Sample records for text mining system

  1. Pressing needs of biomedical text mining in biocuration and beyond: opportunities and challenges

    PubMed Central

    Singhal, Ayush; Leaman, Robert; Catlett, Natalie; Lemberger, Thomas; McEntyre, Johanna; Polson, Shawn; Xenarios, Ioannis; Arighi, Cecilia; Lu, Zhiyong

    2016-01-01

    Text mining in the biomedical sciences is rapidly transitioning from small-scale evaluation to large-scale application. In this article, we argue that text-mining technologies have become essential tools in real-world biomedical research. We describe four large scale applications of text mining, as showcased during a recent panel discussion at the BioCreative V Challenge Workshop. We draw on these applications as case studies to characterize common requirements for successfully applying text-mining techniques to practical biocuration needs. We note that system ‘accuracy’ remains a challenge and identify several additional common difficulties and potential research directions including (i) the ‘scalability’ issue due to the increasing need of mining information from millions of full-text articles, (ii) the ‘interoperability’ issue of integrating various text-mining systems into existing curation workflows and (iii) the ‘reusability’ issue on the difficulty of applying trained systems to text genres that are not seen previously during development. We then describe related efforts within the text-mining community, with a special focus on the BioCreative series of challenge workshops. We believe that focusing on the near-term challenges identified in this work will amplify the opportunities afforded by the continued adoption of text-mining tools. Finally, in order to sustain the curation ecosystem and have text-mining systems adopted for practical benefits, we call for increased collaboration between text-mining researchers and various stakeholders, including researchers, publishers and biocurators. PMID:28025348

  2. Pressing needs of biomedical text mining in biocuration and beyond: opportunities and challenges

    DOE PAGES

    Singhal, Ayush; Leaman, Robert; Catlett, Natalie; ...

    2016-12-26

    Text mining in the biomedical sciences is rapidly transitioning from small-scale evaluation to large-scale application. In this article, we argue that text-mining technologies have become essential tools in real-world biomedical research. We describe four large scale applications of text mining, as showcased during a recent panel discussion at the BioCreative V Challenge Workshop. We draw on these applications as case studies to characterize common requirements for successfully applying text-mining techniques to practical biocuration needs. We note that system ‘accuracy’ remains a challenge and identify several additional common difficulties and potential research directions including (i) the ‘scalability’ issue due to themore » increasing need of mining information from millions of full-text articles, (ii) the ‘interoperability’ issue of integrating various text-mining systems into existing curation workflows and (iii) the ‘reusability’ issue on the difficulty of applying trained systems to text genres that are not seen previously during development. We then describe related efforts within the text-mining community, with a special focus on the BioCreative series of challenge workshops. We believe that focusing on the near-term challenges identified in this work will amplify the opportunities afforded by the continued adoption of text-mining tools. In conclusion, in order to sustain the curation ecosystem and have text-mining systems adopted for practical benefits, we call for increased collaboration between text-mining researchers and various stakeholders, including researchers, publishers and biocurators.« less

  3. Pressing needs of biomedical text mining in biocuration and beyond: opportunities and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singhal, Ayush; Leaman, Robert; Catlett, Natalie

    Text mining in the biomedical sciences is rapidly transitioning from small-scale evaluation to large-scale application. In this article, we argue that text-mining technologies have become essential tools in real-world biomedical research. We describe four large scale applications of text mining, as showcased during a recent panel discussion at the BioCreative V Challenge Workshop. We draw on these applications as case studies to characterize common requirements for successfully applying text-mining techniques to practical biocuration needs. We note that system ‘accuracy’ remains a challenge and identify several additional common difficulties and potential research directions including (i) the ‘scalability’ issue due to themore » increasing need of mining information from millions of full-text articles, (ii) the ‘interoperability’ issue of integrating various text-mining systems into existing curation workflows and (iii) the ‘reusability’ issue on the difficulty of applying trained systems to text genres that are not seen previously during development. We then describe related efforts within the text-mining community, with a special focus on the BioCreative series of challenge workshops. We believe that focusing on the near-term challenges identified in this work will amplify the opportunities afforded by the continued adoption of text-mining tools. In conclusion, in order to sustain the curation ecosystem and have text-mining systems adopted for practical benefits, we call for increased collaboration between text-mining researchers and various stakeholders, including researchers, publishers and biocurators.« less

  4. Biomedical text mining and its applications in cancer research.

    PubMed

    Zhu, Fei; Patumcharoenpol, Preecha; Zhang, Cheng; Yang, Yang; Chan, Jonathan; Meechai, Asawin; Vongsangnak, Wanwipa; Shen, Bairong

    2013-04-01

    Cancer is a malignant disease that has caused millions of human deaths. Its study has a long history of well over 100years. There have been an enormous number of publications on cancer research. This integrated but unstructured biomedical text is of great value for cancer diagnostics, treatment, and prevention. The immense body and rapid growth of biomedical text on cancer has led to the appearance of a large number of text mining techniques aimed at extracting novel knowledge from scientific text. Biomedical text mining on cancer research is computationally automatic and high-throughput in nature. However, it is error-prone due to the complexity of natural language processing. In this review, we introduce the basic concepts underlying text mining and examine some frequently used algorithms, tools, and data sets, as well as assessing how much these algorithms have been utilized. We then discuss the current state-of-the-art text mining applications in cancer research and we also provide some resources for cancer text mining. With the development of systems biology, researchers tend to understand complex biomedical systems from a systems biology viewpoint. Thus, the full utilization of text mining to facilitate cancer systems biology research is fast becoming a major concern. To address this issue, we describe the general workflow of text mining in cancer systems biology and each phase of the workflow. We hope that this review can (i) provide a useful overview of the current work of this field; (ii) help researchers to choose text mining tools and datasets; and (iii) highlight how to apply text mining to assist cancer systems biology research. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Pressing needs of biomedical text mining in biocuration and beyond: opportunities and challenges.

    PubMed

    Singhal, Ayush; Leaman, Robert; Catlett, Natalie; Lemberger, Thomas; McEntyre, Johanna; Polson, Shawn; Xenarios, Ioannis; Arighi, Cecilia; Lu, Zhiyong

    2016-01-01

    Text mining in the biomedical sciences is rapidly transitioning from small-scale evaluation to large-scale application. In this article, we argue that text-mining technologies have become essential tools in real-world biomedical research. We describe four large scale applications of text mining, as showcased during a recent panel discussion at the BioCreative V Challenge Workshop. We draw on these applications as case studies to characterize common requirements for successfully applying text-mining techniques to practical biocuration needs. We note that system 'accuracy' remains a challenge and identify several additional common difficulties and potential research directions including (i) the 'scalability' issue due to the increasing need of mining information from millions of full-text articles, (ii) the 'interoperability' issue of integrating various text-mining systems into existing curation workflows and (iii) the 'reusability' issue on the difficulty of applying trained systems to text genres that are not seen previously during development. We then describe related efforts within the text-mining community, with a special focus on the BioCreative series of challenge workshops. We believe that focusing on the near-term challenges identified in this work will amplify the opportunities afforded by the continued adoption of text-mining tools. Finally, in order to sustain the curation ecosystem and have text-mining systems adopted for practical benefits, we call for increased collaboration between text-mining researchers and various stakeholders, including researchers, publishers and biocurators. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  6. Text mining meets workflow: linking U-Compare with Taverna

    PubMed Central

    Kano, Yoshinobu; Dobson, Paul; Nakanishi, Mio; Tsujii, Jun'ichi; Ananiadou, Sophia

    2010-01-01

    Summary: Text mining from the biomedical literature is of increasing importance, yet it is not easy for the bioinformatics community to create and run text mining workflows due to the lack of accessibility and interoperability of the text mining resources. The U-Compare system provides a wide range of bio text mining resources in a highly interoperable workflow environment where workflows can very easily be created, executed, evaluated and visualized without coding. We have linked U-Compare to Taverna, a generic workflow system, to expose text mining functionality to the bioinformatics community. Availability: http://u-compare.org/taverna.html, http://u-compare.org Contact: kano@is.s.u-tokyo.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20709690

  7. Managing biological networks by using text mining and computer-aided curation

    NASA Astrophysics Data System (ADS)

    Yu, Seok Jong; Cho, Yongseong; Lee, Min-Ho; Lim, Jongtae; Yoo, Jaesoo

    2015-11-01

    In order to understand a biological mechanism in a cell, a researcher should collect a huge number of protein interactions with experimental data from experiments and the literature. Text mining systems that extract biological interactions from papers have been used to construct biological networks for a few decades. Even though the text mining of literature is necessary to construct a biological network, few systems with a text mining tool are available for biologists who want to construct their own biological networks. We have developed a biological network construction system called BioKnowledge Viewer that can generate a biological interaction network by using a text mining tool and biological taggers. It also Boolean simulation software to provide a biological modeling system to simulate the model that is made with the text mining tool. A user can download PubMed articles and construct a biological network by using the Multi-level Knowledge Emergence Model (KMEM), MetaMap, and A Biomedical Named Entity Recognizer (ABNER) as a text mining tool. To evaluate the system, we constructed an aging-related biological network that consist 9,415 nodes (genes) by using manual curation. With network analysis, we found that several genes, including JNK, AP-1, and BCL-2, were highly related in aging biological network. We provide a semi-automatic curation environment so that users can obtain a graph database for managing text mining results that are generated in the server system and can navigate the network with BioKnowledge Viewer, which is freely available at http://bioknowledgeviewer.kisti.re.kr.

  8. Text Mining in Biomedical Domain with Emphasis on Document Clustering.

    PubMed

    Renganathan, Vinaitheerthan

    2017-07-01

    With the exponential increase in the number of articles published every year in the biomedical domain, there is a need to build automated systems to extract unknown information from the articles published. Text mining techniques enable the extraction of unknown knowledge from unstructured documents. This paper reviews text mining processes in detail and the software tools available to carry out text mining. It also reviews the roles and applications of text mining in the biomedical domain. Text mining processes, such as search and retrieval of documents, pre-processing of documents, natural language processing, methods for text clustering, and methods for text classification are described in detail. Text mining techniques can facilitate the mining of vast amounts of knowledge on a given topic from published biomedical research articles and draw meaningful conclusions that are not possible otherwise.

  9. Text Mining in Biomedical Domain with Emphasis on Document Clustering

    PubMed Central

    2017-01-01

    Objectives With the exponential increase in the number of articles published every year in the biomedical domain, there is a need to build automated systems to extract unknown information from the articles published. Text mining techniques enable the extraction of unknown knowledge from unstructured documents. Methods This paper reviews text mining processes in detail and the software tools available to carry out text mining. It also reviews the roles and applications of text mining in the biomedical domain. Results Text mining processes, such as search and retrieval of documents, pre-processing of documents, natural language processing, methods for text clustering, and methods for text classification are described in detail. Conclusions Text mining techniques can facilitate the mining of vast amounts of knowledge on a given topic from published biomedical research articles and draw meaningful conclusions that are not possible otherwise. PMID:28875048

  10. Evaluating a Bilingual Text-Mining System with a Taxonomy of Key Words and Hierarchical Visualization for Understanding Learner-Generated Text

    ERIC Educational Resources Information Center

    Kong, Siu Cheung; Li, Ping; Song, Yanjie

    2018-01-01

    This study evaluated a bilingual text-mining system, which incorporated a bilingual taxonomy of key words and provided hierarchical visualization, for understanding learner-generated text in the learning management systems through automatic identification and counting of matching key words. A class of 27 in-service teachers studied a course…

  11. Working with Data: Discovering Knowledge through Mining and Analysis; Systematic Knowledge Management and Knowledge Discovery; Text Mining; Methodological Approach in Discovering User Search Patterns through Web Log Analysis; Knowledge Discovery in Databases Using Formal Concept Analysis; Knowledge Discovery with a Little Perspective.

    ERIC Educational Resources Information Center

    Qin, Jian; Jurisica, Igor; Liddy, Elizabeth D.; Jansen, Bernard J; Spink, Amanda; Priss, Uta; Norton, Melanie J.

