken of derivatives of (2S, 4R)-(−)-trans-4-phenyl-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (4-phenyl-2-dimethylaminotetralin, PAT), a stereospecific agonist at the serotonin 5-HT2C G protein-coupled receptor (GPCR), with inverse agonist activity at 5-HT2A and 5-HT2B GPCRs. Molecular changes were made at the PAT C(4)-position, while preserving N, N-dimethyl substitution at the 2-position as well as trans-stereochemistry, structural features previously shown to be optimal for 5-HT2 binding. Affinities of analogs were determined at recombinant human 5-HT2 GPCRs in comparison to the phylogenetically closely-related histamine H1 GPCR, and in silico ligand docking studies were conducted at receptor molecular models to help interpret pharmacological results and guide future ligand design. In most cases, C(4)-substituted PAT analogs exhibited the same stereoselectivity ([−]-trans > [+]-trans) as the parent PAT across 5-HT2 and H1 GPCRs, albeit, with variable receptor selectivity. 4-(4′-substituted)-PAT analogs, however, demonstrated reversed stereoselectivity ([2S, 4R]-[+]-trans > [2S, 4R]-[−]-trans), with absolute configuration confirmed by single X-ray crystallographic data for the 4-(4′-Cl)-PAT analog. Pharmacological affinity results and computational results herein support further PAT drug development studies and provide a basis for predicting and interpreting translational results, including, for (+)-trans-4-(4′-Cl)-PAT and (−)-trans-4-(3′-Br)-PAT that were previously shown to be more potent and efficacious than their corresponding enantiomers in rodent models of psychoses, psychostimulant-induced behaviors, and compulsive feeding (‘binge-eating’). PMID:25703249
Kaneko, Fumi; Kishikawa, Yuki; Hanada, Yuuki; Yamada, Makiko; Kakuma, Tatsuyuki; Kawahara, Hiroshi; Nishi, Akinori
2016-01-01
Background: Cortical dopamine and noradrenaline are involved in the stress response. Citalopram, a selective serotonin reuptake inhibitor, has direct and indirect effects on the serotonergic system. Furthermore, long-term treatment with citalopram affects the dopamine and noradrenaline systems, which could contribute to the therapeutic action of antidepressants. Methods: The effects of long-term treatment with citalopram on the responses of the dopamine and noradrenaline systems in the rat prefrontal cortex to acute handling stress were evaluated using in vivo microdialysis. Results: Acute handling stress increased dopamine and noradrenaline levels in the prefrontal cortex. The dopamine and noradrenaline responses were suppressed by local infusion of a 5-HT1A receptor agonist, 7-(Dipropylamino)-5,6,7,8-tetrahydronaphthalen-1-ol;hydrobromide, into the prefrontal cortex. The dopamine response was abolished by long-term treatment with citalopram, and the abolished dopamine response was reversed by local infusion of a 5-HT1A receptor antagonist, (Z)-but-2-enedioic acid;N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-ylcyclohexanecarboxamide into the prefrontal cortex. On the other hand, long-term treatment with citalopram reduced the basal noradrenaline levels (approximately 40% of the controls), but not the basal dopamine levels. The noradrenaline response was maintained despite the low basal noradrenaline levels. Signaling from the 5-HT1A receptors and α2-adrenoceptors was not involved in the decrease in the basal noradrenaline levels but partially affected the noradrenaline response. Conclusions: Chronic citalopram treatment differentially suppresses the dopamine and noradrenaline systems in the prefrontal cortex, and the dopamine stress response was preferentially controlled by upregulating 5-HT1A receptor signaling. Our findings provide insight into how antidepressants modulate the dopamine and noradrenaline systems to overcome acute stress. PMID
Fan, Ming; Liu, Zhengtao; Dyer, Scott; Xia, Pu; Zhang, Xiaowei
2017-12-01
An environmental risk assessment (ERA) framework was recently developed for consumer product chemicals in China using a tiered approach, applying an existing Chinese regulatory qualitative method in Tier Zero and, then, utilizing deterministic and probabilistic methods for Tiers One and Two. The exposure assessment methodology in the framework applied conditions specific to China including physical setting, infrastructure, and consumers' habits and practices. Furthermore, two scenarios were identified for quantitatively assessing environmental exposure: (1) Urban with wastewater treatment, and; (2) Rural without wastewater treatment (i.e., direct-discharge of wastewater). Upon a brief discussion on the framework methodology, this paper primarily presented a case study conducted using this new approach for assessing two fragrance chemicals, the polycyclic musks HHCB (Galaxolide, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-[gamma]-2-benzopyran) and AHTN (Tonalide, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene). Both HHCB and AHTN are widely used as fragrances in a variety of consumer products in China, and occurrences of both compounds have been reported in wastewater influents, effluents, and sludge, in addition to surface water and sediments across several major metropolitan regions throughout China. This case study illustrated the very conservative nature of Tier Zero, which indicated a high risk potential of the fragrances to receiving water aquatic communities due to the fragrance's non-ready biodegradability and eco-toxicity profiles. However, the higher-tiered assessments (including deterministic and site-specific probabilistic) demonstrated greater environmental realism with the conclusion of HHCB and AHTN posing minimal risk, consistent with local monitoring data as well as a recent similar study conducted in the United States. Copyright © 2017 Elsevier B.V. All rights reserved.
