Sample records for text information extraction

  1. Tagline: Information Extraction for Semi-Structured Text Elements in Medical Progress Notes

    ERIC Educational Resources Information Center

    Finch, Dezon Kile

    2012-01-01

    Text analysis has become an important research activity in the Department of Veterans Affairs (VA). Statistical text mining and natural language processing have been shown to be very effective for extracting useful information from medical documents. However, neither of these techniques is effective at extracting the information stored in…

  2. Using text mining techniques to extract phenotypic information from the PhenoCHF corpus

    PubMed Central

    2015-01-01

    Background Phenotypic information locked away in unstructured narrative text presents significant barriers to information accessibility, both for clinical practitioners and for computerised applications used for clinical research purposes. Text mining (TM) techniques have previously been applied successfully to extract different types of information from text in the biomedical domain. They have the potential to be extended to allow the extraction of information relating to phenotypes from free text. Methods To stimulate the development of TM systems that are able to extract phenotypic information from text, we have created a new corpus (PhenoCHF) that is annotated by domain experts with several types of phenotypic information relating to congestive heart failure. To ensure that systems developed using the corpus are robust to multiple text types, it integrates text from heterogeneous sources, i.e., electronic health records (EHRs) and scientific articles from the literature. We have developed several different phenotype extraction methods to demonstrate the utility of the corpus, and tested these methods on a further corpus, i.e., ShARe/CLEF 2013. Results Evaluation of our automated methods showed that PhenoCHF can facilitate the training of reliable phenotype extraction systems, which are robust to variations in text type. These results have been reinforced by evaluating our trained systems on the ShARe/CLEF corpus, which contains clinical records of various types. Like other studies within the biomedical domain, we found that solutions based on conditional random fields produced the best results, when coupled with a rich feature set. Conclusions PhenoCHF is the first annotated corpus aimed at encoding detailed phenotypic information. The unique heterogeneous composition of the corpus has been shown to be advantageous in the training of systems that can accurately extract phenotypic information from a range of different text types. Although the scope of our annotation is currently limited to a single disease, the promising results achieved can stimulate further work into the extraction of phenotypic information for other diseases. The PhenoCHF annotation guidelines and annotations are publicly available at https://code.google.com/p/phenochf-corpus. PMID:26099853

  3. Using text mining techniques to extract phenotypic information from the PhenoCHF corpus.

    PubMed

    Alnazzawi, Noha; Thompson, Paul; Batista-Navarro, Riza; Ananiadou, Sophia

    2015-01-01

    Phenotypic information locked away in unstructured narrative text presents significant barriers to information accessibility, both for clinical practitioners and for computerised applications used for clinical research purposes. Text mining (TM) techniques have previously been applied successfully to extract different types of information from text in the biomedical domain. They have the potential to be extended to allow the extraction of information relating to phenotypes from free text. To stimulate the development of TM systems that are able to extract phenotypic information from text, we have created a new corpus (PhenoCHF) that is annotated by domain experts with several types of phenotypic information relating to congestive heart failure. To ensure that systems developed using the corpus are robust to multiple text types, it integrates text from heterogeneous sources, i.e., electronic health records (EHRs) and scientific articles from the literature. We have developed several different phenotype extraction methods to demonstrate the utility of the corpus, and tested these methods on a further corpus, i.e., ShARe/CLEF 2013. Evaluation of our automated methods showed that PhenoCHF can facilitate the training of reliable phenotype extraction systems, which are robust to variations in text type. These results have been reinforced by evaluating our trained systems on the ShARe/CLEF corpus, which contains clinical records of various types. Like other studies within the biomedical domain, we found that solutions based on conditional random fields produced the best results, when coupled with a rich feature set. PhenoCHF is the first annotated corpus aimed at encoding detailed phenotypic information. The unique heterogeneous composition of the corpus has been shown to be advantageous in the training of systems that can accurately extract phenotypic information from a range of different text types. Although the scope of our annotation is currently limited to a single disease, the promising results achieved can stimulate further work into the extraction of phenotypic information for other diseases. The PhenoCHF annotation guidelines and annotations are publicly available at https://code.google.com/p/phenochf-corpus.

  4. Extracting information from the text of electronic medical records to improve case detection: a systematic review

    PubMed Central

    Carroll, John A; Smith, Helen E; Scott, Donia; Cassell, Jackie A

    2016-01-01

    Background Electronic medical records (EMRs) are revolutionizing health-related research. One key issue for study quality is the accurate identification of patients with the condition of interest. Information in EMRs can be entered as structured codes or unstructured free text. The majority of research studies have used only coded parts of EMRs for case-detection, which may bias findings, miss cases, and reduce study quality. This review examines whether incorporating information from text into case-detection algorithms can improve research quality. Methods A systematic search returned 9659 papers, 67 of which reported on the extraction of information from free text of EMRs with the stated purpose of detecting cases of a named clinical condition. Methods for extracting information from text and the technical accuracy of case-detection algorithms were reviewed. Results Studies mainly used US hospital-based EMRs, and extracted information from text for 41 conditions using keyword searches, rule-based algorithms, and machine learning methods. There was no clear difference in case-detection algorithm accuracy between rule-based and machine learning methods of extraction. Inclusion of information from text resulted in a significant improvement in algorithm sensitivity and area under the receiver operating characteristic in comparison to codes alone (median sensitivity 78% (codes + text) vs 62% (codes), P = .03; median area under the receiver operating characteristic 95% (codes + text) vs 88% (codes), P = .025). Conclusions Text in EMRs is accessible, especially with open source information extraction algorithms, and significantly improves case detection when combined with codes. More harmonization of reporting within EMR studies is needed, particularly standardized reporting of algorithm accuracy metrics like positive predictive value (precision) and sensitivity (recall). PMID:26911811

  5. Information extraction system

    DOEpatents

    Lemmond, Tracy D; Hanley, William G; Guensche, Joseph Wendell; Perry, Nathan C; Nitao, John J; Kidwell, Paul Brandon; Boakye, Kofi Agyeman; Glaser, Ron E; Prenger, Ryan James

    2014-05-13

    An information extraction system and methods of operating the system are provided. In particular, an information extraction system for performing meta-extraction of named entities of people, organizations, and locations as well as relationships and events from text documents are described herein.

  6. Information Extraction from Unstructured Text for the Biodefense Knowledge Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samatova, N F; Park, B; Krishnamurthy, R

    2005-04-29

    The Bio-Encyclopedia at the Biodefense Knowledge Center (BKC) is being constructed to allow an early detection of emerging biological threats to homeland security. It requires highly structured information extracted from variety of data sources. However, the quantity of new and vital information available from every day sources cannot be assimilated by hand, and therefore reliable high-throughput information extraction techniques are much anticipated. In support of the BKC, Lawrence Livermore National Laboratory and Oak Ridge National Laboratory, together with the University of Utah, are developing an information extraction system built around the bioterrorism domain. This paper reports two important pieces ofmore » our effort integrated in the system: key phrase extraction and semantic tagging. Whereas two key phrase extraction technologies developed during the course of project help identify relevant texts, our state-of-the-art semantic tagging system can pinpoint phrases related to emerging biological threats. Also we are enhancing and tailoring the Bio-Encyclopedia by augmenting semantic dictionaries and extracting details of important events, such as suspected disease outbreaks. Some of these technologies have already been applied to large corpora of free text sources vital to the BKC mission, including ProMED-mail, PubMed abstracts, and the DHS's Information Analysis and Infrastructure Protection (IAIP) news clippings. In order to address the challenges involved in incorporating such large amounts of unstructured text, the overall system is focused on precise extraction of the most relevant information for inclusion in the BKC.« less

  7. A rule-based named-entity recognition method for knowledge extraction of evidence-based dietary recommendations

    PubMed Central

    2017-01-01

    Evidence-based dietary information represented as unstructured text is a crucial information that needs to be accessed in order to help dietitians follow the new knowledge arrives daily with newly published scientific reports. Different named-entity recognition (NER) methods have been introduced previously to extract useful information from the biomedical literature. They are focused on, for example extracting gene mentions, proteins mentions, relationships between genes and proteins, chemical concepts and relationships between drugs and diseases. In this paper, we present a novel NER method, called drNER, for knowledge extraction of evidence-based dietary information. To the best of our knowledge this is the first attempt at extracting dietary concepts. DrNER is a rule-based NER that consists of two phases. The first one involves the detection and determination of the entities mention, and the second one involves the selection and extraction of the entities. We evaluate the method by using text corpora from heterogeneous sources, including text from several scientifically validated web sites and text from scientific publications. Evaluation of the method showed that drNER gives good results and can be used for knowledge extraction of evidence-based dietary recommendations. PMID:28644863

  8. [A customized method for information extraction from unstructured text data in the electronic medical records].

    PubMed

    Bao, X Y; Huang, W J; Zhang, K; Jin, M; Li, Y; Niu, C Z

    2018-04-18

    There is a huge amount of diagnostic or treatment information in electronic medical record (EMR), which is a concrete manifestation of clinicians actual diagnosis and treatment details. Plenty of episodes in EMRs, such as complaints, present illness, past history, differential diagnosis, diagnostic imaging, surgical records, reflecting details of diagnosis and treatment in clinical process, adopt Chinese description of natural language. How to extract effective information from these Chinese narrative text data, and organize it into a form of tabular for analysis of medical research, for the practical utilization of clinical data in the real world, is a difficult problem in Chinese medical data processing. Based on the EMRs narrative text data in a tertiary hospital in China, a customized information extracting rules learning, and rule based information extraction methods is proposed. The overall method consists of three steps, which includes: (1) Step 1, a random sample of 600 copies (including the history of present illness, past history, personal history, family history, etc.) of the electronic medical record data, was extracted as raw corpora. With our developed Chinese clinical narrative text annotation platform, the trained clinician and nurses marked the tokens and phrases in the corpora which would be extracted (with a history of diabetes as an example). (2) Step 2, based on the annotated corpora clinical text data, some extraction templates were summarized and induced firstly. Then these templates were rewritten using regular expressions of Perl programming language, as extraction rules. Using these extraction rules as basic knowledge base, we developed extraction packages in Perl, for extracting data from the EMRs text data. In the end, the extracted data items were organized in tabular data format, for later usage in clinical research or hospital surveillance purposes. (3) As the final step of the method, the evaluation and validation of the proposed methods were implemented in the National Clinical Service Data Integration Platform, and we checked the extraction results using artificial verification and automated verification combined, proved the effectiveness of the method. For all the patients with diabetes as diagnosed disease in the Department of Endocrine in the hospital, the medical history episode of these patients showed that, altogether 1 436 patients were dismissed in 2015, and a history of diabetes medical records extraction results showed that the recall rate was 87.6%, the accuracy rate was 99.5%, and F-Score was 0.93. For all the 10% patients (totally 1 223 patients) with diabetes by the dismissed dates of August 2017 in the same department, the extracted diabetes history extraction results showed that the recall rate was 89.2%, the accuracy rate was 99.2%, F-Score was 0.94. This study mainly adopts the combination of natural language processing and rule-based information extraction, and designs and implements an algorithm for extracting customized information from unstructured Chinese electronic medical record text data. It has better results than existing work.

  9. Document Exploration and Automatic Knowledge Extraction for Unstructured Biomedical Text

    NASA Astrophysics Data System (ADS)

    Chu, S.; Totaro, G.; Doshi, N.; Thapar, S.; Mattmann, C. A.; Ramirez, P.

    2015-12-01

    We describe our work on building a web-browser based document reader with built-in exploration tool and automatic concept extraction of medical entities for biomedical text. Vast amounts of biomedical information are offered in unstructured text form through scientific publications and R&D reports. Utilizing text mining can help us to mine information and extract relevant knowledge from a plethora of biomedical text. The ability to employ such technologies to aid researchers in coping with information overload is greatly desirable. In recent years, there has been an increased interest in automatic biomedical concept extraction [1, 2] and intelligent PDF reader tools with the ability to search on content and find related articles [3]. Such reader tools are typically desktop applications and are limited to specific platforms. Our goal is to provide researchers with a simple tool to aid them in finding, reading, and exploring documents. Thus, we propose a web-based document explorer, which we called Shangri-Docs, which combines a document reader with automatic concept extraction and highlighting of relevant terms. Shangri-Docsalso provides the ability to evaluate a wide variety of document formats (e.g. PDF, Words, PPT, text, etc.) and to exploit the linked nature of the Web and personal content by performing searches on content from public sites (e.g. Wikipedia, PubMed) and private cataloged databases simultaneously. Shangri-Docsutilizes Apache cTAKES (clinical Text Analysis and Knowledge Extraction System) [4] and Unified Medical Language System (UMLS) to automatically identify and highlight terms and concepts, such as specific symptoms, diseases, drugs, and anatomical sites, mentioned in the text. cTAKES was originally designed specially to extract information from clinical medical records. Our investigation leads us to extend the automatic knowledge extraction process of cTAKES for biomedical research domain by improving the ontology guided information extraction process. We will describe our experience and implementation of our system and share lessons learned from our development. We will also discuss ways in which this could be adapted to other science fields. [1] Funk et al., 2014. [2] Kang et al., 2014. [3] Utopia Documents, http://utopiadocs.com [4] Apache cTAKES, http://ctakes.apache.org

  10. Presentation video retrieval using automatically recovered slide and spoken text

    NASA Astrophysics Data System (ADS)

    Cooper, Matthew

    2013-03-01

    Video is becoming a prevalent medium for e-learning. Lecture videos contain text information in both the presentation slides and lecturer's speech. This paper examines the relative utility of automatically recovered text from these sources for lecture video retrieval. To extract the visual information, we automatically detect slides within the videos and apply optical character recognition to obtain their text. Automatic speech recognition is used similarly to extract spoken text from the recorded audio. We perform controlled experiments with manually created ground truth for both the slide and spoken text from more than 60 hours of lecture video. We compare the automatically extracted slide and spoken text in terms of accuracy relative to ground truth, overlap with one another, and utility for video retrieval. Results reveal that automatically recovered slide text and spoken text contain different content with varying error profiles. Experiments demonstrate that automatically extracted slide text enables higher precision video retrieval than automatically recovered spoken text.

  11. Text extraction method for historical Tibetan document images based on block projections

    NASA Astrophysics Data System (ADS)

    Duan, Li-juan; Zhang, Xi-qun; Ma, Long-long; Wu, Jian

    2017-11-01

    Text extraction is an important initial step in digitizing the historical documents. In this paper, we present a text extraction method for historical Tibetan document images based on block projections. The task of text extraction is considered as text area detection and location problem. The images are divided equally into blocks and the blocks are filtered by the information of the categories of connected components and corner point density. By analyzing the filtered blocks' projections, the approximate text areas can be located, and the text regions are extracted. Experiments on the dataset of historical Tibetan documents demonstrate the effectiveness of the proposed method.

  12. Extracting Useful Semantic Information from Large Scale Corpora of Text

    ERIC Educational Resources Information Center

    Mendoza, Ray Padilla, Jr.

    2012-01-01

    Extracting and representing semantic information from large scale corpora is at the crux of computer-assisted knowledge generation. Semantic information depends on collocation extraction methods, mathematical models used to represent distributional information, and weighting functions which transform the space. This dissertation provides a…

  13. Information retrieval and terminology extraction in online resources for patients with diabetes.

    PubMed

    Seljan, Sanja; Baretić, Maja; Kucis, Vlasta

    2014-06-01

    Terminology use, as a mean for information retrieval or document indexing, plays an important role in health literacy. Specific types of users, i.e. patients with diabetes need access to various online resources (on foreign and/or native language) searching for information on self-education of basic diabetic knowledge, on self-care activities regarding importance of dietetic food, medications, physical exercises and on self-management of insulin pumps. Automatic extraction of corpus-based terminology from online texts, manuals or professional papers, can help in building terminology lists or list of "browsing phrases" useful in information retrieval or in document indexing. Specific terminology lists represent an intermediate step between free text search and controlled vocabulary, between user's demands and existing online resources in native and foreign language. The research aiming to detect the role of terminology in online resources, is conducted on English and Croatian manuals and Croatian online texts, and divided into three interrelated parts: i) comparison of professional and popular terminology use ii) evaluation of automatic statistically-based terminology extraction on English and Croatian texts iii) comparison and evaluation of extracted terminology performed on English manual using statistical and hybrid approaches. Extracted terminology candidates are evaluated by comparison with three types of reference lists: list created by professional medical person, list of highly professional vocabulary contained in MeSH and list created by non-medical persons, made as intersection of 15 lists. Results report on use of popular and professional terminology in online diabetes resources, on evaluation of automatically extracted terminology candidates in English and Croatian texts and on comparison of statistical and hybrid extraction methods in English text. Evaluation of automatic and semi-automatic terminology extraction methods is performed by recall, precision and f-measure.

  14. Scholarly Information Extraction Is Going to Make a Quantum Leap with PubMed Central (PMC).

    PubMed

    Matthies, Franz; Hahn, Udo

    2017-01-01

    With the increasing availability of complete full texts (journal articles), rather than their surrogates (titles, abstracts), as resources for text analytics, entirely new opportunities arise for information extraction and text mining from scholarly publications. Yet, we gathered evidence that a range of problems are encountered for full-text processing when biomedical text analytics simply reuse existing NLP pipelines which were developed on the basis of abstracts (rather than full texts). We conducted experiments with four different relation extraction engines all of which were top performers in previous BioNLP Event Extraction Challenges. We found that abstract-trained engines loose up to 6.6% F-score points when run on full-text data. Hence, the reuse of existing abstract-based NLP software in a full-text scenario is considered harmful because of heavy performance losses. Given the current lack of annotated full-text resources to train on, our study quantifies the price paid for this short cut.

  15. Scene text recognition in mobile applications by character descriptor and structure configuration.

    PubMed

    Yi, Chucai; Tian, Yingli

    2014-07-01

    Text characters and strings in natural scene can provide valuable information for many applications. Extracting text directly from natural scene images or videos is a challenging task because of diverse text patterns and variant background interferences. This paper proposes a method of scene text recognition from detected text regions. In text detection, our previously proposed algorithms are applied to obtain text regions from scene image. First, we design a discriminative character descriptor by combining several state-of-the-art feature detectors and descriptors. Second, we model character structure at each character class by designing stroke configuration maps. Our algorithm design is compatible with the application of scene text extraction in smart mobile devices. An Android-based demo system is developed to show the effectiveness of our proposed method on scene text information extraction from nearby objects. The demo system also provides us some insight into algorithm design and performance improvement of scene text extraction. The evaluation results on benchmark data sets demonstrate that our proposed scheme of text recognition is comparable with the best existing methods.

  16. Multi-Filter String Matching and Human-Centric Entity Matching for Information Extraction

    ERIC Educational Resources Information Center

    Sun, Chong

    2012-01-01

    More and more information is being generated in text documents, such as Web pages, emails and blogs. To effectively manage this unstructured information, one broadly used approach includes locating relevant content in documents, extracting structured information and integrating the extracted information for querying, mining or further analysis. In…

  17. Text mining facilitates database curation - extraction of mutation-disease associations from Bio-medical literature.

    PubMed

    Ravikumar, Komandur Elayavilli; Wagholikar, Kavishwar B; Li, Dingcheng; Kocher, Jean-Pierre; Liu, Hongfang

    2015-06-06

    Advances in the next generation sequencing technology has accelerated the pace of individualized medicine (IM), which aims to incorporate genetic/genomic information into medicine. One immediate need in interpreting sequencing data is the assembly of information about genetic variants and their corresponding associations with other entities (e.g., diseases or medications). Even with dedicated effort to capture such information in biological databases, much of this information remains 'locked' in the unstructured text of biomedical publications. There is a substantial lag between the publication and the subsequent abstraction of such information into databases. Multiple text mining systems have been developed, but most of them focus on the sentence level association extraction with performance evaluation based on gold standard text annotations specifically prepared for text mining systems. We developed and evaluated a text mining system, MutD, which extracts protein mutation-disease associations from MEDLINE abstracts by incorporating discourse level analysis, using a benchmark data set extracted from curated database records. MutD achieves an F-measure of 64.3% for reconstructing protein mutation disease associations in curated database records. Discourse level analysis component of MutD contributed to a gain of more than 10% in F-measure when compared against the sentence level association extraction. Our error analysis indicates that 23 of the 64 precision errors are true associations that were not captured by database curators and 68 of the 113 recall errors are caused by the absence of associated disease entities in the abstract. After adjusting for the defects in the curated database, the revised F-measure of MutD in association detection reaches 81.5%. Our quantitative analysis reveals that MutD can effectively extract protein mutation disease associations when benchmarking based on curated database records. The analysis also demonstrates that incorporating discourse level analysis significantly improved the performance of extracting the protein-mutation-disease association. Future work includes the extension of MutD for full text articles.

  18. Ion Channel ElectroPhysiology Ontology (ICEPO) - a case study of text mining assisted ontology development.

    PubMed

    Elayavilli, Ravikumar Komandur; Liu, Hongfang

    2016-01-01

    Computational modeling of biological cascades is of great interest to quantitative biologists. Biomedical text has been a rich source for quantitative information. Gathering quantitative parameters and values from biomedical text is one significant challenge in the early steps of computational modeling as it involves huge manual effort. While automatically extracting such quantitative information from bio-medical text may offer some relief, lack of ontological representation for a subdomain serves as impedance in normalizing textual extractions to a standard representation. This may render textual extractions less meaningful to the domain experts. In this work, we propose a rule-based approach to automatically extract relations involving quantitative data from biomedical text describing ion channel electrophysiology. We further translated the quantitative assertions extracted through text mining to a formal representation that may help in constructing ontology for ion channel events using a rule based approach. We have developed Ion Channel ElectroPhysiology Ontology (ICEPO) by integrating the information represented in closely related ontologies such as, Cell Physiology Ontology (CPO), and Cardiac Electro Physiology Ontology (CPEO) and the knowledge provided by domain experts. The rule-based system achieved an overall F-measure of 68.93% in extracting the quantitative data assertions system on an independently annotated blind data set. We further made an initial attempt in formalizing the quantitative data assertions extracted from the biomedical text into a formal representation that offers potential to facilitate the integration of text mining into ontological workflow, a novel aspect of this study. This work is a case study where we created a platform that provides formal interaction between ontology development and text mining. We have achieved partial success in extracting quantitative assertions from the biomedical text and formalizing them in ontological framework. The ICEPO ontology is available for download at http://openbionlp.org/mutd/supplementarydata/ICEPO/ICEPO.owl.

  19. PDF text classification to leverage information extraction from publication reports.

    PubMed

    Bui, Duy Duc An; Del Fiol, Guilherme; Jonnalagadda, Siddhartha

    2016-06-01

    Data extraction from original study reports is a time-consuming, error-prone process in systematic review development. Information extraction (IE) systems have the potential to assist humans in the extraction task, however majority of IE systems were not designed to work on Portable Document Format (PDF) document, an important and common extraction source for systematic review. In a PDF document, narrative content is often mixed with publication metadata or semi-structured text, which add challenges to the underlining natural language processing algorithm. Our goal is to categorize PDF texts for strategic use by IE systems. We used an open-source tool to extract raw texts from a PDF document and developed a text classification algorithm that follows a multi-pass sieve framework to automatically classify PDF text snippets (for brevity, texts) into TITLE, ABSTRACT, BODYTEXT, SEMISTRUCTURE, and METADATA categories. To validate the algorithm, we developed a gold standard of PDF reports that were included in the development of previous systematic reviews by the Cochrane Collaboration. In a two-step procedure, we evaluated (1) classification performance, and compared it with machine learning classifier, and (2) the effects of the algorithm on an IE system that extracts clinical outcome mentions. The multi-pass sieve algorithm achieved an accuracy of 92.6%, which was 9.7% (p<0.001) higher than the best performing machine learning classifier that used a logistic regression algorithm. F-measure improvements were observed in the classification of TITLE (+15.6%), ABSTRACT (+54.2%), BODYTEXT (+3.7%), SEMISTRUCTURE (+34%), and MEDADATA (+14.2%). In addition, use of the algorithm to filter semi-structured texts and publication metadata improved performance of the outcome extraction system (F-measure +4.1%, p=0.002). It also reduced of number of sentences to be processed by 44.9% (p<0.001), which corresponds to a processing time reduction of 50% (p=0.005). The rule-based multi-pass sieve framework can be used effectively in categorizing texts extracted from PDF documents. Text classification is an important prerequisite step to leverage information extraction from PDF documents. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Concept recognition for extracting protein interaction relations from biomedical text

    PubMed Central

    Baumgartner, William A; Lu, Zhiyong; Johnson, Helen L; Caporaso, J Gregory; Paquette, Jesse; Lindemann, Anna; White, Elizabeth K; Medvedeva, Olga; Cohen, K Bretonnel; Hunter, Lawrence

    2008-01-01

    Background: Reliable information extraction applications have been a long sought goal of the biomedical text mining community, a goal that if reached would provide valuable tools to benchside biologists in their increasingly difficult task of assimilating the knowledge contained in the biomedical literature. We present an integrated approach to concept recognition in biomedical text. Concept recognition provides key information that has been largely missing from previous biomedical information extraction efforts, namely direct links to well defined knowledge resources that explicitly cement the concept's semantics. The BioCreative II tasks discussed in this special issue have provided a unique opportunity to demonstrate the effectiveness of concept recognition in the field of biomedical language processing. Results: Through the modular construction of a protein interaction relation extraction system, we present several use cases of concept recognition in biomedical text, and relate these use cases to potential uses by the benchside biologist. Conclusion: Current information extraction technologies are approaching performance standards at which concept recognition can begin to deliver high quality data to the benchside biologist. Our system is available as part of the BioCreative Meta-Server project and on the internet . PMID:18834500

  1. DEXTER: Disease-Expression Relation Extraction from Text.

    PubMed

    Gupta, Samir; Dingerdissen, Hayley; Ross, Karen E; Hu, Yu; Wu, Cathy H; Mazumder, Raja; Vijay-Shanker, K

    2018-01-01

    Gene expression levels affect biological processes and play a key role in many diseases. Characterizing expression profiles is useful for clinical research, and diagnostics and prognostics of diseases. There are currently several high-quality databases that capture gene expression information, obtained mostly from large-scale studies, such as microarray and next-generation sequencing technologies, in the context of disease. The scientific literature is another rich source of information on gene expression-disease relationships that not only have been captured from large-scale studies but have also been observed in thousands of small-scale studies. Expression information obtained from literature through manual curation can extend expression databases. While many of the existing databases include information from literature, they are limited by the time-consuming nature of manual curation and have difficulty keeping up with the explosion of publications in the biomedical field. In this work, we describe an automated text-mining tool, Disease-Expression Relation Extraction from Text (DEXTER) to extract information from literature on gene and microRNA expression in the context of disease. One of the motivations in developing DEXTER was to extend the BioXpress database, a cancer-focused gene expression database that includes data derived from large-scale experiments and manual curation of publications. The literature-based portion of BioXpress lags behind significantly compared to expression information obtained from large-scale studies and can benefit from our text-mined results. We have conducted two different evaluations to measure the accuracy of our text-mining tool and achieved average F-scores of 88.51 and 81.81% for the two evaluations, respectively. Also, to demonstrate the ability to extract rich expression information in different disease-related scenarios, we used DEXTER to extract information on differential expression information for 2024 genes in lung cancer, 115 glycosyltransferases in 62 cancers and 826 microRNA in 171 cancers. All extractions using DEXTER are integrated in the literature-based portion of BioXpress.Database URL: http://biotm.cis.udel.edu/DEXTER.

  2. Feature extraction for document text using Latent Dirichlet Allocation

    NASA Astrophysics Data System (ADS)

    Prihatini, P. M.; Suryawan, I. K.; Mandia, IN

    2018-01-01

    Feature extraction is one of stages in the information retrieval system that used to extract the unique feature values of a text document. The process of feature extraction can be done by several methods, one of which is Latent Dirichlet Allocation. However, researches related to text feature extraction using Latent Dirichlet Allocation method are rarely found for Indonesian text. Therefore, through this research, a text feature extraction will be implemented for Indonesian text. The research method consists of data acquisition, text pre-processing, initialization, topic sampling and evaluation. The evaluation is done by comparing Precision, Recall and F-Measure value between Latent Dirichlet Allocation and Term Frequency Inverse Document Frequency KMeans which commonly used for feature extraction. The evaluation results show that Precision, Recall and F-Measure value of Latent Dirichlet Allocation method is higher than Term Frequency Inverse Document Frequency KMeans method. This shows that Latent Dirichlet Allocation method is able to extract features and cluster Indonesian text better than Term Frequency Inverse Document Frequency KMeans method.

  3. Considering context: reliable entity networks through contextual relationship extraction

    NASA Astrophysics Data System (ADS)

    David, Peter; Hawes, Timothy; Hansen, Nichole; Nolan, James J.

    2016-05-01

    Existing information extraction techniques can only partially address the problem of exploiting unreadable-large amounts text. When discussion of events and relationships is limited to simple, past-tense, factual descriptions of events, current NLP-based systems can identify events and relationships and extract a limited amount of additional information. But the simple subset of available information that existing tools can extract from text is only useful to a small set of users and problems. Automated systems need to find and separate information based on what is threatened or planned to occur, has occurred in the past, or could potentially occur. We address the problem of advanced event and relationship extraction with our event and relationship attribute recognition system, which labels generic, planned, recurring, and potential events. The approach is based on a combination of new machine learning methods, novel linguistic features, and crowd-sourced labeling. The attribute labeler closes the gap between structured event and relationship models and the complicated and nuanced language that people use to describe them. Our operational-quality event and relationship attribute labeler enables Warfighters and analysts to more thoroughly exploit information in unstructured text. This is made possible through 1) More precise event and relationship interpretation, 2) More detailed information about extracted events and relationships, and 3) More reliable and informative entity networks that acknowledge the different attributes of entity-entity relationships.

  4. Information extraction from full text scientific articles: where are the keywords?

    PubMed

    Shah, Parantu K; Perez-Iratxeta, Carolina; Bork, Peer; Andrade, Miguel A

    2003-05-29

    To date, many of the methods for information extraction of biological information from scientific articles are restricted to the abstract of the article. However, full text articles in electronic version, which offer larger sources of data, are currently available. Several questions arise as to whether the effort of scanning full text articles is worthy, or whether the information that can be extracted from the different sections of an article can be relevant. In this work we addressed those questions showing that the keyword content of the different sections of a standard scientific article (abstract, introduction, methods, results, and discussion) is very heterogeneous. Although the abstract contains the best ratio of keywords per total of words, other sections of the article may be a better source of biologically relevant data.

  5. Enhancing biomedical text summarization using semantic relation extraction.

    PubMed

    Shang, Yue; Li, Yanpeng; Lin, Hongfei; Yang, Zhihao

    2011-01-01

    Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2) We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3) For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization.

  6. Extracting laboratory test information from biomedical text

    PubMed Central

    Kang, Yanna Shen; Kayaalp, Mehmet

    2013-01-01

    Background: No previous study reported the efficacy of current natural language processing (NLP) methods for extracting laboratory test information from narrative documents. This study investigates the pathology informatics question of how accurately such information can be extracted from text with the current tools and techniques, especially machine learning and symbolic NLP methods. The study data came from a text corpus maintained by the U.S. Food and Drug Administration, containing a rich set of information on laboratory tests and test devices. Methods: The authors developed a symbolic information extraction (SIE) system to extract device and test specific information about four types of laboratory test entities: Specimens, analytes, units of measures and detection limits. They compared the performance of SIE and three prominent machine learning based NLP systems, LingPipe, GATE and BANNER, each implementing a distinct supervised machine learning method, hidden Markov models, support vector machines and conditional random fields, respectively. Results: Machine learning systems recognized laboratory test entities with moderately high recall, but low precision rates. Their recall rates were relatively higher when the number of distinct entity values (e.g., the spectrum of specimens) was very limited or when lexical morphology of the entity was distinctive (as in units of measures), yet SIE outperformed them with statistically significant margins on extracting specimen, analyte and detection limit information in both precision and F-measure. Its high recall performance was statistically significant on analyte information extraction. Conclusions: Despite its shortcomings against machine learning methods, a well-tailored symbolic system may better discern relevancy among a pile of information of the same type and may outperform a machine learning system by tapping into lexically non-local contextual information such as the document structure. PMID:24083058

  7. Models Extracted from Text for System-Software Safety Analyses

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2010-01-01

    This presentation describes extraction and integration of requirements information and safety information in visualizations to support early review of completeness, correctness, and consistency of lengthy and diverse system safety analyses. Software tools have been developed and extended to perform the following tasks: 1) extract model parts and safety information from text in interface requirements documents, failure modes and effects analyses and hazard reports; 2) map and integrate the information to develop system architecture models and visualizations for safety analysts; and 3) provide model output to support virtual system integration testing. This presentation illustrates the methods and products with a rocket motor initiation case.

  8. Automated Extraction and Classification of Cancer Stage Mentions fromUnstructured Text Fields in a Central Cancer Registry

    PubMed Central

    AAlAbdulsalam, Abdulrahman K.; Garvin, Jennifer H.; Redd, Andrew; Carter, Marjorie E.; Sweeny, Carol; Meystre, Stephane M.

    2018-01-01

    Cancer stage is one of the most important prognostic parameters in most cancer subtypes. The American Joint Com-mittee on Cancer (AJCC) specifies criteria for staging each cancer type based on tumor characteristics (T), lymph node involvement (N), and tumor metastasis (M) known as TNM staging system. Information related to cancer stage is typically recorded in clinical narrative text notes and other informal means of communication in the Electronic Health Record (EHR). As a result, human chart-abstractors (known as certified tumor registrars) have to search through volu-minous amounts of text to extract accurate stage information and resolve discordance between different data sources. This study proposes novel applications of natural language processing and machine learning to automatically extract and classify TNM stage mentions from records at the Utah Cancer Registry. Our results indicate that TNM stages can be extracted and classified automatically with high accuracy (extraction sensitivity: 95.5%–98.4% and classification sensitivity: 83.5%–87%). PMID:29888032

  9. Automated Extraction and Classification of Cancer Stage Mentions fromUnstructured Text Fields in a Central Cancer Registry.

    PubMed

    AAlAbdulsalam, Abdulrahman K; Garvin, Jennifer H; Redd, Andrew; Carter, Marjorie E; Sweeny, Carol; Meystre, Stephane M

    2018-01-01

    Cancer stage is one of the most important prognostic parameters in most cancer subtypes. The American Joint Com-mittee on Cancer (AJCC) specifies criteria for staging each cancer type based on tumor characteristics (T), lymph node involvement (N), and tumor metastasis (M) known as TNM staging system. Information related to cancer stage is typically recorded in clinical narrative text notes and other informal means of communication in the Electronic Health Record (EHR). As a result, human chart-abstractors (known as certified tumor registrars) have to search through volu-minous amounts of text to extract accurate stage information and resolve discordance between different data sources. This study proposes novel applications of natural language processing and machine learning to automatically extract and classify TNM stage mentions from records at the Utah Cancer Registry. Our results indicate that TNM stages can be extracted and classified automatically with high accuracy (extraction sensitivity: 95.5%-98.4% and classification sensitivity: 83.5%-87%).

  10. An Effective Approach to Biomedical Information Extraction with Limited Training Data

    ERIC Educational Resources Information Center

    Jonnalagadda, Siddhartha

    2011-01-01

    In the current millennium, extensive use of computers and the internet caused an exponential increase in information. Few research areas are as important as information extraction, which primarily involves extracting concepts and the relations between them from free text. Limitations in the size of training data, lack of lexicons and lack of…

  11. Information Extraction for System-Software Safety Analysis: Calendar Year 2008 Year-End Report

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2009-01-01

    This annual report describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis and simulation to identify and evaluate possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations and scenarios; and 4) identify resulting candidate scenarios for software integration testing. There has been significant technical progress in model extraction from Orion program text sources, architecture model derivation (components and connections) and documentation of extraction sources. Models have been derived from Internal Interface Requirements Documents (IIRDs) and FMEA documents. Linguistic text processing is used to extract model parts and relationships, and the Aerospace Ontology also aids automated model development from the extracted information. Visualizations of these models assist analysts in requirements overview and in checking consistency and completeness.

  12. Text mining in livestock animal science: introducing the potential of text mining to animal sciences.

    PubMed

    Sahadevan, S; Hofmann-Apitius, M; Schellander, K; Tesfaye, D; Fluck, J; Friedrich, C M

    2012-10-01

    In biological research, establishing the prior art by searching and collecting information already present in the domain has equal importance as the experiments done. To obtain a complete overview about the relevant knowledge, researchers mainly rely on 2 major information sources: i) various biological databases and ii) scientific publications in the field. The major difference between the 2 information sources is that information from databases is available, typically well structured and condensed. The information content in scientific literature is vastly unstructured; that is, dispersed among the many different sections of scientific text. The traditional method of information extraction from scientific literature occurs by generating a list of relevant publications in the field of interest and manually scanning these texts for relevant information, which is very time consuming. It is more than likely that in using this "classical" approach the researcher misses some relevant information mentioned in the literature or has to go through biological databases to extract further information. Text mining and named entity recognition methods have already been used in human genomics and related fields as a solution to this problem. These methods can process and extract information from large volumes of scientific text. Text mining is defined as the automatic extraction of previously unknown and potentially useful information from text. Named entity recognition (NER) is defined as the method of identifying named entities (names of real world objects; for example, gene/protein names, drugs, enzymes) in text. In animal sciences, text mining and related methods have been briefly used in murine genomics and associated fields, leaving behind other fields of animal sciences, such as livestock genomics. The aim of this work was to develop an information retrieval platform in the livestock domain focusing on livestock publications and the recognition of relevant data from cattle and pigs. For this purpose, the rather noncomprehensive resources of pig and cattle gene and protein terminologies were enriched with orthologue synonyms, integrated in the NER platform, ProMiner, which is successfully used in human genomics domain. Based on the performance tests done, the present system achieved a fair performance with precision 0.64, recall 0.74, and F(1) measure of 0.69 in a test scenario based on cattle literature.

  13. Information extraction from multi-institutional radiology reports.

    PubMed

    Hassanpour, Saeed; Langlotz, Curtis P

    2016-01-01

    The radiology report is the most important source of clinical imaging information. It documents critical information about the patient's health and the radiologist's interpretation of medical findings. It also communicates information to the referring physicians and records that information for future clinical and research use. Although efforts to structure some radiology report information through predefined templates are beginning to bear fruit, a large portion of radiology report information is entered in free text. The free text format is a major obstacle for rapid extraction and subsequent use of information by clinicians, researchers, and healthcare information systems. This difficulty is due to the ambiguity and subtlety of natural language, complexity of described images, and variations among different radiologists and healthcare organizations. As a result, radiology reports are used only once by the clinician who ordered the study and rarely are used again for research and data mining. In this work, machine learning techniques and a large multi-institutional radiology report repository are used to extract the semantics of the radiology report and overcome the barriers to the re-use of radiology report information in clinical research and other healthcare applications. We describe a machine learning system to annotate radiology reports and extract report contents according to an information model. This information model covers the majority of clinically significant contents in radiology reports and is applicable to a wide variety of radiology study types. Our automated approach uses discriminative sequence classifiers for named-entity recognition to extract and organize clinically significant terms and phrases consistent with the information model. We evaluated our information extraction system on 150 radiology reports from three major healthcare organizations and compared its results to a commonly used non-machine learning information extraction method. We also evaluated the generalizability of our approach across different organizations by training and testing our system on data from different organizations. Our results show the efficacy of our machine learning approach in extracting the information model's elements (10-fold cross-validation average performance: precision: 87%, recall: 84%, F1 score: 85%) and its superiority and generalizability compared to the common non-machine learning approach (p-value<0.05). Our machine learning information extraction approach provides an effective automatic method to annotate and extract clinically significant information from a large collection of free text radiology reports. This information extraction system can help clinicians better understand the radiology reports and prioritize their review process. In addition, the extracted information can be used by researchers to link radiology reports to information from other data sources such as electronic health records and the patient's genome. Extracted information also can facilitate disease surveillance, real-time clinical decision support for the radiologist, and content-based image retrieval. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Enhancing Biomedical Text Summarization Using Semantic Relation Extraction

    PubMed Central

    Shang, Yue; Li, Yanpeng; Lin, Hongfei; Yang, Zhihao

    2011-01-01

    Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2) We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3) For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization. PMID:21887336

  15. An Ontology-Enabled Natural Language Processing Pipeline for Provenance Metadata Extraction from Biomedical Text (Short Paper).

    PubMed

    Valdez, Joshua; Rueschman, Michael; Kim, Matthew; Redline, Susan; Sahoo, Satya S

    2016-10-01

    Extraction of structured information from biomedical literature is a complex and challenging problem due to the complexity of biomedical domain and lack of appropriate natural language processing (NLP) techniques. High quality domain ontologies model both data and metadata information at a fine level of granularity, which can be effectively used to accurately extract structured information from biomedical text. Extraction of provenance metadata, which describes the history or source of information, from published articles is an important task to support scientific reproducibility. Reproducibility of results reported by previous research studies is a foundational component of scientific advancement. This is highlighted by the recent initiative by the US National Institutes of Health called "Principles of Rigor and Reproducibility". In this paper, we describe an effective approach to extract provenance metadata from published biomedical research literature using an ontology-enabled NLP platform as part of the Provenance for Clinical and Healthcare Research (ProvCaRe). The ProvCaRe-NLP tool extends the clinical Text Analysis and Knowledge Extraction System (cTAKES) platform using both provenance and biomedical domain ontologies. We demonstrate the effectiveness of ProvCaRe-NLP tool using a corpus of 20 peer-reviewed publications. The results of our evaluation demonstrate that the ProvCaRe-NLP tool has significantly higher recall in extracting provenance metadata as compared to existing NLP pipelines such as MetaMap.

  16. Knowledge representation and management: transforming textual information into useful knowledge.

    PubMed

    Rassinoux, A-M

    2010-01-01

    To summarize current outstanding research in the field of knowledge representation and management. Synopsis of the articles selected for the IMIA Yearbook 2010. Four interesting papers, dealing with structured knowledge, have been selected for the section knowledge representation and management. Combining the newest techniques in computational linguistics and natural language processing with the latest methods in statistical data analysis, machine learning and text mining has proved to be efficient for turning unstructured textual information into meaningful knowledge. Three of the four selected papers for the section knowledge representation and management corroborate this approach and depict various experiments conducted to .extract meaningful knowledge from unstructured free texts such as extracting cancer disease characteristics from pathology reports, or extracting protein-protein interactions from biomedical papers, as well as extracting knowledge for the support of hypothesis generation in molecular biology from the Medline literature. Finally, the last paper addresses the level of formally representing and structuring information within clinical terminologies in order to render such information easily available and shareable among the health informatics community. Delivering common powerful tools able to automatically extract meaningful information from the huge amount of electronically unstructured free texts is an essential step towards promoting sharing and reusability across applications, domains, and institutions thus contributing to building capacities worldwide.

  17. DeTEXT: A Database for Evaluating Text Extraction from Biomedical Literature Figures

    PubMed Central

    Yin, Xu-Cheng; Yang, Chun; Pei, Wei-Yi; Man, Haixia; Zhang, Jun; Learned-Miller, Erik; Yu, Hong

    2015-01-01

    Hundreds of millions of figures are available in biomedical literature, representing important biomedical experimental evidence. Since text is a rich source of information in figures, automatically extracting such text may assist in the task of mining figure information. A high-quality ground truth standard can greatly facilitate the development of an automated system. This article describes DeTEXT: A database for evaluating text extraction from biomedical literature figures. It is the first publicly available, human-annotated, high quality, and large-scale figure-text dataset with 288 full-text articles, 500 biomedical figures, and 9308 text regions. This article describes how figures were selected from open-access full-text biomedical articles and how annotation guidelines and annotation tools were developed. We also discuss the inter-annotator agreement and the reliability of the annotations. We summarize the statistics of the DeTEXT data and make available evaluation protocols for DeTEXT. Finally we lay out challenges we observed in the automated detection and recognition of figure text and discuss research directions in this area. DeTEXT is publicly available for downloading at http://prir.ustb.edu.cn/DeTEXT/. PMID:25951377

  18. Automated ancillary cancer history classification for mesothelioma patients from free-text clinical reports

    PubMed Central

    Wilson, Richard A.; Chapman, Wendy W.; DeFries, Shawn J.; Becich, Michael J.; Chapman, Brian E.

    2010-01-01

    Background: Clinical records are often unstructured, free-text documents that create information extraction challenges and costs. Healthcare delivery and research organizations, such as the National Mesothelioma Virtual Bank, require the aggregation of both structured and unstructured data types. Natural language processing offers techniques for automatically extracting information from unstructured, free-text documents. Methods: Five hundred and eight history and physical reports from mesothelioma patients were split into development (208) and test sets (300). A reference standard was developed and each report was annotated by experts with regard to the patient’s personal history of ancillary cancer and family history of any cancer. The Hx application was developed to process reports, extract relevant features, perform reference resolution and classify them with regard to cancer history. Two methods, Dynamic-Window and ConText, for extracting information were evaluated. Hx’s classification responses using each of the two methods were measured against the reference standard. The average Cohen’s weighted kappa served as the human benchmark in evaluating the system. Results: Hx had a high overall accuracy, with each method, scoring 96.2%. F-measures using the Dynamic-Window and ConText methods were 91.8% and 91.6%, which were comparable to the human benchmark of 92.8%. For the personal history classification, Dynamic-Window scored highest with 89.2% and for the family history classification, ConText scored highest with 97.6%, in which both methods were comparable to the human benchmark of 88.3% and 97.2%, respectively. Conclusion: We evaluated an automated application’s performance in classifying a mesothelioma patient’s personal and family history of cancer from clinical reports. To do so, the Hx application must process reports, identify cancer concepts, distinguish the known mesothelioma from ancillary cancers, recognize negation, perform reference resolution and determine the experiencer. Results indicated that both information extraction methods tested were dependant on the domain-specific lexicon and negation extraction. We showed that the more general method, ConText, performed as well as our task-specific method. Although Dynamic- Window could be modified to retrieve other concepts, ConText is more robust and performs better on inconclusive concepts. Hx could greatly improve and expedite the process of extracting data from free-text, clinical records for a variety of research or healthcare delivery organizations. PMID:21031012

  19. Text Detection, Tracking and Recognition in Video: A Comprehensive Survey.

    PubMed

    Yin, Xu-Cheng; Zuo, Ze-Yu; Tian, Shu; Liu, Cheng-Lin

    2016-04-14

    Intelligent analysis of video data is currently in wide demand because video is a major source of sensory data in our lives. Text is a prominent and direct source of information in video, while recent surveys of text detection and recognition in imagery [1], [2] focus mainly on text extraction from scene images. Here, this paper presents a comprehensive survey of text detection, tracking and recognition in video with three major contributions. First, a generic framework is proposed for video text extraction that uniformly describes detection, tracking, recognition, and their relations and interactions. Second, within this framework, a variety of methods, systems and evaluation protocols of video text extraction are summarized, compared, and analyzed. Existing text tracking techniques, tracking based detection and recognition techniques are specifically highlighted. Third, related applications, prominent challenges, and future directions for video text extraction (especially from scene videos and web videos) are also thoroughly discussed.

  20. A high-precision rule-based extraction system for expanding geospatial metadata in GenBank records

    PubMed Central

    Weissenbacher, Davy; Rivera, Robert; Beard, Rachel; Firago, Mari; Wallstrom, Garrick; Scotch, Matthew; Gonzalez, Graciela

    2016-01-01

    Objective The metadata reflecting the location of the infected host (LOIH) of virus sequences in GenBank often lacks specificity. This work seeks to enhance this metadata by extracting more specific geographic information from related full-text articles and mapping them to their latitude/longitudes using knowledge derived from external geographical databases. Materials and Methods We developed a rule-based information extraction framework for linking GenBank records to the latitude/longitudes of the LOIH. Our system first extracts existing geospatial metadata from GenBank records and attempts to improve it by seeking additional, relevant geographic information from text and tables in related full-text PubMed Central articles. The final extracted locations of the records, based on data assimilated from these sources, are then disambiguated and mapped to their respective geo-coordinates. We evaluated our approach on a manually annotated dataset comprising of 5728 GenBank records for the influenza A virus. Results We found the precision, recall, and f-measure of our system for linking GenBank records to the latitude/longitudes of their LOIH to be 0.832, 0.967, and 0.894, respectively. Discussion Our system had a high level of accuracy for linking GenBank records to the geo-coordinates of the LOIH. However, it can be further improved by expanding our database of geospatial data, incorporating spell correction, and enhancing the rules used for extraction. Conclusion Our system performs reasonably well for linking GenBank records for the influenza A virus to the geo-coordinates of their LOIH based on record metadata and information extracted from related full-text articles. PMID:26911818

  1. A high-precision rule-based extraction system for expanding geospatial metadata in GenBank records.

    PubMed

    Tahsin, Tasnia; Weissenbacher, Davy; Rivera, Robert; Beard, Rachel; Firago, Mari; Wallstrom, Garrick; Scotch, Matthew; Gonzalez, Graciela

    2016-09-01

    The metadata reflecting the location of the infected host (LOIH) of virus sequences in GenBank often lacks specificity. This work seeks to enhance this metadata by extracting more specific geographic information from related full-text articles and mapping them to their latitude/longitudes using knowledge derived from external geographical databases. We developed a rule-based information extraction framework for linking GenBank records to the latitude/longitudes of the LOIH. Our system first extracts existing geospatial metadata from GenBank records and attempts to improve it by seeking additional, relevant geographic information from text and tables in related full-text PubMed Central articles. The final extracted locations of the records, based on data assimilated from these sources, are then disambiguated and mapped to their respective geo-coordinates. We evaluated our approach on a manually annotated dataset comprising of 5728 GenBank records for the influenza A virus. We found the precision, recall, and f-measure of our system for linking GenBank records to the latitude/longitudes of their LOIH to be 0.832, 0.967, and 0.894, respectively. Our system had a high level of accuracy for linking GenBank records to the geo-coordinates of the LOIH. However, it can be further improved by expanding our database of geospatial data, incorporating spell correction, and enhancing the rules used for extraction. Our system performs reasonably well for linking GenBank records for the influenza A virus to the geo-coordinates of their LOIH based on record metadata and information extracted from related full-text articles. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. PKDE4J: Entity and relation extraction for public knowledge discovery.

    PubMed

    Song, Min; Kim, Won Chul; Lee, Dahee; Heo, Go Eun; Kang, Keun Young

    2015-10-01

    Due to an enormous number of scientific publications that cannot be handled manually, there is a rising interest in text-mining techniques for automated information extraction, especially in the biomedical field. Such techniques provide effective means of information search, knowledge discovery, and hypothesis generation. Most previous studies have primarily focused on the design and performance improvement of either named entity recognition or relation extraction. In this paper, we present PKDE4J, a comprehensive text-mining system that integrates dictionary-based entity extraction and rule-based relation extraction in a highly flexible and extensible framework. Starting with the Stanford CoreNLP, we developed the system to cope with multiple types of entities and relations. The system also has fairly good performance in terms of accuracy as well as the ability to configure text-processing components. We demonstrate its competitive performance by evaluating it on many corpora and found that it surpasses existing systems with average F-measures of 85% for entity extraction and 81% for relation extraction. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Mars Target Encyclopedia: Information Extraction for Planetary Science

    NASA Astrophysics Data System (ADS)

    Wagstaff, K. L.; Francis, R.; Gowda, T.; Lu, Y.; Riloff, E.; Singh, K.

    2017-06-01

    Mars surface targets / and published compositions / Seek and ye will find. We used text mining methods to extract information from LPSC abstracts about the composition of Mars surface targets. Users can search by element, mineral, or target.

  4. Multilingual Information Retrieval in Thoracic Radiology: Feasibility Study

    PubMed Central

    Castilla, André Coutinho; Furuie, Sérgio Shiguemi; Mendonça, Eneida A.

    2014-01-01

    Most of essential information contained on Electronic Medical Record is stored as text, imposing several difficulties on automated data extraction and retrieval. Natural language processing is an approach that can unlock clinical information from free texts. The proposed methodology uses the specialized natural language processor MEDLEE developed for English language. To use this processor on Portuguese medical texts, chest x-ray reports were Machine Translated into English. The result of serial coupling of MT an NLP is tagged text which needs further investigation for extracting clinical findings. The objective of this experiment was to investigate normal reports and reports with device description on a set of 165 chest x-ray reports. We obtained sensitivity and specificity of 1 and 0.71 for the first condition and 0.97 and 0.97 for the second respectively. The reference was formed by the opinion of two radiologists. The results of this experiment indicate the viability of extracting clinical findings from chest x-ray reports through coupling MT and NLP. PMID:17911745

  5. Text-mining and information-retrieval services for molecular biology

    PubMed Central

    Krallinger, Martin; Valencia, Alfonso

    2005-01-01

    Text-mining in molecular biology - defined as the automatic extraction of information about genes, proteins and their functional relationships from text documents - has emerged as a hybrid discipline on the edges of the fields of information science, bioinformatics and computational linguistics. A range of text-mining applications have been developed recently that will improve access to knowledge for biologists and database annotators. PMID:15998455

  6. Text feature extraction based on deep learning: a review.

    PubMed

    Liang, Hong; Sun, Xiao; Sun, Yunlei; Gao, Yuan

    2017-01-01

    Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.

  7. Extracting biomedical events from pairs of text entities

    PubMed Central

    2015-01-01

    Background Huge amounts of electronic biomedical documents, such as molecular biology reports or genomic papers are generated daily. Nowadays, these documents are mainly available in the form of unstructured free texts, which require heavy processing for their registration into organized databases. This organization is instrumental for information retrieval, enabling to answer the advanced queries of researchers and practitioners in biology, medicine, and related fields. Hence, the massive data flow calls for efficient automatic methods of text-mining that extract high-level information, such as biomedical events, from biomedical text. The usual computational tools of Natural Language Processing cannot be readily applied to extract these biomedical events, due to the peculiarities of the domain. Indeed, biomedical documents contain highly domain-specific jargon and syntax. These documents also describe distinctive dependencies, making text-mining in molecular biology a specific discipline. Results We address biomedical event extraction as the classification of pairs of text entities into the classes corresponding to event types. The candidate pairs of text entities are recursively provided to a multiclass classifier relying on Support Vector Machines. This recursive process extracts events involving other events as arguments. Compared to joint models based on Markov Random Fields, our model simplifies inference and hence requires shorter training and prediction times along with lower memory capacity. Compared to usual pipeline approaches, our model passes over a complex intermediate problem, while making a more extensive usage of sophisticated joint features between text entities. Our method focuses on the core event extraction of the Genia task of BioNLP challenges yielding the best result reported so far on the 2013 edition. PMID:26201478

  8. Place in Perspective: Extracting Online Information about Points of Interest

    NASA Astrophysics Data System (ADS)

    Alves, Ana O.; Pereira, Francisco C.; Rodrigues, Filipe; Oliveirinha, João

    During the last few years, the amount of online descriptive information about places has reached reasonable dimensions for many cities in the world. Being such information mostly in Natural Language text, Information Extraction techniques are needed for obtaining the meaning of places that underlies these massive amounts of commonsense and user made sources. In this article, we show how we automatically label places using Information Extraction techniques applied to online resources such as Wikipedia, Yellow Pages and Yahoo!.

  9. Capturing patient information at nursing shift changes: methodological evaluation of speech recognition and information extraction

    PubMed Central

    Suominen, Hanna; Johnson, Maree; Zhou, Liyuan; Sanchez, Paula; Sirel, Raul; Basilakis, Jim; Hanlen, Leif; Estival, Dominique; Dawson, Linda; Kelly, Barbara

    2015-01-01

    Objective We study the use of speech recognition and information extraction to generate drafts of Australian nursing-handover documents. Methods Speech recognition correctness and clinicians’ preferences were evaluated using 15 recorder–microphone combinations, six documents, three speakers, Dragon Medical 11, and five survey/interview participants. Information extraction correctness evaluation used 260 documents, six-class classification for each word, two annotators, and the CRF++ conditional random field toolkit. Results A noise-cancelling lapel-microphone with a digital voice recorder gave the best correctness (79%). This microphone was also the most preferred option by all but one participant. Although the participants liked the small size of this recorder, their preference was for tablets that can also be used for document proofing and sign-off, among other tasks. Accented speech was harder to recognize than native language and a male speaker was detected better than a female speaker. Information extraction was excellent in filtering out irrelevant text (85% F1) and identifying text relevant to two classes (87% and 70% F1). Similarly to the annotators’ disagreements, there was confusion between the remaining three classes, which explains the modest 62% macro-averaged F1. Discussion We present evidence for the feasibility of speech recognition and information extraction to support clinicians’ in entering text and unlock its content for computerized decision-making and surveillance in healthcare. Conclusions The benefits of this automation include storing all information; making the drafts available and accessible almost instantly to everyone with authorized access; and avoiding information loss, delays, and misinterpretations inherent to using a ward clerk or transcription services. PMID:25336589

  10. Ad Hoc Information Extraction for Clinical Data Warehouses.

    PubMed

    Dietrich, Georg; Krebs, Jonathan; Fette, Georg; Ertl, Maximilian; Kaspar, Mathias; Störk, Stefan; Puppe, Frank

    2018-05-01

    Clinical Data Warehouses (CDW) reuse Electronic health records (EHR) to make their data retrievable for research purposes or patient recruitment for clinical trials. However, much information are hidden in unstructured data like discharge letters. They can be preprocessed and converted to structured data via information extraction (IE), which is unfortunately a laborious task and therefore usually not available for most of the text data in CDW. The goal of our work is to provide an ad hoc IE service that allows users to query text data ad hoc in a manner similar to querying structured data in a CDW. While search engines just return text snippets, our systems also returns frequencies (e.g. how many patients exist with "heart failure" including textual synonyms or how many patients have an LVEF < 45) based on the content of discharge letters or textual reports for special investigations like heart echo. Three subtasks are addressed: (1) To recognize and to exclude negations and their scopes, (2) to extract concepts, i.e. Boolean values and (3) to extract numerical values. We implemented an extended version of the NegEx-algorithm for German texts that detects negations and determines their scope. Furthermore, our document oriented CDW PaDaWaN was extended with query functions, e.g. context sensitive queries and regex queries, and an extraction mode for computing the frequencies for Boolean and numerical values. Evaluations in chest X-ray reports and in discharge letters showed high F1-scores for the three subtasks: Detection of negated concepts in chest X-ray reports with an F1-score of 0.99 and in discharge letters with 0.97; of Boolean values in chest X-ray reports about 0.99, and of numerical values in chest X-ray reports and discharge letters also around 0.99 with the exception of the concept age. The advantages of an ad hoc IE over a standard IE are the low development effort (just entering the concept with its variants), the promptness of the results and the adaptability by the user to his or her particular question. Disadvantage are usually lower accuracy and confidence.This ad hoc information extraction approach is novel and exceeds existing systems: Roogle [1] extracts predefined concepts from texts at preprocessing and makes them retrievable at runtime. Dr. Warehouse [2] applies negation detection and indexes the produced subtexts which include affirmed findings. Our approach combines negation detection and the extraction of concepts. But the extraction does not take place during preprocessing, but at runtime. That provides an ad hoc, dynamic, interactive and adjustable information extraction of random concepts and even their values on the fly at runtime. We developed an ad hoc information extraction query feature for Boolean and numerical values within a CDW with high recall and precision based on a pipeline that detects and removes negations and their scope in clinical texts. Schattauer GmbH.

  11. Are figure legends sufficient? Evaluating the contribution of associated text to biomedical figure comprehension.

    PubMed

    Yu, Hong; Agarwal, Shashank; Johnston, Mark; Cohen, Aaron

    2009-01-06

    Biomedical scientists need to access figures to validate research facts and to formulate or to test novel research hypotheses. However, figures are difficult to comprehend without associated text (e.g., figure legend and other reference text). We are developing automated systems to extract the relevant explanatory information along with figures extracted from full text articles. Such systems could be very useful in improving figure retrieval and in reducing the workload of biomedical scientists, who otherwise have to retrieve and read the entire full-text journal article to determine which figures are relevant to their research. As a crucial step, we studied the importance of associated text in biomedical figure comprehension. Twenty subjects evaluated three figure-text combinations: figure+legend, figure+legend+title+abstract, and figure+full-text. Using a Likert scale, each subject scored each figure+text according to the extent to which the subject thought he/she understood the meaning of the figure and the confidence in providing the assigned score. Additionally, each subject entered a free text summary for each figure-text. We identified missing information using indicator words present within the text summaries. Both the Likert scores and the missing information were statistically analyzed for differences among the figure-text types. We also evaluated the quality of text summaries with the text-summarization evaluation method the ROUGE score. Our results showed statistically significant differences in figure comprehension when varying levels of text were provided. When the full-text article is not available, presenting just the figure+legend left biomedical researchers lacking 39-68% of the information about a figure as compared to having complete figure comprehension; adding the title and abstract improved the situation, but still left biomedical researchers missing 30% of the information. When the full-text article is available, figure comprehension increased to 86-97%; this indicates that researchers felt that only 3-14% of the necessary information for full figure comprehension was missing when full text was available to them. Clearly there is information in the abstract and in the full text that biomedical scientists deem important for understanding the figures that appear in full-text biomedical articles. We conclude that the texts that appear in full-text biomedical articles are useful for understanding the meaning of a figure, and an effective figure-mining system needs to unlock the information beyond figure legend. Our work provides important guidance to the figure mining systems that extract information only from figure and figure legend.

  12. Are figure legends sufficient? Evaluating the contribution of associated text to biomedical figure comprehension

    PubMed Central

    2009-01-01

    Background Biomedical scientists need to access figures to validate research facts and to formulate or to test novel research hypotheses. However, figures are difficult to comprehend without associated text (e.g., figure legend and other reference text). We are developing automated systems to extract the relevant explanatory information along with figures extracted from full text articles. Such systems could be very useful in improving figure retrieval and in reducing the workload of biomedical scientists, who otherwise have to retrieve and read the entire full-text journal article to determine which figures are relevant to their research. As a crucial step, we studied the importance of associated text in biomedical figure comprehension. Methods Twenty subjects evaluated three figure-text combinations: figure+legend, figure+legend+title+abstract, and figure+full-text. Using a Likert scale, each subject scored each figure+text according to the extent to which the subject thought he/she understood the meaning of the figure and the confidence in providing the assigned score. Additionally, each subject entered a free text summary for each figure-text. We identified missing information using indicator words present within the text summaries. Both the Likert scores and the missing information were statistically analyzed for differences among the figure-text types. We also evaluated the quality of text summaries with the text-summarization evaluation method the ROUGE score. Results Our results showed statistically significant differences in figure comprehension when varying levels of text were provided. When the full-text article is not available, presenting just the figure+legend left biomedical researchers lacking 39–68% of the information about a figure as compared to having complete figure comprehension; adding the title and abstract improved the situation, but still left biomedical researchers missing 30% of the information. When the full-text article is available, figure comprehension increased to 86–97%; this indicates that researchers felt that only 3–14% of the necessary information for full figure comprehension was missing when full text was available to them. Clearly there is information in the abstract and in the full text that biomedical scientists deem important for understanding the figures that appear in full-text biomedical articles. Conclusion We conclude that the texts that appear in full-text biomedical articles are useful for understanding the meaning of a figure, and an effective figure-mining system needs to unlock the information beyond figure legend. Our work provides important guidance to the figure mining systems that extract information only from figure and figure legend. PMID:19126221

  13. Automation for System Safety Analysis

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Fleming, Land; Throop, David; Thronesbery, Carroll; Flores, Joshua; Bennett, Ted; Wennberg, Paul

    2009-01-01

    This presentation describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis and simulation to identify and evaluate possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations and scenarios; and 4) identify resulting candidate scenarios for software integration testing. There has been significant technical progress in model extraction from Orion program text sources, architecture model derivation (components and connections) and documentation of extraction sources. Models have been derived from Internal Interface Requirements Documents (IIRDs) and FMEA documents. Linguistic text processing is used to extract model parts and relationships, and the Aerospace Ontology also aids automated model development from the extracted information. Visualizations of these models assist analysts in requirements overview and in checking consistency and completeness.

  14. CRL/Brandeis: Description of the DIDEROT System as Used for MUC-5

    DTIC Science & Technology

    1993-01-01

    been evaluated in the 4th Message Understanding Conference (MUC-4 ) where it was required to extract information from 200 texts on South American...Email : jamesp@cs.brandeis .edu Abstract This report describes the major developments over the last six months in completing th e Diderot information ...extraction system for the MUC-5 evaluation . Diderot is an information extraction system built at CRL and Brandeis University over th e past two

  15. TextHunter – A User Friendly Tool for Extracting Generic Concepts from Free Text in Clinical Research

    PubMed Central

    Jackson MSc, Richard G.; Ball, Michael; Patel, Rashmi; Hayes, Richard D.; Dobson, Richard J.B.; Stewart, Robert

    2014-01-01

    Observational research using data from electronic health records (EHR) is a rapidly growing area, which promises both increased sample size and data richness - therefore unprecedented study power. However, in many medical domains, large amounts of potentially valuable data are contained within the free text clinical narrative. Manually reviewing free text to obtain desired information is an inefficient use of researcher time and skill. Previous work has demonstrated the feasibility of applying Natural Language Processing (NLP) to extract information. However, in real world research environments, the demand for NLP skills outweighs supply, creating a bottleneck in the secondary exploitation of the EHR. To address this, we present TextHunter, a tool for the creation of training data, construction of concept extraction machine learning models and their application to documents. Using confidence thresholds to ensure high precision (>90%), we achieved recall measurements as high as 99% in real world use cases. PMID:25954379

  16. Taming Big Data: An Information Extraction Strategy for Large Clinical Text Corpora.

    PubMed

    Gundlapalli, Adi V; Divita, Guy; Carter, Marjorie E; Redd, Andrew; Samore, Matthew H; Gupta, Kalpana; Trautner, Barbara

    2015-01-01

    Concepts of interest for clinical and research purposes are not uniformly distributed in clinical text available in electronic medical records. The purpose of our study was to identify filtering techniques to select 'high yield' documents for increased efficacy and throughput. Using two large corpora of clinical text, we demonstrate the identification of 'high yield' document sets in two unrelated domains: homelessness and indwelling urinary catheters. For homelessness, the high yield set includes homeless program and social work notes. For urinary catheters, concepts were more prevalent in notes from hospitalized patients; nursing notes accounted for a majority of the high yield set. This filtering will enable customization and refining of information extraction pipelines to facilitate extraction of relevant concepts for clinical decision support and other uses.

  17. Introduction to the JASIST Special Topic Issue on Web Retrieval and Mining: A Machine Learning Perspective.

    ERIC Educational Resources Information Center

    Chen, Hsinchun

    2003-01-01

    Discusses information retrieval techniques used on the World Wide Web. Topics include machine learning in information extraction; relevance feedback; information filtering and recommendation; text classification and text clustering; Web mining, based on data mining techniques; hyperlink structure; and Web size. (LRW)

  18. ExaCT: automatic extraction of clinical trial characteristics from journal publications

    PubMed Central

    2010-01-01

    Background Clinical trials are one of the most important sources of evidence for guiding evidence-based practice and the design of new trials. However, most of this information is available only in free text - e.g., in journal publications - which is labour intensive to process for systematic reviews, meta-analyses, and other evidence synthesis studies. This paper presents an automatic information extraction system, called ExaCT, that assists users with locating and extracting key trial characteristics (e.g., eligibility criteria, sample size, drug dosage, primary outcomes) from full-text journal articles reporting on randomized controlled trials (RCTs). Methods ExaCT consists of two parts: an information extraction (IE) engine that searches the article for text fragments that best describe the trial characteristics, and a web browser-based user interface that allows human reviewers to assess and modify the suggested selections. The IE engine uses a statistical text classifier to locate those sentences that have the highest probability of describing a trial characteristic. Then, the IE engine's second stage applies simple rules to these sentences to extract text fragments containing the target answer. The same approach is used for all 21 trial characteristics selected for this study. Results We evaluated ExaCT using 50 previously unseen articles describing RCTs. The text classifier (first stage) was able to recover 88% of relevant sentences among its top five candidates (top5 recall) with the topmost candidate being relevant in 80% of cases (top1 precision). Precision and recall of the extraction rules (second stage) were 93% and 91%, respectively. Together, the two stages of the extraction engine were able to provide (partially) correct solutions in 992 out of 1050 test tasks (94%), with a majority of these (696) representing fully correct and complete answers. Conclusions Our experiments confirmed the applicability and efficacy of ExaCT. Furthermore, they demonstrated that combining a statistical method with 'weak' extraction rules can identify a variety of study characteristics. The system is flexible and can be extended to handle other characteristics and document types (e.g., study protocols). PMID:20920176

  19. Text Mining for Adverse Drug Events: the Promise, Challenges, and State of the Art

    PubMed Central

    Harpaz, Rave; Callahan, Alison; Tamang, Suzanne; Low, Yen; Odgers, David; Finlayson, Sam; Jung, Kenneth; LePendu, Paea; Shah, Nigam H.

    2014-01-01

    Text mining is the computational process of extracting meaningful information from large amounts of unstructured text. Text mining is emerging as a tool to leverage underutilized data sources that can improve pharmacovigilance, including the objective of adverse drug event detection and assessment. This article provides an overview of recent advances in pharmacovigilance driven by the application of text mining, and discusses several data sources—such as biomedical literature, clinical narratives, product labeling, social media, and Web search logs—that are amenable to text-mining for pharmacovigilance. Given the state of the art, it appears text mining can be applied to extract useful ADE-related information from multiple textual sources. Nonetheless, further research is required to address remaining technical challenges associated with the text mining methodologies, and to conclusively determine the relative contribution of each textual source to improving pharmacovigilance. PMID:25151493

  20. Development of a full-text information retrieval system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keizo Oyama; AKira Miyazawa, Atsuhiro Takasu; Kouji Shibano

    The authors have executed a project to realize a full-text information retrieval system. The system is designed to deal with a document database comprising full text of a large number of documents such as academic papers. The document structures are utilized in searching and extracting appropriate information. The concept of structure handling and the configuration of the system are described in this paper.

  1. An Overview of Biomolecular Event Extraction from Scientific Documents

    PubMed Central

    Vanegas, Jorge A.; Matos, Sérgio; González, Fabio; Oliveira, José L.

    2015-01-01

    This paper presents a review of state-of-the-art approaches to automatic extraction of biomolecular events from scientific texts. Events involving biomolecules such as genes, transcription factors, or enzymes, for example, have a central role in biological processes and functions and provide valuable information for describing physiological and pathogenesis mechanisms. Event extraction from biomedical literature has a broad range of applications, including support for information retrieval, knowledge summarization, and information extraction and discovery. However, automatic event extraction is a challenging task due to the ambiguity and diversity of natural language and higher-level linguistic phenomena, such as speculations and negations, which occur in biological texts and can lead to misunderstanding or incorrect interpretation. Many strategies have been proposed in the last decade, originating from different research areas such as natural language processing, machine learning, and statistics. This review summarizes the most representative approaches in biomolecular event extraction and presents an analysis of the current state of the art and of commonly used methods, features, and tools. Finally, current research trends and future perspectives are also discussed. PMID:26587051

  2. Using Medical Text Extraction, Reasoning and Mapping System (MTERMS) to Process Medication Information in Outpatient Clinical Notes

    PubMed Central

    Zhou, Li; Plasek, Joseph M; Mahoney, Lisa M; Karipineni, Neelima; Chang, Frank; Yan, Xuemin; Chang, Fenny; Dimaggio, Dana; Goldman, Debora S.; Rocha, Roberto A.

    2011-01-01

    Clinical information is often coded using different terminologies, and therefore is not interoperable. Our goal is to develop a general natural language processing (NLP) system, called Medical Text Extraction, Reasoning and Mapping System (MTERMS), which encodes clinical text using different terminologies and simultaneously establishes dynamic mappings between them. MTERMS applies a modular, pipeline approach flowing from a preprocessor, semantic tagger, terminology mapper, context analyzer, and parser to structure inputted clinical notes. Evaluators manually reviewed 30 free-text and 10 structured outpatient clinical notes compared to MTERMS output. MTERMS achieved an overall F-measure of 90.6 and 94.0 for free-text and structured notes respectively for medication and temporal information. The local medication terminology had 83.0% coverage compared to RxNorm’s 98.0% coverage for free-text notes. 61.6% of mappings between the terminologies are exact match. Capture of duration was significantly improved (91.7% vs. 52.5%) from systems in the third i2b2 challenge. PMID:22195230

  3. BioRAT: extracting biological information from full-length papers.

    PubMed

    Corney, David P A; Buxton, Bernard F; Langdon, William B; Jones, David T

    2004-11-22

    Converting the vast quantity of free-format text found in journals into a concise, structured format makes the researcher's quest for information easier. Recently, several information extraction systems have been developed that attempt to simplify the retrieval and analysis of biological and medical data. Most of this work has used the abstract alone, owing to the convenience of access and the quality of data. Abstracts are generally available through central collections with easy direct access (e.g. PubMed). The full-text papers contain more information, but are distributed across many locations (e.g. publishers' web sites, journal web sites and local repositories), making access more difficult. In this paper, we present BioRAT, a new information extraction (IE) tool, specifically designed to perform biomedical IE, and which is able to locate and analyse both abstracts and full-length papers. BioRAT is a Biological Research Assistant for Text mining, and incorporates a document search ability with domain-specific IE. We show first, that BioRAT performs as well as existing systems, when applied to abstracts; and second, that significantly more information is available to BioRAT through the full-length papers than via the abstracts alone. Typically, less than half of the available information is extracted from the abstract, with the majority coming from the body of each paper. Overall, BioRAT recalled 20.31% of the target facts from the abstracts with 55.07% precision, and achieved 43.6% recall with 51.25% precision on full-length papers.

  4. KAM (Knowledge Acquisition Module): A tool to simplify the knowledge acquisition process

    NASA Technical Reports Server (NTRS)

    Gettig, Gary A.