    2000-01-01

    These six articles discuss knowledge discovery in databases (KDD). Topics include data mining; knowledge management systems; applications of knowledge discovery; text and Web mining; text mining and information retrieval; user search patterns through Web log analysis; concept analysis; data collection; and data structure inconsistency. (LRW)

  12. Vaccine adverse event text mining system for extracting features from vaccine safety reports.

    PubMed

    Botsis, Taxiarchis; Buttolph, Thomas; Nguyen, Michael D; Winiecki, Scott; Woo, Emily Jane; Ball, Robert

    2012-01-01

    To develop and evaluate a text mining system for extracting key clinical features from vaccine adverse event reporting system (VAERS) narratives to aid in the automated review of adverse event reports. Based upon clinical significance to VAERS reviewing physicians, we defined the primary (diagnosis and cause of death) and secondary features (eg, symptoms) for extraction. We built a novel vaccine adverse event text mining (VaeTM) system based on a semantic text mining strategy. The performance of VaeTM was evaluated using a total of 300 VAERS reports in three sequential evaluations of 100 reports each. Moreover, we evaluated the VaeTM contribution to case classification; an information retrieval-based approach was used for the identification of anaphylaxis cases in a set of reports and was compared with two other methods: a dedicated text classifier and an online tool. The performance metrics of VaeTM were text mining metrics: recall, precision and F-measure. We also conducted a qualitative difference analysis and calculated sensitivity and specificity for classification of anaphylaxis cases based on the above three approaches. VaeTM performed best in extracting diagnosis, second level diagnosis, drug, vaccine, and lot number features (lenient F-measure in the third evaluation: 0.897, 0.817, 0.858, 0.874, and 0.914, respectively). In terms of case classification, high sensitivity was achieved (83.1%); this was equal and better compared to the text classifier (83.1%) and the online tool (40.7%), respectively. Our VaeTM implementation of a semantic text mining strategy shows promise in providing accurate and efficient extraction of key features from VAERS narratives.

  13. Text mining and its potential applications in systems biology.

    PubMed

    Ananiadou, Sophia; Kell, Douglas B; Tsujii, Jun-ichi

    2006-12-01

    With biomedical literature increasing at a rate of several thousand papers per week, it is impossible to keep abreast of all developments; therefore, automated means to manage the information overload are required. Text mining techniques, which involve the processes of information retrieval, information extraction and data mining, provide a means of solving this. By adding meaning to text, these techniques produce a more structured analysis of textual knowledge than simple word searches, and can provide powerful tools for the production and analysis of systems biology models.

  14. Extracting semantically enriched events from biomedical literature

    PubMed Central

    2012-01-01

    Background Research into event-based text mining from the biomedical literature has been growing in popularity to facilitate the development of advanced biomedical text mining systems. Such technology permits advanced search, which goes beyond document or sentence-based retrieval. However, existing event-based systems typically ignore additional information within the textual context of events that can determine, amongst other things, whether an event represents a fact, hypothesis, experimental result or analysis of results, whether it describes new or previously reported knowledge, and whether it is speculated or negated. We refer to such contextual information as meta-knowledge. The automatic recognition of such information can permit the training of systems allowing finer-grained searching of events according to the meta-knowledge that is associated with them. Results Based on a corpus of 1,000 MEDLINE abstracts, fully manually annotated with both events and associated meta-knowledge, we have constructed a machine learning-based system that automatically assigns meta-knowledge information to events. This system has been integrated into EventMine, a state-of-the-art event extraction system, in order to create a more advanced system (EventMine-MK) that not only extracts events from text automatically, but also assigns five different types of meta-knowledge to these events. The meta-knowledge assignment module of EventMine-MK performs with macro-averaged F-scores in the range of 57-87% on the BioNLP’09 Shared Task corpus. EventMine-MK has been evaluated on the BioNLP’09 Shared Task subtask of detecting negated and speculated events. Our results show that EventMine-MK can outperform other state-of-the-art systems that participated in this task. Conclusions We have constructed the first practical system that extracts both events and associated, detailed meta-knowledge information from biomedical literature. The automatically assigned meta-knowledge information can be used to refine search systems, in order to provide an extra search layer beyond entities and assertions, dealing with phenomena such as rhetorical intent, speculations, contradictions and negations. This finer grained search functionality can assist in several important tasks, e.g., database curation (by locating new experimental knowledge) and pathway enrichment (by providing information for inference). To allow easy integration into text mining systems, EventMine-MK is provided as a UIMA component that can be used in the interoperable text mining infrastructure, U-Compare. PMID:22621266

  15. Extracting semantically enriched events from biomedical literature.

    PubMed

    Miwa, Makoto; Thompson, Paul; McNaught, John; Kell, Douglas B; Ananiadou, Sophia

    2012-05-23

    Research into event-based text mining from the biomedical literature has been growing in popularity to facilitate the development of advanced biomedical text mining systems. Such technology permits advanced search, which goes beyond document or sentence-based retrieval. However, existing event-based systems typically ignore additional information within the textual context of events that can determine, amongst other things, whether an event represents a fact, hypothesis, experimental result or analysis of results, whether it describes new or previously reported knowledge, and whether it is speculated or negated. We refer to such contextual information as meta-knowledge. The automatic recognition of such information can permit the training of systems allowing finer-grained searching of events according to the meta-knowledge that is associated with them. Based on a corpus of 1,000 MEDLINE abstracts, fully manually annotated with both events and associated meta-knowledge, we have constructed a machine learning-based system that automatically assigns meta-knowledge information to events. This system has been integrated into EventMine, a state-of-the-art event extraction system, in order to create a more advanced system (EventMine-MK) that not only extracts events from text automatically, but also assigns five different types of meta-knowledge to these events. The meta-knowledge assignment module of EventMine-MK performs with macro-averaged F-scores in the range of 57-87% on the BioNLP'09 Shared Task corpus. EventMine-MK has been evaluated on the BioNLP'09 Shared Task subtask of detecting negated and speculated events. Our results show that EventMine-MK can outperform other state-of-the-art systems that participated in this task. We have constructed the first practical system that extracts both events and associated, detailed meta-knowledge information from biomedical literature. The automatically assigned meta-knowledge information can be used to refine search systems, in order to provide an extra search layer beyond entities and assertions, dealing with phenomena such as rhetorical intent, speculations, contradictions and negations. This finer grained search functionality can assist in several important tasks, e.g., database curation (by locating new experimental knowledge) and pathway enrichment (by providing information for inference). To allow easy integration into text mining systems, EventMine-MK is provided as a UIMA component that can be used in the interoperable text mining infrastructure, U-Compare.

  16. Mining of Business-Oriented Conversations at a Call Center

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hironori; Nasukawa, Tetsuya; Watanabe, Hideo

    Recently it has become feasible to transcribe textual records from telephone conversations at call centers by using automatic speech recognition. In this research, we extended a text mining system for call summary records and constructed a conversation mining system for the business-oriented conversations at the call center. To acquire useful business insights from the conversational data through the text mining system, it is critical to identify appropriate textual segments and expressions as the viewpoints to focus on. In the analysis of call summary data using a text mining system, some experts defined the viewpoints for the analysis by looking at some sample records and by preparing the dictionaries based on frequent keywords in the sample dataset. However with conversations it is difficult to identify such viewpoints manually and in advance because the target data consists of complete transcripts that are often lengthy and redundant. In this research, we defined a model of the business-oriented conversations and proposed a mining method to identify segments that have impacts on the outcomes of the conversations and can then extract useful expressions in each of these identified segments. In the experiment, we processed the real datasets from a car rental service center and constructed a mining system. With this system, we show the effectiveness of the method based on the defined conversation model.

  17. Contextual Text Mining

    ERIC Educational Resources Information Center

    Mei, Qiaozhu

    2009-01-01

    With the dramatic growth of text information, there is an increasing need for powerful text mining systems that can automatically discover useful knowledge from text. Text is generally associated with all kinds of contextual information. Those contexts can be explicit, such as the time and the location where a blog article is written, and the…

  18. A comprehensive and quantitative comparison of text-mining in 15 million full-text articles versus their corresponding abstracts.

    PubMed

    Westergaard, David; Stærfeldt, Hans-Henrik; Tønsberg, Christian; Jensen, Lars Juhl; Brunak, Søren

    2018-02-01

    Across academia and industry, text mining has become a popular strategy for keeping up with the rapid growth of the scientific literature. Text mining of the scientific literature has mostly been carried out on collections of abstracts, due to their availability. Here we present an analysis of 15 million English scientific full-text articles published during the period 1823-2016. We describe the development in article length and publication sub-topics during these nearly 250 years. We showcase the potential of text mining by extracting published protein-protein, disease-gene, and protein subcellular associations using a named entity recognition system, and quantitatively report on their accuracy using gold standard benchmark data sets. We subsequently compare the findings to corresponding results obtained on 16.5 million abstracts included in MEDLINE and show that text mining of full-text articles consistently outperforms using abstracts only.

  19. A comprehensive and quantitative comparison of text-mining in 15 million full-text articles versus their corresponding abstracts

    PubMed Central

    Westergaard, David; Stærfeldt, Hans-Henrik

    2018-01-01

    Across academia and industry, text mining has become a popular strategy for keeping up with the rapid growth of the scientific literature. Text mining of the scientific literature has mostly been carried out on collections of abstracts, due to their availability. Here we present an analysis of 15 million English scientific full-text articles published during the period 1823–2016. We describe the development in article length and publication sub-topics during these nearly 250 years. We showcase the potential of text mining by extracting published protein–protein, disease–gene, and protein subcellular associations using a named entity recognition system, and quantitatively report on their accuracy using gold standard benchmark data sets. We subsequently compare the findings to corresponding results obtained on 16.5 million abstracts included in MEDLINE and show that text mining of full-text articles consistently outperforms using abstracts only. PMID:29447159

  20. Benchmarking infrastructure for mutation text mining

    PubMed Central

    2014-01-01

    Background Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. Results We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. Conclusion We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption. PMID:24568600

  1. Benchmarking infrastructure for mutation text mining.

    PubMed

    Klein, Artjom; Riazanov, Alexandre; Hindle, Matthew M; Baker, Christopher Jo

    2014-02-25

    Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption.

  2. The potential of text mining in data integration and network biology for plant research: a case study on Arabidopsis.

    PubMed

    Van Landeghem, Sofie; De Bodt, Stefanie; Drebert, Zuzanna J; Inzé, Dirk; Van de Peer, Yves

    2013-03-01

    Despite the availability of various data repositories for plant research, a wealth of information currently remains hidden within the biomolecular literature. Text mining provides the necessary means to retrieve these data through automated processing of texts. However, only recently has advanced text mining methodology been implemented with sufficient computational power to process texts at a large scale. In this study, we assess the potential of large-scale text mining for plant biology research in general and for network biology in particular using a state-of-the-art text mining system applied to all PubMed abstracts and PubMed Central full texts. We present extensive evaluation of the textual data for Arabidopsis thaliana, assessing the overall accuracy of this new resource for usage in plant network analyses. Furthermore, we combine text mining information with both protein-protein and regulatory interactions from experimental databases. Clusters of tightly connected genes are delineated from the resulting network, illustrating how such an integrative approach is essential to grasp the current knowledge available for Arabidopsis and to uncover gene information through guilt by association. All large-scale data sets, as well as the manually curated textual data, are made publicly available, hereby stimulating the application of text mining data in future plant biology studies.

  3. DISEASES: text mining and data integration of disease-gene associations.

    PubMed

    Pletscher-Frankild, Sune; Pallejà, Albert; Tsafou, Kalliopi; Binder, Janos X; Jensen, Lars Juhl

    2015-03-01

    Text mining is a flexible technology that can be applied to numerous different tasks in biology and medicine. We present a system for extracting disease-gene associations from biomedical abstracts. The system consists of a highly efficient dictionary-based tagger for named entity recognition of human genes and diseases, which we combine with a scoring scheme that takes into account co-occurrences both within and between sentences. We show that this approach is able to extract half of all manually curated associations with a false positive rate of only 0.16%. Nonetheless, text mining should not stand alone, but be combined with other types of evidence. For this reason, we have developed the DISEASES resource, which integrates the results from text mining with manually curated disease-gene associations, cancer mutation data, and genome-wide association studies from existing databases. The DISEASES resource is accessible through a web interface at http://diseases.jensenlab.org/, where the text-mining software and all associations are also freely available for download. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. An overview of the BioCreative 2012 Workshop Track III: interactive text mining task.