Cong, Zhiqi; Kinemuchi, Haruki; Kurahashi, Takuya; Fujii, Hiroshi
2014-10-06
Hydrogen atom transfer with a tunneling effect (H-tunneling) has been proposed to be involved in aliphatic hydroxylation reactions catalyzed by cytochrome P450 and synthetic heme complexes as a result of the observation of large hydrogen/deuterium kinetic isotope effects (KIEs). In the present work, we investigate the factors controlling the H-tunneling contribution to the H-transfer process in hydroxylation reaction by examining the kinetics of hydroxylation reactions at the benzylic positions of xanthene and 1,2,3,4-tetrahydronaphthalene by oxoiron(IV) 5,10,15,20-tetramesitylporphyrin π-cation radical complexes ((TMP(+•))Fe(IV)O(L)) under single-turnover conditions. The Arrhenius plots for these hydroxylation reactions of H-isotopomers have upwardly concave profiles. The Arrhenius plots of D-isotopomers, clear isosbestic points, and product analysis rule out the participation of thermally dependent other reaction processes in the concave profiles. These results provide evidence for the involvement of H-tunneling in the rate-limiting H-transfer process. These profiles are simulated using an equation derived from Bell's tunneling model. The temperature dependence of the KIE values (k(H)/k(D)) determined for these reactions indicates that the KIE value increases as the reaction temperature becomes lower, the bond dissociation energy (BDE) of the C-H bond of a substrate becomes higher, and the reactivity of (TMP(+•))Fe(IV)O(L) decreases. In addition, we found correlation of the slope of the ln(k(H)/k(D)) - 1/T plot and the bond strengths of the Fe═O bond of (TMP(+•))Fe(IV)O(L) estimated from resonance Raman spectroscopy. These observations indicate that these factors modulate the extent of the H-tunneling contribution by modulating the ratio of the height and thickness of the reaction barrier.
Morgan, Drake; Felsing, Daniel; Kondabolu, Krishnakanth; Rowland, Neil E.; Robertson, Kimberly L.; Sakhuja, Rajeev; Booth, Raymond G.