    1988-01-01

    Analysts, knowledge engineers and information specialists are faced with increasing volumes of time-sensitive data in text form, either as free text or highly structured text records. Rapid access to the relevant data in these sources is essential. However, due to the volume and organization of the contents, and limitations of human memory and association, frequently: (1) important information is not located in time; (2) reams of irrelevant data are searched; and (3) interesting or critical associations are missed due to physical or temporal gaps involved in working with large files. The Knowledge Acquisition Module (KAM) is a microcomputer-based expert system designed to assist knowledge engineers, analysts, and other specialists in extracting useful knowledge from large volumes of digitized text and text-based files. KAM formulates non-explicit, ambiguous, or vague relations, rules, and facts into a manageable and consistent formal code. A library of system rules or heuristics is maintained to control the extraction of rules, relations, assertions, and other patterns from the text. These heuristics can be added, deleted or customized by the user. The user can further control the extraction process with optional topic specifications. This allows the user to cluster extracts based on specific topics. Because KAM formalizes diverse knowledge, it can be used by a variety of expert systems and automated reasoning applications. KAM can also perform important roles in computer-assisted training and skill development. Current research efforts include the applicability of neural networks to aid in the extraction process and the conversion of these extracts into standard formats.

  5. Joint Extraction of Entities and Relations Using Reinforcement Learning and Deep Learning.

    PubMed

    Feng, Yuntian; Zhang, Hongjun; Hao, Wenning; Chen, Gang

    2017-01-01

    We use both reinforcement learning and deep learning to simultaneously extract entities and relations from unstructured texts. For reinforcement learning, we model the task as a two-step decision process. Deep learning is used to automatically capture the most important information from unstructured texts, which represent the state in the decision process. By designing the reward function per step, our proposed method can pass the information of entity extraction to relation extraction and obtain feedback in order to extract entities and relations simultaneously. Firstly, we use bidirectional LSTM to model the context information, which realizes preliminary entity extraction. On the basis of the extraction results, attention based method can represent the sentences that include target entity pair to generate the initial state in the decision process. Then we use Tree-LSTM to represent relation mentions to generate the transition state in the decision process. Finally, we employ Q -Learning algorithm to get control policy π in the two-step decision process. Experiments on ACE2005 demonstrate that our method attains better performance than the state-of-the-art method and gets a 2.4% increase in recall-score.

  6. Joint Extraction of Entities and Relations Using Reinforcement Learning and Deep Learning

    PubMed Central

    Zhang, Hongjun; Chen, Gang

    2017-01-01

    We use both reinforcement learning and deep learning to simultaneously extract entities and relations from unstructured texts. For reinforcement learning, we model the task as a two-step decision process. Deep learning is used to automatically capture the most important information from unstructured texts, which represent the state in the decision process. By designing the reward function per step, our proposed method can pass the information of entity extraction to relation extraction and obtain feedback in order to extract entities and relations simultaneously. Firstly, we use bidirectional LSTM to model the context information, which realizes preliminary entity extraction. On the basis of the extraction results, attention based method can represent the sentences that include target entity pair to generate the initial state in the decision process. Then we use Tree-LSTM to represent relation mentions to generate the transition state in the decision process. Finally, we employ Q-Learning algorithm to get control policy π in the two-step decision process. Experiments on ACE2005 demonstrate that our method attains better performance than the state-of-the-art method and gets a 2.4% increase in recall-score. PMID:28894463

  7. Text mining for adverse drug events: the promise, challenges, and state of the art.

    PubMed

    Harpaz, Rave; Callahan, Alison; Tamang, Suzanne; Low, Yen; Odgers, David; Finlayson, Sam; Jung, Kenneth; LePendu, Paea; Shah, Nigam H

    2014-10-01

    Text mining is the computational process of extracting meaningful information from large amounts of unstructured text. It is emerging as a tool to leverage underutilized data sources that can improve pharmacovigilance, including the objective of adverse drug event (ADE) detection and assessment. This article provides an overview of recent advances in pharmacovigilance driven by the application of text mining, and discusses several data sources-such as biomedical literature, clinical narratives, product labeling, social media, and Web search logs-that are amenable to text mining for pharmacovigilance. Given the state of the art, it appears text mining can be applied to extract useful ADE-related information from multiple textual sources. Nonetheless, further research is required to address remaining technical challenges associated with the text mining methodologies, and to conclusively determine the relative contribution of each textual source to improving pharmacovigilance.

  8. Chemical named entities recognition: a review on approaches and applications

    PubMed Central

    2014-01-01

    The rapid increase in the flow rate of published digital information in all disciplines has resulted in a pressing need for techniques that can simplify the use of this information. The chemistry literature is very rich with information about chemical entities. Extracting molecules and their related properties and activities from the scientific literature to “text mine” these extracted data and determine contextual relationships helps research scientists, particularly those in drug development. One of the most important challenges in chemical text mining is the recognition of chemical entities mentioned in the texts. In this review, the authors briefly introduce the fundamental concepts of chemical literature mining, the textual contents of chemical documents, and the methods of naming chemicals in documents. We sketch out dictionary-based, rule-based and machine learning, as well as hybrid chemical named entity recognition approaches with their applied solutions. We end with an outlook on the pros and cons of these approaches and the types of chemical entities extracted. PMID:24834132

  9. Chemical named entities recognition: a review on approaches and applications.

    PubMed

    Eltyeb, Safaa; Salim, Naomie

    2014-01-01

    The rapid increase in the flow rate of published digital information in all disciplines has resulted in a pressing need for techniques that can simplify the use of this information. The chemistry literature is very rich with information about chemical entities. Extracting molecules and their related properties and activities from the scientific literature to "text mine" these extracted data and determine contextual relationships helps research scientists, particularly those in drug development. One of the most important challenges in chemical text mining is the recognition of chemical entities mentioned in the texts. In this review, the authors briefly introduce the fundamental concepts of chemical literature mining, the textual contents of chemical documents, and the methods of naming chemicals in documents. We sketch out dictionary-based, rule-based and machine learning, as well as hybrid chemical named entity recognition approaches with their applied solutions. We end with an outlook on the pros and cons of these approaches and the types of chemical entities extracted.

  10. Layout-aware text extraction from full-text PDF of scientific articles.

    PubMed

    Ramakrishnan, Cartic; Patnia, Abhishek; Hovy, Eduard; Burns, Gully Apc

    2012-05-28

    The Portable Document Format (PDF) is the most commonly used file format for online scientific publications. The absence of effective means to extract text from these PDF files in a layout-aware manner presents a significant challenge for developers of biomedical text mining or biocuration informatics systems that use published literature as an information source. In this paper we introduce the 'Layout-Aware PDF Text Extraction' (LA-PDFText) system to facilitate accurate extraction of text from PDF files of research articles for use in text mining applications. Our paper describes the construction and performance of an open source system that extracts text blocks from PDF-formatted full-text research articles and classifies them into logical units based on rules that characterize specific sections. The LA-PDFText system focuses only on the textual content of the research articles and is meant as a baseline for further experiments into more advanced extraction methods that handle multi-modal content, such as images and graphs. The system works in a three-stage process: (1) Detecting contiguous text blocks using spatial layout processing to locate and identify blocks of contiguous text, (2) Classifying text blocks into rhetorical categories using a rule-based method and (3) Stitching classified text blocks together in the correct order resulting in the extraction of text from section-wise grouped blocks. We show that our system can identify text blocks and classify them into rhetorical categories with Precision1 = 0.96% Recall = 0.89% and F1 = 0.91%. We also present an evaluation of the accuracy of the block detection algorithm used in step 2. Additionally, we have compared the accuracy of the text extracted by LA-PDFText to the text from the Open Access subset of PubMed Central. We then compared this accuracy with that of the text extracted by the PDF2Text system, 2commonly used to extract text from PDF. Finally, we discuss preliminary error analysis for our system and identify further areas of improvement. LA-PDFText is an open-source tool for accurately extracting text from full-text scientific articles. The release of the system is available at http://code.google.com/p/lapdftext/.

  11. PASTE: patient-centered SMS text tagging in a medication management system.

    PubMed

    Stenner, Shane P; Johnson, Kevin B; Denny, Joshua C

    2012-01-01

    To evaluate the performance of a system that extracts medication information and administration-related actions from patient short message service (SMS) messages. Mobile technologies provide a platform for electronic patient-centered medication management. MyMediHealth (MMH) is a medication management system that includes a medication scheduler, a medication administration record, and a reminder engine that sends text messages to cell phones. The object of this work was to extend MMH to allow two-way interaction using mobile phone-based SMS technology. Unprompted text-message communication with patients using natural language could engage patients in their healthcare, but presents unique natural language processing challenges. The authors developed a new functional component of MMH, the Patient-centered Automated SMS Tagging Engine (PASTE). The PASTE web service uses natural language processing methods, custom lexicons, and existing knowledge sources to extract and tag medication information from patient text messages. A pilot evaluation of PASTE was completed using 130 medication messages anonymously submitted by 16 volunteers via a website. System output was compared with manually tagged messages. Verified medication names, medication terms, and action terms reached high F-measures of 91.3%, 94.7%, and 90.4%, respectively. The overall medication name F-measure was 79.8%, and the medication action term F-measure was 90%. Other studies have demonstrated systems that successfully extract medication information from clinical documents using semantic tagging, regular expression-based approaches, or a combination of both approaches. This evaluation demonstrates the feasibility of extracting medication information from patient-generated medication messages.

  12. Extracting and standardizing medication information in clinical text - the MedEx-UIMA system.

    PubMed

    Jiang, Min; Wu, Yonghui; Shah, Anushi; Priyanka, Priyanka; Denny, Joshua C; Xu, Hua

    2014-01-01

    Extraction of medication information embedded in clinical text is important for research using electronic health records (EHRs). However, most of current medication information extraction systems identify drug and signature entities without mapping them to standard representation. In this study, we introduced the open source Java implementation of MedEx, an existing high-performance medication information extraction system, based on the Unstructured Information Management Architecture (UIMA) framework. In addition, we developed new encoding modules in the MedEx-UIMA system, which mapped an extracted drug name/dose/form to both generalized and specific RxNorm concepts and translated drug frequency information to ISO standard. We processed 826 documents by both systems and verified that MedEx-UIMA and MedEx (the Python version) performed similarly by comparing both results. Using two manually annotated test sets that contained 300 drug entries from medication list and 300 drug entries from narrative reports, the MedEx-UIMA system achieved F-measures of 98.5% and 97.5% respectively for encoding drug names to corresponding RxNorm generic drug ingredients, and F-measures of 85.4% and 88.1% respectively for mapping drug names/dose/form to the most specific RxNorm concepts. It also achieved an F-measure of 90.4% for normalizing frequency information to ISO standard. The open source MedEx-UIMA system is freely available online at http://code.google.com/p/medex-uima/.

  13. Figure Text Extraction in Biomedical Literature

    PubMed Central

    Kim, Daehyun; Yu, Hong

    2011-01-01

    Background Figures are ubiquitous in biomedical full-text articles, and they represent important biomedical knowledge. However, the sheer volume of biomedical publications has made it necessary to develop computational approaches for accessing figures. Therefore, we are developing the Biomedical Figure Search engine (http://figuresearch.askHERMES.org) to allow bioscientists to access figures efficiently. Since text frequently appears in figures, automatically extracting such text may assist the task of mining information from figures. Little research, however, has been conducted exploring text extraction from biomedical figures. Methodology We first evaluated an off-the-shelf Optical Character Recognition (OCR) tool on its ability to extract text from figures appearing in biomedical full-text articles. We then developed a Figure Text Extraction Tool (FigTExT) to improve the performance of the OCR tool for figure text extraction through the use of three innovative components: image preprocessing, character recognition, and text correction. We first developed image preprocessing to enhance image quality and to improve text localization. Then we adapted the off-the-shelf OCR tool on the improved text localization for character recognition. Finally, we developed and evaluated a novel text correction framework by taking advantage of figure-specific lexicons. Results/Conclusions The evaluation on 382 figures (9,643 figure texts in total) randomly selected from PubMed Central full-text articles shows that FigTExT performed with 84% precision, 98% recall, and 90% F1-score for text localization and with 62.5% precision, 51.0% recall and 56.2% F1-score for figure text extraction. When limiting figure texts to those judged by domain experts to be important content, FigTExT performed with 87.3% precision, 68.8% recall, and 77% F1-score. FigTExT significantly improved the performance of the off-the-shelf OCR tool we used, which on its own performed with 36.6% precision, 19.3% recall, and 25.3% F1-score for text extraction. In addition, our results show that FigTExT can extract texts that do not appear in figure captions or other associated text, further suggesting the potential utility of FigTExT for improving figure search. PMID:21249186

  14. Figure text extraction in biomedical literature.

    PubMed

    Kim, Daehyun; Yu, Hong

    2011-01-13

    Figures are ubiquitous in biomedical full-text articles, and they represent important biomedical knowledge. However, the sheer volume of biomedical publications has made it necessary to develop computational approaches for accessing figures. Therefore, we are developing the Biomedical Figure Search engine (http://figuresearch.askHERMES.org) to allow bioscientists to access figures efficiently. Since text frequently appears in figures, automatically extracting such text may assist the task of mining information from figures. Little research, however, has been conducted exploring text extraction from biomedical figures. We first evaluated an off-the-shelf Optical Character Recognition (OCR) tool on its ability to extract text from figures appearing in biomedical full-text articles. We then developed a Figure Text Extraction Tool (FigTExT) to improve the performance of the OCR tool for figure text extraction through the use of three innovative components: image preprocessing, character recognition, and text correction. We first developed image preprocessing to enhance image quality and to improve text localization. Then we adapted the off-the-shelf OCR tool on the improved text localization for character recognition. Finally, we developed and evaluated a novel text correction framework by taking advantage of figure-specific lexicons. The evaluation on 382 figures (9,643 figure texts in total) randomly selected from PubMed Central full-text articles shows that FigTExT performed with 84% precision, 98% recall, and 90% F1-score for text localization and with 62.5% precision, 51.0% recall and 56.2% F1-score for figure text extraction. When limiting figure texts to those judged by domain experts to be important content, FigTExT performed with 87.3% precision, 68.8% recall, and 77% F1-score. FigTExT significantly improved the performance of the off-the-shelf OCR tool we used, which on its own performed with 36.6% precision, 19.3% recall, and 25.3% F1-score for text extraction. In addition, our results show that FigTExT can extract texts that do not appear in figure captions or other associated text, further suggesting the potential utility of FigTExT for improving figure search.

  15. OpenDMAP: An open source, ontology-driven concept analysis engine, with applications to capturing knowledge regarding protein transport, protein interactions and cell-type-specific gene expression

    PubMed Central

    Hunter, Lawrence; Lu, Zhiyong; Firby, James; Baumgartner, William A; Johnson, Helen L; Ogren, Philip V; Cohen, K Bretonnel

    2008-01-01

    Background Information extraction (IE) efforts are widely acknowledged to be important in harnessing the rapid advance of biomedical knowledge, particularly in areas where important factual information is published in a diverse literature. Here we report on the design, implementation and several evaluations of OpenDMAP, an ontology-driven, integrated concept analysis system. It significantly advances the state of the art in information extraction by leveraging knowledge in ontological resources, integrating diverse text processing applications, and using an expanded pattern language that allows the mixing of syntactic and semantic elements and variable ordering. Results OpenDMAP information extraction systems were produced for extracting protein transport assertions (transport), protein-protein interaction assertions (interaction) and assertions that a gene is expressed in a cell type (expression). Evaluations were performed on each system, resulting in F-scores ranging from .26 – .72 (precision .39 – .85, recall .16 – .85). Additionally, each of these systems was run over all abstracts in MEDLINE, producing a total of 72,460 transport instances, 265,795 interaction instances and 176,153 expression instances. Conclusion OpenDMAP advances the performance standards for extracting protein-protein interaction predications from the full texts of biomedical research articles. Furthermore, this level of performance appears to generalize to other information extraction tasks, including extracting information about predicates of more than two arguments. The output of the information extraction system is always constructed from elements of an ontology, ensuring that the knowledge representation is grounded with respect to a carefully constructed model of reality. The results of these efforts can be used to increase the efficiency of manual curation efforts and to provide additional features in systems that integrate multiple sources for information extraction. The open source OpenDMAP code library is freely available at PMID:18237434

  16. The identification of clinically important elements within medical journal abstracts: Patient-Population-Problem, Exposure-Intervention, Comparison, Outcome, Duration and Results (PECODR).

    PubMed

    Dawes, Martin; Pluye, Pierre; Shea, Laura; Grad, Roland; Greenberg, Arlene; Nie, Jian-Yun

    2007-01-01

    Information retrieval in primary care is becoming more difficult as the volume of medical information held in electronic databases expands. The lexical structure of this information might permit automatic indexing and improved retrieval. To determine the possibility of identifying the key elements of clinical studies, namely Patient-Population-Problem, Exposure-Intervention, Comparison, Outcome, Duration and Results (PECODR), from abstracts of medical journals. We used a convenience sample of 20 synopses from the journal Evidence-Based Medicine (EBM) and their matching original journal article abstracts obtained from PubMed. Three independent primary care professionals identified PECODR-related extracts of text. Rules were developed to define each PECODR element and the selection process of characters, words, phrases and sentences. From the extracts of text related to PECODR elements, potential lexical patterns that might help identify those elements were proposed and assessed using NVivo software. A total of 835 PECODR-related text extracts containing 41,263 individual text characters were identified from 20 EBM journal synopses. There were 759 extracts in the corresponding PubMed abstracts containing 31,947 characters. PECODR elements were found in nearly all abstracts and synopses with the exception of duration. There was agreement on 86.6% of the extracts from the 20 EBM synopses and 85.0% on the corresponding PubMed abstracts. After consensus this rose to 98.4% and 96.9% respectively. We found potential text patterns in the Comparison, Outcome and Results elements of both EBM synopses and PubMed abstracts. Some phrases and words are used frequently and are specific for these elements in both synopses and abstracts. Results suggest a PECODR-related structure exists in medical abstracts and that there might be lexical patterns specific to these elements. More sophisticated computer-assisted lexical-semantic analysis might refine these results, and pave the way to automating PECODR indexing, and improve information retrieval in primary care.

  17. Layout-aware text extraction from full-text PDF of scientific articles

    PubMed Central

    2012-01-01

    Background The Portable Document Format (PDF) is the most commonly used file format for online scientific publications. The absence of effective means to extract text from these PDF files in a layout-aware manner presents a significant challenge for developers of biomedical text mining or biocuration informatics systems that use published literature as an information source. In this paper we introduce the ‘Layout-Aware PDF Text Extraction’ (LA-PDFText) system to facilitate accurate extraction of text from PDF files of research articles for use in text mining applications. Results Our paper describes the construction and performance of an open source system that extracts text blocks from PDF-formatted full-text research articles and classifies them into logical units based on rules that characterize specific sections. The LA-PDFText system focuses only on the textual content of the research articles and is meant as a baseline for further experiments into more advanced extraction methods that handle multi-modal content, such as images and graphs. The system works in a three-stage process: (1) Detecting contiguous text blocks using spatial layout processing to locate and identify blocks of contiguous text, (2) Classifying text blocks into rhetorical categories using a rule-based method and (3) Stitching classified text blocks together in the correct order resulting in the extraction of text from section-wise grouped blocks. We show that our system can identify text blocks and classify them into rhetorical categories with Precision1 = 0.96% Recall = 0.89% and F1 = 0.91%. We also present an evaluation of the accuracy of the block detection algorithm used in step 2. Additionally, we have compared the accuracy of the text extracted by LA-PDFText to the text from the Open Access subset of PubMed Central. We then compared this accuracy with that of the text extracted by the PDF2Text system, 2commonly used to extract text from PDF. Finally, we discuss preliminary error analysis for our system and identify further areas of improvement. Conclusions LA-PDFText is an open-source tool for accurately extracting text from full-text scientific articles. The release of the system is available at http://code.google.com/p/lapdftext/. PMID:22640904

  18. Smart Extraction and Analysis System for Clinical Research.

    PubMed

    Afzal, Muhammad; Hussain, Maqbool; Khan, Wajahat Ali; Ali, Taqdir; Jamshed, Arif; Lee, Sungyoung

    2017-05-01

    With the increasing use of electronic health records (EHRs), there is a growing need to expand the utilization of EHR data to support clinical research. The key challenge in achieving this goal is the unavailability of smart systems and methods to overcome the issue of data preparation, structuring, and sharing for smooth clinical research. We developed a robust analysis system called the smart extraction and analysis system (SEAS) that consists of two subsystems: (1) the information extraction system (IES), for extracting information from clinical documents, and (2) the survival analysis system (SAS), for a descriptive and predictive analysis to compile the survival statistics and predict the future chance of survivability. The IES subsystem is based on a novel permutation-based pattern recognition method that extracts information from unstructured clinical documents. Similarly, the SAS subsystem is based on a classification and regression tree (CART)-based prediction model for survival analysis. SEAS is evaluated and validated on a real-world case study of head and neck cancer. The overall information extraction accuracy of the system for semistructured text is recorded at 99%, while that for unstructured text is 97%. Furthermore, the automated, unstructured information extraction has reduced the average time spent on manual data entry by 75%, without compromising the accuracy of the system. Moreover, around 88% of patients are found in a terminal or dead state for the highest clinical stage of disease (level IV). Similarly, there is an ∼36% probability of a patient being alive if at least one of the lifestyle risk factors was positive. We presented our work on the development of SEAS to replace costly and time-consuming manual methods with smart automatic extraction of information and survival prediction methods. SEAS has reduced the time and energy of human resources spent unnecessarily on manual tasks.

  19. An information extraction framework for cohort identification using electronic health records.

    PubMed

    Liu, Hongfang; Bielinski, Suzette J; Sohn, Sunghwan; Murphy, Sean; Wagholikar, Kavishwar B; Jonnalagadda, Siddhartha R; Ravikumar, K E; Wu, Stephen T; Kullo, Iftikhar J; Chute, Christopher G

    2013-01-01

    Information extraction (IE), a natural language processing (NLP) task that automatically extracts structured or semi-structured information from free text, has become popular in the clinical domain for supporting automated systems at point-of-care and enabling secondary use of electronic health records (EHRs) for clinical and translational research. However, a high performance IE system can be very challenging to construct due to the complexity and dynamic nature of human language. In this paper, we report an IE framework for cohort identification using EHRs that is a knowledge-driven framework developed under the Unstructured Information Management Architecture (UIMA). A system to extract specific information can be developed by subject matter experts through expert knowledge engineering of the externalized knowledge resources used in the framework.

  20. Attention Switching and Multimedia Learning: The Impact of Executive Resources on the Integrative Comprehension of Texts and Pictures

    ERIC Educational Resources Information Center

    Baadte, Christiane; Rasch, Thorsten; Honstein, Helena

    2015-01-01

    The ability to flexibly allocate attention to goal-relevant information is pivotal for the completion of high-level cognitive processes. For instance, in comprehending illustrated texts, the reader permanently has to switch the attentional focus between the text and the corresponding picture in order to extract relevant information from both…

  1. A sentence sliding window approach to extract protein annotations from biomedical articles

    PubMed Central

    Krallinger, Martin; Padron, Maria; Valencia, Alfonso

    2005-01-01

    Background Within the emerging field of text mining and statistical natural language processing (NLP) applied to biomedical articles, a broad variety of techniques have been developed during the past years. Nevertheless, there is still a great ned of comparative assessment of the performance of the proposed methods and the development of common evaluation criteria. This issue was addressed by the Critical Assessment of Text Mining Methods in Molecular Biology (BioCreative) contest. The aim of this contest was to assess the performance of text mining systems applied to biomedical texts including tools which recognize named entities such as genes and proteins, and tools which automatically extract protein annotations. Results The "sentence sliding window" approach proposed here was found to efficiently extract text fragments from full text articles containing annotations on proteins, providing the highest number of correctly predicted annotations. Moreover, the number of correct extractions of individual entities (i.e. proteins and GO terms) involved in the relationships used for the annotations was significantly higher than the correct extractions of the complete annotations (protein-function relations). Conclusion We explored the use of averaging sentence sliding windows for information extraction, especially in a context where conventional training data is unavailable. The combination of our approach with more refined statistical estimators and machine learning techniques might be a way to improve annotation extraction for future biomedical text mining applications. PMID:15960831

  2. A knowledge engineering approach to recognizing and extracting sequences of nucleic acids from scientific literature.

    PubMed

    García-Remesal, Miguel; Maojo, Victor; Crespo, José

    2010-01-01

    In this paper we present a knowledge engineering approach to automatically recognize and extract genetic sequences from scientific articles. To carry out this task, we use a preliminary recognizer based on a finite state machine to extract all candidate DNA/RNA sequences. The latter are then fed into a knowledge-based system that automatically discards false positives and refines noisy and incorrectly merged sequences. We created the knowledge base by manually analyzing different manuscripts containing genetic sequences. Our approach was evaluated using a test set of 211 full-text articles in PDF format containing 3134 genetic sequences. For such set, we achieved 87.76% precision and 97.70% recall respectively. This method can facilitate different research tasks. These include text mining, information extraction, and information retrieval research dealing with large collections of documents containing genetic sequences.

  3. The freetext matching algorithm: a computer program to extract diagnoses and causes of death from unstructured text in electronic health records

    PubMed Central

    2012-01-01

    Background Electronic health records are invaluable for medical research, but much information is stored as free text rather than in a coded form. For example, in the UK General Practice Research Database (GPRD), causes of death and test results are sometimes recorded only in free text. Free text can be difficult to use for research if it requires time-consuming manual review. Our aim was to develop an automated method for extracting coded information from free text in electronic patient records. Methods We reviewed the electronic patient records in GPRD of a random sample of 3310 patients who died in 2001, to identify the cause of death. We developed a computer program called the Freetext Matching Algorithm (FMA) to map diagnoses in text to the Read Clinical Terminology. The program uses lookup tables of synonyms and phrase patterns to identify diagnoses, dates and selected test results. We tested it on two random samples of free text from GPRD (1000 texts associated with death in 2001, and 1000 general texts from cases and controls in a coronary artery disease study), comparing the output to the U.S. National Library of Medicine’s MetaMap program and the gold standard of manual review. Results Among 3310 patients registered in the GPRD who died in 2001, the cause of death was recorded in coded form in 38.1% of patients, and in the free text alone in 19.4%. On the 1000 texts associated with death, FMA coded 683 of the 735 positive diagnoses, with precision (positive predictive value) 98.4% (95% confidence interval (CI) 97.2, 99.2) and recall (sensitivity) 92.9% (95% CI 90.8, 94.7). On the general sample, FMA detected 346 of the 447 positive diagnoses, with precision 91.5% (95% CI 88.3, 94.1) and recall 77.4% (95% CI 73.2, 81.2), which was similar to MetaMap. Conclusions We have developed an algorithm to extract coded information from free text in GP records with good precision. It may facilitate research using free text in electronic patient records, particularly for extracting the cause of death. PMID:22870911

  4. Automated extraction of radiation dose information for CT examinations.

    PubMed

    Cook, Tessa S; Zimmerman, Stefan; Maidment, Andrew D A; Kim, Woojin; Boonn, William W

    2010-11-01

    Exposure to radiation as a result of medical imaging is currently in the spotlight, receiving attention from Congress as well as the lay press. Although scanner manufacturers are moving toward including effective dose information in the Digital Imaging and Communications in Medicine headers of imaging studies, there is a vast repository of retrospective CT data at every imaging center that stores dose information in an image-based dose sheet. As such, it is difficult for imaging centers to participate in the ACR's Dose Index Registry. The authors have designed an automated extraction system to query their PACS archive and parse CT examinations to extract the dose information stored in each dose sheet. First, an open-source optical character recognition program processes each dose sheet and converts the information to American Standard Code for Information Interchange (ASCII) text. Each text file is parsed, and radiation dose information is extracted and stored in a database which can be queried using an existing pathology and radiology enterprise search tool. Using this automated extraction pipeline, it is possible to perform dose analysis on the >800,000 CT examinations in the PACS archive and generate dose reports for all of these patients. It is also possible to more effectively educate technologists, radiologists, and referring physicians about exposure to radiation from CT by generating report cards for interpreted and performed studies. The automated extraction pipeline enables compliance with the ACR's reporting guidelines and greater awareness of radiation dose to patients, thus resulting in improved patient care and management. Copyright © 2010 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  5. Meta-Generalis: A Novel Method for Structuring Information from Radiology Reports

    PubMed Central

    Barbosa, Flavio; Traina, Agma Jucci

    2016-01-01

    Summary Background A structured report for imaging exams aims at increasing the precision in information retrieval and communication between physicians. However, it is more concise than free text and may limit specialists’ descriptions of important findings not covered by pre-defined structures. A computational ontological structure derived from free texts designed by specialists may be a solution for this problem. Therefore, the goal of our study was to develop a methodology for structuring information in radiology reports covering specifications required for the Brazilian Portuguese language, including the terminology to be used. Methods We gathered 1,701 radiological reports of magnetic resonance imaging (MRI) studies of the lumbosacral spine from three different institutions. Techniques of text mining and ontological conceptualization of lexical units extracted were used to structure information. Ten radiologists, specialists in lumbosacral MRI, evaluated the textual superstructure and terminology extracted using an electronic questionnaire. Results The established methodology consists of six steps: 1) collection of radiology reports of a specific MRI examination; 2) textual decomposition; 3) normalization of lexical units; 4) identification of textual superstructures; 5) conceptualization of candidate-terms; and 6) evaluation of superstructures and extracted terminology by experts using an electronic questionnaire. Three different textual superstructures were identified, with terminological variations in the names of their textual categories. The number of candidate-terms conceptualized was 4,183, yielding 727 concepts. There were a total of 13,963 relationships between candidate-terms and concepts and 789 relationships among concepts. Conclusions The proposed methodology allowed structuring information in a more intuitive and practical way. Indications of three textual superstructures, extraction of lexicon units and the normalization and ontologically conceptualization were achieved while maintaining references to their respective categories and free text radiology reports. PMID:27580980

  6. Meta-generalis: A novel method for structuring information from radiology reports.

    PubMed

    Barbosa, Flavio; Traina, Agma Jucci; Muglia, Valdair Francisco

    2016-08-24

    A structured report for imaging exams aims at increasing the precision in information retrieval and communication between physicians. However, it is more concise than free text and may limit specialists' descriptions of important findings not covered by pre-defined structures. A computational ontological structure derived from free texts designed by specialists may be a solution for this problem. Therefore, the goal of our study was to develop a methodology for structuring information in radiology reports covering specifications required for the Brazilian Portuguese language, including the terminology to be used. We gathered 1,701 radiological reports of magnetic resonance imaging (MRI) studies of the lumbosacral spine from three different institutions. Techniques of text mining and ontological conceptualization of lexical units extracted were used to structure information. Ten radiologists, specialists in lumbosacral MRI, evaluated the textual superstructure and terminology extracted using an electronic questionnaire. The established methodology consists of six steps: 1) collection of radiology reports of a specific MRI examination; 2) textual decomposition; 3) normalization of lexical units; 4) identification of textual superstructures; 5) conceptualization of candidate-terms; and 6) evaluation of superstructures and extracted terminology by experts using an electronic questionnaire. Three different textual superstructures were identified, with terminological variations in the names of their textual categories. The number of candidate-terms conceptualized was 4,183, yielding 727 concepts. There were a total of 13,963 relationships between candidate-terms and concepts and 789 relationships among concepts. The proposed methodology allowed structuring information in a more intuitive and practical way. Indications of three textual superstructures, extraction of lexicon units and the normalization and ontologically conceptualization were achieved while maintaining references to their respective categories and free text radiology reports.

  7. The feasibility of using natural language processing to extract clinical information from breast pathology reports.

    PubMed

    Buckley, Julliette M; Coopey, Suzanne B; Sharko, John; Polubriaginof, Fernanda; Drohan, Brian; Belli, Ahmet K; Kim, Elizabeth M H; Garber, Judy E; Smith, Barbara L; Gadd, Michele A; Specht, Michelle C; Roche, Constance A; Gudewicz, Thomas M; Hughes, Kevin S

    2012-01-01

    The opportunity to integrate clinical decision support systems into clinical practice is limited due to the lack of structured, machine readable data in the current format of the electronic health record. Natural language processing has been designed to convert free text into machine readable data. The aim of the current study was to ascertain the feasibility of using natural language processing to extract clinical information from >76,000 breast pathology reports. APPROACH AND PROCEDURE: Breast pathology reports from three institutions were analyzed using natural language processing software (Clearforest, Waltham, MA) to extract information on a variety of pathologic diagnoses of interest. Data tables were created from the extracted information according to date of surgery, side of surgery, and medical record number. The variety of ways in which each diagnosis could be represented was recorded, as a means of demonstrating the complexity of machine interpretation of free text. There was widespread variation in how pathologists reported common pathologic diagnoses. We report, for example, 124 ways of saying invasive ductal carcinoma and 95 ways of saying invasive lobular carcinoma. There were >4000 ways of saying invasive ductal carcinoma was not present. Natural language processor sensitivity and specificity were 99.1% and 96.5% when compared to expert human coders. We have demonstrated how a large body of free text medical information such as seen in breast pathology reports, can be converted to a machine readable format using natural language processing, and described the inherent complexities of the task.

  8. Using Information from the Electronic Health Record to Improve Measurement of Unemployment in Service Members and Veterans with mTBI and Post-Deployment Stress

    PubMed Central

    Dillahunt-Aspillaga, Christina; Finch, Dezon; Massengale, Jill; Kretzmer, Tracy; Luther, Stephen L.; McCart, James A.

    2014-01-01

    Objective The purpose of this pilot study is 1) to develop an annotation schema and a training set of annotated notes to support the future development of a natural language processing (NLP) system to automatically extract employment information, and 2) to determine if information about employment status, goals and work-related challenges reported by service members and Veterans with mild traumatic brain injury (mTBI) and post-deployment stress can be identified in the Electronic Health Record (EHR). Design Retrospective cohort study using data from selected progress notes stored in the EHR. Setting Post-deployment Rehabilitation and Evaluation Program (PREP), an in-patient rehabilitation program for Veterans with TBI at the James A. Haley Veterans' Hospital in Tampa, Florida. Participants Service members and Veterans with TBI who participated in the PREP program (N = 60). Main Outcome Measures Documentation of employment status, goals, and work-related challenges reported by service members and recorded in the EHR. Results Two hundred notes were examined and unique vocational information was found indicating a variety of self-reported employment challenges. Current employment status and future vocational goals along with information about cognitive, physical, and behavioral symptoms that may affect return-to-work were extracted from the EHR. The annotation schema developed for this study provides an excellent tool upon which NLP studies can be developed. Conclusions Information related to employment status and vocational history is stored in text notes in the EHR system. Information stored in text does not lend itself to easy extraction or summarization for research and rehabilitation planning purposes. Development of NLP systems to automatically extract text-based employment information provides data that may improve the understanding and measurement of employment in this important cohort. PMID:25541956

  9. PASTE: patient-centered SMS text tagging in a medication management system

    PubMed Central

    Johnson, Kevin B; Denny, Joshua C

    2011-01-01

    Objective To evaluate the performance of a system that extracts medication information and administration-related actions from patient short message service (SMS) messages. Design Mobile technologies provide a platform for electronic patient-centered medication management. MyMediHealth (MMH) is a medication management system that includes a medication scheduler, a medication administration record, and a reminder engine that sends text messages to cell phones. The object of this work was to extend MMH to allow two-way interaction using mobile phone-based SMS technology. Unprompted text-message communication with patients using natural language could engage patients in their healthcare, but presents unique natural language processing challenges. The authors developed a new functional component of MMH, the Patient-centered Automated SMS Tagging Engine (PASTE). The PASTE web service uses natural language processing methods, custom lexicons, and existing knowledge sources to extract and tag medication information from patient text messages. Measurements A pilot evaluation of PASTE was completed using 130 medication messages anonymously submitted by 16 volunteers via a website. System output was compared with manually tagged messages. Results Verified medication names, medication terms, and action terms reached high F-measures of 91.3%, 94.7%, and 90.4%, respectively. The overall medication name F-measure was 79.8%, and the medication action term F-measure was 90%. Conclusion Other studies have demonstrated systems that successfully extract medication information from clinical documents using semantic tagging, regular expression-based approaches, or a combination of both approaches. This evaluation demonstrates the feasibility of extracting medication information from patient-generated medication messages. PMID:21984605

  10. An automatic system to detect and extract texts in medical images for de-identification

    NASA Astrophysics Data System (ADS)

    Zhu, Yingxuan; Singh, P. D.; Siddiqui, Khan; Gillam, Michael

    2010-03-01

    Recently, there is an increasing need to share medical images for research purpose. In order to respect and preserve patient privacy, most of the medical images are de-identified with protected health information (PHI) before research sharing. Since manual de-identification is time-consuming and tedious, so an automatic de-identification system is necessary and helpful for the doctors to remove text from medical images. A lot of papers have been written about algorithms of text detection and extraction, however, little has been applied to de-identification of medical images. Since the de-identification system is designed for end-users, it should be effective, accurate and fast. This paper proposes an automatic system to detect and extract text from medical images for de-identification purposes, while keeping the anatomic structures intact. First, considering the text have a remarkable contrast with the background, a region variance based algorithm is used to detect the text regions. In post processing, geometric constraints are applied to the detected text regions to eliminate over-segmentation, e.g., lines and anatomic structures. After that, a region based level set method is used to extract text from the detected text regions. A GUI for the prototype application of the text detection and extraction system is implemented, which shows that our method can detect most of the text in the images. Experimental results validate that our method can detect and extract text in medical images with a 99% recall rate. Future research of this system includes algorithm improvement, performance evaluation, and computation optimization.

  11. Extracting and standardizing medication information in clinical text – the MedEx-UIMA system

    PubMed Central

    Jiang, Min; Wu, Yonghui; Shah, Anushi; Priyanka, Priyanka; Denny, Joshua C.; Xu, Hua

    2014-01-01

    Extraction of medication information embedded in clinical text is important for research using electronic health records (EHRs). However, most of current medication information extraction systems identify drug and signature entities without mapping them to standard representation. In this study, we introduced the open source Java implementation of MedEx, an existing high-performance medication information extraction system, based on the Unstructured Information Management Architecture (UIMA) framework. In addition, we developed new encoding modules in the MedEx-UIMA system, which mapped an extracted drug name/dose/form to both generalized and specific RxNorm concepts and translated drug frequency information to ISO standard. We processed 826 documents by both systems and verified that MedEx-UIMA and MedEx (the Python version) performed similarly by comparing both results. Using two manually annotated test sets that contained 300 drug entries from medication list and 300 drug entries from narrative reports, the MedEx-UIMA system achieved F-measures of 98.5% and 97.5% respectively for encoding drug names to corresponding RxNorm generic drug ingredients, and F-measures of 85.4% and 88.1% respectively for mapping drug names/dose/form to the most specific RxNorm concepts. It also achieved an F-measure of 90.4% for normalizing frequency information to ISO standard. The open source MedEx-UIMA system is freely available online at http://code.google.com/p/medex-uima/. PMID:25954575

  12. Extract and visualize geolocation from any text file

    NASA Astrophysics Data System (ADS)

    Boustani, M.

    2015-12-01

    There are variety of text file formats such as PDF, HTML and more which contains words about locations(countries, cities, regions and more). GeoParser developed as one of sub-projects under DARPA Memex to help finding any geolocation information crawled website data. It is a web application benefiting from Apache Tika to extract locations from any text file format and visualize geolocations on the map. https://github.com/MBoustani/GeoParserhttps://github.com/chrismattmann/tika-pythonhttp://www.darpa.mil/program/memex

  13. CRL/Brandeis: The DIDEROT System

    DTIC Science & Technology

    1993-01-01

    system has already been evaluated in the 4th Mes- sage Understanding Conference (MUC-4) where it was required to extract information from 200 texts on...Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that... information extraction system built at CRL and Brandeis University over the past two years. It was produced as part of our efforts in the Tipster project

  14. An Information Extraction Framework for Cohort Identification Using Electronic Health Records

    PubMed Central

    Liu, Hongfang; Bielinski, Suzette J.; Sohn, Sunghwan; Murphy, Sean; Wagholikar, Kavishwar B.; Jonnalagadda, Siddhartha R.; Ravikumar, K.E.; Wu, Stephen T.; Kullo, Iftikhar J.; Chute, Christopher G

    Information extraction (IE), a natural language processing (NLP) task that automatically extracts structured or semi-structured information from free text, has become popular in the clinical domain for supporting automated systems at point-of-care and enabling secondary use of electronic health records (EHRs) for clinical and translational research. However, a high performance IE system can be very challenging to construct due to the complexity and dynamic nature of human language. In this paper, we report an IE framework for cohort identification using EHRs that is a knowledge-driven framework developed under the Unstructured Information Management Architecture (UIMA). A system to extract specific information can be developed by subject matter experts through expert knowledge engineering of the externalized knowledge resources used in the framework. PMID:24303255

  15. Extraction of Vertical Profiles of Atmospheric Variables from Gridded Binary, Edition 2 (GRIB2) Model Output Files

    DTIC Science & Technology

    2018-01-18

    processing. Specifically, the method described herein uses wgrib2 commands along with a Python script or program to produce tabular text files that in...It makes use of software that is readily available and can be implemented on many computer systems combined with relatively modest additional...example), extracts appropriate information, and lists the extracted information in a readable tabular form. The Python script used here is described in

  16. eGARD: Extracting associations between genomic anomalies and drug responses from text

    PubMed Central

    Rao, Shruti; McGarvey, Peter; Wu, Cathy; Madhavan, Subha; Vijay-Shanker, K.

    2017-01-01

    Tumor molecular profiling plays an integral role in identifying genomic anomalies which may help in personalizing cancer treatments, improving patient outcomes and minimizing risks associated with different therapies. However, critical information regarding the evidence of clinical utility of such anomalies is largely buried in biomedical literature. It is becoming prohibitive for biocurators, clinical researchers and oncologists to keep up with the rapidly growing volume and breadth of information, especially those that describe therapeutic implications of biomarkers and therefore relevant for treatment selection. In an effort to improve and speed up the process of manually reviewing and extracting relevant information from literature, we have developed a natural language processing (NLP)-based text mining (TM) system called eGARD (extracting Genomic Anomalies association with Response to Drugs). This system relies on the syntactic nature of sentences coupled with various textual features to extract relations between genomic anomalies and drug response from MEDLINE abstracts. Our system achieved high precision, recall and F-measure of up to 0.95, 0.86 and 0.90, respectively, on annotated evaluation datasets created in-house and obtained externally from PharmGKB. Additionally, the system extracted information that helps determine the confidence level of extraction to support prioritization of curation. Such a system will enable clinical researchers to explore the use of published markers to stratify patients upfront for ‘best-fit’ therapies and readily generate hypotheses for new clinical trials. PMID:29261751

  17. Structuring and extracting knowledge for the support of hypothesis generation in molecular biology

    PubMed Central

    Roos, Marco; Marshall, M Scott; Gibson, Andrew P; Schuemie, Martijn; Meij, Edgar; Katrenko, Sophia; van Hage, Willem Robert; Krommydas, Konstantinos; Adriaans, Pieter W

    2009-01-01

    Background Hypothesis generation in molecular and cellular biology is an empirical process in which knowledge derived from prior experiments is distilled into a comprehensible model. The requirement of automated support is exemplified by the difficulty of considering all relevant facts that are contained in the millions of documents available from PubMed. Semantic Web provides tools for sharing prior knowledge, while information retrieval and information extraction techniques enable its extraction from literature. Their combination makes prior knowledge available for computational analysis and inference. While some tools provide complete solutions that limit the control over the modeling and extraction processes, we seek a methodology that supports control by the experimenter over these critical processes. Results We describe progress towards automated support for the generation of biomolecular hypotheses. Semantic Web technologies are used to structure and store knowledge, while a workflow extracts knowledge from text. We designed minimal proto-ontologies in OWL for capturing different aspects of a text mining experiment: the biological hypothesis, text and documents, text mining, and workflow provenance. The models fit a methodology that allows focus on the requirements of a single experiment while supporting reuse and posterior analysis of extracted knowledge from multiple experiments. Our workflow is composed of services from the 'Adaptive Information Disclosure Application' (AIDA) toolkit as well as a few others. The output is a semantic model with putative biological relations, with each relation linked to the corresponding evidence. Conclusion We demonstrated a 'do-it-yourself' approach for structuring and extracting knowledge in the context of experimental research on biomolecular mechanisms. The methodology can be used to bootstrap the construction of semantically rich biological models using the results of knowledge extraction processes. Models specific to particular experiments can be constructed that, in turn, link with other semantic models, creating a web of knowledge that spans experiments. Mapping mechanisms can link to other knowledge resources such as OBO ontologies or SKOS vocabularies. AIDA Web Services can be used to design personalized knowledge extraction procedures. In our example experiment, we found three proteins (NF-Kappa B, p21, and Bax) potentially playing a role in the interplay between nutrients and epigenetic gene regulation. PMID:19796406

  18. Populating the Semantic Web by Macro-reading Internet Text

    NASA Astrophysics Data System (ADS)

    Mitchell, Tom M.; Betteridge, Justin; Carlson, Andrew; Hruschka, Estevam; Wang, Richard

    A key question regarding the future of the semantic web is "how will we acquire structured information to populate the semantic web on a vast scale?" One approach is to enter this information manually. A second approach is to take advantage of pre-existing databases, and to develop common ontologies, publishing standards, and reward systems to make this data widely accessible. We consider here a third approach: developing software that automatically extracts structured information from unstructured text present on the web. We also describe preliminary results demonstrating that machine learning algorithms can learn to extract tens of thousands of facts to populate a diverse ontology, with imperfect but reasonably good accuracy.

  19. PLAN2L: a web tool for integrated text mining and literature-based bioentity relation extraction.

    PubMed

    Krallinger, Martin; Rodriguez-Penagos, Carlos; Tendulkar, Ashish; Valencia, Alfonso

    2009-07-01

    There is an increasing interest in using literature mining techniques to complement information extracted from annotation databases or generated by bioinformatics applications. Here we present PLAN2L, a web-based online search system that integrates text mining and information extraction techniques to access systematically information useful for analyzing genetic, cellular and molecular aspects of the plant model organism Arabidopsis thaliana. Our system facilitates a more efficient retrieval of information relevant to heterogeneous biological topics, from implications in biological relationships at the level of protein interactions and gene regulation, to sub-cellular locations of gene products and associations to cellular and developmental processes, i.e. cell cycle, flowering, root, leaf and seed development. Beyond single entities, also predefined pairs of entities can be provided as queries for which literature-derived relations together with textual evidences are returned. PLAN2L does not require registration and is freely accessible at http://zope.bioinfo.cnio.es/plan2l.

  20. Text mining and its potential applications in systems biology.

    PubMed

    Ananiadou, Sophia; Kell, Douglas B; Tsujii, Jun-ichi

    2006-12-01

    With biomedical literature increasing at a rate of several thousand papers per week, it is impossible to keep abreast of all developments; therefore, automated means to manage the information overload are required. Text mining techniques, which involve the processes of information retrieval, information extraction and data mining, provide a means of solving this. By adding meaning to text, these techniques produce a more structured analysis of textual knowledge than simple word searches, and can provide powerful tools for the production and analysis of systems biology models.

  1. Can Natural Language Processing Improve the Efficiency of Vaccine Adverse Event Report Review?

    PubMed

    Baer, B; Nguyen, M; Woo, E J; Winiecki, S; Scott, J; Martin, D; Botsis, T; Ball, R

    2016-01-01

    Individual case review of spontaneous adverse event (AE) reports remains a cornerstone of medical product safety surveillance for industry and regulators. Previously we developed the Vaccine Adverse Event Text Miner (VaeTM) to offer automated information extraction and potentially accelerate the evaluation of large volumes of unstructured data and facilitate signal detection. To assess how the information extraction performed by VaeTM impacts the accuracy of a medical expert's review of the vaccine adverse event report. The "outcome of interest" (diagnosis, cause of death, second level diagnosis), "onset time," and "alternative explanations" (drug, medical and family history) for the adverse event were extracted from 1000 reports from the Vaccine Adverse Event Reporting System (VAERS) using the VaeTM system. We compared the human interpretation, by medical experts, of the VaeTM extracted data with their interpretation of the traditional full text reports for these three variables. Two experienced clinicians alternately reviewed text miner output and full text. A third clinician scored the match rate using a predefined algorithm; the proportion of matches and 95% confidence intervals (CI) were calculated. Review time per report was analyzed. Proportion of matches between the interpretation of the VaeTM extracted data, compared to the interpretation of the full text: 93% for outcome of interest (95% CI: 91-94%) and 78% for alternative explanation (95% CI: 75-81%). Extracted data on the time to onset was used in 14% of cases and was a match in 54% (95% CI: 46-63%) of those cases. When supported by structured time data from reports, the match for time to onset was 79% (95% CI: 76-81%). The extracted text averaged 136 (74%) fewer words, resulting in a mean reduction in review time of 50 (58%) seconds per report. Despite a 74% reduction in words, the clinical conclusion from VaeTM extracted data agreed with the full text in 93% and 78% of reports for the outcome of interest and alternative explanation, respectively. The limited amount of extracted time interval data indicates the need for further development of this feature. VaeTM may improve review efficiency, but further study is needed to determine if this level of agreement is sufficient for routine use.

  2. Can we replace curation with information extraction software?

    PubMed

    Karp, Peter D

    2016-01-01

    Can we use programs for automated or semi-automated information extraction from scientific texts as practical alternatives to professional curation? I show that error rates of current information extraction programs are too high to replace professional curation today. Furthermore, current IEP programs extract single narrow slivers of information, such as individual protein interactions; they cannot extract the large breadth of information extracted by professional curators for databases such as EcoCyc. They also cannot arbitrate among conflicting statements in the literature as curators can. Therefore, funding agencies should not hobble the curation efforts of existing databases on the assumption that a problem that has stymied Artificial Intelligence researchers for more than 60 years will be solved tomorrow. Semi-automated extraction techniques appear to have significantly more potential based on a review of recent tools that enhance curator productivity. But a full cost-benefit analysis for these tools is lacking. Without such analysis it is possible to expend significant effort developing information-extraction tools that automate small parts of the overall curation workflow without achieving a significant decrease in curation costs.Database URL. © The Author(s) 2016. Published by Oxford University Press.

  3. The methodology of semantic analysis for extracting physical effects

    NASA Astrophysics Data System (ADS)

    Fomenkova, M. A.; Kamaev, V. A.; Korobkin, D. M.; Fomenkov, S. A.

    2017-01-01

    The paper represents new methodology of semantic analysis for physical effects extracting. This methodology is based on the Tuzov ontology that formally describes the Russian language. In this paper, semantic patterns were described to extract structural physical information in the form of physical effects. A new algorithm of text analysis was described.

  4. Automated generation of individually customized visualizations of diagnosis-specific medical information using novel techniques of information extraction

    NASA Astrophysics Data System (ADS)

    Chen, Andrew A.; Meng, Frank; Morioka, Craig A.; Churchill, Bernard M.; Kangarloo, Hooshang

    2005-04-01

    Managing pediatric patients with neurogenic bladder (NGB) involves regular laboratory, imaging, and physiologic testing. Using input from domain experts and current literature, we identified specific data points from these tests to develop the concept of an electronic disease vector for NGB. An information extraction engine was used to extract the desired data elements from free-text and semi-structured documents retrieved from the patient"s medical record. Finally, a Java-based presentation engine created graphical visualizations of the extracted data. After precision, recall, and timing evaluation, we conclude that these tools may enable clinically useful, automatically generated, and diagnosis-specific visualizations of patient data, potentially improving compliance and ultimately, outcomes.

  5. Benchmarking infrastructure for mutation text mining

    PubMed Central

    2014-01-01

    Background Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. Results We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. Conclusion We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption. PMID:24568600

  6. Benchmarking infrastructure for mutation text mining.

    PubMed

    Klein, Artjom; Riazanov, Alexandre; Hindle, Matthew M; Baker, Christopher Jo

    2014-02-25

    Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption.

  7. Structured reports of videofluoroscopic swallowing studies have the potential to improve overall report quality compared to free text reports.

    PubMed

    Schoeppe, Franziska; Sommer, Wieland H; Haack, Mareike; Havel, Miriam; Rheinwald, Marika; Wechtenbruch, Juliane; Fischer, Martin R; Meinel, Felix G; Sabel, Bastian O; Sommer, Nora N

    2018-01-01

    To compare free text (FTR) and structured reports (SR) of videofluoroscopic swallowing studies (VFSS) and evaluate satisfaction of referring otolaryngologists and speech therapists. Both standard FTR and SR of 26 patients with VFSS were acquired. A dedicated template focusing on oropharyngeal phases was created for SR using online software with clickable decision-trees and concomitant generation of semantically structured reports. All reports were evaluated regarding overall quality and content, information extraction and clinical decision support (10-point Likert scale (0 = I completely disagree, 10 = I completely agree)). Two otorhinolaryngologists and two speech therapists evaluated FTR and SR. SR received better ratings than FTR in all items. SR were perceived to contain more details on the swallowing phases (median rating: 10 vs. 5; P < 0.001), penetration and aspiration (10 vs. 5; P < 0.001) and facilitated information extraction compared to FTR (10 vs. 4; P < 0.001). Overall quality was rated significantly higher in SR than FTR (P < 0.001). SR of VFSS provide more detailed information and facilitate information extraction. SR better assist in clinical decision-making, might enhance the quality of the report and, thus, are recommended for the evaluation of VFSS. • Structured reports on videofluoroscopic exams of deglutition lead to improved report quality. • Information extraction is facilitated when using structured reports based on decision trees. • Template-based reports add more value to clinical decision-making than free text reports. • Structured reports receive better ratings by speech therapists and otolaryngologists. • Structured reports on videofluoroscopic exams may improve the comparability between exams.

  8. A preliminary approach to creating an overview of lactoferrin multi-functionality utilizing a text mining method.

    PubMed

    Shimazaki, Kei-ichi; Kushida, Tatsuya

    2010-06-01

    Lactoferrin is a multi-functional metal-binding glycoprotein that exhibits many biological functions of interest to many researchers from the fields of clinical medicine, dentistry, pharmacology, veterinary medicine, nutrition and milk science. To date, a number of academic reports concerning the biological activities of lactoferrin have been published and are easily accessible through public data repositories. However, as the literature is expanding daily, this presents challenges in understanding the larger picture of lactoferrin function and mechanisms. In order to overcome the "analysis paralysis" associated with lactoferrin information, we attempted to apply a text mining method to the accumulated lactoferrin literature. To this end, we used the information extraction system GENPAC (provided by Nalapro Technologies Inc., Tokyo). This information extraction system uses natural language processing and text mining technology. This system analyzes the sentences and titles from abstracts stored in the PubMed database, and can automatically extract binary relations that consist of interactions between genes/proteins, chemicals and diseases/functions. We expect that such information visualization analysis will be useful in determining novel relationships among a multitude of lactoferrin functions and mechanisms. We have demonstrated the utilization of this method to find pathways of lactoferrin participation in neovascularization, Helicobacter pylori attack on gastric mucosa, atopic dermatitis and lipid metabolism.

  9. Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research.

    PubMed

    Bravo, Àlex; Piñero, Janet; Queralt-Rosinach, Núria; Rautschka, Michael; Furlong, Laura I

    2015-02-21

    Current biomedical research needs to leverage and exploit the large amount of information reported in scientific publications. Automated text mining approaches, in particular those aimed at finding relationships between entities, are key for identification of actionable knowledge from free text repositories. We present the BeFree system aimed at identifying relationships between biomedical entities with a special focus on genes and their associated diseases. By exploiting morpho-syntactic information of the text, BeFree is able to identify gene-disease, drug-disease and drug-target associations with state-of-the-art performance. The application of BeFree to real-case scenarios shows its effectiveness in extracting information relevant for translational research. We show the value of the gene-disease associations extracted by BeFree through a number of analyses and integration with other data sources. BeFree succeeds in identifying genes associated to a major cause of morbidity worldwide, depression, which are not present in other public resources. Moreover, large-scale extraction and analysis of gene-disease associations, and integration with current biomedical knowledge, provided interesting insights on the kind of information that can be found in the literature, and raised challenges regarding data prioritization and curation. We found that only a small proportion of the gene-disease associations discovered by using BeFree is collected in expert-curated databases. Thus, there is a pressing need to find alternative strategies to manual curation, in order to review, prioritize and curate text-mining data and incorporate it into domain-specific databases. We present our strategy for data prioritization and discuss its implications for supporting biomedical research and applications. BeFree is a novel text mining system that performs competitively for the identification of gene-disease, drug-disease and drug-target associations. Our analyses show that mining only a small fraction of MEDLINE results in a large dataset of gene-disease associations, and only a small proportion of this dataset is actually recorded in curated resources (2%), raising several issues on data prioritization and curation. We propose that joint analysis of text mined data with data curated by experts appears as a suitable approach to both assess data quality and highlight novel and interesting information.

  10. KneeTex: an ontology-driven system for information extraction from MRI reports.

    PubMed

    Spasić, Irena; Zhao, Bo; Jones, Christopher B; Button, Kate

    2015-01-01

    In the realm of knee pathology, magnetic resonance imaging (MRI) has the advantage of visualising all structures within the knee joint, which makes it a valuable tool for increasing diagnostic accuracy and planning surgical treatments. Therefore, clinical narratives found in MRI reports convey valuable diagnostic information. A range of studies have proven the feasibility of natural language processing for information extraction from clinical narratives. However, no study focused specifically on MRI reports in relation to knee pathology, possibly due to the complexity of knee anatomy and a wide range of conditions that may be associated with different anatomical entities. In this paper we describe KneeTex, an information extraction system that operates in this domain. As an ontology-driven information extraction system, KneeTex makes active use of an ontology to strongly guide and constrain text analysis. We used automatic term recognition to facilitate the development of a domain-specific ontology with sufficient detail and coverage for text mining applications. In combination with the ontology, high regularity of the sublanguage used in knee MRI reports allowed us to model its processing by a set of sophisticated lexico-semantic rules with minimal syntactic analysis. The main processing steps involve named entity recognition combined with coordination, enumeration, ambiguity and co-reference resolution, followed by text segmentation. Ontology-based semantic typing is then used to drive the template filling process. We adopted an existing ontology, TRAK (Taxonomy for RehAbilitation of Knee conditions), for use within KneeTex. The original TRAK ontology expanded from 1,292 concepts, 1,720 synonyms and 518 relationship instances to 1,621 concepts, 2,550 synonyms and 560 relationship instances. This provided KneeTex with a very fine-grained lexico-semantic knowledge base, which is highly attuned to the given sublanguage. Information extraction results were evaluated on a test set of 100 MRI reports. A gold standard consisted of 1,259 filled template records with the following slots: finding, finding qualifier, negation, certainty, anatomy and anatomy qualifier. KneeTex extracted information with precision of 98.00 %, recall of 97.63 % and F-measure of 97.81 %, the values of which are in line with human-like performance. KneeTex is an open-source, stand-alone application for information extraction from narrative reports that describe an MRI scan of the knee. Given an MRI report as input, the system outputs the corresponding clinical findings in the form of JavaScript Object Notation objects. The extracted information is mapped onto TRAK, an ontology that formally models knowledge relevant for the rehabilitation of knee conditions. As a result, formally structured and coded information allows for complex searches to be conducted efficiently over the original MRI reports, thereby effectively supporting epidemiologic studies of knee conditions.

  11. Collaborative human-machine analysis to disambiguate entities in unstructured text and structured datasets

    NASA Astrophysics Data System (ADS)

    Davenport, Jack H.

    2016-05-01

    Intelligence analysts demand rapid information fusion capabilities to develop and maintain accurate situational awareness and understanding of dynamic enemy threats in asymmetric military operations. The ability to extract relationships between people, groups, and locations from a variety of text datasets is critical to proactive decision making. The derived network of entities must be automatically created and presented to analysts to assist in decision making. DECISIVE ANALYTICS Corporation (DAC) provides capabilities to automatically extract entities, relationships between entities, semantic concepts about entities, and network models of entities from text and multi-source datasets. DAC's Natural Language Processing (NLP) Entity Analytics model entities as complex systems of attributes and interrelationships which are extracted from unstructured text via NLP algorithms. The extracted entities are automatically disambiguated via machine learning algorithms, and resolution recommendations are presented to the analyst for validation; the analyst's expertise is leveraged in this hybrid human/computer collaborative model. Military capability is enhanced by these NLP Entity Analytics because analysts can now create/update an entity profile with intelligence automatically extracted from unstructured text, thereby fusing entity knowledge from structured and unstructured data sources. Operational and sustainment costs are reduced since analysts do not have to manually tag and resolve entities.

  12. Information Retrieval and Text Mining Technologies for Chemistry.

    PubMed

    Krallinger, Martin; Rabal, Obdulia; Lourenço, Anália; Oyarzabal, Julen; Valencia, Alfonso

    2017-06-28

    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.

  13. Searching Harvard Business Review Online. . . Lessons in Searching a Full Text Database.

    ERIC Educational Resources Information Center

    Tenopir, Carol

    1985-01-01

    This article examines the Harvard Business Review Online (HBRO) database (bibliographic description fields, abstracts, extracted information, full text, subject descriptors) and reports on 31 sample HBRO searches conducted in Bibliographic Retrieval Services to test differences between searching full text and searching bibliographic record. Sample…

  14. The contribution of the vaccine adverse event text mining system to the classification of possible Guillain-Barré syndrome reports.

    PubMed

    Botsis, T; Woo, E J; Ball, R

    2013-01-01

    We previously demonstrated that a general purpose text mining system, the Vaccine adverse event Text Mining (VaeTM) system, could be used to automatically classify reports of an-aphylaxis for post-marketing safety surveillance of vaccines. To evaluate the ability of VaeTM to classify reports to the Vaccine Adverse Event Reporting System (VAERS) of possible Guillain-Barré Syndrome (GBS). We used VaeTM to extract the key diagnostic features from the text of reports in VAERS. Then, we applied the Brighton Collaboration (BC) case definition for GBS, and an information retrieval strategy (i.e. the vector space model) to quantify the specific information that is included in the key features extracted by VaeTM and compared it with the encoded information that is already stored in VAERS as Medical Dictionary for Regulatory Activities (MedDRA) Preferred Terms (PTs). We also evaluated the contribution of the primary (diagnosis and cause of death) and secondary (second level diagnosis and symptoms) diagnostic VaeTM-based features to the total VaeTM-based information. MedDRA captured more information and better supported the classification of reports for GBS than VaeTM (AUC: 0.904 vs. 0.777); the lower performance of VaeTM is likely due to the lack of extraction by VaeTM of specific laboratory results that are included in the BC criteria for GBS. On the other hand, the VaeTM-based classification exhibited greater specificity than the MedDRA-based approach (94.96% vs. 87.65%). Most of the VaeTM-based information was contained in the secondary diagnostic features. For GBS, clinical signs and symptoms alone are not sufficient to match MedDRA coding for purposes of case classification, but are preferred if specificity is the priority.

  15. Natural Language Processing.

    ERIC Educational Resources Information Center

    Chowdhury, Gobinda G.

    2003-01-01

    Discusses issues related to natural language processing, including theoretical developments; natural language understanding; tools and techniques; natural language text processing systems; abstracting; information extraction; information retrieval; interfaces; software; Internet, Web, and digital library applications; machine translation for…

  16. Text Mining in Biomedical Domain with Emphasis on Document Clustering.

    PubMed

    Renganathan, Vinaitheerthan

    2017-07-01

    With the exponential increase in the number of articles published every year in the biomedical domain, there is a need to build automated systems to extract unknown information from the articles published. Text mining techniques enable the extraction of unknown knowledge from unstructured documents. This paper reviews text mining processes in detail and the software tools available to carry out text mining. It also reviews the roles and applications of text mining in the biomedical domain. Text mining processes, such as search and retrieval of documents, pre-processing of documents, natural language processing, methods for text clustering, and methods for text classification are described in detail. Text mining techniques can facilitate the mining of vast amounts of knowledge on a given topic from published biomedical research articles and draw meaningful conclusions that are not possible otherwise.

  17. Extracting semantically enriched events from biomedical literature

    PubMed Central

    2012-01-01

    Background Research into event-based text mining from the biomedical literature has been growing in popularity to facilitate the development of advanced biomedical text mining systems. Such technology permits advanced search, which goes beyond document or sentence-based retrieval. However, existing event-based systems typically ignore additional information within the textual context of events that can determine, amongst other things, whether an event represents a fact, hypothesis, experimental result or analysis of results, whether it describes new or previously reported knowledge, and whether it is speculated or negated. We refer to such contextual information as meta-knowledge. The automatic recognition of such information can permit the training of systems allowing finer-grained searching of events according to the meta-knowledge that is associated with them. Results Based on a corpus of 1,000 MEDLINE abstracts, fully manually annotated with both events and associated meta-knowledge, we have constructed a machine learning-based system that automatically assigns meta-knowledge information to events. This system has been integrated into EventMine, a state-of-the-art event extraction system, in order to create a more advanced system (EventMine-MK) that not only extracts events from text automatically, but also assigns five different types of meta-knowledge to these events. The meta-knowledge assignment module of EventMine-MK performs with macro-averaged F-scores in the range of 57-87% on the BioNLP’09 Shared Task corpus. EventMine-MK has been evaluated on the BioNLP’09 Shared Task subtask of detecting negated and speculated events. Our results show that EventMine-MK can outperform other state-of-the-art systems that participated in this task. Conclusions We have constructed the first practical system that extracts both events and associated, detailed meta-knowledge information from biomedical literature. The automatically assigned meta-knowledge information can be used to refine search systems, in order to provide an extra search layer beyond entities and assertions, dealing with phenomena such as rhetorical intent, speculations, contradictions and negations. This finer grained search functionality can assist in several important tasks, e.g., database curation (by locating new experimental knowledge) and pathway enrichment (by providing information for inference). To allow easy integration into text mining systems, EventMine-MK is provided as a UIMA component that can be used in the interoperable text mining infrastructure, U-Compare. PMID:22621266

  18. Extracting semantically enriched events from biomedical literature.

    PubMed

    Miwa, Makoto; Thompson, Paul; McNaught, John; Kell, Douglas B; Ananiadou, Sophia

    2012-05-23

    Research into event-based text mining from the biomedical literature has been growing in popularity to facilitate the development of advanced biomedical text mining systems. Such technology permits advanced search, which goes beyond document or sentence-based retrieval. However, existing event-based systems typically ignore additional information within the textual context of events that can determine, amongst other things, whether an event represents a fact, hypothesis, experimental result or analysis of results, whether it describes new or previously reported knowledge, and whether it is speculated or negated. We refer to such contextual information as meta-knowledge. The automatic recognition of such information can permit the training of systems allowing finer-grained searching of events according to the meta-knowledge that is associated with them. Based on a corpus of 1,000 MEDLINE abstracts, fully manually annotated with both events and associated meta-knowledge, we have constructed a machine learning-based system that automatically assigns meta-knowledge information to events. This system has been integrated into EventMine, a state-of-the-art event extraction system, in order to create a more advanced system (EventMine-MK) that not only extracts events from text automatically, but also assigns five different types of meta-knowledge to these events. The meta-knowledge assignment module of EventMine-MK performs with macro-averaged F-scores in the range of 57-87% on the BioNLP'09 Shared Task corpus. EventMine-MK has been evaluated on the BioNLP'09 Shared Task subtask of detecting negated and speculated events. Our results show that EventMine-MK can outperform other state-of-the-art systems that participated in this task. We have constructed the first practical system that extracts both events and associated, detailed meta-knowledge information from biomedical literature. The automatically assigned meta-knowledge information can be used to refine search systems, in order to provide an extra search layer beyond entities and assertions, dealing with phenomena such as rhetorical intent, speculations, contradictions and negations. This finer grained search functionality can assist in several important tasks, e.g., database curation (by locating new experimental knowledge) and pathway enrichment (by providing information for inference). To allow easy integration into text mining systems, EventMine-MK is provided as a UIMA component that can be used in the interoperable text mining infrastructure, U-Compare.

  19. Comparison of Three Information Sources for Smoking Information in Electronic Health Records

    PubMed Central

    Wang, Liwei; Ruan, Xiaoyang; Yang, Ping; Liu, Hongfang

    2016-01-01

    OBJECTIVE The primary aim was to compare independent and joint performance of retrieving smoking status through different sources, including narrative text processed by natural language processing (NLP), patient-provided information (PPI), and diagnosis codes (ie, International Classification of Diseases, Ninth Revision [ICD-9]). We also compared the performance of retrieving smoking strength information (ie, heavy/light smoker) from narrative text and PPI. MATERIALS AND METHODS Our study leveraged an existing lung cancer cohort for smoking status, amount, and strength information, which was manually chart-reviewed. On the NLP side, smoking-related electronic medical record (EMR) data were retrieved first. A pattern-based smoking information extraction module was then implemented to extract smoking-related information. After that, heuristic rules were used to obtain smoking status-related information. Smoking information was also obtained from structured data sources based on diagnosis codes and PPI. Sensitivity, specificity, and accuracy were measured using patients with coverage (ie, the proportion of patients whose smoking status/strength can be effectively determined). RESULTS NLP alone has the best overall performance for smoking status extraction (patient coverage: 0.88; sensitivity: 0.97; specificity: 0.70; accuracy: 0.88); combining PPI with NLP further improved patient coverage to 0.96. ICD-9 does not provide additional improvement to NLP and its combination with PPI. For smoking strength, combining NLP with PPI has slight improvement over NLP alone. CONCLUSION These findings suggest that narrative text could serve as a more reliable and comprehensive source for obtaining smoking-related information than structured data sources. PPI, the readily available structured data, could be used as a complementary source for more comprehensive patient coverage. PMID:27980387

  20. Data Processing and Text Mining Technologies on Electronic Medical Records: A Review

    PubMed Central

    Sun, Wencheng; Li, Yangyang; Liu, Fang; Fang, Shengqun; Wang, Guoyan

    2018-01-01

    Currently, medical institutes generally use EMR to record patient's condition, including diagnostic information, procedures performed, and treatment results. EMR has been recognized as a valuable resource for large-scale analysis. However, EMR has the characteristics of diversity, incompleteness, redundancy, and privacy, which make it difficult to carry out data mining and analysis directly. Therefore, it is necessary to preprocess the source data in order to improve data quality and improve the data mining results. Different types of data require different processing technologies. Most structured data commonly needs classic preprocessing technologies, including data cleansing, data integration, data transformation, and data reduction. For semistructured or unstructured data, such as medical text, containing more health information, it requires more complex and challenging processing methods. The task of information extraction for medical texts mainly includes NER (named-entity recognition) and RE (relation extraction). This paper focuses on the process of EMR processing and emphatically analyzes the key techniques. In addition, we make an in-depth study on the applications developed based on text mining together with the open challenges and research issues for future work. PMID:29849998

  1. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications

    PubMed Central

    Masanz, James J; Ogren, Philip V; Zheng, Jiaping; Sohn, Sunghwan; Kipper-Schuler, Karin C; Chute, Christopher G

    2010-01-01

    We aim to build and evaluate an open-source natural language processing system for information extraction from electronic medical record clinical free-text. We describe and evaluate our system, the clinical Text Analysis and Knowledge Extraction System (cTAKES), released open-source at http://www.ohnlp.org. The cTAKES builds on existing open-source technologies—the Unstructured Information Management Architecture framework and OpenNLP natural language processing toolkit. Its components, specifically trained for the clinical domain, create rich linguistic and semantic annotations. Performance of individual components: sentence boundary detector accuracy=0.949; tokenizer accuracy=0.949; part-of-speech tagger accuracy=0.936; shallow parser F-score=0.924; named entity recognizer and system-level evaluation F-score=0.715 for exact and 0.824 for overlapping spans, and accuracy for concept mapping, negation, and status attributes for exact and overlapping spans of 0.957, 0.943, 0.859, and 0.580, 0.939, and 0.839, respectively. Overall performance is discussed against five applications. The cTAKES annotations are the foundation for methods and modules for higher-level semantic processing of clinical free-text. PMID:20819853

  2. Toward a Computer Vision-based Wayfinding Aid for Blind Persons to Access Unfamiliar Indoor Environments.

    PubMed

    Tian, Yingli; Yang, Xiaodong; Yi, Chucai; Arditi, Aries

    2013-04-01

    Independent travel is a well known challenge for blind and visually impaired persons. In this paper, we propose a proof-of-concept computer vision-based wayfinding aid for blind people to independently access unfamiliar indoor environments. In order to find different rooms (e.g. an office, a lab, or a bathroom) and other building amenities (e.g. an exit or an elevator), we incorporate object detection with text recognition. First we develop a robust and efficient algorithm to detect doors, elevators, and cabinets based on their general geometric shape, by combining edges and corners. The algorithm is general enough to handle large intra-class variations of objects with different appearances among different indoor environments, as well as small inter-class differences between different objects such as doors and door-like cabinets. Next, in order to distinguish intra-class objects (e.g. an office door from a bathroom door), we extract and recognize text information associated with the detected objects. For text recognition, we first extract text regions from signs with multiple colors and possibly complex backgrounds, and then apply character localization and topological analysis to filter out background interference. The extracted text is recognized using off-the-shelf optical character recognition (OCR) software products. The object type, orientation, location, and text information are presented to the blind traveler as speech.

  3. Toward a Computer Vision-based Wayfinding Aid for Blind Persons to Access Unfamiliar Indoor Environments

    PubMed Central

    Tian, YingLi; Yang, Xiaodong; Yi, Chucai; Arditi, Aries

    2012-01-01

    Independent travel is a well known challenge for blind and visually impaired persons. In this paper, we propose a proof-of-concept computer vision-based wayfinding aid for blind people to independently access unfamiliar indoor environments. In order to find different rooms (e.g. an office, a lab, or a bathroom) and other building amenities (e.g. an exit or an elevator), we incorporate object detection with text recognition. First we develop a robust and efficient algorithm to detect doors, elevators, and cabinets based on their general geometric shape, by combining edges and corners. The algorithm is general enough to handle large intra-class variations of objects with different appearances among different indoor environments, as well as small inter-class differences between different objects such as doors and door-like cabinets. Next, in order to distinguish intra-class objects (e.g. an office door from a bathroom door), we extract and recognize text information associated with the detected objects. For text recognition, we first extract text regions from signs with multiple colors and possibly complex backgrounds, and then apply character localization and topological analysis to filter out background interference. The extracted text is recognized using off-the-shelf optical character recognition (OCR) software products. The object type, orientation, location, and text information are presented to the blind traveler as speech. PMID:23630409

  4. Detection and Evaluation of Cheating on College Exams Using Supervised Classification

    ERIC Educational Resources Information Center

    Cavalcanti, Elmano Ramalho; Pires, Carlos Eduardo; Cavalcanti, Elmano Pontes; Pires, Vládia Freire

    2012-01-01

    Text mining has been used for various purposes, such as document classification and extraction of domain-specific information from text. In this paper we present a study in which text mining methodology and algorithms were properly employed for academic dishonesty (cheating) detection and evaluation on open-ended college exams, based on document…

  5. Text line extraction in free style document

    NASA Astrophysics Data System (ADS)

    Shen, Xiaolu; Liu, Changsong; Ding, Xiaoqing; Zou, Yanming

    2009-01-01

    This paper addresses to text line extraction in free style document, such as business card, envelope, poster, etc. In free style document, global property such as character size, line direction can hardly be concluded, which reveals a grave limitation in traditional layout analysis. 'Line' is the most prominent and the highest structure in our bottom-up method. First, we apply a novel intensity function found on gradient information to locate text areas where gradient within a window have large magnitude and various directions, and split such areas into text pieces. We build a probability model of lines consist of text pieces via statistics on training data. For an input image, we group text pieces to lines using a simulated annealing algorithm with cost function based on the probability model.