    PubMed

    Arighi, Cecilia N; Carterette, Ben; Cohen, K Bretonnel; Krallinger, Martin; Wilbur, W John; Fey, Petra; Dodson, Robert; Cooper, Laurel; Van Slyke, Ceri E; Dahdul, Wasila; Mabee, Paula; Li, Donghui; Harris, Bethany; Gillespie, Marc; Jimenez, Silvia; Roberts, Phoebe; Matthews, Lisa; Becker, Kevin; Drabkin, Harold; Bello, Susan; Licata, Luana; Chatr-aryamontri, Andrew; Schaeffer, Mary L; Park, Julie; Haendel, Melissa; Van Auken, Kimberly; Li, Yuling; Chan, Juancarlos; Muller, Hans-Michael; Cui, Hong; Balhoff, James P; Chi-Yang Wu, Johnny; Lu, Zhiyong; Wei, Chih-Hsuan; Tudor, Catalina O; Raja, Kalpana; Subramani, Suresh; Natarajan, Jeyakumar; Cejuela, Juan Miguel; Dubey, Pratibha; Wu, Cathy

    2013-01-01

    In many databases, biocuration primarily involves literature curation, which usually involves retrieving relevant articles, extracting information that will translate into annotations and identifying new incoming literature. As the volume of biological literature increases, the use of text mining to assist in biocuration becomes increasingly relevant. A number of groups have developed tools for text mining from a computer science/linguistics perspective, and there are many initiatives to curate some aspect of biology from the literature. Some biocuration efforts already make use of a text mining tool, but there have not been many broad-based systematic efforts to study which aspects of a text mining tool contribute to its usefulness for a curation task. Here, we report on an effort to bring together text mining tool developers and database biocurators to test the utility and usability of tools. Six text mining systems presenting diverse biocuration tasks participated in a formal evaluation, and appropriate biocurators were recruited for testing. The performance results from this evaluation indicate that some of the systems were able to improve efficiency of curation by speeding up the curation task significantly (∼1.7- to 2.5-fold) over manual curation. In addition, some of the systems were able to improve annotation accuracy when compared with the performance on the manually curated set. In terms of inter-annotator agreement, the factors that contributed to significant differences for some of the systems included the expertise of the biocurator on the given curation task, the inherent difficulty of the curation and attention to annotation guidelines. After the task, annotators were asked to complete a survey to help identify strengths and weaknesses of the various systems. The analysis of this survey highlights how important task completion is to the biocurators' overall experience of a system, regardless of the system's high score on design, learnability and usability. In addition, strategies to refine the annotation guidelines and systems documentation, to adapt the tools to the needs and query types the end user might have and to evaluate performance in terms of efficiency, user interface, result export and traditional evaluation metrics have been analyzed during this task. This analysis will help to plan for a more intense study in BioCreative IV.

  5. PubRunner: A light-weight framework for updating text mining results.

    PubMed

    Anekalla, Kishore R; Courneya, J P; Fiorini, Nicolas; Lever, Jake; Muchow, Michael; Busby, Ben

    2017-01-01

    Biomedical text mining promises to assist biologists in quickly navigating the combined knowledge in their domain. This would allow improved understanding of the complex interactions within biological systems and faster hypothesis generation. New biomedical research articles are published daily and text mining tools are only as good as the corpus from which they work. Many text mining tools are underused because their results are static and do not reflect the constantly expanding knowledge in the field. In order for biomedical text mining to become an indispensable tool used by researchers, this problem must be addressed. To this end, we present PubRunner, a framework for regularly running text mining tools on the latest publications. PubRunner is lightweight, simple to use, and can be integrated with an existing text mining tool. The workflow involves downloading the latest abstracts from PubMed, executing a user-defined tool, pushing the resulting data to a public FTP or Zenodo dataset, and publicizing the location of these results on the public PubRunner website. We illustrate the use of this tool by re-running the commonly used word2vec tool on the latest PubMed abstracts to generate up-to-date word vector representations for the biomedical domain. This shows a proof of concept that we hope will encourage text mining developers to build tools that truly will aid biologists in exploring the latest publications.

  6. Text Mining to Support Gene Ontology Curation and Vice Versa.

    PubMed

    Ruch, Patrick

    2017-01-01

    In this chapter, we explain how text mining can support the curation of molecular biology databases dealing with protein functions. We also show how curated data can play a disruptive role in the developments of text mining methods. We review a decade of efforts to improve the automatic assignment of Gene Ontology (GO) descriptors, the reference ontology for the characterization of genes and gene products. To illustrate the high potential of this approach, we compare the performances of an automatic text categorizer and show a large improvement of +225 % in both precision and recall on benchmarked data. We argue that automatic text categorization functions can ultimately be embedded into a Question-Answering (QA) system to answer questions related to protein functions. Because GO descriptors can be relatively long and specific, traditional QA systems cannot answer such questions. A new type of QA system, so-called Deep QA which uses machine learning methods trained with curated contents, is thus emerging. Finally, future advances of text mining instruments are directly dependent on the availability of high-quality annotated contents at every curation step. Databases workflows must start recording explicitly all the data they curate and ideally also some of the data they do not curate.

  7. The Potential of Text Mining in Data Integration and Network Biology for Plant Research: A Case Study on Arabidopsis[C][W

    PubMed Central

    Van Landeghem, Sofie; De Bodt, Stefanie; Drebert, Zuzanna J.; Inzé, Dirk; Van de Peer, Yves

    2013-01-01

    Despite the availability of various data repositories for plant research, a wealth of information currently remains hidden within the biomolecular literature. Text mining provides the necessary means to retrieve these data through automated processing of texts. However, only recently has advanced text mining methodology been implemented with sufficient computational power to process texts at a large scale. In this study, we assess the potential of large-scale text mining for plant biology research in general and for network biology in particular using a state-of-the-art text mining system applied to all PubMed abstracts and PubMed Central full texts. We present extensive evaluation of the textual data for Arabidopsis thaliana, assessing the overall accuracy of this new resource for usage in plant network analyses. Furthermore, we combine text mining information with both protein–protein and regulatory interactions from experimental databases. Clusters of tightly connected genes are delineated from the resulting network, illustrating how such an integrative approach is essential to grasp the current knowledge available for Arabidopsis and to uncover gene information through guilt by association. All large-scale data sets, as well as the manually curated textual data, are made publicly available, hereby stimulating the application of text mining data in future plant biology studies. PMID:23532071

  8. An overview of the BioCreative 2012 Workshop Track III: interactive text mining task

    PubMed Central

    Arighi, Cecilia N.; Carterette, Ben; Cohen, K. Bretonnel; Krallinger, Martin; Wilbur, W. John; Fey, Petra; Dodson, Robert; Cooper, Laurel; Van Slyke, Ceri E.; Dahdul, Wasila; Mabee, Paula; Li, Donghui; Harris, Bethany; Gillespie, Marc; Jimenez, Silvia; Roberts, Phoebe; Matthews, Lisa; Becker, Kevin; Drabkin, Harold; Bello, Susan; Licata, Luana; Chatr-aryamontri, Andrew; Schaeffer, Mary L.; Park, Julie; Haendel, Melissa; Van Auken, Kimberly; Li, Yuling; Chan, Juancarlos; Muller, Hans-Michael; Cui, Hong; Balhoff, James P.; Chi-Yang Wu, Johnny; Lu, Zhiyong; Wei, Chih-Hsuan; Tudor, Catalina O.; Raja, Kalpana; Subramani, Suresh; Natarajan, Jeyakumar; Cejuela, Juan Miguel; Dubey, Pratibha; Wu, Cathy

    2013-01-01

    In many databases, biocuration primarily involves literature curation, which usually involves retrieving relevant articles, extracting information that will translate into annotations and identifying new incoming literature. As the volume of biological literature increases, the use of text mining to assist in biocuration becomes increasingly relevant. A number of groups have developed tools for text mining from a computer science/linguistics perspective, and there are many initiatives to curate some aspect of biology from the literature. Some biocuration efforts already make use of a text mining tool, but there have not been many broad-based systematic efforts to study which aspects of a text mining tool contribute to its usefulness for a curation task. Here, we report on an effort to bring together text mining tool developers and database biocurators to test the utility and usability of tools. Six text mining systems presenting diverse biocuration tasks participated in a formal evaluation, and appropriate biocurators were recruited for testing. The performance results from this evaluation indicate that some of the systems were able to improve efficiency of curation by speeding up the curation task significantly (∼1.7- to 2.5-fold) over manual curation. In addition, some of the systems were able to improve annotation accuracy when compared with the performance on the manually curated set. In terms of inter-annotator agreement, the factors that contributed to significant differences for some of the systems included the expertise of the biocurator on the given curation task, the inherent difficulty of the curation and attention to annotation guidelines. After the task, annotators were asked to complete a survey to help identify strengths and weaknesses of the various systems. The analysis of this survey highlights how important task completion is to the biocurators’ overall experience of a system, regardless of the system’s high score on design, learnability and usability. In addition, strategies to refine the annotation guidelines and systems documentation, to adapt the tools to the needs and query types the end user might have and to evaluate performance in terms of efficiency, user interface, result export and traditional evaluation metrics have been analyzed during this task. This analysis will help to plan for a more intense study in BioCreative IV. PMID:23327936

  9. What the papers say: Text mining for genomics and systems biology

    PubMed Central

    2010-01-01

    Keeping up with the rapidly growing literature has become virtually impossible for most scientists. This can have dire consequences. First, we may waste research time and resources on reinventing the wheel simply because we can no longer maintain a reliable grasp on the published literature. Second, and perhaps more detrimental, judicious (or serendipitous) combination of knowledge from different scientific disciplines, which would require following disparate and distinct research literatures, is rapidly becoming impossible for even the most ardent readers of research publications. Text mining -- the automated extraction of information from (electronically) published sources -- could potentially fulfil an important role -- but only if we know how to harness its strengths and overcome its weaknesses. As we do not expect that the rate at which scientific results are published will decrease, text mining tools are now becoming essential in order to cope with, and derive maximum benefit from, this information explosion. In genomics, this is particularly pressing as more and more rare disease-causing variants are found and need to be understood. Not being conversant with this technology may put scientists and biomedical regulators at a severe disadvantage. In this review, we introduce the basic concepts underlying modern text mining and its applications in genomics and systems biology. We hope that this review will serve three purposes: (i) to provide a timely and useful overview of the current status of this field, including a survey of present challenges; (ii) to enable researchers to decide how and when to apply text mining tools in their own research; and (iii) to highlight how the research communities in genomics and systems biology can help to make text mining from biomedical abstracts and texts more straightforward. PMID:21106487

  10. A text-based data mining and toxicity prediction modeling system for a clinical decision support in radiation oncology: A preliminary study

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Hyeon; Lee, Suk; Shim, Jang Bo; Chang, Kyung Hwan; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Kim, Chul Yong; Cao, Yuan Jie

    2017-08-01

    The aim of this study is an integrated research for text-based data mining and toxicity prediction modeling system for clinical decision support system based on big data in radiation oncology as a preliminary research. The structured and unstructured data were prepared by treatment plans and the unstructured data were extracted by dose-volume data image pattern recognition of prostate cancer for research articles crawling through the internet. We modeled an artificial neural network to build a predictor model system for toxicity prediction of organs at risk. We used a text-based data mining approach to build the artificial neural network model for bladder and rectum complication predictions. The pattern recognition method was used to mine the unstructured toxicity data for dose-volume at the detection accuracy of 97.9%. The confusion matrix and training model of the neural network were achieved with 50 modeled plans (n = 50) for validation. The toxicity level was analyzed and the risk factors for 25% bladder, 50% bladder, 20% rectum, and 50% rectum were calculated by the artificial neural network algorithm. As a result, 32 plans could cause complication but 18 plans were designed as non-complication among 50 modeled plans. We integrated data mining and a toxicity modeling method for toxicity prediction using prostate cancer cases. It is shown that a preprocessing analysis using text-based data mining and prediction modeling can be expanded to personalized patient treatment decision support based on big data.

  11. Text mining resources for the life sciences.

    PubMed

    Przybyła, Piotr; Shardlow, Matthew; Aubin, Sophie; Bossy, Robert; Eckart de Castilho, Richard; Piperidis, Stelios; McNaught, John; Ananiadou, Sophia

    2016-01-01

    Text mining is a powerful technology for quickly distilling key information from vast quantities of biomedical literature. However, to harness this power the researcher must be well versed in the availability, suitability, adaptability, interoperability and comparative accuracy of current text mining resources. In this survey, we give an overview of the text mining resources that exist in the life sciences to help researchers, especially those employed in biocuration, to engage with text mining in their own work. We categorize the various resources under three sections: Content Discovery looks at where and how to find biomedical publications for text mining; Knowledge Encoding describes the formats used to represent the different levels of information associated with content that enable text mining, including those formats used to carry such information between processes; Tools and Services gives an overview of workflow management systems that can be used to rapidly configure and compare domain- and task-specific processes, via access to a wide range of pre-built tools. We also provide links to relevant repositories in each section to enable the reader to find resources relevant to their own area of interest. Throughout this work we give a special focus to resources that are interoperable-those that have the crucial ability to share information, enabling smooth integration and reusability. © The Author(s) 2016. Published by Oxford University Press.