2014-01-01
Development of 5-HT2C agonists for treatment of neuropsychiatric disorders, including psychoses, substance abuse, and obesity, has been fraught with difficulties, because the vast majority of reported 5-HT2C selective agonists also activate 5-HT2A and/or 5-HT2B receptors, potentially causing hallucinations and/or cardiac valvulopathy. Herein is described a novel, potent, and efficacious human 5-HT2C receptor agonist, (−)-trans-(2S,4R)-4-(3′[meta]-bromophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (−)-MBP), that is a competitive antagonist and inverse agonist at human 5-HT2A and 5-HT2B receptors, respectively. (−)-MBP has efficacy comparable to the prototypical second-generation antipsychotic drug clozapine in three C57Bl/6 mouse models of drug-induced psychoses: the head-twitch response elicited by [2,5]-dimethoxy-4-iodoamphetamine; hyperlocomotion induced by MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine maleate)]; and hyperlocomotion induced by amphetamine. (−)-MBP, however, does not alter locomotion when administered alone, distinguishing it from clozapine, which suppresses locomotion. Finally, consumption of highly palatable food by mice was not increased by (−)-MBP at a dose that produced at least 50% maximal efficacy in the psychoses models. Compared with (−)-MBP, the enantiomer (+)-MBP was much less active across in vitro affinity and functional assays using mouse and human receptors and also translated in vivo with comparably lower potency and efficacy. Results indicate a 5-HT2C receptor-specific agonist, such as (−)-MBP, may be pharmacotherapeutic for psychoses, without liability for obesity, hallucinations, heart disease, sedation, or motoric disorders. PMID:24563531
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebhardt, M.; Köhler, W., E-mail: werner.koehler@uni-bayreuth.de
A number of optical techniques have been developed during the recent years for the investigation of diffusion and thermodiffusion in ternary fluid mixtures, both on ground and on-board the International Space Station. All these methods are based on the simultaneous measurement of refractive index changes at two different wavelengths. Here, we discuss and compare different techniques with the emphasis on optical beam deflection (OBD), optical digital interferometry, and thermal diffusion forced Rayleigh scattering (TDFRS). We suggest to formally split the data evaluation into a phenomenological parameterization of the measured transients and a subsequent transformation from the refractive index into themore » concentration space. In all experiments, the transients measured at two different detection wavelengths can be described by four amplitudes and two eigenvalues of the diffusion coefficient matrix. It turns out that these six parameters are subjected to large errors and cannot be determined reliably. Five good quantities, which can be determined with a high accuracy, are the stationary amplitudes, the initial slopes as defined in TDFRS experiments and by application of a heuristic criterion for similar curves, a certain mean diffusion coefficient. These amplitudes and slopes are directly linked to the Soret and thermodiffusion coefficients after transformation with the inverse contrast factor matrix, which is frequently ill-conditioned. Since only five out of six free parameters are reliably determined, including the single mean diffusion coefficient, the determination of the four entries of the diffusion matrix is not possible. We apply our results to new OBD measurements of the symmetric (mass fractions 0.33/0.33/0.33) ternary benchmark mixture n-dodecane/isobutylbenzene/1,2,3,4-tetrahydronaphthalene and existing literature data for the same system.« less
Savolainen, Heli; Cantore, Mariangela; Colabufo, Nicola A; Elsinga, Philip H; Windhorst, Albert D; Luurtsema, Gert
2015-07-06
P-Glycoprotein (P-gp), along with other transporter proteins at the blood-brain barrier (BBB), limits the entry of many pharmaceuticals into the brain. Altered P-gp function has been found in several neurological diseases. To study the P-gp function, many positron emission tomography (PET) radiopharmaceuticals have been developed. Most P-gp radiopharmaceuticals are labeled with carbon-11, while labeling with fluorine-18 would increase their applicability due to longer half-life. Here we present the synthesis and in vivo evaluation of three novel fluorine-18 labeled radiopharmaceuticals: 4-((6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)methyl)-2-(4-fluorophenyl)oxazole (1a), 2-biphenyl-4-yl-2-fluoroethoxy-6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline (2), and 5-(1-(2-fluoroethoxy))-[3-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-propyl]-5,6,7,8-tetrahydronaphthalen (3). Compounds were characterized as P-gp substrates in vitro, and Mdr1a/b((-/-))Bcrp1((-/-)) and wild-type mice were used to assess the substrate potential in vivo. Comparison was made to (R)-[(11)C]verapamil, which is currently the most frequently used P-gp substrate. Compound [(18)F]3 was performing the best out of the new radiopharmaceuticals; it had 2-fold higher brain uptake in the Mdr1a/b((-/-))Bcrp1((-/-)) mice compared to wild-type and was metabolically quite stable. In the plasma, 69% of the parent compound was intact after 45 min and 96% in the brain. Selectivity of [(18)F]3 to P-gp was tested by comparing the uptake in Mdr1a/b((-/-)) mice to uptake in Mdr1a/b((-/-))Bcrp1((-/-)) mice, which was statistically not significantly different. Hence, [(18)F]3 was found to be selective for P-gp and is a promising new radiopharmaceutical for P-gp PET imaging at the BBB.
NASA Astrophysics Data System (ADS)
Córdova-Sintjago, Tania C.; Liu, Yue; Booth, Raymond G.