  6. Text Mining in Biomedical Domain with Emphasis on Document Clustering

    PubMed Central

    2017-01-01

    Objectives With the exponential increase in the number of articles published every year in the biomedical domain, there is a need to build automated systems to extract unknown information from the articles published. Text mining techniques enable the extraction of unknown knowledge from unstructured documents. Methods This paper reviews text mining processes in detail and the software tools available to carry out text mining. It also reviews the roles and applications of text mining in the biomedical domain. Results Text mining processes, such as search and retrieval of documents, pre-processing of documents, natural language processing, methods for text clustering, and methods for text classification are described in detail. Conclusions Text mining techniques can facilitate the mining of vast amounts of knowledge on a given topic from published biomedical research articles and draw meaningful conclusions that are not possible otherwise. PMID:28875048

  7. Toward Routine Automatic Pathway Discovery from On-line Scientific Text Abstracts.

    PubMed

    Ng; Wong

    1999-01-01

    We are entering a new era of research where the latest scientific discoveries are often first reported online and are readily accessible by scientists worldwide. This rapid electronic dissemination of research breakthroughs has greatly accelerated the current pace in genomics and proteomics research. The race to the discovery of a gene or a drug has now become increasingly dependent on how quickly a scientist can scan through voluminous amount of information available online to construct the relevant picture (such as protein-protein interaction pathways) as it takes shape amongst the rapidly expanding pool of globally accessible biological data (e.g. GENBANK) and scientific literature (e.g. MEDLINE). We describe a prototype system for automatic pathway discovery from on-line text abstracts, combining technologies that (1) retrieve research abstracts from online sources, (2) extract relevant information from the free texts, and (3) present the extracted information graphically and intuitively. Our work demonstrates that this framework allows us to routinely scan online scientific literature for automatic discovery of knowledge, giving modern scientists the necessary competitive edge in managing the information explosion in this electronic age.

  8. Towards a Relation Extraction Framework for Cyber-Security Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Corinne L; Bridges, Robert A; Huffer, Kelly M

    In order to assist security analysts in obtaining information pertaining to their network, such as novel vulnerabilities, exploits, or patches, information retrieval methods tailored to the security domain are needed. As labeled text data is scarce and expensive, we follow developments in semi-supervised NLP and implement a bootstrapping algorithm for extracting security entities and their relationships from text. The algorithm requires little input data, specifically, a few relations or patterns (heuristics for identifying relations), and incorporates an active learning component which queries the user on the most important decisions to prevent drifting the desired relations. Preliminary testing on a smallmore » corpus shows promising results, obtaining precision of .82.« less

  9. Microbial phenomics information extractor (MicroPIE): a natural language processing tool for the automated acquisition of prokaryotic phenotypic characters from text sources.

    PubMed

    Mao, Jin; Moore, Lisa R; Blank, Carrine E; Wu, Elvis Hsin-Hui; Ackerman, Marcia; Ranade, Sonali; Cui, Hong

    2016-12-13

    The large-scale analysis of phenomic data (i.e., full phenotypic traits of an organism, such as shape, metabolic substrates, and growth conditions) in microbial bioinformatics has been hampered by the lack of tools to rapidly and accurately extract phenotypic data from existing legacy text in the field of microbiology. To quickly obtain knowledge on the distribution and evolution of microbial traits, an information extraction system needed to be developed to extract phenotypic characters from large numbers of taxonomic descriptions so they can be used as input to existing phylogenetic analysis software packages. We report the development and evaluation of Microbial Phenomics Information Extractor (MicroPIE, version 0.1.0). MicroPIE is a natural language processing application that uses a robust supervised classification algorithm (Support Vector Machine) to identify characters from sentences in prokaryotic taxonomic descriptions, followed by a combination of algorithms applying linguistic rules with groups of known terms to extract characters as well as character states. The input to MicroPIE is a set of taxonomic descriptions (clean text). The output is a taxon-by-character matrix-with taxa in the rows and a set of 42 pre-defined characters (e.g., optimum growth temperature) in the columns. The performance of MicroPIE was evaluated against a gold standard matrix and another student-made matrix. Results show that, compared to the gold standard, MicroPIE extracted 21 characters (50%) with a Relaxed F1 score > 0.80 and 16 characters (38%) with Relaxed F1 scores ranging between 0.50 and 0.80. Inclusion of a character prediction component (SVM) improved the overall performance of MicroPIE, notably the precision. Evaluated against the same gold standard, MicroPIE performed significantly better than the undergraduate students. MicroPIE is a promising new tool for the rapid and efficient extraction of phenotypic character information from prokaryotic taxonomic descriptions. However, further development, including incorporation of ontologies, will be necessary to improve the performance of the extraction for some character types.

  10. Text Information Extraction System (TIES) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    TIES is a service based software system for acquiring, deidentifying, and processing clinical text reports using natural language processing, and also for querying, sharing and using this data to foster tissue and image based research, within and between institutions.

  11. Agile Text Mining for the 2014 i2b2/UTHealth Cardiac Risk Factors Challenge

    PubMed Central

    Cormack, James; Nath, Chinmoy; Milward, David; Raja, Kalpana; Jonnalagadda, Siddhartha R

    2016-01-01

    This paper describes the use of an agile text mining platform (Linguamatics’ Interactive Information Extraction Platform, I2E) to extract document-level cardiac risk factors in patient records as defined in the i2b2/UTHealth 2014 Challenge. The approach uses a data-driven rule-based methodology with the addition of a simple supervised classifier. We demonstrate that agile text mining allows for rapid optimization of extraction strategies, while post-processing can leverage annotation guidelines, corpus statistics and logic inferred from the gold standard data. We also show how data imbalance in a training set affects performance. Evaluation of this approach on the test data gave an F-Score of 91.7%, one percent behind the top performing system. PMID:26209007

  12. Using texts in science education: cognitive processes and knowledge representation.

    PubMed

    van den Broek, Paul

    2010-04-23

    Texts form a powerful tool in teaching concepts and principles in science. How do readers extract information from a text, and what are the limitations in this process? Central to comprehension of and learning from a text is the construction of a coherent mental representation that integrates the textual information and relevant background knowledge. This representation engenders learning if it expands the reader's existing knowledge base or if it corrects misconceptions in this knowledge base. The Landscape Model captures the reading process and the influences of reader characteristics (such as working-memory capacity, reading goal, prior knowledge, and inferential skills) and text characteristics (such as content/structure of presented information, processing demands, and textual cues). The model suggests factors that can optimize--or jeopardize--learning science from text.

  13. Imitating manual curation of text-mined facts in biomedicine.

    PubMed

    Rodriguez-Esteban, Raul; Iossifov, Ivan; Rzhetsky, Andrey

    2006-09-08

    Text-mining algorithms make mistakes in extracting facts from natural-language texts. In biomedical applications, which rely on use of text-mined data, it is critical to assess the quality (the probability that the message is correctly extracted) of individual facts--to resolve data conflicts and inconsistencies. Using a large set of almost 100,000 manually produced evaluations (most facts were independently reviewed more than once, producing independent evaluations), we implemented and tested a collection of algorithms that mimic human evaluation of facts provided by an automated information-extraction system. The performance of our best automated classifiers closely approached that of our human evaluators (ROC score close to 0.95). Our hypothesis is that, were we to use a larger number of human experts to evaluate any given sentence, we could implement an artificial-intelligence curator that would perform the classification job at least as accurately as an average individual human evaluator. We illustrated our analysis by visualizing the predicted accuracy of the text-mined relations involving the term cocaine.

  14. Apache Clinical Text and Knowledge Extraction System (cTAKES) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    The tool extracts deep phenotypic information from the clinical narrative at the document-, episode-, and patient-level. The final output is FHIR compliant patient-level phenotypic summary which can be consumed by research warehouses or the DeepPhe native visualization tool.

  15. Pattern-Based Extraction of Argumentation from the Scientific Literature

    ERIC Educational Resources Information Center

    White, Elizabeth K.

    2010-01-01

    As the number of publications in the biomedical field continues its exponential increase, techniques for automatically summarizing information from this body of literature have become more diverse. In addition, the targets of summarization have become more subtle; initial work focused on extracting the factual assertions from full-text papers,…

  16. VisualUrText: A Text Analytics Tool for Unstructured Textual Data

    NASA Astrophysics Data System (ADS)

    Zainol, Zuraini; Jaymes, Mohd T. H.; Nohuddin, Puteri N. E.

    2018-05-01

    The growing amount of unstructured text over Internet is tremendous. Text repositories come from Web 2.0, business intelligence and social networking applications. It is also believed that 80-90% of future growth data is available in the form of unstructured text databases that may potentially contain interesting patterns and trends. Text Mining is well known technique for discovering interesting patterns and trends which are non-trivial knowledge from massive unstructured text data. Text Mining covers multidisciplinary fields involving information retrieval (IR), text analysis, natural language processing (NLP), data mining, machine learning statistics and computational linguistics. This paper discusses the development of text analytics tool that is proficient in extracting, processing, analyzing the unstructured text data and visualizing cleaned text data into multiple forms such as Document Term Matrix (DTM), Frequency Graph, Network Analysis Graph, Word Cloud and Dendogram. This tool, VisualUrText, is developed to assist students and researchers for extracting interesting patterns and trends in document analyses.

  17. ALE: automated label extraction from GEO metadata.

    PubMed

    Giles, Cory B; Brown, Chase A; Ripperger, Michael; Dennis, Zane; Roopnarinesingh, Xiavan; Porter, Hunter; Perz, Aleksandra; Wren, Jonathan D

    2017-12-28

    NCBI's Gene Expression Omnibus (GEO) is a rich community resource containing millions of gene expression experiments from human, mouse, rat, and other model organisms. However, information about each experiment (metadata) is in the format of an open-ended, non-standardized textual description provided by the depositor. Thus, classification of experiments for meta-analysis by factors such as gender, age of the sample donor, and tissue of origin is not feasible without assigning labels to the experiments. Automated approaches are preferable for this, primarily because of the size and volume of the data to be processed, but also because it ensures standardization and consistency. While some of these labels can be extracted directly from the textual metadata, many of the data available do not contain explicit text informing the researcher about the age and gender of the subjects with the study. To bridge this gap, machine-learning methods can be trained to use the gene expression patterns associated with the text-derived labels to refine label-prediction confidence. Our analysis shows only 26% of metadata text contains information about gender and 21% about age. In order to ameliorate the lack of available labels for these data sets, we first extract labels from the textual metadata for each GEO RNA dataset and evaluate the performance against a gold standard of manually curated labels. We then use machine-learning methods to predict labels, based upon gene expression of the samples and compare this to the text-based method. Here we present an automated method to extract labels for age, gender, and tissue from textual metadata and GEO data using both a heuristic approach as well as machine learning. We show the two methods together improve accuracy of label assignment to GEO samples.

  18. Mining of relations between proteins over biomedical scientific literature using a deep-linguistic approach.

    PubMed

    Rinaldi, Fabio; Schneider, Gerold; Kaljurand, Kaarel; Hess, Michael; Andronis, Christos; Konstandi, Ourania; Persidis, Andreas

    2007-02-01

    The amount of new discoveries (as published in the scientific literature) in the biomedical area is growing at an exponential rate. This growth makes it very difficult to filter the most relevant results, and thus the extraction of the core information becomes very expensive. Therefore, there is a growing interest in text processing approaches that can deliver selected information from scientific publications, which can limit the amount of human intervention normally needed to gather those results. This paper presents and evaluates an approach aimed at automating the process of extracting functional relations (e.g. interactions between genes and proteins) from scientific literature in the biomedical domain. The approach, using a novel dependency-based parser, is based on a complete syntactic analysis of the corpus. We have implemented a state-of-the-art text mining system for biomedical literature, based on a deep-linguistic, full-parsing approach. The results are validated on two different corpora: the manually annotated genomics information access (GENIA) corpus and the automatically annotated arabidopsis thaliana circadian rhythms (ATCR) corpus. We show how a deep-linguistic approach (contrary to common belief) can be used in a real world text mining application, offering high-precision relation extraction, while at the same time retaining a sufficient recall.

  19. Automatic information extraction from unstructured mammography reports using distributed semantics.

    PubMed

    Gupta, Anupama; Banerjee, Imon; Rubin, Daniel L

    2018-02-01

    To date, the methods developed for automated extraction of information from radiology reports are mainly rule-based or dictionary-based, and, therefore, require substantial manual effort to build these systems. Recent efforts to develop automated systems for entity detection have been undertaken, but little work has been done to automatically extract relations and their associated named entities in narrative radiology reports that have comparable accuracy to rule-based methods. Our goal is to extract relations in a unsupervised way from radiology reports without specifying prior domain knowledge. We propose a hybrid approach for information extraction that combines dependency-based parse tree with distributed semantics for generating structured information frames about particular findings/abnormalities from the free-text mammography reports. The proposed IE system obtains a F 1 -score of 0.94 in terms of completeness of the content in the information frames, which outperforms a state-of-the-art rule-based system in this domain by a significant margin. The proposed system can be leveraged in a variety of applications, such as decision support and information retrieval, and may also easily scale to other radiology domains, since there is no need to tune the system with hand-crafted information extraction rules. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Finding Relevant Data in a Sea of Languages

    DTIC Science & Technology

    2016-04-26

    full machine-translated text , unbiased word clouds , query-biased word clouds , and query-biased sentence...and information retrieval to automate language processing tasks so that the limited number of linguists available for analyzing text and spoken...the crime (stock market). The Cross-LAnguage Search Engine (CLASE) has already preprocessed the documents, extracting text to identify the language

  1. Text de-identification for privacy protection: a study of its impact on clinical text information content.

    PubMed

    Meystre, Stéphane M; Ferrández, Óscar; Friedlin, F Jeffrey; South, Brett R; Shen, Shuying; Samore, Matthew H

    2014-08-01

    As more and more electronic clinical information is becoming easier to access for secondary uses such as clinical research, approaches that enable faster and more collaborative research while protecting patient privacy and confidentiality are becoming more important. Clinical text de-identification offers such advantages but is typically a tedious manual process. Automated Natural Language Processing (NLP) methods can alleviate this process, but their impact on subsequent uses of the automatically de-identified clinical narratives has only barely been investigated. In the context of a larger project to develop and investigate automated text de-identification for Veterans Health Administration (VHA) clinical notes, we studied the impact of automated text de-identification on clinical information in a stepwise manner. Our approach started with a high-level assessment of clinical notes informativeness and formatting, and ended with a detailed study of the overlap of select clinical information types and Protected Health Information (PHI). To investigate the informativeness (i.e., document type information, select clinical data types, and interpretation or conclusion) of VHA clinical notes, we used five different existing text de-identification systems. The informativeness was only minimally altered by these systems while formatting was only modified by one system. To examine the impact of de-identification on clinical information extraction, we compared counts of SNOMED-CT concepts found by an open source information extraction application in the original (i.e., not de-identified) version of a corpus of VHA clinical notes, and in the same corpus after de-identification. Only about 1.2-3% less SNOMED-CT concepts were found in de-identified versions of our corpus, and many of these concepts were PHI that was erroneously identified as clinical information. To study this impact in more details and assess how generalizable our findings were, we examined the overlap between select clinical information annotated in the 2010 i2b2 NLP challenge corpus and automatic PHI annotations from our best-of-breed VHA clinical text de-identification system (nicknamed 'BoB'). Overall, only 0.81% of the clinical information exactly overlapped with PHI, and 1.78% partly overlapped. We conclude that automated text de-identification's impact on clinical information is small, but not negligible, and that improved clinical acronyms and eponyms disambiguation could significantly reduce this impact. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Recent progress in automatically extracting information from the pharmacogenomic literature

    PubMed Central

    Garten, Yael; Coulet, Adrien; Altman, Russ B

    2011-01-01

    The biomedical literature holds our understanding of pharmacogenomics, but it is dispersed across many journals. In order to integrate our knowledge, connect important facts across publications and generate new hypotheses we must organize and encode the contents of the literature. By creating databases of structured pharmocogenomic knowledge, we can make the value of the literature much greater than the sum of the individual reports. We can, for example, generate candidate gene lists or interpret surprising hits in genome-wide association studies. Text mining automatically adds structure to the unstructured knowledge embedded in millions of publications, and recent years have seen a surge in work on biomedical text mining, some specific to pharmacogenomics literature. These methods enable extraction of specific types of information and can also provide answers to general, systemic queries. In this article, we describe the main tasks of text mining in the context of pharmacogenomics, summarize recent applications and anticipate the next phase of text mining applications. PMID:21047206

  3. [Systematic analysis of the readability of patient information on websites of German nonuniversity ENT hospitals].

    PubMed

    Meyer, M F; Bacher, R; Roth, K S; Beutner, D; Luers, J C

    2014-03-01

    Besides their function as one of the main contact points, websites of hospitals serve as medical information portals. All patients should be able to understand medical information texts; regardless of their literacy skills and educational level. Online texts should thus have an appropriate structure to ease their comprehension. Patient information texts on every German nonuniversity ENT hospital website (n = 125) were systematically analysed. For ten different ENT topics a representative medical information text was extracted from each website. Using objective text parameters and five established readability indices, the texts were analysed in terms of their readability and structure. Furthermore, we stratified the analysis in relation to the hospital organisation system and geographical region in Germany. Texts from 142 internet sites could be used for the definite analysis. On average, texts consisted of 15 sentences and 237 words. Readability indices congruously showed that the analysed texts could generally only be understood by a well-educated or even academic reader. The majority of patient information texts on German hospital websites are difficult to understand for most patients. In order to fulfil their goal of adequately informing the general population about disease, therapeutic options and the particular focal points of the clinic, a revision of most medical texts on the websites of German ENT hospitals is recommended.

  4. User-centered evaluation of Arizona BioPathway: an information extraction, integration, and visualization system.

    PubMed

    Quiñones, Karin D; Su, Hua; Marshall, Byron; Eggers, Shauna; Chen, Hsinchun

    2007-09-01

    Explosive growth in biomedical research has made automated information extraction, knowledge integration, and visualization increasingly important and critically needed. The Arizona BioPathway (ABP) system extracts and displays biological regulatory pathway information from the abstracts of journal articles. This study uses relations extracted from more than 200 PubMed abstracts presented in a tabular and graphical user interface with built-in search and aggregation functionality. This paper presents a task-centered assessment of the usefulness and usability of the ABP system focusing on its relation aggregation and visualization functionalities. Results suggest that our graph-based visualization is more efficient in supporting pathway analysis tasks and is perceived as more useful and easier to use as compared to a text-based literature-viewing method. Relation aggregation significantly contributes to knowledge-acquisition efficiency. Together, the graphic and tabular views in the ABP Visualizer provide a flexible and effective interface for pathway relation browsing and analysis. Our study contributes to pathway-related research and biological information extraction by assessing the value of a multiview, relation-based interface that supports user-controlled exploration of pathway information across multiple granularities.

  5. Inferring Higher Functional Information for RIKEN Mouse Full-Length cDNA Clones With FACTS

    PubMed Central

    Nagashima, Takeshi; Silva, Diego G.; Petrovsky, Nikolai; Socha, Luis A.; Suzuki, Harukazu; Saito, Rintaro; Kasukawa, Takeya; Kurochkin, Igor V.; Konagaya, Akihiko; Schönbach, Christian

    2003-01-01

    FACTS (Functional Association/Annotation of cDNA Clones from Text/Sequence Sources) is a semiautomated knowledge discovery and annotation system that integrates molecular function information derived from sequence analysis results (sequence inferred) with functional information extracted from text. Text-inferred information was extracted from keyword-based retrievals of MEDLINE abstracts and by matching of gene or protein names to OMIM, BIND, and DIP database entries. Using FACTS, we found that 47.5% of the 60,770 RIKEN mouse cDNA FANTOM2 clone annotations were informative for text searches. MEDLINE queries yielded molecular interaction-containing sentences for 23.1% of the clones. When disease MeSH and GO terms were matched with retrieved abstracts, 22.7% of clones were associated with potential diseases, and 32.5% with GO identifiers. A significant number (23.5%) of disease MeSH-associated clones were also found to have a hereditary disease association (OMIM Morbidmap). Inferred neoplastic and nervous system disease represented 49.6% and 36.0% of disease MeSH-associated clones, respectively. A comparison of sequence-based GO assignments with informative text-based GO assignments revealed that for 78.2% of clones, identical GO assignments were provided for that clone by either method, whereas for 21.8% of clones, the assignments differed. In contrast, for OMIM assignments, only 28.5% of clones had identical sequence-based and text-based OMIM assignments. Sequence, sentence, and term-based functional associations are included in the FACTS database (http://facts.gsc.riken.go.jp/), which permits results to be annotated and explored through web-accessible keyword and sequence search interfaces. The FACTS database will be a critical tool for investigating the functional complexity of the mouse transcriptome, cDNA-inferred interactome (molecular interactions), and pathome (pathologies). PMID:12819151

  6. Vaccine adverse event text mining system for extracting features from vaccine safety reports.

    PubMed

    Botsis, Taxiarchis; Buttolph, Thomas; Nguyen, Michael D; Winiecki, Scott; Woo, Emily Jane; Ball, Robert

    2012-01-01

    To develop and evaluate a text mining system for extracting key clinical features from vaccine adverse event reporting system (VAERS) narratives to aid in the automated review of adverse event reports. Based upon clinical significance to VAERS reviewing physicians, we defined the primary (diagnosis and cause of death) and secondary features (eg, symptoms) for extraction. We built a novel vaccine adverse event text mining (VaeTM) system based on a semantic text mining strategy. The performance of VaeTM was evaluated using a total of 300 VAERS reports in three sequential evaluations of 100 reports each. Moreover, we evaluated the VaeTM contribution to case classification; an information retrieval-based approach was used for the identification of anaphylaxis cases in a set of reports and was compared with two other methods: a dedicated text classifier and an online tool. The performance metrics of VaeTM were text mining metrics: recall, precision and F-measure. We also conducted a qualitative difference analysis and calculated sensitivity and specificity for classification of anaphylaxis cases based on the above three approaches. VaeTM performed best in extracting diagnosis, second level diagnosis, drug, vaccine, and lot number features (lenient F-measure in the third evaluation: 0.897, 0.817, 0.858, 0.874, and 0.914, respectively). In terms of case classification, high sensitivity was achieved (83.1%); this was equal and better compared to the text classifier (83.1%) and the online tool (40.7%), respectively. Our VaeTM implementation of a semantic text mining strategy shows promise in providing accurate and efficient extraction of key features from VAERS narratives.

  7. Natural Language Processing in Radiology: A Systematic Review.

    PubMed

    Pons, Ewoud; Braun, Loes M M; Hunink, M G Myriam; Kors, Jan A

    2016-05-01

    Radiological reporting has generated large quantities of digital content within the electronic health record, which is potentially a valuable source of information for improving clinical care and supporting research. Although radiology reports are stored for communication and documentation of diagnostic imaging, harnessing their potential requires efficient and automated information extraction: they exist mainly as free-text clinical narrative, from which it is a major challenge to obtain structured data. Natural language processing (NLP) provides techniques that aid the conversion of text into a structured representation, and thus enables computers to derive meaning from human (ie, natural language) input. Used on radiology reports, NLP techniques enable automatic identification and extraction of information. By exploring the various purposes for their use, this review examines how radiology benefits from NLP. A systematic literature search identified 67 relevant publications describing NLP methods that support practical applications in radiology. This review takes a close look at the individual studies in terms of tasks (ie, the extracted information), the NLP methodology and tools used, and their application purpose and performance results. Additionally, limitations, future challenges, and requirements for advancing NLP in radiology will be discussed. (©) RSNA, 2016 Online supplemental material is available for this article.

  8. Event-based text mining for biology and functional genomics

    PubMed Central

    Thompson, Paul; Nawaz, Raheel; McNaught, John; Kell, Douglas B.

    2015-01-01

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of ‘events’, i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research. PMID:24907365

  9. BioCreative V track 4: a shared task for the extraction of causal network information using the Biological Expression Language.

    PubMed

    Rinaldi, Fabio; Ellendorff, Tilia Renate; Madan, Sumit; Clematide, Simon; van der Lek, Adrian; Mevissen, Theo; Fluck, Juliane

    2016-01-01

    Automatic extraction of biological network information is one of the most desired and most complex tasks in biological and medical text mining. Track 4 at BioCreative V attempts to approach this complexity using fragments of large-scale manually curated biological networks, represented in Biological Expression Language (BEL), as training and test data. BEL is an advanced knowledge representation format which has been designed to be both human readable and machine processable. The specific goal of track 4 was to evaluate text mining systems capable of automatically constructing BEL statements from given evidence text, and of retrieving evidence text for given BEL statements. Given the complexity of the task, we designed an evaluation methodology which gives credit to partially correct statements. We identified various levels of information expressed by BEL statements, such as entities, functions, relations, and introduced an evaluation framework which rewards systems capable of delivering useful BEL fragments at each of these levels. The aim of this evaluation method is to help identify the characteristics of the systems which, if combined, would be most useful for achieving the overall goal of automatically constructing causal biological networks from text. © The Author(s) 2016. Published by Oxford University Press.

  10. Agile text mining for the 2014 i2b2/UTHealth Cardiac risk factors challenge.

    PubMed

    Cormack, James; Nath, Chinmoy; Milward, David; Raja, Kalpana; Jonnalagadda, Siddhartha R

    2015-12-01

    This paper describes the use of an agile text mining platform (Linguamatics' Interactive Information Extraction Platform, I2E) to extract document-level cardiac risk factors in patient records as defined in the i2b2/UTHealth 2014 challenge. The approach uses a data-driven rule-based methodology with the addition of a simple supervised classifier. We demonstrate that agile text mining allows for rapid optimization of extraction strategies, while post-processing can leverage annotation guidelines, corpus statistics and logic inferred from the gold standard data. We also show how data imbalance in a training set affects performance. Evaluation of this approach on the test data gave an F-Score of 91.7%, one percent behind the top performing system. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Text Content Pushing Technology Research Based on Location and Topic

    NASA Astrophysics Data System (ADS)

    Wei, Dongqi; Wei, Jianxin; Wumuti, Naheman; Jiang, Baode

    2016-11-01

    In the field, geological workers usually want to obtain related geological background information in the working area quickly and accurately. This information exists in the massive geological data, text data is described in natural language accounted for a large proportion. This paper studied location information extracting method in the mass text data; proposed a geographic location—geological content—geological content related algorithm based on Spark and Mapreduce2, finally classified content by using KNN, and built the content pushing system based on location and topic. It is running in the geological survey cloud, and we have gained a good effect in testing by using real geological data.

  12. Thematic clustering of text documents using an EM-based approach

    PubMed Central

    2012-01-01

    Clustering textual contents is an important step in mining useful information on the web or other text-based resources. The common task in text clustering is to handle text in a multi-dimensional space, and to partition documents into groups, where each group contains documents that are similar to each other. However, this strategy lacks a comprehensive view for humans in general since it cannot explain the main subject of each cluster. Utilizing semantic information can solve this problem, but it needs a well-defined ontology or pre-labeled gold standard set. In this paper, we present a thematic clustering algorithm for text documents. Given text, subject terms are extracted and used for clustering documents in a probabilistic framework. An EM approach is used to ensure documents are assigned to correct subjects, hence it converges to a locally optimal solution. The proposed method is distinctive because its results are sufficiently explanatory for human understanding as well as efficient for clustering performance. The experimental results show that the proposed method provides a competitive performance compared to other state-of-the-art approaches. We also show that the extracted themes from the MEDLINE® dataset represent the subjects of clusters reasonably well. PMID:23046528

  13. The Contribution of the Vaccine Adverse Event Text Mining System to the Classification of Possible Guillain-Barré Syndrome Reports

    PubMed Central

    Botsis, T.; Woo, E. J.; Ball, R.

    2013-01-01

    Background We previously demonstrated that a general purpose text mining system, the Vaccine adverse event Text Mining (VaeTM) system, could be used to automatically classify reports of an-aphylaxis for post-marketing safety surveillance of vaccines. Objective To evaluate the ability of VaeTM to classify reports to the Vaccine Adverse Event Reporting System (VAERS) of possible Guillain-Barré Syndrome (GBS). Methods We used VaeTM to extract the key diagnostic features from the text of reports in VAERS. Then, we applied the Brighton Collaboration (BC) case definition for GBS, and an information retrieval strategy (i.e. the vector space model) to quantify the specific information that is included in the key features extracted by VaeTM and compared it with the encoded information that is already stored in VAERS as Medical Dictionary for Regulatory Activities (MedDRA) Preferred Terms (PTs). We also evaluated the contribution of the primary (diagnosis and cause of death) and secondary (second level diagnosis and symptoms) diagnostic VaeTM-based features to the total VaeTM-based information. Results MedDRA captured more information and better supported the classification of reports for GBS than VaeTM (AUC: 0.904 vs. 0.777); the lower performance of VaeTM is likely due to the lack of extraction by VaeTM of specific laboratory results that are included in the BC criteria for GBS. On the other hand, the VaeTM-based classification exhibited greater specificity than the MedDRA-based approach (94.96% vs. 87.65%). Most of the VaeTM-based information was contained in the secondary diagnostic features. Conclusion For GBS, clinical signs and symptoms alone are not sufficient to match MedDRA coding for purposes of case classification, but are preferred if specificity is the priority. PMID:23650490

  14. MSL: Facilitating automatic and physical analysis of published scientific literature in PDF format.

    PubMed

    Ahmed, Zeeshan; Dandekar, Thomas

    2015-01-01

    Published scientific literature contains millions of figures, including information about the results obtained from different scientific experiments e.g. PCR-ELISA data, microarray analysis, gel electrophoresis, mass spectrometry data, DNA/RNA sequencing, diagnostic imaging (CT/MRI and ultrasound scans), and medicinal imaging like electroencephalography (EEG), magnetoencephalography (MEG), echocardiography  (ECG), positron-emission tomography (PET) images. The importance of biomedical figures has been widely recognized in scientific and medicine communities, as they play a vital role in providing major original data, experimental and computational results in concise form. One major challenge for implementing a system for scientific literature analysis is extracting and analyzing text and figures from published PDF files by physical and logical document analysis. Here we present a product line architecture based bioinformatics tool 'Mining Scientific Literature (MSL)', which supports the extraction of text and images by interpreting all kinds of published PDF files using advanced data mining and image processing techniques. It provides modules for the marginalization of extracted text based on different coordinates and keywords, visualization of extracted figures and extraction of embedded text from all kinds of biological and biomedical figures using applied Optimal Character Recognition (OCR). Moreover, for further analysis and usage, it generates the system's output in different formats including text, PDF, XML and images files. Hence, MSL is an easy to install and use analysis tool to interpret published scientific literature in PDF format.

  15. Cognition-Based Approaches for High-Precision Text Mining

    ERIC Educational Resources Information Center

    Shannon, George John

    2017-01-01

    This research improves the precision of information extraction from free-form text via the use of cognitive-based approaches to natural language processing (NLP). Cognitive-based approaches are an important, and relatively new, area of research in NLP and search, as well as linguistics. Cognitive approaches enable significant improvements in both…

  16. Towards Text Copyright Detection Using Metadata in Web Applications

    ERIC Educational Resources Information Center

    Poulos, Marios; Korfiatis, Nikolaos; Bokos, George

    2011-01-01

    Purpose: This paper aims to present the semantic content identifier (SCI), a permanent identifier, computed through a linear-time onion-peeling algorithm that enables the extraction of semantic features from a text, and the integration of this information within the permanent identifier. Design/methodology/approach: The authors employ SCI to…

  17. Sharing Complex Text and the CCSS

    ERIC Educational Resources Information Center

    Aspen Institute, 2012

    2012-01-01

    The Common Core State Standards (CCSS) fulfill a longstanding goal of ensuring that all students, regardless of ability, are college and career ready upon graduation. Students who meet the expectations of the standards are able to comprehend complex text closely and extract meaning and information from it. They are close readers, delving into…

  18. Text Mining for Protein Docking

    PubMed Central

    Badal, Varsha D.; Kundrotas, Petras J.; Vakser, Ilya A.

    2015-01-01

    The rapidly growing amount of publicly available information from biomedical research is readily accessible on the Internet, providing a powerful resource for predictive biomolecular modeling. The accumulated data on experimentally determined structures transformed structure prediction of proteins and protein complexes. Instead of exploring the enormous search space, predictive tools can simply proceed to the solution based on similarity to the existing, previously determined structures. A similar major paradigm shift is emerging due to the rapidly expanding amount of information, other than experimentally determined structures, which still can be used as constraints in biomolecular structure prediction. Automated text mining has been widely used in recreating protein interaction networks, as well as in detecting small ligand binding sites on protein structures. Combining and expanding these two well-developed areas of research, we applied the text mining to structural modeling of protein-protein complexes (protein docking). Protein docking can be significantly improved when constraints on the docking mode are available. We developed a procedure that retrieves published abstracts on a specific protein-protein interaction and extracts information relevant to docking. The procedure was assessed on protein complexes from Dockground (http://dockground.compbio.ku.edu). The results show that correct information on binding residues can be extracted for about half of the complexes. The amount of irrelevant information was reduced by conceptual analysis of a subset of the retrieved abstracts, based on the bag-of-words (features) approach. Support Vector Machine models were trained and validated on the subset. The remaining abstracts were filtered by the best-performing models, which decreased the irrelevant information for ~ 25% complexes in the dataset. The extracted constraints were incorporated in the docking protocol and tested on the Dockground unbound benchmark set, significantly increasing the docking success rate. PMID:26650466

  19. Information Extraction for Clinical Data Mining: A Mammography Case Study

    PubMed Central

    Nassif, Houssam; Woods, Ryan; Burnside, Elizabeth; Ayvaci, Mehmet; Shavlik, Jude; Page, David

    2013-01-01

    Breast cancer is the leading cause of cancer mortality in women between the ages of 15 and 54. During mammography screening, radiologists use a strict lexicon (BI-RADS) to describe and report their findings. Mammography records are then stored in a well-defined database format (NMD). Lately, researchers have applied data mining and machine learning techniques to these databases. They successfully built breast cancer classifiers that can help in early detection of malignancy. However, the validity of these models depends on the quality of the underlying databases. Unfortunately, most databases suffer from inconsistencies, missing data, inter-observer variability and inappropriate term usage. In addition, many databases are not compliant with the NMD format and/or solely consist of text reports. BI-RADS feature extraction from free text and consistency checks between recorded predictive variables and text reports are crucial to addressing this problem. We describe a general scheme for concept information retrieval from free text given a lexicon, and present a BI-RADS features extraction algorithm for clinical data mining. It consists of a syntax analyzer, a concept finder and a negation detector. The syntax analyzer preprocesses the input into individual sentences. The concept finder uses a semantic grammar based on the BI-RADS lexicon and the experts’ input. It parses sentences detecting BI-RADS concepts. Once a concept is located, a lexical scanner checks for negation. Our method can handle multiple latent concepts within the text, filtering out ultrasound concepts. On our dataset, our algorithm achieves 97.7% precision, 95.5% recall and an F1-score of 0.97. It outperforms manual feature extraction at the 5% statistical significance level. PMID:23765123

  20. Information Extraction for Clinical Data Mining: A Mammography Case Study.

    PubMed

    Nassif, Houssam; Woods, Ryan; Burnside, Elizabeth; Ayvaci, Mehmet; Shavlik, Jude; Page, David

    2009-01-01

    Breast cancer is the leading cause of cancer mortality in women between the ages of 15 and 54. During mammography screening, radiologists use a strict lexicon (BI-RADS) to describe and report their findings. Mammography records are then stored in a well-defined database format (NMD). Lately, researchers have applied data mining and machine learning techniques to these databases. They successfully built breast cancer classifiers that can help in early detection of malignancy. However, the validity of these models depends on the quality of the underlying databases. Unfortunately, most databases suffer from inconsistencies, missing data, inter-observer variability and inappropriate term usage. In addition, many databases are not compliant with the NMD format and/or solely consist of text reports. BI-RADS feature extraction from free text and consistency checks between recorded predictive variables and text reports are crucial to addressing this problem. We describe a general scheme for concept information retrieval from free text given a lexicon, and present a BI-RADS features extraction algorithm for clinical data mining. It consists of a syntax analyzer, a concept finder and a negation detector. The syntax analyzer preprocesses the input into individual sentences. The concept finder uses a semantic grammar based on the BI-RADS lexicon and the experts' input. It parses sentences detecting BI-RADS concepts. Once a concept is located, a lexical scanner checks for negation. Our method can handle multiple latent concepts within the text, filtering out ultrasound concepts. On our dataset, our algorithm achieves 97.7% precision, 95.5% recall and an F 1 -score of 0.97. It outperforms manual feature extraction at the 5% statistical significance level.

  1. Limited Role of Contextual Information in Adult Word Recognition. Technical Report No. 411.

    ERIC Educational Resources Information Center

    Durgunoglu, Aydin Y.

    Recognizing a word in a meaningful text involves processes that combine information from many different sources, and both bottom-up processes (such as feature extraction and letter recognition) and top-down processes (contextual information) are thought to interact when skilled readers recognize words. Two similar experiments investigated word…

  2. Automated Text Markup for Information Retrieval from an Electronic Textbook of Infectious Disease

    PubMed Central

    Berrios, Daniel C.; Kehler, Andrew; Kim, David K.; Yu, Victor L.; Fagan, Lawrence M.

    1998-01-01

    The information needs of practicing clinicians frequently require textbook or journal searches. Making these sources available in electronic form improves the speed of these searches, but precision (i.e., the fraction of relevant to total documents retrieved) remains low. Improving the traditional keyword search by transforming search terms into canonical concepts does not improve search precision greatly. Kim et al. have designed and built a prototype system (MYCIN II) for computer-based information retrieval from a forthcoming electronic textbook of infectious disease. The system requires manual indexing by experts in the form of complex text markup. However, this mark-up process is time consuming (about 3 person-hours to generate, review, and transcribe the index for each of 218 chapters). We have designed and implemented a system to semiautomate the markup process. The system, information extraction for semiautomated indexing of documents (ISAID), uses query models and existing information-extraction tools to provide support for any user, including the author of the source material, to mark up tertiary information sources quickly and accurately.

  3. Clinical records anonymisation and text extraction (CRATE): an open-source software system.

    PubMed

    Cardinal, Rudolf N

    2017-04-26

    Electronic medical records contain information of value for research, but contain identifiable and often highly sensitive confidential information. Patient-identifiable information cannot in general be shared outside clinical care teams without explicit consent, but anonymisation/de-identification allows research uses of clinical data without explicit consent. This article presents CRATE (Clinical Records Anonymisation and Text Extraction), an open-source software system with separable functions: (1) it anonymises or de-identifies arbitrary relational databases, with sensitivity and precision similar to previous comparable systems; (2) it uses public secure cryptographic methods to map patient identifiers to research identifiers (pseudonyms); (3) it connects relational databases to external tools for natural language processing; (4) it provides a web front end for research and administrative functions; and (5) it supports a specific model through which patients may consent to be contacted about research. Creation and management of a research database from sensitive clinical records with secure pseudonym generation, full-text indexing, and a consent-to-contact process is possible and practical using entirely free and open-source software.

  4. Sieve-based relation extraction of gene regulatory networks from biological literature

    PubMed Central

    2015-01-01

    Background Relation extraction is an essential procedure in literature mining. It focuses on extracting semantic relations between parts of text, called mentions. Biomedical literature includes an enormous amount of textual descriptions of biological entities, their interactions and results of related experiments. To extract them in an explicit, computer readable format, these relations were at first extracted manually from databases. Manual curation was later replaced with automatic or semi-automatic tools with natural language processing capabilities. The current challenge is the development of information extraction procedures that can directly infer more complex relational structures, such as gene regulatory networks. Results We develop a computational approach for extraction of gene regulatory networks from textual data. Our method is designed as a sieve-based system and uses linear-chain conditional random fields and rules for relation extraction. With this method we successfully extracted the sporulation gene regulation network in the bacterium Bacillus subtilis for the information extraction challenge at the BioNLP 2013 conference. To enable extraction of distant relations using first-order models, we transform the data into skip-mention sequences. We infer multiple models, each of which is able to extract different relationship types. Following the shared task, we conducted additional analysis using different system settings that resulted in reducing the reconstruction error of bacterial sporulation network from 0.73 to 0.68, measured as the slot error rate between the predicted and the reference network. We observe that all relation extraction sieves contribute to the predictive performance of the proposed approach. Also, features constructed by considering mention words and their prefixes and suffixes are the most important features for higher accuracy of extraction. Analysis of distances between different mention types in the text shows that our choice of transforming data into skip-mention sequences is appropriate for detecting relations between distant mentions. Conclusions Linear-chain conditional random fields, along with appropriate data transformations, can be efficiently used to extract relations. The sieve-based architecture simplifies the system as new sieves can be easily added or removed and each sieve can utilize the results of previous ones. Furthermore, sieves with conditional random fields can be trained on arbitrary text data and hence are applicable to broad range of relation extraction tasks and data domains. PMID:26551454

  5. Sieve-based relation extraction of gene regulatory networks from biological literature.

    PubMed

    Žitnik, Slavko; Žitnik, Marinka; Zupan, Blaž; Bajec, Marko

    2015-01-01

    Relation extraction is an essential procedure in literature mining. It focuses on extracting semantic relations between parts of text, called mentions. Biomedical literature includes an enormous amount of textual descriptions of biological entities, their interactions and results of related experiments. To extract them in an explicit, computer readable format, these relations were at first extracted manually from databases. Manual curation was later replaced with automatic or semi-automatic tools with natural language processing capabilities. The current challenge is the development of information extraction procedures that can directly infer more complex relational structures, such as gene regulatory networks. We develop a computational approach for extraction of gene regulatory networks from textual data. Our method is designed as a sieve-based system and uses linear-chain conditional random fields and rules for relation extraction. With this method we successfully extracted the sporulation gene regulation network in the bacterium Bacillus subtilis for the information extraction challenge at the BioNLP 2013 conference. To enable extraction of distant relations using first-order models, we transform the data into skip-mention sequences. We infer multiple models, each of which is able to extract different relationship types. Following the shared task, we conducted additional analysis using different system settings that resulted in reducing the reconstruction error of bacterial sporulation network from 0.73 to 0.68, measured as the slot error rate between the predicted and the reference network. We observe that all relation extraction sieves contribute to the predictive performance of the proposed approach. Also, features constructed by considering mention words and their prefixes and suffixes are the most important features for higher accuracy of extraction. Analysis of distances between different mention types in the text shows that our choice of transforming data into skip-mention sequences is appropriate for detecting relations between distant mentions. Linear-chain conditional random fields, along with appropriate data transformations, can be efficiently used to extract relations. The sieve-based architecture simplifies the system as new sieves can be easily added or removed and each sieve can utilize the results of previous ones. Furthermore, sieves with conditional random fields can be trained on arbitrary text data and hence are applicable to broad range of relation extraction tasks and data domains.

  6. Automated extraction and semantic analysis of mutation impacts from the biomedical literature

    PubMed Central

    2012-01-01

    Background Mutations as sources of evolution have long been the focus of attention in the biomedical literature. Accessing the mutational information and their impacts on protein properties facilitates research in various domains, such as enzymology and pharmacology. However, manually curating the rich and fast growing repository of biomedical literature is expensive and time-consuming. As a solution, text mining approaches have increasingly been deployed in the biomedical domain. While the detection of single-point mutations is well covered by existing systems, challenges still exist in grounding impacts to their respective mutations and recognizing the affected protein properties, in particular kinetic and stability properties together with physical quantities. Results We present an ontology model for mutation impacts, together with a comprehensive text mining system for extracting and analysing mutation impact information from full-text articles. Organisms, as sources of proteins, are extracted to help disambiguation of genes and proteins. Our system then detects mutation series to correctly ground detected impacts using novel heuristics. It also extracts the affected protein properties, in particular kinetic and stability properties, as well as the magnitude of the effects and validates these relations against the domain ontology. The output of our system can be provided in various formats, in particular by populating an OWL-DL ontology, which can then be queried to provide structured information. The performance of the system is evaluated on our manually annotated corpora. In the impact detection task, our system achieves a precision of 70.4%-71.1%, a recall of 71.3%-71.5%, and grounds the detected impacts with an accuracy of 76.5%-77%. The developed system, including resources, evaluation data and end-user and developer documentation is freely available under an open source license at http://www.semanticsoftware.info/open-mutation-miner. Conclusion We present Open Mutation Miner (OMM), the first comprehensive, fully open-source approach to automatically extract impacts and related relevant information from the biomedical literature. We assessed the performance of our work on manually annotated corpora and the results show the reliability of our approach. The representation of the extracted information into a structured format facilitates knowledge management and aids in database curation and correction. Furthermore, access to the analysis results is provided through multiple interfaces, including web services for automated data integration and desktop-based solutions for end user interactions. PMID:22759648

  7. Linguistic feature analysis for protein interaction extraction

    PubMed Central

    2009-01-01

    Background The rapid growth of the amount of publicly available reports on biomedical experimental results has recently caused a boost of text mining approaches for protein interaction extraction. Most approaches rely implicitly or explicitly on linguistic, i.e., lexical and syntactic, data extracted from text. However, only few attempts have been made to evaluate the contribution of the different feature types. In this work, we contribute to this evaluation by studying the relative importance of deep syntactic features, i.e., grammatical relations, shallow syntactic features (part-of-speech information) and lexical features. For this purpose, we use a recently proposed approach that uses support vector machines with structured kernels. Results Our results reveal that the contribution of the different feature types varies for the different data sets on which the experiments were conducted. The smaller the training corpus compared to the test data, the more important the role of grammatical relations becomes. Moreover, deep syntactic information based classifiers prove to be more robust on heterogeneous texts where no or only limited common vocabulary is shared. Conclusion Our findings suggest that grammatical relations play an important role in the interaction extraction task. Moreover, the net advantage of adding lexical and shallow syntactic features is small related to the number of added features. This implies that efficient classifiers can be built by using only a small fraction of the features that are typically being used in recent approaches. PMID:19909518

  8. Automated Extraction of Substance Use Information from Clinical Texts.

    PubMed

    Wang, Yan; Chen, Elizabeth S; Pakhomov, Serguei; Arsoniadis, Elliot; Carter, Elizabeth W; Lindemann, Elizabeth; Sarkar, Indra Neil; Melton, Genevieve B

    2015-01-01

    Within clinical discourse, social history (SH) includes important information about substance use (alcohol, drug, and nicotine use) as key risk factors for disease, disability, and mortality. In this study, we developed and evaluated a natural language processing (NLP) system for automated detection of substance use statements and extraction of substance use attributes (e.g., temporal and status) based on Stanford Typed Dependencies. The developed NLP system leveraged linguistic resources and domain knowledge from a multi-site social history study, Propbank and the MiPACQ corpus. The system attained F-scores of 89.8, 84.6 and 89.4 respectively for alcohol, drug, and nicotine use statement detection, as well as average F-scores of 82.1, 90.3, 80.8, 88.7, 96.6, and 74.5 respectively for extraction of attributes. Our results suggest that NLP systems can achieve good performance when augmented with linguistic resources and domain knowledge when applied to a wide breadth of substance use free text clinical notes.

  9. Support patient search on pathology reports with interactive online learning based data extraction.

    PubMed

    Zheng, Shuai; Lu, James J; Appin, Christina; Brat, Daniel; Wang, Fusheng

    2015-01-01

    Structural reporting enables semantic understanding and prompt retrieval of clinical findings about patients. While synoptic pathology reporting provides templates for data entries, information in pathology reports remains primarily in narrative free text form. Extracting data of interest from narrative pathology reports could significantly improve the representation of the information and enable complex structured queries. However, manual extraction is tedious and error-prone, and automated tools are often constructed with a fixed training dataset and not easily adaptable. Our goal is to extract data from pathology reports to support advanced patient search with a highly adaptable semi-automated data extraction system, which can adjust and self-improve by learning from a user's interaction with minimal human effort. We have developed an online machine learning based information extraction system called IDEAL-X. With its graphical user interface, the system's data extraction engine automatically annotates values for users to review upon loading each report text. The system analyzes users' corrections regarding these annotations with online machine learning, and incrementally enhances and refines the learning model as reports are processed. The system also takes advantage of customized controlled vocabularies, which can be adaptively refined during the online learning process to further assist the data extraction. As the accuracy of automatic annotation improves overtime, the effort of human annotation is gradually reduced. After all reports are processed, a built-in query engine can be applied to conveniently define queries based on extracted structured data. We have evaluated the system with a dataset of anatomic pathology reports from 50 patients. Extracted data elements include demographical data, diagnosis, genetic marker, and procedure. The system achieves F-1 scores of around 95% for the majority of tests. Extracting data from pathology reports could enable more accurate knowledge to support biomedical research and clinical diagnosis. IDEAL-X provides a bridge that takes advantage of online machine learning based data extraction and the knowledge from human's feedback. By combining iterative online learning and adaptive controlled vocabularies, IDEAL-X can deliver highly adaptive and accurate data extraction to support patient search.

  10. Addressing Information Proliferation: Applications of Information Extraction and Text Mining

    ERIC Educational Resources Information Center

    Li, Jingjing

    2013-01-01

    The advent of the Internet and the ever-increasing capacity of storage media have made it easy to store, deliver, and share enormous volumes of data, leading to a proliferation of information on the Web, in online libraries, on news wires, and almost everywhere in our daily lives. Since our ability to process and absorb this information remains…

  11. Overlaid caption extraction in news video based on SVM

    NASA Astrophysics Data System (ADS)

    Liu, Manman; Su, Yuting; Ji, Zhong

    2007-11-01

    Overlaid caption in news video often carries condensed semantic information which is key cues for content-based video indexing and retrieval. However, it is still a challenging work to extract caption from video because of its complex background and low resolution. In this paper, we propose an effective overlaid caption extraction approach for news video. We first scan the video key frames using a small window, and then classify the blocks into the text and non-text ones via support vector machine (SVM), with statistical features extracted from the gray level co-occurrence matrices, the LH and HL sub-bands wavelet coefficients and the orientated edge intensity ratios. Finally morphological filtering and projection profile analysis are employed to localize and refine the candidate caption regions. Experiments show its high performance on four 30-minute news video programs.

  12. Natural language processing to extract symptoms of severe mental illness from clinical text: the Clinical Record Interactive Search Comprehensive Data Extraction (CRIS-CODE) project

    PubMed Central

    Jayatilleke, Nishamali; Kolliakou, Anna; Ball, Michael; Gorrell, Genevieve; Roberts, Angus; Stewart, Robert

    2017-01-01

    Objectives We sought to use natural language processing to develop a suite of language models to capture key symptoms of severe mental illness (SMI) from clinical text, to facilitate the secondary use of mental healthcare data in research. Design Development and validation of information extraction applications for ascertaining symptoms of SMI in routine mental health records using the Clinical Record Interactive Search (CRIS) data resource; description of their distribution in a corpus of discharge summaries. Setting Electronic records from a large mental healthcare provider serving a geographic catchment of 1.2 million residents in four boroughs of south London, UK. Participants The distribution of derived symptoms was described in 23 128 discharge summaries from 7962 patients who had received an SMI diagnosis, and 13 496 discharge summaries from 7575 patients who had received a non-SMI diagnosis. Outcome measures Fifty SMI symptoms were identified by a team of psychiatrists for extraction based on salience and linguistic consistency in records, broadly categorised under positive, negative, disorganisation, manic and catatonic subgroups. Text models for each symptom were generated using the TextHunter tool and the CRIS database. Results We extracted data for 46 symptoms with a median F1 score of 0.88. Four symptom models performed poorly and were excluded. From the corpus of discharge summaries, it was possible to extract symptomatology in 87% of patients with SMI and 60% of patients with non-SMI diagnosis. Conclusions This work demonstrates the possibility of automatically extracting a broad range of SMI symptoms from English text discharge summaries for patients with an SMI diagnosis. Descriptive data also indicated that most symptoms cut across diagnoses, rather than being restricted to particular groups. PMID:28096249

  13. Expert-Novice Differences in Memory, Abstraction, and Reasoning in the Domain of Literature.

    ERIC Educational Resources Information Center

    Zeitz, Colleen M.

    1994-01-01

    Explored the information processing abilities associated with expertise in literature in high school and college students. Found that literary experts were superior to novices in gist-level recall, extraction of interpretations, and breadth of aspects addressed of literary texts but not in comprehension of scientific texts. (AA)

  14. Toward Machine Understanding of Information Quality.

    ERIC Educational Resources Information Center

    Tang, Rong; Ng, K. B.; Strzalkowski, Tomek; Kantor, Paul B.

    2003-01-01

    Reports preliminary results of a study to develop and automate new metrics for assessment of information quality in text documents, particularly in news. Through focus group studies, quality judgment experiments, and textual feature extraction and analysis, nine quality aspects were generated and applied in human assessments. Experiments were…

  15. Biological network extraction from scientific literature: state of the art and challenges.

    PubMed

    Li, Chen; Liakata, Maria; Rebholz-Schuhmann, Dietrich

    2014-09-01

    Networks of molecular interactions explain complex biological processes, and all known information on molecular events is contained in a number of public repositories including the scientific literature. Metabolic and signalling pathways are often viewed separately, even though both types are composed of interactions involving proteins and other chemical entities. It is necessary to be able to combine data from all available resources to judge the functionality, complexity and completeness of any given network overall, but especially the full integration of relevant information from the scientific literature is still an ongoing and complex task. Currently, the text-mining research community is steadily moving towards processing the full body of the scientific literature by making use of rich linguistic features such as full text parsing, to extract biological interactions. The next step will be to combine these with information from scientific databases to support hypothesis generation for the discovery of new knowledge and the extension of biological networks. The generation of comprehensive networks requires technologies such as entity grounding, coordination resolution and co-reference resolution, which are not fully solved and are required to further improve the quality of results. Here, we analyse the state of the art for the extraction of network information from the scientific literature and the evaluation of extraction methods against reference corpora, discuss challenges involved and identify directions for future research. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. Multi-dimensional classification of biomedical text: Toward automated, practical provision of high-utility text to diverse users

    PubMed Central

    Shatkay, Hagit; Pan, Fengxia; Rzhetsky, Andrey; Wilbur, W. John

    2008-01-01

    Motivation: Much current research in biomedical text mining is concerned with serving biologists by extracting certain information from scientific text. We note that there is no ‘average biologist’ client; different users have distinct needs. For instance, as noted in past evaluation efforts (BioCreative, TREC, KDD) database curators are often interested in sentences showing experimental evidence and methods. Conversely, lab scientists searching for known information about a protein may seek facts, typically stated with high confidence. Text-mining systems can target specific end-users and become more effective, if the system can first identify text regions rich in the type of scientific content that is of interest to the user, retrieve documents that have many such regions, and focus on fact extraction from these regions. Here, we study the ability to characterize and classify such text automatically. We have recently introduced a multi-dimensional categorization and annotation scheme, developed to be applicable to a wide variety of biomedical documents and scientific statements, while intended to support specific biomedical retrieval and extraction tasks. Results: The annotation scheme was applied to a large corpus in a controlled effort by eight independent annotators, where three individual annotators independently tagged each sentence. We then trained and tested machine learning classifiers to automatically categorize sentence fragments based on the annotation. We discuss here the issues involved in this task, and present an overview of the results. The latter strongly suggest that automatic annotation along most of the dimensions is highly feasible, and that this new framework for scientific sentence categorization is applicable in practice. Contact: shatkay@cs.queensu.ca PMID:18718948

  17. Automated Methods to Extract Patient New Information from Clinical Notes in Electronic Health Record Systems

    ERIC Educational Resources Information Center

    Zhang, Rui

    2013-01-01

    The widespread adoption of Electronic Health Record (EHR) has resulted in rapid text proliferation within clinical care. Clinicians' use of copying and pasting functions in EHR systems further compounds this by creating a large amount of redundant clinical information in clinical documents. A mixture of redundant information (especially outdated…

  18. [Systematic Readability Analysis of Medical Texts on Websites of German University Clinics for General and Abdominal Surgery].

    PubMed

    Esfahani, B Janghorban; Faron, A; Roth, K S; Grimminger, P P; Luers, J C

    2016-12-01

    Background: Besides the function as one of the main contact points, websites of hospitals serve as medical information portals. As medical information texts should be understood by any patients independent of the literacy skills and educational level, online texts should have an appropriate structure to ease understandability. Materials and Methods: Patient information texts on websites of clinics for general surgery at German university hospitals (n = 36) were systematically analysed. For 9 different surgical topics representative medical information texts were extracted from each website. Using common readability tools and 5 different readability indices the texts were analysed concerning their readability and structure. The analysis was furthermore stratified in relation to geographical regions in Germany. Results: For the definite analysis the texts of 196 internet websites could be used. On average the texts consisted of 25 sentences and 368 words. The reading analysis tools congruously showed that all texts showed a rather low readability demanding a high literacy level from the readers. Conclusion: Patient information texts on German university hospital websites are difficult to understand for most patients. To fulfill the ambition of informing the general population in an adequate way about medical issues, a revision of most medical texts on websites of German surgical hospitals is recommended. Georg Thieme Verlag KG Stuttgart · New York.

  19. MSL: Facilitating automatic and physical analysis of published scientific literature in PDF format

    PubMed Central

    Ahmed, Zeeshan; Dandekar, Thomas

    2018-01-01

    Published scientific literature contains millions of figures, including information about the results obtained from different scientific experiments e.g. PCR-ELISA data, microarray analysis, gel electrophoresis, mass spectrometry data, DNA/RNA sequencing, diagnostic imaging (CT/MRI and ultrasound scans), and medicinal imaging like electroencephalography (EEG), magnetoencephalography (MEG), echocardiography  (ECG), positron-emission tomography (PET) images. The importance of biomedical figures has been widely recognized in scientific and medicine communities, as they play a vital role in providing major original data, experimental and computational results in concise form. One major challenge for implementing a system for scientific literature analysis is extracting and analyzing text and figures from published PDF files by physical and logical document analysis. Here we present a product line architecture based bioinformatics tool ‘Mining Scientific Literature (MSL)’, which supports the extraction of text and images by interpreting all kinds of published PDF files using advanced data mining and image processing techniques. It provides modules for the marginalization of extracted text based on different coordinates and keywords, visualization of extracted figures and extraction of embedded text from all kinds of biological and biomedical figures using applied Optimal Character Recognition (OCR). Moreover, for further analysis and usage, it generates the system’s output in different formats including text, PDF, XML and images files. Hence, MSL is an easy to install and use analysis tool to interpret published scientific literature in PDF format. PMID:29721305

  20. A pilot study of a heuristic algorithm for novel template identification from VA electronic medical record text.

    PubMed

    Redd, Andrew M; Gundlapalli, Adi V; Divita, Guy; Carter, Marjorie E; Tran, Le-Thuy; Samore, Matthew H

    2017-07-01

    Templates in text notes pose challenges for automated information extraction algorithms. We propose a method that identifies novel templates in plain text medical notes. The identification can then be used to either include or exclude templates when processing notes for information extraction. The two-module method is based on the framework of information foraging and addresses the hypothesis that documents containing templates and the templates within those documents can be identified by common features. The first module takes documents from the corpus and groups those with common templates. This is accomplished through a binned word count hierarchical clustering algorithm. The second module extracts the templates. It uses the groupings and performs a longest common subsequence (LCS) algorithm to obtain the constituent parts of the templates. The method was developed and tested on a random document corpus of 750 notes derived from a large database of US Department of Veterans Affairs (VA) electronic medical notes. The grouping module, using hierarchical clustering, identified 23 groups with 3 documents or more, consisting of 120 documents from the 750 documents in our test corpus. Of these, 18 groups had at least one common template that was present in all documents in the group for a positive predictive value of 78%. The LCS extraction module performed with 100% positive predictive value, 94% sensitivity, and 83% negative predictive value. The human review determined that in 4 groups the template covered the entire document, with the remaining 14 groups containing a common section template. Among documents with templates, the number of templates per document ranged from 1 to 14. The mean and median number of templates per group was 5.9 and 5, respectively. The grouping method was successful in finding like documents containing templates. Of the groups of documents containing templates, the LCS module was successful in deciphering text belonging to the template and text that was extraneous. Major obstacles to improved performance included documents composed of multiple templates, templates that included other templates embedded within them, and variants of templates. We demonstrate proof of concept of the grouping and extraction method of identifying templates in electronic medical records in this pilot study and propose methods to improve performance and scaling up. Published by Elsevier Inc.

  1. QTLTableMiner++: semantic mining of QTL tables in scientific articles.

    PubMed

    Singh, Gurnoor; Kuzniar, Arnold; van Mulligen, Erik M; Gavai, Anand; Bachem, Christian W; Visser, Richard G F; Finkers, Richard

    2018-05-25

    A quantitative trait locus (QTL) is a genomic region that correlates with a phenotype. Most of the experimental information about QTL mapping studies is described in tables of scientific publications. Traditional text mining techniques aim to extract information from unstructured text rather than from tables. We present QTLTableMiner ++ (QTM), a table mining tool that extracts and semantically annotates QTL information buried in (heterogeneous) tables of plant science literature. QTM is a command line tool written in the Java programming language. This tool takes scientific articles from the Europe PMC repository as input, extracts QTL tables using keyword matching and ontology-based concept identification. The tables are further normalized using rules derived from table properties such as captions, column headers and table footers. Furthermore, table columns are classified into three categories namely column descriptors, properties and values based on column headers and data types of cell entries. Abbreviations found in the tables are expanded using the Schwartz and Hearst algorithm. Finally, the content of QTL tables is semantically enriched with domain-specific ontologies (e.g. Crop Ontology, Plant Ontology and Trait Ontology) using the Apache Solr search platform and the results are stored in a relational database and a text file. The performance of the QTM tool was assessed by precision and recall based on the information retrieved from two manually annotated corpora of open access articles, i.e. QTL mapping studies in tomato (Solanum lycopersicum) and in potato (S. tuberosum). In summary, QTM detected QTL statements in tomato with 74.53% precision and 92.56% recall and in potato with 82.82% precision and 98.94% recall. QTM is a unique tool that aids in providing QTL information in machine-readable and semantically interoperable formats.

  2. Distant supervision for neural relation extraction integrated with word attention and property features.

    PubMed

    Qu, Jianfeng; Ouyang, Dantong; Hua, Wen; Ye, Yuxin; Li, Ximing

    2018-04-01

    Distant supervision for neural relation extraction is an efficient approach to extracting massive relations with reference to plain texts. However, the existing neural methods fail to capture the critical words in sentence encoding and meanwhile lack useful sentence information for some positive training instances. To address the above issues, we propose a novel neural relation extraction model. First, we develop a word-level attention mechanism to distinguish the importance of each individual word in a sentence, increasing the attention weights for those critical words. Second, we investigate the semantic information from word embeddings of target entities, which can be developed as a supplementary feature for the extractor. Experimental results show that our model outperforms previous state-of-the-art baselines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. A semantic model for multimodal data mining in healthcare information systems.

    PubMed

    Iakovidis, Dimitris; Smailis, Christos

    2012-01-01

    Electronic health records (EHRs) are representative examples of multimodal/multisource data collections; including measurements, images and free texts. The diversity of such information sources and the increasing amounts of medical data produced by healthcare institutes annually, pose significant challenges in data mining. In this paper we present a novel semantic model that describes knowledge extracted from the lowest-level of a data mining process, where information is represented by multiple features i.e. measurements or numerical descriptors extracted from measurements, images, texts or other medical data, forming multidimensional feature spaces. Knowledge collected by manual annotation or extracted by unsupervised data mining from one or more feature spaces is modeled through generalized qualitative spatial semantics. This model enables a unified representation of knowledge across multimodal data repositories. It contributes to bridging the semantic gap, by enabling direct links between low-level features and higher-level concepts e.g. describing body parts, anatomies and pathological findings. The proposed model has been developed in web ontology language based on description logics (OWL-DL) and can be applied to a variety of data mining tasks in medical informatics. It utility is demonstrated for automatic annotation of medical data.

  4. Tags Extarction from Spatial Documents in Search Engines

    NASA Astrophysics Data System (ADS)

    Borhaninejad, S.; Hakimpour, F.; Hamzei, E.

    2015-12-01

    Nowadays the selective access to information on the Web is provided by search engines, but in the cases which the data includes spatial information the search task becomes more complex and search engines require special capabilities. The purpose of this study is to extract the information which lies in spatial documents. To that end, we implement and evaluate information extraction from GML documents and a retrieval method in an integrated approach. Our proposed system consists of three components: crawler, database and user interface. In crawler component, GML documents are discovered and their text is parsed for information extraction; storage. The database component is responsible for indexing of information which is collected by crawlers. Finally the user interface component provides the interaction between system and user. We have implemented this system as a pilot system on an Application Server as a simulation of Web. Our system as a spatial search engine provided searching capability throughout the GML documents and thus an important step to improve the efficiency of search engines has been taken.

  5. Text Extraction from Scene Images by Character Appearance and Structure Modeling

    PubMed Central

    Yi, Chucai; Tian, Yingli

    2012-01-01

    In this paper, we propose a novel algorithm to detect text information from natural scene images. Scene text classification and detection are still open research topics. Our proposed algorithm is able to model both character appearance and structure to generate representative and discriminative text descriptors. The contributions of this paper include three aspects: 1) a new character appearance model by a structure correlation algorithm which extracts discriminative appearance features from detected interest points of character samples; 2) a new text descriptor based on structons and correlatons, which model character structure by structure differences among character samples and structure component co-occurrence; and 3) a new text region localization method by combining color decomposition, character contour refinement, and string line alignment to localize character candidates and refine detected text regions. We perform three groups of experiments to evaluate the effectiveness of our proposed algorithm, including text classification, text detection, and character identification. The evaluation results on benchmark datasets demonstrate that our algorithm achieves the state-of-the-art performance on scene text classification and detection, and significantly outperforms the existing algorithms for character identification. PMID:23316111

  6. Challenges for automatically extracting molecular interactions from full-text articles.

    PubMed

    McIntosh, Tara; Curran, James R

    2009-09-24

    The increasing availability of full-text biomedical articles will allow more biomedical knowledge to be extracted automatically with greater reliability. However, most Information Retrieval (IR) and Extraction (IE) tools currently process only abstracts. The lack of corpora has limited the development of tools that are capable of exploiting the knowledge in full-text articles. As a result, there has been little investigation into the advantages of full-text document structure, and the challenges developers will face in processing full-text articles. We manually annotated passages from full-text articles that describe interactions summarised in a Molecular Interaction Map (MIM). Our corpus tracks the process of identifying facts to form the MIM summaries and captures any factual dependencies that must be resolved to extract the fact completely. For example, a fact in the results section may require a synonym defined in the introduction. The passages are also annotated with negated and coreference expressions that must be resolved.We describe the guidelines for identifying relevant passages and possible dependencies. The corpus includes 2162 sentences from 78 full-text articles. Our corpus analysis demonstrates the necessity of full-text processing; identifies the article sections where interactions are most commonly stated; and quantifies the proportion of interaction statements requiring coherent dependencies. Further, it allows us to report on the relative importance of identifying synonyms and resolving negated expressions. We also experiment with an oracle sentence retrieval system using the corpus as a gold-standard evaluation set. We introduce the MIM corpus, a unique resource that maps interaction facts in a MIM to annotated passages within full-text articles. It is an invaluable case study providing guidance to developers of biomedical IR and IE systems, and can be used as a gold-standard evaluation set for full-text IR tasks.

  7. Reliable Electronic Text: The Elusive Prerequisite for a Host of Human Language Technologies

    DTIC Science & Technology

    2010-09-30

    is not always the case—for example, ligatures in Latin-fonts, and glyphs in Arabic fonts (King, 2008; Carrier, 2009). This complexity, and others...such effects can render electronic text useless for natural language processing ( NLP ). Typically, file converters do not expose the details of the...the many component NLP technologies typically used inside information extraction and text categorization applications, such as tokenization, part-of

  8. Markov Logic Networks for Adverse Drug Event Extraction from Text.

    PubMed

    Natarajan, Sriraam; Bangera, Vishal; Khot, Tushar; Picado, Jose; Wazalwar, Anurag; Costa, Vitor Santos; Page, David; Caldwell, Michael

    2017-05-01

    Adverse drug events (ADEs) are a major concern and point of emphasis for the medical profession, government, and society. A diverse set of techniques from epidemiology, statistics, and computer science are being proposed and studied for ADE discovery from observational health data (e.g., EHR and claims data), social network data (e.g., Google and Twitter posts), and other information sources. Methodologies are needed for evaluating, quantitatively measuring, and comparing the ability of these various approaches to accurately discover ADEs. This work is motivated by the observation that text sources such as the Medline/Medinfo library provide a wealth of information on human health. Unfortunately, ADEs often result from unexpected interactions, and the connection between conditions and drugs is not explicit in these sources. Thus, in this work we address the question of whether we can quantitatively estimate relationships between drugs and conditions from the medical literature. This paper proposes and studies a state-of-the-art NLP-based extraction of ADEs from text.

  9. Domain-independent information extraction in unstructured text

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irwin, N.H.

    Extracting information from unstructured text has become an important research area in recent years due to the large amount of text now electronically available. This status report describes the findings and work done during the second year of a two-year Laboratory Directed Research and Development Project. Building on the first-year`s work of identifying important entities, this report details techniques used to group words into semantic categories and to output templates containing selective document content. Using word profiles and category clustering derived during a training run, the time-consuming knowledge-building task can be avoided. Though the output still lacks in completeness whenmore » compared to systems with domain-specific knowledge bases, the results do look promising. The two approaches are compatible and could complement each other within the same system. Domain-independent approaches retain appeal as a system that adapts and learns will soon outpace a system with any amount of a priori knowledge.« less

  10. Classification of hepatocellular carcinoma stages from free-text clinical and radiology reports

    PubMed Central

    Yim, Wen-wai; Kwan, Sharon W; Johnson, Guy; Yetisgen, Meliha

    2017-01-01

    Cancer stage information is important for clinical research. However, they are not always explicitly noted in electronic medical records. In this paper, we present our work on automatic classification of hepatocellular carcinoma (HCC) stages from free-text clinical and radiology notes. To accomplish this, we defined 11 stage parameters used in the three HCC staging systems, American Joint Committee on Cancer (AJCC), Barcelona Clinic Liver Cancer (BCLC), and Cancer of the Liver Italian Program (CLIP). After aggregating stage parameters to the patient-level, the final stage classifications were achieved using an expert-created decision logic. Each stage parameter relevant for staging was extracted using several classification methods, e.g. sentence classification and automatic information structuring, to identify and normalize text as cancer stage parameter values. Stage parameter extraction for the test set performed at 0.81 F1. Cancer stage prediction for AJCC, BCLC, and CLIP stage classifications were 0.55, 0.50, and 0.43 F1.

  11. BioCreative Workshops for DOE Genome Sciences: Text Mining for Metagenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Cathy H.; Hirschman, Lynette

    The objective of this project was to host BioCreative workshops to define and develop text mining tasks to meet the needs of the Genome Sciences community, focusing on metadata information extraction in metagenomics. Following the successful introduction of metagenomics at the BioCreative IV workshop, members of the metagenomics community and BioCreative communities continued discussion to identify candidate topics for a BioCreative metagenomics track for BioCreative V. Of particular interest was the capture of environmental and isolation source information from text. The outcome was to form a “community of interest” around work on the interactive EXTRACT system, which supported interactive taggingmore » of environmental and species data. This experiment is included in the BioCreative V virtual issue of Database. In addition, there was broad participation by members of the metagenomics community in the panels held at BioCreative V, leading to valuable exchanges between the text mining developers and members of the metagenomics research community. These exchanges are reflected in a number of the overview and perspective pieces also being captured in the BioCreative V virtual issue. Overall, this conversation has exposed the metagenomics researchers to the possibilities of text mining, and educated the text mining developers to the specific needs of the metagenomics community.« less

  12. An annotated corpus with nanomedicine and pharmacokinetic parameters

    PubMed Central

    Lewinski, Nastassja A; Jimenez, Ivan; McInnes, Bridget T

    2017-01-01

    A vast amount of data on nanomedicines is being generated and published, and natural language processing (NLP) approaches can automate the extraction of unstructured text-based data. Annotated corpora are a key resource for NLP and information extraction methods which employ machine learning. Although corpora are available for pharmaceuticals, resources for nanomedicines and nanotechnology are still limited. To foster nanotechnology text mining (NanoNLP) efforts, we have constructed a corpus of annotated drug product inserts taken from the US Food and Drug Administration’s Drugs@FDA online database. In this work, we present the development of the Engineered Nanomedicine Database corpus to support the evaluation of nanomedicine entity extraction. The data were manually annotated for 21 entity mentions consisting of nanomedicine physicochemical characterization, exposure, and biologic response information of 41 Food and Drug Administration-approved nanomedicines. We evaluate the reliability of the manual annotations and demonstrate the use of the corpus by evaluating two state-of-the-art named entity extraction systems, OpenNLP and Stanford NER. The annotated corpus is available open source and, based on these results, guidelines and suggestions for future development of additional nanomedicine corpora are provided. PMID:29066897

  13. Information Gain Based Dimensionality Selection for Classifying Text Documents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumidu Wijayasekara; Milos Manic; Miles McQueen

    2013-06-01

    Selecting the optimal dimensions for various knowledge extraction applications is an essential component of data mining. Dimensionality selection techniques are utilized in classification applications to increase the classification accuracy and reduce the computational complexity. In text classification, where the dimensionality of the dataset is extremely high, dimensionality selection is even more important. This paper presents a novel, genetic algorithm based methodology, for dimensionality selection in text mining applications that utilizes information gain. The presented methodology uses information gain of each dimension to change the mutation probability of chromosomes dynamically. Since the information gain is calculated a priori, the computational complexitymore » is not affected. The presented method was tested on a specific text classification problem and compared with conventional genetic algorithm based dimensionality selection. The results show an improvement of 3% in the true positives and 1.6% in the true negatives over conventional dimensionality selection methods.« less

  14. Automatic Extraction of Destinations, Origins and Route Parts from Human Generated Route Directions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Mitra, Prasenjit; Klippel, Alexander; Maceachren, Alan

    Researchers from the cognitive and spatial sciences are studying text descriptions of movement patterns in order to examine how humans communicate and understand spatial information. In particular, route directions offer a rich source of information on how cognitive systems conceptualize movement patterns by segmenting them into meaningful parts. Route directions are composed using a plethora of cognitive spatial organization principles: changing levels of granularity, hierarchical organization, incorporation of cognitively and perceptually salient elements, and so forth. Identifying such information in text documents automatically is crucial for enabling machine-understanding of human spatial language. The benefits are: a) creating opportunities for large-scale studies of human linguistic behavior; b) extracting and georeferencing salient entities (landmarks) that are used by human route direction providers; c) developing methods to translate route directions to sketches and maps; and d) enabling queries on large corpora of crawled/analyzed movement data. In this paper, we introduce our approach and implementations that bring us closer to the goal of automatically processing linguistic route directions. We report on research directed at one part of the larger problem, that is, extracting the three most critical parts of route directions and movement patterns in general: origin, destination, and route parts. We use machine-learning based algorithms to extract these parts of routes, including, for example, destination names and types. We prove the effectiveness of our approach in several experiments using hand-tagged corpora.