  12. Chapter 16: text mining for translational bioinformatics.

    PubMed

    Cohen, K Bretonnel; Hunter, Lawrence E

    2013-04-01

    Text mining for translational bioinformatics is a new field with tremendous research potential. It is a subfield of biomedical natural language processing that concerns itself directly with the problem of relating basic biomedical research to clinical practice, and vice versa. Applications of text mining fall both into the category of T1 translational research-translating basic science results into new interventions-and T2 translational research, or translational research for public health. Potential use cases include better phenotyping of research subjects, and pharmacogenomic research. A variety of methods for evaluating text mining applications exist, including corpora, structured test suites, and post hoc judging. Two basic principles of linguistic structure are relevant for building text mining applications. One is that linguistic structure consists of multiple levels. The other is that every level of linguistic structure is characterized by ambiguity. There are two basic approaches to text mining: rule-based, also known as knowledge-based; and machine-learning-based, also known as statistical. Many systems are hybrids of the two approaches. Shared tasks have had a strong effect on the direction of the field. Like all translational bioinformatics software, text mining software for translational bioinformatics can be considered health-critical and should be subject to the strictest standards of quality assurance and software testing.

  13. Text mining resources for the life sciences

    PubMed Central

    Shardlow, Matthew; Aubin, Sophie; Bossy, Robert; Eckart de Castilho, Richard; Piperidis, Stelios; McNaught, John; Ananiadou, Sophia

    2016-01-01

    Text mining is a powerful technology for quickly distilling key information from vast quantities of biomedical literature. However, to harness this power the researcher must be well versed in the availability, suitability, adaptability, interoperability and comparative accuracy of current text mining resources. In this survey, we give an overview of the text mining resources that exist in the life sciences to help researchers, especially those employed in biocuration, to engage with text mining in their own work. We categorize the various resources under three sections: Content Discovery looks at where and how to find biomedical publications for text mining; Knowledge Encoding describes the formats used to represent the different levels of information associated with content that enable text mining, including those formats used to carry such information between processes; Tools and Services gives an overview of workflow management systems that can be used to rapidly configure and compare domain- and task-specific processes, via access to a wide range of pre-built tools. We also provide links to relevant repositories in each section to enable the reader to find resources relevant to their own area of interest. Throughout this work we give a special focus to resources that are interoperable—those that have the crucial ability to share information, enabling smooth integration and reusability. PMID:27888231

  14. Conceptual biology, hypothesis discovery, and text mining: Swanson's legacy.

    PubMed

    Bekhuis, Tanja

    2006-04-03

    Innovative biomedical librarians and information specialists who want to expand their roles as expert searchers need to know about profound changes in biology and parallel trends in text mining. In recent years, conceptual biology has emerged as a complement to empirical biology. This is partly in response to the availability of massive digital resources such as the network of databases for molecular biologists at the National Center for Biotechnology Information. Developments in text mining and hypothesis discovery systems based on the early work of Swanson, a mathematician and information scientist, are coincident with the emergence of conceptual biology. Very little has been written to introduce biomedical digital librarians to these new trends. In this paper, background for data and text mining, as well as for knowledge discovery in databases (KDD) and in text (KDT) is presented, then a brief review of Swanson's ideas, followed by a discussion of recent approaches to hypothesis discovery and testing. 'Testing' in the context of text mining involves partially automated methods for finding evidence in the literature to support hypothetical relationships. Concluding remarks follow regarding (a) the limits of current strategies for evaluation of hypothesis discovery systems and (b) the role of literature-based discovery in concert with empirical research. Report of an informatics-driven literature review for biomarkers of systemic lupus erythematosus is mentioned. Swanson's vision of the hidden value in the literature of science and, by extension, in biomedical digital databases, is still remarkably generative for information scientists, biologists, and physicians.

  15. Experiences with Text Mining Large Collections of Unstructured Systems Development Artifacts at JPL

    NASA Technical Reports Server (NTRS)

    Port, Dan; Nikora, Allen; Hihn, Jairus; Huang, LiGuo

    2011-01-01

    Often repositories of systems engineering artifacts at NASA's Jet Propulsion Laboratory (JPL) are so large and poorly structured that they have outgrown our capability to effectively manually process their contents to extract useful information. Sophisticated text mining methods and tools seem a quick, low-effort approach to automating our limited manual efforts. Our experiences of exploring such methods mainly in three areas including historical risk analysis, defect identification based on requirements analysis, and over-time analysis of system anomalies at JPL, have shown that obtaining useful results requires substantial unanticipated efforts - from preprocessing the data to transforming the output for practical applications. We have not observed any quick 'wins' or realized benefit from short-term effort avoidance through automation in this area. Surprisingly we have realized a number of unexpected long-term benefits from the process of applying text mining to our repositories. This paper elaborates some of these benefits and our important lessons learned from the process of preparing and applying text mining to large unstructured system artifacts at JPL aiming to benefit future TM applications in similar problem domains and also in hope for being extended to broader areas of applications.

  16. PathText: a text mining integrator for biological pathway visualizations

    PubMed Central

    Kemper, Brian; Matsuzaki, Takuya; Matsuoka, Yukiko; Tsuruoka, Yoshimasa; Kitano, Hiroaki; Ananiadou, Sophia; Tsujii, Jun'ichi

    2010-01-01

    Motivation: Metabolic and signaling pathways are an increasingly important part of organizing knowledge in systems biology. They serve to integrate collective interpretations of facts scattered throughout literature. Biologists construct a pathway by reading a large number of articles and interpreting them as a consistent network, but most of the models constructed currently lack direct links to those articles. Biologists who want to check the original articles have to spend substantial amounts of time to collect relevant articles and identify the sections relevant to the pathway. Furthermore, with the scientific literature expanding by several thousand papers per week, keeping a model relevant requires a continuous curation effort. In this article, we present a system designed to integrate a pathway visualizer, text mining systems and annotation tools into a seamless environment. This will enable biologists to freely move between parts of a pathway and relevant sections of articles, as well as identify relevant papers from large text bases. The system, PathText, is developed by Systems Biology Institute, Okinawa Institute of Science and Technology, National Centre for Text Mining (University of Manchester) and the University of Tokyo, and is being used by groups of biologists from these locations. Contact: brian@monrovian.com. PMID:20529930

  17. The Distribution of the Informative Intensity of the Text in Terms of its Structure (On Materials of the English Texts in the Mining Sphere)

    NASA Astrophysics Data System (ADS)

    Znikina, Ludmila; Rozhneva, Elena

    2017-11-01

    The article deals with the distribution of informative intensity of the English-language scientific text based on its structural features contributing to the process of formalization of the scientific text and the preservation of the adequacy of the text with derived semantic information in relation to the primary. Discourse analysis is built on specific compositional and meaningful examples of scientific texts taken from the mining field. It also analyzes the adequacy of the translation of foreign texts into another language, the relationships between elements of linguistic systems, the degree of a formal conformance, translation with the specific objectives and information needs of the recipient. Some key words and ideas are emphasized in the paragraphs of the English-language mining scientific texts. The article gives the characteristic features of the structure of paragraphs of technical text and examples of constructions in English scientific texts based on a mining theme with the aim to explain the possible ways of their adequate translation.

  18. Biocuration workflows and text mining: overview of the BioCreative 2012 Workshop Track II.

    PubMed

    Lu, Zhiyong; Hirschman, Lynette

    2012-01-01

    Manual curation of data from the biomedical literature is a rate-limiting factor for many expert curated databases. Despite the continuing advances in biomedical text mining and the pressing needs of biocurators for better tools, few existing text-mining tools have been successfully integrated into production literature curation systems such as those used by the expert curated databases. To close this gap and better understand all aspects of literature curation, we invited submissions of written descriptions of curation workflows from expert curated databases for the BioCreative 2012 Workshop Track II. We received seven qualified contributions, primarily from model organism databases. Based on these descriptions, we identified commonalities and differences across the workflows, the common ontologies and controlled vocabularies used and the current and desired uses of text mining for biocuration. Compared to a survey done in 2009, our 2012 results show that many more databases are now using text mining in parts of their curation workflows. In addition, the workshop participants identified text-mining aids for finding gene names and symbols (gene indexing), prioritization of documents for curation (document triage) and ontology concept assignment as those most desired by the biocurators. DATABASE URL: http://www.biocreative.org/tasks/bc-workshop-2012/workflow/.

  19. Integration of Artificial Market Simulation and Text Mining for Market Analysis

    NASA Astrophysics Data System (ADS)

    Izumi, Kiyoshi; Matsui, Hiroki; Matsuo, Yutaka

    We constructed an evaluation system of the self-impact in a financial market using an artificial market and text-mining technology. Economic trends were first extracted from text data circulating in the real world. Then, the trends were inputted into the market simulation. Our simulation revealed that an operation by intervention could reduce over 70% of rate fluctuation in 1995. By the simulation results, the system was able to help for its user to find the exchange policy which can stabilize the yen-dollar rate.

  20. Mining Adverse Drug Reactions in Social Media with Named Entity Recognition and Semantic Methods.

    PubMed

    Chen, Xiaoyi; Deldossi, Myrtille; Aboukhamis, Rim; Faviez, Carole; Dahamna, Badisse; Karapetiantz, Pierre; Guenegou-Arnoux, Armelle; Girardeau, Yannick; Guillemin-Lanne, Sylvie; Lillo-Le-Louët, Agnès; Texier, Nathalie; Burgun, Anita; Katsahian, Sandrine

    2017-01-01

    Suspected adverse drug reactions (ADR) reported by patients through social media can be a complementary source to current pharmacovigilance systems. However, the performance of text mining tools applied to social media text data to discover ADRs needs to be evaluated. In this paper, we introduce the approach developed to mine ADR from French social media. A protocol of evaluation is highlighted, which includes a detailed sample size determination and evaluation corpus constitution. Our text mining approach provided very encouraging preliminary results with F-measures of 0.94 and 0.81 for recognition of drugs and symptoms respectively, and with F-measure of 0.70 for ADR detection. Therefore, this approach is promising for downstream pharmacovigilance analysis.

  1. Adverse Event extraction from Structured Product Labels using the Event-based Text-mining of Health Electronic Records (ETHER)system.

    PubMed

    Pandey, Abhishek; Kreimeyer, Kory; Foster, Matthew; Botsis, Taxiarchis; Dang, Oanh; Ly, Thomas; Wang, Wei; Forshee, Richard

    2018-01-01

    Structured Product Labels follow an XML-based document markup standard approved by the Health Level Seven organization and adopted by the US Food and Drug Administration as a mechanism for exchanging medical products information. Their current organization makes their secondary use rather challenging. We used the Side Effect Resource database and DailyMed to generate a comparison dataset of 1159 Structured Product Labels. We processed the Adverse Reaction section of these Structured Product Labels with the Event-based Text-mining of Health Electronic Records system and evaluated its ability to extract and encode Adverse Event terms to Medical Dictionary for Regulatory Activities Preferred Terms. A small sample of 100 labels was then selected for further analysis. Of the 100 labels, Event-based Text-mining of Health Electronic Records achieved a precision and recall of 81 percent and 92 percent, respectively. This study demonstrated Event-based Text-mining of Health Electronic Record's ability to extract and encode Adverse Event terms from Structured Product Labels which may potentially support multiple pharmacoepidemiological tasks.