2015-02-01
To understand molecular determinants for ligand activation of the serotonin 5-HT2C G protein-coupled receptor (GPCR), a drug target for obesity and neuropsychiatric disorders, a 5-HT2C homology model was built according to an adrenergic β2 GPCR (β2AR) structure and validated using a 5-HT2B GPCR crystal structure. The models were equilibrated in a simulated phosphatidyl choline membrane for ligand docking and molecular dynamics studies. Ligands included (2S, 4R)-(-)-trans-4-(3'-bromo- and trifluoro-phenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalene-2-amine (3'-Br-PAT and 3'-CF3-PAT), a 5-HT2C agonist and inverse agonist, respectively. Distinct interactions of 3'-Br-PAT and 3'-CF3-PAT at the wild-type (WT) 5-HT2C receptor model were observed and experimental 5-HT2C receptor mutagenesis studies were undertaken to validate the modelling results. For example, the inverse agonist 3'-CF3-PAT docked deeper in the WT 5-HT2C binding pocket and altered the orientation of transmembrane helices (TM) 6 in comparison to the agonist 3'-Br-PAT, suggesting that changes in TM orientation that result from ligand binding impact function. For both PATs, mutation of 5-HT2C residues S3.36, T3.37, and F5.47 to alanine resulted in significantly decreased affinity, as predicted from modelling results. It was concluded that upon PAT binding, 5-HT2C residues T3.37 and F5.47 in TMs 3 and 5, respectively, engage in inter-helical interactions with TMs 4 and 6, respectively. The movement of TMs 5 and 6 upon agonist and inverse agonist ligand binding observed in the 5-HT2C receptor modelling studies was similar to movements reported for the activation and deactivation of the β2AR, suggesting common mechanisms among aminergic neurotransmitter GPCRs.
Synthetic musk fragrances in environmental Standard Reference Materials.
Peck, Aaron M; Kucklick, John R; Schantz, Michele M
2007-04-01
Synthetic musk fragrances have been measured in water, air, sediments, sewage sludge, and biota worldwide. As the study of the environmental fate and impacts of these compounds progresses, the need for Standard Reference Materials (SRMs) for these compounds to facilitate analytical method improvement and interlaboratory comparisons becomes increasingly important. The National Institute of Standards and Technology (NIST) issues environmental matrix SRMs with certified concentrations for a variety of persistent organic pollutants including polycyclic aromatic hydrocarbons (PAHs), chlorinated pesticides, and polychlorinated biphenyl congeners (PCBs). Until now synthetic musk fragrance concentrations have not been reported in NIST SRMs. The objective of this study was to provide reference values for several commonly detected synthetic musk fragrances in several NIST natural matrix SRMs. In this study five polycyclic musk fragrances [HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-gamma-2-benzopyran), AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene), ADBI (4-acetyl-1,1-dimethyl-6-tert-butylindane), AHMI (6-acetyl-1,1,2,3,3,5-hexamethylindane), and ATII (5-acetyl-1,1,2,6-tetramethyl-3-isopropylindane] and two nitro musk fragrances [musk xylene (1-tert-butyl-3,5-dimethyl-2,4,6-trinitrobenzene) and musk ketone (4-tert-butyl-3,5-dinitro-2,6-dimethylacetophenone)] were measured in selected environmental SRMs. Gas chromatography-electron impact mass spectrometry (GC/EI-MS) was used for all analyses. HHCB was the most frequently detected synthetic musk fragrance and was detected in SRM 2585 Organic Contaminants in House Dust, SRM 2781 Domestic Sludge, SRM 1974b Organics in Mussel Tissue (Mytilus edulis), and SRM 1947 Lake Michigan Fish Tissue. It was not detected in SRM 1946 Lake Superior Fish Tissue or SRM 1945 Organics in Whale Blubber. Concentrations of HHCB in these SRMs ranged from 1.12 ng/g in SRM 1947 to 92,901 ng/g in SRM 2781. All of
Qu, Chen; Leung, Susan W S; Vanhoutte, Paul M; Man, Ricky Y K
2010-08-01