  15. [Technologies for Complex Intelligent Clinical Data Analysis].

    PubMed

    Baranov, A A; Namazova-Baranova, L S; Smirnov, I V; Devyatkin, D A; Shelmanov, A O; Vishneva, E A; Antonova, E V; Smirnov, V I

    2016-01-01

    The paper presents the system for intelligent analysis of clinical information. Authors describe methods implemented in the system for clinical information retrieval, intelligent diagnostics of chronic diseases, patient's features importance and for detection of hidden dependencies between features. Results of the experimental evaluation of these methods are also presented. Healthcare facilities generate a large flow of both structured and unstructured data which contain important information about patients. Test results are usually retained as structured data but some data is retained in the form of natural language texts (medical history, the results of physical examination, and the results of other examinations, such as ultrasound, ECG or X-ray studies). Many tasks arising in clinical practice can be automated applying methods for intelligent analysis of accumulated structured array and unstructured data that leads to improvement of the healthcare quality. the creation of the complex system for intelligent data analysis in the multi-disciplinary pediatric center. Authors propose methods for information extraction from clinical texts in Russian. The methods are carried out on the basis of deep linguistic analysis. They retrieve terms of diseases, symptoms, areas of the body and drugs. The methods can recognize additional attributes such as "negation" (indicates that the disease is absent), "no patient" (indicates that the disease refers to the patient's family member, but not to the patient), "severity of illness", disease course", "body region to which the disease refers". Authors use a set of hand-drawn templates and various techniques based on machine learning to retrieve information using a medical thesaurus. The extracted information is used to solve the problem of automatic diagnosis of chronic diseases. A machine learning method for classification of patients with similar nosology and the methodfor determining the most informative patients'features are also proposed. Authors have processed anonymized health records from the pediatric center to estimate the proposed methods. The results show the applicability of the information extracted from the texts for solving practical problems. The records ofpatients with allergic, glomerular and rheumatic diseases were used for experimental assessment of the method of automatic diagnostic. Authors have also determined the most appropriate machine learning methods for classification of patients for each group of diseases, as well as the most informative disease signs. It has been found that using additional information extracted from clinical texts, together with structured data helps to improve the quality of diagnosis of chronic diseases. Authors have also obtained pattern combinations of signs of diseases. The proposed methods have been implemented in the intelligent data processing system for a multidisciplinary pediatric center. The experimental results show the availability of the system to improve the quality of pediatric healthcare.

  16. PPInterFinder--a mining tool for extracting causal relations on human proteins from literature.

    PubMed

    Raja, Kalpana; Subramani, Suresh; Natarajan, Jeyakumar

    2013-01-01

    One of the most common and challenging problem in biomedical text mining is to mine protein-protein interactions (PPIs) from MEDLINE abstracts and full-text research articles because PPIs play a major role in understanding the various biological processes and the impact of proteins in diseases. We implemented, PPInterFinder--a web-based text mining tool to extract human PPIs from biomedical literature. PPInterFinder uses relation keyword co-occurrences with protein names to extract information on PPIs from MEDLINE abstracts and consists of three phases. First, it identifies the relation keyword using a parser with Tregex and a relation keyword dictionary. Next, it automatically identifies the candidate PPI pairs with a set of rules related to PPI recognition. Finally, it extracts the relations by matching the sentence with a set of 11 specific patterns based on the syntactic nature of PPI pair. We find that PPInterFinder is capable of predicting PPIs with the accuracy of 66.05% on AIMED corpus and outperforms most of the existing systems. DATABASE URL: http://www.biomining-bu.in/ppinterfinder/

  17. PPInterFinder—a mining tool for extracting causal relations on human proteins from literature

    PubMed Central

    Raja, Kalpana; Subramani, Suresh; Natarajan, Jeyakumar

    2013-01-01

    One of the most common and challenging problem in biomedical text mining is to mine protein–protein interactions (PPIs) from MEDLINE abstracts and full-text research articles because PPIs play a major role in understanding the various biological processes and the impact of proteins in diseases. We implemented, PPInterFinder—a web-based text mining tool to extract human PPIs from biomedical literature. PPInterFinder uses relation keyword co-occurrences with protein names to extract information on PPIs from MEDLINE abstracts and consists of three phases. First, it identifies the relation keyword using a parser with Tregex and a relation keyword dictionary. Next, it automatically identifies the candidate PPI pairs with a set of rules related to PPI recognition. Finally, it extracts the relations by matching the sentence with a set of 11 specific patterns based on the syntactic nature of PPI pair. We find that PPInterFinder is capable of predicting PPIs with the accuracy of 66.05% on AIMED corpus and outperforms most of the existing systems. Database URL: http://www.biomining-bu.in/ppinterfinder/ PMID:23325628

  18. PREDOSE: A Semantic Web Platform for Drug Abuse Epidemiology using Social Media

    PubMed Central

    Cameron, Delroy; Smith, Gary A.; Daniulaityte, Raminta; Sheth, Amit P.; Dave, Drashti; Chen, Lu; Anand, Gaurish; Carlson, Robert; Watkins, Kera Z.; Falck, Russel

    2013-01-01

    Objectives The role of social media in biomedical knowledge mining, including clinical, medical and healthcare informatics, prescription drug abuse epidemiology and drug pharmacology, has become increasingly significant in recent years. Social media offers opportunities for people to share opinions and experiences freely in online communities, which may contribute information beyond the knowledge of domain professionals. This paper describes the development of a novel Semantic Web platform called PREDOSE (PREscription Drug abuse Online Surveillance and Epidemiology), which is designed to facilitate the epidemiologic study of prescription (and related) drug abuse practices using social media. PREDOSE uses web forum posts and domain knowledge, modeled in a manually created Drug Abuse Ontology (DAO) (pronounced dow), to facilitate the extraction of semantic information from User Generated Content (UGC). A combination of lexical, pattern-based and semantics-based techniques is used together with the domain knowledge to extract fine-grained semantic information from UGC. In a previous study, PREDOSE was used to obtain the datasets from which new knowledge in drug abuse research was derived. Here, we report on various platform enhancements, including an updated DAO, new components for relationship and triple extraction, and tools for content analysis, trend detection and emerging patterns exploration, which enhance the capabilities of the PREDOSE platform. Given these enhancements, PREDOSE is now more equipped to impact drug abuse research by alleviating traditional labor-intensive content analysis tasks. Methods Using custom web crawlers that scrape UGC from publicly available web forums, PREDOSE first automates the collection of web-based social media content for subsequent semantic annotation. The annotation scheme is modeled in the DAO, and includes domain specific knowledge such as prescription (and related) drugs, methods of preparation, side effects, routes of administration, etc. The DAO is also used to help recognize three types of data, namely: 1) entities, 2) relationships and 3) triples. PREDOSE then uses a combination of lexical and semantic-based techniques to extract entities and relationships from the scraped content, and a top-down approach for triple extraction that uses patterns expressed in the DAO. In addition, PREDOSE uses publicly available lexicons to identify initial sentiment expressions in text, and then a probabilistic optimization algorithm (from related research) to extract the final sentiment expressions. Together, these techniques enable the capture of fine-grained semantic information from UGC, and querying, search, trend analysis and overall content analysis of social media related to prescription drug abuse. Moreover, extracted data are also made available to domain experts for the creation of training and test sets for use in evaluation and refinements in information extraction techniques. Results A recent evaluation of the information extraction techniques applied in the PREDOSE platform indicates 85% precision and 72% recall in entity identification, on a manually created gold standard dataset. In another study, PREDOSE achieved 36% precision in relationship identification and 33% precision in triple extraction, through manual evaluation by domain experts. Given the complexity of the relationship and triple extraction tasks and the abstruse nature of social media texts, we interpret these as favorable initial results. Extracted semantic information is currently in use in an online discovery support system, by prescription drug abuse researchers at the Center for Interventions, Treatment and Addictions Research (CITAR) at Wright State University. Conclusion A comprehensive platform for entity, relationship, triple and sentiment extraction from such abstruse texts has never been developed for drug abuse research. PREDOSE has already demonstrated the importance of mining social media by providing data from which new findings in drug abuse research were uncovered. Given the recent platform enhancements, including the refined DAO, components for relationship and triple extraction, and tools for content, trend and emerging pattern analysis, it is expected that PREDOSE will play a significant role in advancing drug abuse epidemiology in future. PMID:23892295

  19. Automatic indexing of compound words based on mutual information for Korean text retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan Koo Kim; Yoo Kun Cho

    In this paper, we present an automatic indexing technique for compound words suitable to an aggulutinative language, specifically Korean. Firstly, we present the construction conditions to compose compound words as indexing terms. Also we present the decomposition rules applicable to consecutive nouns to extract all contents of text. Finally we propose a measure to estimate the usefulness of a term, mutual information, to calculate the degree of word association of compound words, based on the information theoretic notion. By applying this method, our system has raised the precision rate of compound words from 72% to 87%.

  20. Mining biomedical images towards valuable information retrieval in biomedical and life sciences

    PubMed Central

    Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas

    2016-01-01

    Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries. PMID:27538578

  1. Adverse Event extraction from Structured Product Labels using the Event-based Text-mining of Health Electronic Records (ETHER)system.

    PubMed

    Pandey, Abhishek; Kreimeyer, Kory; Foster, Matthew; Botsis, Taxiarchis; Dang, Oanh; Ly, Thomas; Wang, Wei; Forshee, Richard

    2018-01-01

    Structured Product Labels follow an XML-based document markup standard approved by the Health Level Seven organization and adopted by the US Food and Drug Administration as a mechanism for exchanging medical products information. Their current organization makes their secondary use rather challenging. We used the Side Effect Resource database and DailyMed to generate a comparison dataset of 1159 Structured Product Labels. We processed the Adverse Reaction section of these Structured Product Labels with the Event-based Text-mining of Health Electronic Records system and evaluated its ability to extract and encode Adverse Event terms to Medical Dictionary for Regulatory Activities Preferred Terms. A small sample of 100 labels was then selected for further analysis. Of the 100 labels, Event-based Text-mining of Health Electronic Records achieved a precision and recall of 81 percent and 92 percent, respectively. This study demonstrated Event-based Text-mining of Health Electronic Record's ability to extract and encode Adverse Event terms from Structured Product Labels which may potentially support multiple pharmacoepidemiological tasks.

  2. Unsupervised Biomedical Named Entity Recognition: Experiments with Clinical and Biological Texts

    PubMed Central

    Zhang, Shaodian; Elhadad, Nóemie

    2013-01-01

    Named entity recognition is a crucial component of biomedical natural language processing, enabling information extraction and ultimately reasoning over and knowledge discovery from text. Much progress has been made in the design of rule-based and supervised tools, but they are often genre and task dependent. As such, adapting them to different genres of text or identifying new types of entities requires major effort in re-annotation or rule development. In this paper, we propose an unsupervised approach to extracting named entities from biomedical text. We describe a stepwise solution to tackle the challenges of entity boundary detection and entity type classification without relying on any handcrafted rules, heuristics, or annotated data. A noun phrase chunker followed by a filter based on inverse document frequency extracts candidate entities from free text. Classification of candidate entities into categories of interest is carried out by leveraging principles from distributional semantics. Experiments show that our system, especially the entity classification step, yields competitive results on two popular biomedical datasets of clinical notes and biological literature, and outperforms a baseline dictionary match approach. Detailed error analysis provides a road map for future work. PMID:23954592

  3. The value of necropsy reports for animal health surveillance.

    PubMed

    Küker, Susanne; Faverjon, Celine; Furrer, Lenz; Berezowski, John; Posthaus, Horst; Rinaldi, Fabio; Vial, Flavie

    2018-06-18

    Animal health data recorded in free text, such as in necropsy reports, can have valuable information for national surveillance systems. However, these data are rarely utilized because the text format requires labor-intensive classification of records before they can be analyzed with using statistical or other software. In a previous study, we designed a text-mining tool to extract data from text in necropsy reports. In the current study, we used the tool to extract data from the reports from pig and cattle necropsies performed between 2000 and 2011 at the Institute of Animal Pathology (ITPA), University of Bern, Switzerland. We evaluated data quality in terms of credibility, completeness and representativeness of the Swiss pig and cattle populations. Data was easily extracted from necropsy reports. Data quality in terms of completeness and validity varied a lot depending on the type of data reported. Diseases of the gastrointestinal system were reported most frequently (54.6% of pig submissions and 40.8% of cattle submissions). Diseases affecting serous membranes were reported in 16.0% of necropsied pigs and 27.6% of cattle. Respiratory diseases were reported in 18.3% of pigs and 21.6% of cattle submissions. This study suggests that extracting data from necropsy reports can provide information of value for animal health surveillance. This data has potential value for monitoring endemic disease syndromes in different age and production groups, or for early detection of emerging or re-emerging diseases. The study identified data entry and other errors that could be corrected to improve the quality and validity of the data. Submissions to veterinary diagnostic laboratories have selection biases and these should be considered when designing surveillance systems that include necropsy reports.

  4. Exploring Spanish health social media for detecting drug effects.

    PubMed

    Segura-Bedmar, Isabel; Martínez, Paloma; Revert, Ricardo; Moreno-Schneider, Julián

    2015-01-01

    Adverse Drug reactions (ADR) cause a high number of deaths among hospitalized patients in developed countries. Major drug agencies have devoted a great interest in the early detection of ADRs due to their high incidence and increasing health care costs. Reporting systems are available in order for both healthcare professionals and patients to alert about possible ADRs. However, several studies have shown that these adverse events are underestimated. Our hypothesis is that health social networks could be a significant information source for the early detection of ADRs as well as of new drug indications. In this work we present a system for detecting drug effects (which include both adverse drug reactions as well as drug indications) from user posts extracted from a Spanish health forum. Texts were processed using MeaningCloud, a multilingual text analysis engine, to identify drugs and effects. In addition, we developed the first Spanish database storing drugs as well as their effects automatically built from drug package inserts gathered from online websites. We then applied a distant-supervision method using the database on a collection of 84,000 messages in order to extract the relations between drugs and their effects. To classify the relation instances, we used a kernel method based only on shallow linguistic information of the sentences. Regarding Relation Extraction of drugs and their effects, the distant supervision approach achieved a recall of 0.59 and a precision of 0.48. The task of extracting relations between drugs and their effects from social media is a complex challenge due to the characteristics of social media texts. These texts, typically posts or tweets, usually contain many grammatical errors and spelling mistakes. Moreover, patients use lay terminology to refer to diseases, symptoms and indications that is not usually included in lexical resources in languages other than English.

  5. Learning to research in first grade: Bridging the transition from narrative to expository texts and tasks

    NASA Astrophysics Data System (ADS)

    Weise, Richard

    Decades of research indicate that students at all academic grade and performance levels perform poorly with informational texts and tasks and particularly with locating assignment-relevant information in expository texts. Students have little understanding of the individual tasks required, the arc of the activity, the hierarchical structure of the information they seek, or how to reconstitute and interpret the information they extract. Poor performance begins with the introduction of textbooks and research assignments in fourth grade and continues into adulthood. However, to date, neither educators nor researchers have substantially addressed this problem. In this quasi-experimental study, we ask if first-grade children can perform essential tasks in identifying, extracting, and integrating assignment-relevant information and if instruction improves their performance. To answer this question, we conducted a 15-week, teacher-led, intervention in two first-grade classrooms in an inner-city Nashville elementary school. We created a computer learning environment (NoteTaker) to facilitate children's creation of a mental model of the research process and a narrative/expository bridge curriculum to support the children's transition from all narrative to all expository texts and tasks. We also created a new scaffolding taxonomy and a reading-to-research model to focus our research. Teachers participated in weekly professional development workshops. The results of this quasi-experimental study indicate that at-risk, first-grade children are able to (a) identify relevant information in an expository text, (b) categorize the information they identify, and (c) justify their choice of category. Children's performance in the first and last tasks significantly improved with instruction, and low-performing readers showed the greatest benefits from instruction. We find that the children's performance in categorizing information depended upon content-specific knowledge that was not taught, as well as on the process knowledge that was taught. We also find that children's narrative reading performance predicted their initial-performance for each assessment measure. We argue that first-grade children are developmentally ready to read expository texts and to learn reading-to-research tasks and that primary-school literacy instruction should not be limited to reading and writing stories.

  6. DEVELOPMENT AND PERFORMANCE OF TEXT-MINING ALGORITHMS TO EXTRACT SOCIOECONOMIC STATUS FROM DE-IDENTIFIED ELECTRONIC HEALTH RECORDS.

    PubMed

    Hollister, Brittany M; Restrepo, Nicole A; Farber-Eger, Eric; Crawford, Dana C; Aldrich, Melinda C; Non, Amy

    2017-01-01

    Socioeconomic status (SES) is a fundamental contributor to health, and a key factor underlying racial disparities in disease. However, SES data are rarely included in genetic studies due in part to the difficultly of collecting these data when studies were not originally designed for that purpose. The emergence of large clinic-based biobanks linked to electronic health records (EHRs) provides research access to large patient populations with longitudinal phenotype data captured in structured fields as billing codes, procedure codes, and prescriptions. SES data however, are often not explicitly recorded in structured fields, but rather recorded in the free text of clinical notes and communications. The content and completeness of these data vary widely by practitioner. To enable gene-environment studies that consider SES as an exposure, we sought to extract SES variables from racial/ethnic minority adult patients (n=9,977) in BioVU, the Vanderbilt University Medical Center biorepository linked to de-identified EHRs. We developed several measures of SES using information available within the de-identified EHR, including broad categories of occupation, education, insurance status, and homelessness. Two hundred patients were randomly selected for manual review to develop a set of seven algorithms for extracting SES information from de-identified EHRs. The algorithms consist of 15 categories of information, with 830 unique search terms. SES data extracted from manual review of 50 randomly selected records were compared to data produced by the algorithm, resulting in positive predictive values of 80.0% (education), 85.4% (occupation), 87.5% (unemployment), 63.6% (retirement), 23.1% (uninsured), 81.8% (Medicaid), and 33.3% (homelessness), suggesting some categories of SES data are easier to extract in this EHR than others. The SES data extraction approach developed here will enable future EHR-based genetic studies to integrate SES information into statistical analyses. Ultimately, incorporation of measures of SES into genetic studies will help elucidate the impact of the social environment on disease risk and outcomes.

  7. Building an automated SOAP classifier for emergency department reports.

    PubMed

    Mowery, Danielle; Wiebe, Janyce; Visweswaran, Shyam; Harkema, Henk; Chapman, Wendy W

    2012-02-01

    Information extraction applications that extract structured event and entity information from unstructured text can leverage knowledge of clinical report structure to improve performance. The Subjective, Objective, Assessment, Plan (SOAP) framework, used to structure progress notes to facilitate problem-specific, clinical decision making by physicians, is one example of a well-known, canonical structure in the medical domain. Although its applicability to structuring data is understood, its contribution to information extraction tasks has not yet been determined. The first step to evaluating the SOAP framework's usefulness for clinical information extraction is to apply the model to clinical narratives and develop an automated SOAP classifier that classifies sentences from clinical reports. In this quantitative study, we applied the SOAP framework to sentences from emergency department reports, and trained and evaluated SOAP classifiers built with various linguistic features. We found the SOAP framework can be applied manually to emergency department reports with high agreement (Cohen's kappa coefficients over 0.70). Using a variety of features, we found classifiers for each SOAP class can be created with moderate to outstanding performance with F(1) scores of 93.9 (subjective), 94.5 (objective), 75.7 (assessment), and 77.0 (plan). We look forward to expanding the framework and applying the SOAP classification to clinical information extraction tasks. Copyright © 2011. Published by Elsevier Inc.

  8. Extracting salient sublexical units from written texts: “Emophon,” a corpus-based approach to phonological iconicity

    PubMed Central

    Aryani, Arash; Jacobs, Arthur M.; Conrad, Markus

    2013-01-01

    A growing body of literature in psychology, linguistics, and the neurosciences has paid increasing attention to the understanding of the relationships between phonological representations of words and their meaning: a phenomenon also known as phonological iconicity. In this article, we investigate how a text's intended emotional meaning, particularly in literature and poetry, may be reflected at the level of sublexical phonological salience and the use of foregrounded elements. To extract such elements from a given text, we developed a probabilistic model to predict the exceeding of a confidence interval for specific sublexical units concerning their frequency of occurrence within a given text contrasted with a reference linguistic corpus for the German language. Implementing this model in a computational application, we provide a text analysis tool which automatically delivers information about sublexical phonological salience allowing researchers, inter alia, to investigate effects of the sublexical emotional tone of texts based on current findings on phonological iconicity. PMID:24101907

  9. Towards an intelligent framework for multimodal affective data analysis.

    PubMed

    Poria, Soujanya; Cambria, Erik; Hussain, Amir; Huang, Guang-Bin

    2015-03-01

    An increasingly large amount of multimodal content is posted on social media websites such as YouTube and Facebook everyday. In order to cope with the growth of such so much multimodal data, there is an urgent need to develop an intelligent multi-modal analysis framework that can effectively extract information from multiple modalities. In this paper, we propose a novel multimodal information extraction agent, which infers and aggregates the semantic and affective information associated with user-generated multimodal data in contexts such as e-learning, e-health, automatic video content tagging and human-computer interaction. In particular, the developed intelligent agent adopts an ensemble feature extraction approach by exploiting the joint use of tri-modal (text, audio and video) features to enhance the multimodal information extraction process. In preliminary experiments using the eNTERFACE dataset, our proposed multi-modal system is shown to achieve an accuracy of 87.95%, outperforming the best state-of-the-art system by more than 10%, or in relative terms, a 56% reduction in error rate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Understanding disciplinary vocabularies using a full-text enabled domain-independent term extraction approach.

    PubMed

    Yan, Erjia; Williams, Jake; Chen, Zheng

    2017-01-01

    Publication metadata help deliver rich analyses of scholarly communication. However, research concepts and ideas are more effectively expressed through unstructured fields such as full texts. Thus, the goals of this paper are to employ a full-text enabled method to extract terms relevant to disciplinary vocabularies, and through them, to understand the relationships between disciplines. This paper uses an efficient, domain-independent term extraction method to extract disciplinary vocabularies from a large multidisciplinary corpus of PLoS ONE publications. It finds a power-law pattern in the frequency distributions of terms present in each discipline, indicating a semantic richness potentially sufficient for further study and advanced analysis. The salient relationships amongst these vocabularies become apparent in application of a principal component analysis. For example, Mathematics and Computer and Information Sciences were found to have similar vocabulary use patterns along with Engineering and Physics; while Chemistry and the Social Sciences were found to exhibit contrasting vocabulary use patterns along with the Earth Sciences and Chemistry. These results have implications to studies of scholarly communication as scholars attempt to identify the epistemological cultures of disciplines, and as a full text-based methodology could lead to machine learning applications in the automated classification of scholarly work according to disciplinary vocabularies.

  11. Understanding disciplinary vocabularies using a full-text enabled domain-independent term extraction approach

    PubMed Central

    Williams, Jake; Chen, Zheng

    2017-01-01

    Publication metadata help deliver rich analyses of scholarly communication. However, research concepts and ideas are more effectively expressed through unstructured fields such as full texts. Thus, the goals of this paper are to employ a full-text enabled method to extract terms relevant to disciplinary vocabularies, and through them, to understand the relationships between disciplines. This paper uses an efficient, domain-independent term extraction method to extract disciplinary vocabularies from a large multidisciplinary corpus of PLoS ONE publications. It finds a power-law pattern in the frequency distributions of terms present in each discipline, indicating a semantic richness potentially sufficient for further study and advanced analysis. The salient relationships amongst these vocabularies become apparent in application of a principal component analysis. For example, Mathematics and Computer and Information Sciences were found to have similar vocabulary use patterns along with Engineering and Physics; while Chemistry and the Social Sciences were found to exhibit contrasting vocabulary use patterns along with the Earth Sciences and Chemistry. These results have implications to studies of scholarly communication as scholars attempt to identify the epistemological cultures of disciplines, and as a full text-based methodology could lead to machine learning applications in the automated classification of scholarly work according to disciplinary vocabularies. PMID:29186141

  12. Chapter 4. Arceuthobium in North America

    Treesearch

    F. G. Hawksworth; D. Wiens; B. W. Geils

    2002-01-01

    The biology, pathology, and systematics of dwarf mistletoes are recently and well reviewed in Hawksworth and Wiens (1996). That monograph forms the basis for the text in this and chapter 5 and should be consulted for more information (for example, references, photographs, and distribution maps). In addition to extracting the information that would be most relevant to...

  13. Using automatically extracted information from mammography reports for decision-support

    PubMed Central

    Bozkurt, Selen; Gimenez, Francisco; Burnside, Elizabeth S.; Gulkesen, Kemal H.; Rubin, Daniel L.

    2016-01-01

    Objective To evaluate a system we developed that connects natural language processing (NLP) for information extraction from narrative text mammography reports with a Bayesian network for decision-support about breast cancer diagnosis. The ultimate goal of this system is to provide decision support as part of the workflow of producing the radiology report. Materials and methods We built a system that uses an NLP information extraction system (which extract BI-RADS descriptors and clinical information from mammography reports) to provide the necessary inputs to a Bayesian network (BN) decision support system (DSS) that estimates lesion malignancy from BI-RADS descriptors. We used this integrated system to predict diagnosis of breast cancer from radiology text reports and evaluated it with a reference standard of 300 mammography reports. We collected two different outputs from the DSS: (1) the probability of malignancy and (2) the BI-RADS final assessment category. Since NLP may produce imperfect inputs to the DSS, we compared the difference between using perfect (“reference standard”) structured inputs to the DSS (“RS-DSS”) vs NLP-derived inputs (“NLP-DSS”) on the output of the DSS using the concordance correlation coefficient. We measured the classification accuracy of the BI-RADS final assessment category when using NLP-DSS, compared with the ground truth category established by the radiologist. Results The NLP-DSS and RS-DSS had closely matched probabilities, with a mean paired difference of 0.004 ± 0.025. The concordance correlation of these paired measures was 0.95. The accuracy of the NLP-DSS to predict the correct BI-RADS final assessment category was 97.58%. Conclusion The accuracy of the information extracted from mammography reports using the NLP system was sufficient to provide accurate DSS results. We believe our system could ultimately reduce the variation in practice in mammography related to assessment of malignant lesions and improve management decisions. PMID:27388877

  14. Building a protein name dictionary from full text: a machine learning term extraction approach.

    PubMed

    Shi, Lei; Campagne, Fabien

    2005-04-07

    The majority of information in the biological literature resides in full text articles, instead of abstracts. Yet, abstracts remain the focus of many publicly available literature data mining tools. Most literature mining tools rely on pre-existing lexicons of biological names, often extracted from curated gene or protein databases. This is a limitation, because such databases have low coverage of the many name variants which are used to refer to biological entities in the literature. We present an approach to recognize named entities in full text. The approach collects high frequency terms in an article, and uses support vector machines (SVM) to identify biological entity names. It is also computationally efficient and robust to noise commonly found in full text material. We use the method to create a protein name dictionary from a set of 80,528 full text articles. Only 8.3% of the names in this dictionary match SwissProt description lines. We assess the quality of the dictionary by studying its protein name recognition performance in full text. This dictionary term lookup method compares favourably to other published methods, supporting the significance of our direct extraction approach. The method is strong in recognizing name variants not found in SwissProt.

  15. Building a protein name dictionary from full text: a machine learning term extraction approach

    PubMed Central

    Shi, Lei; Campagne, Fabien

    2005-01-01

    Background The majority of information in the biological literature resides in full text articles, instead of abstracts. Yet, abstracts remain the focus of many publicly available literature data mining tools. Most literature mining tools rely on pre-existing lexicons of biological names, often extracted from curated gene or protein databases. This is a limitation, because such databases have low coverage of the many name variants which are used to refer to biological entities in the literature. Results We present an approach to recognize named entities in full text. The approach collects high frequency terms in an article, and uses support vector machines (SVM) to identify biological entity names. It is also computationally efficient and robust to noise commonly found in full text material. We use the method to create a protein name dictionary from a set of 80,528 full text articles. Only 8.3% of the names in this dictionary match SwissProt description lines. We assess the quality of the dictionary by studying its protein name recognition performance in full text. Conclusion This dictionary term lookup method compares favourably to other published methods, supporting the significance of our direct extraction approach. The method is strong in recognizing name variants not found in SwissProt. PMID:15817129

  16. Anonymizing and Sharing Medical Text Records

    PubMed Central

    Li, Xiao-Bai; Qin, Jialun

    2017-01-01

    Health information technology has increased accessibility of health and medical data and benefited medical research and healthcare management. However, there are rising concerns about patient privacy in sharing medical and healthcare data. A large amount of these data are in free text form. Existing techniques for privacy-preserving data sharing deal largely with structured data. Current privacy approaches for medical text data focus on detection and removal of patient identifiers from the data, which may be inadequate for protecting privacy or preserving data quality. We propose a new systematic approach to extract, cluster, and anonymize medical text records. Our approach integrates methods developed in both data privacy and health informatics fields. The key novel elements of our approach include a recursive partitioning method to cluster medical text records based on the similarity of the health and medical information and a value-enumeration method to anonymize potentially identifying information in the text data. An experimental study is conducted using real-world medical documents. The results of the experiments demonstrate the effectiveness of the proposed approach. PMID:29569650

  17. DOCU-TEXT: A tool before the data dictionary

    NASA Technical Reports Server (NTRS)

    Carter, B.

    1983-01-01

    DOCU-TEXT, a proprietary software package that aids in the production of documentation for a data processing organization and can be installed and operated only on IBM computers is discussed. In organizing information that ultimately will reside in a data dictionary, DOCU-TEXT proved to be a useful documentation tool in extracting information from existing production jobs, procedure libraries, system catalogs, control data sets and related files. DOCU-TEXT reads these files to derive data that is useful at the system level. The output of DOCU-TEXT is a series of user selectable reports. These reports can reflect the interactions within a single job stream, a complete system, or all the systems in an installation. Any single report, or group of reports, can be generated in an independent documentation pass.

  18. DiMeX: A Text Mining System for Mutation-Disease Association Extraction.

    PubMed

    Mahmood, A S M Ashique; Wu, Tsung-Jung; Mazumder, Raja; Vijay-Shanker, K

    2016-01-01

    The number of published articles describing associations between mutations and diseases is increasing at a fast pace. There is a pressing need to gather such mutation-disease associations into public knowledge bases, but manual curation slows down the growth of such databases. We have addressed this problem by developing a text-mining system (DiMeX) to extract mutation to disease associations from publication abstracts. DiMeX consists of a series of natural language processing modules that preprocess input text and apply syntactic and semantic patterns to extract mutation-disease associations. DiMeX achieves high precision and recall with F-scores of 0.88, 0.91 and 0.89 when evaluated on three different datasets for mutation-disease associations. DiMeX includes a separate component that extracts mutation mentions in text and associates them with genes. This component has been also evaluated on different datasets and shown to achieve state-of-the-art performance. The results indicate that our system outperforms the existing mutation-disease association tools, addressing the low precision problems suffered by most approaches. DiMeX was applied on a large set of abstracts from Medline to extract mutation-disease associations, as well as other relevant information including patient/cohort size and population data. The results are stored in a database that can be queried and downloaded at http://biotm.cis.udel.edu/dimex/. We conclude that this high-throughput text-mining approach has the potential to significantly assist researchers and curators to enrich mutation databases.

  19. DiMeX: A Text Mining System for Mutation-Disease Association Extraction

    PubMed Central

    Mahmood, A. S. M. Ashique; Wu, Tsung-Jung; Mazumder, Raja; Vijay-Shanker, K.

    2016-01-01

    The number of published articles describing associations between mutations and diseases is increasing at a fast pace. There is a pressing need to gather such mutation-disease associations into public knowledge bases, but manual curation slows down the growth of such databases. We have addressed this problem by developing a text-mining system (DiMeX) to extract mutation to disease associations from publication abstracts. DiMeX consists of a series of natural language processing modules that preprocess input text and apply syntactic and semantic patterns to extract mutation-disease associations. DiMeX achieves high precision and recall with F-scores of 0.88, 0.91 and 0.89 when evaluated on three different datasets for mutation-disease associations. DiMeX includes a separate component that extracts mutation mentions in text and associates them with genes. This component has been also evaluated on different datasets and shown to achieve state-of-the-art performance. The results indicate that our system outperforms the existing mutation-disease association tools, addressing the low precision problems suffered by most approaches. DiMeX was applied on a large set of abstracts from Medline to extract mutation-disease associations, as well as other relevant information including patient/cohort size and population data. The results are stored in a database that can be queried and downloaded at http://biotm.cis.udel.edu/dimex/. We conclude that this high-throughput text-mining approach has the potential to significantly assist researchers and curators to enrich mutation databases. PMID:27073839

  20. Real-time incident detection using social media data.

    DOT National Transportation Integrated Search

    2016-05-09

    The effectiveness of traditional incident detection is often limited by sparse sensor coverage, and reporting incidents to emergency response systems : is labor-intensive. This research project mines tweet texts to extract incident information on bot...

  1. Enriching a document collection by integrating information extraction and PDF annotation

    NASA Astrophysics Data System (ADS)

    Powley, Brett; Dale, Robert; Anisimoff, Ilya

    2009-01-01

    Modern digital libraries offer all the hyperlinking possibilities of the World Wide Web: when a reader finds a citation of interest, in many cases she can now click on a link to be taken to the cited work. This paper presents work aimed at providing the same ease of navigation for legacy PDF document collections that were created before the possibility of integrating hyperlinks into documents was ever considered. To achieve our goal, we need to carry out two tasks: first, we need to identify and link citations and references in the text with high reliability; and second, we need the ability to determine physical PDF page locations for these elements. We demonstrate the use of a high-accuracy citation extraction algorithm which significantly improves on earlier reported techniques, and a technique for integrating PDF processing with a conventional text-stream based information extraction pipeline. We demonstrate these techniques in the context of a particular document collection, this being the ACL Anthology; but the same approach can be applied to other document sets.

  2. Semantic extraction and processing of medical records for patient-oriented visual index

    NASA Astrophysics Data System (ADS)

    Zheng, Weilin; Dong, Wenjie; Chen, Xiangjiao; Zhang, Jianguo

    2012-02-01

    To have comprehensive and completed understanding healthcare status of a patient, doctors need to search patient medical records from different healthcare information systems, such as PACS, RIS, HIS, USIS, as a reference of diagnosis and treatment decisions for the patient. However, it is time-consuming and tedious to do these procedures. In order to solve this kind of problems, we developed a patient-oriented visual index system (VIS) to use the visual technology to show health status and to retrieve the patients' examination information stored in each system with a 3D human model. In this presentation, we present a new approach about how to extract the semantic and characteristic information from the medical record systems such as RIS/USIS to create the 3D Visual Index. This approach includes following steps: (1) Building a medical characteristic semantic knowledge base; (2) Developing natural language processing (NLP) engine to perform semantic analysis and logical judgment on text-based medical records; (3) Applying the knowledge base and NLP engine on medical records to extract medical characteristics (e.g., the positive focus information), and then mapping extracted information to related organ/parts of 3D human model to create the visual index. We performed the testing procedures on 559 samples of radiological reports which include 853 focuses, and achieved 828 focuses' information. The successful rate of focus extraction is about 97.1%.

  3. Comparing deep learning and concept extraction based methods for patient phenotyping from clinical narratives.

    PubMed

    Gehrmann, Sebastian; Dernoncourt, Franck; Li, Yeran; Carlson, Eric T; Wu, Joy T; Welt, Jonathan; Foote, John; Moseley, Edward T; Grant, David W; Tyler, Patrick D; Celi, Leo A

    2018-01-01

    In secondary analysis of electronic health records, a crucial task consists in correctly identifying the patient cohort under investigation. In many cases, the most valuable and relevant information for an accurate classification of medical conditions exist only in clinical narratives. Therefore, it is necessary to use natural language processing (NLP) techniques to extract and evaluate these narratives. The most commonly used approach to this problem relies on extracting a number of clinician-defined medical concepts from text and using machine learning techniques to identify whether a particular patient has a certain condition. However, recent advances in deep learning and NLP enable models to learn a rich representation of (medical) language. Convolutional neural networks (CNN) for text classification can augment the existing techniques by leveraging the representation of language to learn which phrases in a text are relevant for a given medical condition. In this work, we compare concept extraction based methods with CNNs and other commonly used models in NLP in ten phenotyping tasks using 1,610 discharge summaries from the MIMIC-III database. We show that CNNs outperform concept extraction based methods in almost all of the tasks, with an improvement in F1-score of up to 26 and up to 7 percentage points in area under the ROC curve (AUC). We additionally assess the interpretability of both approaches by presenting and evaluating methods that calculate and extract the most salient phrases for a prediction. The results indicate that CNNs are a valid alternative to existing approaches in patient phenotyping and cohort identification, and should be further investigated. Moreover, the deep learning approach presented in this paper can be used to assist clinicians during chart review or support the extraction of billing codes from text by identifying and highlighting relevant phrases for various medical conditions.

  4. Newspaper archives + text mining = rich sources of historical geo-spatial data

    NASA Astrophysics Data System (ADS)

    Yzaguirre, A.; Smit, M.; Warren, R.

    2016-04-01

    Newspaper archives are rich sources of cultural, social, and historical information. These archives, even when digitized, are typically unstructured and organized by date rather than by subject or location, and require substantial manual effort to analyze. The effort of journalists to be accurate and precise means that there is often rich geo-spatial data embedded in the text, alongside text describing events that editors considered to be of sufficient importance to the region or the world to merit column inches. A regional newspaper can add over 100,000 articles to its database each year, and extracting information from this data for even a single country would pose a substantial Big Data challenge. In this paper, we describe a pilot study on the construction of a database of historical flood events (location(s), date, cause, magnitude) to be used in flood assessment projects, for example to calibrate models, estimate frequency, establish high water marks, or plan for future events in contexts ranging from urban planning to climate change adaptation. We then present a vision for extracting and using the rich geospatial data available in unstructured text archives, and suggest future avenues of research.

  5. Text mining by Tsallis entropy

    NASA Astrophysics Data System (ADS)

    Jamaati, Maryam; Mehri, Ali

    2018-01-01

    Long-range correlations between the elements of natural languages enable them to convey very complex information. Complex structure of human language, as a manifestation of natural languages, motivates us to apply nonextensive statistical mechanics in text mining. Tsallis entropy appropriately ranks the terms' relevance to document subject, taking advantage of their spatial correlation length. We apply this statistical concept as a new powerful word ranking metric in order to extract keywords of a single document. We carry out an experimental evaluation, which shows capability of the presented method in keyword extraction. We find that, Tsallis entropy has reliable word ranking performance, at the same level of the best previous ranking methods.

  6. Automated Information Extraction on Treatment and Prognosis for Non-Small Cell Lung Cancer Radiotherapy Patients: Clinical Study.

    PubMed

    Zheng, Shuai; Jabbour, Salma K; O'Reilly, Shannon E; Lu, James J; Dong, Lihua; Ding, Lijuan; Xiao, Ying; Yue, Ning; Wang, Fusheng; Zou, Wei

    2018-02-01

    In outcome studies of oncology patients undergoing radiation, researchers extract valuable information from medical records generated before, during, and after radiotherapy visits, such as survival data, toxicities, and complications. Clinical studies rely heavily on these data to correlate the treatment regimen with the prognosis to develop evidence-based radiation therapy paradigms. These data are available mainly in forms of narrative texts or table formats with heterogeneous vocabularies. Manual extraction of the related information from these data can be time consuming and labor intensive, which is not ideal for large studies. The objective of this study was to adapt the interactive information extraction platform Information and Data Extraction using Adaptive Learning (IDEAL-X) to extract treatment and prognosis data for patients with locally advanced or inoperable non-small cell lung cancer (NSCLC). We transformed patient treatment and prognosis documents into normalized structured forms using the IDEAL-X system for easy data navigation. The adaptive learning and user-customized controlled toxicity vocabularies were applied to extract categorized treatment and prognosis data, so as to generate structured output. In total, we extracted data from 261 treatment and prognosis documents relating to 50 patients, with overall precision and recall more than 93% and 83%, respectively. For toxicity information extractions, which are important to study patient posttreatment side effects and quality of life, the precision and recall achieved 95.7% and 94.5% respectively. The IDEAL-X system is capable of extracting study data regarding NSCLC chemoradiation patients with significant accuracy and effectiveness, and therefore can be used in large-scale radiotherapy clinical data studies. ©Shuai Zheng, Salma K Jabbour, Shannon E O'Reilly, James J Lu, Lihua Dong, Lijuan Ding, Ying Xiao, Ning Yue, Fusheng Wang, Wei Zou. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 01.02.2018.

  7. Database citation in supplementary data linked to Europe PubMed Central full text biomedical articles.

    PubMed

    Kafkas, Şenay; Kim, Jee-Hyub; Pi, Xingjun; McEntyre, Johanna R

    2015-01-01

    In this study, we present an analysis of data citation practices in full text research articles and their corresponding supplementary data files, made available in the Open Access set of articles from Europe PubMed Central. Our aim is to investigate whether supplementary data files should be considered as a source of information for integrating the literature with biomolecular databases. Using text-mining methods to identify and extract a variety of core biological database accession numbers, we found that the supplemental data files contain many more database citations than the body of the article, and that those citations often take the form of a relatively small number of articles citing large collections of accession numbers in text-based files. Moreover, citation of value-added databases derived from submission databases (such as Pfam, UniProt or Ensembl) is common, demonstrating the reuse of these resources as datasets in themselves. All the database accession numbers extracted from the supplementary data are publicly accessible from http://dx.doi.org/10.5281/zenodo.11771. Our study suggests that supplementary data should be considered when linking articles with data, in curation pipelines, and in information retrieval tasks in order to make full use of the entire research article. These observations highlight the need to improve the management of supplemental data in general, in order to make this information more discoverable and useful.

  8. NASA's online machine aided indexing system

    NASA Technical Reports Server (NTRS)

    Silvester, June P.; Genuardi, Michael T.; Klingbiel, Paul H.

    1993-01-01

    This report describes the NASA Lexical Dictionary, a machine aided indexing system used online at the National Aeronautics and Space Administration's Center for Aerospace Information (CASI). This system is comprised of a text processor that is based on the computational, non-syntactic analysis of input text, and an extensive 'knowledge base' that serves to recognize and translate text-extracted concepts. The structure and function of the various NLD system components are described in detail. Methods used for the development of the knowledge base are discussed. Particular attention is given to a statistically-based text analysis program that provides the knowledge base developer with a list of concept-specific phrases extracted from large textual corpora. Production and quality benefits resulting from the integration of machine aided indexing at CASI are discussed along with a number of secondary applications of NLD-derived systems including on-line spell checking and machine aided lexicography.

  9. Zone analysis in biology articles as a basis for information extraction.

    PubMed

    Mizuta, Yoko; Korhonen, Anna; Mullen, Tony; Collier, Nigel

    2006-06-01

    In the field of biomedicine, an overwhelming amount of experimental data has become available as a result of the high throughput of research in this domain. The amount of results reported has now grown beyond the limits of what can be managed by manual means. This makes it increasingly difficult for the researchers in this area to keep up with the latest developments. Information extraction (IE) in the biological domain aims to provide an effective automatic means to dynamically manage the information contained in archived journal articles and abstract collections and thus help researchers in their work. However, while considerable advances have been made in certain areas of IE, pinpointing and organizing factual information (such as experimental results) remains a challenge. In this paper we propose tackling this task by incorporating into IE information about rhetorical zones, i.e. classification of spans of text in terms of argumentation and intellectual attribution. As the first step towards this goal, we introduce a scheme for annotating biological texts for rhetorical zones and provide a qualitative and quantitative analysis of the data annotated according to this scheme. We also discuss our preliminary research on automatic zone analysis, and its incorporation into our IE framework.

  10. Natural language processing to extract symptoms of severe mental illness from clinical text: the Clinical Record Interactive Search Comprehensive Data Extraction (CRIS-CODE) project.

    PubMed

    Jackson, Richard G; Patel, Rashmi; Jayatilleke, Nishamali; Kolliakou, Anna; Ball, Michael; Gorrell, Genevieve; Roberts, Angus; Dobson, Richard J; Stewart, Robert

    2017-01-17

    We sought to use natural language processing to develop a suite of language models to capture key symptoms of severe mental illness (SMI) from clinical text, to facilitate the secondary use of mental healthcare data in research. Development and validation of information extraction applications for ascertaining symptoms of SMI in routine mental health records using the Clinical Record Interactive Search (CRIS) data resource; description of their distribution in a corpus of discharge summaries. Electronic records from a large mental healthcare provider serving a geographic catchment of 1.2 million residents in four boroughs of south London, UK. The distribution of derived symptoms was described in 23 128 discharge summaries from 7962 patients who had received an SMI diagnosis, and 13 496 discharge summaries from 7575 patients who had received a non-SMI diagnosis. Fifty SMI symptoms were identified by a team of psychiatrists for extraction based on salience and linguistic consistency in records, broadly categorised under positive, negative, disorganisation, manic and catatonic subgroups. Text models for each symptom were generated using the TextHunter tool and the CRIS database. We extracted data for 46 symptoms with a median F1 score of 0.88. Four symptom models performed poorly and were excluded. From the corpus of discharge summaries, it was possible to extract symptomatology in 87% of patients with SMI and 60% of patients with non-SMI diagnosis. This work demonstrates the possibility of automatically extracting a broad range of SMI symptoms from English text discharge summaries for patients with an SMI diagnosis. Descriptive data also indicated that most symptoms cut across diagnoses, rather than being restricted to particular groups. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. Toward Personalized Pressure Ulcer Care Planning: Development of a Bioinformatics System for Individualized Prioritization of Clinical Pratice Guideline

    DTIC Science & Technology

    2016-10-01

    and text data mining . A Spinal Cord Injury Pressure Ulcer and Deep tissue injury ontology, SCIPUDO, will be developed to ensure robust and extensive...on natural language programming and the need to convert text in to data for analysis. In progress c) Define Physio-MIMI based SCIPUD+ Resource...information extraction from the free text clinical note. 3) Significant Results Nothing to report 4) Other Achievements Nothing to report

  12. Mining biomedical images towards valuable information retrieval in biomedical and life sciences.

    PubMed

    Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas

    2016-01-01

    Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries. © The Author(s) 2016. Published by Oxford University Press.

  13. Using Open Web APIs in Teaching Web Mining

    ERIC Educational Resources Information Center

    Chen, Hsinchun; Li, Xin; Chau, M.; Ho, Yi-Jen; Tseng, Chunju

    2009-01-01

    With the advent of the World Wide Web, many business applications that utilize data mining and text mining techniques to extract useful business information on the Web have evolved from Web searching to Web mining. It is important for students to acquire knowledge and hands-on experience in Web mining during their education in information systems…

  14. MedXN: an open source medication extraction and normalization tool for clinical text

    PubMed Central

    Sohn, Sunghwan; Clark, Cheryl; Halgrim, Scott R; Murphy, Sean P; Chute, Christopher G; Liu, Hongfang

    2014-01-01

    Objective We developed the Medication Extraction and Normalization (MedXN) system to extract comprehensive medication information and normalize it to the most appropriate RxNorm concept unique identifier (RxCUI) as specifically as possible. Methods Medication descriptions in clinical notes were decomposed into medication name and attributes, which were separately extracted using RxNorm dictionary lookup and regular expression. Then, each medication name and its attributes were combined together according to RxNorm convention to find the most appropriate RxNorm representation. To do this, we employed serialized hierarchical steps implemented in Apache's Unstructured Information Management Architecture. We also performed synonym expansion, removed false medications, and employed inference rules to improve the medication extraction and normalization performance. Results An evaluation on test data of 397 medication mentions showed F-measures of 0.975 for medication name and over 0.90 for most attributes. The RxCUI assignment produced F-measures of 0.932 for medication name and 0.864 for full medication information. Most false negative RxCUI assignments in full medication information are due to human assumption of missing attributes and medication names in the gold standard. Conclusions The MedXN system (http://sourceforge.net/projects/ohnlp/files/MedXN/) was able to extract comprehensive medication information with high accuracy and demonstrated good normalization capability to RxCUI as long as explicit evidence existed. More sophisticated inference rules might result in further improvements to specific RxCUI assignments for incomplete medication descriptions. PMID:24637954

  15. PREDOSE: a semantic web platform for drug abuse epidemiology using social media.

    PubMed

    Cameron, Delroy; Smith, Gary A; Daniulaityte, Raminta; Sheth, Amit P; Dave, Drashti; Chen, Lu; Anand, Gaurish; Carlson, Robert; Watkins, Kera Z; Falck, Russel

    2013-12-01

    The role of social media in biomedical knowledge mining, including clinical, medical and healthcare informatics, prescription drug abuse epidemiology and drug pharmacology, has become increasingly significant in recent years. Social media offers opportunities for people to share opinions and experiences freely in online communities, which may contribute information beyond the knowledge of domain professionals. This paper describes the development of a novel semantic web platform called PREDOSE (PREscription Drug abuse Online Surveillance and Epidemiology), which is designed to facilitate the epidemiologic study of prescription (and related) drug abuse practices using social media. PREDOSE uses web forum posts and domain knowledge, modeled in a manually created Drug Abuse Ontology (DAO--pronounced dow), to facilitate the extraction of semantic information from User Generated Content (UGC), through combination of lexical, pattern-based and semantics-based techniques. In a previous study, PREDOSE was used to obtain the datasets from which new knowledge in drug abuse research was derived. Here, we report on various platform enhancements, including an updated DAO, new components for relationship and triple extraction, and tools for content analysis, trend detection and emerging patterns exploration, which enhance the capabilities of the PREDOSE platform. Given these enhancements, PREDOSE is now more equipped to impact drug abuse research by alleviating traditional labor-intensive content analysis tasks. Using custom web crawlers that scrape UGC from publicly available web forums, PREDOSE first automates the collection of web-based social media content for subsequent semantic annotation. The annotation scheme is modeled in the DAO, and includes domain specific knowledge such as prescription (and related) drugs, methods of preparation, side effects, and routes of administration. The DAO is also used to help recognize three types of data, namely: (1) entities, (2) relationships and (3) triples. PREDOSE then uses a combination of lexical and semantic-based techniques to extract entities and relationships from the scraped content, and a top-down approach for triple extraction that uses patterns expressed in the DAO. In addition, PREDOSE uses publicly available lexicons to identify initial sentiment expressions in text, and then a probabilistic optimization algorithm (from related research) to extract the final sentiment expressions. Together, these techniques enable the capture of fine-grained semantic information, which facilitate search, trend analysis and overall content analysis using social media on prescription drug abuse. Moreover, extracted data are also made available to domain experts for the creation of training and test sets for use in evaluation and refinements in information extraction techniques. A recent evaluation of the information extraction techniques applied in the PREDOSE platform indicates 85% precision and 72% recall in entity identification, on a manually created gold standard dataset. In another study, PREDOSE achieved 36% precision in relationship identification and 33% precision in triple extraction, through manual evaluation by domain experts. Given the complexity of the relationship and triple extraction tasks and the abstruse nature of social media texts, we interpret these as favorable initial results. Extracted semantic information is currently in use in an online discovery support system, by prescription drug abuse researchers at the Center for Interventions, Treatment and Addictions Research (CITAR) at Wright State University. A comprehensive platform for entity, relationship, triple and sentiment extraction from such abstruse texts has never been developed for drug abuse research. PREDOSE has already demonstrated the importance of mining social media by providing data from which new findings in drug abuse research were uncovered. Given the recent platform enhancements, including the refined DAO, components for relationship and triple extraction, and tools for content, trend and emerging pattern analysis, it is expected that PREDOSE will play a significant role in advancing drug abuse epidemiology in future. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. DDMGD: the database of text-mined associations between genes methylated in diseases from different species.

    PubMed

    Bin Raies, Arwa; Mansour, Hicham; Incitti, Roberto; Bajic, Vladimir B

    2015-01-01

    Gathering information about associations between methylated genes and diseases is important for diseases diagnosis and treatment decisions. Recent advancements in epigenetics research allow for large-scale discoveries of associations of genes methylated in diseases in different species. Searching manually for such information is not easy, as it is scattered across a large number of electronic publications and repositories. Therefore, we developed DDMGD database (http://www.cbrc.kaust.edu.sa/ddmgd/) to provide a comprehensive repository of information related to genes methylated in diseases that can be found through text mining. DDMGD's scope is not limited to a particular group of genes, diseases or species. Using the text mining system DEMGD we developed earlier and additional post-processing, we extracted associations of genes methylated in different diseases from PubMed Central articles and PubMed abstracts. The accuracy of extracted associations is 82% as estimated on 2500 hand-curated entries. DDMGD provides a user-friendly interface facilitating retrieval of these associations ranked according to confidence scores. Submission of new associations to DDMGD is provided. A comparison analysis of DDMGD with several other databases focused on genes methylated in diseases shows that DDMGD is comprehensive and includes most of the recent information on genes methylated in diseases. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. v3NLP Framework: Tools to Build Applications for Extracting Concepts from Clinical Text

    PubMed Central

    Divita, Guy; Carter, Marjorie E.; Tran, Le-Thuy; Redd, Doug; Zeng, Qing T; Duvall, Scott; Samore, Matthew H.; Gundlapalli, Adi V.

    2016-01-01

    Introduction: Substantial amounts of clinically significant information are contained only within the narrative of the clinical notes in electronic medical records. The v3NLP Framework is a set of “best-of-breed” functionalities developed to transform this information into structured data for use in quality improvement, research, population health surveillance, and decision support. Background: MetaMap, cTAKES and similar well-known natural language processing (NLP) tools do not have sufficient scalability out of the box. The v3NLP Framework evolved out of the necessity to scale-up these tools up and provide a framework to customize and tune techniques that fit a variety of tasks, including document classification, tuned concept extraction for specific conditions, patient classification, and information retrieval. Innovation: Beyond scalability, several v3NLP Framework-developed projects have been efficacy tested and benchmarked. While v3NLP Framework includes annotators, pipelines and applications, its functionalities enable developers to create novel annotators and to place annotators into pipelines and scaled applications. Discussion: The v3NLP Framework has been successfully utilized in many projects including general concept extraction, risk factors for homelessness among veterans, and identification of mentions of the presence of an indwelling urinary catheter. Projects as diverse as predicting colonization with methicillin-resistant Staphylococcus aureus and extracting references to military sexual trauma are being built using v3NLP Framework components. Conclusion: The v3NLP Framework is a set of functionalities and components that provide Java developers with the ability to create novel annotators and to place those annotators into pipelines and applications to extract concepts from clinical text. There are scale-up and scale-out functionalities to process large numbers of records. PMID:27683667

  18. HEDEA: A Python Tool for Extracting and Analysing Semi-structured Information from Medical Records

    PubMed Central

    Aggarwal, Anshul; Garhwal, Sunita

    2018-01-01

    Objectives One of the most important functions for a medical practitioner while treating a patient is to study the patient's complete medical history by going through all records, from test results to doctor's notes. With the increasing use of technology in medicine, these records are mostly digital, alleviating the problem of looking through a stack of papers, which are easily misplaced, but some of these are in an unstructured form. Large parts of clinical reports are in written text form and are tedious to use directly without appropriate pre-processing. In medical research, such health records may be a good, convenient source of medical data; however, lack of structure means that the data is unfit for statistical evaluation. In this paper, we introduce a system to extract, store, retrieve, and analyse information from health records, with a focus on the Indian healthcare scene. Methods A Python-based tool, Healthcare Data Extraction and Analysis (HEDEA), has been designed to extract structured information from various medical records using a regular expression-based approach. Results The HEDEA system is working, covering a large set of formats, to extract and analyse health information. Conclusions This tool can be used to generate analysis report and charts using the central database. This information is only provided after prior approval has been received from the patient for medical research purposes. PMID:29770248

  19. Information extraction from Italian medical reports: An ontology-driven approach.

    PubMed

    Viani, Natalia; Larizza, Cristiana; Tibollo, Valentina; Napolitano, Carlo; Priori, Silvia G; Bellazzi, Riccardo; Sacchi, Lucia

    2018-03-01

    In this work, we propose an ontology-driven approach to identify events and their attributes from episodes of care included in medical reports written in Italian. For this language, shared resources for clinical information extraction are not easily accessible. The corpus considered in this work includes 5432 non-annotated medical reports belonging to patients with rare arrhythmias. To guide the information extraction process, we built a domain-specific ontology that includes the events and the attributes to be extracted, with related regular expressions. The ontology and the annotation system were constructed on a development set, while the performance was evaluated on an independent test set. As a gold standard, we considered a manually curated hospital database named TRIAD, which stores most of the information written in reports. The proposed approach performs well on the considered Italian medical corpus, with a percentage of correct annotations above 90% for most considered clinical events. We also assessed the possibility to adapt the system to the analysis of another language (i.e., English), with promising results. Our annotation system relies on a domain ontology to extract and link information in clinical text. We developed an ontology that can be easily enriched and translated, and the system performs well on the considered task. In the future, it could be successfully used to automatically populate the TRIAD database. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. HEDEA: A Python Tool for Extracting and Analysing Semi-structured Information from Medical Records.

    PubMed

    Aggarwal, Anshul; Garhwal, Sunita; Kumar, Ajay

    2018-04-01

    One of the most important functions for a medical practitioner while treating a patient is to study the patient's complete medical history by going through all records, from test results to doctor's notes. With the increasing use of technology in medicine, these records are mostly digital, alleviating the problem of looking through a stack of papers, which are easily misplaced, but some of these are in an unstructured form. Large parts of clinical reports are in written text form and are tedious to use directly without appropriate pre-processing. In medical research, such health records may be a good, convenient source of medical data; however, lack of structure means that the data is unfit for statistical evaluation. In this paper, we introduce a system to extract, store, retrieve, and analyse information from health records, with a focus on the Indian healthcare scene. A Python-based tool, Healthcare Data Extraction and Analysis (HEDEA), has been designed to extract structured information from various medical records using a regular expression-based approach. The HEDEA system is working, covering a large set of formats, to extract and analyse health information. This tool can be used to generate analysis report and charts using the central database. This information is only provided after prior approval has been received from the patient for medical research purposes.

  1. Use of Co-occurrences for Temporal Expressions Annotation

    NASA Astrophysics Data System (ADS)

    Craveiro, Olga; Macedo, Joaquim; Madeira, Henrique

    The annotation or extraction of temporal information from text documents is becoming increasingly important in many natural language processing applications such as text summarization, information retrieval, question answering, etc.. This paper presents an original method for easy recognition of temporal expressions in text documents. The method creates semantically classified temporal patterns, using word co-occurrences obtained from training corpora and a pre-defined seed keywords set, derived from the used language temporal references. A participation on a Portuguese named entity evaluation contest showed promising effectiveness and efficiency results. This approach can be adapted to recognize other type of expressions or languages, within other contexts, by defining the suitable word sets and training corpora.

  2. Drug related webpages classification using images and text information based on multi-kernel learning

    NASA Astrophysics Data System (ADS)

    Hu, Ruiguang; Xiao, Liping; Zheng, Wenjuan

    2015-12-01

    In this paper, multi-kernel learning(MKL) is used for drug-related webpages classification. First, body text and image-label text are extracted through HTML parsing, and valid images are chosen by the FOCARSS algorithm. Second, text based BOW model is used to generate text representation, and image-based BOW model is used to generate images representation. Last, text and images representation are fused with a few methods. Experimental results demonstrate that the classification accuracy of MKL is higher than those of all other fusion methods in decision level and feature level, and much higher than the accuracy of single-modal classification.

  3. FASTUS: A System for Extracting Information from Natural-Language Text

    DTIC Science & Technology

    1992-11-19

    sample terrorist report (TST2- MUC4 -0048), the full text of which is in Appendix I. Most of the examples in this paper come from this message; it was...1992. Distributed by Morgan Kaufmann Publishers, Inc., San Mateo, California. 25 Appendix I: Sample Text TST2- MUC4 -0048 SAN SALVADOR, 19 APR 89 (ACAN...Slashes (/) separate alternate answers. Question marks (?) indicate optional answers. 0. MESSAGE: ID TST2- MUC4 -0048 1. MESSAGE: TEMPLATE 1 2. INCIDENT

  4. Developing a disease outbreak event corpus.

    PubMed

    Conway, Mike; Kawazoe, Ai; Chanlekha, Hutchatai; Collier, Nigel

    2010-09-28

    In recent years, there has been a growth in work on the use of information extraction technologies for tracking disease outbreaks from online news texts, yet publicly available evaluation standards (and associated resources) for this new area of research have been noticeably lacking. This study seeks to create a "gold standard" data set against which to test how accurately disease outbreak information extraction systems can identify the semantics of disease outbreak events. Additionally, we hope that the provision of an annotation scheme (and associated corpus) to the community will encourage open evaluation in this new and growing application area. We developed an annotation scheme for identifying infectious disease outbreak events in news texts. An event--in the context of our annotation scheme--consists minimally of geographical (eg, country and province) and disease name information. However, the scheme also allows for the rich encoding of other domain salient concepts (eg, international travel, species, and food contamination). The work resulted in a 200-document corpus of event-annotated disease outbreak reports that can be used to evaluate the accuracy of event detection algorithms (in this case, for the BioCaster biosurveillance online news information extraction system). In the 200 documents, 394 distinct events were identified (mean 1.97 events per document, range 0-25 events per document). We also provide a download script and graphical user interface (GUI)-based event browsing software to facilitate corpus exploration. In summary, we present an annotation scheme and corpus that can be used in the evaluation of disease outbreak event extraction algorithms. The annotation scheme and corpus were designed both with the particular evaluation requirements of the BioCaster system in mind as well as the wider need for further evaluation resources in this growing research area.

  5. SPECTRa-T: machine-based data extraction and semantic searching of chemistry e-theses.

    PubMed

    Downing, Jim; Harvey, Matt J; Morgan, Peter B; Murray-Rust, Peter; Rzepa, Henry S; Stewart, Diana C; Tonge, Alan P; Townsend, Joe A

    2010-02-22

    The SPECTRa-T project has developed text-mining tools to extract named chemical entities (NCEs), such as chemical names and terms, and chemical objects (COs), e.g., experimental spectral assignments and physical chemistry properties, from electronic theses (e-theses). Although NCEs were readily identified within the two major document formats studied, only the use of structured documents enabled identification of chemical objects and their association with the relevant chemical entity (e.g., systematic chemical name). A corpus of theses was analyzed and it is shown that a high degree of semantic information can be extracted from structured documents. This integrated information has been deposited in a persistent Resource Description Framework (RDF) triple-store that allows users to conduct semantic searches. The strength and weaknesses of several document formats are reviewed.

  6. A framework of text detection and recognition from natural images for mobile device

    NASA Astrophysics Data System (ADS)

    Selmi, Zied; Ben Halima, Mohamed; Wali, Ali; Alimi, Adel M.

    2017-03-01

    On the light of the remarkable audio-visual effect on modern life, and the massive use of new technologies (smartphones, tablets ...), the image has been given a great importance in the field of communication. Actually, it has become the most effective, attractive and suitable means of communication for transmitting information between different people. Of all the various parts of information that can be extracted from the image, our focus will be particularly on the text. Actually, since its detection and recognition in a natural image is a major problem in many applications, the text has drawn the attention of a great number of researchers in recent years. In this paper, we present a framework for text detection and recognition from natural images for mobile devices.

  7. Systematically Extracting Metal- and Solvent-Related Occupational Information from Free-Text Responses to Lifetime Occupational History Questionnaires

    PubMed Central

    Friesen, Melissa C.; Locke, Sarah J.; Tornow, Carina; Chen, Yu-Cheng; Koh, Dong-Hee; Stewart, Patricia A.; Purdue, Mark; Colt, Joanne S.

    2014-01-01

    Objectives: Lifetime occupational history (OH) questionnaires often use open-ended questions to capture detailed information about study participants’ jobs. Exposure assessors use this information, along with responses to job- and industry-specific questionnaires, to assign exposure estimates on a job-by-job basis. An alternative approach is to use information from the OH responses and the job- and industry-specific questionnaires to develop programmable decision rules for assigning exposures. As a first step in this process, we developed a systematic approach to extract the free-text OH responses and convert them into standardized variables that represented exposure scenarios. Methods: Our study population comprised 2408 subjects, reporting 11991 jobs, from a case–control study of renal cell carcinoma. Each subject completed a lifetime OH questionnaire that included verbatim responses, for each job, to open-ended questions including job title, main tasks and activities (task), tools and equipment used (tools), and chemicals and materials handled (chemicals). Based on a review of the literature, we identified exposure scenarios (occupations, industries, tasks/tools/chemicals) expected to involve possible exposure to chlorinated solvents, trichloroethylene (TCE) in particular, lead, and cadmium. We then used a SAS macro to review the information reported by study participants to identify jobs associated with each exposure scenario; this was done using previously coded standardized occupation and industry classification codes, and a priori lists of associated key words and phrases related to possibly exposed tasks, tools, and chemicals. Exposure variables representing the occupation, industry, and task/tool/chemicals exposure scenarios were added to the work history records of the study respondents. Our identification of possibly TCE-exposed scenarios in the OH responses was compared to an expert’s independently assigned probability ratings to evaluate whether we missed identifying possibly exposed jobs. Results: Our process added exposure variables for 52 occupation groups, 43 industry groups, and 46 task/tool/chemical scenarios to the data set of OH responses. Across all four agents, we identified possibly exposed task/tool/chemical exposure scenarios in 44–51% of the jobs in possibly exposed occupations. Possibly exposed task/tool/chemical exposure scenarios were found in a nontrivial 9–14% of the jobs not in possibly exposed occupations, suggesting that our process identified important information that would not be captured using occupation alone. Our extraction process was sensitive: for jobs where our extraction of OH responses identified no exposure scenarios and for which the sole source of information was the OH responses, only 0.1% were assessed as possibly exposed to TCE by the expert. Conclusions: Our systematic extraction of OH information found useful information in the task/chemicals/tools responses that was relatively easy to extract and that was not available from the occupational or industry information. The extracted variables can be used as inputs in the development of decision rules, especially for jobs where no additional information, such as job- and industry-specific questionnaires, is available. PMID:24590110

  8. Improving the Accuracy of Attribute Extraction using the Relatedness between Attribute Values

    NASA Astrophysics Data System (ADS)

    Bollegala, Danushka; Tani, Naoki; Ishizuka, Mitsuru

    Extracting attribute-values related to entities from web texts is an important step in numerous web related tasks such as information retrieval, information extraction, and entity disambiguation (namesake disambiguation). For example, for a search query that contains a personal name, we can not only return documents that contain that personal name, but if we have attribute-values such as the organization for which that person works, we can also suggest documents that contain information related to that organization, thereby improving the user's search experience. Despite numerous potential applications of attribute extraction, it remains a challenging task due to the inherent noise in web data -- often a single web page contains multiple entities and attributes. We propose a graph-based approach to select the correct attribute-values from a set of candidate attribute-values extracted for a particular entity. First, we build an undirected weighted graph in which, attribute-values are represented by nodes, and the edge that connects two nodes in the graph represents the degree of relatedness between the corresponding attribute-values. Next, we find the maximum spanning tree of this graph that connects exactly one attribute-value for each attribute-type. The proposed method outperforms previously proposed attribute extraction methods on a dataset that contains 5000 web pages.

  9. Text-in-context: a method for extracting findings in mixed-methods mixed research synthesis studies.

    PubMed

    Sandelowski, Margarete; Leeman, Jennifer; Knafl, Kathleen; Crandell, Jamie L

    2013-06-01

    Our purpose in this paper is to propose a new method for extracting findings from research reports included in mixed-methods mixed research synthesis studies. International initiatives in the domains of systematic review and evidence synthesis have been focused on broadening the conceptualization of evidence, increased methodological inclusiveness and the production of evidence syntheses that will be accessible to and usable by a wider range of consumers. Initiatives in the general mixed-methods research field have been focused on developing truly integrative approaches to data analysis and interpretation. The data extraction challenges described here were encountered, and the method proposed for addressing these challenges was developed, in the first year of the ongoing (2011-2016) study: Mixed-Methods Synthesis of Research on Childhood Chronic Conditions and Family. To preserve the text-in-context of findings in research reports, we describe a method whereby findings are transformed into portable statements that anchor results to relevant information about sample, source of information, time, comparative reference point, magnitude and significance and study-specific conceptions of phenomena. The data extraction method featured here was developed specifically to accommodate mixed-methods mixed research synthesis studies conducted in nursing and other health sciences, but reviewers might find it useful in other kinds of research synthesis studies. This data extraction method itself constitutes a type of integration to preserve the methodological context of findings when statements are read individually and in comparison to each other. © 2012 Blackwell Publishing Ltd.

  10. Geographical Text Analysis: A new approach to understanding nineteenth-century mortality.

    PubMed

    Porter, Catherine; Atkinson, Paul; Gregory, Ian

    2015-11-01

    This paper uses a combination of Geographic Information Systems (GIS) and corpus linguistic analysis to extract and analyse disease related keywords from the Registrar-General's Decennial Supplements. Combined with known mortality figures, this provides, for the first time, a spatial picture of the relationship between the Registrar-General's discussion of disease and deaths in England and Wales in the nineteenth and early twentieth centuries. Techniques such as collocation, density analysis, the Hierarchical Regional Settlement matrix and regression analysis are employed to extract and analyse the data resulting in new insight into the relationship between the Registrar-General's published texts and the changing mortality patterns during this time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A linguistic rule-based approach to extract drug-drug interactions from pharmacological documents.

    PubMed

    Segura-Bedmar, Isabel; Martínez, Paloma; de Pablo-Sánchez, César

    2011-03-29

    A drug-drug interaction (DDI) occurs when one drug influences the level or activity of another drug. The increasing volume of the scientific literature overwhelms health care professionals trying to be kept up-to-date with all published studies on DDI. This paper describes a hybrid linguistic approach to DDI extraction that combines shallow parsing and syntactic simplification with pattern matching. Appositions and coordinate structures are interpreted based on shallow syntactic parsing provided by the UMLS MetaMap tool (MMTx). Subsequently, complex and compound sentences are broken down into clauses from which simple sentences are generated by a set of simplification rules. A pharmacist defined a set of domain-specific lexical patterns to capture the most common expressions of DDI in texts. These lexical patterns are matched with the generated sentences in order to extract DDIs. We have performed different experiments to analyze the performance of the different processes. The lexical patterns achieve a reasonable precision (67.30%), but very low recall (14.07%). The inclusion of appositions and coordinate structures helps to improve the recall (25.70%), however, precision is lower (48.69%). The detection of clauses does not improve the performance. Information Extraction (IE) techniques can provide an interesting way of reducing the time spent by health care professionals on reviewing the literature. Nevertheless, no approach has been carried out to extract DDI from texts. To the best of our knowledge, this work proposes the first integral solution for the automatic extraction of DDI from biomedical texts.

  12. Impact of translation on named-entity recognition in radiology texts

    PubMed Central

    Pedro, Vasco

    2017-01-01

    Abstract Radiology reports describe the results of radiography procedures and have the potential of being a useful source of information which can bring benefits to health care systems around the world. One way to automatically extract information from the reports is by using Text Mining tools. The problem is that these tools are mostly developed for English and reports are usually written in the native language of the radiologist, which is not necessarily English. This creates an obstacle to the sharing of Radiology information between different communities. This work explores the solution of translating the reports to English before applying the Text Mining tools, probing the question of what translation approach should be used. We created MRRAD (Multilingual Radiology Research Articles Dataset), a parallel corpus of Portuguese research articles related to Radiology and a number of alternative translations (human, automatic and semi-automatic) to English. This is a novel corpus which can be used to move forward the research on this topic. Using MRRAD we studied which kind of automatic or semi-automatic translation approach is more effective on the Named-entity recognition task of finding RadLex terms in the English version of the articles. Considering the terms extracted from human translations as our gold standard, we calculated how similar to this standard were the terms extracted using other translations. We found that a completely automatic translation approach using Google leads to F-scores (between 0.861 and 0.868, depending on the extraction approach) similar to the ones obtained through a more expensive semi-automatic translation approach using Unbabel (between 0.862 and 0.870). To better understand the results we also performed a qualitative analysis of the type of errors found in the automatic and semi-automatic translations. Database URL: https://github.com/lasigeBioTM/MRRAD PMID:29220455

  13. ECO: A Framework for Entity Co-Occurrence Exploration with Faceted Navigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halliday, K. D.