  2. Enhancements for a Dynamic Data Warehousing and Mining System for Large-scale HSCB Data

    DTIC Science & Technology

    2016-07-20

    Intelligent Automation Incorporated Enhancements for a Dynamic Data Warehousing and Mining ...Page | 2 Intelligent Automation Incorporated Monthly Report No. 4 Enhancements for a Dynamic Data Warehousing and Mining System Large-Scale HSCB...including Top Videos, Top Users, Top Words, and Top Languages, and also applied NER to the text associated with YouTube posts. We have also developed UI for

  3. Enhancements for a Dynamic Data Warehousing and Mining System for Large-Scale HSCB Data

    DTIC Science & Technology

    2016-07-20

    Intelligent Automation Incorporated Enhancements for a Dynamic Data Warehousing and Mining ...Page | 2 Intelligent Automation Incorporated Monthly Report No. 4 Enhancements for a Dynamic Data Warehousing and Mining System Large-Scale HSCB...including Top Videos, Top Users, Top Words, and Top Languages, and also applied NER to the text associated with YouTube posts. We have also developed UI for

  4. HPIminer: A text mining system for building and visualizing human protein interaction networks and pathways.

    PubMed

    Subramani, Suresh; Kalpana, Raja; Monickaraj, Pankaj Moses; Natarajan, Jeyakumar

    2015-04-01

    The knowledge on protein-protein interactions (PPI) and their related pathways are equally important to understand the biological functions of the living cell. Such information on human proteins is highly desirable to understand the mechanism of several diseases such as cancer, diabetes, and Alzheimer's disease. Because much of that information is buried in biomedical literature, an automated text mining system for visualizing human PPI and pathways is highly desirable. In this paper, we present HPIminer, a text mining system for visualizing human protein interactions and pathways from biomedical literature. HPIminer extracts human PPI information and PPI pairs from biomedical literature, and visualize their associated interactions, networks and pathways using two curated databases HPRD and KEGG. To our knowledge, HPIminer is the first system to build interaction networks from literature as well as curated databases. Further, the new interactions mined only from literature and not reported earlier in databases are highlighted as new. A comparative study with other similar tools shows that the resultant network is more informative and provides additional information on interacting proteins and their associated networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Flooded Underground Coal Mines: A Significant Source of Inexpensive Geothermal Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watzlaf, G.R.; Ackman, T.E.

    2007-04-01

    Many mining regions in the United States contain extensive areas of flooded underground mines. The water within these mines represents a significant and widespread opportunity for extracting low-grade, geothermal energy. Based on current energy prices, geothermal heat pump systems using mine water could reduce the annual costs for heating to over 70 percent compared to conventional heating methods (natural gas or heating oil). These same systems could reduce annual cooling costs by up to 50 percent over standard air conditioning in many areas of the country. (Formatted full-text version is released by permission of publisher)

  6. miRTex: A Text Mining System for miRNA-Gene Relation Extraction

    PubMed Central

    Li, Gang; Ross, Karen E.; Arighi, Cecilia N.; Peng, Yifan; Wu, Cathy H.; Vijay-Shanker, K.

    2015-01-01

    MicroRNAs (miRNAs) regulate a wide range of cellular and developmental processes through gene expression suppression or mRNA degradation. Experimentally validated miRNA gene targets are often reported in the literature. In this paper, we describe miRTex, a text mining system that extracts miRNA-target relations, as well as miRNA-gene and gene-miRNA regulation relations. The system achieves good precision and recall when evaluated on a literature corpus of 150 abstracts with F-scores close to 0.90 on the three different types of relations. We conducted full-scale text mining using miRTex to process all the Medline abstracts and all the full-length articles in the PubMed Central Open Access Subset. The results for all the Medline abstracts are stored in a database for interactive query and file download via the website at http://proteininformationresource.org/mirtex. Using miRTex, we identified genes potentially regulated by miRNAs in Triple Negative Breast Cancer, as well as miRNA-gene relations that, in conjunction with kinase-substrate relations, regulate the response to abiotic stress in Arabidopsis thaliana. These two use cases demonstrate the usefulness of miRTex text mining in the analysis of miRNA-regulated biological processes. PMID:26407127

  7. Text Mining for Precision Medicine: Bringing structure to EHRs and biomedical literature to understand genes and health

    PubMed Central

    Simmons, Michael; Singhal, Ayush; Lu, Zhiyong

    2018-01-01

    The key question of precision medicine is whether it is possible to find clinically actionable granularity in diagnosing disease and classifying patient risk. The advent of next generation sequencing and the widespread adoption of electronic health records (EHRs) have provided clinicians and researchers a wealth of data and made possible the precise characterization of individual patient genotypes and phenotypes. Unstructured text — found in biomedical publications and clinical notes — is an important component of genotype and phenotype knowledge. Publications in the biomedical literature provide essential information for interpreting genetic data. Likewise, clinical notes contain the richest source of phenotype information in EHRs. Text mining can render these texts computationally accessible and support information extraction and hypothesis generation. This chapter reviews the mechanics of text mining in precision medicine and discusses several specific use cases, including database curation for personalized cancer medicine, patient outcome prediction from EHR-derived cohorts, and pharmacogenomic research. Taken as a whole, these use cases demonstrate how text mining enables effective utilization of existing knowledge sources and thus promotes increased value for patients and healthcare systems. Text mining is an indispensable tool for translating genotype-phenotype data into effective clinical care that will undoubtedly play an important role in the eventual realization of precision medicine. PMID:27807747

  8. Text Mining for Precision Medicine: Bringing Structure to EHRs and Biomedical Literature to Understand Genes and Health.

    PubMed

    Simmons, Michael; Singhal, Ayush; Lu, Zhiyong

    2016-01-01

    The key question of precision medicine is whether it is possible to find clinically actionable granularity in diagnosing disease and classifying patient risk. The advent of next-generation sequencing and the widespread adoption of electronic health records (EHRs) have provided clinicians and researchers a wealth of data and made possible the precise characterization of individual patient genotypes and phenotypes. Unstructured text-found in biomedical publications and clinical notes-is an important component of genotype and phenotype knowledge. Publications in the biomedical literature provide essential information for interpreting genetic data. Likewise, clinical notes contain the richest source of phenotype information in EHRs. Text mining can render these texts computationally accessible and support information extraction and hypothesis generation. This chapter reviews the mechanics of text mining in precision medicine and discusses several specific use cases, including database curation for personalized cancer medicine, patient outcome prediction from EHR-derived cohorts, and pharmacogenomic research. Taken as a whole, these use cases demonstrate how text mining enables effective utilization of existing knowledge sources and thus promotes increased value for patients and healthcare systems. Text mining is an indispensable tool for translating genotype-phenotype data into effective clinical care that will undoubtedly play an important role in the eventual realization of precision medicine.

  9. Imitating manual curation of text-mined facts in biomedicine.

    PubMed

    Rodriguez-Esteban, Raul; Iossifov, Ivan; Rzhetsky, Andrey

    2006-09-08

    Text-mining algorithms make mistakes in extracting facts from natural-language texts. In biomedical applications, which rely on use of text-mined data, it is critical to assess the quality (the probability that the message is correctly extracted) of individual facts--to resolve data conflicts and inconsistencies. Using a large set of almost 100,000 manually produced evaluations (most facts were independently reviewed more than once, producing independent evaluations), we implemented and tested a collection of algorithms that mimic human evaluation of facts provided by an automated information-extraction system. The performance of our best automated classifiers closely approached that of our human evaluators (ROC score close to 0.95). Our hypothesis is that, were we to use a larger number of human experts to evaluate any given sentence, we could implement an artificial-intelligence curator that would perform the classification job at least as accurately as an average individual human evaluator. We illustrated our analysis by visualizing the predicted accuracy of the text-mined relations involving the term cocaine.

  10. Assimilating Text-Mining & Bio-Informatics Tools to Analyze Cellulase structures

    NASA Astrophysics Data System (ADS)

    Satyasree, K. P. N. V., Dr; Lalitha Kumari, B., Dr; Jyotsna Devi, K. S. N. V.; Choudri, S. M. Roy; Pratap Joshi, K.

    2017-08-01

    Text-mining is one of the best potential way of automatically extracting information from the huge biological literature. To exploit its prospective, the knowledge encrypted in the text should be converted to some semantic representation such as entities and relations, which could be analyzed by machines. But large-scale practical systems for this purpose are rare. But text mining could be helpful for generating or validating predictions. Cellulases have abundant applications in various industries. Cellulose degrading enzymes are cellulases and the same producing bacteria - Bacillus subtilis & fungus Pseudomonas putida were isolated from top soil of Guntur Dt. A.P. India. Absolute cultures were conserved on potato dextrose agar medium for molecular studies. In this paper, we presented how well the text mining concepts can be used to analyze cellulase producing bacteria and fungi, their comparative structures are also studied with the aid of well-establised, high quality standard bioinformatic tools such as Bioedit, Swissport, Protparam, EMBOSSwin with which a complete data on Cellulases like structure, constituents of the enzyme has been obtained.

  11. Automatic detection of adverse events to predict drug label changes using text and data mining techniques.

    PubMed

    Gurulingappa, Harsha; Toldo, Luca; Rajput, Abdul Mateen; Kors, Jan A; Taweel, Adel; Tayrouz, Yorki

    2013-11-01

    The aim of this study was to assess the impact of automatically detected adverse event signals from text and open-source data on the prediction of drug label changes. Open-source adverse effect data were collected from FAERS, Yellow Cards and SIDER databases. A shallow linguistic relation extraction system (JSRE) was applied for extraction of adverse effects from MEDLINE case reports. Statistical approach was applied on the extracted datasets for signal detection and subsequent prediction of label changes issued for 29 drugs by the UK Regulatory Authority in 2009. 76% of drug label changes were automatically predicted. Out of these, 6% of drug label changes were detected only by text mining. JSRE enabled precise identification of four adverse drug events from MEDLINE that were undetectable otherwise. Changes in drug labels can be predicted automatically using data and text mining techniques. Text mining technology is mature and well-placed to support the pharmacovigilance tasks. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Assessing semantic similarity of texts - Methods and algorithms

    NASA Astrophysics Data System (ADS)

    Rozeva, Anna; Zerkova, Silvia

    2017-12-01

    Assessing the semantic similarity of texts is an important part of different text-related applications like educational systems, information retrieval, text summarization, etc. This task is performed by sophisticated analysis, which implements text-mining techniques. Text mining involves several pre-processing steps, which provide for obtaining structured representative model of the documents in a corpus by means of extracting and selecting the features, characterizing their content. Generally the model is vector-based and enables further analysis with knowledge discovery approaches. Algorithms and measures are used for assessing texts at syntactical and semantic level. An important text-mining method and similarity measure is latent semantic analysis (LSA). It provides for reducing the dimensionality of the document vector space and better capturing the text semantics. The mathematical background of LSA for deriving the meaning of the words in a given text by exploring their co-occurrence is examined. The algorithm for obtaining the vector representation of words and their corresponding latent concepts in a reduced multidimensional space as well as similarity calculation are presented.

  13. Beyond accuracy: creating interoperable and scalable text-mining web services.

    PubMed

    Wei, Chih-Hsuan; Leaman, Robert; Lu, Zhiyong

    2016-06-15

    The biomedical literature is a knowledge-rich resource and an important foundation for future research. With over 24 million articles in PubMed and an increasing growth rate, research in automated text processing is becoming increasingly important. We report here our recently developed web-based text mining services for biomedical concept recognition and normalization. Unlike most text-mining software tools, our web services integrate several state-of-the-art entity tagging systems (DNorm, GNormPlus, SR4GN, tmChem and tmVar) and offer a batch-processing mode able to process arbitrary text input (e.g. scholarly publications, patents and medical records) in multiple formats (e.g. BioC). We support multiple standards to make our service interoperable and allow simpler integration with other text-processing pipelines. To maximize scalability, we have preprocessed all PubMed articles, and use a computer cluster for processing large requests of arbitrary text. Our text-mining web service is freely available at http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/#curl : Zhiyong.Lu@nih.gov. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  14. Enhancements for a Dynamic Data Warehousing and Mining System for Large-Scale Human Social Cultural Behavioral (HSBC) Data

    DTIC Science & Technology

    2016-09-26

    Intelligent Automation Incorporated Enhancements for a Dynamic Data Warehousing and Mining ...Enhancements for a Dynamic Data Warehousing and Mining System for N00014-16-P-3014 Large-Scale Human Social Cultural Behavioral (HSBC) Data 5b. GRANT NUMBER...Representative Media Gallery View. We perform Scraawl’s NER algorithm to the text associated with YouTube post, which classifies the named entities into

  15. BioCreative Workshops for DOE Genome Sciences: Text Mining for Metagenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Cathy H.; Hirschman, Lynette

    The objective of this project was to host BioCreative workshops to define and develop text mining tasks to meet the needs of the Genome Sciences community, focusing on metadata information extraction in metagenomics. Following the successful introduction of metagenomics at the BioCreative IV workshop, members of the metagenomics community and BioCreative communities continued discussion to identify candidate topics for a BioCreative metagenomics track for BioCreative V. Of particular interest was the capture of environmental and isolation source information from text. The outcome was to form a “community of interest” around work on the interactive EXTRACT system, which supported interactive taggingmore » of environmental and species data. This experiment is included in the BioCreative V virtual issue of Database. In addition, there was broad participation by members of the metagenomics community in the panels held at BioCreative V, leading to valuable exchanges between the text mining developers and members of the metagenomics research community. These exchanges are reflected in a number of the overview and perspective pieces also being captured in the BioCreative V virtual issue. Overall, this conversation has exposed the metagenomics researchers to the possibilities of text mining, and educated the text mining developers to the specific needs of the metagenomics community.« less