Acute inhibition of nitric-oxide synthase (NOS) unmasks the release of endothelium-derived contracting factors (EDCFs). The present study investigated whether chronic inhibition of NOS modulates endothelium-dependent contractions. Eighteen-week-old male Sprague-Dawley rats were treated by daily gavage for 6 weeks with the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) (60 mg/kg) or vehicle (distilled water; 1 ml/kg). Chronic treatment with L-NAME increased arterial blood pressure. Isometric tension was measured in aortic rings with or without endothelium. Endothelium-dependent relaxations to acetylcholine and the calcium ionophore 5-(methylamino)-2-[(2R,3R,6S,8S,9R,11R)-3,9,11-trimethyl-8-[(1S)-1-methyl-2-oxo-2-(1H-pyrrol-2-yl)-ethyl]-1,7-dioxaspiro[5.5]undec-2-yl]methyl]-4-benzoxazolecarboxylic acid (A23187) were reduced in preparations from L-NAME-treated rats. The reduction in relaxation to A23187 was partially reversed by L-arginine (1 mM). In quiescent aortic rings, A23187 caused contractions in the presence of L-NAME and intact endothelium. The A23187-induced contractions were greater in rings from the L-NAME-treated rats than in those from the control group. These contractions were abolished by the cyclooxygenase (COX)-2 inhibitor N-[2-cyclohexyloxy-4-nitrophenyl]methanesulfonamide (NS-398) and the thromboxane-prostanoid (TP) receptor antagonist 3-((6R)-6-{[(4-chlorophenyl)sulfonyl]amido}-2-methyl-5,6,7,8-tetrahydronaphthalen-1-yl)propanoate (S18886), but not by the COX-1 inhibitor 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole (SC-560). Chronic L-NAME treatment reduced the level of nitric oxide in the plasma but increased COX activity in the aortic rings. Western blotting and immunohistochemical staining showed that endothelial NOS expression was reduced in the aortae of the chronic L-NAME-treated group. COX-1 expression was augmented slightly, whereas COX-2 expression was up-regulated markedly. The TP receptor
Brunschweiger, Andreas; Koch, Pierre; Schlenk, Miriam; Rafehi, Muhammad; Radjainia, Hamid; Küppers, Petra; Hinz, Sonja; Pineda, Felipe; Wiese, Michael; Hockemeyer, Jörg; Heer, Jag; Denonne, Frédéric; Müller, Christa E
2016-11-01
Multitarget approaches, i.e., addressing two or more targets simultaneously with a therapeutic agent, are hypothesized to offer additive therapeutic benefit for the treatment of neurodegenerative diseases. Validated targets for the treatment of Parkinson's disease are, among others, the A 2A adenosine receptor (AR) and the enzyme monoamine oxidase B (MAO-B). Additional blockade of brain A 1 ARs may also be beneficial. We recently described 8-benzyl-substituted tetrahydropyrazino[2,1-f]purinediones as a new lead structure for the development of such multi-target drugs. We have now designed a new series of tetrahydropyrazino[2,1-f]purinediones to extensively explore their structure-activity-relationships. Several compounds blocked human and rat A 1 and A 2A ARs at similar concentrations representing dual A 1 /A 2A antagonists with high selectivity versus the other AR subtypes. Among the best dual A 1 /A 2A AR antagonists were 8-(3-(4-chlorophenyl)propyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (41, K i human A 1 : 65.5nM, A 2A : 230nM; K i rat A 1 : 352nM, A 2A : 316nM) and 1,3-dimethyl-8-((2-(thiophen-2-yl)thiazol-4-yl)methyl)-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (57, K i human A 1 : 642nM, A 2A : 203nM; K i rat A 1 : 166nM, A 2A : 121nM). Compound 57 was found to be well water-soluble (0.7mg/mL) at a physiological pH value of 7.4. One of the new compounds showed triple-target inhibition: (R)-1,3-dimethyl-8-(2,1,3,4-tetrahydronaphthalen-1-yl)-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (49) was about equipotent at A 1 and A 2A ARs and at MAO-B (K i human A 1 : 393nM, human A 2A : 595nM, IC 50 human MAO-B: 210nM) thus allowing future in vivo explorations of the intended multi-target approach. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bipyrimidine ruthenium(II) arene complexes: structure, reactivity and cytotoxicity.