    2010-08-20

    Even as highly structured databases and semantic knowledge bases become more prevalent, a substantial amount of human knowledge is reported as written prose. Typical textual reports, such as news articles, contain information about entities (people, organizations, and locations) and their relationships. Automatically extracting such relationships from large text corpora is a key component of corporate and government knowledge bases. The primary goal of the ECO project is to develop a scalable framework for extracting and presenting these relationships for exploration using an easily navigable faceted user interface. ECO uses entity co-occurrence relationships to identify related entities. The system aggregates andmore » indexes information on each entity pair, allowing the user to rapidly discover and mine relational information.« less

  14. IPAT: a freely accessible software tool for analyzing multiple patent documents with inbuilt landscape visualizer.

    PubMed

    Ajay, Dara; Gangwal, Rahul P; Sangamwar, Abhay T

    2015-01-01

    Intelligent Patent Analysis Tool (IPAT) is an online data retrieval tool, operated based on text mining algorithm to extract specific patent information in a predetermined pattern into an Excel sheet. The software is designed and developed to retrieve and analyze technology information from multiple patent documents and generate various patent landscape graphs and charts. The software is C# coded in visual studio 2010, which extracts the publicly available patent information from the web pages like Google Patent and simultaneously study the various technology trends based on user-defined parameters. In other words, IPAT combined with the manual categorization will act as an excellent technology assessment tool in competitive intelligence and due diligence for predicting the future R&D forecast.

  15. Automatic extraction of property norm-like data from large text corpora.

    PubMed

    Kelly, Colin; Devereux, Barry; Korhonen, Anna

    2014-01-01

    Traditional methods for deriving property-based representations of concepts from text have focused on either extracting only a subset of possible relation types, such as hyponymy/hypernymy (e.g., car is-a vehicle) or meronymy/metonymy (e.g., car has wheels), or unspecified relations (e.g., car--petrol). We propose a system for the challenging task of automatic, large-scale acquisition of unconstrained, human-like property norms from large text corpora, and discuss the theoretical implications of such a system. We employ syntactic, semantic, and encyclopedic information to guide our extraction, yielding concept-relation-feature triples (e.g., car be fast, car require petrol, car cause pollution), which approximate property-based conceptual representations. Our novel method extracts candidate triples from parsed corpora (Wikipedia and the British National Corpus) using syntactically and grammatically motivated rules, then reweights triples with a linear combination of their frequency and four statistical metrics. We assess our system output in three ways: lexical comparison with norms derived from human-generated property norm data, direct evaluation by four human judges, and a semantic distance comparison with both WordNet similarity data and human-judged concept similarity ratings. Our system offers a viable and performant method of plausible triple extraction: Our lexical comparison shows comparable performance to the current state-of-the-art, while subsequent evaluations exhibit the human-like character of our generated properties.

  16. Text mining and medicine: usefulness in respiratory diseases.

    PubMed

    Piedra, David; Ferrer, Antoni; Gea, Joaquim

    2014-03-01

    It is increasingly common to have medical information in electronic format. This includes scientific articles as well as clinical management reviews, and even records from health institutions with patient data. However, traditional instruments, both individual and institutional, are of little use for selecting the most appropriate information in each case, either in the clinical or research field. So-called text or data «mining» enables this huge amount of information to be managed, extracting it from various sources using processing systems (filtration and curation), integrating it and permitting the generation of new knowledge. This review aims to provide an overview of text and data mining, and of the potential usefulness of this bioinformatic technique in the exercise of care in respiratory medicine and in research in the same field. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  17. Scenario Customization for Information Extraction

    DTIC Science & Technology

    2001-01-01

    8 4.1 LF for the text: “ Coca - Cola , Inc.” . . . . . . . . . . . . . . . . . . . 30 4.2 A complex NP and...object 29 Slot Value class C-Company name Coca - Cola , Inc. location . . . . . . . . . Table 4.1: LF for the text: “ Coca - Cola , Inc.” may contain. E.g., an...of these are job and apartment advertisements as they appear in classified sections of newspapers. Such passages are typified by a rigid, predictable

  18. DeepText2GO: Improving large-scale protein function prediction with deep semantic text representation.

    PubMed

    You, Ronghui; Huang, Xiaodi; Zhu, Shanfeng

    2018-06-06

    As of April 2018, UniProtKB has collected more than 115 million protein sequences. Less than 0.15% of these proteins, however, have been associated with experimental GO annotations. As such, the use of automatic protein function prediction (AFP) to reduce this huge gap becomes increasingly important. The previous studies conclude that sequence homology based methods are highly effective in AFP. In addition, mining motif, domain, and functional information from protein sequences has been found very helpful for AFP. Other than sequences, alternative information sources such as text, however, may be useful for AFP as well. Instead of using BOW (bag of words) representation in traditional text-based AFP, we propose a new method called DeepText2GO that relies on deep semantic text representation, together with different kinds of available protein information such as sequence homology, families, domains, and motifs, to improve large-scale AFP. Furthermore, DeepText2GO integrates text-based methods with sequence-based ones by means of a consensus approach. Extensive experiments on the benchmark dataset extracted from UniProt/SwissProt have demonstrated that DeepText2GO significantly outperformed both text-based and sequence-based methods, validating its superiority. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features.

    PubMed

    Nikfarjam, Azadeh; Sarker, Abeed; O'Connor, Karen; Ginn, Rachel; Gonzalez, Graciela

    2015-05-01

    Social media is becoming increasingly popular as a platform for sharing personal health-related information. This information can be utilized for public health monitoring tasks, particularly for pharmacovigilance, via the use of natural language processing (NLP) techniques. However, the language in social media is highly informal, and user-expressed medical concepts are often nontechnical, descriptive, and challenging to extract. There has been limited progress in addressing these challenges, and thus far, advanced machine learning-based NLP techniques have been underutilized. Our objective is to design a machine learning-based approach to extract mentions of adverse drug reactions (ADRs) from highly informal text in social media. We introduce ADRMine, a machine learning-based concept extraction system that uses conditional random fields (CRFs). ADRMine utilizes a variety of features, including a novel feature for modeling words' semantic similarities. The similarities are modeled by clustering words based on unsupervised, pretrained word representation vectors (embeddings) generated from unlabeled user posts in social media using a deep learning technique. ADRMine outperforms several strong baseline systems in the ADR extraction task by achieving an F-measure of 0.82. Feature analysis demonstrates that the proposed word cluster features significantly improve extraction performance. It is possible to extract complex medical concepts, with relatively high performance, from informal, user-generated content. Our approach is particularly scalable, suitable for social media mining, as it relies on large volumes of unlabeled data, thus diminishing the need for large, annotated training data sets. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  20. Using uncertainty to link and rank evidence from biomedical literature for model curation

    PubMed Central

    Zerva, Chrysoula; Batista-Navarro, Riza; Day, Philip; Ananiadou, Sophia

    2017-01-01

    Abstract Motivation In recent years, there has been great progress in the field of automated curation of biomedical networks and models, aided by text mining methods that provide evidence from literature. Such methods must not only extract snippets of text that relate to model interactions, but also be able to contextualize the evidence and provide additional confidence scores for the interaction in question. Although various approaches calculating confidence scores have focused primarily on the quality of the extracted information, there has been little work on exploring the textual uncertainty conveyed by the author. Despite textual uncertainty being acknowledged in biomedical text mining as an attribute of text mined interactions (events), it is significantly understudied as a means of providing a confidence measure for interactions in pathways or other biomedical models. In this work, we focus on improving identification of textual uncertainty for events and explore how it can be used as an additional measure of confidence for biomedical models. Results We present a novel method for extracting uncertainty from the literature using a hybrid approach that combines rule induction and machine learning. Variations of this hybrid approach are then discussed, alongside their advantages and disadvantages. We use subjective logic theory to combine multiple uncertainty values extracted from different sources for the same interaction. Our approach achieves F-scores of 0.76 and 0.88 based on the BioNLP-ST and Genia-MK corpora, respectively, making considerable improvements over previously published work. Moreover, we evaluate our proposed system on pathways related to two different areas, namely leukemia and melanoma cancer research. Availability and implementation The leukemia pathway model used is available in Pathway Studio while the Ras model is available via PathwayCommons. Online demonstration of the uncertainty extraction system is available for research purposes at http://argo.nactem.ac.uk/test. The related code is available on https://github.com/c-zrv/uncertainty_components.git. Details on the above are available in the Supplementary Material. Contact sophia.ananiadou@manchester.ac.uk Supplementary information Supplementary data are available at Bioinformatics online. PMID:29036627

  1. Data Mining.

    ERIC Educational Resources Information Center

    Benoit, Gerald

    2002-01-01

    Discusses data mining (DM) and knowledge discovery in databases (KDD), taking the view that KDD is the larger view of the entire process, with DM emphasizing the cleaning, warehousing, mining, and visualization of knowledge discovery in databases. Highlights include algorithms; users; the Internet; text mining; and information extraction.…

  2. Exploring Spanish health social media for detecting drug effects

    PubMed Central

    2015-01-01

    Background Adverse Drug reactions (ADR) cause a high number of deaths among hospitalized patients in developed countries. Major drug agencies have devoted a great interest in the early detection of ADRs due to their high incidence and increasing health care costs. Reporting systems are available in order for both healthcare professionals and patients to alert about possible ADRs. However, several studies have shown that these adverse events are underestimated. Our hypothesis is that health social networks could be a significant information source for the early detection of ADRs as well as of new drug indications. Methods In this work we present a system for detecting drug effects (which include both adverse drug reactions as well as drug indications) from user posts extracted from a Spanish health forum. Texts were processed using MeaningCloud, a multilingual text analysis engine, to identify drugs and effects. In addition, we developed the first Spanish database storing drugs as well as their effects automatically built from drug package inserts gathered from online websites. We then applied a distant-supervision method using the database on a collection of 84,000 messages in order to extract the relations between drugs and their effects. To classify the relation instances, we used a kernel method based only on shallow linguistic information of the sentences. Results Regarding Relation Extraction of drugs and their effects, the distant supervision approach achieved a recall of 0.59 and a precision of 0.48. Conclusions The task of extracting relations between drugs and their effects from social media is a complex challenge due to the characteristics of social media texts. These texts, typically posts or tweets, usually contain many grammatical errors and spelling mistakes. Moreover, patients use lay terminology to refer to diseases, symptoms and indications that is not usually included in lexical resources in languages other than English. PMID:26100267

  3. Towards Phenotyping of Clinical Trial Eligibility Criteria.

    PubMed

    Löbe, Matthias; Stäubert, Sebastian; Goldberg, Colleen; Haffner, Ivonne; Winter, Alfred

    2018-01-01

    Medical plaintext documents contain important facts about patients, but they are rarely available for structured queries. The provision of structured information from natural language texts in addition to the existing structured data can significantly speed up the search for fulfilled inclusion criteria and thus improve the recruitment rate. This work is aimed at supporting clinical trial recruitment with text mining techniques to identify suitable subjects in hospitals. Based on the inclusion/exclusion criteria of 5 sample studies and a text corpus consisting of 212 doctor's letters and medical follow-up documentation from a university cancer center, a prototype was developed and technically evaluated using NLP procedures (UIMA) for the extraction of facts from medical free texts. It was found that although the extracted entities are not always correct (precision between 23% and 96%), they provide a decisive indication as to which patient file should be read preferentially. The prototype presented here demonstrates the technical feasibility. In order to find available, lucrative phenotypes, an in-depth evaluation is required.

  4. Position-aware deep multi-task learning for drug-drug interaction extraction.

    PubMed

    Zhou, Deyu; Miao, Lei; He, Yulan

    2018-05-01

    A drug-drug interaction (DDI) is a situation in which a drug affects the activity of another drug synergistically or antagonistically when being administered together. The information of DDIs is crucial for healthcare professionals to prevent adverse drug events. Although some known DDIs can be found in purposely-built databases such as DrugBank, most information is still buried in scientific publications. Therefore, automatically extracting DDIs from biomedical texts is sorely needed. In this paper, we propose a novel position-aware deep multi-task learning approach for extracting DDIs from biomedical texts. In particular, sentences are represented as a sequence of word embeddings and position embeddings. An attention-based bidirectional long short-term memory (BiLSTM) network is used to encode each sentence. The relative position information of words with the target drugs in text is combined with the hidden states of BiLSTM to generate the position-aware attention weights. Moreover, the tasks of predicting whether or not two drugs interact with each other and further distinguishing the types of interactions are learned jointly in multi-task learning framework. The proposed approach has been evaluated on the DDIExtraction challenge 2013 corpus and the results show that with the position-aware attention only, our proposed approach outperforms the state-of-the-art method by 0.99% for binary DDI classification, and with both position-aware attention and multi-task learning, our approach achieves a micro F-score of 72.99% on interaction type identification, outperforming the state-of-the-art approach by 1.51%, which demonstrates the effectiveness of the proposed approach. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A tutorial on information retrieval: basic terms and concepts

    PubMed Central

    Zhou, Wei; Smalheiser, Neil R; Yu, Clement

    2006-01-01

    This informal tutorial is intended for investigators and students who would like to understand the workings of information retrieval systems, including the most frequently used search engines: PubMed and Google. Having a basic knowledge of the terms and concepts of information retrieval should improve the efficiency and productivity of searches. As well, this knowledge is needed in order to follow current research efforts in biomedical information retrieval and text mining that are developing new systems not only for finding documents on a given topic, but extracting and integrating knowledge across documents. PMID:16722601

  6. Detection and categorization of bacteria habitats using shallow linguistic analysis

    PubMed Central

    2015-01-01

    Background Information regarding bacteria biotopes is important for several research areas including health sciences, microbiology, and food processing and preservation. One of the challenges for scientists in these domains is the huge amount of information buried in the text of electronic resources. Developing methods to automatically extract bacteria habitat relations from the text of these electronic resources is crucial for facilitating research in these areas. Methods We introduce a linguistically motivated rule-based approach for recognizing and normalizing names of bacteria habitats in biomedical text by using an ontology. Our approach is based on the shallow syntactic analysis of the text that include sentence segmentation, part-of-speech (POS) tagging, partial parsing, and lemmatization. In addition, we propose two methods for identifying bacteria habitat localization relations. The underlying assumption for the first method is that discourse changes with a new paragraph. Therefore, it operates on a paragraph-basis. The second method performs a more fine-grained analysis of the text and operates on a sentence-basis. We also develop a novel anaphora resolution method for bacteria coreferences and incorporate it with the sentence-based relation extraction approach. Results We participated in the Bacteria Biotope (BB) Task of the BioNLP Shared Task 2013. Our system (Boun) achieved the second best performance with 68% Slot Error Rate (SER) in Sub-task 1 (Entity Detection and Categorization), and ranked third with an F-score of 27% in Sub-task 2 (Localization Event Extraction). This paper reports the system that is implemented for the shared task, including the novel methods developed and the improvements obtained after the official evaluation. The extensions include the expansion of the OntoBiotope ontology using the training set for Sub-task 1, and the novel sentence-based relation extraction method incorporated with anaphora resolution for Sub-task 2. These extensions resulted in promising results for Sub-task 1 with a SER of 68%, and state-of-the-art performance for Sub-task 2 with an F-score of 53%. Conclusions Our results show that a linguistically-oriented approach based on the shallow syntactic analysis of the text is as effective as machine learning approaches for the detection and ontology-based normalization of habitat entities. Furthermore, the newly developed sentence-based relation extraction system with the anaphora resolution module significantly outperforms the paragraph-based one, as well as the other systems that participated in the BB Shared Task 2013. PMID:26201262

  7. The BioLexicon: a large-scale terminological resource for biomedical text mining

    PubMed Central

    2011-01-01

    Background Due to the rapidly expanding body of biomedical literature, biologists require increasingly sophisticated and efficient systems to help them to search for relevant information. Such systems should account for the multiple written variants used to represent biomedical concepts, and allow the user to search for specific pieces of knowledge (or events) involving these concepts, e.g., protein-protein interactions. Such functionality requires access to detailed information about words used in the biomedical literature. Existing databases and ontologies often have a specific focus and are oriented towards human use. Consequently, biological knowledge is dispersed amongst many resources, which often do not attempt to account for the large and frequently changing set of variants that appear in the literature. Additionally, such resources typically do not provide information about how terms relate to each other in texts to describe events. Results This article provides an overview of the design, construction and evaluation of a large-scale lexical and conceptual resource for the biomedical domain, the BioLexicon. The resource can be exploited by text mining tools at several levels, e.g., part-of-speech tagging, recognition of biomedical entities, and the extraction of events in which they are involved. As such, the BioLexicon must account for real usage of words in biomedical texts. In particular, the BioLexicon gathers together different types of terms from several existing data resources into a single, unified repository, and augments them with new term variants automatically extracted from biomedical literature. Extraction of events is facilitated through the inclusion of biologically pertinent verbs (around which events are typically organized) together with information about typical patterns of grammatical and semantic behaviour, which are acquired from domain-specific texts. In order to foster interoperability, the BioLexicon is modelled using the Lexical Markup Framework, an ISO standard. Conclusions The BioLexicon contains over 2.2 M lexical entries and over 1.8 M terminological variants, as well as over 3.3 M semantic relations, including over 2 M synonymy relations. Its exploitation can benefit both application developers and users. We demonstrate some such benefits by describing integration of the resource into a number of different tools, and evaluating improvements in performance that this can bring. PMID:21992002

  8. The BioLexicon: a large-scale terminological resource for biomedical text mining.

    PubMed

    Thompson, Paul; McNaught, John; Montemagni, Simonetta; Calzolari, Nicoletta; del Gratta, Riccardo; Lee, Vivian; Marchi, Simone; Monachini, Monica; Pezik, Piotr; Quochi, Valeria; Rupp, C J; Sasaki, Yutaka; Venturi, Giulia; Rebholz-Schuhmann, Dietrich; Ananiadou, Sophia

    2011-10-12

    Due to the rapidly expanding body of biomedical literature, biologists require increasingly sophisticated and efficient systems to help them to search for relevant information. Such systems should account for the multiple written variants used to represent biomedical concepts, and allow the user to search for specific pieces of knowledge (or events) involving these concepts, e.g., protein-protein interactions. Such functionality requires access to detailed information about words used in the biomedical literature. Existing databases and ontologies often have a specific focus and are oriented towards human use. Consequently, biological knowledge is dispersed amongst many resources, which often do not attempt to account for the large and frequently changing set of variants that appear in the literature. Additionally, such resources typically do not provide information about how terms relate to each other in texts to describe events. This article provides an overview of the design, construction and evaluation of a large-scale lexical and conceptual resource for the biomedical domain, the BioLexicon. The resource can be exploited by text mining tools at several levels, e.g., part-of-speech tagging, recognition of biomedical entities, and the extraction of events in which they are involved. As such, the BioLexicon must account for real usage of words in biomedical texts. In particular, the BioLexicon gathers together different types of terms from several existing data resources into a single, unified repository, and augments them with new term variants automatically extracted from biomedical literature. Extraction of events is facilitated through the inclusion of biologically pertinent verbs (around which events are typically organized) together with information about typical patterns of grammatical and semantic behaviour, which are acquired from domain-specific texts. In order to foster interoperability, the BioLexicon is modelled using the Lexical Markup Framework, an ISO standard. The BioLexicon contains over 2.2 M lexical entries and over 1.8 M terminological variants, as well as over 3.3 M semantic relations, including over 2 M synonymy relations. Its exploitation can benefit both application developers and users. We demonstrate some such benefits by describing integration of the resource into a number of different tools, and evaluating improvements in performance that this can bring.

  9. Forensic Analysis of Compromised Computers

    NASA Technical Reports Server (NTRS)

    Wolfe, Thomas

    2004-01-01

    Directory Tree Analysis File Generator is a Practical Extraction and Reporting Language (PERL) script that simplifies and automates the collection of information for forensic analysis of compromised computer systems. During such an analysis, it is sometimes necessary to collect and analyze information about files on a specific directory tree. Directory Tree Analysis File Generator collects information of this type (except information about directories) and writes it to a text file. In particular, the script asks the user for the root of the directory tree to be processed, the name of the output file, and the number of subtree levels to process. The script then processes the directory tree and puts out the aforementioned text file. The format of the text file is designed to enable the submission of the file as input to a spreadsheet program, wherein the forensic analysis is performed. The analysis usually consists of sorting files and examination of such characteristics of files as ownership, time of creation, and time of most recent access, all of which characteristics are among the data included in the text file.

  10. Trial of infographics in Northern Ireland (TINI): Preliminary evaluation and results of a randomized controlled trial comparing infographics with text.

    PubMed

    McCrorie, Alan David; Chen, Jingwen Jessica; Weller, Ross; McGlade, Kieran John; Donnelly, Conan

    2018-06-01

    Infographics represent a potential means of improving public knowledge about cancer. However, there is little experimental evidence of their efficacy. This preliminary study investigates whether infographics are superior to text for the communication of information about cancer risk in old age via a three armed randomized controlled trial. Trial involved allocation concealment and block randomization of 30 male participants aged over 50 to receive text information (control) or one of two infographics (interventions). Participants who viewed an infographic were more likely to know the correct association between cancer risk and old age compared with those viewing text information (risk ratio = 3.0, 95% confidence interval 0.82-10.90). Participants had limited understanding of the phrases "cancer incidence" and "cancer prevalence" but good understanding of the phrases "cancer risk factor" and "cancer stage." Possession of good numerical skills appears to be a key determinant of ability to extract meaning from statistical information provided; regardless of format. Initial results suggest icon array infographics may be more effective communication mediums than text but further study with more participants and an updated infographic is necessary to confirm this finding. ISRCTN33951209.

  11. Development of an information retrieval tool for biomedical patents.

    PubMed

    Alves, Tiago; Rodrigues, Rúben; Costa, Hugo; Rocha, Miguel

    2018-06-01

    The volume of biomedical literature has been increasing in the last years. Patent documents have also followed this trend, being important sources of biomedical knowledge, technical details and curated data, which are put together along the granting process. The field of Biomedical text mining (BioTM) has been creating solutions for the problems posed by the unstructured nature of natural language, which makes the search of information a challenging task. Several BioTM techniques can be applied to patents. From those, Information Retrieval (IR) includes processes where relevant data are obtained from collections of documents. In this work, the main goal was to build a patent pipeline addressing IR tasks over patent repositories to make these documents amenable to BioTM tasks. The pipeline was developed within @Note2, an open-source computational framework for BioTM, adding a number of modules to the core libraries, including patent metadata and full text retrieval, PDF to text conversion and optical character recognition. Also, user interfaces were developed for the main operations materialized in a new @Note2 plug-in. The integration of these tools in @Note2 opens opportunities to run BioTM tools over patent texts, including tasks from Information Extraction, such as Named Entity Recognition or Relation Extraction. We demonstrated the pipeline's main functions with a case study, using an available benchmark dataset from BioCreative challenges. Also, we show the use of the plug-in with a user query related to the production of vanillin. This work makes available all the relevant content from patents to the scientific community, decreasing drastically the time required for this task, and provides graphical interfaces to ease the use of these tools. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Geoparsing text for characterizing urban operational environments through machine learning techniques

    NASA Astrophysics Data System (ADS)

    Garfinkle, Noah W.; Selig, Lucas; Perkins, Timothy K.; Calfas, George W.

    2017-05-01

    Increasing worldwide internet connectivity and access to sources of print and open social media has increased near realtime availability of textual information. Capabilities to structure and integrate textual data streams can contribute to more meaningful representations of operational environment factors (i.e., Political, Military, Economic, Social, Infrastructure, Information, Physical Environment, and Time [PMESII-PT]) and tactical civil considerations (i.e., Areas, Structures, Capabilities, Organizations, People and Events [ASCOPE]). However, relying upon human analysts to encode this information as it arrives quickly proves intractable. While human analysts possess an ability to comprehend context in unstructured text far beyond that of computers, automated geoparsing (the extraction of locations from unstructured text) can empower analysts to automate sifting through datasets for areas of interest. This research evaluates existing approaches to geoprocessing as well as initiating the research and development of locally-improved methods of tagging parts of text as possible locations, resolving possible locations into coordinates, and interfacing such results with human analysts. The objective of this ongoing research is to develop a more contextually-complete picture of an area of interest (AOI) including human-geographic context for events. In particular, our research is working to make improvements to geoparsing (i.e., the extraction of spatial context from documents), which requires development, integration, and validation of named-entity recognition (NER) tools, gazetteers, and entity-attribution. This paper provides an overview of NER models and methodologies as applied to geoparsing, explores several challenges encountered, presents preliminary results from the creation of a flexible geoparsing research pipeline, and introduces ongoing and future work with the intention of contributing to the efficient geocoding of information containing valuable insights into human activities in space.

  13. Automated extraction of radiation dose information from CT dose report images.

    PubMed

    Li, Xinhua; Zhang, Da; Liu, Bob

    2011-06-01

    The purpose of this article is to describe the development of an automated tool for retrieving texts from CT dose report images. Optical character recognition was adopted to perform text recognitions of CT dose report images. The developed tool is able to automate the process of analyzing multiple CT examinations, including text recognition, parsing, error correction, and exporting data to spreadsheets. The results were precise for total dose-length product (DLP) and were about 95% accurate for CT dose index and DLP of scanned series.

  14. CRL/NMSU and Brandeis: Description of the MucBruce System as Used for MUC-4

    DTIC Science & Technology

    1992-01-01

    developing a method fo r identifying articles of interest and extracting and storing specific kinds of information from large volumes o f Japanese and...performance . Most of the information produced in our MUC template s is arrived at by probing the text which surrounds `significant’ words for the...strings with semantic information . The other two, the Relevant Template Filter and the Relevant Paragraph Filter, perform word frequency analysis to

  15. Effective use of latent semantic indexing and computational linguistics in biological and biomedical applications.

    PubMed

    Chen, Hongyu; Martin, Bronwen; Daimon, Caitlin M; Maudsley, Stuart

    2013-01-01

    Text mining is rapidly becoming an essential technique for the annotation and analysis of large biological data sets. Biomedical literature currently increases at a rate of several thousand papers per week, making automated information retrieval methods the only feasible method of managing this expanding corpus. With the increasing prevalence of open-access journals and constant growth of publicly-available repositories of biomedical literature, literature mining has become much more effective with respect to the extraction of biomedically-relevant data. In recent years, text mining of popular databases such as MEDLINE has evolved from basic term-searches to more sophisticated natural language processing techniques, indexing and retrieval methods, structural analysis and integration of literature with associated metadata. In this review, we will focus on Latent Semantic Indexing (LSI), a computational linguistics technique increasingly used for a variety of biological purposes. It is noted for its ability to consistently outperform benchmark Boolean text searches and co-occurrence models at information retrieval and its power to extract indirect relationships within a data set. LSI has been used successfully to formulate new hypotheses, generate novel connections from existing data, and validate empirical data.

  16. Developing a hybrid dictionary-based bio-entity recognition technique.

    PubMed

    Song, Min; Yu, Hwanjo; Han, Wook-Shin

    2015-01-01

    Bio-entity extraction is a pivotal component for information extraction from biomedical literature. The dictionary-based bio-entity extraction is the first generation of Named Entity Recognition (NER) techniques. This paper presents a hybrid dictionary-based bio-entity extraction technique. The approach expands the bio-entity dictionary by combining different data sources and improves the recall rate through the shortest path edit distance algorithm. In addition, the proposed technique adopts text mining techniques in the merging stage of similar entities such as Part of Speech (POS) expansion, stemming, and the exploitation of the contextual cues to further improve the performance. The experimental results show that the proposed technique achieves the best or at least equivalent performance among compared techniques, GENIA, MESH, UMLS, and combinations of these three resources in F-measure. The results imply that the performance of dictionary-based extraction techniques is largely influenced by information resources used to build the dictionary. In addition, the edit distance algorithm shows steady performance with three different dictionaries in precision whereas the context-only technique achieves a high-end performance with three difference dictionaries in recall.

  17. Developing a hybrid dictionary-based bio-entity recognition technique

    PubMed Central

    2015-01-01

    Background Bio-entity extraction is a pivotal component for information extraction from biomedical literature. The dictionary-based bio-entity extraction is the first generation of Named Entity Recognition (NER) techniques. Methods This paper presents a hybrid dictionary-based bio-entity extraction technique. The approach expands the bio-entity dictionary by combining different data sources and improves the recall rate through the shortest path edit distance algorithm. In addition, the proposed technique adopts text mining techniques in the merging stage of similar entities such as Part of Speech (POS) expansion, stemming, and the exploitation of the contextual cues to further improve the performance. Results The experimental results show that the proposed technique achieves the best or at least equivalent performance among compared techniques, GENIA, MESH, UMLS, and combinations of these three resources in F-measure. Conclusions The results imply that the performance of dictionary-based extraction techniques is largely influenced by information resources used to build the dictionary. In addition, the edit distance algorithm shows steady performance with three different dictionaries in precision whereas the context-only technique achieves a high-end performance with three difference dictionaries in recall. PMID:26043907

  18. Text Line Detection from Rectangle Traffic Panels of Natural Scene

    NASA Astrophysics Data System (ADS)

    Wang, Shiyuan; Huang, Linlin; Hu, Jian

    2018-01-01

    Traffic sign detection and recognition is very important for Intelligent Transportation. Among traffic signs, traffic panel contains rich information. However, due to low resolution and blur in the rectangular traffic panel, it is difficult to extract the character and symbols. In this paper, we propose a coarse-to-fine method to detect the Chinese character on traffic panels from natural scenes. Given a traffic panel Color Quantization is applied to extract candidate regions of Chinese characters. Second, a multi-stage filter based on learning is applied to discard the non-character regions. Third, we aggregate the characters for text lines by Distance Metric Learning method. Experimental results on real traffic images from Baidu Street View demonstrate the effectiveness of the proposed method.

  19. CMedTEX: A Rule-based Temporal Expression Extraction and Normalization System for Chinese Clinical Notes.

    PubMed

    Liu, Zengjian; Tang, Buzhou; Wang, Xiaolong; Chen, Qingcai; Li, Haodi; Bu, Junzhao; Jiang, Jingzhi; Deng, Qiwen; Zhu, Suisong

    2016-01-01

    Time is an important aspect of information and is very useful for information utilization. The goal of this study was to analyze the challenges of temporal expression (TE) extraction and normalization in Chinese clinical notes by assessing the performance of a rule-based system developed by us on a manually annotated corpus (including 1,778 clinical notes of 281 hospitalized patients). In order to develop system conveniently, we divided TEs into three categories: direct, indirect and uncertain TEs, and designed different rules for each category of them. Evaluation on the independent test set shows that our system achieves an F-score of93.40% on TE extraction, and an accuracy of 92.58% on TE normalization under "exact-match" criterion. Compared with HeidelTime for Chinese newswire text, our system is much better, indicating that it is necessary to develop a specific TE extraction and normalization system for Chinese clinical notes because of domain difference.

  20. A New Data Representation Based on Training Data Characteristics to Extract Drug Name Entity in Medical Text

    PubMed Central

    Basaruddin, T.

    2016-01-01

    One essential task in information extraction from the medical corpus is drug name recognition. Compared with text sources come from other domains, the medical text mining poses more challenges, for example, more unstructured text, the fast growing of new terms addition, a wide range of name variation for the same drug, the lack of labeled dataset sources and external knowledge, and the multiple token representations for a single drug name. Although many approaches have been proposed to overwhelm the task, some problems remained with poor F-score performance (less than 0.75). This paper presents a new treatment in data representation techniques to overcome some of those challenges. We propose three data representation techniques based on the characteristics of word distribution and word similarities as a result of word embedding training. The first technique is evaluated with the standard NN model, that is, MLP. The second technique involves two deep network classifiers, that is, DBN and SAE. The third technique represents the sentence as a sequence that is evaluated with a recurrent NN model, that is, LSTM. In extracting the drug name entities, the third technique gives the best F-score performance compared to the state of the art, with its average F-score being 0.8645. PMID:27843447

  1. A semantic-based method for extracting concept definitions from scientific publications: evaluation in the autism phenotype domain.

    PubMed

    Hassanpour, Saeed; O'Connor, Martin J; Das, Amar K

    2013-08-12

    A variety of informatics approaches have been developed that use information retrieval, NLP and text-mining techniques to identify biomedical concepts and relations within scientific publications or their sentences. These approaches have not typically addressed the challenge of extracting more complex knowledge such as biomedical definitions. In our efforts to facilitate knowledge acquisition of rule-based definitions of autism phenotypes, we have developed a novel semantic-based text-mining approach that can automatically identify such definitions within text. Using an existing knowledge base of 156 autism phenotype definitions and an annotated corpus of 26 source articles containing such definitions, we evaluated and compared the average rank of correctly identified rule definition or corresponding rule template using both our semantic-based approach and a standard term-based approach. We examined three separate scenarios: (1) the snippet of text contained a definition already in the knowledge base; (2) the snippet contained an alternative definition for a concept in the knowledge base; and (3) the snippet contained a definition not in the knowledge base. Our semantic-based approach had a higher average rank than the term-based approach for each of the three scenarios (scenario 1: 3.8 vs. 5.0; scenario 2: 2.8 vs. 4.9; and scenario 3: 4.5 vs. 6.2), with each comparison significant at the p-value of 0.05 using the Wilcoxon signed-rank test. Our work shows that leveraging existing domain knowledge in the information extraction of biomedical definitions significantly improves the correct identification of such knowledge within sentences. Our method can thus help researchers rapidly acquire knowledge about biomedical definitions that are specified and evolving within an ever-growing corpus of scientific publications.

  2. A linguistic rule-based approach to extract drug-drug interactions from pharmacological documents

    PubMed Central

    2011-01-01

    Background A drug-drug interaction (DDI) occurs when one drug influences the level or activity of another drug. The increasing volume of the scientific literature overwhelms health care professionals trying to be kept up-to-date with all published studies on DDI. Methods This paper describes a hybrid linguistic approach to DDI extraction that combines shallow parsing and syntactic simplification with pattern matching. Appositions and coordinate structures are interpreted based on shallow syntactic parsing provided by the UMLS MetaMap tool (MMTx). Subsequently, complex and compound sentences are broken down into clauses from which simple sentences are generated by a set of simplification rules. A pharmacist defined a set of domain-specific lexical patterns to capture the most common expressions of DDI in texts. These lexical patterns are matched with the generated sentences in order to extract DDIs. Results We have performed different experiments to analyze the performance of the different processes. The lexical patterns achieve a reasonable precision (67.30%), but very low recall (14.07%). The inclusion of appositions and coordinate structures helps to improve the recall (25.70%), however, precision is lower (48.69%). The detection of clauses does not improve the performance. Conclusions Information Extraction (IE) techniques can provide an interesting way of reducing the time spent by health care professionals on reviewing the literature. Nevertheless, no approach has been carried out to extract DDI from texts. To the best of our knowledge, this work proposes the first integral solution for the automatic extraction of DDI from biomedical texts. PMID:21489220

  3. Systematically extracting metal- and solvent-related occupational information from free-text responses to lifetime occupational history questionnaires.

    PubMed

    Friesen, Melissa C; Locke, Sarah J; Tornow, Carina; Chen, Yu-Cheng; Koh, Dong-Hee; Stewart, Patricia A; Purdue, Mark; Colt, Joanne S

    2014-06-01

    Lifetime occupational history (OH) questionnaires often use open-ended questions to capture detailed information about study participants' jobs. Exposure assessors use this information, along with responses to job- and industry-specific questionnaires, to assign exposure estimates on a job-by-job basis. An alternative approach is to use information from the OH responses and the job- and industry-specific questionnaires to develop programmable decision rules for assigning exposures. As a first step in this process, we developed a systematic approach to extract the free-text OH responses and convert them into standardized variables that represented exposure scenarios. Our study population comprised 2408 subjects, reporting 11991 jobs, from a case-control study of renal cell carcinoma. Each subject completed a lifetime OH questionnaire that included verbatim responses, for each job, to open-ended questions including job title, main tasks and activities (task), tools and equipment used (tools), and chemicals and materials handled (chemicals). Based on a review of the literature, we identified exposure scenarios (occupations, industries, tasks/tools/chemicals) expected to involve possible exposure to chlorinated solvents, trichloroethylene (TCE) in particular, lead, and cadmium. We then used a SAS macro to review the information reported by study participants to identify jobs associated with each exposure scenario; this was done using previously coded standardized occupation and industry classification codes, and a priori lists of associated key words and phrases related to possibly exposed tasks, tools, and chemicals. Exposure variables representing the occupation, industry, and task/tool/chemicals exposure scenarios were added to the work history records of the study respondents. Our identification of possibly TCE-exposed scenarios in the OH responses was compared to an expert's independently assigned probability ratings to evaluate whether we missed identifying possibly exposed jobs. Our process added exposure variables for 52 occupation groups, 43 industry groups, and 46 task/tool/chemical scenarios to the data set of OH responses. Across all four agents, we identified possibly exposed task/tool/chemical exposure scenarios in 44-51% of the jobs in possibly exposed occupations. Possibly exposed task/tool/chemical exposure scenarios were found in a nontrivial 9-14% of the jobs not in possibly exposed occupations, suggesting that our process identified important information that would not be captured using occupation alone. Our extraction process was sensitive: for jobs where our extraction of OH responses identified no exposure scenarios and for which the sole source of information was the OH responses, only 0.1% were assessed as possibly exposed to TCE by the expert. Our systematic extraction of OH information found useful information in the task/chemicals/tools responses that was relatively easy to extract and that was not available from the occupational or industry information. The extracted variables can be used as inputs in the development of decision rules, especially for jobs where no additional information, such as job- and industry-specific questionnaires, is available. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  4. Text-in-Context: A Method for Extracting Findings in Mixed-Methods Mixed Research Synthesis Studies

    PubMed Central

    Leeman, Jennifer; Knafl, Kathleen; Crandell, Jamie L.

    2012-01-01

    Aim Our purpose in this paper is to propose a new method for extracting findings from research reports included in mixed-methods mixed research synthesis studies. Background International initiatives in the domains of systematic review and evidence synthesis have been focused on broadening the conceptualization of evidence, increased methodological inclusiveness and the production of evidence syntheses that will be accessible to and usable by a wider range of consumers. Initiatives in the general mixed-methods research field have been focused on developing truly integrative approaches to data analysis and interpretation. Data source The data extraction challenges described here were encountered and the method proposed for addressing these challenges was developed, in the first year of the ongoing (2011–2016) study: Mixed-Methods Synthesis of Research on Childhood Chronic Conditions and Family. Discussion To preserve the text-in-context of findings in research reports, we describe a method whereby findings are transformed into portable statements that anchor results to relevant information about sample, source of information, time, comparative reference point, magnitude and significance and study-specific conceptions of phenomena. Implications for nursing The data extraction method featured here was developed specifically to accommodate mixed-methods mixed research synthesis studies conducted in nursing and other health sciences, but reviewers might find it useful in other kinds of research synthesis studies. Conclusion This data extraction method itself constitutes a type of integration to preserve the methodological context of findings when statements are read individually and in comparison to each other. PMID:22924808

  5. Comparison of the application of B-mode and strain elastography ultrasound in the estimation of lymph node metastasis of papillary thyroid carcinoma based on a radiomics approach.

    PubMed

    Liu, Tongtong; Ge, Xifeng; Yu, Jinhua; Guo, Yi; Wang, Yuanyuan; Wang, Wenping; Cui, Ligang

    2018-06-21

    B-mode ultrasound (B-US) and strain elastography ultrasound (SE-US) images have a potential to distinguish thyroid tumor with different lymph node (LN) status. The purpose of our study is to investigate whether the application of multi-modality images including B-US and SE-US can improve the discriminability of thyroid tumor with LN metastasis based on a radiomics approach. Ultrasound (US) images including B-US and SE-US images of 75 papillary thyroid carcinoma (PTC) cases were retrospectively collected. A radiomics approach was developed in this study to estimate LNs status of PTC patients. The approach included image segmentation, quantitative feature extraction, feature selection and classification. Three feature sets were extracted from B-US, SE-US, and multi-modality containing B-US and SE-US. They were used to evaluate the contribution of different modalities. A total of 684 radiomics features have been extracted in our study. We used sparse representation coefficient-based feature selection method with 10-bootstrap to reduce the dimension of feature sets. Support vector machine with leave-one-out cross-validation was used to build the model for estimating LN status. Using features extracted from both B-US and SE-US, the radiomics-based model produced an area under the receiver operating characteristic curve (AUC) [Formula: see text] 0.90, accuracy (ACC) [Formula: see text] 0.85, sensitivity (SENS) [Formula: see text] 0.77 and specificity (SPEC) [Formula: see text] 0.88, which was better than using features extracted from B-US or SE-US separately. Multi-modality images provided more information in radiomics study. Combining use of B-US and SE-US could improve the LN metastasis estimation accuracy for PTC patients.

  6. Analysis of Financial Markets' Fluctuation by Textual Information

    NASA Astrophysics Data System (ADS)

    Izumi, Kiyoshi; Goto, Takashi; Matsui, Tohgoroh

    In this study, we proposed a new text-mining methods for long-term market analysis. Using our method, we analyzed monthly price data of financial markets; Japanese government bond market, Japanese stock market, and the yen-dollar market. First we extracted feature vectors from monthly reports of Bank of Japan. Then, trends of each market were estimated by regression analysis using the feature vectors. As a result, determination coefficients were over 75%, and market trends were explained well by the information that was extracted from textual data. We compared the predictive power of our method among the markets. As a result, the method could estimate JGB market best and the stock market is the second.

  7. Generalized Categorial Grammar for Unbounded Dependencies Recovery

    ERIC Educational Resources Information Center

    Nguyen, Luan Viet

    2014-01-01

    Accurate recovery of predicate-argument dependencies is vital for interpretation tasks like information extraction and question answering, and unbounded dependencies may account for a significant portion of the dependencies in any given text. This thesis describes a Generalized Categorial Grammar (GCG) which, like other categorial grammars,…

  8. A generalizable NLP framework for fast development of pattern-based biomedical relation extraction systems.

    PubMed

    Peng, Yifan; Torii, Manabu; Wu, Cathy H; Vijay-Shanker, K

    2014-08-23

    Text mining is increasingly used in the biomedical domain because of its ability to automatically gather information from large amount of scientific articles. One important task in biomedical text mining is relation extraction, which aims to identify designated relations among biological entities reported in literature. A relation extraction system achieving high performance is expensive to develop because of the substantial time and effort required for its design and implementation. Here, we report a novel framework to facilitate the development of a pattern-based biomedical relation extraction system. It has several unique design features: (1) leveraging syntactic variations possible in a language and automatically generating extraction patterns in a systematic manner, (2) applying sentence simplification to improve the coverage of extraction patterns, and (3) identifying referential relations between a syntactic argument of a predicate and the actual target expected in the relation extraction task. A relation extraction system derived using the proposed framework achieved overall F-scores of 72.66% for the Simple events and 55.57% for the Binding events on the BioNLP-ST 2011 GE test set, comparing favorably with the top performing systems that participated in the BioNLP-ST 2011 GE task. We obtained similar results on the BioNLP-ST 2013 GE test set (80.07% and 60.58%, respectively). We conducted additional experiments on the training and development sets to provide a more detailed analysis of the system and its individual modules. This analysis indicates that without increasing the number of patterns, simplification and referential relation linking play a key role in the effective extraction of biomedical relations. In this paper, we present a novel framework for fast development of relation extraction systems. The framework requires only a list of triggers as input, and does not need information from an annotated corpus. Thus, we reduce the involvement of domain experts, who would otherwise have to provide manual annotations and help with the design of hand crafted patterns. We demonstrate how our framework is used to develop a system which achieves state-of-the-art performance on a public benchmark corpus.

  9. Ensemble of classifiers for ontology enrichment

    NASA Astrophysics Data System (ADS)

    Semenova, A. V.; Kureichik, V. M.

    2018-05-01

    A classifier is a basis of ontology learning systems. Classification of text documents is used in many applications, such as information retrieval, information extraction, definition of spam. A new ensemble of classifiers based on SVM (a method of support vectors), LSTM (neural network) and word embedding are suggested. An experiment was conducted on open data, which allows us to conclude that the proposed classification method is promising. The implementation of the proposed classifier is performed in the Matlab using the functions of the Text Analytics Toolbox. The principal difference between the proposed ensembles of classifiers is the high quality of classification of data at acceptable time costs.

  10. A METHODOLOGY FOR INTEGRATING IMAGES AND TEXT FOR OBJECT IDENTIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulson, Patrick R.; Hohimer, Ryan E.; Doucette, Peter J.

    2006-02-13

    Often text and imagery contain information that must be combined to solve a problem. One approach begins with transforming the raw text and imagery into a common structure that contains the critical information in a usable form. This paper presents an application in which the imagery of vehicles and the text from police reports were combined to demonstrate the power of data fusion to correctly identify the target vehicle--e.g., a red 2002 Ford truck identified in a police report--from a collection of diverse vehicle images. The imagery was abstracted into a common signature by first capturing the conceptual models ofmore » the imagery experts in software. Our system then (1) extracted fundamental features (e.g., wheel base, color), (2) made inferences about the information (e.g., it’s a red Ford) and then (3) translated the raw information into an abstract knowledge signature that was designed to both capture the important features and account for uncertainty. Likewise, the conceptual models of text analysis experts were instantiated into software that was used to generate an abstract knowledge signature that could be readily compared to the imagery knowledge signature. While this experiment primary focus was to demonstrate the power of text and imagery fusion for a specific example it also suggested several ways that text and geo-registered imagery could be combined to help solve other types of problems.« less

  11. Machine-aided indexing at NASA

    NASA Technical Reports Server (NTRS)

    Silvester, June P.; Genuardi, Michael T.; Klingbiel, Paul H.

    1994-01-01

    This report describes the NASA Lexical Dictionary (NLD), a machine-aided indexing system used online at the National Aeronautics and Space Administration's Center for AeroSpace Information (CASI). This system automatically suggests a set of candidate terms from NASA's controlled vocabulary for any designated natural language text input. The system is comprised of a text processor that is based on the computational, nonsyntactic analysis of input text and an extensive knowledge base that serves to recognize and translate text-extracted concepts. The functions of the various NLD system components are described in detail, and production and quality benefits resulting from the implementation of machine-aided indexing at CASI are discussed.

  12. An Improved Text Localization Method for Natural Scene Images

    NASA Astrophysics Data System (ADS)

    Jiang, Mengdi; Cheng, Jianghua; Chen, Minghui; Ku, Xishu

    2018-01-01

    In order to extract text information effectively from natural scene image with complex background, multi-orientation perspective and multilingual languages, we present a new method based on the improved Stroke Feature Transform (SWT). Firstly, The Maximally Stable Extremal Region (MSER) method is used to detect text candidate regions. Secondly, the SWT algorithm is used in the candidate regions, which can improve the edge detection compared with tradition SWT method. Finally, the Frequency-tuned (FT) visual saliency is introduced to remove non-text candidate regions. The experiment results show that, the method can achieve good robustness for complex background with multi-orientation perspective, various characters and font sizes.

  13. FamPlex: a resource for entity recognition and relationship resolution of human protein families and complexes in biomedical text mining.

    PubMed

    Bachman, John A; Gyori, Benjamin M; Sorger, Peter K

    2018-06-28

    For automated reading of scientific publications to extract useful information about molecular mechanisms it is critical that genes, proteins and other entities be correctly associated with uniform identifiers, a process known as named entity linking or "grounding." Correct grounding is essential for resolving relationships among mined information, curated interaction databases, and biological datasets. The accuracy of this process is largely dependent on the availability of machine-readable resources associating synonyms and abbreviations commonly found in biomedical literature with uniform identifiers. In a task involving automated reading of ∼215,000 articles using the REACH event extraction software we found that grounding was disproportionately inaccurate for multi-protein families (e.g., "AKT") and complexes with multiple subunits (e.g."NF- κB"). To address this problem we constructed FamPlex, a manually curated resource defining protein families and complexes as they are commonly encountered in biomedical text. In FamPlex the gene-level constituents of families and complexes are defined in a flexible format allowing for multi-level, hierarchical membership. To create FamPlex, text strings corresponding to entities were identified empirically from literature and linked manually to uniform identifiers; these identifiers were also mapped to equivalent entries in multiple related databases. FamPlex also includes curated prefix and suffix patterns that improve named entity recognition and event extraction. Evaluation of REACH extractions on a test corpus of ∼54,000 articles showed that FamPlex significantly increased grounding accuracy for families and complexes (from 15 to 71%). The hierarchical organization of entities in FamPlex also made it possible to integrate otherwise unconnected mechanistic information across families, subfamilies, and individual proteins. Applications of FamPlex to the TRIPS/DRUM reading system and the Biocreative VI Bioentity Normalization Task dataset demonstrated the utility of FamPlex in other settings. FamPlex is an effective resource for improving named entity recognition, grounding, and relationship resolution in automated reading of biomedical text. The content in FamPlex is available in both tabular and Open Biomedical Ontology formats at https://github.com/sorgerlab/famplex under the Creative Commons CC0 license and has been integrated into the TRIPS/DRUM and REACH reading systems.

  14. Level statistics of words: Finding keywords in literary texts and symbolic sequences

    NASA Astrophysics Data System (ADS)

    Carpena, P.; Bernaola-Galván, P.; Hackenberg, M.; Coronado, A. V.; Oliver, J. L.

    2009-03-01

    Using a generalization of the level statistics analysis of quantum disordered systems, we present an approach able to extract automatically keywords in literary texts. Our approach takes into account not only the frequencies of the words present in the text but also their spatial distribution along the text, and is based on the fact that relevant words are significantly clustered (i.e., they self-attract each other), while irrelevant words are distributed randomly in the text. Since a reference corpus is not needed, our approach is especially suitable for single documents for which no a priori information is available. In addition, we show that our method works also in generic symbolic sequences (continuous texts without spaces), thus suggesting its general applicability.

  15. A text zero-watermarking method based on keyword dense interval

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Zhu, Yuesheng; Jiang, Yifeng; Qing, Yin

    2017-07-01

    Digital watermarking has been recognized as a useful technology for the copyright protection and authentication of digital information. However, rarely did the former methods focus on the key content of digital carrier. The idea based on the protection of key content is more targeted and can be considered in different digital information, including text, image and video. In this paper, we use text as research object and a text zero-watermarking method which uses keyword dense interval (KDI) as the key content is proposed. First, we construct zero-watermarking model by introducing the concept of KDI and giving the method of KDI extraction. Second, we design detection model which includes secondary generation of zero-watermark and the similarity computing method of keyword distribution. Besides, experiments are carried out, and the results show that the proposed method gives better performance than other available methods especially in the attacks of sentence transformation and synonyms substitution.

  16. Duplicate document detection in DocBrowse

    NASA Astrophysics Data System (ADS)

    Chalana, Vikram; Bruce, Andrew G.; Nguyen, Thien

    1998-04-01

    Duplicate documents are frequently found in large databases of digital documents, such as those found in digital libraries or in the government declassification effort. Efficient duplicate document detection is important not only to allow querying for similar documents, but also to filter out redundant information in large document databases. We have designed three different algorithm to identify duplicate documents. The first algorithm is based on features extracted from the textual content of a document, the second algorithm is based on wavelet features extracted from the document image itself, and the third algorithm is a combination of the first two. These algorithms are integrated within the DocBrowse system for information retrieval from document images which is currently under development at MathSoft. DocBrowse supports duplicate document detection by allowing (1) automatic filtering to hide duplicate documents, and (2) ad hoc querying for similar or duplicate documents. We have tested the duplicate document detection algorithms on 171 documents and found that text-based method has an average 11-point precision of 97.7 percent while the image-based method has an average 11- point precision of 98.9 percent. However, in general, the text-based method performs better when the document contains enough high-quality machine printed text while the image- based method performs better when the document contains little or no quality machine readable text.

  17. Latent Dirichlet Allocation (LDA) Model and kNN Algorithm to Classify Research Project Selection

    NASA Astrophysics Data System (ADS)

    Safi’ie, M. A.; Utami, E.; Fatta, H. A.

    2018-03-01

    Universitas Sebelas Maret has a teaching staff more than 1500 people, and one of its tasks is to carry out research. In the other side, the funding support for research and service is limited, so there is need to be evaluated to determine the Research proposal submission and devotion on society (P2M). At the selection stage, research proposal documents are collected as unstructured data and the data stored is very large. To extract information contained in the documents therein required text mining technology. This technology applied to gain knowledge to the documents by automating the information extraction. In this articles we use Latent Dirichlet Allocation (LDA) to the documents as a model in feature extraction process, to get terms that represent its documents. Hereafter we use k-Nearest Neighbour (kNN) algorithm to classify the documents based on its terms.

  18. Query-oriented evidence extraction to support evidence-based medicine practice.

    PubMed

    Sarker, Abeed; Mollá, Diego; Paris, Cecile

    2016-02-01

    Evidence-based medicine practice requires medical practitioners to rely on the best available evidence, in addition to their expertise, when making clinical decisions. The medical domain boasts a large amount of published medical research data, indexed in various medical databases such as MEDLINE. As the size of this data grows, practitioners increasingly face the problem of information overload, and past research has established the time-associated obstacles faced by evidence-based medicine practitioners. In this paper, we focus on the problem of automatic text summarisation to help practitioners quickly find query-focused information from relevant documents. We utilise an annotated corpus that is specialised for the task of evidence-based summarisation of text. In contrast to past summarisation approaches, which mostly rely on surface level features to identify salient pieces of texts that form the summaries, our approach focuses on the use of corpus-based statistics, and domain-specific lexical knowledge for the identification of summary contents. We also apply a target-sentence-specific summarisation technique that reduces the problem of underfitting that persists in generic summarisation models. In automatic evaluations run over a large number of annotated summaries, our extractive summarisation technique statistically outperforms various baseline and benchmark summarisation models with a percentile rank of 96.8%. A manual evaluation shows that our extractive summarisation approach is capable of selecting content with high recall and precision, and may thus be used to generate bottom-line answers to practitioners' queries. Our research shows that the incorporation of specialised data and domain-specific knowledge can significantly improve text summarisation performance in the medical domain. Due to the vast amounts of medical text available, and the high growth of this form of data, we suspect that such summarisation techniques will address the time-related obstacles associated with evidence-based medicine. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Automated detection of discourse segment and experimental types from the text of cancer pathway results sections.

    PubMed

    Burns, Gully A P C; Dasigi, Pradeep; de Waard, Anita; Hovy, Eduard H

    2016-01-01

    Automated machine-reading biocuration systems typically use sentence-by-sentence information extraction to construct meaning representations for use by curators. This does not directly reflect the typical discourse structure used by scientists to construct an argument from the experimental data available within a article, and is therefore less likely to correspond to representations typically used in biomedical informatics systems (let alone to the mental models that scientists have). In this study, we develop Natural Language Processing methods to locate, extract, and classify the individual passages of text from articles' Results sections that refer to experimental data. In our domain of interest (molecular biology studies of cancer signal transduction pathways), individual articles may contain as many as 30 small-scale individual experiments describing a variety of findings, upon which authors base their overall research conclusions. Our system automatically classifies discourse segments in these texts into seven categories (fact, hypothesis, problem, goal, method, result, implication) with an F-score of 0.68. These segments describe the essential building blocks of scientific discourse to (i) provide context for each experiment, (ii) report experimental details and (iii) explain the data's meaning in context. We evaluate our system on text passages from articles that were curated in molecular biology databases (the Pathway Logic Datum repository, the Molecular Interaction MINT and INTACT databases) linking individual experiments in articles to the type of assay used (coprecipitation, phosphorylation, translocation etc.). We use supervised machine learning techniques on text passages containing unambiguous references to experiments to obtain baseline F1 scores of 0.59 for MINT, 0.71 for INTACT and 0.63 for Pathway Logic. Although preliminary, these results support the notion that targeting information extraction methods to experimental results could provide accurate, automated methods for biocuration. We also suggest the need for finer-grained curation of experimental methods used when constructing molecular biology databases. © The Author(s) 2016. Published by Oxford University Press.

  20. Content Analysis of Student Essays after Attending a Problem-Based Learning Course: Facilitating the Development of Critical Thinking and Communication Skills in Japanese Nursing Students.

    PubMed

    Itatani, Tomoya; Nagata, Kyoko; Yanagihara, Kiyoko; Tabuchi, Noriko

    2017-08-22

    The importance of active learning has continued to increase in Japan. The authors conducted classes for first-year students who entered the nursing program using the problem-based learning method which is a kind of active learning. Students discussed social topics in classes. The purposes of this study were to analyze the post-class essay, describe logical and critical thinking after attended a Problem-Based Learning (PBL) course. The authors used Mayring's methodology for qualitative content analysis and text mining. In the description about the skills required to resolve social issues, seven categories were extracted: (recognition of diverse social issues), (attitudes about resolving social issues), (discerning the root cause), (multi-lateral information processing skills), (making a path to resolve issues), (processivity in dealing with issues), and (reflecting). In the description about communication, five categories were extracted: (simple statement), (robust theories), (respecting the opponent), (communication skills), and (attractive presentations). As the result of text mining, the words extracted more than 100 times included "issue," "society," "resolve," "myself," "ability," "opinion," and "information." Education using PBL could be an effective means of improving skills that students described, and communication in general. Some students felt difficulty of communication resulting from characteristics of Japanese.

  1. Developing Communication in the Workplace for Non-Native English Speakers.

    ERIC Educational Resources Information Center

    Nichols, Pat; Watkins, Lisa

    This curriculum module contains materials for conducting a course designed to build oral and written English skills for nonnative speakers. The course focuses on increasing vocabulary, improving listening/speaking skills, extracting information from various written texts (such as memos, notes, business forms, manuals, letters), and developing…

  2. Automated extraction of clinical traits of multiple sclerosis in electronic medical records

    PubMed Central

    Davis, Mary F; Sriram, Subramaniam; Bush, William S; Denny, Joshua C; Haines, Jonathan L

    2013-01-01

    Objectives The clinical course of multiple sclerosis (MS) is highly variable, and research data collection is costly and time consuming. We evaluated natural language processing techniques applied to electronic medical records (EMR) to identify MS patients and the key clinical traits of their disease course. Materials and methods We used four algorithms based on ICD-9 codes, text keywords, and medications to identify individuals with MS from a de-identified, research version of the EMR at Vanderbilt University. Using a training dataset of the records of 899 individuals, algorithms were constructed to identify and extract detailed information regarding the clinical course of MS from the text of the medical records, including clinical subtype, presence of oligoclonal bands, year of diagnosis, year and origin of first symptom, Expanded Disability Status Scale (EDSS) scores, timed 25-foot walk scores, and MS medications. Algorithms were evaluated on a test set validated by two independent reviewers. Results We identified 5789 individuals with MS. For all clinical traits extracted, precision was at least 87% and specificity was greater than 80%. Recall values for clinical subtype, EDSS scores, and timed 25-foot walk scores were greater than 80%. Discussion and conclusion This collection of clinical data represents one of the largest databases of detailed, clinical traits available for research on MS. This work demonstrates that detailed clinical information is recorded in the EMR and can be extracted for research purposes with high reliability. PMID:24148554

  3. Automated extraction of Biomarker information from pathology reports.

    PubMed

    Lee, Jeongeun; Song, Hyun-Je; Yoon, Eunsil; Park, Seong-Bae; Park, Sung-Hye; Seo, Jeong-Wook; Park, Peom; Choi, Jinwook

    2018-05-21

    Pathology reports are written in free-text form, which precludes efficient data gathering. We aimed to overcome this limitation and design an automated system for extracting biomarker profiles from accumulated pathology reports. We designed a new data model for representing biomarker knowledge. The automated system parses immunohistochemistry reports based on a "slide paragraph" unit defined as a set of immunohistochemistry findings obtained for the same tissue slide. Pathology reports are parsed using context-free grammar for immunohistochemistry, and using a tree-like structure for surgical pathology. The performance of the approach was validated on manually annotated pathology reports of 100 randomly selected patients managed at Seoul National University Hospital. High F-scores were obtained for parsing biomarker name and corresponding test results (0.999 and 0.998, respectively) from the immunohistochemistry reports, compared to relatively poor performance for parsing surgical pathology findings. However, applying the proposed approach to our single-center dataset revealed information on 221 unique biomarkers, which represents a richer result than biomarker profiles obtained based on the published literature. Owing to the data representation model, the proposed approach can associate biomarker profiles extracted from an immunohistochemistry report with corresponding pathology findings listed in one or more surgical pathology reports. Term variations are resolved by normalization to corresponding preferred terms determined by expanded dictionary look-up and text similarity-based search. Our proposed approach for biomarker data extraction addresses key limitations regarding data representation and can handle reports prepared in the clinical setting, which often contain incomplete sentences, typographical errors, and inconsistent formatting.

  4. Identifying key hospital service quality factors in online health communities.

    PubMed

    Jung, Yuchul; Hur, Cinyoung; Jung, Dain; Kim, Minki

    2015-04-07

    The volume of health-related user-created content, especially hospital-related questions and answers in online health communities, has rapidly increased. Patients and caregivers participate in online community activities to share their experiences, exchange information, and ask about recommended or discredited hospitals. However, there is little research on how to identify hospital service quality automatically from the online communities. In the past, in-depth analysis of hospitals has used random sampling surveys. However, such surveys are becoming impractical owing to the rapidly increasing volume of online data and the diverse analysis requirements of related stakeholders. As a solution for utilizing large-scale health-related information, we propose a novel approach to identify hospital service quality factors and overtime trends automatically from online health communities, especially hospital-related questions and answers. We defined social media-based key quality factors for hospitals. In addition, we developed text mining techniques to detect such factors that frequently occur in online health communities. After detecting these factors that represent qualitative aspects of hospitals, we applied a sentiment analysis to recognize the types of recommendations in messages posted within online health communities. Korea's two biggest online portals were used to test the effectiveness of detection of social media-based key quality factors for hospitals. To evaluate the proposed text mining techniques, we performed manual evaluations on the extraction and classification results, such as hospital name, service quality factors, and recommendation types using a random sample of messages (ie, 5.44% (9450/173,748) of the total messages). Service quality factor detection and hospital name extraction achieved average F1 scores of 91% and 78%, respectively. In terms of recommendation classification, performance (ie, precision) is 78% on average. Extraction and classification performance still has room for improvement, but the extraction results are applicable to more detailed analysis. Further analysis of the extracted information reveals that there are differences in the details of social media-based key quality factors for hospitals according to the regions in Korea, and the patterns of change seem to accurately reflect social events (eg, influenza epidemics). These findings could be used to provide timely information to caregivers, hospital officials, and medical officials for health care policies.

  5. Mining protein phosphorylation information from biomedical literature using NLP parsing and Support Vector Machines.

    PubMed

    Raja, Kalpana; Natarajan, Jeyakumar

    2018-07-01

    Extraction of protein phosphorylation information from biomedical literature has gained much attention because of the importance in numerous biological processes. In this study, we propose a text mining methodology which consists of two phases, NLP parsing and SVM classification to extract phosphorylation information from literature. First, using NLP parsing we divide the data into three base-forms depending on the biomedical entities related to phosphorylation and further classify into ten sub-forms based on their distribution with phosphorylation keyword. Next, we extract the phosphorylation entity singles/pairs/triplets and apply SVM to classify the extracted singles/pairs/triplets using a set of features applicable to each sub-form. The performance of our methodology was evaluated on three corpora namely PLC, iProLink and hPP corpus. We obtained promising results of >85% F-score on ten sub-forms of training datasets on cross validation test. Our system achieved overall F-score of 93.0% on iProLink and 96.3% on hPP corpus test datasets. Furthermore, our proposed system achieved best performance on cross corpus evaluation and outperformed the existing system with recall of 90.1%. The performance analysis of our unique system on three corpora reveals that it extracts protein phosphorylation information efficiently in both non-organism specific general datasets such as PLC and iProLink, and human specific dataset such as hPP corpus. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Event extraction of bacteria biotopes: a knowledge-intensive NLP-based approach

    PubMed Central

    2012-01-01

    Background Bacteria biotopes cover a wide range of diverse habitats including animal and plant hosts, natural, medical and industrial environments. The high volume of publications in the microbiology domain provides a rich source of up-to-date information on bacteria biotopes. This information, as found in scientific articles, is expressed in natural language and is rarely available in a structured format, such as a database. This information is of great importance for fundamental research and microbiology applications (e.g., medicine, agronomy, food, bioenergy). The automatic extraction of this information from texts will provide a great benefit to the field. Methods We present a new method for extracting relationships between bacteria and their locations using the Alvis framework. Recognition of bacteria and their locations was achieved using a pattern-based approach and domain lexical resources. For the detection of environment locations, we propose a new approach that combines lexical information and the syntactic-semantic analysis of corpus terms to overcome the incompleteness of lexical resources. Bacteria location relations extend over sentence borders, and we developed domain-specific rules for dealing with bacteria anaphors. Results We participated in the BioNLP 2011 Bacteria Biotope (BB) task with the Alvis system. Official evaluation results show that it achieves the best performance of participating systems. New developments since then have increased the F-score by 4.1 points. Conclusions We have shown that the combination of semantic analysis and domain-adapted resources is both effective and efficient for event information extraction in the bacteria biotope domain. We plan to adapt the method to deal with a larger set of location types and a large-scale scientific article corpus to enable microbiologists to integrate and use the extracted knowledge in combination with experimental data. PMID:22759462

  7. Event extraction of bacteria biotopes: a knowledge-intensive NLP-based approach.

    PubMed

    Ratkovic, Zorana; Golik, Wiktoria; Warnier, Pierre

    2012-06-26

    Bacteria biotopes cover a wide range of diverse habitats including animal and plant hosts, natural, medical and industrial environments. The high volume of publications in the microbiology domain provides a rich source of up-to-date information on bacteria biotopes. This information, as found in scientific articles, is expressed in natural language and is rarely available in a structured format, such as a database. This information is of great importance for fundamental research and microbiology applications (e.g., medicine, agronomy, food, bioenergy). The automatic extraction of this information from texts will provide a great benefit to the field. We present a new method for extracting relationships between bacteria and their locations using the Alvis framework. Recognition of bacteria and their locations was achieved using a pattern-based approach and domain lexical resources. For the detection of environment locations, we propose a new approach that combines lexical information and the syntactic-semantic analysis of corpus terms to overcome the incompleteness of lexical resources. Bacteria location relations extend over sentence borders, and we developed domain-specific rules for dealing with bacteria anaphors. We participated in the BioNLP 2011 Bacteria Biotope (BB) task with the Alvis system. Official evaluation results show that it achieves the best performance of participating systems. New developments since then have increased the F-score by 4.1 points. We have shown that the combination of semantic analysis and domain-adapted resources is both effective and efficient for event information extraction in the bacteria biotope domain. We plan to adapt the method to deal with a larger set of location types and a large-scale scientific article corpus to enable microbiologists to integrate and use the extracted knowledge in combination with experimental data.

  8. Text Mining for Precision Medicine: Bringing structure to EHRs and biomedical literature to understand genes and health

    PubMed Central

    Simmons, Michael; Singhal, Ayush; Lu, Zhiyong

    2018-01-01

    The key question of precision medicine is whether it is possible to find clinically actionable granularity in diagnosing disease and classifying patient risk. The advent of next generation sequencing and the widespread adoption of electronic health records (EHRs) have provided clinicians and researchers a wealth of data and made possible the precise characterization of individual patient genotypes and phenotypes. Unstructured text — found in biomedical publications and clinical notes — is an important component of genotype and phenotype knowledge. Publications in the biomedical literature provide essential information for interpreting genetic data. Likewise, clinical notes contain the richest source of phenotype information in EHRs. Text mining can render these texts computationally accessible and support information extraction and hypothesis generation. This chapter reviews the mechanics of text mining in precision medicine and discusses several specific use cases, including database curation for personalized cancer medicine, patient outcome prediction from EHR-derived cohorts, and pharmacogenomic research. Taken as a whole, these use cases demonstrate how text mining enables effective utilization of existing knowledge sources and thus promotes increased value for patients and healthcare systems. Text mining is an indispensable tool for translating genotype-phenotype data into effective clinical care that will undoubtedly play an important role in the eventual realization of precision medicine. PMID:27807747

  9. Text Mining for Precision Medicine: Bringing Structure to EHRs and Biomedical Literature to Understand Genes and Health.

    PubMed

    Simmons, Michael; Singhal, Ayush; Lu, Zhiyong

    2016-01-01

    The key question of precision medicine is whether it is possible to find clinically actionable granularity in diagnosing disease and classifying patient risk. The advent of next-generation sequencing and the widespread adoption of electronic health records (EHRs) have provided clinicians and researchers a wealth of data and made possible the precise characterization of individual patient genotypes and phenotypes. Unstructured text-found in biomedical publications and clinical notes-is an important component of genotype and phenotype knowledge. Publications in the biomedical literature provide essential information for interpreting genetic data. Likewise, clinical notes contain the richest source of phenotype information in EHRs. Text mining can render these texts computationally accessible and support information extraction and hypothesis generation. This chapter reviews the mechanics of text mining in precision medicine and discusses several specific use cases, including database curation for personalized cancer medicine, patient outcome prediction from EHR-derived cohorts, and pharmacogenomic research. Taken as a whole, these use cases demonstrate how text mining enables effective utilization of existing knowledge sources and thus promotes increased value for patients and healthcare systems. Text mining is an indispensable tool for translating genotype-phenotype data into effective clinical care that will undoubtedly play an important role in the eventual realization of precision medicine.

  10. Classifying free-text triage chief complaints into syndromic categories with natural language processing.

    PubMed

    Chapman, Wendy W; Christensen, Lee M; Wagner, Michael M; Haug, Peter J; Ivanov, Oleg; Dowling, John N; Olszewski, Robert T

    2005-01-01

    Develop and evaluate a natural language processing application for classifying chief complaints into syndromic categories for syndromic surveillance. Much of the input data for artificial intelligence applications in the medical field are free-text patient medical records, including dictated medical reports and triage chief complaints. To be useful for automated systems, the free-text must be translated into encoded form. We implemented a biosurveillance detection system from Pennsylvania to monitor the 2002 Winter Olympic Games. Because input data was in free-text format, we used a natural language processing text classifier to automatically classify free-text triage chief complaints into syndromic categories used by the biosurveillance system. The classifier was trained on 4700 chief complaints from Pennsylvania. We evaluated the ability of the classifier to classify free-text chief complaints into syndromic categories with a test set of 800 chief complaints from Utah. The classifier produced the following areas under the ROC curve: Constitutional = 0.95; Gastrointestinal = 0.97; Hemorrhagic = 0.99; Neurological = 0.96; Rash = 1.0; Respiratory = 0.99; Other = 0.96. Using information stored in the system's semantic model, we extracted from the Respiratory classifications lower respiratory complaints and lower respiratory complaints with fever with a precision of 0.97 and 0.96, respectively. Results suggest that a trainable natural language processing text classifier can accurately extract data from free-text chief complaints for biosurveillance.

  11. Automatic Generation of Conditional Diagnostic Guidelines.

    PubMed

    Baldwin, Tyler; Guo, Yufan; Syeda-Mahmood, Tanveer

    2016-01-01

    The diagnostic workup for many diseases can be extraordinarily nuanced, and as such reference material text often contains extensive information regarding when it is appropriate to have a patient undergo a given procedure. In this work we employ a three task pipeline for the extraction of statements indicating the conditions under which a procedure should be performed, given a suspected diagnosis. First, we identify each instance in the text where a procedure is being recommended. Next we examine the context around these recommendations to extract conditional statements that dictate the conditions under which the recommendation holds. Finally, corefering recommendations across the document are linked to produce a full recommendation summary. Results indicate that each underlying task can be performed with above baseline performance, and the output can be used to produce concise recommendation summaries.

  12. Semantic information extracting system for classification of radiological reports in radiology information system (RIS)

    NASA Astrophysics Data System (ADS)

    Shi, Liehang; Ling, Tonghui; Zhang, Jianguo

    2016-03-01

    Radiologists currently use a variety of terminologies and standards in most hospitals in China, and even there are multiple terminologies being used for different sections in one department. In this presentation, we introduce a medical semantic comprehension system (MedSCS) to extract semantic information about clinical findings and conclusion from free text radiology reports so that the reports can be classified correctly based on medical terms indexing standards such as Radlex or SONMED-CT. Our system (MedSCS) is based on both rule-based methods and statistics-based methods which improve the performance and the scalability of MedSCS. In order to evaluate the over all of the system and measure the accuracy of the outcomes, we developed computation methods to calculate the parameters of precision rate, recall rate, F-score and exact confidence interval.

  13. The structure and infrastructure of the global nanotechnology literature

    NASA Astrophysics Data System (ADS)

    Kostoff, Ronald N.; Stump, Jesse A.; Johnson, Dustin; Murday, James S.; Lau, Clifford G. Y.; Tolles, William M.

    2006-08-01

    Text mining is the extraction of useful information from large volumes of text. A text mining analysis of the global open nanotechnology literature was performed. Records from the Science Citation Index (SCI)/Social SCI were analyzed to provide the infrastructure of the global nanotechnology literature (prolific authors/journals/institutions/countries, most cited authors/papers/journals) and the thematic structure (taxonomy) of the global nanotechnology literature, from a science perspective. Records from the Engineering Compendex (EC) were analyzed to provide a taxonomy from a technology perspective. The Far Eastern countries have expanded nanotechnology publication output dramatically in the past decade.

  14. Activity recognition using Video Event Segmentation with Text (VEST)

    NASA Astrophysics Data System (ADS)

    Holloway, Hillary; Jones, Eric K.; Kaluzniacki, Andrew; Blasch, Erik; Tierno, Jorge

    2014-06-01

    Multi-Intelligence (multi-INT) data includes video, text, and signals that require analysis by operators. Analysis methods include information fusion approaches such as filtering, correlation, and association. In this paper, we discuss the Video Event Segmentation with Text (VEST) method, which provides event boundaries of an activity to compile related message and video clips for future interest. VEST infers meaningful activities by clustering multiple streams of time-sequenced multi-INT intelligence data and derived fusion products. We discuss exemplar results that segment raw full-motion video (FMV) data by using extracted commentary message timestamps, FMV metadata, and user-defined queries.