  16. Uncovering text mining: A survey of current work on web-based epidemic intelligence

    PubMed Central

    Collier, Nigel

    2012-01-01

    Real world pandemics such as SARS 2002 as well as popular fiction like the movie Contagion graphically depict the health threat of a global pandemic and the key role of epidemic intelligence (EI). While EI relies heavily on established indicator sources a new class of methods based on event alerting from unstructured digital Internet media is rapidly becoming acknowledged within the public health community. At the heart of automated information gathering systems is a technology called text mining. My contribution here is to provide an overview of the role that text mining technology plays in detecting epidemics and to synthesise my existing research on the BioCaster project. PMID:22783909

  17. Recent progress in automatically extracting information from the pharmacogenomic literature

    PubMed Central

    Garten, Yael; Coulet, Adrien; Altman, Russ B

    2011-01-01

    The biomedical literature holds our understanding of pharmacogenomics, but it is dispersed across many journals. In order to integrate our knowledge, connect important facts across publications and generate new hypotheses we must organize and encode the contents of the literature. By creating databases of structured pharmocogenomic knowledge, we can make the value of the literature much greater than the sum of the individual reports. We can, for example, generate candidate gene lists or interpret surprising hits in genome-wide association studies. Text mining automatically adds structure to the unstructured knowledge embedded in millions of publications, and recent years have seen a surge in work on biomedical text mining, some specific to pharmacogenomics literature. These methods enable extraction of specific types of information and can also provide answers to general, systemic queries. In this article, we describe the main tasks of text mining in the context of pharmacogenomics, summarize recent applications and anticipate the next phase of text mining applications. PMID:21047206

  18. Monitoring food safety violation reports from internet forums.

    PubMed

    Kate, Kiran; Negi, Sumit; Kalagnanam, Jayant

    2014-01-01

    Food-borne illness is a growing public health concern in the world. Government bodies, which regulate and monitor the state of food safety, solicit citizen feedback about food hygiene practices followed by food establishments. They use traditional channels like call center, e-mail for such feedback collection. With the growing popularity of Web 2.0 and social media, citizens often post such feedback on internet forums, message boards etc. The system proposed in this paper applies text mining techniques to identify and mine such food safety complaints posted by citizens on web data sources thereby enabling the government agencies to gather more information about the state of food safety. In this paper, we discuss the architecture of our system and the text mining methods used. We also present results which demonstrate the effectiveness of this system in a real-world deployment.

  19. Data mining in radiology

    PubMed Central

    Kharat, Amit T; Singh, Amarjit; Kulkarni, Vilas M; Shah, Digish

    2014-01-01

    Data mining facilitates the study of radiology data in various dimensions. It converts large patient image and text datasets into useful information that helps in improving patient care and provides informative reports. Data mining technology analyzes data within the Radiology Information System and Hospital Information System using specialized software which assesses relationships and agreement in available information. By using similar data analysis tools, radiologists can make informed decisions and predict the future outcome of a particular imaging finding. Data, information and knowledge are the components of data mining. Classes, Clusters, Associations, Sequential patterns, Classification, Prediction and Decision tree are the various types of data mining. Data mining has the potential to make delivery of health care affordable and ensure that the best imaging practices are followed. It is a tool for academic research. Data mining is considered to be ethically neutral, however concerns regarding privacy and legality exists which need to be addressed to ensure success of data mining. PMID:25024513

  20. Biomedical data mining in clinical routine: expanding the impact of hospital information systems.

    PubMed

    Müller, Marcel; Markó, Kornel; Daumke, Philipp; Paetzold, Jan; Roesner, Arnold; Klar, Rüdiger

    2007-01-01

    In this paper we want to describe how the promising technology of biomedical data mining can improve the use of hospital information systems: a large set of unstructured, narrative clinical data from a dermatological university hospital like discharge letters or other dermatological reports were processed through a morpho-semantic text retrieval engine ("MorphoSaurus") and integrated with other clinical data using a web-based interface and brought into daily clinical routine. The user evaluation showed a very high user acceptance - this system seems to meet the clinicians' requirements for a vertical data mining in the electronic patient records. What emerges is the need for integration of biomedical data mining into hospital information systems for clinical, scientific, educational and economic reasons.

  1. Knowledge based word-concept model estimation and refinement for biomedical text mining.

    PubMed

    Jimeno Yepes, Antonio; Berlanga, Rafael

    2015-02-01

    Text mining of scientific literature has been essential for setting up large public biomedical databases, which are being widely used by the research community. In the biomedical domain, the existence of a large number of terminological resources and knowledge bases (KB) has enabled a myriad of machine learning methods for different text mining related tasks. Unfortunately, KBs have not been devised for text mining tasks but for human interpretation, thus performance of KB-based methods is usually lower when compared to supervised machine learning methods. The disadvantage of supervised methods though is they require labeled training data and therefore not useful for large scale biomedical text mining systems. KB-based methods do not have this limitation. In this paper, we describe a novel method to generate word-concept probabilities from a KB, which can serve as a basis for several text mining tasks. This method not only takes into account the underlying patterns within the descriptions contained in the KB but also those in texts available from large unlabeled corpora such as MEDLINE. The parameters of the model have been estimated without training data. Patterns from MEDLINE have been built using MetaMap for entity recognition and related using co-occurrences. The word-concept probabilities were evaluated on the task of word sense disambiguation (WSD). The results showed that our method obtained a higher degree of accuracy than other state-of-the-art approaches when evaluated on the MSH WSD data set. We also evaluated our method on the task of document ranking using MEDLINE citations. These results also showed an increase in performance over existing baseline retrieval approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. 75 FR 8316 - Office of Postsecondary Education; Overview Information; Erma Byrd Scholarship Program; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Transmittal of Applications: March 26, 2010. Full Text of Announcement I. Funding Opportunity Description... related to industrial health and safety: Mining and mineral engineering, industrial engineering... technology/technician, hazardous materials information systems technology/technician, mining technology...

  3. Textpresso site-specific recombinases: A text-mining server for the recombinase literature including Cre mice and conditional alleles.

    PubMed

    Urbanski, William M; Condie, Brian G

    2009-12-01

    Textpresso Site Specific Recombinases (http://ssrc.genetics.uga.edu/) is a text-mining web server for searching a database of more than 9,000 full-text publications. The papers and abstracts in this database represent a wide range of topics related to site-specific recombinase (SSR) research tools. Included in the database are most of the papers that report the characterization or use of mouse strains that express Cre recombinase as well as papers that describe or analyze mouse lines that carry conditional (floxed) alleles or SSR-activated transgenes/knockins. The database also includes reports describing SSR-based cloning methods such as the Gateway or the Creator systems, papers reporting the development or use of SSR-based tools in systems such as Drosophila, bacteria, parasites, stem cells, yeast, plants, zebrafish, and Xenopus as well as publications that describe the biochemistry, genetics, or molecular structure of the SSRs themselves. Textpresso Site Specific Recombinases is the only comprehensive text-mining resource available for the literature describing the biology and technical applications of SSRs. (c) 2009 Wiley-Liss, Inc.

  4. Text mining for metabolic pathways, signaling cascades, and protein networks.

    PubMed

    Hoffmann, Robert; Krallinger, Martin; Andres, Eduardo; Tamames, Javier; Blaschke, Christian; Valencia, Alfonso

    2005-05-10

    The complexity of the information stored in databases and publications on metabolic and signaling pathways, the high throughput of experimental data, and the growing number of publications make it imperative to provide systems to help the researcher navigate through these interrelated information resources. Text-mining methods have started to play a key role in the creation and maintenance of links between the information stored in biological databases and its original sources in the literature. These links will be extremely useful for database updating and curation, especially if a number of technical problems can be solved satisfactorily, including the identification of protein and gene names (entities in general) and the characterization of their types of interactions. The first generation of openly accessible text-mining systems, such as iHOP (Information Hyperlinked over Proteins), provides additional functions to facilitate the reconstruction of protein interaction networks, combine database and text information, and support the scientist in the formulation of novel hypotheses. The next challenge is the generation of comprehensive information regarding the general function of signaling pathways and protein interaction networks.

  5. Text Mining for Adverse Drug Events: the Promise, Challenges, and State of the Art

    PubMed Central

    Harpaz, Rave; Callahan, Alison; Tamang, Suzanne; Low, Yen; Odgers, David; Finlayson, Sam; Jung, Kenneth; LePendu, Paea; Shah, Nigam H.

    2014-01-01

    Text mining is the computational process of extracting meaningful information from large amounts of unstructured text. Text mining is emerging as a tool to leverage underutilized data sources that can improve pharmacovigilance, including the objective of adverse drug event detection and assessment. This article provides an overview of recent advances in pharmacovigilance driven by the application of text mining, and discusses several data sources—such as biomedical literature, clinical narratives, product labeling, social media, and Web search logs—that are amenable to text-mining for pharmacovigilance. Given the state of the art, it appears text mining can be applied to extract useful ADE-related information from multiple textual sources. Nonetheless, further research is required to address remaining technical challenges associated with the text mining methodologies, and to conclusively determine the relative contribution of each textual source to improving pharmacovigilance. PMID:25151493

  6. Text Mining.

    ERIC Educational Resources Information Center

    Trybula, Walter J.

    1999-01-01

    Reviews the state of research in text mining, focusing on newer developments. The intent is to describe the disparate investigations currently included under the term text mining and provide a cohesive structure for these efforts. A summary of research identifies key organizations responsible for pushing the development of text mining. A section…

  7. Agile Text Mining for the 2014 i2b2/UTHealth Cardiac Risk Factors Challenge

    PubMed Central

    Cormack, James; Nath, Chinmoy; Milward, David; Raja, Kalpana; Jonnalagadda, Siddhartha R

    2016-01-01

    This paper describes the use of an agile text mining platform (Linguamatics’ Interactive Information Extraction Platform, I2E) to extract document-level cardiac risk factors in patient records as defined in the i2b2/UTHealth 2014 Challenge. The approach uses a data-driven rule-based methodology with the addition of a simple supervised classifier. We demonstrate that agile text mining allows for rapid optimization of extraction strategies, while post-processing can leverage annotation guidelines, corpus statistics and logic inferred from the gold standard data. We also show how data imbalance in a training set affects performance. Evaluation of this approach on the test data gave an F-Score of 91.7%, one percent behind the top performing system. PMID:26209007

  8. Facilitating Decision Making, Re-Use and Collaboration: A Knowledge Management Approach to Acquisition Program Self-Awareness

    DTIC Science & Technology

    2009-06-01

    capabilities: web-based, relational/multi-dimensional, client/server, and metadata (data about data) inclusion (pp. 39-40). Text mining, on the other...and Organizational Systems ( CASOS ) (Carley, 2005). Although AutoMap can be used to conduct text-mining, it was utilized only for its visualization...provides insight into how the GMCOI is using the terms, and where there might be redundant terms and need for de -confliction and standardization

  9. Coronary artery disease risk assessment from unstructured electronic health records using text mining.

    PubMed

    Jonnagaddala, Jitendra; Liaw, Siaw-Teng; Ray, Pradeep; Kumar, Manish; Chang, Nai-Wen; Dai, Hong-Jie

    2015-12-01

    Coronary artery disease (CAD) often leads to myocardial infarction, which may be fatal. Risk factors can be used to predict CAD, which may subsequently lead to prevention or early intervention. Patient data such as co-morbidities, medication history, social history and family history are required to determine the risk factors for a disease. However, risk factor data are usually embedded in unstructured clinical narratives if the data is not collected specifically for risk assessment purposes. Clinical text mining can be used to extract data related to risk factors from unstructured clinical notes. This study presents methods to extract Framingham risk factors from unstructured electronic health records using clinical text mining and to calculate 10-year coronary artery disease risk scores in a cohort of diabetic patients. We developed a rule-based system to extract risk factors: age, gender, total cholesterol, HDL-C, blood pressure, diabetes history and smoking history. The results showed that the output from the text mining system was reliable, but there was a significant amount of missing data to calculate the Framingham risk score. A systematic approach for understanding missing data was followed by implementation of imputation strategies. An analysis of the 10-year Framingham risk scores for coronary artery disease in this cohort has shown that the majority of the diabetic patients are at moderate risk of CAD. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Web services-based text-mining demonstrates broad impacts for interoperability and process simplification.