Betanzos-Lara, Soledad; Novakova, Olga; Deeth, Robert J; Pizarro, Ana M; Clarkson, Guy J; Liskova, Barbora; Brabec, Viktor; Sadler, Peter J; Habtemariam, Abraha
2012-10-01
The synthesis and characterization of complexes [(η(6)-arene)Ru(N,N')X][PF(6)], where arene is para-cymene (p-cym), biphenyl (bip), ethyl benzoate (etb), hexamethylbenzene (hmb), indane (ind) or 1,2,3,4-tetrahydronaphthalene (thn), N,N' is 2,2'-bipyrimidine (bpm) and X is Cl, Br or I, are reported, including the X-ray crystal structures of [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)I][PF(6)] and [(η(6)-etb)Ru(bpm)Cl][PF(6)]. Complexes in which N,N' is 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione or 4,7-diphenyl-1,10-phenanthroline (bathophen) were studied for comparison. The Ru(II) arene complexes undergo ligand-exchange reactions in aqueous solution at 310 K; their half-lives for hydrolysis range from 14 to 715 min. Density functional theory calculations on [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-p-cym)Ru(bpm)Br][PF(6)], [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)Br][PF(6)] and [(η(6)-bip)Ru(bpm)I][PF(6)] suggest that aquation occurs via an associative pathway and that the reaction is thermodynamically favourable when the leaving ligand is I > Br ≈ Cl. pK (a)* values for the aqua adducts of the complexes range from 6.9 to 7.32. A binding preference for 9-ethylguanine (9-EtG) compared with 9-ethyladenine (9-EtA) was observed for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-hmb)Ru(bpm)Cl](+), [(η(6)-ind)Ru(bpm)Cl](+), [(η(6)-thn)Ru(bpm)Cl](+), [(η(6)-p-cym)Ru(phen)Cl](+) and [(η(6)-p-cym)Ru(bathophen)Cl](+) in aqueous solution at 310 K. The X-ray crystal structure of the guanine complex [(η(6)-p-cym)Ru(bpm)(9-EtG-N7)][PF(6)](2) shows multiple hydrogen bonding. Density functional theory calculations show that the 9-EtG adducts of all complexes are thermodynamically preferred compared with those of 9-EtA. However, the bmp complexes are inactive towards A2780 human ovarian cancer cells. Calf thymus DNA interactions for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)] and [(η(6)-p
Occurrence of synthetic musks in human breast milk samples from 12 provinces in China.
Yin, Jie; Wang, Hao; Li, Jingguang; Wu, Yongning; Shao, Bing
2016-07-01
The levels of 12 synthetic musks and one musk metabolite in 24 pooled human milk samples were examined in order to assess the health risks of these contaminants to breast-feeding infants of China. The 24 pooled samples comprised of 1237 individual human milk samples collected from 12 provinces of China according to WHO guidelines. Among the 13 target analytes, OTNE ([1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethylnaphthalen-2yl]ethan-1-one), HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[γ]-2-benzopyran), AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene), musk ketone (4-tert-butyl-2,6-dimethyl-3,5-dinitroacetophenone, MK), Musk T (1,4-dioxacyclohepta decane-5,17-dione), HHCB-lactone (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl cyclopenta[γ]-2-benzopyran-1-one) and musk ambrette (1-(1,1-dimethylethyl)-2-methoxy-4-methyl-3,5-dinitrobenzene, MA), were found in the milk samples analysed with mean (median) concentrations of 3.96 (3.91), 18.03 (15.10), 10.30 (9.38), 4.68 (4.45), < 3.70 (< 3.70), 10.02 (9.20) and < 5.20 (< 5.20) ng g(-1) lipid weight, respectively, whereas ADBI (4-acetyl-1,1-dimethyl-6-tert-butylindan), AHDI (6-acetyl-1,1,2,3,3,5-hexamethylindan), ATII (5-acetyl-1,1,2,6-tetramethyl-3-isopropylindan), musk xylene (1-tert-butyl-3,5-dimethyl-2,4,6-trinitrobenzene, MX), musk tibetene (1-tert-butyl-3,4,5-trimethyl-2,6-dinitrobenzene, MT) and musk moskene (1,1,3,3,5-pentamethyl-4,6-dinotroindane, MM) were not detected. Significantly positive associations were observed in concentration levels between HHCB and AHTN (p < 0.001), HHCB and HHCB-lactone (p < 0.05), AHTN and HHCB-lactone (p < 0.001), and MK and OTNE (p < 0.05). No statistical difference was found in musk concentrations between rural and urban areas in China (p > 0.05). The mean (median) estimated daily intakes by infants were 20.5 (20.2), 93.4 (78.2), 53.4 (48.6), 24.2 (23.0) and 51.9 (47.6) ng kg(-1) body weight for OTNE, HHCB, AHTN, MK and HHCB
Gopishetty, Bhaskar; Zhang, Suhong; Kharkar, Prashant S.; Antonio, Tamara; Reith, Maarten; Dutta, Aloke K.