  15. Construction of phosphorylation interaction networks by text mining of full-length articles using the eFIP system.

    PubMed

    Tudor, Catalina O; Ross, Karen E; Li, Gang; Vijay-Shanker, K; Wu, Cathy H; Arighi, Cecilia N

    2015-01-01

    Protein phosphorylation is a reversible post-translational modification where a protein kinase adds a phosphate group to a protein, potentially regulating its function, localization and/or activity. Phosphorylation can affect protein-protein interactions (PPIs), abolishing interaction with previous binding partners or enabling new interactions. Extracting phosphorylation information coupled with PPI information from the scientific literature will facilitate the creation of phosphorylation interaction networks of kinases, substrates and interacting partners, toward knowledge discovery of functional outcomes of protein phosphorylation. Increasingly, PPI databases are interested in capturing the phosphorylation state of interacting partners. We have previously developed the eFIP (Extracting Functional Impact of Phosphorylation) text mining system, which identifies phosphorylated proteins and phosphorylation-dependent PPIs. In this work, we present several enhancements for the eFIP system: (i) text mining for full-length articles from the PubMed Central open-access collection; (ii) the integration of the RLIMS-P 2.0 system for the extraction of phosphorylation events with kinase, substrate and site information; (iii) the extension of the PPI module with new trigger words/phrases describing interactions and (iv) the addition of the iSimp tool for sentence simplification to aid in the matching of syntactic patterns. We enhance the website functionality to: (i) support searches based on protein roles (kinases, substrates, interacting partners) or using keywords; (ii) link protein entities to their corresponding UniProt identifiers if mapped and (iii) support visual exploration of phosphorylation interaction networks using Cytoscape. The evaluation of eFIP on full-length articles achieved 92.4% precision, 76.5% recall and 83.7% F-measure on 100 article sections. To demonstrate eFIP for knowledge extraction and discovery, we constructed phosphorylation-dependent interaction networks involving 14-3-3 proteins identified from cancer-related versus diabetes-related articles. Comparison of the phosphorylation interaction network of kinases, phosphoproteins and interactants obtained from eFIP searches, along with enrichment analysis of the protein set, revealed several shared interactions, highlighting common pathways discussed in the context of both diseases. © The Author(s) 2015. Published by Oxford University Press.

  16. Scene text detection via extremal region based double threshold convolutional network classification

    PubMed Central

    Zhu, Wei; Lou, Jing; Chen, Longtao; Xia, Qingyuan

    2017-01-01

    In this paper, we present a robust text detection approach in natural images which is based on region proposal mechanism. A powerful low-level detector named saliency enhanced-MSER extended from the widely-used MSER is proposed by incorporating saliency detection methods, which ensures a high recall rate. Given a natural image, character candidates are extracted from three channels in a perception-based illumination invariant color space by saliency-enhanced MSER algorithm. A discriminative convolutional neural network (CNN) is jointly trained with multi-level information including pixel-level and character-level information as character candidate classifier. Each image patch is classified as strong text, weak text and non-text by double threshold filtering instead of conventional one-step classification, leveraging confident scores obtained via CNN. To further prune non-text regions, we develop a recursive neighborhood search algorithm to track credible texts from weak text set. Finally, characters are grouped into text lines using heuristic features such as spatial location, size, color, and stroke width. We compare our approach with several state-of-the-art methods, and experiments show that our method achieves competitive performance on public datasets ICDAR 2011 and ICDAR 2013. PMID:28820891

  17. Numerical linear algebra in data mining

    NASA Astrophysics Data System (ADS)

    Eldén, Lars

    Ideas and algorithms from numerical linear algebra are important in several areas of data mining. We give an overview of linear algebra methods in text mining (information retrieval), pattern recognition (classification of handwritten digits), and PageRank computations for web search engines. The emphasis is on rank reduction as a method of extracting information from a data matrix, low-rank approximation of matrices using the singular value decomposition and clustering, and on eigenvalue methods for network analysis.

  18. Relation extraction for biological pathway construction using node2vec.

    PubMed

    Kim, Munui; Baek, Seung Han; Song, Min

    2018-06-13

    Systems biology is an important field for understanding whole biological mechanisms composed of interactions between biological components. One approach for understanding complex and diverse mechanisms is to analyze biological pathways. However, because these pathways consist of important interactions and information on these interactions is disseminated in a large number of biomedical reports, text-mining techniques are essential for extracting these relationships automatically. In this study, we applied node2vec, an algorithmic framework for feature learning in networks, for relationship extraction. To this end, we extracted genes from paper abstracts using pkde4j, a text-mining tool for detecting entities and relationships. Using the extracted genes, a co-occurrence network was constructed and node2vec was used with the network to generate a latent representation. To demonstrate the efficacy of node2vec in extracting relationships between genes, performance was evaluated for gene-gene interactions involved in a type 2 diabetes pathway. Moreover, we compared the results of node2vec to those of baseline methods such as co-occurrence and DeepWalk. Node2vec outperformed existing methods in detecting relationships in the type 2 diabetes pathway, demonstrating that this method is appropriate for capturing the relatedness between pairs of biological entities involved in biological pathways. The results demonstrated that node2vec is useful for automatic pathway construction.

  19. Drug drug interaction extraction from the literature using a recursive neural network

    PubMed Central

    Lim, Sangrak; Lee, Kyubum

    2018-01-01

    Detecting drug-drug interactions (DDI) is important because information on DDIs can help prevent adverse effects from drug combinations. Since there are many new DDI-related papers published in the biomedical domain, manually extracting DDI information from the literature is a laborious task. However, text mining can be used to find DDIs in the biomedical literature. Among the recently developed neural networks, we use a Recursive Neural Network to improve the performance of DDI extraction. Our recursive neural network model uses a position feature, a subtree containment feature, and an ensemble method to improve the performance of DDI extraction. Compared with the state-of-the-art models, the DDI detection and type classifiers of our model performed 4.4% and 2.8% better, respectively, on the DDIExtraction Challenge’13 test data. We also validated our model on the PK DDI corpus that consists of two types of DDIs data: in vivo DDI and in vitro DDI. Compared with the existing model, our detection classifier performed 2.3% and 6.7% better on in vivo and in vitro data respectively. The results of our validation demonstrate that our model can automatically extract DDIs better than existing models. PMID:29373599

  20. Collaborative biocuration--text-mining development task for document prioritization for curation.

    PubMed

    Wiegers, Thomas C; Davis, Allan Peter; Mattingly, Carolyn J

    2012-01-01

    The Critical Assessment of Information Extraction systems in Biology (BioCreAtIvE) challenge evaluation is a community-wide effort for evaluating text mining and information extraction systems for the biological domain. The 'BioCreative Workshop 2012' subcommittee identified three areas, or tracks, that comprised independent, but complementary aspects of data curation in which they sought community input: literature triage (Track I); curation workflow (Track II) and text mining/natural language processing (NLP) systems (Track III). Track I participants were invited to develop tools or systems that would effectively triage and prioritize articles for curation and present results in a prototype web interface. Training and test datasets were derived from the Comparative Toxicogenomics Database (CTD; http://ctdbase.org) and consisted of manuscripts from which chemical-gene-disease data were manually curated. A total of seven groups participated in Track I. For the triage component, the effectiveness of participant systems was measured by aggregate gene, disease and chemical 'named-entity recognition' (NER) across articles; the effectiveness of 'information retrieval' (IR) was also measured based on 'mean average precision' (MAP). Top recall scores for gene, disease and chemical NER were 49, 65 and 82%, respectively; the top MAP score was 80%. Each participating group also developed a prototype web interface; these interfaces were evaluated based on functionality and ease-of-use by CTD's biocuration project manager. In this article, we present a detailed description of the challenge and a summary of the results.

  1. GDRMS: a system for automatic extraction of the disease-centre relation

    NASA Astrophysics Data System (ADS)

    Yang, Ronggen; Zhang, Yue; Gong, Lejun

    2012-01-01

    With the rapidly increasing of biomedical literature, the deluge of new articles is leading to information overload. Extracting the available knowledge from the huge amount of biomedical literature has become a major challenge. GDRMS is developed as a tool that extracts the relationship between disease and gene, gene and gene from biomedical literatures using text mining technology. It is a ruled-based system which also provides disease-centre network visualization, constructs the disease-gene database, and represents a gene engine for understanding the function of the gene. The main focus of GDRMS is to provide a valuable opportunity to explore the relationship between disease and gene for the research community about etiology of disease.

  2. Extracting Inter-business Relationship from World Wide Web

    NASA Astrophysics Data System (ADS)

    Jin, Yingzi; Matsuo, Yutaka; Ishizuka, Mitsuru

    Social relation plays an important role in a real community. Interaction patterns reveal relations among actors (such as persons, groups, companies), which can be merged into valuable information as a network structure. In this paper, we propose a new approach to extract inter-business relationship from the Web. Extraction of relation between a pair of companies is realized by using a search engine and text processing. Since names of companies co-appear coincidentaly on the Web, we propose an advanced algorithm which is characterized by addition of keywords (or we call relation words) to a query. The relation words are obtained from either an annotated corpus or the Web. We show some examples and comprehensive evaluations on our approach.

  3. Solar Astronomy Data Base: Packaged Information on Diskette

    NASA Technical Reports Server (NTRS)

    Mckinnon, John A.

    1990-01-01

    In its role as a library, the National Geophysical Data Center has transferred to diskette a collection of small, digital files of routinely measured solar indices for use on an IBM-compatible desktop computer. Recording these observations on diskette allows the distribution of specialized information to researchers with a wide range of expertise in computer science and solar astronomy. Every data set was made self-contained by including formats, extraction utilities, and plain-language descriptive text. Moreover, for several archives, two versions of the observations are provided - one suitable for display, the other for analysis with popular software packages. Since the files contain no control characters, each one can be modified with any text editor.

  4. Application of Natural Language Processing and Network Analysis Techniques to Post-market Reports for the Evaluation of Dose-related Anti-Thymocyte Globulin Safety Patterns.

    PubMed

    Botsis, Taxiarchis; Foster, Matthew; Arya, Nina; Kreimeyer, Kory; Pandey, Abhishek; Arya, Deepa

    2017-04-26

    To evaluate the feasibility of automated dose and adverse event information retrieval in supporting the identification of safety patterns. We extracted all rabbit Anti-Thymocyte Globulin (rATG) reports submitted to the United States Food and Drug Administration Adverse Event Reporting System (FAERS) from the product's initial licensure in April 16, 1984 through February 8, 2016. We processed the narratives using the Medication Extraction (MedEx) and the Event-based Text-mining of Health Electronic Records (ETHER) systems and retrieved the appropriate medication, clinical, and temporal information. When necessary, the extracted information was manually curated. This process resulted in a high quality dataset that was analyzed with the Pattern-based and Advanced Network Analyzer for Clinical Evaluation and Assessment (PANACEA) to explore the association of rATG dosing with post-transplant lymphoproliferative disorder (PTLD). Although manual curation was necessary to improve the data quality, MedEx and ETHER supported the extraction of the appropriate information. We created a final dataset of 1,380 cases with complete information for rATG dosing and date of administration. Analysis in PANACEA found that PTLD was associated with cumulative doses of rATG >8 mg/kg, even in periods where most of the submissions to FAERS reported low doses of rATG. We demonstrated the feasibility of investigating a dose-related safety pattern for a particular product in FAERS using a set of automated tools.

  5. Including Both Time and Accuracy in Defining Text Search Efficiency.

    ERIC Educational Resources Information Center

    Symons, Sonya; Specht, Jacqueline A.

    1994-01-01

    Examines factors related to efficiency in a textbook search task. Finds that time and accuracy involved distinct processes and that accuracy was related to verbal competence. Finds further that measures of planning and extracting information accounted for 59% of the variance in search efficiency. Suggests that both accuracy and rate need to be…

  6. Chemical name extraction based on automatic training data generation and rich feature set.

    PubMed

    Yan, Su; Spangler, W Scott; Chen, Ying

    2013-01-01

    The automation of extracting chemical names from text has significant value to biomedical and life science research. A major barrier in this task is the difficulty of getting a sizable and good quality data to train a reliable entity extraction model. Another difficulty is the selection of informative features of chemical names, since comprehensive domain knowledge on chemistry nomenclature is required. Leveraging random text generation techniques, we explore the idea of automatically creating training sets for the task of chemical name extraction. Assuming the availability of an incomplete list of chemical names, called a dictionary, we are able to generate well-controlled, random, yet realistic chemical-like training documents. We statistically analyze the construction of chemical names based on the incomplete dictionary, and propose a series of new features, without relying on any domain knowledge. Compared to state-of-the-art models learned from manually labeled data and domain knowledge, our solution shows better or comparable results in annotating real-world data with less human effort. Moreover, we report an interesting observation about the language for chemical names. That is, both the structural and semantic components of chemical names follow a Zipfian distribution, which resembles many natural languages.

  7. Mining free-text medical records for companion animal enteric syndrome surveillance.

    PubMed

    Anholt, R M; Berezowski, J; Jamal, I; Ribble, C; Stephen, C

    2014-03-01

    Large amounts of animal health care data are present in veterinary electronic medical records (EMR) and they present an opportunity for companion animal disease surveillance. Veterinary patient records are largely in free-text without clinical coding or fixed vocabulary. Text-mining, a computer and information technology application, is needed to identify cases of interest and to add structure to the otherwise unstructured data. In this study EMR's were extracted from veterinary management programs of 12 participating veterinary practices and stored in a data warehouse. Using commercially available text-mining software (WordStat™), we developed a categorization dictionary that could be used to automatically classify and extract enteric syndrome cases from the warehoused electronic medical records. The diagnostic accuracy of the text-miner for retrieving cases of enteric syndrome was measured against human reviewers who independently categorized a random sample of 2500 cases as enteric syndrome positive or negative. Compared to the reviewers, the text-miner retrieved cases with enteric signs with a sensitivity of 87.6% (95%CI, 80.4-92.9%) and a specificity of 99.3% (95%CI, 98.9-99.6%). Automatic and accurate detection of enteric syndrome cases provides an opportunity for community surveillance of enteric pathogens in companion animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Mutation extraction tools can be combined for robust recognition of genetic variants in the literature

    PubMed Central

    Jimeno Yepes, Antonio; Verspoor, Karin

    2014-01-01

    As the cost of genomic sequencing continues to fall, the amount of data being collected and studied for the purpose of understanding the genetic basis of disease is increasing dramatically. Much of the source information relevant to such efforts is available only from unstructured sources such as the scientific literature, and significant resources are expended in manually curating and structuring the information in the literature. As such, there have been a number of systems developed to target automatic extraction of mutations and other genetic variation from the literature using text mining tools. We have performed a broad survey of the existing publicly available tools for extraction of genetic variants from the scientific literature. We consider not just one tool but a number of different tools, individually and in combination, and apply the tools in two scenarios. First, they are compared in an intrinsic evaluation context, where the tools are tested for their ability to identify specific mentions of genetic variants in a corpus of manually annotated papers, the Variome corpus. Second, they are compared in an extrinsic evaluation context based on our previous study of text mining support for curation of the COSMIC and InSiGHT databases. Our results demonstrate that no single tool covers the full range of genetic variants mentioned in the literature. Rather, several tools have complementary coverage and can be used together effectively. In the intrinsic evaluation on the Variome corpus, the combined performance is above 0.95 in F-measure, while in the extrinsic evaluation the combined recall performance is above 0.71 for COSMIC and above 0.62 for InSiGHT, a substantial improvement over the performance of any individual tool. Based on the analysis of these results, we suggest several directions for the improvement of text mining tools for genetic variant extraction from the literature. PMID:25285203

  9. Sentiment Analysis Using Common-Sense and Context Information

    PubMed Central

    Mittal, Namita; Bansal, Pooja; Garg, Sonal

    2015-01-01

    Sentiment analysis research has been increasing tremendously in recent times due to the wide range of business and social applications. Sentiment analysis from unstructured natural language text has recently received considerable attention from the research community. In this paper, we propose a novel sentiment analysis model based on common-sense knowledge extracted from ConceptNet based ontology and context information. ConceptNet based ontology is used to determine the domain specific concepts which in turn produced the domain specific important features. Further, the polarities of the extracted concepts are determined using the contextual polarity lexicon which we developed by considering the context information of a word. Finally, semantic orientations of domain specific features of the review document are aggregated based on the importance of a feature with respect to the domain. The importance of the feature is determined by the depth of the feature in the ontology. Experimental results show the effectiveness of the proposed methods. PMID:25866505

  10. Sentiment analysis using common-sense and context information.

    PubMed

    Agarwal, Basant; Mittal, Namita; Bansal, Pooja; Garg, Sonal

    2015-01-01

    Sentiment analysis research has been increasing tremendously in recent times due to the wide range of business and social applications. Sentiment analysis from unstructured natural language text has recently received considerable attention from the research community. In this paper, we propose a novel sentiment analysis model based on common-sense knowledge extracted from ConceptNet based ontology and context information. ConceptNet based ontology is used to determine the domain specific concepts which in turn produced the domain specific important features. Further, the polarities of the extracted concepts are determined using the contextual polarity lexicon which we developed by considering the context information of a word. Finally, semantic orientations of domain specific features of the review document are aggregated based on the importance of a feature with respect to the domain. The importance of the feature is determined by the depth of the feature in the ontology. Experimental results show the effectiveness of the proposed methods.

  11. Identification and Progression of Heart Disease Risk Factors in Diabetic Patients from Longitudinal Electronic Health Records.

    PubMed

    Jonnagaddala, Jitendra; Liaw, Siaw-Teng; Ray, Pradeep; Kumar, Manish; Dai, Hong-Jie; Hsu, Chien-Yeh

    2015-01-01

    Heart disease is the leading cause of death worldwide. Therefore, assessing the risk of its occurrence is a crucial step in predicting serious cardiac events. Identifying heart disease risk factors and tracking their progression is a preliminary step in heart disease risk assessment. A large number of studies have reported the use of risk factor data collected prospectively. Electronic health record systems are a great resource of the required risk factor data. Unfortunately, most of the valuable information on risk factor data is buried in the form of unstructured clinical notes in electronic health records. In this study, we present an information extraction system to extract related information on heart disease risk factors from unstructured clinical notes using a hybrid approach. The hybrid approach employs both machine learning and rule-based clinical text mining techniques. The developed system achieved an overall microaveraged F-score of 0.8302.

  12. Text mining for traditional Chinese medical knowledge discovery: a survey.

    PubMed

    Zhou, Xuezhong; Peng, Yonghong; Liu, Baoyan

    2010-08-01

    Extracting meaningful information and knowledge from free text is the subject of considerable research interest in the machine learning and data mining fields. Text data mining (or text mining) has become one of the most active research sub-fields in data mining. Significant developments in the area of biomedical text mining during the past years have demonstrated its great promise for supporting scientists in developing novel hypotheses and new knowledge from the biomedical literature. Traditional Chinese medicine (TCM) provides a distinct methodology with which to view human life. It is one of the most complete and distinguished traditional medicines with a history of several thousand years of studying and practicing the diagnosis and treatment of human disease. It has been shown that the TCM knowledge obtained from clinical practice has become a significant complementary source of information for modern biomedical sciences. TCM literature obtained from the historical period and from modern clinical studies has recently been transformed into digital data in the form of relational databases or text documents, which provide an effective platform for information sharing and retrieval. This motivates and facilitates research and development into knowledge discovery approaches and to modernize TCM. In order to contribute to this still growing field, this paper presents (1) a comparative introduction to TCM and modern biomedicine, (2) a survey of the related information sources of TCM, (3) a review and discussion of the state of the art and the development of text mining techniques with applications to TCM, (4) a discussion of the research issues around TCM text mining and its future directions. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Time-dependent analysis of dosage delivery information for patient-controlled analgesia services.

    PubMed

    Kuo, I-Ting; Chang, Kuang-Yi; Juan, De-Fong; Hsu, Steen J; Chan, Chia-Tai; Tsou, Mei-Yung

    2018-01-01

    Pain relief always plays the essential part of perioperative care and an important role of medical quality improvement. Patient-controlled analgesia (PCA) is a method that allows a patient to self-administer small boluses of analgesic to relieve the subjective pain. PCA logs from the infusion pump consisted of a lot of text messages which record all events during the therapies. The dosage information can be extracted from PCA logs to provide easily understanding features. The analysis of dosage information with time has great help to figure out the variance of a patient's pain relief condition. To explore the trend of pain relief requirement, we developed a PCA dosage information generator (PCA DIG) to extract meaningful messages from PCA logs during the first 48 hours of therapies. PCA dosage information including consumption, delivery, infusion rate, and the ratio between demand and delivery is presented with corresponding values in 4 successive time frames. Time-dependent statistical analysis demonstrated the trends of analgesia requirements decreased gradually along with time. These findings are compatible with clinical observations and further provide valuable information about the strategy to customize postoperative pain management.

  14. CRIE: An automated analyzer for Chinese texts.

    PubMed

    Sung, Yao-Ting; Chang, Tao-Hsing; Lin, Wei-Chun; Hsieh, Kuan-Sheng; Chang, Kuo-En

    2016-12-01

    Textual analysis has been applied to various fields, such as discourse analysis, corpus studies, text leveling, and automated essay evaluation. Several tools have been developed for analyzing texts written in alphabetic languages such as English and Spanish. However, currently there is no tool available for analyzing Chinese-language texts. This article introduces a tool for the automated analysis of simplified and traditional Chinese texts, called the Chinese Readability Index Explorer (CRIE). Composed of four subsystems and incorporating 82 multilevel linguistic features, CRIE is able to conduct the major tasks of segmentation, syntactic parsing, and feature extraction. Furthermore, the integration of linguistic features with machine learning models enables CRIE to provide leveling and diagnostic information for texts in language arts, texts for learning Chinese as a foreign language, and texts with domain knowledge. The usage and validation of the functions provided by CRIE are also introduced.

  15. Content Analysis of Student Essays after Attending a Problem-Based Learning Course: Facilitating the Development of Critical Thinking and Communication Skills in Japanese Nursing Students

    PubMed Central

    Itatani, Tomoya; Nagata, Kyoko; Yanagihara, Kiyoko; Tabuchi, Noriko

    2017-01-01

    The importance of active learning has continued to increase in Japan. The authors conducted classes for first-year students who entered the nursing program using the problem-based learning method which is a kind of active learning. Students discussed social topics in classes. The purposes of this study were to analyze the post-class essay, describe logical and critical thinking after attended a Problem-Based Learning (PBL) course. The authors used Mayring’s methodology for qualitative content analysis and text mining. In the description about the skills required to resolve social issues, seven categories were extracted: (recognition of diverse social issues), (attitudes about resolving social issues), (discerning the root cause), (multi-lateral information processing skills), (making a path to resolve issues), (processivity in dealing with issues), and (reflecting). In the description about communication, five categories were extracted: (simple statement), (robust theories), (respecting the opponent), (communication skills), and (attractive presentations). As the result of text mining, the words extracted more than 100 times included “issue,” “society,” “resolve,” “myself,” “ability,” “opinion,” and “information.” Education using PBL could be an effective means of improving skills that students described, and communication in general. Some students felt difficulty of communication resulting from characteristics of Japanese. PMID:28829362

  16. Large-scale extraction of accurate drug-disease treatment pairs from biomedical literature for drug repurposing

    PubMed Central

    2013-01-01

    Background A large-scale, highly accurate, machine-understandable drug-disease treatment relationship knowledge base is important for computational approaches to drug repurposing. The large body of published biomedical research articles and clinical case reports available on MEDLINE is a rich source of FDA-approved drug-disease indication as well as drug-repurposing knowledge that is crucial for applying FDA-approved drugs for new diseases. However, much of this information is buried in free text and not captured in any existing databases. The goal of this study is to extract a large number of accurate drug-disease treatment pairs from published literature. Results In this study, we developed a simple but highly accurate pattern-learning approach to extract treatment-specific drug-disease pairs from 20 million biomedical abstracts available on MEDLINE. We extracted a total of 34,305 unique drug-disease treatment pairs, the majority of which are not included in existing structured databases. Our algorithm achieved a precision of 0.904 and a recall of 0.131 in extracting all pairs, and a precision of 0.904 and a recall of 0.842 in extracting frequent pairs. In addition, we have shown that the extracted pairs strongly correlate with both drug target genes and therapeutic classes, therefore may have high potential in drug discovery. Conclusions We demonstrated that our simple pattern-learning relationship extraction algorithm is able to accurately extract many drug-disease pairs from the free text of biomedical literature that are not captured in structured databases. The large-scale, accurate, machine-understandable drug-disease treatment knowledge base that is resultant of our study, in combination with pairs from structured databases, will have high potential in computational drug repurposing tasks. PMID:23742147

  17. Definition of variables required for comprehensive description of drug dosage and clinical pharmacokinetics.

    PubMed

    Medem, Anna V; Seidling, Hanna M; Eichler, Hans-Georg; Kaltschmidt, Jens; Metzner, Michael; Hubert, Carina M; Czock, David; Haefeli, Walter E

    2017-05-01

    Electronic clinical decision support systems (CDSS) require drug information that can be processed by computers. The goal of this project was to determine and evaluate a compilation of variables that comprehensively capture the information contained in the summary of product characteristic (SmPC) and unequivocally describe the drug, its dosage options, and clinical pharmacokinetics. An expert panel defined and structured a set of variables and drafted a guideline to extract and enter information on dosage and clinical pharmacokinetics from textual SmPCs as published by the European Medicines Agency (EMA). The set of variables was iteratively revised and evaluated by data extraction and variable allocation of roughly 7% of all centrally approved drugs. The information contained in the SmPC was allocated to three information clusters consisting of 260 variables. The cluster "drug characterization" specifies the nature of the drug. The cluster "dosage" provides information on approved drug dosages and defines corresponding specific conditions. The cluster "clinical pharmacokinetics" includes pharmacokinetic parameters of relevance for dosing in clinical practice. A first evaluation demonstrated that, despite the complexity of the current free text SmPCs, dosage and pharmacokinetic information can be reliably extracted from the SmPCs and comprehensively described by a limited set of variables. By proposing a compilation of variables well describing drug dosage and clinical pharmacokinetics, the project represents a step forward towards the development of a comprehensive database system serving as information source for sophisticated CDSS.

  18. Two Different Approaches to Automated Mark Up of Emotions in Text

    NASA Astrophysics Data System (ADS)

    Francisco, Virginia; Hervás, Raqucl; Gervás, Pablo

    This paper presents two different approaches to automated marking up of texts with emotional labels. For the first approach a corpus of example texts previously annotated by human evaluators is mined for an initial assignment of emotional features to words. This results in a List of Emotional Words (LEW) which becomes a useful resource for later automated mark up. The mark up algorithm in this first approach mirrors closely the steps taken during feature extraction, employing for the actual assignment of emotional features a combination of the LEW resource and WordNet for knowledge-based expansion of words not occurring in LEW. The algorithm for automated mark up is tested against new text samples to test its coverage. The second approach mark up texts during their generation. We have a knowledge base which contains the necessary information for marking up the text. This information is related to actions and characters. The algorithm in this case employ the information of the knowledge database and decides the correct emotion for every sentence. The algorithm for automated mark up is tested against four different texts. The results of the two approaches are compared and discussed with respect to three main issues: relative adequacy of each one of the representations used, correctness and coverage of the proposed algorithms, and additional techniques and solutions that may be employed to improve the results.

  19. Recent Advances and Emerging Applications in Text and Data Mining for Biomedical Discovery.

    PubMed

    Gonzalez, Graciela H; Tahsin, Tasnia; Goodale, Britton C; Greene, Anna C; Greene, Casey S

    2016-01-01

    Precision medicine will revolutionize the way we treat and prevent disease. A major barrier to the implementation of precision medicine that clinicians and translational scientists face is understanding the underlying mechanisms of disease. We are starting to address this challenge through automatic approaches for information extraction, representation and analysis. Recent advances in text and data mining have been applied to a broad spectrum of key biomedical questions in genomics, pharmacogenomics and other fields. We present an overview of the fundamental methods for text and data mining, as well as recent advances and emerging applications toward precision medicine. © The Author 2015. Published by Oxford University Press.

  20. Recent Advances and Emerging Applications in Text and Data Mining for Biomedical Discovery

    PubMed Central

    Gonzalez, Graciela H.; Tahsin, Tasnia; Goodale, Britton C.; Greene, Anna C.

    2016-01-01

    Precision medicine will revolutionize the way we treat and prevent disease. A major barrier to the implementation of precision medicine that clinicians and translational scientists face is understanding the underlying mechanisms of disease. We are starting to address this challenge through automatic approaches for information extraction, representation and analysis. Recent advances in text and data mining have been applied to a broad spectrum of key biomedical questions in genomics, pharmacogenomics and other fields. We present an overview of the fundamental methods for text and data mining, as well as recent advances and emerging applications toward precision medicine. PMID:26420781

  1. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks.

    PubMed

    Huynh, Benjamin Q; Li, Hui; Giger, Maryellen L

    2016-07-01

    Convolutional neural networks (CNNs) show potential for computer-aided diagnosis (CADx) by learning features directly from the image data instead of using analytically extracted features. However, CNNs are difficult to train from scratch for medical images due to small sample sizes and variations in tumor presentations. Instead, transfer learning can be used to extract tumor information from medical images via CNNs originally pretrained for nonmedical tasks, alleviating the need for large datasets. Our database includes 219 breast lesions (607 full-field digital mammographic images). We compared support vector machine classifiers based on the CNN-extracted image features and our prior computer-extracted tumor features in the task of distinguishing between benign and malignant breast lesions. Five-fold cross validation (by lesion) was conducted with the area under the receiver operating characteristic (ROC) curve as the performance metric. Results show that classifiers based on CNN-extracted features (with transfer learning) perform comparably to those using analytically extracted features [area under the ROC curve [Formula: see text

  2. Evaluation of a rule-based method for epidemiological document classification towards the automation of systematic reviews.

    PubMed

    Karystianis, George; Thayer, Kristina; Wolfe, Mary; Tsafnat, Guy

    2017-06-01

    Most data extraction efforts in epidemiology are focused on obtaining targeted information from clinical trials. In contrast, limited research has been conducted on the identification of information from observational studies, a major source for human evidence in many fields, including environmental health. The recognition of key epidemiological information (e.g., exposures) through text mining techniques can assist in the automation of systematic reviews and other evidence summaries. We designed and applied a knowledge-driven, rule-based approach to identify targeted information (study design, participant population, exposure, outcome, confounding factors, and the country where the study was conducted) from abstracts of epidemiological studies included in several systematic reviews of environmental health exposures. The rules were based on common syntactical patterns observed in text and are thus not specific to any systematic review. To validate the general applicability of our approach, we compared the data extracted using our approach versus hand curation for 35 epidemiological study abstracts manually selected for inclusion in two systematic reviews. The returned F-score, precision, and recall ranged from 70% to 98%, 81% to 100%, and 54% to 97%, respectively. The highest precision was observed for exposure, outcome and population (100%) while recall was best for exposure and study design with 97% and 89%, respectively. The lowest recall was observed for the population (54%), which also had the lowest F-score (70%). The generated performance of our text-mining approach demonstrated encouraging results for the identification of targeted information from observational epidemiological study abstracts related to environmental exposures. We have demonstrated that rules based on generic syntactic patterns in one corpus can be applied to other observational study design by simple interchanging the dictionaries aiming to identify certain characteristics (i.e., outcomes, exposures). At the document level, the recognised information can assist in the selection and categorization of studies included in a systematic review. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. MedEx: a medication information extraction system for clinical narratives

    PubMed Central

    Stenner, Shane P; Doan, Son; Johnson, Kevin B; Waitman, Lemuel R; Denny, Joshua C

    2010-01-01

    Medication information is one of the most important types of clinical data in electronic medical records. It is critical for healthcare safety and quality, as well as for clinical research that uses electronic medical record data. However, medication data are often recorded in clinical notes as free-text. As such, they are not accessible to other computerized applications that rely on coded data. We describe a new natural language processing system (MedEx), which extracts medication information from clinical notes. MedEx was initially developed using discharge summaries. An evaluation using a data set of 50 discharge summaries showed it performed well on identifying not only drug names (F-measure 93.2%), but also signature information, such as strength, route, and frequency, with F-measures of 94.5%, 93.9%, and 96.0% respectively. We then applied MedEx unchanged to outpatient clinic visit notes. It performed similarly with F-measures over 90% on a set of 25 clinic visit notes. PMID:20064797

  4. Isolating contour information from arbitrary images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1989-01-01

    Aspects of natural vision (physiological and perceptual) serve as a basis for attempting the development of a general processing scheme for contour extraction. Contour information is assumed to be central to visual recognition skills. While the scheme must be regarded as highly preliminary, initial results do compare favorably with the visual perception of structure. The scheme pays special attention to the construction of a smallest scale circular difference-of-Gaussian (DOG) convolution, calibration of multiscale edge detection thresholds with the visual perception of grayscale boundaries, and contour/texture discrimination methods derived from fundamental assumptions of connectivity and the characteristics of printed text. Contour information is required to fall between a minimum connectivity limit and maximum regional spatial density limit at each scale. Results support the idea that contour information, in images possessing good image quality, is (centered at about 10 cyc/deg and 30 cyc/deg). Further, lower spatial frequency channels appear to play a major role only in contour extraction from images with serious global image defects.

  5. HPIminer: A text mining system for building and visualizing human protein interaction networks and pathways.

    PubMed

    Subramani, Suresh; Kalpana, Raja; Monickaraj, Pankaj Moses; Natarajan, Jeyakumar

    2015-04-01

    The knowledge on protein-protein interactions (PPI) and their related pathways are equally important to understand the biological functions of the living cell. Such information on human proteins is highly desirable to understand the mechanism of several diseases such as cancer, diabetes, and Alzheimer's disease. Because much of that information is buried in biomedical literature, an automated text mining system for visualizing human PPI and pathways is highly desirable. In this paper, we present HPIminer, a text mining system for visualizing human protein interactions and pathways from biomedical literature. HPIminer extracts human PPI information and PPI pairs from biomedical literature, and visualize their associated interactions, networks and pathways using two curated databases HPRD and KEGG. To our knowledge, HPIminer is the first system to build interaction networks from literature as well as curated databases. Further, the new interactions mined only from literature and not reported earlier in databases are highlighted as new. A comparative study with other similar tools shows that the resultant network is more informative and provides additional information on interacting proteins and their associated networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Harnessing Biomedical Natural Language Processing Tools to Identify Medicinal Plant Knowledge from Historical Texts.

    PubMed

    Sharma, Vivekanand; Law, Wayne; Balick, Michael J; Sarkar, Indra Neil

    2017-01-01

    The growing amount of data describing historical medicinal uses of plants from digitization efforts provides the opportunity to develop systematic approaches for identifying potential plant-based therapies. However, the task of cataloguing plant use information from natural language text is a challenging task for ethnobotanists. To date, there have been only limited adoption of informatics approaches used for supporting the identification of ethnobotanical information associated with medicinal uses. This study explored the feasibility of using biomedical terminologies and natural language processing approaches for extracting relevant plant-associated therapeutic use information from historical biodiversity literature collection available from the Biodiversity Heritage Library. The results from this preliminary study suggest that there is potential utility of informatics methods to identify medicinal plant knowledge from digitized resources as well as highlight opportunities for improvement.

  7. Harnessing Biomedical Natural Language Processing Tools to Identify Medicinal Plant Knowledge from Historical Texts

    PubMed Central

    Sharma, Vivekanand; Law, Wayne; Balick, Michael J.; Sarkar, Indra Neil

    2017-01-01

    The growing amount of data describing historical medicinal uses of plants from digitization efforts provides the opportunity to develop systematic approaches for identifying potential plant-based therapies. However, the task of cataloguing plant use information from natural language text is a challenging task for ethnobotanists. To date, there have been only limited adoption of informatics approaches used for supporting the identification of ethnobotanical information associated with medicinal uses. This study explored the feasibility of using biomedical terminologies and natural language processing approaches for extracting relevant plant-associated therapeutic use information from historical biodiversity literature collection available from the Biodiversity Heritage Library. The results from this preliminary study suggest that there is potential utility of informatics methods to identify medicinal plant knowledge from digitized resources as well as highlight opportunities for improvement. PMID:29854223

  8. Semantic characteristics of NLP-extracted concepts in clinical notes vs. biomedical literature.

    PubMed

    Wu, Stephen; Liu, Hongfang

    2011-01-01

    Natural language processing (NLP) has become crucial in unlocking information stored in free text, from both clinical notes and biomedical literature. Clinical notes convey clinical information related to individual patient health care, while biomedical literature communicates scientific findings. This work focuses on semantic characterization of texts at an enterprise scale, comparing and contrasting the two domains and their NLP approaches. We analyzed the empirical distributional characteristics of NLP-discovered named entities in Mayo Clinic clinical notes from 2001-2010, and in the 2011 MetaMapped Medline Baseline. We give qualitative and quantitative measures of domain similarity and point to the feasibility of transferring resources and techniques. An important by-product for this study is the development of a weighted ontology for each domain, which gives distributional semantic information that may be used to improve NLP applications.

  9. Information Extraction in Tomb Pit Using Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Yang, X.; Hou, M.; Lyu, S.; Ma, S.; Gao, Z.; Bai, S.; Gu, M.; Liu, Y.

    2018-04-01

    Hyperspectral data has characteristics of multiple bands and continuous, large amount of data, redundancy, and non-destructive. These characteristics make it possible to use hyperspectral data to study cultural relics. In this paper, the hyperspectral imaging technology is adopted to recognize the bottom images of an ancient tomb located in Shanxi province. There are many black remains on the bottom surface of the tomb, which are suspected to be some meaningful texts or paintings. Firstly, the hyperspectral data is preprocessing to get the reflectance of the region of interesting. For the convenient of compute and storage, the original reflectance value is multiplied by 10000. Secondly, this article uses three methods to extract the symbols at the bottom of the ancient tomb. Finally we tried to use morphology to connect the symbols and gave fifteen reference images. The results show that the extraction of information based on hyperspectral data can obtain a better visual experience, which is beneficial to the study of ancient tombs by researchers, and provides some references for archaeological research findings.

  10. Wavelets and their applications past and future

    NASA Astrophysics Data System (ADS)

    Coifman, Ronald R.

    2009-04-01

    As this is a conference on mathematical tools for defense, I would like to dedicate this talk to the memory of Louis Auslander, who through his insights and visionary leadership, brought powerful new mathematics into DARPA, he has provided the main impetus to the development and insertion of wavelet based processing in defense. My goal here is to describe the evolution of a stream of ideas in Harmonic Analysis, ideas which in the past have been mostly applied for the analysis and extraction of information from physical data, and which now are increasingly applied to organize and extract information and knowledge from any set of digital documents, from text to music to questionnaires. This form of signal processing on digital data, is part of the future of wavelet analysis.

  11. Profiling Lung Cancer Patients Using Electronic Health Records.

    PubMed

    Menasalvas Ruiz, Ernestina; Tuñas, Juan Manuel; Bermejo, Guzmán; Gonzalo Martín, Consuelo; Rodríguez-González, Alejandro; Zanin, Massimiliano; González de Pedro, Cristina; Méndez, Marta; Zaretskaia, Olga; Rey, Jesús; Parejo, Consuelo; Cruz Bermudez, Juan Luis; Provencio, Mariano

    2018-05-31

    If Electronic Health Records contain a large amount of information about the patient's condition and response to treatment, which can potentially revolutionize the clinical practice, such information is seldom considered due to the complexity of its extraction and analysis. We here report on a first integration of an NLP framework for the analysis of clinical records of lung cancer patients making use of a telephone assistance service of a major Spanish hospital. We specifically show how some relevant data, about patient demographics and health condition, can be extracted; and how some relevant analyses can be performed, aimed at improving the usefulness of the service. We thus demonstrate that the use of EHR texts, and their integration inside a data analysis framework, is technically feasible and worth of further study.

  12. MedEx/J: A One-Scan Simple and Fast NLP Tool for Japanese Clinical Texts.

    PubMed

    Aramaki, Eiji; Yano, Ken; Wakamiya, Shoko

    2017-01-01

    Because of recent replacement of physical documents with electronic medical records (EMR), the importance of information processing in the medical field has increased. In light of this trend, we have been developing MedEx/J, which retrieves important Japanese language information from medical reports. MedEx/J executes two tasks simultaneously: (1) term extraction, and (2) positive and negative event classification. We designate this approach as a one-scan approach, providing simplicity of systems and reasonable accuracy. MedEx/J performance on the two tasks is described herein: (1) term extraction (Fβ = 1 = 0.87) and (2) positive-negative classification (Fβ = 1 = 0.63). This paper also presents discussion and explains remaining issues in the medical natural language processing field.

  13. [Studies Using Text Mining on the Differences in Learning Effects between the KJ and World Café Method as Learning Strategies].

    PubMed

    Yasuhara, Tomohisa; Sone, Tomomichi; Konishi, Motomi; Kushihata, Taro; Nishikawa, Tomoe; Yamamoto, Yumi; Kurio, Wasako; Kohno, Takeyuki

    2015-01-01

    The KJ method (named for developer Jiro Kawakita; also known as affinity diagramming) is widely used in participatory learning as a means to collect and organize information. In addition, the World Café (WC) has recently become popular. However, differences in the information obtained using each method have not been studied comprehensively. To determine the appropriate information selection criteria, we analyzed differences in the information generated by the WC and KJ methods. Two groups engaged in sessions to collect and organize information using either the WC or KJ method and small group discussions were held to create "proposals to improve first-year education". Both groups answered two pre- and post- session questionnaires that asked for free descriptions. Key words were extracted from the results of the two questionnaires and categorized using text mining. In the responses to questionnaire 1, which was directly related to the session theme, a significant increase in the number of key words was observed in the WC group (p=0.0050, Fisher's exact test). However, there was no significant increase in the number of key words in the responses to questionnaire 2, which was not directly related to the session theme (p=0.8347, Fisher's exact test). In the KJ method, participants extracted the most notable issues and progressed to a detailed discussion, whereas in the WC method, various information and problems were spread among the participants. The choice between the WC and KJ method should be made to reflect the educational objective and desired direction of discussion.

  14. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources.

    PubMed

    Yu, Sheng; Liao, Katherine P; Shaw, Stanley Y; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Cai, Tianxi

    2015-09-01

    Analysis of narrative (text) data from electronic health records (EHRs) can improve population-scale phenotyping for clinical and genetic research. Currently, selection of text features for phenotyping algorithms is slow and laborious, requiring extensive and iterative involvement by domain experts. This paper introduces a method to develop phenotyping algorithms in an unbiased manner by automatically extracting and selecting informative features, which can be comparable to expert-curated ones in classification accuracy. Comprehensive medical concepts were collected from publicly available knowledge sources in an automated, unbiased fashion. Natural language processing (NLP) revealed the occurrence patterns of these concepts in EHR narrative notes, which enabled selection of informative features for phenotype classification. When combined with additional codified features, a penalized logistic regression model was trained to classify the target phenotype. The authors applied our method to develop algorithms to identify patients with rheumatoid arthritis and coronary artery disease cases among those with rheumatoid arthritis from a large multi-institutional EHR. The area under the receiver operating characteristic curves (AUC) for classifying RA and CAD using models trained with automated features were 0.951 and 0.929, respectively, compared to the AUCs of 0.938 and 0.929 by models trained with expert-curated features. Models trained with NLP text features selected through an unbiased, automated procedure achieved comparable or slightly higher accuracy than those trained with expert-curated features. The majority of the selected model features were interpretable. The proposed automated feature extraction method, generating highly accurate phenotyping algorithms with improved efficiency, is a significant step toward high-throughput phenotyping. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. SparkText: Biomedical Text Mining on Big Data Framework.

    PubMed

    Ye, Zhan; Tafti, Ahmad P; He, Karen Y; Wang, Kai; He, Max M

    Many new biomedical research articles are published every day, accumulating rich information, such as genetic variants, genes, diseases, and treatments. Rapid yet accurate text mining on large-scale scientific literature can discover novel knowledge to better understand human diseases and to improve the quality of disease diagnosis, prevention, and treatment. In this study, we designed and developed an efficient text mining framework called SparkText on a Big Data infrastructure, which is composed of Apache Spark data streaming and machine learning methods, combined with a Cassandra NoSQL database. To demonstrate its performance for classifying cancer types, we extracted information (e.g., breast, prostate, and lung cancers) from tens of thousands of articles downloaded from PubMed, and then employed Naïve Bayes, Support Vector Machine (SVM), and Logistic Regression to build prediction models to mine the articles. The accuracy of predicting a cancer type by SVM using the 29,437 full-text articles was 93.81%. While competing text-mining tools took more than 11 hours, SparkText mined the dataset in approximately 6 minutes. This study demonstrates the potential for mining large-scale scientific articles on a Big Data infrastructure, with real-time update from new articles published daily. SparkText can be extended to other areas of biomedical research.

  16. SparkText: Biomedical Text Mining on Big Data Framework

    PubMed Central

    He, Karen Y.; Wang, Kai

    2016-01-01

    Background Many new biomedical research articles are published every day, accumulating rich information, such as genetic variants, genes, diseases, and treatments. Rapid yet accurate text mining on large-scale scientific literature can discover novel knowledge to better understand human diseases and to improve the quality of disease diagnosis, prevention, and treatment. Results In this study, we designed and developed an efficient text mining framework called SparkText on a Big Data infrastructure, which is composed of Apache Spark data streaming and machine learning methods, combined with a Cassandra NoSQL database. To demonstrate its performance for classifying cancer types, we extracted information (e.g., breast, prostate, and lung cancers) from tens of thousands of articles downloaded from PubMed, and then employed Naïve Bayes, Support Vector Machine (SVM), and Logistic Regression to build prediction models to mine the articles. The accuracy of predicting a cancer type by SVM using the 29,437 full-text articles was 93.81%. While competing text-mining tools took more than 11 hours, SparkText mined the dataset in approximately 6 minutes. Conclusions This study demonstrates the potential for mining large-scale scientific articles on a Big Data infrastructure, with real-time update from new articles published daily. SparkText can be extended to other areas of biomedical research. PMID:27685652

  17. Beyond Information Retrieval—Medical Question Answering

    PubMed Central

    Lee, Minsuk; Cimino, James; Zhu, Hai Ran; Sable, Carl; Shanker, Vijay; Ely, John; Yu, Hong

    2006-01-01

    Physicians have many questions when caring for patients, and frequently need to seek answers for their questions. Information retrieval systems (e.g., PubMed) typically return a list of documents in response to a user’s query. Frequently the number of returned documents is large and makes physicians’ information seeking “practical only ‘after hours’ and not in the clinical settings”. Question answering techniques are based on automatically analyzing thousands of electronic documents to generate short-text answers in response to clinical questions that are posed by physicians. The authors address physicians’ information needs and described the design, implementation, and evaluation of the medical question answering system (MedQA). Although our long term goal is to enable MedQA to answer all types of medical questions, currently, we currently implement MedQA to integrate information retrieval, extraction, and summarization techniques to automatically generate paragraph-level text for definitional questions (i.e., “What is X?”). MedQA can be accessed at http://www.dbmi.columbia.edu/~yuh9001/research/MedQA.html. PMID:17238385

  18. Building a glaucoma interaction network using a text mining approach.

    PubMed

    Soliman, Maha; Nasraoui, Olfa; Cooper, Nigel G F

    2016-01-01

    The volume of biomedical literature and its underlying knowledge base is rapidly expanding, making it beyond the ability of a single human being to read through all the literature. Several automated methods have been developed to help make sense of this dilemma. The present study reports on the results of a text mining approach to extract gene interactions from the data warehouse of published experimental results which are then used to benchmark an interaction network associated with glaucoma. To the best of our knowledge, there is, as yet, no glaucoma interaction network derived solely from text mining approaches. The presence of such a network could provide a useful summative knowledge base to complement other forms of clinical information related to this disease. A glaucoma corpus was constructed from PubMed Central and a text mining approach was applied to extract genes and their relations from this corpus. The extracted relations between genes were checked using reference interaction databases and classified generally as known or new relations. The extracted genes and relations were then used to construct a glaucoma interaction network. Analysis of the resulting network indicated that it bears the characteristics of a small world interaction network. Our analysis showed the presence of seven glaucoma linked genes that defined the network modularity. A web-based system for browsing and visualizing the extracted glaucoma related interaction networks is made available at http://neurogene.spd.louisville.edu/GlaucomaINViewer/Form1.aspx. This study has reported the first version of a glaucoma interaction network using a text mining approach. The power of such an approach is in its ability to cover a wide range of glaucoma related studies published over many years. Hence, a bigger picture of the disease can be established. To the best of our knowledge, this is the first glaucoma interaction network to summarize the known literature. The major findings were a set of relations that could not be found in existing interaction databases and that were found to be new, in addition to a smaller subnetwork consisting of interconnected clusters of seven glaucoma genes. Future improvements can be applied towards obtaining a better version of this network.

  19. Detection of figure and caption pairs based on disorder measurements

    NASA Astrophysics Data System (ADS)

    Faure, Claudie; Vincent, Nicole

    2010-01-01

    Figures inserted in documents mediate a kind of information for which the visual modality is more appropriate than the text. A complete understanding of a figure often necessitates the reading of its caption or to establish a relationship with the main text using a numbered figure identifier which is replicated in the caption and in the main text. A figure and its caption are closely related; they constitute single multimodal components (FC-pair) that Document Image Analysis cannot extract with text and graphics segmentation. We propose a method to go further than the graphics and text segmentation in order to extract FC-pairs without performing a full labelling of the page components. Horizontal and vertical text lines are detected in the pages. The graphics are associated with selected text lines to initiate the detector of FC-pairs. Spatial and visual disorders are introduced to define a layout model in terms of properties. It enables to cope with most of the numerous spatial arrangements of graphics and text lines. The detector of FC-pairs performs operations in order to eliminate the layout disorder and assigns a quality value to each FC-pair. The processed documents were collected in medic@, the digital historical collection of the BIUM (Bibliothèque InterUniversitaire Médicale). A first set of 98 pages constitutes the design set. Then 298 pages were collected to evaluate the system. The performances are the result of a full process, from the binarisation of the digital images to the detection of FC-pairs.

  20. Assessing the role of a medication-indication resource in the treatment relation extraction from clinical text

    PubMed Central

    Bejan, Cosmin Adrian; Wei, Wei-Qi; Denny, Joshua C

    2015-01-01

    Objective To evaluate the contribution of the MEDication Indication (MEDI) resource and SemRep for identifying treatment relations in clinical text. Materials and methods We first processed clinical documents with SemRep to extract the Unified Medical Language System (UMLS) concepts and the treatment relations between them. Then, we incorporated MEDI into a simple algorithm that identifies treatment relations between two concepts if they match a medication-indication pair in this resource. For a better coverage, we expanded MEDI using ontology relationships from RxNorm and UMLS Metathesaurus. We also developed two ensemble methods, which combined the predictions of SemRep and the MEDI algorithm. We evaluated our selected methods on two datasets, a Vanderbilt corpus of 6864 discharge summaries and the 2010 Informatics for Integrating Biology and the Bedside (i2b2)/Veteran's Affairs (VA) challenge dataset. Results The Vanderbilt dataset included 958 manually annotated treatment relations. A double annotation was performed on 25% of relations with high agreement (Cohen's κ = 0.86). The evaluation consisted of comparing the manual annotated relations with the relations identified by SemRep, the MEDI algorithm, and the two ensemble methods. On the first dataset, the best F1-measure results achieved by the MEDI algorithm and the union of the two resources (78.7 and 80, respectively) were significantly higher than the SemRep results (72.3). On the second dataset, the MEDI algorithm achieved better precision and significantly lower recall values than the best system in the i2b2 challenge. The two systems obtained comparable F1-measure values on the subset of i2b2 relations with both arguments in MEDI. Conclusions Both SemRep and MEDI can be used to extract treatment relations from clinical text. Knowledge-based extraction with MEDI outperformed use of SemRep alone, but superior performance was achieved by integrating both systems. The integration of knowledge-based resources such as MEDI into information extraction systems such as SemRep and the i2b2 relation extractors may improve treatment relation extraction from clinical text. PMID:25336593

  1. Identifying Key Hospital Service Quality Factors in Online Health Communities

    PubMed Central

    Jung, Yuchul; Hur, Cinyoung; Jung, Dain

    2015-01-01

    Background The volume of health-related user-created content, especially hospital-related questions and answers in online health communities, has rapidly increased. Patients and caregivers participate in online community activities to share their experiences, exchange information, and ask about recommended or discredited hospitals. However, there is little research on how to identify hospital service quality automatically from the online communities. In the past, in-depth analysis of hospitals has used random sampling surveys. However, such surveys are becoming impractical owing to the rapidly increasing volume of online data and the diverse analysis requirements of related stakeholders. Objective As a solution for utilizing large-scale health-related information, we propose a novel approach to identify hospital service quality factors and overtime trends automatically from online health communities, especially hospital-related questions and answers. Methods We defined social media–based key quality factors for hospitals. In addition, we developed text mining techniques to detect such factors that frequently occur in online health communities. After detecting these factors that represent qualitative aspects of hospitals, we applied a sentiment analysis to recognize the types of recommendations in messages posted within online health communities. Korea’s two biggest online portals were used to test the effectiveness of detection of social media–based key quality factors for hospitals. Results To evaluate the proposed text mining techniques, we performed manual evaluations on the extraction and classification results, such as hospital name, service quality factors, and recommendation types using a random sample of messages (ie, 5.44% (9450/173,748) of the total messages). Service quality factor detection and hospital name extraction achieved average F1 scores of 91% and 78%, respectively. In terms of recommendation classification, performance (ie, precision) is 78% on average. Extraction and classification performance still has room for improvement, but the extraction results are applicable to more detailed analysis. Further analysis of the extracted information reveals that there are differences in the details of social media–based key quality factors for hospitals according to the regions in Korea, and the patterns of change seem to accurately reflect social events (eg, influenza epidemics). Conclusions These findings could be used to provide timely information to caregivers, hospital officials, and medical officials for health care policies. PMID:25855612

  2. Terminology extraction from medical texts in Polish

    PubMed Central

    2014-01-01

    Background Hospital documents contain free text describing the most important facts relating to patients and their illnesses. These documents are written in specific language containing medical terminology related to hospital treatment. Their automatic processing can help in verifying the consistency of hospital documentation and obtaining statistical data. To perform this task we need information on the phrases we are looking for. At the moment, clinical Polish resources are sparse. The existing terminologies, such as Polish Medical Subject Headings (MeSH), do not provide sufficient coverage for clinical tasks. It would be helpful therefore if it were possible to automatically prepare, on the basis of a data sample, an initial set of terms which, after manual verification, could be used for the purpose of information extraction. Results Using a combination of linguistic and statistical methods for processing over 1200 children hospital discharge records, we obtained a list of single and multiword terms used in hospital discharge documents written in Polish. The phrases are ordered according to their presumed importance in domain texts measured by the frequency of use of a phrase and the variety of its contexts. The evaluation showed that the automatically identified phrases cover about 84% of terms in domain texts. At the top of the ranked list, only 4% out of 400 terms were incorrect while out of the final 200, 20% of expressions were either not domain related or syntactically incorrect. We also observed that 70% of the obtained terms are not included in the Polish MeSH. Conclusions Automatic terminology extraction can give results which are of a quality high enough to be taken as a starting point for building domain related terminological dictionaries or ontologies. This approach can be useful for preparing terminological resources for very specific subdomains for which no relevant terminologies already exist. The evaluation performed showed that none of the tested ranking procedures were able to filter out all improperly constructed noun phrases from the top of the list. Careful choice of noun phrases is crucial to the usefulness of the created terminological resource in applications such as lexicon construction or acquisition of semantic relations from texts. PMID:24976943

  3. Terminology extraction from medical texts in Polish.

    PubMed

    Marciniak, Małgorzata; Mykowiecka, Agnieszka

    2014-01-01

    Hospital documents contain free text describing the most important facts relating to patients and their illnesses. These documents are written in specific language containing medical terminology related to hospital treatment. Their automatic processing can help in verifying the consistency of hospital documentation and obtaining statistical data. To perform this task we need information on the phrases we are looking for. At the moment, clinical Polish resources are sparse. The existing terminologies, such as Polish Medical Subject Headings (MeSH), do not provide sufficient coverage for clinical tasks. It would be helpful therefore if it were possible to automatically prepare, on the basis of a data sample, an initial set of terms which, after manual verification, could be used for the purpose of information extraction. Using a combination of linguistic and statistical methods for processing over 1200 children hospital discharge records, we obtained a list of single and multiword terms used in hospital discharge documents written in Polish. The phrases are ordered according to their presumed importance in domain texts measured by the frequency of use of a phrase and the variety of its contexts. The evaluation showed that the automatically identified phrases cover about 84% of terms in domain texts. At the top of the ranked list, only 4% out of 400 terms were incorrect while out of the final 200, 20% of expressions were either not domain related or syntactically incorrect. We also observed that 70% of the obtained terms are not included in the Polish MeSH. Automatic terminology extraction can give results which are of a quality high enough to be taken as a starting point for building domain related terminological dictionaries or ontologies. This approach can be useful for preparing terminological resources for very specific subdomains for which no relevant terminologies already exist. The evaluation performed showed that none of the tested ranking procedures were able to filter out all improperly constructed noun phrases from the top of the list. Careful choice of noun phrases is crucial to the usefulness of the created terminological resource in applications such as lexicon construction or acquisition of semantic relations from texts.

  4. Textractor: a hybrid system for medications and reason for their prescription extraction from clinical text documents.

    PubMed

    Meystre, Stéphane M; Thibault, Julien; Shen, Shuying; Hurdle, John F; South, Brett R

    2010-01-01

    OBJECTIVE To describe a new medication information extraction system-Textractor-developed for the 'i2b2 medication extraction challenge'. The development, functionalities, and official evaluation of the system are detailed. Textractor is based on the Apache Unstructured Information Management Architecture (UMIA) framework, and uses methods that are a hybrid between machine learning and pattern matching. Two modules in the system are based on machine learning algorithms, while other modules use regular expressions, rules, and dictionaries, and one module embeds MetaMap Transfer. The official evaluation was based on a reference standard of 251 discharge summaries annotated by all teams participating in the challenge. The metrics used were recall, precision, and the F(1)-measure. They were calculated with exact and inexact matches, and were averaged at the level of systems and documents. The reference metric for this challenge, the system-level overall F(1)-measure, reached about 77% for exact matches, with a recall of 72% and a precision of 83%. Performance was the best with route information (F(1)-measure about 86%), and was good for dosage and frequency information, with F(1)-measures of about 82-85%. Results were not as good for durations, with F(1)-measures of 36-39%, and for reasons, with F(1)-measures of 24-27%. The official evaluation of Textractor for the i2b2 medication extraction challenge demonstrated satisfactory performance. This system was among the 10 best performing systems in this challenge.

  5. PageRank without hyperlinks: Reranking with PubMed related article networks for biomedical text retrieval

    PubMed Central

    Lin, Jimmy

    2008-01-01

    Background Graph analysis algorithms such as PageRank and HITS have been successful in Web environments because they are able to extract important inter-document relationships from manually-created hyperlinks. We consider the application of these techniques to biomedical text retrieval. In the current PubMed® search interface, a MEDLINE® citation is connected to a number of related citations, which are in turn connected to other citations. Thus, a MEDLINE record represents a node in a vast content-similarity network. This article explores the hypothesis that these networks can be exploited for text retrieval, in the same manner as hyperlink graphs on the Web. Results We conducted a number of reranking experiments using the TREC 2005 genomics track test collection in which scores extracted from PageRank and HITS analysis were combined with scores returned by an off-the-shelf retrieval engine. Experiments demonstrate that incorporating PageRank scores yields significant improvements in terms of standard ranked-retrieval metrics. Conclusion The link structure of content-similarity networks can be exploited to improve the effectiveness of information retrieval systems. These results generalize the applicability of graph analysis algorithms to text retrieval in the biomedical domain. PMID:18538027

  6. Automated DICOM metadata and volumetric anatomical information extraction for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Papamichail, D.; Ploussi, A.; Kordolaimi, S.; Karavasilis, E.; Papadimitroulas, P.; Syrgiamiotis, V.; Efstathopoulos, E.

    2015-09-01

    Patient-specific dosimetry calculations based on simulation techniques have as a prerequisite the modeling of the modality system and the creation of voxelized phantoms. This procedure requires the knowledge of scanning parameters and patients’ information included in a DICOM file as well as image segmentation. However, the extraction of this information is complicated and time-consuming. The objective of this study was to develop a simple graphical user interface (GUI) to (i) automatically extract metadata from every slice image of a DICOM file in a single query and (ii) interactively specify the regions of interest (ROI) without explicit access to the radiology information system. The user-friendly application developed in Matlab environment. The user can select a series of DICOM files and manage their text and graphical data. The metadata are automatically formatted and presented to the user as a Microsoft Excel file. The volumetric maps are formed by interactively specifying the ROIs and by assigning a specific value in every ROI. The result is stored in DICOM format, for data and trend analysis. The developed GUI is easy, fast and and constitutes a very useful tool for individualized dosimetry. One of the future goals is to incorporate a remote access to a PACS server functionality.

  7. Recognition of chemical entities: combining dictionary-based and grammar-based approaches.

    PubMed

    Akhondi, Saber A; Hettne, Kristina M; van der Horst, Eelke; van Mulligen, Erik M; Kors, Jan A

    2015-01-01

    The past decade has seen an upsurge in the number of publications in chemistry. The ever-swelling volume of available documents makes it increasingly hard to extract relevant new information from such unstructured texts. The BioCreative CHEMDNER challenge invites the development of systems for the automatic recognition of chemicals in text (CEM task) and for ranking the recognized compounds at the document level (CDI task). We investigated an ensemble approach where dictionary-based named entity recognition is used along with grammar-based recognizers to extract compounds from text. We assessed the performance of ten different commercial and publicly available lexical resources using an open source indexing system (Peregrine), in combination with three different chemical compound recognizers and a set of regular expressions to recognize chemical database identifiers. The effect of different stop-word lists, case-sensitivity matching, and use of chunking information was also investigated. We focused on lexical resources that provide chemical structure information. To rank the different compounds found in a text, we used a term confidence score based on the normalized ratio of the term frequencies in chemical and non-chemical journals. The use of stop-word lists greatly improved the performance of the dictionary-based recognition, but there was no additional benefit from using chunking information. A combination of ChEBI and HMDB as lexical resources, the LeadMine tool for grammar-based recognition, and the regular expressions, outperformed any of the individual systems. On the test set, the F-scores were 77.8% (recall 71.2%, precision 85.8%) for the CEM task and 77.6% (recall 71.7%, precision 84.6%) for the CDI task. Missed terms were mainly due to tokenization issues, poor recognition of formulas, and term conjunctions. We developed an ensemble system that combines dictionary-based and grammar-based approaches for chemical named entity recognition, outperforming any of the individual systems that we considered. The system is able to provide structure information for most of the compounds that are found. Improved tokenization and better recognition of specific entity types is likely to further improve system performance.

  8. Recognition of chemical entities: combining dictionary-based and grammar-based approaches

    PubMed Central

    2015-01-01

    Background The past decade has seen an upsurge in the number of publications in chemistry. The ever-swelling volume of available documents makes it increasingly hard to extract relevant new information from such unstructured texts. The BioCreative CHEMDNER challenge invites the development of systems for the automatic recognition of chemicals in text (CEM task) and for ranking the recognized compounds at the document level (CDI task). We investigated an ensemble approach where dictionary-based named entity recognition is used along with grammar-based recognizers to extract compounds from text. We assessed the performance of ten different commercial and publicly available lexical resources using an open source indexing system (Peregrine), in combination with three different chemical compound recognizers and a set of regular expressions to recognize chemical database identifiers. The effect of different stop-word lists, case-sensitivity matching, and use of chunking information was also investigated. We focused on lexical resources that provide chemical structure information. To rank the different compounds found in a text, we used a term confidence score based on the normalized ratio of the term frequencies in chemical and non-chemical journals. Results The use of stop-word lists greatly improved the performance of the dictionary-based recognition, but there was no additional benefit from using chunking information. A combination of ChEBI and HMDB as lexical resources, the LeadMine tool for grammar-based recognition, and the regular expressions, outperformed any of the individual systems. On the test set, the F-scores were 77.8% (recall 71.2%, precision 85.8%) for the CEM task and 77.6% (recall 71.7%, precision 84.6%) for the CDI task. Missed terms were mainly due to tokenization issues, poor recognition of formulas, and term conjunctions. Conclusions We developed an ensemble system that combines dictionary-based and grammar-based approaches for chemical named entity recognition, outperforming any of the individual systems that we considered. The system is able to provide structure information for most of the compounds that are found. Improved tokenization and better recognition of specific entity types is likely to further improve system performance. PMID:25810767

  9. Large-Scale Event Extraction from Literature with Multi-Level Gene Normalization

    PubMed Central

    Wei, Chih-Hsuan; Hakala, Kai; Pyysalo, Sampo; Ananiadou, Sophia; Kao, Hung-Yu; Lu, Zhiyong; Salakoski, Tapio; Van de Peer, Yves; Ginter, Filip

    2013-01-01

    Text mining for the life sciences aims to aid database curation, knowledge summarization and information retrieval through the automated processing of biomedical texts. To provide comprehensive coverage and enable full integration with existing biomolecular database records, it is crucial that text mining tools scale up to millions of articles and that their analyses can be unambiguously linked to information recorded in resources such as UniProt, KEGG, BioGRID and NCBI databases. In this study, we investigate how fully automated text mining of complex biomolecular events can be augmented with a normalization strategy that identifies biological concepts in text, mapping them to identifiers at varying levels of granularity, ranging from canonicalized symbols to unique gene and proteins and broad gene families. To this end, we have combined two state-of-the-art text mining components, previously evaluated on two community-wide challenges, and have extended and improved upon these methods by exploiting their complementary nature. Using these systems, we perform normalization and event extraction to create a large-scale resource that is publicly available, unique in semantic scope, and covers all 21.9 million PubMed abstracts and 460 thousand PubMed Central open access full-text articles. This dataset contains 40 million biomolecular events involving 76 million gene/protein mentions, linked to 122 thousand distinct genes from 5032 species across the full taxonomic tree. Detailed evaluations and analyses reveal promising results for application of this data in database and pathway curation efforts. The main software components used in this study are released under an open-source license. Further, the resulting dataset is freely accessible through a novel API, providing programmatic and customized access (http://www.evexdb.org/api/v001/). Finally, to allow for large-scale bioinformatic analyses, the entire resource is available for bulk download from http://evexdb.org/download/, under the Creative Commons – Attribution – Share Alike (CC BY-SA) license. PMID:23613707

  10. Approach for Text Classification Based on the Similarity Measurement between Normal Cloud Models

    PubMed Central

    Dai, Jin; Liu, Xin

    2014-01-01

    The similarity between objects is the core research area of data mining. In order to reduce the interference of the uncertainty of nature language, a similarity measurement between normal cloud models is adopted to text classification research. On this basis, a novel text classifier based on cloud concept jumping up (CCJU-TC) is proposed. It can efficiently accomplish conversion between qualitative concept and quantitative data. Through the conversion from text set to text information table based on VSM model, the text qualitative concept, which is extraction from the same category, is jumping up as a whole category concept. According to the cloud similarity between the test text and each category concept, the test text is assigned to the most similar category. By the comparison among different text classifiers in different feature selection set, it fully proves that not only does CCJU-TC have a strong ability to adapt to the different text features, but also the classification performance is also better than the traditional classifiers. PMID:24711737

  11. Assessing semantic similarity of texts - Methods and algorithms

    NASA Astrophysics Data System (ADS)

    Rozeva, Anna; Zerkova, Silvia

    2017-12-01

    Assessing the semantic similarity of texts is an important part of different text-related applications like educational systems, information retrieval, text summarization, etc. This task is performed by sophisticated analysis, which implements text-mining techniques. Text mining involves several pre-processing steps, which provide for obtaining structured representative model of the documents in a corpus by means of extracting and selecting the features, characterizing their content. Generally the model is vector-based and enables further analysis with knowledge discovery approaches. Algorithms and measures are used for assessing texts at syntactical and semantic level. An important text-mining method and similarity measure is latent semantic analysis (LSA). It provides for reducing the dimensionality of the document vector space and better capturing the text semantics. The mathematical background of LSA for deriving the meaning of the words in a given text by exploring their co-occurrence is examined. The algorithm for obtaining the vector representation of words and their corresponding latent concepts in a reduced multidimensional space as well as similarity calculation are presented.

  12. Enhancing acronym/abbreviation knowledge bases with semantic information.

    PubMed

    Torii, Manabu; Liu, Hongfang

    2007-10-11

    In the biomedical domain, a terminology knowledge base that associates acronyms/abbreviations (denoted as SFs) with the definitions (denoted as LFs) is highly needed. For the construction such terminology knowledge base, we investigate the feasibility to build a system automatically assigning semantic categories to LFs extracted from text. Given a collection of pairs (SF,LF) derived from text, we i) assess the coverage of LFs and pairs (SF,LF) in the UMLS and justify the need of a semantic category assignment system; and ii) automatically derive name phrases annotated with semantic category and construct a system using machine learning. Utilizing ADAM, an existing collection of (SF,LF) pairs extracted from MEDLINE, our system achieved an f-measure of 87% when assigning eight UMLS-based semantic groups to LFs. The system has been incorporated into a web interface which integrates SF knowledge from multiple SF knowledge bases. Web site: http://gauss.dbb.georgetown.edu/liblab/SFThesurus.

  13. Extracting Sexual Trauma Mentions from Electronic Medical Notes Using Natural Language Processing.

    PubMed

    Divita, Guy; Brignone, Emily; Carter, Marjorie E; Suo, Ying; Blais, Rebecca K; Samore, Matthew H; Fargo, Jamison D; Gundlapalli, Adi V

    2017-01-01

    Patient history of sexual trauma is of clinical relevance to healthcare providers as survivors face adverse health-related outcomes. This paper describes a method for identifying mentions of sexual trauma within the free text of electronic medical notes. A natural language processing pipeline for information extraction was developed and scaled to handle a large corpus of electronic medical notes used for this study from US Veterans Health Administration medical facilities. The tool was used to identify sexual trauma mentions and create snippets around every asserted mention based on a domain-specific lexicon developed for this purpose. All snippets were evaluated by trained human reviewers. An overall positive predictive value (PPV) of 0.90 for identifying sexual trauma mentions from the free text and a PPV of 0.71 at the patient level are reported. The metrics are superior for records from female patients.

  14. Identifying biological concepts from a protein-related corpus with a probabilistic topic model

    PubMed Central

    Zheng, Bin; McLean, David C; Lu, Xinghua

    2006-01-01

    Background Biomedical literature, e.g., MEDLINE, contains a wealth of knowledge regarding functions of proteins. Major recurring biological concepts within such text corpora represent the domains of this body of knowledge. The goal of this research is to identify the major biological topics/concepts from a corpus of protein-related MEDLINE© titles and abstracts by applying a probabilistic topic model. Results The latent Dirichlet allocation (LDA) model was applied to the corpus. Based on the Bayesian model selection, 300 major topics were extracted from the corpus. The majority of identified topics/concepts was found to be semantically coherent and most represented biological objects or concepts. The identified topics/concepts were further mapped to the controlled vocabulary of the Gene Ontology (GO) terms based on mutual information. Conclusion The major and recurring biological concepts within a collection of MEDLINE documents can be extracted by the LDA model. The identified topics/concepts provide parsimonious and semantically-enriched representation of the texts in a semantic space with reduced dimensionality and can be used to index text. PMID:16466569

  15. Fiches pratiques: "Comme ils disent..."; Trop d'enfants; Touche pas a mon pote!; Import/export (Practical Ideas: "As They Say..."; Too Many Children; Don't Touch My Pal!).

    ERIC Educational Resources Information Center

    Bourdet, Jean-Francois; And Others

    1993-01-01

    Four classroom activities for French instruction are described, including an exercise in contextual grammar, lessons in interpretation of charts and graphs, an exercise in extracting cultural information from text, and practice in calculating in French and applying basic economic concepts. (MSE)

  16. Worldwide Report, Nuclear Development and Proliferation

    DTIC Science & Technology

    1984-03-05

    transmissions and broadcasts. Materials from foreign- language sources are translated; those from English- language sources are transcribed or reprinted, with... Processing indicators such as [Text] or [Excerpt] in the first line of each item, or following the last line of a brief, indicate how the original...information was processed . Where no processing indicator is given, the infor- mation was summarized or extracted. Unfamiliar names rendered

  17. Latin America Report, No. 2712

    DTIC Science & Technology

    1983-07-26

    other characteristics retained. Headlines, editorial reports, and material enclosed in brackets [] are supplied by JPRS. Processing indicators such...as [Text] or [Excerpt] in the first line of each item, or following the last line of a brief, indicate how the original information was processed ...Where no processing indicator is given, the infor- mation was summarized or extracted. Unfamiliar names rendered phonetically or transliterated are

  18. The BEL information extraction workflow (BELIEF): evaluation in the BioCreative V BEL and IAT track

    PubMed Central

    Madan, Sumit; Hodapp, Sven; Senger, Philipp; Ansari, Sam; Szostak, Justyna; Hoeng, Julia; Peitsch, Manuel; Fluck, Juliane

    2016-01-01

    Network-based approaches have become extremely important in systems biology to achieve a better understanding of biological mechanisms. For network representation, the Biological Expression Language (BEL) is well designed to collate findings from the scientific literature into biological network models. To facilitate encoding and biocuration of such findings in BEL, a BEL Information Extraction Workflow (BELIEF) was developed. BELIEF provides a web-based curation interface, the BELIEF Dashboard, that incorporates text mining techniques to support the biocurator in the generation of BEL networks. The underlying UIMA-based text mining pipeline (BELIEF Pipeline) uses several named entity recognition processes and relationship extraction methods to detect concepts and BEL relationships in literature. The BELIEF Dashboard allows easy curation of the automatically generated BEL statements and their context annotations. Resulting BEL statements and their context annotations can be syntactically and semantically verified to ensure consistency in the BEL network. In summary, the workflow supports experts in different stages of systems biology network building. Based on the BioCreative V BEL track evaluation, we show that the BELIEF Pipeline automatically extracts relationships with an F-score of 36.4% and fully correct statements can be obtained with an F-score of 30.8%. Participation in the BioCreative V Interactive task (IAT) track with BELIEF revealed a systems usability scale (SUS) of 67. Considering the complexity of the task for new users—learning BEL, working with a completely new interface, and performing complex curation—a score so close to the overall SUS average highlights the usability of BELIEF. Database URL: BELIEF is available at http://www.scaiview.com/belief/ PMID:27694210

  19. The BEL information extraction workflow (BELIEF): evaluation in the BioCreative V BEL and IAT track.

    PubMed

    Madan, Sumit; Hodapp, Sven; Senger, Philipp; Ansari, Sam; Szostak, Justyna; Hoeng, Julia; Peitsch, Manuel; Fluck, Juliane

    2016-01-01

    Network-based approaches have become extremely important in systems biology to achieve a better understanding of biological mechanisms. For network representation, the Biological Expression Language (BEL) is well designed to collate findings from the scientific literature into biological network models. To facilitate encoding and biocuration of such findings in BEL, a BEL Information Extraction Workflow (BELIEF) was developed. BELIEF provides a web-based curation interface, the BELIEF Dashboard, that incorporates text mining techniques to support the biocurator in the generation of BEL networks. The underlying UIMA-based text mining pipeline (BELIEF Pipeline) uses several named entity recognition processes and relationship extraction methods to detect concepts and BEL relationships in literature. The BELIEF Dashboard allows easy curation of the automatically generated BEL statements and their context annotations. Resulting BEL statements and their context annotations can be syntactically and semantically verified to ensure consistency in the BEL network. In summary, the workflow supports experts in different stages of systems biology network building. Based on the BioCreative V BEL track evaluation, we show that the BELIEF Pipeline automatically extracts relationships with an F-score of 36.4% and fully correct statements can be obtained with an F-score of 30.8%. Participation in the BioCreative V Interactive task (IAT) track with BELIEF revealed a systems usability scale (SUS) of 67. Considering the complexity of the task for new users-learning BEL, working with a completely new interface, and performing complex curation-a score so close to the overall SUS average highlights the usability of BELIEF.Database URL: BELIEF is available at http://www.scaiview.com/belief/. © The Author(s) 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. ParaBTM: A Parallel Processing Framework for Biomedical Text Mining on Supercomputers.