    PubMed

    Wiegers, Thomas C; Davis, Allan Peter; Mattingly, Carolyn J

    2014-01-01

    The Critical Assessment of Information Extraction systems in Biology (BioCreAtIvE) challenge evaluation tasks collectively represent a community-wide effort to evaluate a variety of text-mining and information extraction systems applied to the biological domain. The BioCreative IV Workshop included five independent subject areas, including Track 3, which focused on named-entity recognition (NER) for the Comparative Toxicogenomics Database (CTD; http://ctdbase.org). Previously, CTD had organized document ranking and NER-related tasks for the BioCreative Workshop 2012; a key finding of that effort was that interoperability and integration complexity were major impediments to the direct application of the systems to CTD's text-mining pipeline. This underscored a prevailing problem with software integration efforts. Major interoperability-related issues included lack of process modularity, operating system incompatibility, tool configuration complexity and lack of standardization of high-level inter-process communications. One approach to potentially mitigate interoperability and general integration issues is the use of Web services to abstract implementation details; rather than integrating NER tools directly, HTTP-based calls from CTD's asynchronous, batch-oriented text-mining pipeline could be made to remote NER Web services for recognition of specific biological terms using BioC (an emerging family of XML formats) for inter-process communications. To test this concept, participating groups developed Representational State Transfer /BioC-compliant Web services tailored to CTD's NER requirements. Participants were provided with a comprehensive set of training materials. CTD evaluated results obtained from the remote Web service-based URLs against a test data set of 510 manually curated scientific articles. Twelve groups participated in the challenge. Recall, precision, balanced F-scores and response times were calculated. Top balanced F-scores for gene, chemical and disease NER were 61, 74 and 51%, respectively. Response times ranged from fractions-of-a-second to over a minute per article. We present a description of the challenge and summary of results, demonstrating how curation groups can effectively use interoperable NER technologies to simplify text-mining pipeline implementation. Database URL: http://ctdbase.org/ © The Author(s) 2014. Published by Oxford University Press.

  11. Web services-based text-mining demonstrates broad impacts for interoperability and process simplification

    PubMed Central

    Wiegers, Thomas C.; Davis, Allan Peter; Mattingly, Carolyn J.

    2014-01-01

    The Critical Assessment of Information Extraction systems in Biology (BioCreAtIvE) challenge evaluation tasks collectively represent a community-wide effort to evaluate a variety of text-mining and information extraction systems applied to the biological domain. The BioCreative IV Workshop included five independent subject areas, including Track 3, which focused on named-entity recognition (NER) for the Comparative Toxicogenomics Database (CTD; http://ctdbase.org). Previously, CTD had organized document ranking and NER-related tasks for the BioCreative Workshop 2012; a key finding of that effort was that interoperability and integration complexity were major impediments to the direct application of the systems to CTD's text-mining pipeline. This underscored a prevailing problem with software integration efforts. Major interoperability-related issues included lack of process modularity, operating system incompatibility, tool configuration complexity and lack of standardization of high-level inter-process communications. One approach to potentially mitigate interoperability and general integration issues is the use of Web services to abstract implementation details; rather than integrating NER tools directly, HTTP-based calls from CTD's asynchronous, batch-oriented text-mining pipeline could be made to remote NER Web services for recognition of specific biological terms using BioC (an emerging family of XML formats) for inter-process communications. To test this concept, participating groups developed Representational State Transfer /BioC-compliant Web services tailored to CTD's NER requirements. Participants were provided with a comprehensive set of training materials. CTD evaluated results obtained from the remote Web service-based URLs against a test data set of 510 manually curated scientific articles. Twelve groups participated in the challenge. Recall, precision, balanced F-scores and response times were calculated. Top balanced F-scores for gene, chemical and disease NER were 61, 74 and 51%, respectively. Response times ranged from fractions-of-a-second to over a minute per article. We present a description of the challenge and summary of results, demonstrating how curation groups can effectively use interoperable NER technologies to simplify text-mining pipeline implementation. Database URL: http://ctdbase.org/ PMID:24919658

  12. Mining protein function from text using term-based support vector machines

    PubMed Central

    Rice, Simon B; Nenadic, Goran; Stapley, Benjamin J

    2005-01-01

    Background Text mining has spurred huge interest in the domain of biology. The goal of the BioCreAtIvE exercise was to evaluate the performance of current text mining systems. We participated in Task 2, which addressed assigning Gene Ontology terms to human proteins and selecting relevant evidence from full-text documents. We approached it as a modified form of the document classification task. We used a supervised machine-learning approach (based on support vector machines) to assign protein function and select passages that support the assignments. As classification features, we used a protein's co-occurring terms that were automatically extracted from documents. Results The results evaluated by curators were modest, and quite variable for different problems: in many cases we have relatively good assignment of GO terms to proteins, but the selected supporting text was typically non-relevant (precision spanning from 3% to 50%). The method appears to work best when a substantial set of relevant documents is obtained, while it works poorly on single documents and/or short passages. The initial results suggest that our approach can also mine annotations from text even when an explicit statement relating a protein to a GO term is absent. Conclusion A machine learning approach to mining protein function predictions from text can yield good performance only if sufficient training data is available, and significant amount of supporting data is used for prediction. The most promising results are for combined document retrieval and GO term assignment, which calls for the integration of methods developed in BioCreAtIvE Task 1 and Task 2. PMID:15960835

  13. Text mining facilitates database curation - extraction of mutation-disease associations from Bio-medical literature.

    PubMed

    Ravikumar, Komandur Elayavilli; Wagholikar, Kavishwar B; Li, Dingcheng; Kocher, Jean-Pierre; Liu, Hongfang

    2015-06-06

    Advances in the next generation sequencing technology has accelerated the pace of individualized medicine (IM), which aims to incorporate genetic/genomic information into medicine. One immediate need in interpreting sequencing data is the assembly of information about genetic variants and their corresponding associations with other entities (e.g., diseases or medications). Even with dedicated effort to capture such information in biological databases, much of this information remains 'locked' in the unstructured text of biomedical publications. There is a substantial lag between the publication and the subsequent abstraction of such information into databases. Multiple text mining systems have been developed, but most of them focus on the sentence level association extraction with performance evaluation based on gold standard text annotations specifically prepared for text mining systems. We developed and evaluated a text mining system, MutD, which extracts protein mutation-disease associations from MEDLINE abstracts by incorporating discourse level analysis, using a benchmark data set extracted from curated database records. MutD achieves an F-measure of 64.3% for reconstructing protein mutation disease associations in curated database records. Discourse level analysis component of MutD contributed to a gain of more than 10% in F-measure when compared against the sentence level association extraction. Our error analysis indicates that 23 of the 64 precision errors are true associations that were not captured by database curators and 68 of the 113 recall errors are caused by the absence of associated disease entities in the abstract. After adjusting for the defects in the curated database, the revised F-measure of MutD in association detection reaches 81.5%. Our quantitative analysis reveals that MutD can effectively extract protein mutation disease associations when benchmarking based on curated database records. The analysis also demonstrates that incorporating discourse level analysis significantly improved the performance of extracting the protein-mutation-disease association. Future work includes the extension of MutD for full text articles.

  14. Discovering and visualizing indirect associations between biomedical concepts

    PubMed Central

    Tsuruoka, Yoshimasa; Miwa, Makoto; Hamamoto, Kaisei; Tsujii, Jun'ichi; Ananiadou, Sophia

    2011-01-01

    Motivation: Discovering useful associations between biomedical concepts has been one of the main goals in biomedical text-mining, and understanding their biomedical contexts is crucial in the discovery process. Hence, we need a text-mining system that helps users explore various types of (possibly hidden) associations in an easy and comprehensible manner. Results: This article describes FACTA+, a real-time text-mining system for finding and visualizing indirect associations between biomedical concepts from MEDLINE abstracts. The system can be used as a text search engine like PubMed with additional features to help users discover and visualize indirect associations between important biomedical concepts such as genes, diseases and chemical compounds. FACTA+ inherits all functionality from its predecessor, FACTA, and extends it by incorporating three new features: (i) detecting biomolecular events in text using a machine learning model, (ii) discovering hidden associations using co-occurrence statistics between concepts, and (iii) visualizing associations to improve the interpretability of the output. To the best of our knowledge, FACTA+ is the first real-time web application that offers the functionality of finding concepts involving biomolecular events and visualizing indirect associations of concepts with both their categories and importance. Availability: FACTA+ is available as a web application at http://refine1-nactem.mc.man.ac.uk/facta/, and its visualizer is available at http://refine1-nactem.mc.man.ac.uk/facta-visualizer/. Contact: tsuruoka@jaist.ac.jp PMID:21685059

  15. An open-source framework for large-scale, flexible evaluation of biomedical text mining systems.

    PubMed

    Baumgartner, William A; Cohen, K Bretonnel; Hunter, Lawrence

    2008-01-29

    Improved evaluation methodologies have been identified as a necessary prerequisite to the improvement of text mining theory and practice. This paper presents a publicly available framework that facilitates thorough, structured, and large-scale evaluations of text mining technologies. The extensibility of this framework and its ability to uncover system-wide characteristics by analyzing component parts as well as its usefulness for facilitating third-party application integration are demonstrated through examples in the biomedical domain. Our evaluation framework was assembled using the Unstructured Information Management Architecture. It was used to analyze a set of gene mention identification systems involving 225 combinations of system, evaluation corpus, and correctness measure. Interactions between all three were found to affect the relative rankings of the systems. A second experiment evaluated gene normalization system performance using as input 4,097 combinations of gene mention systems and gene mention system-combining strategies. Gene mention system recall is shown to affect gene normalization system performance much more than does gene mention system precision, and high gene normalization performance is shown to be achievable with remarkably low levels of gene mention system precision. The software presented in this paper demonstrates the potential for novel discovery resulting from the structured evaluation of biomedical language processing systems, as well as the usefulness of such an evaluation framework for promoting collaboration between developers of biomedical language processing technologies. The code base is available as part of the BioNLP UIMA Component Repository on SourceForge.net.

  16. An open-source framework for large-scale, flexible evaluation of biomedical text mining systems

    PubMed Central

    Baumgartner, William A; Cohen, K Bretonnel; Hunter, Lawrence

    2008-01-01

    Background Improved evaluation methodologies have been identified as a necessary prerequisite to the improvement of text mining theory and practice. This paper presents a publicly available framework that facilitates thorough, structured, and large-scale evaluations of text mining technologies. The extensibility of this framework and its ability to uncover system-wide characteristics by analyzing component parts as well as its usefulness for facilitating third-party application integration are demonstrated through examples in the biomedical domain. Results Our evaluation framework was assembled using the Unstructured Information Management Architecture. It was used to analyze a set of gene mention identification systems involving 225 combinations of system, evaluation corpus, and correctness measure. Interactions between all three were found to affect the relative rankings of the systems. A second experiment evaluated gene normalization system performance using as input 4,097 combinations of gene mention systems and gene mention system-combining strategies. Gene mention system recall is shown to affect gene normalization system performance much more than does gene mention system precision, and high gene normalization performance is shown to be achievable with remarkably low levels of gene mention system precision. Conclusion The software presented in this paper demonstrates the potential for novel discovery resulting from the structured evaluation of biomedical language processing systems, as well as the usefulness of such an evaluation framework for promoting collaboration between developers of biomedical language processing technologies. The code base is available as part of the BioNLP UIMA Component Repository on SourceForge.net. PMID:18230184

  17. Compatibility between Text Mining and Qualitative Research in the Perspectives of Grounded Theory, Content Analysis, and Reliability

    ERIC Educational Resources Information Center

    Yu, Chong Ho; Jannasch-Pennell, Angel; DiGangi, Samuel

    2011-01-01

    The objective of this article is to illustrate that text mining and qualitative research are epistemologically compatible. First, like many qualitative research approaches, such as grounded theory, text mining encourages open-mindedness and discourages preconceptions. Contrary to the popular belief that text mining is a linear and fully automated…

  18. Naive Bayes as opinion classifier to evaluate students satisfaction based on student sentiment in Twitter Social Media

    NASA Astrophysics Data System (ADS)

    Candra Permana, Fahmi; Rosmansyah, Yusep; Setiawan Abdullah, Atje

    2017-10-01

    Students activity on social media can provide implicit knowledge and new perspectives for an educational system. Sentiment analysis is a part of text mining that can help to analyze and classify the opinion data. This research uses text mining and naive Bayes method as opinion classifier, to be used as an alternative methods in the process of evaluating studentss satisfaction for educational institution. Based on test results, this system can determine the opinion classification in Bahasa Indonesia using naive Bayes as opinion classifier with accuracy level of 84% correct, and the comparison between the existing system and the proposed system to evaluate students satisfaction in learning process, there is only a difference of 16.49%.