2013-01-01
The goal of the present study was to explore, in our previously developed hybrid template, the effect of introduction of additional heterocyclic rings (mimicking catechol hydroxyl groups as bioisosteric replacement) on selectivity and affinity for the D3 versus D2 receptor. In addition, we wanted to explore the effect of derivatization of functional groups of the agonist binding moiety in compounds developed by us earlier from the hybrid template. Binding affinity (Ki) of the new compounds was measured with tritiated spiperone as the radioligand and HEK-293 cells expressing either D2 or D3 receptors. Functional activity of selected compounds was assessed in the GTPγS binding assay. In the imidazole series, compound 10a exhibited the highest D3 affinity whereas the indole derivative 13 exhibited similar high D3 affinity. Functionalization of the amino group in agonist (+)-9d with different sulfonamides derivatives improved the D3 affinity significantly with (+)-14f exhibiting the highest affinity. However, functionalization of the hydroxyl and amino groups of 15 and (+)-9d, known agonist and partial agonist, to sulfonate ester and amide in general modulated the affinity. In both cases loss of agonist potency resulted from such derivatization. PMID:23623679
Zingales, Sarah K; Moore, Morgan E; Goetz, Andrew D; Padgett, Clifford W
2016-07-01
The title compounds C17H14BrNO2, (I), and C17H15NO3, (II), were obtained from the reaction of 6-meth-oxy-3,4-di-hydro-2H-naphthalen-1-one and 2-bromo-nicotinaldehyde in ethanol. Compound (I) was the expected product and compound (II) was the oxidation product from air exposure. In the crystal structure of compound (I), there are no short contacts or hydrogen bonds. The structure does display π-π inter-actions between adjacent benzene rings and adjacent pyridyl rings. Compound (II) contains two independent mol-ecules, A and B, in the asymmetric unit; both are non-planar, the dihedral angles between the meth-oxy-benzene and 1H-pyridin-2-one mean planes being 35.07 (9)° in A and 35.28 (9)°in B. In each mol-ecule, the 1H-pyridin-2-one unit participates in inter-molecular N-H⋯O hydrogen bonding to another mol-ecule of the same type (A to A or B to B). The structure also displays π-π inter-actions between the pyridyl and the benzene rings of non-equivalent mol-ecules (viz., A to B and B to A).
Kingsbury, James A.; Delzer, Gregory C.; Hopple, Jessica A.
2008-01-01
Source water, herein defined as stream water collected at a water-system intake prior to water treatment, was sampled at nine community water systems, ranging in size from a system serving about 3,000 people to one that serves about 2 million people. As many as 17 source-water samples were collected at each site over about a 12-month period between 2002 and 2004 for analysis of 258 anthropogenic organic compounds. Most of these compounds are unregulated in drinking water, and the compounds analyzed include pesticides and selected pesticide degradates, gasoline hydrocarbons, personal-care and domestic-use compounds, and solvents. The laboratory analytical methods used in this study have relatively low detection levels - commonly 100 to 1,000 times lower than State and Federal standards and guidelines for protecting water quality. Detections, therefore, do not necessarily indicate a concern to human health but rather help to identify emerging issues and to track changes in occurrence and concentrations over time. About one-half (134) of the compounds were detected at least once in source-water samples. Forty-seven compounds were detected commonly (in 10 percent or more of the samples), and six compounds (chloroform, atrazine, simazine, metolachlor, deethylatrazine, and hexahydrohexamethylcyclopentabenzopyran (HHCB) were detected in more than one-half of the samples. Chloroform was the most commonly detected compound - in every sample (year round) at five sites. Findings for chloroform and the fragrances HHCB and acetyl hexamethyl tetrahydronaphthalene (AHTN) indicate an association between occurrence and the presence of large upstream wastewater discharges in the watersheds. The herbicides atrazine, simazine, and metolachlor also were among the most commonly detected compounds. Degradates of these herbicides, as well as those of a few other commonly occurring herbicides, generally were detected at concentrations similar to or greater than concentrations of the parent
Lee, Kathy E.; Schoenfuss, Heiko L.; Jahns, Nathan D.; Brown, Greg K.; Barber, Larry B.