    PubMed

    Xing, Yuting; Wu, Chengkun; Yang, Xi; Wang, Wei; Zhu, En; Yin, Jianping

    2018-04-27

    A prevailing way of extracting valuable information from biomedical literature is to apply text mining methods on unstructured texts. However, the massive amount of literature that needs to be analyzed poses a big data challenge to the processing efficiency of text mining. In this paper, we address this challenge by introducing parallel processing on a supercomputer. We developed paraBTM, a runnable framework that enables parallel text mining on the Tianhe-2 supercomputer. It employs a low-cost yet effective load balancing strategy to maximize the efficiency of parallel processing. We evaluated the performance of paraBTM on several datasets, utilizing three types of named entity recognition tasks as demonstration. Results show that, in most cases, the processing efficiency can be greatly improved with parallel processing, and the proposed load balancing strategy is simple and effective. In addition, our framework can be readily applied to other tasks of biomedical text mining besides NER.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnette, Daniel W.

    eCo-PylotDB, written completely in Python, provides a script that parses incoming emails and prepares extracted data for submission to a database table. The script extracts the database server, the database table, the server password, and the server username all from the email address to which the email is sent. The database table is specified on the Subject line. Any text in the body of the email is extracted as user comments for the database table. Attached files are extracted as data files with each file submitted to a specified table field but in separate rows of the targeted database table.more » Other information such as sender, date, time, and machine from which the email was sent is extracted and submitted to the database table as well. An email is sent back to the user specifying whether the data from the initial email was accepted or rejected by the database server. If rejected, the return email includes details as to why.« less

  2. Extracting noun phrases for all of MEDLINE.

    PubMed Central

    Bennett, N. A.; He, Q.; Powell, K.; Schatz, B. R.

    1999-01-01

    A natural language parser that could extract noun phrases for all medical texts would be of great utility in analyzing content for information retrieval. We discuss the extraction of noun phrases from MEDLINE, using a general parser not tuned specifically for any medical domain. The noun phrase extractor is made up of three modules: tokenization; part-of-speech tagging; noun phrase identification. Using our program, we extracted noun phrases from the entire MEDLINE collection, encompassing 9.3 million abstracts. Over 270 million noun phrases were generated, of which 45 million were unique. The quality of these phrases was evaluated by examining all phrases from a sample collection of abstracts. The precision and recall of the phrases from our general parser compared favorably with those from three other parsers we had previously evaluated. We are continuing to improve our parser and evaluate our claim that a generic parser can effectively extract all the different phrases across the entire medical literature. PMID:10566444

  3. Text mining applications in psychiatry: a systematic literature review.

    PubMed

    Abbe, Adeline; Grouin, Cyril; Zweigenbaum, Pierre; Falissard, Bruno

    2016-06-01

    The expansion of biomedical literature is creating the need for efficient tools to keep pace with increasing volumes of information. Text mining (TM) approaches are becoming essential to facilitate the automated extraction of useful biomedical information from unstructured text. We reviewed the applications of TM in psychiatry, and explored its advantages and limitations. A systematic review of the literature was carried out using the CINAHL, Medline, EMBASE, PsycINFO and Cochrane databases. In this review, 1103 papers were screened, and 38 were included as applications of TM in psychiatric research. Using TM and content analysis, we identified four major areas of application: (1) Psychopathology (i.e. observational studies focusing on mental illnesses) (2) the Patient perspective (i.e. patients' thoughts and opinions), (3) Medical records (i.e. safety issues, quality of care and description of treatments), and (4) Medical literature (i.e. identification of new scientific information in the literature). The information sources were qualitative studies, Internet postings, medical records and biomedical literature. Our work demonstrates that TM can contribute to complex research tasks in psychiatry. We discuss the benefits, limits, and further applications of this tool in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. RadSearch: a RIS/PACS integrated query tool

    NASA Astrophysics Data System (ADS)

    Tsao, Sinchai; Documet, Jorge; Moin, Paymann; Wang, Kevin; Liu, Brent J.

    2008-03-01

    Radiology Information Systems (RIS) contain a wealth of information that can be used for research, education, and practice management. However, the sheer amount of information available makes querying specific data difficult and time consuming. Previous work has shown that a clinical RIS database and its RIS text reports can be extracted, duplicated and indexed for searches while complying with HIPAA and IRB requirements. This project's intent is to provide a software tool, the RadSearch Toolkit, to allow intelligent indexing and parsing of RIS reports for easy yet powerful searches. In addition, the project aims to seamlessly query and retrieve associated images from the Picture Archiving and Communication System (PACS) in situations where an integrated RIS/PACS is in place - even subselecting individual series, such as in an MRI study. RadSearch's application of simple text parsing techniques to index text-based radiology reports will allow the search engine to quickly return relevant results. This powerful combination will be useful in both private practice and academic settings; administrators can easily obtain complex practice management information such as referral patterns; researchers can conduct retrospective studies with specific, multiple criteria; teaching institutions can quickly and effectively create thorough teaching files.

  5. Extracting risk modeling information from medical articles.

    PubMed

    Deleris, Léa A; Sacaleanu, Bogdan; Tounsi, Lamia

    2013-01-01

    Risk modeling in healthcare is both ubiquitous and in its infancy. On the one hand, a significant proportion of medical research focuses on determining the factors that influence the incidence, severity and treatment of diseases, which is a form of risk identification. Those studies typically investigate the micro-level of risk modeling, i.e., the existence of dependences between a reduced set of hypothesized (or demonstrated) risk factors and a focus disease or treatment. On the other hand, the macro-level of risk modeling, i.e., articulating how a large number of such risk factors interact to affect diseases and treatments is not widespread, though essential for medical decision support modeling. By exploiting advances in natural language processing, we believe that information contained in unstructured texts such as medical articles could be extracted to facilitate aggregation into macro-level risk models.

  6. A multi-ontology approach to annotate scientific documents based on a modularization technique.

    PubMed

    Gomes, Priscilla Corrêa E Castro; Moura, Ana Maria de Carvalho; Cavalcanti, Maria Cláudia

    2015-12-01

    Scientific text annotation has become an important task for biomedical scientists. Nowadays, there is an increasing need for the development of intelligent systems to support new scientific findings. Public databases available on the Web provide useful data, but much more useful information is only accessible in scientific texts. Text annotation may help as it relies on the use of ontologies to maintain annotations based on a uniform vocabulary. However, it is difficult to use an ontology, especially those that cover a large domain. In addition, since scientific texts explore multiple domains, which are covered by distinct ontologies, it becomes even more difficult to deal with such task. Moreover, there are dozens of ontologies in the biomedical area, and they are usually big in terms of the number of concepts. It is in this context that ontology modularization can be useful. This work presents an approach to annotate scientific documents using modules of different ontologies, which are built according to a module extraction technique. The main idea is to analyze a set of single-ontology annotations on a text to find out the user interests. Based on these annotations a set of modules are extracted from a set of distinct ontologies, and are made available for the user, for complementary annotation. The reduced size and focus of the extracted modules tend to facilitate the annotation task. An experiment was conducted to evaluate this approach, with the participation of a bioinformatician specialist of the Laboratory of Peptides and Proteins of the IOC/Fiocruz, who was interested in discovering new drug targets aiming at the combat of tropical diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Semi-Supervised Recurrent Neural Network for Adverse Drug Reaction mention extraction.

    PubMed

    Gupta, Shashank; Pawar, Sachin; Ramrakhiyani, Nitin; Palshikar, Girish Keshav; Varma, Vasudeva

    2018-06-13

    Social media is a useful platform to share health-related information due to its vast reach. This makes it a good candidate for public-health monitoring tasks, specifically for pharmacovigilance. We study the problem of extraction of Adverse-Drug-Reaction (ADR) mentions from social media, particularly from Twitter. Medical information extraction from social media is challenging, mainly due to short and highly informal nature of text, as compared to more technical and formal medical reports. Current methods in ADR mention extraction rely on supervised learning methods, which suffer from labeled data scarcity problem. The state-of-the-art method uses deep neural networks, specifically a class of Recurrent Neural Network (RNN) which is Long-Short-Term-Memory network (LSTM). Deep neural networks, due to their large number of free parameters rely heavily on large annotated corpora for learning the end task. But in the real-world, it is hard to get large labeled data, mainly due to the heavy cost associated with the manual annotation. To this end, we propose a novel semi-supervised learning based RNN model, which can leverage unlabeled data also present in abundance on social media. Through experiments we demonstrate the effectiveness of our method, achieving state-of-the-art performance in ADR mention extraction. In this study, we tackle the problem of labeled data scarcity for Adverse Drug Reaction mention extraction from social media and propose a novel semi-supervised learning based method which can leverage large unlabeled corpus available in abundance on the web. Through empirical study, we demonstrate that our proposed method outperforms fully supervised learning based baseline which relies on large manually annotated corpus for a good performance.

  8. Text mining of cancer-related information: review of current status and future directions.

    PubMed

    Spasić, Irena; Livsey, Jacqueline; Keane, John A; Nenadić, Goran

    2014-09-01

    This paper reviews the research literature on text mining (TM) with the aim to find out (1) which cancer domains have been the subject of TM efforts, (2) which knowledge resources can support TM of cancer-related information and (3) to what extent systems that rely on knowledge and computational methods can convert text data into useful clinical information. These questions were used to determine the current state of the art in this particular strand of TM and suggest future directions in TM development to support cancer research. A review of the research on TM of cancer-related information was carried out. A literature search was conducted on the Medline database as well as IEEE Xplore and ACM digital libraries to address the interdisciplinary nature of such research. The search results were supplemented with the literature identified through Google Scholar. A range of studies have proven the feasibility of TM for extracting structured information from clinical narratives such as those found in pathology or radiology reports. In this article, we provide a critical overview of the current state of the art for TM related to cancer. The review highlighted a strong bias towards symbolic methods, e.g. named entity recognition (NER) based on dictionary lookup and information extraction (IE) relying on pattern matching. The F-measure of NER ranges between 80% and 90%, while that of IE for simple tasks is in the high 90s. To further improve the performance, TM approaches need to deal effectively with idiosyncrasies of the clinical sublanguage such as non-standard abbreviations as well as a high degree of spelling and grammatical errors. This requires a shift from rule-based methods to machine learning following the success of similar trends in biological applications of TM. Machine learning approaches require large training datasets, but clinical narratives are not readily available for TM research due to privacy and confidentiality concerns. This issue remains the main bottleneck for progress in this area. In addition, there is a need for a comprehensive cancer ontology that would enable semantic representation of textual information found in narrative reports. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Context Oriented Information Integration

    NASA Astrophysics Data System (ADS)

    Mohania, Mukesh; Bhide, Manish; Roy, Prasan; Chakaravarthy, Venkatesan T.; Gupta, Himanshu

    Faced with growing knowledge management needs, enterprises are increasingly realizing the importance of seamlessly integrating critical business information distributed across both structured and unstructured data sources. Academicians have focused on this problem but there still remain a lot of obstacles for its widespread use in practice. One of the key problems is the absence of schema in unstructured text. In this paper we present a new paradigm for integrating information which overcomes this problem - that of Context Oriented Information Integration. The goal is to integrate unstructured data with the structured data present in the enterprise and use the extracted information to generate actionable insights for the enterprise. We present two techniques which enable context oriented information integration and show how they can be used for solving real world problems.

  10. Keyword extraction by entropy difference between the intrinsic and extrinsic mode

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Lei, Jianjun; Fan, Kefeng; Lai, Yingxu

    2013-10-01

    This paper proposes a new metric to evaluate and rank the relevance of words in a text. The method uses the Shannon’s entropy difference between the intrinsic and extrinsic mode, which refers to the fact that relevant words significantly reflect the author’s writing intention, i.e., their occurrences are modulated by the author’s purpose, while the irrelevant words are distributed randomly in the text. By using The Origin of Species by Charles Darwin as a representative text sample, the performance of our detector is demonstrated and compared to previous proposals. Since a reference text “corpus” is all of an author’s writings, books, papers, etc. his collected works is not needed. Our approach is especially suitable for single documents of which there is no a priori information available.

  11. Aggregating and Predicting Sequence Labels from Crowd Annotations

    PubMed Central

    Nguyen, An T.; Wallace, Byron C.; Li, Junyi Jessy; Nenkova, Ani; Lease, Matthew

    2017-01-01

    Despite sequences being core to NLP, scant work has considered how to handle noisy sequence labels from multiple annotators for the same text. Given such annotations, we consider two complementary tasks: (1) aggregating sequential crowd labels to infer a best single set of consensus annotations; and (2) using crowd annotations as training data for a model that can predict sequences in unannotated text. For aggregation, we propose a novel Hidden Markov Model variant. To predict sequences in unannotated text, we propose a neural approach using Long Short Term Memory. We evaluate a suite of methods across two different applications and text genres: Named-Entity Recognition in news articles and Information Extraction from biomedical abstracts. Results show improvement over strong baselines. Our source code and data are available online1. PMID:29093611

  12. Motif-Based Text Mining of Microbial Metagenome Redundancy Profiling Data for Disease Classification.

    PubMed

    Wang, Yin; Li, Rudong; Zhou, Yuhua; Ling, Zongxin; Guo, Xiaokui; Xie, Lu; Liu, Lei

    2016-01-01

    Text data of 16S rRNA are informative for classifications of microbiota-associated diseases. However, the raw text data need to be systematically processed so that features for classification can be defined/extracted; moreover, the high-dimension feature spaces generated by the text data also pose an additional difficulty. Here we present a Phylogenetic Tree-Based Motif Finding algorithm (PMF) to analyze 16S rRNA text data. By integrating phylogenetic rules and other statistical indexes for classification, we can effectively reduce the dimension of the large feature spaces generated by the text datasets. Using the retrieved motifs in combination with common classification methods, we can discriminate different samples of both pneumonia and dental caries better than other existing methods. We extend the phylogenetic approaches to perform supervised learning on microbiota text data to discriminate the pathological states for pneumonia and dental caries. The results have shown that PMF may enhance the efficiency and reliability in analyzing high-dimension text data.

  13. Extraction of endoscopic images for biomedical figure classification

    NASA Astrophysics Data System (ADS)

    Xue, Zhiyun; You, Daekeun; Chachra, Suchet; Antani, Sameer; Long, L. R.; Demner-Fushman, Dina; Thoma, George R.

    2015-03-01

    Modality filtering is an important feature in biomedical image searching systems and may significantly improve the retrieval performance of the system. This paper presents a new method for extracting endoscopic image figures from photograph images in biomedical literature, which are found to have highly diverse content and large variability in appearance. Our proposed method consists of three main stages: tissue image extraction, endoscopic image candidate extraction, and ophthalmic image filtering. For tissue image extraction we use image patch level clustering and MRF relabeling to detect images containing skin/tissue regions. Next, we find candidate endoscopic images by exploiting the round shape characteristics that commonly appear in these images. However, this step needs to compensate for images where endoscopic regions are not entirely round. In the third step we filter out the ophthalmic images which have shape characteristics very similar to the endoscopic images. We do this by using text information, specifically, anatomy terms, extracted from the figure caption. We tested and evaluated our method on a dataset of 115,370 photograph figures, and achieved promising precision and recall rates of 87% and 84%, respectively.

  14. Conversation Thread Extraction and Topic Detection in Text-Based Chat

    DTIC Science & Technology

    2008-09-01

    conversation extraction task. Multiple conversations in a session are interleaved. The goal in extraction is to select only those posts that belong...others. Our first-phase experiments quite clearly show the value of using time-distance as a feature in conversation thread extraction . In this set of... EXTRACTION AND TOPIC DETECTION IN TEXT-BASED CHAT by Paige Holland Adams September 2008 Thesis Advisor

  15. Extracting genetic alteration information for personalized cancer therapy from ClinicalTrials.gov

    PubMed Central

    Xu, Jun; Lee, Hee-Jin; Zeng, Jia; Wu, Yonghui; Zhang, Yaoyun; Huang, Liang-Chin; Johnson, Amber; Holla, Vijaykumar; Bailey, Ann M; Cohen, Trevor; Meric-Bernstam, Funda; Bernstam, Elmer V

    2016-01-01

    Objective: Clinical trials investigating drugs that target specific genetic alterations in tumors are important for promoting personalized cancer therapy. The goal of this project is to create a knowledge base of cancer treatment trials with annotations about genetic alterations from ClinicalTrials.gov. Methods: We developed a semi-automatic framework that combines advanced text-processing techniques with manual review to curate genetic alteration information in cancer trials. The framework consists of a document classification system to identify cancer treatment trials from ClinicalTrials.gov and an information extraction system to extract gene and alteration pairs from the Title and Eligibility Criteria sections of clinical trials. By applying the framework to trials at ClinicalTrials.gov, we created a knowledge base of cancer treatment trials with genetic alteration annotations. We then evaluated each component of the framework against manually reviewed sets of clinical trials and generated descriptive statistics of the knowledge base. Results and Discussion: The automated cancer treatment trial identification system achieved a high precision of 0.9944. Together with the manual review process, it identified 20 193 cancer treatment trials from ClinicalTrials.gov. The automated gene-alteration extraction system achieved a precision of 0.8300 and a recall of 0.6803. After validation by manual review, we generated a knowledge base of 2024 cancer trials that are labeled with specific genetic alteration information. Analysis of the knowledge base revealed the trend of increased use of targeted therapy for cancer, as well as top frequent gene-alteration pairs of interest. We expect this knowledge base to be a valuable resource for physicians and patients who are seeking information about personalized cancer therapy. PMID:27013523

  16. Extracting genetic alteration information for personalized cancer therapy from ClinicalTrials.gov.

    PubMed

    Xu, Jun; Lee, Hee-Jin; Zeng, Jia; Wu, Yonghui; Zhang, Yaoyun; Huang, Liang-Chin; Johnson, Amber; Holla, Vijaykumar; Bailey, Ann M; Cohen, Trevor; Meric-Bernstam, Funda; Bernstam, Elmer V; Xu, Hua

    2016-07-01

    Clinical trials investigating drugs that target specific genetic alterations in tumors are important for promoting personalized cancer therapy. The goal of this project is to create a knowledge base of cancer treatment trials with annotations about genetic alterations from ClinicalTrials.gov. We developed a semi-automatic framework that combines advanced text-processing techniques with manual review to curate genetic alteration information in cancer trials. The framework consists of a document classification system to identify cancer treatment trials from ClinicalTrials.gov and an information extraction system to extract gene and alteration pairs from the Title and Eligibility Criteria sections of clinical trials. By applying the framework to trials at ClinicalTrials.gov, we created a knowledge base of cancer treatment trials with genetic alteration annotations. We then evaluated each component of the framework against manually reviewed sets of clinical trials and generated descriptive statistics of the knowledge base. The automated cancer treatment trial identification system achieved a high precision of 0.9944. Together with the manual review process, it identified 20 193 cancer treatment trials from ClinicalTrials.gov. The automated gene-alteration extraction system achieved a precision of 0.8300 and a recall of 0.6803. After validation by manual review, we generated a knowledge base of 2024 cancer trials that are labeled with specific genetic alteration information. Analysis of the knowledge base revealed the trend of increased use of targeted therapy for cancer, as well as top frequent gene-alteration pairs of interest. We expect this knowledge base to be a valuable resource for physicians and patients who are seeking information about personalized cancer therapy. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Cross domains Arabic named entity recognition system

    NASA Astrophysics Data System (ADS)

    Al-Ahmari, S. Saad; Abdullatif Al-Johar, B.

    2016-07-01

    Named Entity Recognition (NER) plays an important role in many Natural Language Processing (NLP) applications such as; Information Extraction (IE), Question Answering (QA), Text Clustering, Text Summarization and Word Sense Disambiguation. This paper presents the development and implementation of domain independent system to recognize three types of Arabic named entities. The system works based on a set of domain independent grammar-rules along with Arabic part of speech tagger in addition to gazetteers and lists of trigger words. The experimental results shown, that the system performed as good as other systems with better results in some cases of cross-domains corpora.

  18. Normalization and standardization of electronic health records for high-throughput phenotyping: the SHARPn consortium

    PubMed Central

    Pathak, Jyotishman; Bailey, Kent R; Beebe, Calvin E; Bethard, Steven; Carrell, David S; Chen, Pei J; Dligach, Dmitriy; Endle, Cory M; Hart, Lacey A; Haug, Peter J; Huff, Stanley M; Kaggal, Vinod C; Li, Dingcheng; Liu, Hongfang; Marchant, Kyle; Masanz, James; Miller, Timothy; Oniki, Thomas A; Palmer, Martha; Peterson, Kevin J; Rea, Susan; Savova, Guergana K; Stancl, Craig R; Sohn, Sunghwan; Solbrig, Harold R; Suesse, Dale B; Tao, Cui; Taylor, David P; Westberg, Les; Wu, Stephen; Zhuo, Ning; Chute, Christopher G

    2013-01-01

    Research objective To develop scalable informatics infrastructure for normalization of both structured and unstructured electronic health record (EHR) data into a unified, concept-based model for high-throughput phenotype extraction. Materials and methods Software tools and applications were developed to extract information from EHRs. Representative and convenience samples of both structured and unstructured data from two EHR systems—Mayo Clinic and Intermountain Healthcare—were used for development and validation. Extracted information was standardized and normalized to meaningful use (MU) conformant terminology and value set standards using Clinical Element Models (CEMs). These resources were used to demonstrate semi-automatic execution of MU clinical-quality measures modeled using the Quality Data Model (QDM) and an open-source rules engine. Results Using CEMs and open-source natural language processing and terminology services engines—namely, Apache clinical Text Analysis and Knowledge Extraction System (cTAKES) and Common Terminology Services (CTS2)—we developed a data-normalization platform that ensures data security, end-to-end connectivity, and reliable data flow within and across institutions. We demonstrated the applicability of this platform by executing a QDM-based MU quality measure that determines the percentage of patients between 18 and 75 years with diabetes whose most recent low-density lipoprotein cholesterol test result during the measurement year was <100 mg/dL on a randomly selected cohort of 273 Mayo Clinic patients. The platform identified 21 and 18 patients for the denominator and numerator of the quality measure, respectively. Validation results indicate that all identified patients meet the QDM-based criteria. Conclusions End-to-end automated systems for extracting clinical information from diverse EHR systems require extensive use of standardized vocabularies and terminologies, as well as robust information models for storing, discovering, and processing that information. This study demonstrates the application of modular and open-source resources for enabling secondary use of EHR data through normalization into standards-based, comparable, and consistent format for high-throughput phenotyping to identify patient cohorts. PMID:24190931

  19. Empirical advances with text mining of electronic health records.

    PubMed

    Delespierre, T; Denormandie, P; Bar-Hen, A; Josseran, L

    2017-08-22

    Korian is a private group specializing in medical accommodations for elderly and dependent people. A professional data warehouse (DWH) established in 2010 hosts all of the residents' data. Inside this information system (IS), clinical narratives (CNs) were used only by medical staff as a residents' care linking tool. The objective of this study was to show that, through qualitative and quantitative textual analysis of a relatively small physiotherapy and well-defined CN sample, it was possible to build a physiotherapy corpus and, through this process, generate a new body of knowledge by adding relevant information to describe the residents' care and lives. Meaningful words were extracted through Standard Query Language (SQL) with the LIKE function and wildcards to perform pattern matching, followed by text mining and a word cloud using R® packages. Another step involved principal components and multiple correspondence analyses, plus clustering on the same residents' sample as well as on other health data using a health model measuring the residents' care level needs. By combining these techniques, physiotherapy treatments could be characterized by a list of constructed keywords, and the residents' health characteristics were built. Feeding defects or health outlier groups could be detected, physiotherapy residents' data and their health data were matched, and differences in health situations showed qualitative and quantitative differences in physiotherapy narratives. This textual experiment using a textual process in two stages showed that text mining and data mining techniques provide convenient tools to improve residents' health and quality of care by adding new, simple, useable data to the electronic health record (EHR). When used with a normalized physiotherapy problem list, text mining through information extraction (IE), named entity recognition (NER) and data mining (DM) can provide a real advantage to describe health care, adding new medical material and helping to integrate the EHR system into the health staff work environment.

  20. Data extraction from electronic health records (EHRs) for quality measurement of the physical therapy process: comparison between EHR data and survey data.

    PubMed

    Scholte, Marijn; van Dulmen, Simone A; Neeleman-Van der Steen, Catherina W M; van der Wees, Philip J; Nijhuis-van der Sanden, Maria W G; Braspenning, Jozé

    2016-11-08

    With the emergence of the electronic health records (EHRs) as a pervasive healthcare information technology, new opportunities and challenges for use of clinical data for quality measurements arise with respect to data quality, data availability and comparability. The objective of this study is to test whether data extracted from electronic health records (EHRs) was of comparable quality as survey data for the calculation of quality indicators. Data from surveys describing patient cases and filled out by physiotherapists in 2009-2010 were used to calculate scores on eight quality indicators (QIs) to measure the quality of physiotherapy care. In 2011, data was extracted directly from EHRs. The data collection methods were evaluated for comparability. EHR data was compared to survey data on completeness and correctness. Five of the eight QIs could be extracted from the EHRs. Three were omitted from the indicator set, as they proved too difficult to be extracted from the EHRs. Another QI proved incomparable due to errors in the extraction software of some of the EHRs. Three out of four comparable QIs performed better (p < 0.001) in EHR data on completeness. EHR data also proved to be correct; the relative change in indicator scores between EHR and survey data were small (<5 %) in three out of four QIs. Data quality of EHRs was sufficient to be used for the calculation of QIs, although comparability to survey data was problematic. Standardization is needed, not only to be able to compare different data collection methods properly, but also to compare between practices with different EHRs. EHRs have the option to administrate narrative data, but natural language processing tools are needed to quantify these text boxes. Such development, can narrow the comparability gap between scoring QIs based on EHR data and based on survey data. EHRs have the potential to provide real time feedback to professionals and quality measurements for research, but more effort is needed to create unambiguous and uniform information and to unlock written text in a standardized manner.

  1. Quantity and unit extraction for scientific and technical intelligence analysis

    NASA Astrophysics Data System (ADS)

    David, Peter; Hawes, Timothy

    2017-05-01

    Scientific and Technical (S and T) intelligence analysts consume huge amounts of data to understand how scientific progress and engineering efforts affect current and future military capabilities. One of the most important types of information S and T analysts exploit is the quantities discussed in their source material. Frequencies, ranges, size, weight, power, and numerous other properties and measurements describing the performance characteristics of systems and the engineering constraints that define them must be culled from source documents before quantified analysis can begin. Automating the process of finding and extracting the relevant quantities from a wide range of S and T documents is difficult because information about quantities and their units is often contained in unstructured text with ad hoc conventions used to convey their meaning. Currently, even simple tasks, such as searching for documents discussing RF frequencies in a band of interest, is a labor intensive and error prone process. This research addresses the challenges facing development of a document processing capability that extracts quantities and units from S and T data, and how Natural Language Processing algorithms can be used to overcome these challenges.

  2. Extracting Databases from Dark Data with DeepDive.

    PubMed

    Zhang, Ce; Shin, Jaeho; Ré, Christopher; Cafarella, Michael; Niu, Feng

    2016-01-01

    DeepDive is a system for extracting relational databases from dark data : the mass of text, tables, and images that are widely collected and stored but which cannot be exploited by standard relational tools. If the information in dark data - scientific papers, Web classified ads, customer service notes, and so on - were instead in a relational database, it would give analysts a massive and valuable new set of "big data." DeepDive is distinctive when compared to previous information extraction systems in its ability to obtain very high precision and recall at reasonable engineering cost; in a number of applications, we have used DeepDive to create databases with accuracy that meets that of human annotators. To date we have successfully deployed DeepDive to create data-centric applications for insurance, materials science, genomics, paleontologists, law enforcement, and others. The data unlocked by DeepDive represents a massive opportunity for industry, government, and scientific researchers. DeepDive is enabled by an unusual design that combines large-scale probabilistic inference with a novel developer interaction cycle. This design is enabled by several core innovations around probabilistic training and inference.

  3. Spelling ability selectively predicts the magnitude of disruption in unspaced text reading.

    PubMed

    Veldre, Aaron; Drieghe, Denis; Andrews, Sally

    2017-09-01

    We examined the effect of individual differences in written language proficiency on unspaced text reading in a large sample of skilled adult readers who were assessed on reading comprehension and spelling ability. Participants' eye movements were recorded as they read sentences containing a low or high frequency target word, presented with standard interword spacing, or in one of three unsegmented text conditions that either preserved or eliminated word boundary information. The average data replicated previous studies: unspaced text reading was associated with increased fixation durations, a higher number of fixations, more regressions, reduced saccade length, and an inflation of the word frequency effect. The individual differences results provided insight into the mechanisms contributing to these effects. Higher reading ability was associated with greater overall reading speed and fluency in all conditions. In contrast, spelling ability selectively modulated the effect of interword spacing with poorer spelling ability predicting greater difficulty across the majority of sentence- and word-level measures. These results suggest that high quality lexical representations allowed better spellers to extract lexical units from unfamiliar text forms, inoculating them against the disruptive effects of being deprived of spacing information. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. CLAMP - a toolkit for efficiently building customized clinical natural language processing pipelines.

    PubMed

    Soysal, Ergin; Wang, Jingqi; Jiang, Min; Wu, Yonghui; Pakhomov, Serguei; Liu, Hongfang; Xu, Hua

    2017-11-24

    Existing general clinical natural language processing (NLP) systems such as MetaMap and Clinical Text Analysis and Knowledge Extraction System have been successfully applied to information extraction from clinical text. However, end users often have to customize existing systems for their individual tasks, which can require substantial NLP skills. Here we present CLAMP (Clinical Language Annotation, Modeling, and Processing), a newly developed clinical NLP toolkit that provides not only state-of-the-art NLP components, but also a user-friendly graphic user interface that can help users quickly build customized NLP pipelines for their individual applications. Our evaluation shows that the CLAMP default pipeline achieved good performance on named entity recognition and concept encoding. We also demonstrate the efficiency of the CLAMP graphic user interface in building customized, high-performance NLP pipelines with 2 use cases, extracting smoking status and lab test values. CLAMP is publicly available for research use, and we believe it is a unique asset for the clinical NLP community. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. [A comparative analysis of inner wrapping and package inserts for medicines containing Panax ginseng C. A. Meyer].

    PubMed

    Auricchio, Mariangela Tirico; Batistic-Longatto, Mônica Arcon; Nicoletti, Maria Aparecida

    2007-10-01

    The information provided on package inserts and inner wrapping of eight products containing Panax ginseng from different manufacturers was compared internally and checked against data from the scientific literature. The inserts included extensive text, containing abundant information on indications for use, but no scientific evidence in humans. All the inserts lacked information on potential adverse effects and drug interaction. There was no standardization as to dose regimens, particularly in relation to the dried extract and ginsenoside concentration. The eight inserts thus showed no concern over standardization, indication for usage, or possible side effects and drug interactions.

  6. Perceiving Collision Impacts in Alzheimer's Disease: The Effect of Retinal Eccentricity on Optic Flow Deficits.

    PubMed

    Kim, Nam-Gyoon

    2015-01-01

    The present study explored whether the optic flow deficit in Alzheimer's disease (AD) reported in the literature transfers to different types of optic flow, in particular, one that specifies collision impacts with upcoming surfaces, with a special focus on the effect of retinal eccentricity. Displays simulated observer movement over a ground plane toward obstacles lying in the observer's path. Optical expansion was modulated by varying [Formula: see text]. The visual field was masked either centrally (peripheral vision) or peripherally (central vision) using masks ranging from 10° to 30° in diameter in steps of 10°. Participants were asked to indicate whether their approach would result in "collision" or "no collision" with the obstacles. Results showed that AD patients' sensitivity to [Formula: see text] was severely compromised, not only for central vision but also for peripheral vision, compared to age- and education-matched elderly controls. The results demonstrated that AD patients' optic flow deficit is not limited to radial optic flow but includes also the optical pattern engendered by [Formula: see text]. Further deterioration in the capacity to extract [Formula: see text] to determine potential collisions in conjunction with the inability to extract heading information from radial optic flow would exacerbate AD patients' difficulties in navigation and visuospatial orientation.

  7. Evaluation of smoking status identification using electronic health records and open-text information in a large mental health case register.

    PubMed

    Wu, Chia-Yi; Chang, Chin-Kuo; Robson, Debbie; Jackson, Richard; Chen, Shaw-Ji; Hayes, Richard D; Stewart, Robert

    2013-01-01

    High smoking prevalence is a major public health concern for people with mental disorders. Improved monitoring could be facilitated through electronic health record (EHR) databases. We evaluated whether EHR information held in structured fields might be usefully supplemented by open-text information. The prevalence and correlates of EHR-derived current smoking in people with severe mental illness were also investigated. All cases had been referred to a secondary mental health service between 2008-2011 and received a diagnosis of schizophreniform or bipolar disorder. The study focused on those aged over 15 years who had received active care from the mental health service for at least a year (N=1,555). The 'CRIS-IE-Smoking' application used General Architecture for Text Engineering (GATE) natural language processing software to extract smoking status information from open-text fields. A combination of CRIS-IE-Smoking with data from structured fields was evaluated for coverage and the prevalence and demographic correlates of current smoking were analysed. Proportions of patients with recorded smoking status increased from 11.6% to 64.0% through supplementing structured fields with CRIS-IE-Smoking data. The prevalence of current smoking was 59.6% in these 995 cases for whom this information was available. After adjustment, younger age (below 65 years), male sex, and non-cohabiting status were associated with current smoking status. A natural language processing application substantially improved routine EHR data on smoking status above structured fields alone and could thus be helpful in improving monitoring of this lifestyle behaviour. However, limited information on smoking status remained a challenge.

  8. Using uncertainty to link and rank evidence from biomedical literature for model curation.

    PubMed

    Zerva, Chrysoula; Batista-Navarro, Riza; Day, Philip; Ananiadou, Sophia

    2017-12-01

    In recent years, there has been great progress in the field of automated curation of biomedical networks and models, aided by text mining methods that provide evidence from literature. Such methods must not only extract snippets of text that relate to model interactions, but also be able to contextualize the evidence and provide additional confidence scores for the interaction in question. Although various approaches calculating confidence scores have focused primarily on the quality of the extracted information, there has been little work on exploring the textual uncertainty conveyed by the author. Despite textual uncertainty being acknowledged in biomedical text mining as an attribute of text mined interactions (events), it is significantly understudied as a means of providing a confidence measure for interactions in pathways or other biomedical models. In this work, we focus on improving identification of textual uncertainty for events and explore how it can be used as an additional measure of confidence for biomedical models. We present a novel method for extracting uncertainty from the literature using a hybrid approach that combines rule induction and machine learning. Variations of this hybrid approach are then discussed, alongside their advantages and disadvantages. We use subjective logic theory to combine multiple uncertainty values extracted from different sources for the same interaction. Our approach achieves F-scores of 0.76 and 0.88 based on the BioNLP-ST and Genia-MK corpora, respectively, making considerable improvements over previously published work. Moreover, we evaluate our proposed system on pathways related to two different areas, namely leukemia and melanoma cancer research. The leukemia pathway model used is available in Pathway Studio while the Ras model is available via PathwayCommons. Online demonstration of the uncertainty extraction system is available for research purposes at http://argo.nactem.ac.uk/test. The related code is available on https://github.com/c-zrv/uncertainty_components.git. Details on the above are available in the Supplementary Material. sophia.ananiadou@manchester.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  9. Graph Learning in Knowledge Bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Sean; Wang, Daisy Zhe

    The amount of text data has been growing exponentially in recent years, giving rise to automatic information extraction methods that store text annotations in a database. The current state-of-theart structured prediction methods, however, are likely to contain errors and it’s important to be able to manage the overall uncertainty of the database. On the other hand, the advent of crowdsourcing has enabled humans to aid machine algorithms at scale. As part of this project we introduced pi-CASTLE , a system that optimizes and integrates human and machine computing as applied to a complex structured prediction problem involving conditional random fieldsmore » (CRFs). We proposed strategies grounded in information theory to select a token subset, formulate questions for the crowd to label, and integrate these labelings back into the database using a method of constrained inference. On both a text segmentation task over academic citations and a named entity recognition task over tweets we showed an order of magnitude improvement in accuracy gain over baseline methods.« less

  10. Automatic Extraction of Drug Adverse Effects from Product Characteristics (SPCs): A Text Versus Table Comparison.

    PubMed

    Lamy, Jean-Baptiste; Ugon, Adrien; Berthelot, Hélène

    2016-01-01

    Potential adverse effects (AEs) of drugs are described in their summary of product characteristics (SPCs), a textual document. Automatic extraction of AEs from SPCs is useful for detecting AEs and for building drug databases. However, this task is difficult because each AE is associated with a frequency that must be extracted and the presentation of AEs in SPCs is heterogeneous, consisting of plain text and tables in many different formats. We propose a taxonomy for the presentation of AEs in SPCs. We set up natural language processing (NLP) and table parsing methods for extracting AEs from texts and tables of any format, and evaluate them on 10 SPCs. Automatic extraction performed better on tables than on texts. Tables should be recommended for the presentation of the AEs section of the SPCs.

  11. RobotReviewer: evaluation of a system for automatically assessing bias in clinical trials.

    PubMed

    Marshall, Iain J; Kuiper, Joël; Wallace, Byron C

    2016-01-01

    To develop and evaluate RobotReviewer, a machine learning (ML) system that automatically assesses bias in clinical trials. From a (PDF-formatted) trial report, the system should determine risks of bias for the domains defined by the Cochrane Risk of Bias (RoB) tool, and extract supporting text for these judgments. We algorithmically annotated 12,808 trial PDFs using data from the Cochrane Database of Systematic Reviews (CDSR). Trials were labeled as being at low or high/unclear risk of bias for each domain, and sentences were labeled as being informative or not. This dataset was used to train a multi-task ML model. We estimated the accuracy of ML judgments versus humans by comparing trials with two or more independent RoB assessments in the CDSR. Twenty blinded experienced reviewers rated the relevance of supporting text, comparing ML output with equivalent (human-extracted) text from the CDSR. By retrieving the top 3 candidate sentences per document (top3 recall), the best ML text was rated more relevant than text from the CDSR, but not significantly (60.4% ML text rated 'highly relevant' v 56.5% of text from reviews; difference +3.9%, [-3.2% to +10.9%]). Model RoB judgments were less accurate than those from published reviews, though the difference was <10% (overall accuracy 71.0% with ML v 78.3% with CDSR). Risk of bias assessment may be automated with reasonable accuracy. Automatically identified text supporting bias assessment is of equal quality to the manually identified text in the CDSR. This technology could substantially reduce reviewer workload and expedite evidence syntheses. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  12. Information Extraction for System-Software Safety Analysis: Calendar Year 2007 Year-End Report

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2008-01-01

    This annual report describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis on the models to identify possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations; 4) perform discrete-time-based simulation on the models to investigate scenarios where these paths may play a role in failures and mishaps; and 5) identify resulting candidate scenarios for software integration testing. This paper describes new challenges in a NASA abort system case, and enhancements made to develop the integrated tool set.

  13. New approaches to health promotion and informatics education using Internet in the Czech Republic.

    PubMed

    Zvárová, J

    2005-01-01

    The paper describes nowadays information technology skills in the Czech Republic. It focuses on informatics education using Internet, ECDL concept and the links between computer literacy among health care professionals and quality of health care. Everyone understands that the main source of wealth of any nation is information management and the efficient transformation of information into knowledge. There appear completely new decisive factors for the economics of the near future based on circulation and exchange information. It is clear that modern health care cannot be built without information and communication technologies. We discuss several approaches how to contribute to some topics of information society in health care, namely the role of electronic health record, structured information, extraction of information from free medical texts and sharing knowledge stored in medical guidelines.

  14. Carers' Experiences, Needs, and Preferences During Inpatient Stroke Rehabilitation: A Systematic Review of Qualitative Studies.

    PubMed

    Luker, Julie; Murray, Carolyn; Lynch, Elizabeth; Bernhardsson, Susanne; Shannon, Michelle; Bernhardt, Julie

    2017-09-01

    To report and synthesize the experiences, needs, and preferences of carers of stroke survivors undergoing inpatient rehabilitation. MEDLINE, CINAHL, Embase, PsycINFO, and Web of Science were searched to March 2016. Reference lists of relevant publications were searched. No language restrictions were applied. Eligible qualitative studies reported the experiences of carers of stroke survivors who underwent inpatient rehabilitation. The search yielded 3532 records; 93 full-text publications were assessed for eligibility, and 34 documents (33 studies) were included. Comprehensiveness of reporting was assessed using the Consolidated Criteria for Reporting Qualitative Health Research framework. Data on the characteristics of included studies were independently extracted by 2 authors. Differences in data extraction between authors were resolved through discussion or by a third author. All text in studies' results and discussion sections were extracted for analysis. Extracted texts were analyzed inductively using thematic synthesis. Seven analytical themes were developed that related to the carers' experiences, needs, and preferences: (1) overwhelmed with emotions; (2) recognition as a stakeholder in recovery; (3) desire to be heard and informed; (4) persisting for action and outcomes; (5) being legitimate clients; (6) navigating an alien culture and environment; and (7) managing the transition home. This systematic review provides new insights into the experiences, needs, and preferences of carers of stroke survivors undergoing inpatient rehabilitation. Carers experienced distress as they navigated a foreign culture and environment without adequate communication and processes in place for their inclusion. We recommend deliberate efforts to provide a more inclusive environment that better supports and prepares carers for their new role. Copyright © 2017 American Congress of Rehabilitation Medicine. All rights reserved.

  15. LitPathExplorer: a confidence-based visual text analytics tool for exploring literature-enriched pathway models.

    PubMed

    Soto, Axel J; Zerva, Chrysoula; Batista-Navarro, Riza; Ananiadou, Sophia

    2018-04-15

    Pathway models are valuable resources that help us understand the various mechanisms underpinning complex biological processes. Their curation is typically carried out through manual inspection of published scientific literature to find information relevant to a model, which is a laborious and knowledge-intensive task. Furthermore, models curated manually cannot be easily updated and maintained with new evidence extracted from the literature without automated support. We have developed LitPathExplorer, a visual text analytics tool that integrates advanced text mining, semi-supervised learning and interactive visualization, to facilitate the exploration and analysis of pathway models using statements (i.e. events) extracted automatically from the literature and organized according to levels of confidence. LitPathExplorer supports pathway modellers and curators alike by: (i) extracting events from the literature that corroborate existing models with evidence; (ii) discovering new events which can update models; and (iii) providing a confidence value for each event that is automatically computed based on linguistic features and article metadata. Our evaluation of event extraction showed a precision of 89% and a recall of 71%. Evaluation of our confidence measure, when used for ranking sampled events, showed an average precision ranging between 61 and 73%, which can be improved to 95% when the user is involved in the semi-supervised learning process. Qualitative evaluation using pair analytics based on the feedback of three domain experts confirmed the utility of our tool within the context of pathway model exploration. LitPathExplorer is available at http://nactem.ac.uk/LitPathExplorer_BI/. sophia.ananiadou@manchester.ac.uk. Supplementary data are available at Bioinformatics online.

  16. Toward better public health reporting using existing off the shelf approaches: A comparison of alternative cancer detection approaches using plaintext medical data and non-dictionary based feature selection.

    PubMed

    Kasthurirathne, Suranga N; Dixon, Brian E; Gichoya, Judy; Xu, Huiping; Xia, Yuni; Mamlin, Burke; Grannis, Shaun J

    2016-04-01

    Increased adoption of electronic health records has resulted in increased availability of free text clinical data for secondary use. A variety of approaches to obtain actionable information from unstructured free text data exist. These approaches are resource intensive, inherently complex and rely on structured clinical data and dictionary-based approaches. We sought to evaluate the potential to obtain actionable information from free text pathology reports using routinely available tools and approaches that do not depend on dictionary-based approaches. We obtained pathology reports from a large health information exchange and evaluated the capacity to detect cancer cases from these reports using 3 non-dictionary feature selection approaches, 4 feature subset sizes, and 5 clinical decision models: simple logistic regression, naïve bayes, k-nearest neighbor, random forest, and J48 decision tree. The performance of each decision model was evaluated using sensitivity, specificity, accuracy, positive predictive value, and area under the receiver operating characteristics (ROC) curve. Decision models parameterized using automated, informed, and manual feature selection approaches yielded similar results. Furthermore, non-dictionary classification approaches identified cancer cases present in free text reports with evaluation measures approaching and exceeding 80-90% for most metrics. Our methods are feasible and practical approaches for extracting substantial information value from free text medical data, and the results suggest that these methods can perform on par, if not better, than existing dictionary-based approaches. Given that public health agencies are often under-resourced and lack the technical capacity for more complex methodologies, these results represent potentially significant value to the public health field. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Protein-protein interaction predictions using text mining methods.

    PubMed

    Papanikolaou, Nikolas; Pavlopoulos, Georgios A; Theodosiou, Theodosios; Iliopoulos, Ioannis

    2015-03-01

    It is beyond any doubt that proteins and their interactions play an essential role in most complex biological processes. The understanding of their function individually, but also in the form of protein complexes is of a great importance. Nowadays, despite the plethora of various high-throughput experimental approaches for detecting protein-protein interactions, many computational methods aiming to predict new interactions have appeared and gained interest. In this review, we focus on text-mining based computational methodologies, aiming to extract information for proteins and their interactions from public repositories such as literature and various biological databases. We discuss their strengths, their weaknesses and how they complement existing experimental techniques by simultaneously commenting on the biological databases which hold such information and the benchmark datasets that can be used for evaluating new tools. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Creative Analytics of Mission Ops Event Messages

    NASA Technical Reports Server (NTRS)

    Smith, Dan

    2017-01-01

    Historically, tremendous effort has been put into processing and displaying mission health and safety telemetry data; and relatively little attention has been paid to extracting information from missions time-tagged event log messages. Todays missions may log tens of thousands of messages per day and the numbers are expected to dramatically increase as satellite fleets and constellations are launched, as security monitoring continues to evolve, and as the overall complexity of ground system operations increases. The logs may contain information about orbital events, scheduled and actual observations, device status and anomalies, when operators were logged on, when commands were resent, when there were data drop outs or system failures, and much much more. When dealing with distributed space missions or operational fleets, it becomes even more important to systematically analyze this data. Several advanced information systems technologies make it appropriate to now develop analytic capabilities which can increase mission situational awareness, reduce mission risk, enable better event-driven automation and cross-mission collaborations, and lead to improved operations strategies: Industry Standard for Log Messages. The Object Management Group (OMG) Space Domain Task Force (SDTF) standards organization is in the process of creating a formal standard for industry for event log messages. The format is based on work at NASA GSFC. Open System Architectures. The DoD, NASA, and others are moving towards common open system architectures for mission ground data systems based on work at NASA GSFC with the full support of the commercial product industry and major integration contractors. Text Analytics. A specific area of data analytics which applies statistical, linguistic, and structural techniques to extract and classify information from textual sources. This presentation describes work now underway at NASA to increase situational awareness through the collection of non-telemetry mission operations information into a common log format and then providing display and analytics tools to provide in-depth assessment of the log contents. The work includes: Common interface formats for acquiring time-tagged text messages Conversion of common files for schedules, orbital events, and stored commands to the common log format Innovative displays to depict thousands of messages on a single display Structured English text queries against the log message data store, extensible to a more mature natural language query capability Goal of speech-to-text and text-to-speech additions to create a personal mission operations assistant to aid on-console operations. A wide variety of planned uses identified by the mission operations teams will be discussed.

  19. Computing symmetrical strength of N-grams: a two pass filtering approach in automatic classification of text documents.

    PubMed

    Agnihotri, Deepak; Verma, Kesari; Tripathi, Priyanka

    2016-01-01

    The contiguous sequences of the terms (N-grams) in the documents are symmetrically distributed among different classes. The symmetrical distribution of the N-Grams raises uncertainty in the belongings of the N-Grams towards the class. In this paper, we focused on the selection of most discriminating N-Grams by reducing the effects of symmetrical distribution. In this context, a new text feature selection method named as the symmetrical strength of the N-Grams (SSNG) is proposed using a two pass filtering based feature selection (TPF) approach. Initially, in the first pass of the TPF, the SSNG method chooses various informative N-Grams from the entire extracted N-Grams of the corpus. Subsequently, in the second pass the well-known Chi Square (χ(2)) method is being used to select few most informative N-Grams. Further, to classify the documents the two standard classifiers Multinomial Naive Bayes and Linear Support Vector Machine have been applied on the ten standard text data sets. In most of the datasets, the experimental results state the performance and success rate of SSNG method using TPF approach is superior to the state-of-the-art methods viz. Mutual Information, Information Gain, Odds Ratio, Discriminating Feature Selection and χ(2).

  20. Simulating Expert Clinical Comprehension: Adapting Latent Semantic Analysis to Accurately Extract Clinical Concepts from Psychiatric Narrative

    PubMed Central

    Cohen, Trevor; Blatter, Brett; Patel, Vimla

    2008-01-01

    Cognitive studies reveal that less-than-expert clinicians are less able to recognize meaningful patterns of data in clinical narratives. Accordingly, psychiatric residents early in training fail to attend to information that is relevant to diagnosis and the assessment of dangerousness. This manuscript presents cognitively motivated methodology for the simulation of expert ability to organize relevant findings supporting intermediate diagnostic hypotheses. Latent Semantic Analysis is used to generate a semantic space from which meaningful associations between psychiatric terms are derived. Diagnostically meaningful clusters are modeled as geometric structures within this space and compared to elements of psychiatric narrative text using semantic distance measures. A learning algorithm is defined that alters components of these geometric structures in response to labeled training data. Extraction and classification of relevant text segments is evaluated against expert annotation, with system-rater agreement approximating rater-rater agreement. A range of biomedical informatics applications for these methods are suggested. PMID:18455483

  1. Development of Markup Language for Medical Record Charting: A Charting Language.

    PubMed

    Jung, Won-Mo; Chae, Younbyoung; Jang, Bo-Hyoung

    2015-01-01

    Nowadays a lot of trials for collecting electronic medical records (EMRs) exist. However, structuring data format for EMR is an especially labour-intensive task for practitioners. Here we propose a new mark-up language for medical record charting (called Charting Language), which borrows useful properties from programming languages. Thus, with Charting Language, the text data described in dynamic situation can be easily used to extract information.

  2. Support Vector Feature Selection for Early Detection of Anastomosis Leakage From Bag-of-Words in Electronic Health Records.

    PubMed

    Soguero-Ruiz, Cristina; Hindberg, Kristian; Rojo-Alvarez, Jose Luis; Skrovseth, Stein Olav; Godtliebsen, Fred; Mortensen, Kim; Revhaug, Arthur; Lindsetmo, Rolv-Ole; Augestad, Knut Magne; Jenssen, Robert

    2016-09-01

    The free text in electronic health records (EHRs) conveys a huge amount of clinical information about health state and patient history. Despite a rapidly growing literature on the use of machine learning techniques for extracting this information, little effort has been invested toward feature selection and the features' corresponding medical interpretation. In this study, we focus on the task of early detection of anastomosis leakage (AL), a severe complication after elective surgery for colorectal cancer (CRC) surgery, using free text extracted from EHRs. We use a bag-of-words model to investigate the potential for feature selection strategies. The purpose is earlier detection of AL and prediction of AL with data generated in the EHR before the actual complication occur. Due to the high dimensionality of the data, we derive feature selection strategies using the robust support vector machine linear maximum margin classifier, by investigating: 1) a simple statistical criterion (leave-one-out-based test); 2) an intensive-computation statistical criterion (Bootstrap resampling); and 3) an advanced statistical criterion (kernel entropy). Results reveal a discriminatory power for early detection of complications after CRC (sensitivity 100%; specificity 72%). These results can be used to develop prediction models, based on EHR data, that can support surgeons and patients in the preoperative decision making phase.

  3. Facial Expression Presentation for Real-Time Internet Communication

    NASA Astrophysics Data System (ADS)

    Dugarry, Alexandre; Berrada, Aida; Fu, Shan

    2003-01-01

    Text, voice and video images are the most common forms of media content for instant communication on the Internet. Studies have shown that facial expressions convey much richer information than text and voice during a face-to-face conversation. The currently available real time means of communication (instant text messages, chat programs and videoconferencing), however, have major drawbacks in terms of exchanging facial expression. The first two means do not involve the image transmission, whilst video conferencing requires a large bandwidth that is not always available, and the transmitted image sequence is neither smooth nor without delay. The objective of the work presented here is to develop a technique that overcomes these limitations, by extracting the facial expression of speakers and to realise real-time communication. In order to get the facial expressions, the main characteristics of the image are emphasized. Interpolation is performed on edge points previously detected to create geometric shapes such as arcs, lines, etc. The regional dominant colours of the pictures are also extracted and the combined results are subsequently converted into Scalable Vector Graphics (SVG) format. The application based on the proposed technique aims at being used simultaneously with chat programs and being able to run on any platform.

  4. An Automatic Multidocument Text Summarization Approach Based on Naïve Bayesian Classifier Using Timestamp Strategy

    PubMed Central

    Ramanujam, Nedunchelian; Kaliappan, Manivannan

    2016-01-01

    Nowadays, automatic multidocument text summarization systems can successfully retrieve the summary sentences from the input documents. But, it has many limitations such as inaccurate extraction to essential sentences, low coverage, poor coherence among the sentences, and redundancy. This paper introduces a new concept of timestamp approach with Naïve Bayesian Classification approach for multidocument text summarization. The timestamp provides the summary an ordered look, which achieves the coherent looking summary. It extracts the more relevant information from the multiple documents. Here, scoring strategy is also used to calculate the score for the words to obtain the word frequency. The higher linguistic quality is estimated in terms of readability and comprehensibility. In order to show the efficiency of the proposed method, this paper presents the comparison between the proposed methods with the existing MEAD algorithm. The timestamp procedure is also applied on the MEAD algorithm and the results are examined with the proposed method. The results show that the proposed method results in lesser time than the existing MEAD algorithm to execute the summarization process. Moreover, the proposed method results in better precision, recall, and F-score than the existing clustering with lexical chaining approach. PMID:27034971

  5. Coriandrum sativum Suppresses Aβ42-Induced ROS Increases, Glial Cell Proliferation, and ERK Activation.

    PubMed

    Liu, Quan Feng; Jeong, Haemin; Lee, Jang Ho; Hong, Yoon Ki; Oh, Youngje; Kim, Young-Mi; Suh, Yoon Seok; Bang, Semin; Yun, Hye Sup; Lee, Kyungho; Cho, Sung Man; Lee, Sung Bae; Jeon, Songhee; Chin, Young-Won; Koo, Byung-Soo; Cho, Kyoung Sang

    2016-01-01

    Alzheimer's disease (AD), the most common neurodegenerative disease, has a complex and widespread pathology that is characterized by the accumulation of amyloid [Formula: see text]-peptide (A[Formula: see text]) in the brain and various cellular abnormalities, including increased oxidative damage, an amplified inflammatory response, and altered mitogen-activated protein kinase signaling. Based on the complex etiology of AD, traditional medicinal plants with multiple effective components are alternative treatments for patients with AD. In the present study, we investigated the neuroprotective effects of an ethanol extract of Coriandrum sativum (C. sativum) leaves on A[Formula: see text] cytotoxicity and examined the molecular mechanisms underlying the beneficial effects. Although recent studies have shown the benefits of the inhalation of C. sativum oil in an animal model of AD, the detailed molecular mechanisms by which C. sativum exerts its neuroprotective effects are unclear. Here, we found that treatment with C. sativum extract increased the survival of both A[Formula: see text]-treated mammalian cells and [Formula: see text]42-expressing flies. Moreover, C. sativum extract intake suppressed [Formula: see text]-induced cell death in the larval imaginal disc and brain without affecting A[Formula: see text]42 expression and accumulation. Interestingly, the increases in reactive oxygen species levels and glial cell number in AD model flies were reduced by C. sativum extract intake. Additionally, C. sativum extract inhibited the epidermal growth factor receptor- and A[Formula: see text]-induced phosphorylation of extracellular signal-regulated kinase (ERK). The constitutively active form of ERK abolished the protective function of C. sativum extract against the [Formula: see text]-induced eye defect phenotype in Drosophila. Taken together, these results suggest that C. sativum leaves have antioxidant, anti-inflammatory, and ERK signaling inhibitory properties that are beneficial for patients with AD.

  6. DrugQuest - a text mining workflow for drug association discovery.

    PubMed

    Papanikolaou, Nikolas; Pavlopoulos, Georgios A; Theodosiou, Theodosios; Vizirianakis, Ioannis S; Iliopoulos, Ioannis

    2016-06-06

    Text mining and data integration methods are gaining ground in the field of health sciences due to the exponential growth of bio-medical literature and information stored in biological databases. While such methods mostly try to extract bioentity associations from PubMed, very few of them are dedicated in mining other types of repositories such as chemical databases. Herein, we apply a text mining approach on the DrugBank database in order to explore drug associations based on the DrugBank "Description", "Indication", "Pharmacodynamics" and "Mechanism of Action" text fields. We apply Name Entity Recognition (NER) techniques on these fields to identify chemicals, proteins, genes, pathways, diseases, and we utilize the TextQuest algorithm to find additional biologically significant words. Using a plethora of similarity and partitional clustering techniques, we group the DrugBank records based on their common terms and investigate possible scenarios why these records are clustered together. Different views such as clustered chemicals based on their textual information, tag clouds consisting of Significant Terms along with the terms that were used for clustering are delivered to the user through a user-friendly web interface. DrugQuest is a text mining tool for knowledge discovery: it is designed to cluster DrugBank records based on text attributes in order to find new associations between drugs. The service is freely available at http://bioinformatics.med.uoc.gr/drugquest .

  7. Neuroanatomical term generation and comparison between two terminologies.

    PubMed

    Srinivas, Prashanti R; Gusfield, Daniel; Mason, Oliver; Gertz, Michael; Hogarth, Michael; Stone, James; Jones, Edward G; Gorin, Fredric A

    2003-01-01

    An approach and software tools are described for identifying and extracting compound terms (CTs), acronyms and their associated contexts from textual material that is associated with neuroanatomical atlases. A set of simple syntactic rules were appended to the output of a commercially available part of speech (POS) tagger (Qtag v 3.01) that extracts CTs and their associated context from the texts of neuroanatomical atlases. This "hybrid" parser. appears to be highly sensitive and recognized 96% of the potentially germane neuroanatomical CTs and acronyms present in the cat and primate thalamic atlases. A comparison of neuroanatomical CTs and acronymsbetween the cat and primate atlas texts was initially performed using exact-term matching. The implementation of string-matching algorithms significantly improved the identification of relevant terms and acronyms between the two domains. The End Gap Free string matcher identified 98% of CTs and the Needleman Wunsch (NW) string matcher matched 36% of acronyms between the two atlases. Combining several simple grammatical and lexical rules with the POS tagger ("hybrid parser") (1) extracted complex neuroanatomical terms and acronyms from selected cat and primate thalamic atlases and (2) and facilitated the semi-automated generation of a highly granular thalamic terminology. The implementation of string-matching algorithms (1) reconciled terminological errors generated by optical character recognition (OCR) software used to generate the neuroanatomical text information and (2) increased the sensitivity of matching neuroanatomical terms and acronyms between the two neuroanatomical domains that were generated by the "hybrid" parser.

  8. Extracting Product Features and Opinion Words Using Pattern Knowledge in Customer Reviews

    PubMed Central

    Lynn, Khin Thidar

    2013-01-01

    Due to the development of e-commerce and web technology, most of online Merchant sites are able to write comments about purchasing products for customer. Customer reviews expressed opinion about products or services which are collectively referred to as customer feedback data. Opinion extraction about products from customer reviews is becoming an interesting area of research and it is motivated to develop an automatic opinion mining application for users. Therefore, efficient method and techniques are needed to extract opinions from reviews. In this paper, we proposed a novel idea to find opinion words or phrases for each feature from customer reviews in an efficient way. Our focus in this paper is to get the patterns of opinion words/phrases about the feature of product from the review text through adjective, adverb, verb, and noun. The extracted features and opinions are useful for generating a meaningful summary that can provide significant informative resource to help the user as well as merchants to track the most suitable choice of product. PMID:24459430

  9. Ensemble methods with simple features for document zone classification

    NASA Astrophysics Data System (ADS)

    Obafemi-Ajayi, Tayo; Agam, Gady; Xie, Bingqing

    2012-01-01

    Document layout analysis is of fundamental importance for document image understanding and information retrieval. It requires the identification of blocks extracted from a document image via features extraction and block classification. In this paper, we focus on the classification of the extracted blocks into five classes: text (machine printed), handwriting, graphics, images, and noise. We propose a new set of features for efficient classifications of these blocks. We present a comparative evaluation of three ensemble based classification algorithms (boosting, bagging, and combined model trees) in addition to other known learning algorithms. Experimental results are demonstrated for a set of 36503 zones extracted from 416 document images which were randomly selected from the tobacco legacy document collection. The results obtained verify the robustness and effectiveness of the proposed set of features in comparison to the commonly used Ocropus recognition features. When used in conjunction with the Ocropus feature set, we further improve the performance of the block classification system to obtain a classification accuracy of 99.21%.

  10. Extracting product features and opinion words using pattern knowledge in customer reviews.

    PubMed

    Htay, Su Su; Lynn, Khin Thidar

    2013-01-01

    Due to the development of e-commerce and web technology, most of online Merchant sites are able to write comments about purchasing products for customer. Customer reviews expressed opinion about products or services which are collectively referred to as customer feedback data. Opinion extraction about products from customer reviews is becoming an interesting area of research and it is motivated to develop an automatic opinion mining application for users. Therefore, efficient method and techniques are needed to extract opinions from reviews. In this paper, we proposed a novel idea to find opinion words or phrases for each feature from customer reviews in an efficient way. Our focus in this paper is to get the patterns of opinion words/phrases about the feature of product from the review text through adjective, adverb, verb, and noun. The extracted features and opinions are useful for generating a meaningful summary that can provide significant informative resource to help the user as well as merchants to track the most suitable choice of product.

  11. Mapping annotations with textual evidence using an scLDA model.

    PubMed

    Jin, Bo; Chen, Vicky; Chen, Lujia; Lu, Xinghua

    2011-01-01

    Most of the knowledge regarding genes and proteins is stored in biomedical literature as free text. Extracting information from complex biomedical texts demands techniques capable of inferring biological concepts from local text regions and mapping them to controlled vocabularies. To this end, we present a sentence-based correspondence latent Dirichlet allocation (scLDA) model which, when trained with a corpus of PubMed documents with known GO annotations, performs the following tasks: 1) learning major biological concepts from the corpus, 2) inferring the biological concepts existing within text regions (sentences), and 3) identifying the text regions in a document that provides evidence for the observed annotations. When applied to new gene-related documents, a trained scLDA model is capable of predicting GO annotations and identifying text regions as textual evidence supporting the predicted annotations. This study uses GO annotation data as a testbed; the approach can be generalized to other annotated data, such as MeSH and MEDLINE documents.

  12. A system for classifying disease comorbidity status from medical discharge summaries using automated hotspot and negated concept detection.

    PubMed

    Ambert, Kyle H; Cohen, Aaron M

    2009-01-01

    OBJECTIVE Free-text clinical reports serve as an important part of patient care management and clinical documentation of patient disease and treatment status. Free-text notes are commonplace in medical practice, but remain an under-used source of information for clinical and epidemiological research, as well as personalized medicine. The authors explore the challenges associated with automatically extracting information from clinical reports using their submission to the Integrating Informatics with Biology and the Bedside (i2b2) 2008 Natural Language Processing Obesity Challenge Task. DESIGN A text mining system for classifying patient comorbidity status, based on the information contained in clinical reports. The approach of the authors incorporates a variety of automated techniques, including hot-spot filtering, negated concept identification, zero-vector filtering, weighting by inverse class-frequency, and error-correcting of output codes with linear support vector machines. MEASUREMENTS Performance was evaluated in terms of the macroaveraged F1 measure. RESULTS The automated system performed well against manual expert rule-based systems, finishing fifth in the Challenge's intuitive task, and 13(th) in the textual task. CONCLUSIONS The system demonstrates that effective comorbidity status classification by an automated system is possible.

  13. Active learning for ontological event extraction incorporating named entity recognition and unknown word handling.

    PubMed

    Han, Xu; Kim, Jung-jae; Kwoh, Chee Keong

    2016-01-01

    Biomedical text mining may target various kinds of valuable information embedded in the literature, but a critical obstacle to the extension of the mining targets is the cost of manual construction of labeled data, which are required for state-of-the-art supervised learning systems. Active learning is to choose the most informative documents for the supervised learning in order to reduce the amount of required manual annotations. Previous works of active learning, however, focused on the tasks of entity recognition and protein-protein interactions, but not on event extraction tasks for multiple event types. They also did not consider the evidence of event participants, which might be a clue for the presence of events in unlabeled documents. Moreover, the confidence scores of events produced by event extraction systems are not reliable for ranking documents in terms of informativity for supervised learning. We here propose a novel committee-based active learning method that supports multi-event extraction tasks and employs a new statistical method for informativity estimation instead of using the confidence scores from event extraction systems. Our method is based on a committee of two systems as follows: We first employ an event extraction system to filter potential false negatives among unlabeled documents, from which the system does not extract any event. We then develop a statistical method to rank the potential false negatives of unlabeled documents 1) by using a language model that measures the probabilities of the expression of multiple events in documents and 2) by using a named entity recognition system that locates the named entities that can be event arguments (e.g. proteins). The proposed method further deals with unknown words in test data by using word similarity measures. We also apply our active learning method for the task of named entity recognition. We evaluate the proposed method against the BioNLP Shared Tasks datasets, and show that our method can achieve better performance than such previous methods as entropy and Gibbs error based methods and a conventional committee-based method. We also show that the incorporation of named entity recognition into the active learning for event extraction and the unknown word handling further improve the active learning method. In addition, the adaptation of the active learning method into named entity recognition tasks also improves the document selection for manual annotation of named entities.

  14. Application of text mining for customer evaluations in commercial banking

    NASA Astrophysics Data System (ADS)

    Tan, Jing; Du, Xiaojiang; Hao, Pengpeng; Wang, Yanbo J.

    2015-07-01

    Nowadays customer attrition is increasingly serious in commercial banks. To combat this problem roundly, mining customer evaluation texts is as important as mining customer structured data. In order to extract hidden information from customer evaluations, Textual Feature Selection, Classification and Association Rule Mining are necessary techniques. This paper presents all three techniques by using Chinese Word Segmentation, C5.0 and Apriori, and a set of experiments were run based on a collection of real textual data that includes 823 customer evaluations taken from a Chinese commercial bank. Results, consequent solutions, some advice for the commercial bank are given in this paper.

  15. Summary of the BioLINK SIG 2013 meeting at ISMB/ECCB 2013.

    PubMed

    Verspoor, Karin; Shatkay, Hagit; Hirschman, Lynette; Blaschke, Christian; Valencia, Alfonso

    2015-01-15

    The ISMB Special Interest Group on Linking Literature, Information and Knowledge for Biology (BioLINK) organized a one-day workshop at ISMB/ECCB 2013 in Berlin, Germany. The theme of the workshop was 'Roles for text mining in biomedical knowledge discovery and translational medicine'. This summary reviews the outcomes of the workshop. Meeting themes included concept annotation methods and applications, extraction of biological relationships and the use of text-mined data for biological data analysis. All articles are available at http://biolinksig.org/proceedings-online/. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Building a common pipeline for rule-based document classification.

    PubMed

    Patterson, Olga V; Ginter, Thomas; DuVall, Scott L

    2013-01-01

    Instance-based classification of clinical text is a widely used natural language processing task employed as a step for patient classification, document retrieval, or information extraction. Rule-based approaches rely on concept identification and context analysis in order to determine the appropriate class. We propose a five-step process that enables even small research teams to develop simple but powerful rule-based NLP systems by taking advantage of a common UIMA AS based pipeline for classification. Our proposed methodology coupled with the general-purpose solution provides researchers with access to the data locked in clinical text in cases of limited human resources and compact timelines.

  17. Development and evaluation of task-specific NLP framework in China.

    PubMed

    Ge, Caixia; Zhang, Yinsheng; Huang, Zhenzhen; Jia, Zheng; Ju, Meizhi; Duan, Huilong; Li, Haomin

    2015-01-01

    Natural language processing (NLP) has been designed to convert narrative text into structured data. Although some general NLP architectures have been developed, a task-specific NLP framework to facilitate the effective use of data is still a challenge in lexical resource limited regions, such as China. The purpose of this study is to design and develop a task-specific NLP framework to extract targeted information from particular documents by adopting dedicated algorithms on current limited lexical resources. In this framework, a shared and evolving ontology mechanism was designed. The result has shown that such a free text driven platform will accelerate the NLP technology acceptance in China.

  18. Capturing Accurate and Useful Information on Medication-Related Telenursing Triage Calls.

    PubMed

    Lake, R; Li, L; Baysari, M; Byrne, M; Robinson, M; Westbrook, J I

    2016-01-01

    Registered nurses providing telenursing triage and advice services record information on the medication related calls they handle. However the quality and consistency of these data were rarely examined. Our aim was to examine medication related calls made to the healthdirect advice service in November 2014, to assess their basic characteristics and how the data entry format influenced information collected and data consistency. Registered nurses selected the patient question type from a range of categories, and entered the medications involved in a free text field. Medication names were manually extracted from the free text fields. We also compared the selected patient question type with the free text description of the call, in order to gauge data consistency. Results showed that nurses provided patients with advice on medication-related queries in a timely matter (the median call duration of 9 minutes). From 1835 calls, we were able to identify and classify 2156 medications into 384 generic names. However, in 204 cases (11.2% of calls) no medication name was entered. A further 308 (15.0%) of the medication names entered were not identifiable. When we compared the selected patient question with the free text description of calls, we found that these were consistent in 63.27% of cases. Telenursing and triage advice services provide a valuable resource to the public with quick and easily accessible advice. To support nurses provide quality services and record accurate information about the queries, appropriate data entry format and design would be beneficial.

  19. Noisy text categorization.

    PubMed

    Vinciarelli, Alessandro

    2005-12-01

    This work presents categorization experiments performed over noisy texts. By noisy, we mean any text obtained through an extraction process (affected by errors) from media other than digital texts (e.g., transcriptions of speech recordings extracted with a recognition system). The performance of a categorization system over the clean and noisy (Word Error Rate between approximately 10 and approximately 50 percent) versions of the same documents is compared. The noisy texts are obtained through handwriting recognition and simulation of optical character recognition. The results show that the performance loss is acceptable for Recall values up to 60-70 percent depending on the noise sources. New measures of the extraction process performance, allowing a better explanation of the categorization results, are proposed.

  20. Evaluation of Smoking Status Identification Using Electronic Health Records and Open-Text Information in a Large Mental Health Case Register

    PubMed Central

    Wu, Chia-Yi; Chang, Chin-Kuo; Robson, Debbie; Jackson, Richard; Chen, Shaw-Ji; Hayes, Richard D.; Stewart, Robert

    2013-01-01

    Background High smoking prevalence is a major public health concern for people with mental disorders. Improved monitoring could be facilitated through electronic health record (EHR) databases. We evaluated whether EHR information held in structured fields might be usefully supplemented by open-text information. The prevalence and correlates of EHR-derived current smoking in people with severe mental illness were also investigated. Methods All cases had been referred to a secondary mental health service between 2008-2011 and received a diagnosis of schizophreniform or bipolar disorder. The study focused on those aged over 15 years who had received active care from the mental health service for at least a year (N=1,555). The ‘CRIS-IE-Smoking’ application used General Architecture for Text Engineering (GATE) natural language processing software to extract smoking status information from open-text fields. A combination of CRIS-IE-Smoking with data from structured fields was evaluated for coverage and the prevalence and demographic correlates of current smoking were analysed. Results Proportions of patients with recorded smoking status increased from 11.6% to 64.0% through supplementing structured fields with CRIS-IE-Smoking data. The prevalence of current smoking was 59.6% in these 995 cases for whom this information was available. After adjustment, younger age (below 65 years), male sex, and non-cohabiting status were associated with current smoking status. Conclusions A natural language processing application substantially improved routine EHR data on smoking status above structured fields alone and could thus be helpful in improving monitoring of this lifestyle behaviour. However, limited information on smoking status remained a challenge. PMID:24069288

  1. Building and evaluation of a structured representation of pharmacokinetics information presented in SPCs: from existing conceptual views of pharmacokinetics associated with natural language processing to object-oriented design.