2008-01-01
included the presence and concentration of vitellogenin in plasma, gonadosomatic indices, and histological characterizations of liver and testes tissue. Hydrologic, chemical and biological characteristics were different among sites. The percentage of streamflow contributed by WWTP effluent (ranging from less than 1 to 79 percent) was greatest at the South Fork Crow River and least at the Grindstone River. WWTP effluent generally contributed the greatest percentage of streamflow during winter and late summer when streamflows were low. A wide variety of chemicals were detected. More chemicals were detected in WWTP effluent samples than in stream samples during most time periods. The most commonly detected chemicals in samples collected monthly and analyzed at the USGS National Research Program Laboratory were 2,6-di-tert-butyl-1,4-benzoquinone, 2,6-di-tert-butyl-4-methylphenol, 3-beta-coprostanol, 4-methylphenol, 4-nonylphenol (NP), 4-tert-octylphenol, bisphenol A, cholesterol, ethylenediaminetetraacetic acid, and triclosan. The chemicals 4-nonylphenolmonoethoxycarboxylate (NP1EC), 4-nonylphenoldiethoxycarboxylate (NP2EC), and 4-nonylphenoltriethoxycarboxylate (NP3EC) also were detected. Excluding nondetections, the sum of NP1EC through NP3EC concentrations ranged from 5.1 to 260 ug/L among all samples. NP was detected in upstream, effluent, and downstream samples in each stream during at least one time period. NP was detected in 49 percent of environmental samples. Excluding nondetections, concentrations of NP ranged from 100 to 880 nanograms per liter among all samples. NP was also detected in more than one-half of the bed-sediment samples. The most commonly detected wastewater indicator chemicals in samples analyzed by schedule 4433 at the USGS National Water Quality Laboratory were 3,4-dichlorophenyl isocyanate, acetyl-hexamethyl-tetrahydronaphthalene, benzophenone, cholesterol, hexahydrohexamethyl-cyclopenta-benzopyran, N,N-diethyl-meta-toluamide, and
Rose, Donna L.; Sandstrom, Mark W.; Murtagh, Lucinda K.
2016-09-08
preserved with HCl (1:1) to pH 2, and many are stable longer. Acrolein was retained in the method validation and initial method implementation and subsequently deleted because of instability and inconsistent performance. 2-Chloromethyl oxirane, methyl oxirane, and oxirane were tested using this method, but the compounds degraded quickly with the HCl (1:1) used for microbial preservation.The ambient purgeable method, USGS Method O-4436-16, operates with the mass spectrometer in the full scan mode. This method is a modification of USGS Method O-4127-96 (NWQL LS 2020). Several compounds were retained from Method O-4127-96 and will continue to be determined in Method O-4436-16. Eleven high priority compounds were added. MDLs for the high priority compounds range from 0.007 µg/L for 2,2-dichloro-1,1,1-trifluoroethane to 0.04 µg/L for 1,2,3,4-tetrahydronaphthalene and 1,3-butadiene. Historical MDLs for the compounds retained from Method O-4127-96 range from 0.009 µg/L for trans-1,2-dichloroethene to 0.1 µg/L for bromomethane. The calculated holding times for the compounds indicate the majority of the compounds are stable for a minimum of 14 days, or longer, at pH 2 with HCl (1:1) preservation. Four semivolatile compounds, 1,2-dimethylnaphthalene, 1,6-dimethylnaphthalene, 2,6-di-tert-butyl phenol, and 2-chloronapthalene, were tested and deleted from the method due to poor performance. Benzyl chloride was tested and deleted due to instability.