    PubMed

    Duclos-Cartolano, Catherine; Venot, Alain

    2003-01-01

    Develop a detailed representation of pharmacokinetics (PK), derived from the information in Summaries of Product Characteristics (SPCs), for use in computerized systems to help practitioners in pharmaco-therapeutic reasoning. Available knowledge about PK was studied to identify main PK concepts and organize them in a preliminary generic model. The information from 1950 PK SPC-texts in the French language was studied using a morpho-syntactic analyzer. It produced a list of candidate terms (CTs) from which those describing main PK concepts were selected. The contexts in which they occurred were explored to discover co-occurring CTs. The regrouping according to CT semantic types led to a detailed object-oriented model of PK. The model was evaluated. A random sample of 100 PK texts structured according to the model was judged for completeness and semantic accuracy by 8 experts who were blinded to other experts' responses. The PK text file contained about 300000 words, and the morpho-syntactic analysis extracted 17520 different CTs. The context of 592 CTs was studied and used to deduce the PK model. It consists of four entities: the information about the real PK process, the experimental protocol, the mathematical modeling, and the influence of factors causing variation. Experts judged that the PK model represented the information in 100 sample PK texts completely in 89% of cases and nearly completely in the other 11%. There was no distortion of meaning in 98% of cases and little distortion in the remainder. The PK model seems to be applicable to all SPCs and can be used to retranscribe legal information from PK sections of SPCs into structured databases.

  2. Building and Evaluation of a Structured Representation of Pharmacokinetics Information Presented in SPCs: From Existing Conceptual Views of Pharmacokinetics Associated with Natural Language Processing to Object-oriented Design

    PubMed Central

    Duclos-Cartolano, Catherine; Venot, Alain

    2003-01-01

    Objective: Develop a detailed representation of pharmacokinetics (PK), derived from the information in Summaries of Product Characteristics (SPCs), for use in computerized systems to help practitioners in pharmaco-therapeutic reasoning. Methods: Available knowledge about PK was studied to identify main PK concepts and organize them in a preliminary generic model. The information from 1,950 PK SPC-texts in the French language was studied using a morpho-syntactic analyzer. It produced a list of candidate terms (CTs) from which those describing main PK concepts were selected. The contexts in which they occurred were explored to discover co-occurring CTs. The regrouping according to CT semantic types led to a detailed object-oriented model of PK. The model was evaluated. A random sample of 100 PK texts structured according to the model was judged for completeness and semantic accuracy by 8 experts who were blinded to other experts’ responses. Results: The PK text file contained about 300,000 words, and the morpho-syntactic analysis extracted 17,520 different CTs. The context of 592 CTs was studied and used to deduce the PK model. It consists of four entities: the information about the real PK process, the experimental protocol, the mathematical modeling, and the influence of factors causing variation. Experts judged that the PK model represented the information in 100 sample PK texts completely in 89% of cases and nearly completely in the other 11%. There was no distortion of meaning in 98% of cases and little distortion in the remainder. Conclusion: The PK model seems to be applicable to all SPCs and can be used to retranscribe legal information from PK sections of SPCs into structured databases. PMID:12626375

  3. Pictorial cigarette pack warnings: a meta-analysis of experimental studies

    PubMed Central

    Noar, Seth M; Hall, Marissa G; Francis, Diane B; Ribisl, Kurt M; Pepper, Jessica K; Brewer, Noel T

    2016-01-01

    Objective To inform international research and policy, we conducted a meta-analysis of the experimental literature on pictorial cigarette pack warnings. Data sources We systematically searched 7 computerised databases in April 2013 using several search terms. We also searched reference lists of relevant articles. Study selection We included studies that used an experimental protocol to test cigarette pack warnings and reported data on both pictorial and text-only conditions. 37 studies with data on 48 independent samples (N=33 613) met criteria. Data extraction and synthesis Two independent coders coded all study characteristics. Effect sizes were computed from data extracted from study reports and were combined using random effects meta-analytic procedures. Results Pictorial warnings were more effective than text-only warnings for 12 of 17 effectiveness outcomes (all p<0.05). Relative to text-only warnings, pictorial warnings (1) attracted and held attention better; (2) garnered stronger cognitive and emotional reactions; (3) elicited more negative pack attitudes and negative smoking attitudes and (4) more effectively increased intentions to not start smoking and to quit smoking. Participants also perceived pictorial warnings as being more effective than text-only warnings across all 8 perceived effectiveness outcomes. Conclusions The evidence from this international body of literature supports pictorial cigarette pack warnings as more effective than text-only warnings. Gaps in the literature include a lack of assessment of smoking behaviour and a dearth of theory-based research on how warnings exert their effects. PMID:25948713

  4. Ministry of Health clinical practice guidelines: Management of Rhinosinusitis and Allergic Rhinitis.

    PubMed

    Siow, J K; Alshaikh, N A; Balakrishnan, A; Chan, K O; Chao, S S; Goh, L G; Hwang, S Y; Lee, C Y; Leong, J L; Lim, L; Menon, A; Sethi, D S; Tan, H; Wang, D Y

    2010-03-01

    The Ministry of Health publishes national clinical practice guidelines to provide doctors and patients in Singapore with evidence-based guidance on managing important medical conditions. This article reproduces the introduction and executive summary (with recommendations from the guidelines) from the Ministry of Health clinical practice guidelines on Management of Rhinosinusitis and Allergic Rhinitis, for the information of readers of the Singapore Medical Journal. Chapters, page and figure numbers mentioned in the reproduced extract refer to the full text of the guidelines, which are available from the Ministry of Health website (http://www.moh.gov.sg/mohcorp/publications.aspx?id=24046). The recommendations should be used with reference to the full text of the guidelines. Following this article are multiple choice questions based on the full text of the guidelines.

  5. The Functional Genomics Network in the evolution of biological text mining over the past decade.

    PubMed

    Blaschke, Christian; Valencia, Alfonso

    2013-03-25

    Different programs of The European Science Foundation (ESF) have contributed significantly to connect researchers in Europe and beyond through several initiatives. This support was particularly relevant for the development of the areas related with extracting information from papers (text-mining) because it supported the field in its early phases long before it was recognized by the community. We review the historical development of text mining research and how it was introduced in bioinformatics. Specific applications in (functional) genomics are described like it's integration in genome annotation pipelines and the support to the analysis of high-throughput genomics experimental data, and we highlight the activities of evaluation of methods and benchmarking for which the ESF programme support was instrumental. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. TES: A Text Extraction System.

    ERIC Educational Resources Information Center

    Goh, A.; Hui, S. C.

    1996-01-01

    Describes how TES, a text extraction system, is able to electronically retrieve a set of sentences from a document to form an indicative abstract. Discusses various text abstraction techniques and related work in the area, provides an overview of the TES system, and compares system results against manually produced abstracts. (LAM)

  7. Using text-mining techniques in electronic patient records to identify ADRs from medicine use.

    PubMed

    Warrer, Pernille; Hansen, Ebba Holme; Juhl-Jensen, Lars; Aagaard, Lise

    2012-05-01

    This literature review included studies that use text-mining techniques in narrative documents stored in electronic patient records (EPRs) to investigate ADRs. We searched PubMed, Embase, Web of Science and International Pharmaceutical Abstracts without restrictions from origin until July 2011. We included empirically based studies on text mining of electronic patient records (EPRs) that focused on detecting ADRs, excluding those that investigated adverse events not related to medicine use. We extracted information on study populations, EPR data sources, frequencies and types of the identified ADRs, medicines associated with ADRs, text-mining algorithms used and their performance. Seven studies, all from the United States, were eligible for inclusion in the review. Studies were published from 2001, the majority between 2009 and 2010. Text-mining techniques varied over time from simple free text searching of outpatient visit notes and inpatient discharge summaries to more advanced techniques involving natural language processing (NLP) of inpatient discharge summaries. Performance appeared to increase with the use of NLP, although many ADRs were still missed. Due to differences in study design and populations, various types of ADRs were identified and thus we could not make comparisons across studies. The review underscores the feasibility and potential of text mining to investigate narrative documents in EPRs for ADRs. However, more empirical studies are needed to evaluate whether text mining of EPRs can be used systematically to collect new information about ADRs. © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.

  8. Using text-mining techniques in electronic patient records to identify ADRs from medicine use

    PubMed Central

    Warrer, Pernille; Hansen, Ebba Holme; Juhl-Jensen, Lars; Aagaard, Lise

    2012-01-01

    This literature review included studies that use text-mining techniques in narrative documents stored in electronic patient records (EPRs) to investigate ADRs. We searched PubMed, Embase, Web of Science and International Pharmaceutical Abstracts without restrictions from origin until July 2011. We included empirically based studies on text mining of electronic patient records (EPRs) that focused on detecting ADRs, excluding those that investigated adverse events not related to medicine use. We extracted information on study populations, EPR data sources, frequencies and types of the identified ADRs, medicines associated with ADRs, text-mining algorithms used and their performance. Seven studies, all from the United States, were eligible for inclusion in the review. Studies were published from 2001, the majority between 2009 and 2010. Text-mining techniques varied over time from simple free text searching of outpatient visit notes and inpatient discharge summaries to more advanced techniques involving natural language processing (NLP) of inpatient discharge summaries. Performance appeared to increase with the use of NLP, although many ADRs were still missed. Due to differences in study design and populations, various types of ADRs were identified and thus we could not make comparisons across studies. The review underscores the feasibility and potential of text mining to investigate narrative documents in EPRs for ADRs. However, more empirical studies are needed to evaluate whether text mining of EPRs can be used systematically to collect new information about ADRs. PMID:22122057

  9. BioC: a minimalist approach to interoperability for biomedical text processing

    PubMed Central

    Comeau, Donald C.; Islamaj Doğan, Rezarta; Ciccarese, Paolo; Cohen, Kevin Bretonnel; Krallinger, Martin; Leitner, Florian; Lu, Zhiyong; Peng, Yifan; Rinaldi, Fabio; Torii, Manabu; Valencia, Alfonso; Verspoor, Karin; Wiegers, Thomas C.; Wu, Cathy H.; Wilbur, W. John

    2013-01-01

    A vast amount of scientific information is encoded in natural language text, and the quantity of such text has become so great that it is no longer economically feasible to have a human as the first step in the search process. Natural language processing and text mining tools have become essential to facilitate the search for and extraction of information from text. This has led to vigorous research efforts to create useful tools and to create humanly labeled text corpora, which can be used to improve such tools. To encourage combining these efforts into larger, more powerful and more capable systems, a common interchange format to represent, store and exchange the data in a simple manner between different language processing systems and text mining tools is highly desirable. Here we propose a simple extensible mark-up language format to share text documents and annotations. The proposed annotation approach allows a large number of different annotations to be represented including sentences, tokens, parts of speech, named entities such as genes or diseases and relationships between named entities. In addition, we provide simple code to hold this data, read it from and write it back to extensible mark-up language files and perform some sample processing. We also describe completed as well as ongoing work to apply the approach in several directions. Code and data are available at http://bioc.sourceforge.net/. Database URL: http://bioc.sourceforge.net/ PMID:24048470

  10. Fuzzy Document Clustering Approach using WordNet Lexical Categories

    NASA Astrophysics Data System (ADS)

    Gharib, Tarek F.; Fouad, Mohammed M.; Aref, Mostafa M.

    Text mining refers generally to the process of extracting interesting information and knowledge from unstructured text. This area is growing rapidly mainly because of the strong need for analysing the huge and large amount of textual data that reside on internal file systems and the Web. Text document clustering provides an effective navigation mechanism to organize this large amount of data by grouping their documents into a small number of meaningful classes. In this paper we proposed a fuzzy text document clustering approach using WordNet lexical categories and Fuzzy c-Means algorithm. Some experiments are performed to compare efficiency of the proposed approach with the recently reported approaches. Experimental results show that Fuzzy clustering leads to great performance results. Fuzzy c-means algorithm overcomes other classical clustering algorithms like k-means and bisecting k-means in both clustering quality and running time efficiency.

  11. BioEve Search: A Novel Framework to Facilitate Interactive Literature Search

    PubMed Central

    Ahmed, Syed Toufeeq; Davulcu, Hasan; Tikves, Sukru; Nair, Radhika; Zhao, Zhongming

    2012-01-01

    Background. Recent advances in computational and biological methods in last two decades have remarkably changed the scale of biomedical research and with it began the unprecedented growth in both the production of biomedical data and amount of published literature discussing it. An automated extraction system coupled with a cognitive search and navigation service over these document collections would not only save time and effort, but also pave the way to discover hitherto unknown information implicitly conveyed in the texts. Results. We developed a novel framework (named “BioEve”) that seamlessly integrates Faceted Search (Information Retrieval) with Information Extraction module to provide an interactive search experience for the researchers in life sciences. It enables guided step-by-step search query refinement, by suggesting concepts and entities (like genes, drugs, and diseases) to quickly filter and modify search direction, and thereby facilitating an enriched paradigm where user can discover related concepts and keywords to search while information seeking. Conclusions. The BioEve Search framework makes it easier to enable scalable interactive search over large collection of textual articles and to discover knowledge hidden in thousands of biomedical literature articles with ease. PMID:22693501

  12. Four types of ensemble coding in data visualizations.

    PubMed

    Szafir, Danielle Albers; Haroz, Steve; Gleicher, Michael; Franconeri, Steven

    2016-01-01

    Ensemble coding supports rapid extraction of visual statistics about distributed visual information. Researchers typically study this ability with the goal of drawing conclusions about how such coding extracts information from natural scenes. Here we argue that a second domain can serve as another strong inspiration for understanding ensemble coding: graphs, maps, and other visual presentations of data. Data visualizations allow observers to leverage their ability to perform visual ensemble statistics on distributions of spatial or featural visual information to estimate actual statistics on data. We survey the types of visual statistical tasks that occur within data visualizations across everyday examples, such as scatterplots, and more specialized images, such as weather maps or depictions of patterns in text. We divide these tasks into four categories: identification of sets of values, summarization across those values, segmentation of collections, and estimation of structure. We point to unanswered questions for each category and give examples of such cross-pollination in the current literature. Increased collaboration between the data visualization and perceptual psychology research communities can inspire new solutions to challenges in visualization while simultaneously exposing unsolved problems in perception research.

  13. A Visual Analytics Framework for Identifying Topic Drivers in Media Events.

    PubMed

    Lu, Yafeng; Wang, Hong; Landis, Steven; Maciejewski, Ross

    2017-09-14

    Media data has been the subject of large scale analysis with applications of text mining being used to provide overviews of media themes and information flows. Such information extracted from media articles has also shown its contextual value of being integrated with other data, such as criminal records and stock market pricing. In this work, we explore linking textual media data with curated secondary textual data sources through user-guided semantic lexical matching for identifying relationships and data links. In this manner, critical information can be identified and used to annotate media timelines in order to provide a more detailed overview of events that may be driving media topics and frames. These linked events are further analyzed through an application of causality modeling to model temporal drivers between the data series. Such causal links are then annotated through automatic entity extraction which enables the analyst to explore persons, locations, and organizations that may be pertinent to the media topic of interest. To demonstrate the proposed framework, two media datasets and an armed conflict event dataset are explored.

  14. Next Generation Quality: Assessing the Physician in Clinical History Completeness and Diagnostic Interpretations Using Funnel Plots and Normalized Deviations Plots in 3,854 Prostate Biopsies.

    PubMed

    Bonert, Michael; El-Shinnawy, Ihab; Carvalho, Michael; Williams, Phillip; Salama, Samih; Tang, Damu; Kapoor, Anil

    2017-01-01

    Observational data and funnel plots are routinely used outside of pathology to understand trends and improve performance. Extract diagnostic rate (DR) information from free text surgical pathology reports with synoptic elements and assess whether inter-rater variation and clinical history completeness information useful for continuous quality improvement (CQI) can be obtained. All in-house prostate biopsies in a 6-year period at two large teaching hospitals were extracted and then diagnostically categorized using string matching, fuzzy string matching, and hierarchical pruning. DRs were then stratified by the submitting physicians and pathologists. Funnel plots were created to assess for diagnostic bias. 3,854 prostate biopsies were found and all could be diagnostically classified. Two audits involving the review of 700 reports and a comparison of the synoptic elements with the free text interpretations suggest a categorization error rate of <1%. Twenty-seven pathologists each read >40 cases and together assessed 3,690 biopsies. There was considerable inter-rater variability and a trend toward more World Health Organization/International Society of Urologic Pathology Grade 1 cancers in older pathologists. Normalized deviations plots, constructed using the median DR, and standard error can elucidate associated over- and under-calls for an individual pathologist in relation to their practice group. Clinical history completeness by submitting medical doctor varied significantly (100% to 22%). Free text data analyses have some limitations; however, they could be used for data-driven CQI in anatomical pathology, and could lead to the next generation in quality of care.

  15. Unsupervised Extraction of Diagnosis Codes from EMRs Using Knowledge-Based and Extractive Text Summarization Techniques

    PubMed Central

    Kavuluru, Ramakanth; Han, Sifei; Harris, Daniel

    2017-01-01

    Diagnosis codes are extracted from medical records for billing and reimbursement and for secondary uses such as quality control and cohort identification. In the US, these codes come from the standard terminology ICD-9-CM derived from the international classification of diseases (ICD). ICD-9 codes are generally extracted by trained human coders by reading all artifacts available in a patient’s medical record following specific coding guidelines. To assist coders in this manual process, this paper proposes an unsupervised ensemble approach to automatically extract ICD-9 diagnosis codes from textual narratives included in electronic medical records (EMRs). Earlier attempts on automatic extraction focused on individual documents such as radiology reports and discharge summaries. Here we use a more realistic dataset and extract ICD-9 codes from EMRs of 1000 inpatient visits at the University of Kentucky Medical Center. Using named entity recognition (NER), graph-based concept-mapping of medical concepts, and extractive text summarization techniques, we achieve an example based average recall of 0.42 with average precision 0.47; compared with a baseline of using only NER, we notice a 12% improvement in recall with the graph-based approach and a 7% improvement in precision using the extractive text summarization approach. Although diagnosis codes are complex concepts often expressed in text with significant long range non-local dependencies, our present work shows the potential of unsupervised methods in extracting a portion of codes. As such, our findings are especially relevant for code extraction tasks where obtaining large amounts of training data is difficult. PMID:28748227

  16. TREC Microblog 2012 Track: Real-Time Algorithm for Microblog Ranking Systems

    DTIC Science & Technology

    2012-11-01

    such as information about the tweet and the user profile. We collected those tweets by means of web crawler and extract several features from the raw...Mining Text Data. 2012. [5] D. Feltoni. Twittersa: un sistema per l’analisi del sentimento nelle reti sociali. Master’s thesis, Roma Tre University...Morris. Twittersearch: a comparison of microblog search and web search. Proceedings of the fourth ACM international conference on Web search, 2011

  17. Combinatorial Markov Random Fields and Their Applications to Information Organization

    DTIC Science & Technology

    2008-02-01

    titles, part-of- speech tags; • Image processing: images, colors, texture, blobs, interest points, caption words; • Video processing: video signal, audio...McGurk and MacDonald published their pioneering work [80] that revealed the multi-modal nature of speech perception: sound and moving lips compose one... Speech (POS) n-grams (that correspond to the syntactic structure of text). POS n-grams are extracted from sentences in an incremental manner: the first n

  18. Preventive Intra Oral Treatment of Sea Cucumber Ameliorate OVA-Induced Allergic Airway Inflammation.

    PubMed

    Lee, Da-In; Park, Mi-Kyung; Kang, Shin Ae; Choi, Jun-Ho; Kang, Seok-Jung; Lee, Jeong-Yeol; Yu, Hak Sun

    2016-01-01

    Sea cucumber extracts have potent biological effects, including anti-viral, anti-cancer, antibacterial, anti-oxidant, and anti-inflammation effects. To understand their anti-asthma effects, we induced allergic airway inflammation in mice after 7 oral administrations of the extract. The hyper-responsiveness value in mice with ovalbumin (OVA)-alum-induced asthma after oral injection of sea cucumber extracts was significantly lower than that in the OVA-alum-induced asthma group. In addition, the number of eosinophils in the lungs of asthma-induced mice pre-treated with sea cucumber extract was significantly decreased compared to that of PBS pre-treated mice. Additionally, CD4[Formula: see text]CD25[Formula: see text]Foxp3[Formula: see text]T (regulatory T; Treg) cells significantly increased in mesenteric lymph nodes after 7 administrations of the extract. These results suggest that sea cucumber extract can ameliorate allergic airway inflammation via Treg cell activation and recruitment to the lung.

  19. Validation of a Natural Language Processing Algorithm for Detecting Infectious Disease Symptoms in Primary Care Electronic Medical Records in Singapore.

    PubMed

    Hardjojo, Antony; Gunachandran, Arunan; Pang, Long; Abdullah, Mohammed Ridzwan Bin; Wah, Win; Chong, Joash Wen Chen; Goh, Ee Hui; Teo, Sok Huang; Lim, Gilbert; Lee, Mong Li; Hsu, Wynne; Lee, Vernon; Chen, Mark I-Cheng; Wong, Franco; Phang, Jonathan Siung King

    2018-06-11

    Free-text clinical records provide a source of information that complements traditional disease surveillance. To electronically harness these records, they need to be transformed into codified fields by natural language processing algorithms. The aim of this study was to develop, train, and validate Clinical History Extractor for Syndromic Surveillance (CHESS), an natural language processing algorithm to extract clinical information from free-text primary care records. CHESS is a keyword-based natural language processing algorithm to extract 48 signs and symptoms suggesting respiratory infections, gastrointestinal infections, constitutional, as well as other signs and symptoms potentially associated with infectious diseases. The algorithm also captured the assertion status (affirmed, negated, or suspected) and symptom duration. Electronic medical records from the National Healthcare Group Polyclinics, a major public sector primary care provider in Singapore, were randomly extracted and manually reviewed by 2 human reviewers, with a third reviewer as the adjudicator. The algorithm was evaluated based on 1680 notes against the human-coded result as the reference standard, with half of the data used for training and the other half for validation. The symptoms most commonly present within the 1680 clinical records at the episode level were those typically present in respiratory infections such as cough (744/7703, 9.66%), sore throat (591/7703, 7.67%), rhinorrhea (552/7703, 7.17%), and fever (928/7703, 12.04%). At the episode level, CHESS had an overall performance of 96.7% precision and 97.6% recall on the training dataset and 96.0% precision and 93.1% recall on the validation dataset. Symptoms suggesting respiratory and gastrointestinal infections were all detected with more than 90% precision and recall. CHESS correctly assigned the assertion status in 97.3%, 97.9%, and 89.8% of affirmed, negated, and suspected signs and symptoms, respectively (97.6% overall accuracy). Symptom episode duration was correctly identified in 81.2% of records with known duration status. We have developed an natural language processing algorithm dubbed CHESS that achieves good performance in extracting signs and symptoms from primary care free-text clinical records. In addition to the presence of symptoms, our algorithm can also accurately distinguish affirmed, negated, and suspected assertion statuses and extract symptom durations. ©Antony Hardjojo, Arunan Gunachandran, Long Pang, Mohammed Ridzwan Bin Abdullah, Win Wah, Joash Wen Chen Chong, Ee Hui Goh, Sok Huang Teo, Gilbert Lim, Mong Li Lee, Wynne Hsu, Vernon Lee, Mark I-Cheng Chen, Franco Wong, Jonathan Siung King Phang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 11.06.2018.

  20. GeoDeepDive: Towards a Machine Reading-Ready Digital Library and Information Integration Resource

    NASA Astrophysics Data System (ADS)

    Husson, J. M.; Peters, S. E.; Livny, M.; Ross, I.

    2015-12-01

    Recent developments in machine reading and learning approaches to text and data mining hold considerable promise for accelerating the pace and quality of literature-based data synthesis, but these advances have outpaced even basic levels of access to the published literature. For many geoscience domains, particularly those based on physical samples and field-based descriptions, this limitation is significant. Here we describe a general infrastructure to support published literature-based machine reading and learning approaches to information integration and knowledge base creation. This infrastructure supports rate-controlled automated fetching of original documents, along with full bibliographic citation metadata, from remote servers, the secure storage of original documents, and the utilization of considerable high-throughput computing resources for the pre-processing of these documents by optical character recognition, natural language parsing, and other document annotation and parsing software tools. New tools and versions of existing tools can be automatically deployed against original documents when they are made available. The products of these tools (text/XML files) are managed by MongoDB and are available for use in data extraction applications. Basic search and discovery functionality is provided by ElasticSearch, which is used to identify documents of potential relevance to a given data extraction task. Relevant files derived from the original documents are then combined into basic starting points for application building; these starting points are kept up-to-date as new relevant documents are incorporated into the digital library. Currently, our digital library stores contains more than 360K documents supplied by Elsevier and the USGS and we are actively seeking additional content providers. By focusing on building a dependable infrastructure to support the retrieval, storage, and pre-processing of published content, we are establishing a foundation for complex, and continually improving, information integration and data extraction applications. We have developed one such application, which we present as an example, and invite new collaborations to develop other such applications.

  1. Extracting Databases from Dark Data with DeepDive

    PubMed Central

    Zhang, Ce; Shin, Jaeho; Ré, Christopher; Cafarella, Michael; Niu, Feng

    2016-01-01

    DeepDive is a system for extracting relational databases from dark data: the mass of text, tables, and images that are widely collected and stored but which cannot be exploited by standard relational tools. If the information in dark data — scientific papers, Web classified ads, customer service notes, and so on — were instead in a relational database, it would give analysts a massive and valuable new set of “big data.” DeepDive is distinctive when compared to previous information extraction systems in its ability to obtain very high precision and recall at reasonable engineering cost; in a number of applications, we have used DeepDive to create databases with accuracy that meets that of human annotators. To date we have successfully deployed DeepDive to create data-centric applications for insurance, materials science, genomics, paleontologists, law enforcement, and others. The data unlocked by DeepDive represents a massive opportunity for industry, government, and scientific researchers. DeepDive is enabled by an unusual design that combines large-scale probabilistic inference with a novel developer interaction cycle. This design is enabled by several core innovations around probabilistic training and inference. PMID:28316365

  2. Biometric verification in dynamic writing

    NASA Astrophysics Data System (ADS)

    George, Susan E.

    2002-03-01

    Pen-tablet devices capable of capturing the dynamics of writing record temporal and pressure information as well as the spatial pattern. This paper explores biometric verification based upon the dynamics of writing where writers are distinguished not on the basis of what they write (ie the signature), but how they write. We have collected samples of dynamic writing from 38 Chinese writers. Each writer was asked to provide 10 copies of a paragraph of text and the same number of signature samples. From the data we have extracted stroke-based primitives from the sentence data utilizing pen-up/down information and heuristic rules about the shape of the character. The x, y and pressure values of each primitive were interpolated into an even temporal range based upon a 20 msec sampling rate. We applied the Daubechies 1 wavelet transform to the x signal, y signal and pressure signal using the coefficients as inputs to a multi-layer perceptron trained with back-propagation on the sentence data. We found a sensitivity of 0.977 and specificity of 0.990 recognizing writers based on test primitives extracted from sentence data and measures of 0.916 and 0.961 respectively, from test primitives extracted from signature data.

  3. Keywords and Co-Occurrence Patterns in the Voynich Manuscript: An Information-Theoretic Analysis

    PubMed Central

    Montemurro, Marcelo A.; Zanette, Damián H.

    2013-01-01

    The Voynich manuscript has remained so far as a mystery for linguists and cryptologists. While the text written on medieval parchment -using an unknown script system- shows basic statistical patterns that bear resemblance to those from real languages, there are features that suggested to some researches that the manuscript was a forgery intended as a hoax. Here we analyse the long-range structure of the manuscript using methods from information theory. We show that the Voynich manuscript presents a complex organization in the distribution of words that is compatible with those found in real language sequences. We are also able to extract some of the most significant semantic word-networks in the text. These results together with some previously known statistical features of the Voynich manuscript, give support to the presence of a genuine message inside the book. PMID:23805215

  4. NASA automatic subject analysis technique for extracting retrievable multi-terms (NASA TERM) system

    NASA Technical Reports Server (NTRS)

    Kirschbaum, J.; Williamson, R. E.

    1978-01-01

    Current methods for information processing and retrieval used at the NASA Scientific and Technical Information Facility are reviewed. A more cost effective computer aided indexing system is proposed which automatically generates print terms (phrases) from the natural text. Satisfactory print terms can be generated in a primarily automatic manner to produce a thesaurus (NASA TERMS) which extends all the mappings presently applied by indexers, specifies the worth of each posting term in the thesaurus, and indicates the areas of use of the thesaurus entry phrase. These print terms enable the computer to determine which of several terms in a hierarchy is desirable and to differentiate ambiguous terms. Steps in the NASA TERMS algorithm are discussed and the processing of surrogate entry phrases is demonstrated using four previously manually indexed STAR abstracts for comparison. The simulation shows phrase isolation, text phrase reduction, NASA terms selection, and RECON display.

  5. Toward a complete dataset of drug-drug interaction information from publicly available sources.

    PubMed

    Ayvaz, Serkan; Horn, John; Hassanzadeh, Oktie; Zhu, Qian; Stan, Johann; Tatonetti, Nicholas P; Vilar, Santiago; Brochhausen, Mathias; Samwald, Matthias; Rastegar-Mojarad, Majid; Dumontier, Michel; Boyce, Richard D

    2015-06-01

    Although potential drug-drug interactions (PDDIs) are a significant source of preventable drug-related harm, there is currently no single complete source of PDDI information. In the current study, all publically available sources of PDDI information that could be identified using a comprehensive and broad search were combined into a single dataset. The combined dataset merged fourteen different sources including 5 clinically-oriented information sources, 4 Natural Language Processing (NLP) Corpora, and 5 Bioinformatics/Pharmacovigilance information sources. As a comprehensive PDDI source, the merged dataset might benefit the pharmacovigilance text mining community by making it possible to compare the representativeness of NLP corpora for PDDI text extraction tasks, and specifying elements that can be useful for future PDDI extraction purposes. An analysis of the overlap between and across the data sources showed that there was little overlap. Even comprehensive PDDI lists such as DrugBank, KEGG, and the NDF-RT had less than 50% overlap with each other. Moreover, all of the comprehensive lists had incomplete coverage of two data sources that focus on PDDIs of interest in most clinical settings. Based on this information, we think that systems that provide access to the comprehensive lists, such as APIs into RxNorm, should be careful to inform users that the lists may be incomplete with respect to PDDIs that drug experts suggest clinicians be aware of. In spite of the low degree of overlap, several dozen cases were identified where PDDI information provided in drug product labeling might be augmented by the merged dataset. Moreover, the combined dataset was also shown to improve the performance of an existing PDDI NLP pipeline and a recently published PDDI pharmacovigilance protocol. Future work will focus on improvement of the methods for mapping between PDDI information sources, identifying methods to improve the use of the merged dataset in PDDI NLP algorithms, integrating high-quality PDDI information from the merged dataset into Wikidata, and making the combined dataset accessible as Semantic Web Linked Data. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Prediction of cause of death from forensic autopsy reports using text classification techniques: A comparative study.

    PubMed

    Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa

    2018-07-01

    Automatic text classification techniques are useful for classifying plaintext medical documents. This study aims to automatically predict the cause of death from free text forensic autopsy reports by comparing various schemes for feature extraction, term weighing or feature value representation, text classification, and feature reduction. For experiments, the autopsy reports belonging to eight different causes of death were collected, preprocessed and converted into 43 master feature vectors using various schemes for feature extraction, representation, and reduction. The six different text classification techniques were applied on these 43 master feature vectors to construct a classification model that can predict the cause of death. Finally, classification model performance was evaluated using four performance measures i.e. overall accuracy, macro precision, macro-F-measure, and macro recall. From experiments, it was found that that unigram features obtained the highest performance compared to bigram, trigram, and hybrid-gram features. Furthermore, in feature representation schemes, term frequency, and term frequency with inverse document frequency obtained similar and better results when compared with binary frequency, and normalized term frequency with inverse document frequency. Furthermore, the chi-square feature reduction approach outperformed Pearson correlation, and information gain approaches. Finally, in text classification algorithms, support vector machine classifier outperforms random forest, Naive Bayes, k-nearest neighbor, decision tree, and ensemble-voted classifier. Our results and comparisons hold practical importance and serve as references for future works. Moreover, the comparison outputs will act as state-of-art techniques to compare future proposals with existing automated text classification techniques. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  7. Real-time text extraction based on the page layout analysis system

    NASA Astrophysics Data System (ADS)

    Soua, M.; Benchekroun, A.; Kachouri, R.; Akil, M.

    2017-05-01

    Several approaches were proposed in order to extract text from scanned documents. However, text extraction in heterogeneous documents stills a real challenge. Indeed, text extraction in this context is a difficult task because of the variation of the text due to the differences of sizes, styles and orientations, as well as to the complexity of the document region background. Recently, we have proposed the improved hybrid binarization based on Kmeans method (I-HBK)5 to extract suitably the text from heterogeneous documents. In this method, the Page Layout Analysis (PLA), part of the Tesseract OCR engine, is used to identify text and image regions. Afterwards our hybrid binarization is applied separately on each kind of regions. In one side, gamma correction is employed before to process image regions. In the other side, binarization is performed directly on text regions. Then, a foreground and background color study is performed to correct inverted region colors. Finally, characters are located from the binarized regions based on the PLA algorithm. In this work, we extend the integration of the PLA algorithm within the I-HBK method. In addition, to speed up the separation of text and image step, we employ an efficient GPU acceleration. Through the performed experiments, we demonstrate the high F-measure accuracy of the PLA algorithm reaching 95% on the LRDE dataset. In addition, we illustrate the sequential and the parallel compared PLA versions. The obtained results give a speedup of 3.7x when comparing the parallel PLA implementation on GPU GTX 660 to the CPU version.

  8. Semantator: semantic annotator for converting biomedical text to linked data.

    PubMed

    Tao, Cui; Song, Dezhao; Sharma, Deepak; Chute, Christopher G

    2013-10-01

    More than 80% of biomedical data is embedded in plain text. The unstructured nature of these text-based documents makes it challenging to easily browse and query the data of interest in them. One approach to facilitate browsing and querying biomedical text is to convert the plain text to a linked web of data, i.e., converting data originally in free text to structured formats with defined meta-level semantics. In this paper, we introduce Semantator (Semantic Annotator), a semantic-web-based environment for annotating data of interest in biomedical documents, browsing and querying the annotated data, and interactively refining annotation results if needed. Through Semantator, information of interest can be either annotated manually or semi-automatically using plug-in information extraction tools. The annotated results will be stored in RDF and can be queried using the SPARQL query language. In addition, semantic reasoners can be directly applied to the annotated data for consistency checking and knowledge inference. Semantator has been released online and was used by the biomedical ontology community who provided positive feedbacks. Our evaluation results indicated that (1) Semantator can perform the annotation functionalities as designed; (2) Semantator can be adopted in real applications in clinical and transactional research; and (3) the annotated results using Semantator can be easily used in Semantic-web-based reasoning tools for further inference. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. On the unsupervised analysis of domain-specific Chinese texts

    PubMed Central

    Deng, Ke; Bol, Peter K.; Li, Kate J.; Liu, Jun S.

    2016-01-01

    With the growing availability of digitized text data both publicly and privately, there is a great need for effective computational tools to automatically extract information from texts. Because the Chinese language differs most significantly from alphabet-based languages in not specifying word boundaries, most existing Chinese text-mining methods require a prespecified vocabulary and/or a large relevant training corpus, which may not be available in some applications. We introduce an unsupervised method, top-down word discovery and segmentation (TopWORDS), for simultaneously discovering and segmenting words and phrases from large volumes of unstructured Chinese texts, and propose ways to order discovered words and conduct higher-level context analyses. TopWORDS is particularly useful for mining online and domain-specific texts where the underlying vocabulary is unknown or the texts of interest differ significantly from available training corpora. When outputs from TopWORDS are fed into context analysis tools such as topic modeling, word embedding, and association pattern finding, the results are as good as or better than that from using outputs of a supervised segmentation method. PMID:27185919

  10. Prominent feature extraction for review analysis: an empirical study

    NASA Astrophysics Data System (ADS)

    Agarwal, Basant; Mittal, Namita

    2016-05-01

    Sentiment analysis (SA) research has increased tremendously in recent times. SA aims to determine the sentiment orientation of a given text into positive or negative polarity. Motivation for SA research is the need for the industry to know the opinion of the users about their product from online portals, blogs, discussion boards and reviews and so on. Efficient features need to be extracted for machine-learning algorithm for better sentiment classification. In this paper, initially various features are extracted such as unigrams, bi-grams and dependency features from the text. In addition, new bi-tagged features are also extracted that conform to predefined part-of-speech patterns. Furthermore, various composite features are created using these features. Information gain (IG) and minimum redundancy maximum relevancy (mRMR) feature selection methods are used to eliminate the noisy and irrelevant features from the feature vector. Finally, machine-learning algorithms are used for classifying the review document into positive or negative class. Effects of different categories of features are investigated on four standard data-sets, namely, movie review and product (book, DVD and electronics) review data-sets. Experimental results show that composite features created from prominent features of unigram and bi-tagged features perform better than other features for sentiment classification. mRMR is a better feature selection method as compared with IG for sentiment classification. Boolean Multinomial Naïve Bayes) algorithm performs better than support vector machine classifier for SA in terms of accuracy and execution time.

  11. Assimilating Text-Mining & Bio-Informatics Tools to Analyze Cellulase structures

    NASA Astrophysics Data System (ADS)

    Satyasree, K. P. N. V., Dr; Lalitha Kumari, B., Dr; Jyotsna Devi, K. S. N. V.; Choudri, S. M. Roy; Pratap Joshi, K.

    2017-08-01

    Text-mining is one of the best potential way of automatically extracting information from the huge biological literature. To exploit its prospective, the knowledge encrypted in the text should be converted to some semantic representation such as entities and relations, which could be analyzed by machines. But large-scale practical systems for this purpose are rare. But text mining could be helpful for generating or validating predictions. Cellulases have abundant applications in various industries. Cellulose degrading enzymes are cellulases and the same producing bacteria - Bacillus subtilis & fungus Pseudomonas putida were isolated from top soil of Guntur Dt. A.P. India. Absolute cultures were conserved on potato dextrose agar medium for molecular studies. In this paper, we presented how well the text mining concepts can be used to analyze cellulase producing bacteria and fungi, their comparative structures are also studied with the aid of well-establised, high quality standard bioinformatic tools such as Bioedit, Swissport, Protparam, EMBOSSwin with which a complete data on Cellulases like structure, constituents of the enzyme has been obtained.

  12. Using Eye Tracking to Investigate Semantic and Spatial Representations of Scientific Diagrams During Text-Diagram Integration

    NASA Astrophysics Data System (ADS)

    Jian, Yu-Cin; Wu, Chao-Jung

    2015-02-01

    We investigated strategies used by readers when reading a science article with a diagram and assessed whether semantic and spatial representations were constructed while reading the diagram. Seventy-one undergraduate participants read a scientific article while tracking their eye movements and then completed a reading comprehension test. Our results showed that the text-diagram referencing strategy was commonly used. However, some readers adopted other reading strategies, such as reading the diagram or text first. We found all readers who had referred to the diagram spent roughly the same amount of time reading and performed equally well. However, some participants who ignored the diagram performed more poorly on questions that tested understanding of basic facts. This result indicates that dual coding theory may be a possible theory to explain the phenomenon. Eye movement patterns indicated that at least some readers had extracted semantic information of the scientific terms when first looking at the diagram. Readers who read the scientific terms on the diagram first tended to spend less time looking at the same terms in the text, which they read after. Besides, presented clear diagrams can help readers process both semantic and spatial information, thereby facilitating an overall understanding of the article. In addition, although text-first and diagram-first readers spent similar total reading time on the text and diagram parts of the article, respectively, text-first readers had significantly less number of saccades of text and diagram than diagram-first readers. This result might be explained as text-directed reading.

  13. Different approaches for identifying important concepts in probabilistic biomedical text summarization.

    PubMed

    Moradi, Milad; Ghadiri, Nasser

    2018-01-01

    Automatic text summarization tools help users in the biomedical domain to acquire their intended information from various textual resources more efficiently. Some of biomedical text summarization systems put the basis of their sentence selection approach on the frequency of concepts extracted from the input text. However, it seems that exploring other measures rather than the raw frequency for identifying valuable contents within an input document, or considering correlations existing between concepts, may be more useful for this type of summarization. In this paper, we describe a Bayesian summarization method for biomedical text documents. The Bayesian summarizer initially maps the input text to the Unified Medical Language System (UMLS) concepts; then it selects the important ones to be used as classification features. We introduce six different feature selection approaches to identify the most important concepts of the text and select the most informative contents according to the distribution of these concepts. We show that with the use of an appropriate feature selection approach, the Bayesian summarizer can improve the performance of biomedical summarization. Using the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) toolkit, we perform extensive evaluations on a corpus of scientific papers in the biomedical domain. The results show that when the Bayesian summarizer utilizes the feature selection methods that do not use the raw frequency, it can outperform the biomedical summarizers that rely on the frequency of concepts, domain-independent and baseline methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Text analysis of MEDLINE for discovering functional relationships among genes: evaluation of keyword extraction weighting schemes.

    PubMed

    Liu, Ying; Navathe, Shamkant B; Pivoshenko, Alex; Dasigi, Venu G; Dingledine, Ray; Ciliax, Brian J

    2006-01-01

    One of the key challenges of microarray studies is to derive biological insights from the gene-expression patterns. Clustering genes by functional keyword association can provide direct information about the functional links among genes. However, the quality of the keyword lists significantly affects the clustering results. We compared two keyword weighting schemes: normalised z-score and term frequency-inverse document frequency (TFIDF). Two gene sets were tested to evaluate the effectiveness of the weighting schemes for keyword extraction for gene clustering. Using established measures of cluster quality, the results produced from TFIDF-weighted keywords outperformed those produced from normalised z-score weighted keywords. The optimised algorithms should be useful for partitioning genes from microarray lists into functionally discrete clusters.

  15. Structured prediction models for RNN based sequence labeling in clinical text.

    PubMed

    Jagannatha, Abhyuday N; Yu, Hong

    2016-11-01

    Sequence labeling is a widely used method for named entity recognition and information extraction from unstructured natural language data. In clinical domain one major application of sequence labeling involves extraction of medical entities such as medication, indication, and side-effects from Electronic Health Record narratives. Sequence labeling in this domain, presents its own set of challenges and objectives. In this work we experimented with various CRF based structured learning models with Recurrent Neural Networks. We extend the previously studied LSTM-CRF models with explicit modeling of pairwise potentials. We also propose an approximate version of skip-chain CRF inference with RNN potentials. We use these methodologies for structured prediction in order to improve the exact phrase detection of various medical entities.

  16. Structured prediction models for RNN based sequence labeling in clinical text

    PubMed Central

    Jagannatha, Abhyuday N; Yu, Hong

    2016-01-01

    Sequence labeling is a widely used method for named entity recognition and information extraction from unstructured natural language data. In clinical domain one major application of sequence labeling involves extraction of medical entities such as medication, indication, and side-effects from Electronic Health Record narratives. Sequence labeling in this domain, presents its own set of challenges and objectives. In this work we experimented with various CRF based structured learning models with Recurrent Neural Networks. We extend the previously studied LSTM-CRF models with explicit modeling of pairwise potentials. We also propose an approximate version of skip-chain CRF inference with RNN potentials. We use these methodologies1 for structured prediction in order to improve the exact phrase detection of various medical entities. PMID:28004040

  17. Natural language processing systems for capturing and standardizing unstructured clinical information: A systematic review.

    PubMed

    Kreimeyer, Kory; Foster, Matthew; Pandey, Abhishek; Arya, Nina; Halford, Gwendolyn; Jones, Sandra F; Forshee, Richard; Walderhaug, Mark; Botsis, Taxiarchis

    2017-09-01

    We followed a systematic approach based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses to identify existing clinical natural language processing (NLP) systems that generate structured information from unstructured free text. Seven literature databases were searched with a query combining the concepts of natural language processing and structured data capture. Two reviewers screened all records for relevance during two screening phases, and information about clinical NLP systems was collected from the final set of papers. A total of 7149 records (after removing duplicates) were retrieved and screened, and 86 were determined to fit the review criteria. These papers contained information about 71 different clinical NLP systems, which were then analyzed. The NLP systems address a wide variety of important clinical and research tasks. Certain tasks are well addressed by the existing systems, while others remain as open challenges that only a small number of systems attempt, such as extraction of temporal information or normalization of concepts to standard terminologies. This review has identified many NLP systems capable of processing clinical free text and generating structured output, and the information collected and evaluated here will be important for prioritizing development of new approaches for clinical NLP. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Automatic extraction of relations between medical concepts in clinical texts

    PubMed Central

    Harabagiu, Sanda; Roberts, Kirk

    2011-01-01

    Objective A supervised machine learning approach to discover relations between medical problems, treatments, and tests mentioned in electronic medical records. Materials and methods A single support vector machine classifier was used to identify relations between concepts and to assign their semantic type. Several resources such as Wikipedia, WordNet, General Inquirer, and a relation similarity metric inform the classifier. Results The techniques reported in this paper were evaluated in the 2010 i2b2 Challenge and obtained the highest F1 score for the relation extraction task. When gold standard data for concepts and assertions were available, F1 was 73.7, precision was 72.0, and recall was 75.3. F1 is defined as 2*Precision*Recall/(Precision+Recall). Alternatively, when concepts and assertions were discovered automatically, F1 was 48.4, precision was 57.6, and recall was 41.7. Discussion Although a rich set of features was developed for the classifiers presented in this paper, little knowledge mining was performed from medical ontologies such as those found in UMLS. Future studies should incorporate features extracted from such knowledge sources, which we expect to further improve the results. Moreover, each relation discovery was treated independently. Joint classification of relations may further improve the quality of results. Also, joint learning of the discovery of concepts, assertions, and relations may also improve the results of automatic relation extraction. Conclusion Lexical and contextual features proved to be very important in relation extraction from medical texts. When they are not available to the classifier, the F1 score decreases by 3.7%. In addition, features based on similarity contribute to a decrease of 1.1% when they are not available. PMID:21846787

  19. Induced lexico-syntactic patterns improve information extraction from online medical forums.

    PubMed

    Gupta, Sonal; MacLean, Diana L; Heer, Jeffrey; Manning, Christopher D

    2014-01-01

    To reliably extract two entity types, symptoms and conditions (SCs), and drugs and treatments (DTs), from patient-authored text (PAT) by learning lexico-syntactic patterns from data annotated with seed dictionaries. Despite the increasing quantity of PAT (eg, online discussion threads), tools for identifying medical entities in PAT are limited. When applied to PAT, existing tools either fail to identify specific entity types or perform poorly. Identification of SC and DT terms in PAT would enable exploration of efficacy and side effects for not only pharmaceutical drugs, but also for home remedies and components of daily care. We use SC and DT term dictionaries compiled from online sources to label several discussion forums from MedHelp (http://www.medhelp.org). We then iteratively induce lexico-syntactic patterns corresponding strongly to each entity type to extract new SC and DT terms. Our system is able to extract symptom descriptions and treatments absent from our original dictionaries, such as 'LADA', 'stabbing pain', and 'cinnamon pills'. Our system extracts DT terms with 58-70% F1 score and SC terms with 66-76% F1 score on two forums from MedHelp. We show improvements over MetaMap, OBA, a conditional random field-based classifier, and a previous pattern learning approach. Our entity extractor based on lexico-syntactic patterns is a successful and preferable technique for identifying specific entity types in PAT. To the best of our knowledge, this is the first paper to extract SC and DT entities from PAT. We exhibit learning of informal terms often used in PAT but missing from typical dictionaries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Structured reporting of MRI of the shoulder - improvement of report quality?

    PubMed

    Gassenmaier, Sebastian; Armbruster, Marco; Haasters, Florian; Helfen, Tobias; Henzler, Thomas; Alibek, Sedat; Pförringer, Dominik; Sommer, Wieland H; Sommer, Nora N

    2017-10-01

    To evaluate the effect of structured reports (SRs) in comparison to non-structured narrative free text (NRs) shoulder MRI reports and potential effects of both types of reporting on completeness, readability, linguistic quality and referring surgeons' satisfaction. Thirty patients after trauma or with suspected degenerative changes of the shoulder were included in this study (2012-2015). All patients underwent shoulder MRI for further assessment and possible surgical planning. NRs were generated during clinical routine. Corresponding SRs were created using a dedicated template. All 60 reports were evaluated by two experienced orthopaedic shoulder surgeons using a questionnaire that included eight questions. Eighty per cent of the SRs were fully complete without any missing key features whereas only 45% of the NRs were fully complete (p < 0.001). The extraction of information was regarded to be easy in 92% of the SRs and 63% of the NRs. The overall quality of the SRs was rated better than that of the NRs (p < 0.001). Structured reporting of shoulder MRI improves the readability as well as the linguistic quality of radiological reports, and potentially leads to a higher satisfaction of referring physicians. • Structured MRI reports of the shoulder improve readability. • Structured reporting facilitates information extraction. • Referring physicians prefer structured reports to narrative free text reports. • Structured MRI reports of the shoulder can reduce radiologist re-consultations.

  1. Dealing with extreme data diversity: extraction and fusion from the growing types of document formats

    NASA Astrophysics Data System (ADS)

    David, Peter; Hansen, Nichole; Nolan, James J.; Alcocer, Pedro

    2015-05-01

    The growth in text data available online is accompanied by a growth in the diversity of available documents. Corpora with extreme heterogeneity in terms of file formats, document organization, page layout, text style, and content are common. The absence of meaningful metadata describing the structure of online and open-source data leads to text extraction results that contain no information about document structure and are cluttered with page headers and footers, web navigation controls, advertisements, and other items that are typically considered noise. We describe an approach to document structure and metadata recovery that uses visual analysis of documents to infer the communicative intent of the author. Our algorithm identifies the components of documents such as titles, headings, and body content, based on their appearance. Because it operates on an image of a document, our technique can be applied to any type of document, including scanned images. Our approach to document structure recovery considers a finer-grained set of component types than prior approaches. In this initial work, we show that a machine learning approach to document structure recovery using a feature set based on the geometry and appearance of images of documents achieves a 60% greater F1- score than a baseline random classifier.

  2. Ministry of Health Clinical Practice Guidelines: Prevention, Diagnosis and Management of Tuberculosis

    PubMed Central

    Wang, Yee Tang Sonny; Chee, Cynthia Bin Eng; Hsu, Li Yang; Jagadesan, Raghuram; Kaw, Gregory Jon Leng; Kong, Po Marn; Lew, Yii Jen; Lim, Choon Seng; Lim, Ting Ting Jayne; Lu, Kuo Fan Mark; Ooi, Peng Lim; Sng, Li-Hwei; Thoon, Koh Cheng

    2016-01-01

    The Ministry of Health (MOH) has developed the clinical practice guidelines on Prevention, Diagnosis and Management of Tuberculosis to provide doctors and patients in Singapore with evidence-based treatment for tuberculosis. This article reproduces the introduction and executive summary (with recommendations from the guidelines) from the MOH clinical practice guidelines on Prevention, Diagnosis and Management of Tuberculosis, for the information of SMJ readers. The chapters and page numbers mentioned in the reproduced extract refer to the full text of the guidelines, which are available from the Ministry of Health website: http://www.moh.gov.sg/content/moh_web/healthprofessionalsportal/doctors/guidelines/cpg_medical.html. The recommendations should be used with reference to the full text of the guidelines. Following this article are multiple choice questions based on the full text of the guidelines. PMID:26996216

  3. Research on aviation unsafe incidents classification with improved TF-IDF algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Yanhua; Zhang, Zhiyuan; Huo, Weigang

    2016-05-01

    The text content of Aviation Safety Confidential Reports contains a large number of valuable information. Term frequency-inverse document frequency algorithm is commonly used in text analysis, but it does not take into account the sequential relationship of the words in the text and its role in semantic expression. According to the seven category labels of civil aviation unsafe incidents, aiming at solving the problems of TF-IDF algorithm, this paper improved TF-IDF algorithm based on co-occurrence network; established feature words extraction and words sequential relations for classified incidents. Aviation domain lexicon was used to improve the accuracy rate of classification. Feature words network model was designed for multi-documents unsafe incidents classification, and it was used in the experiment. Finally, the classification accuracy of improved algorithm was verified by the experiments.

  4. Medical Image Databases

    PubMed Central

    Tagare, Hemant D.; Jaffe, C. Carl; Duncan, James

    1997-01-01

    Abstract Information contained in medical images differs considerably from that residing in alphanumeric format. The difference can be attributed to four characteristics: (1) the semantics of medical knowledge extractable from images is imprecise; (2) image information contains form and spatial data, which are not expressible in conventional language; (3) a large part of image information is geometric; (4) diagnostic inferences derived from images rest on an incomplete, continuously evolving model of normality. This paper explores the differentiating characteristics of text versus images and their impact on design of a medical image database intended to allow content-based indexing and retrieval. One strategy for implementing medical image databases is presented, which employs object-oriented iconic queries, semantics by association with prototypes, and a generic schema. PMID:9147338

  5. A common type system for clinical natural language processing

    PubMed Central

    2013-01-01

    Background One challenge in reusing clinical data stored in electronic medical records is that these data are heterogenous. Clinical Natural Language Processing (NLP) plays an important role in transforming information in clinical text to a standard representation that is comparable and interoperable. Information may be processed and shared when a type system specifies the allowable data structures. Therefore, we aim to define a common type system for clinical NLP that enables interoperability between structured and unstructured data generated in different clinical settings. Results We describe a common type system for clinical NLP that has an end target of deep semantics based on Clinical Element Models (CEMs), thus interoperating with structured data and accommodating diverse NLP approaches. The type system has been implemented in UIMA (Unstructured Information Management Architecture) and is fully functional in a popular open-source clinical NLP system, cTAKES (clinical Text Analysis and Knowledge Extraction System) versions 2.0 and later. Conclusions We have created a type system that targets deep semantics, thereby allowing for NLP systems to encapsulate knowledge from text and share it alongside heterogenous clinical data sources. Rather than surface semantics that are typically the end product of NLP algorithms, CEM-based semantics explicitly build in deep clinical semantics as the point of interoperability with more structured data types. PMID:23286462

  6. Readability of the Written Study Information in Pediatric Research in France

    PubMed Central

    Ménoni, Véronique; Lucas, Noël; Leforestier, Jean-François; Doz, François; Chatellier, Gilles; Jacqz-Aigain, Evelyne; Giraud, Carole; Tréluyer, Jean-Marc; Chappuy, Hélène

    2011-01-01

    Background The aim was to evaluate the readability of research information leaflets (RIL) for minors asked to participate in biomedical research studies and to assess the factors influencing this readability. Methods and Findings All the pediatric protocols from three French pediatric clinical research units were included (N = 104). Three criteria were used to evaluate readability: length of the text, Flesch's readability score and presence of illustrations. We compared the readability of RIL to texts specifically written for children (school textbooks, school exams or extracts from literary works). We assessed the effect of protocol characteristics on readability. The RIL had a median length of 608 words [350 words, 25th percentile; 1005 words, 75th percentile], corresponding to two pages. The readability of the RIL, with a median Flesch score of 40 [30; 47], was much poorer than that of pediatric reference texts, with a Flesch score of 67 [60; 73]. A small proportion of RIL (13/91; 14%) were illustrated. The RIL were longer (p<0.001), more readable (p<0.001) and more likely to be illustrated (p<0.009) for industrial than for institutional sponsors. Conclusion Researchers should routinely compute the reading ease of study information sheets and make greater efforts to improve the readability of written documents for potential participants. PMID:21494689

  7. Extracting similar terms from multiple EMR-based semantic embeddings to support chart reviews.

    PubMed

    Cheng Ye, M S; Fabbri, Daniel

    2018-05-21

    Word embeddings project semantically similar terms into nearby points in a vector space. When trained on clinical text, these embeddings can be leveraged to improve keyword search and text highlighting. In this paper, we present methods to refine the selection process of similar terms from multiple EMR-based word embeddings, and evaluate their performance quantitatively and qualitatively across multiple chart review tasks. Word embeddings were trained on each clinical note type in an EMR. These embeddings were then combined, weighted, and truncated to select a refined set of similar terms to be used in keyword search and text highlighting. To evaluate their quality, we measured the similar terms' information retrieval (IR) performance using precision-at-K (P@5, P@10). Additionally a user study evaluated users' search term preferences, while a timing study measured the time to answer a question from a clinical chart. The refined terms outperformed the baseline method's information retrieval performance (e.g., increasing the average P@5 from 0.48 to 0.60). Additionally, the refined terms were preferred by most users, and reduced the average time to answer a question. Clinical information can be more quickly retrieved and synthesized when using semantically similar term from multiple embeddings. Copyright © 2018. Published by Elsevier Inc.

  8. A common type system for clinical natural language processing.

    PubMed

    Wu, Stephen T; Kaggal, Vinod C; Dligach, Dmitriy; Masanz, James J; Chen, Pei; Becker, Lee; Chapman, Wendy W; Savova, Guergana K; Liu, Hongfang; Chute, Christopher G

    2013-01-03

    One challenge in reusing clinical data stored in electronic medical records is that these data are heterogenous. Clinical Natural Language Processing (NLP) plays an important role in transforming information in clinical text to a standard representation that is comparable and interoperable. Information may be processed and shared when a type system specifies the allowable data structures. Therefore, we aim to define a common type system for clinical NLP that enables interoperability between structured and unstructured data generated in different clinical settings. We describe a common type system for clinical NLP that has an end target of deep semantics based on Clinical Element Models (CEMs), thus interoperating with structured data and accommodating diverse NLP approaches. The type system has been implemented in UIMA (Unstructured Information Management Architecture) and is fully functional in a popular open-source clinical NLP system, cTAKES (clinical Text Analysis and Knowledge Extraction System) versions 2.0 and later. We have created a type system that targets deep semantics, thereby allowing for NLP systems to encapsulate knowledge from text and share it alongside heterogenous clinical data sources. Rather than surface semantics that are typically the end product of NLP algorithms, CEM-based semantics explicitly build in deep clinical semantics as the point of interoperability with more structured data types.

  9. Extraction of events and rules of land use/cover change from the policy text

    NASA Astrophysics Data System (ADS)

    Lin, Guangfa; Xia, Beicheng; Huang, Wangli; Jiang, Huixian; Chen, Youfei

    2007-06-01

    The database of recording the snapshots of land parcels history is the foundation for the most of the models on simulating land use/cover change (LUCC) process. But the sequences of temporal snapshots are not sufficient to deduce and describe the mechanism of LUCC process. The temporal relationship between scenarios of LUCC we recorded could not be transfer into causal relationship categorically, which was regarded as a key factor in spatial-temporal reasoning. The proprietor of land parcels adapted themselves to the policies from governments and the change of production market, and then made decisions in this or that way. The occurrence of each change of a land parcel in an urban area was often related with one or more decision texts when it was investigated on the local scale with high resolution of the background scene. These decision texts may come from different sections of a hierarchical government system on different levels, such as villages or communities, towns or counties, cities, provinces or even the paramount. All these texts were balance results between advantages and disadvantages of different interest groups. They are the essential forces of LUCC in human dimension. Up to now, a methodology is still wanted for on how to express these forces in a simulation system using GIS as a language. The presented paper was part of our initial research on this topic. The term "Event" is a very important concept in the frame of "Object-Oriented" theory in computer science. While in the domain of temporal GIS, the concept of event was developed in another category. The definitions of the event and their transformation relationship were discussed in this paper on three modeling levels as real world level, conceptual level and programming level. In this context, with a case study of LUCC in recent 30 years in Xiamen city of Fujian province, P. R. China, the paper focused on how to extract information of events and rules from the policy files collected and integrate the information into the LUCC temporal database. The paper concluded by listing the main steps of how to extract events and rules from files and build an event database, and indicating directions for future work about how to develop a spatial-temporal reasoning system on the event-oriented LUCC database.

  10. Dependency-based long short term memory network for drug-drug interaction extraction.

    PubMed

    Wang, Wei; Yang, Xi; Yang, Canqun; Guo, Xiaowei; Zhang, Xiang; Wu, Chengkun

    2017-12-28

    Drug-drug interaction extraction (DDI) needs assistance from automated methods to address the explosively increasing biomedical texts. In recent years, deep neural network based models have been developed to address such needs and they have made significant progress in relation identification. We propose a dependency-based deep neural network model for DDI extraction. By introducing the dependency-based technique to a bi-directional long short term memory network (Bi-LSTM), we build three channels, namely, Linear channel, DFS channel and BFS channel. All of these channels are constructed with three network layers, including embedding layer, LSTM layer and max pooling layer from bottom up. In the embedding layer, we extract two types of features, one is distance-based feature and another is dependency-based feature. In the LSTM layer, a Bi-LSTM is instituted in each channel to better capture relation information. Then max pooling is used to get optimal features from the entire encoding sequential data. At last, we concatenate the outputs of all channels and then link it to the softmax layer for relation identification. To the best of our knowledge, our model achieves new state-of-the-art performance with the F-score of 72.0% on the DDIExtraction 2013 corpus. Moreover, our approach obtains much higher Recall value compared to the existing methods. The dependency-based Bi-LSTM model can learn effective relation information with less feature engineering in the task of DDI extraction. Besides, the experimental results show that our model excels at balancing the Precision and Recall values.

  11. Analyzing privacy requirements: A case study of healthcare in Saudi Arabia.

    PubMed

    Ebad, Shouki A; Jaha, Emad S; Al-Qadhi, Mohammed A

    2016-01-01

    Developing legally compliant systems is a challenging software engineering problem, especially in systems that are governed by law, such as healthcare information systems. This challenge comes from the ambiguities and domain-specific definitions that are found in governmental rules. Therefore, there is a significant business need to automatically analyze privacy texts, extract rules and subsequently enforce them throughout the supply chain. The existing works that analyze health regulations use the U.S. Health Insurance Portability and Accountability Act as a case study. In this article, we applied the Breaux and Antón approach to the text of the Saudi Arabian healthcare privacy regulations; in Saudi Arabia, privacy is among the top dilemmas for public and private healthcare practitioners. As a result, we extracted and analyzed 2 rights, 4 obligations, 22 constraints, and 6 rules. Our analysis can assist requirements engineers, standards organizations, compliance officers and stakeholders by ensuring that their systems conform to Saudi policy. In addition, this article discusses the threats to the study validity and suggests open problems for future research.

  12. What Makes a Matrix so Effective? An Empirical Test of the Relative Benefits of Signaling, Extraction, and Localization

    ERIC Educational Resources Information Center

    Kauffman, Douglas F.; Kiewra, Kenneth A.

    2010-01-01

    What type of display helps students learn the most and why? This study investigated how displays differing in terms of signaling, extraction, and localization impact learning. In Experiment 1, 72 students were assigned randomly to one cell of a 4 x 2 design. Students studied a standard text, a text with key ideas extracted, an outline that…

  13. Data mart construction based on semantic annotation of scientific articles: A case study for the prioritization of drug targets.

    PubMed

    Teixeira, Marlon Amaro Coelho; Belloze, Kele Teixeira; Cavalcanti, Maria Cláudia; Silva-Junior, Floriano P

    2018-04-01

    Semantic text annotation enables the association of semantic information (ontology concepts) to text expressions (terms), which are readable by software agents. In the scientific scenario, this is particularly useful because it reveals a lot of scientific discoveries that are hidden within academic articles. The Biomedical area has more than 300 ontologies, most of them composed of over 500 concepts. These ontologies can be used to annotate scientific papers and thus, facilitate data extraction. However, in the context of a scientific research, a simple keyword-based query using the interface of a digital scientific texts library can return more than a thousand hits. The analysis of such a large set of texts, annotated with such numerous and large ontologies, is not an easy task. Therefore, the main objective of this work is to provide a method that could facilitate this task. This work describes a method called Text and Ontology ETL (TOETL), to build an analytical view over such texts. First, a corpus of selected papers is semantically annotated using distinct ontologies. Then, the annotation data is extracted, organized and aggregated into the dimensional schema of a data mart. Besides the TOETL method, this work illustrates its application through the development of the TaP DM (Target Prioritization data mart). This data mart has focus on the research of gene essentiality, a key concept to be considered when searching for genes showing potential as anti-infective drug targets. This work reveals that the proposed approach is a relevant tool to support decision making in the prioritization of new drug targets, being more efficient than the keyword-based traditional tools. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Solutions for Coding Societal Events

    DTIC Science & Technology

    2016-12-01

    develop a prototype system for civil unrest event extraction, and (3) engineer BBN ACCENT (ACCurate Events from Natural Text ) to support broad use by...56 iv List of Tables Table 1: Features in similarity metric. Abbreviations are as follows. TG: text graph...extraction of a stream of events (e.g. protests, attacks, etc.) from unstructured text (e.g. news, social media). This technical report presents results

  15. [Application of regular expression in extracting key information from Chinese medicine literatures about re-evaluation of post-marketing surveillance].

    PubMed

    Wang, Zhifei; Xie, Yanming; Wang, Yongyan

    2011-10-01

    Computerizing extracting information from Chinese medicine literature seems more convenient than hand searching, which could simplify searching process and improve the accuracy. However, many computerized auto-extracting methods are increasingly used, regular expression is so special that could be efficient for extracting useful information in research. This article focused on regular expression applying in extracting information from Chinese medicine literature. Two practical examples were reported in this article about regular expression to extract "case number (non-terminology)" and "efficacy rate (subgroups for related information identification)", which explored how to extract information in Chinese medicine literature by means of some special research method.

  16. Rating prediction using textual reviews

    NASA Astrophysics Data System (ADS)

    NithyaKalyani, A.; Ushasukhanya, S.; Nagamalleswari, TYJ; Girija, S.

    2018-04-01

    Information today is present in the form of opinions. Two & a half quintillion bytes are exchanged today in Internet everyday and a large amount consists of people’s speculation and reflection over an issue. It is the need of the hour to be able to mine this information that is presented to us. Sentimental analysis refers to mining of this raw information to make sense. The discipline of opinion mining has seen a lot of encouragement in the past few years augmented by involvement of social media like Instagram, Facebook, and twitter. The hidden message in this web of information is useful in several fields such as marketing, political polls, product review, forecast market movement, Identifying detractor and promoter. In this endeavor, we introduced sentiment rating system for a particular text or paragraph to determine the opinions polarity. Firstly we resolve the searching problem, tokenization, classification, and reliable content identification. Secondly we extract probability for given text or paragraph for both positive & negative sentiment value using naive bayes classifier. At last we use sentiment dictionary (SD), sentiment degree dictionary (SDD) and negation dictionary (ND) for more accuracy. Later we blend all above mentioned factor into given formula to find the rating for the review.

  17. Integrating text mining into the MGI biocuration workflow

    PubMed Central

    Dowell, K.G.; McAndrews-Hill, M.S.; Hill, D.P.; Drabkin, H.J.; Blake, J.A.

    2009-01-01

    A major challenge for functional and comparative genomics resource development is the extraction of data from the biomedical literature. Although text mining for biological data is an active research field, few applications have been integrated into production literature curation systems such as those of the model organism databases (MODs). Not only are most available biological natural language (bioNLP) and information retrieval and extraction solutions difficult to adapt to existing MOD curation workflows, but many also have high error rates or are unable to process documents available in those formats preferred by scientific journals. In September 2008, Mouse Genome Informatics (MGI) at The Jackson Laboratory initiated a search for dictionary-based text mining tools that we could integrate into our biocuration workflow. MGI has rigorous document triage and annotation procedures designed to identify appropriate articles about mouse genetics and genome biology. We currently screen ∼1000 journal articles a month for Gene Ontology terms, gene mapping, gene expression, phenotype data and other key biological information. Although we do not foresee that curation tasks will ever be fully automated, we are eager to implement named entity recognition (NER) tools for gene tagging that can help streamline our curation workflow and simplify gene indexing tasks within the MGI system. Gene indexing is an MGI-specific curation function that involves identifying which mouse genes are being studied in an article, then associating the appropriate gene symbols with the article reference number in the MGI database. Here, we discuss our search process, performance metrics and success criteria, and how we identified a short list of potential text mining tools for further evaluation. We provide an overview of our pilot projects with NCBO's Open Biomedical Annotator and Fraunhofer SCAI's ProMiner. In doing so, we prove the potential for the further incorporation of semi-automated processes into the curation of the biomedical literature. PMID:20157492

  18. Integrating text mining into the MGI biocuration workflow.

    PubMed

    Dowell, K G; McAndrews-Hill, M S; Hill, D P; Drabkin, H J; Blake, J A

    2009-01-01

    A major challenge for functional and comparative genomics resource development is the extraction of data from the biomedical literature. Although text mining for biological data is an active research field, few applications have been integrated into production literature curation systems such as those of the model organism databases (MODs). Not only are most available biological natural language (bioNLP) and information retrieval and extraction solutions difficult to adapt to existing MOD curation workflows, but many also have high error rates or are unable to process documents available in those formats preferred by scientific journals.In September 2008, Mouse Genome Informatics (MGI) at The Jackson Laboratory initiated a search for dictionary-based text mining tools that we could integrate into our biocuration workflow. MGI has rigorous document triage and annotation procedures designed to identify appropriate articles about mouse genetics and genome biology. We currently screen approximately 1000 journal articles a month for Gene Ontology terms, gene mapping, gene expression, phenotype data and other key biological information. Although we do not foresee that curation tasks will ever be fully automated, we are eager to implement named entity recognition (NER) tools for gene tagging that can help streamline our curation workflow and simplify gene indexing tasks within the MGI system. Gene indexing is an MGI-specific curation function that involves identifying which mouse genes are being studied in an article, then associating the appropriate gene symbols with the article reference number in the MGI database.Here, we discuss our search process, performance metrics and success criteria, and how we identified a short list of potential text mining tools for further evaluation. We provide an overview of our pilot projects with NCBO's Open Biomedical Annotator and Fraunhofer SCAI's ProMiner. In doing so, we prove the potential for the further incorporation of semi-automated processes into the curation of the biomedical literature.

  19. The CHEMDNER corpus of chemicals and drugs and its annotation principles.

    PubMed

    Krallinger, Martin; Rabal, Obdulia; Leitner, Florian; Vazquez, Miguel; Salgado, David; Lu, Zhiyong; Leaman, Robert; Lu, Yanan; Ji, Donghong; Lowe, Daniel M; Sayle, Roger A; Batista-Navarro, Riza Theresa; Rak, Rafal; Huber, Torsten; Rocktäschel, Tim; Matos, Sérgio; Campos, David; Tang, Buzhou; Xu, Hua; Munkhdalai, Tsendsuren; Ryu, Keun Ho; Ramanan, S V; Nathan, Senthil; Žitnik, Slavko; Bajec, Marko; Weber, Lutz; Irmer, Matthias; Akhondi, Saber A; Kors, Jan A; Xu, Shuo; An, Xin; Sikdar, Utpal Kumar; Ekbal, Asif; Yoshioka, Masaharu; Dieb, Thaer M; Choi, Miji; Verspoor, Karin; Khabsa, Madian; Giles, C Lee; Liu, Hongfang; Ravikumar, Komandur Elayavilli; Lamurias, Andre; Couto, Francisco M; Dai, Hong-Jie; Tsai, Richard Tzong-Han; Ata, Caglar; Can, Tolga; Usié, Anabel; Alves, Rui; Segura-Bedmar, Isabel; Martínez, Paloma; Oyarzabal, Julen; Valencia, Alfonso

    2015-01-01

    The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large, manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison of different approaches that detect chemicals in documents. We present the CHEMDNER corpus, a collection of 10,000 PubMed abstracts that contain a total of 84,355 chemical entity mentions labeled manually by expert chemistry literature curators, following annotation guidelines specifically defined for this task. The abstracts of the CHEMDNER corpus were selected to be representative for all major chemical disciplines. Each of the chemical entity mentions was manually labeled according to its structure-associated chemical entity mention (SACEM) class: abbreviation, family, formula, identifier, multiple, systematic and trivial. The difficulty and consistency of tagging chemicals in text was measured using an agreement study between annotators, obtaining a percentage agreement of 91. For a subset of the CHEMDNER corpus (the test set of 3,000 abstracts) we provide not only the Gold Standard manual annotations, but also mentions automatically detected by the 26 teams that participated in the BioCreative IV CHEMDNER chemical mention recognition task. In addition, we release the CHEMDNER silver standard corpus of automatically extracted mentions from 17,000 randomly selected PubMed abstracts. A version of the CHEMDNER corpus in the BioC format has been generated as well. We propose a standard for required minimum information about entity annotations for the construction of domain specific corpora on chemical and drug entities. The CHEMDNER corpus and annotation guidelines are available at: http://www.biocreative.org/resources/biocreative-iv/chemdner-corpus/.

  20. ContextD: an algorithm to identify contextual properties of medical terms in a Dutch clinical corpus.

    PubMed

    Afzal, Zubair; Pons, Ewoud; Kang, Ning; Sturkenboom, Miriam C J M; Schuemie, Martijn J; Kors, Jan A

    2014-11-29

    In order to extract meaningful information from electronic medical records, such as signs and symptoms, diagnoses, and treatments, it is important to take into account the contextual properties of the identified information: negation, temporality, and experiencer. Most work on automatic identification of these contextual properties has been done on English clinical text. This study presents ContextD, an adaptation of the English ConText algorithm to the Dutch language, and a Dutch clinical corpus. We created a Dutch clinical corpus containing four types of anonymized clinical documents: entries from general practitioners, specialists' letters, radiology reports, and discharge letters. Using a Dutch list of medical terms extracted from the Unified Medical Language System, we identified medical terms in the corpus with exact matching. The identified terms were annotated for negation, temporality, and experiencer properties. To adapt the ConText algorithm, we translated English trigger terms to Dutch and added several general and document specific enhancements, such as negation rules for general practitioners' entries and a regular expression based temporality module. The ContextD algorithm utilized 41 unique triggers to identify the contextual properties in the clinical corpus. For the negation property, the algorithm obtained an F-score from 87% to 93% for the different document types. For the experiencer property, the F-score was 99% to 100%. For the historical and hypothetical values of the temporality property, F-scores ranged from 26% to 54% and from 13% to 44%, respectively. The ContextD showed good performance in identifying negation and experiencer property values across all Dutch clinical document types. Accurate identification of the temporality property proved to be difficult and requires further work. The anonymized and annotated Dutch clinical corpus can serve as a useful resource for further algorithm development.

Top