  19. Ion Channel ElectroPhysiology Ontology (ICEPO) - a case study of text mining assisted ontology development.

    PubMed

    Elayavilli, Ravikumar Komandur; Liu, Hongfang

    2016-01-01

    Computational modeling of biological cascades is of great interest to quantitative biologists. Biomedical text has been a rich source for quantitative information. Gathering quantitative parameters and values from biomedical text is one significant challenge in the early steps of computational modeling as it involves huge manual effort. While automatically extracting such quantitative information from bio-medical text may offer some relief, lack of ontological representation for a subdomain serves as impedance in normalizing textual extractions to a standard representation. This may render textual extractions less meaningful to the domain experts. In this work, we propose a rule-based approach to automatically extract relations involving quantitative data from biomedical text describing ion channel electrophysiology. We further translated the quantitative assertions extracted through text mining to a formal representation that may help in constructing ontology for ion channel events using a rule based approach. We have developed Ion Channel ElectroPhysiology Ontology (ICEPO) by integrating the information represented in closely related ontologies such as, Cell Physiology Ontology (CPO), and Cardiac Electro Physiology Ontology (CPEO) and the knowledge provided by domain experts. The rule-based system achieved an overall F-measure of 68.93% in extracting the quantitative data assertions system on an independently annotated blind data set. We further made an initial attempt in formalizing the quantitative data assertions extracted from the biomedical text into a formal representation that offers potential to facilitate the integration of text mining into ontological workflow, a novel aspect of this study. This work is a case study where we created a platform that provides formal interaction between ontology development and text mining. We have achieved partial success in extracting quantitative assertions from the biomedical text and formalizing them in ontological framework. The ICEPO ontology is available for download at http://openbionlp.org/mutd/supplementarydata/ICEPO/ICEPO.owl.

  20. A sentence sliding window approach to extract protein annotations from biomedical articles

    PubMed Central

    Krallinger, Martin; Padron, Maria; Valencia, Alfonso

    2005-01-01

    Background Within the emerging field of text mining and statistical natural language processing (NLP) applied to biomedical articles, a broad variety of techniques have been developed during the past years. Nevertheless, there is still a great ned of comparative assessment of the performance of the proposed methods and the development of common evaluation criteria. This issue was addressed by the Critical Assessment of Text Mining Methods in Molecular Biology (BioCreative) contest. The aim of this contest was to assess the performance of text mining systems applied to biomedical texts including tools which recognize named entities such as genes and proteins, and tools which automatically extract protein annotations. Results The "sentence sliding window" approach proposed here was found to efficiently extract text fragments from full text articles containing annotations on proteins, providing the highest number of correctly predicted annotations. Moreover, the number of correct extractions of individual entities (i.e. proteins and GO terms) involved in the relationships used for the annotations was significantly higher than the correct extractions of the complete annotations (protein-function relations). Conclusion We explored the use of averaging sentence sliding windows for information extraction, especially in a context where conventional training data is unavailable. The combination of our approach with more refined statistical estimators and machine learning techniques might be a way to improve annotation extraction for future biomedical text mining applications. PMID:15960831

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kargupta, H.; Stafford, B.; Hamzaoglu, I.

    This paper describes an experimental parallel/distributed data mining system PADMA (PArallel Data Mining Agents) that uses software agents for local data accessing and analysis and a web based interface for interactive data visualization. It also presents the results of applying PADMA for detecting patterns in unstructured texts of postmortem reports and laboratory test data for Hepatitis C patients.

  2. 76 FR 45300 - Notice of Issuance of Materials License SUA-1597 and Record of Decision for Uranerz Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... considered but eliminated from detailed analysis include conventional uranium mining and milling, conventional mining and heap leach processing, alternative site location, alternate lixiviants, and alternate...'s Agencywide Document Access and Management System (ADAMS), which provides text and image files of...

  3. caTIES: a grid based system for coding and retrieval of surgical pathology reports and tissue specimens in support of translational research.

    PubMed

    Crowley, Rebecca S; Castine, Melissa; Mitchell, Kevin; Chavan, Girish; McSherry, Tara; Feldman, Michael

    2010-01-01

    The authors report on the development of the Cancer Tissue Information Extraction System (caTIES)--an application that supports collaborative tissue banking and text mining by leveraging existing natural language processing methods and algorithms, grid communication and security frameworks, and query visualization methods. The system fills an important need for text-derived clinical data in translational research such as tissue-banking and clinical trials. The design of caTIES addresses three critical issues for informatics support of translational research: (1) federation of research data sources derived from clinical systems; (2) expressive graphical interfaces for concept-based text mining; and (3) regulatory and security model for supporting multi-center collaborative research. Implementation of the system at several Cancer Centers across the country is creating a potential network of caTIES repositories that could provide millions of de-identified clinical reports to users. The system provides an end-to-end application of medical natural language processing to support multi-institutional translational research programs.

  4. Survey of Natural Language Processing Techniques in Bioinformatics.

    PubMed

    Zeng, Zhiqiang; Shi, Hua; Wu, Yun; Hong, Zhiling

    2015-01-01

    Informatics methods, such as text mining and natural language processing, are always involved in bioinformatics research. In this study, we discuss text mining and natural language processing methods in bioinformatics from two perspectives. First, we aim to search for knowledge on biology, retrieve references using text mining methods, and reconstruct databases. For example, protein-protein interactions and gene-disease relationship can be mined from PubMed. Then, we analyze the applications of text mining and natural language processing techniques in bioinformatics, including predicting protein structure and function, detecting noncoding RNA. Finally, numerous methods and applications, as well as their contributions to bioinformatics, are discussed for future use by text mining and natural language processing researchers.

  5. Text mining and medicine: usefulness in respiratory diseases.

    PubMed

    Piedra, David; Ferrer, Antoni; Gea, Joaquim

    2014-03-01

    It is increasingly common to have medical information in electronic format. This includes scientific articles as well as clinical management reviews, and even records from health institutions with patient data. However, traditional instruments, both individual and institutional, are of little use for selecting the most appropriate information in each case, either in the clinical or research field. So-called text or data «mining» enables this huge amount of information to be managed, extracting it from various sources using processing systems (filtration and curation), integrating it and permitting the generation of new knowledge. This review aims to provide an overview of text and data mining, and of the potential usefulness of this bioinformatic technique in the exercise of care in respiratory medicine and in research in the same field. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  6. Agile text mining for the 2014 i2b2/UTHealth Cardiac risk factors challenge.

    PubMed

    Cormack, James; Nath, Chinmoy; Milward, David; Raja, Kalpana; Jonnalagadda, Siddhartha R

    2015-12-01

    This paper describes the use of an agile text mining platform (Linguamatics' Interactive Information Extraction Platform, I2E) to extract document-level cardiac risk factors in patient records as defined in the i2b2/UTHealth 2014 challenge. The approach uses a data-driven rule-based methodology with the addition of a simple supervised classifier. We demonstrate that agile text mining allows for rapid optimization of extraction strategies, while post-processing can leverage annotation guidelines, corpus statistics and logic inferred from the gold standard data. We also show how data imbalance in a training set affects performance. Evaluation of this approach on the test data gave an F-Score of 91.7%, one percent behind the top performing system. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Text Mining in Organizational Research

    PubMed Central

    Kobayashi, Vladimer B.; Berkers, Hannah A.; Kismihók, Gábor; Den Hartog, Deanne N.

    2017-01-01

    Despite the ubiquity of textual data, so far few researchers have applied text mining to answer organizational research questions. Text mining, which essentially entails a quantitative approach to the analysis of (usually) voluminous textual data, helps accelerate knowledge discovery by radically increasing the amount data that can be analyzed. This article aims to acquaint organizational researchers with the fundamental logic underpinning text mining, the analytical stages involved, and contemporary techniques that may be used to achieve different types of objectives. The specific analytical techniques reviewed are (a) dimensionality reduction, (b) distance and similarity computing, (c) clustering, (d) topic modeling, and (e) classification. We describe how text mining may extend contemporary organizational research by allowing the testing of existing or new research questions with data that are likely to be rich, contextualized, and ecologically valid. After an exploration of how evidence for the validity of text mining output may be generated, we conclude the article by illustrating the text mining process in a job analysis setting using a dataset composed of job vacancies. PMID:29881248

  8. Text Mining in Organizational Research.

    PubMed

    Kobayashi, Vladimer B; Mol, Stefan T; Berkers, Hannah A; Kismihók, Gábor; Den Hartog, Deanne N

    2018-07-01

    Despite the ubiquity of textual data, so far few researchers have applied text mining to answer organizational research questions. Text mining, which essentially entails a quantitative approach to the analysis of (usually) voluminous textual data, helps accelerate knowledge discovery by radically increasing the amount data that can be analyzed. This article aims to acquaint organizational researchers with the fundamental logic underpinning text mining, the analytical stages involved, and contemporary techniques that may be used to achieve different types of objectives. The specific analytical techniques reviewed are (a) dimensionality reduction, (b) distance and similarity computing, (c) clustering, (d) topic modeling, and (e) classification. We describe how text mining may extend contemporary organizational research by allowing the testing of existing or new research questions with data that are likely to be rich, contextualized, and ecologically valid. After an exploration of how evidence for the validity of text mining output may be generated, we conclude the article by illustrating the text mining process in a job analysis setting using a dataset composed of job vacancies.

  9. Discriminative and informative features for biomolecular text mining with ensemble feature selection.

    PubMed

    Van Landeghem, Sofie; Abeel, Thomas; Saeys, Yvan; Van de Peer, Yves

    2010-09-15

    In the field of biomolecular text mining, black box behavior of machine learning systems currently limits understanding of the true nature of the predictions. However, feature selection (FS) is capable of identifying the most relevant features in any supervised learning setting, providing insight into the specific properties of the classification algorithm. This allows us to build more accurate classifiers while at the same time bridging the gap between the black box behavior and the end-user who has to interpret the results. We show that our FS methodology successfully discards a large fraction of machine-generated features, improving classification performance of state-of-the-art text mining algorithms. Furthermore, we illustrate how FS can be applied to gain understanding in the predictions of a framework for biomolecular event extraction from text. We include numerous examples of highly discriminative features that model either biological reality or common linguistic constructs. Finally, we discuss a number of insights from our FS analyses that will provide the opportunity to considerably improve upon current text mining tools. The FS algorithms and classifiers are available in Java-ML (http://java-ml.sf.net). The datasets are publicly available from the BioNLP'09 Shared Task web site (http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/).

  10. Text mining for adverse drug events: the promise, challenges, and state of the art.

    PubMed

    Harpaz, Rave; Callahan, Alison; Tamang, Suzanne; Low, Yen; Odgers, David; Finlayson, Sam; Jung, Kenneth; LePendu, Paea; Shah, Nigam H

    2014-10-01

    Text mining is the computational process of extracting meaningful information from large amounts of unstructured text. It is emerging as a tool to leverage underutilized data sources that can improve pharmacovigilance, including the objective of adverse drug event (ADE) detection and assessment. This article provides an overview of recent advances in pharmacovigilance driven by the application of text mining, and discusses several data sources-such as biomedical literature, clinical narratives, product labeling, social media, and Web search logs-that are amenable to text mining for pharmacovigilance. Given the state of the art, it appears text mining can be applied to extract useful ADE-related information from multiple textual sources. Nonetheless, further research is required to address remaining technical challenges associated with the text mining methodologies, and to conclusively determine the relative contribution of each textual source to improving pharmacovigilance.

  11. 76 FR 5216 - Notice of Availability of Final Supplemental Environmental Impact Statement for the Nichols Ranch...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... Uranium Recovery Project, located in the Pumpkin Buttes Uranium Mining District within the Powder River.... Alternatives that were considered, but were eliminated from detailed analysis, include conventional mining and... an Agencywide Documents and Management System (ADAMS), which provides text and image files of the NRC...

  12. Empirical advances with text mining of electronic health records.

    PubMed

    Delespierre, T; Denormandie, P; Bar-Hen, A; Josseran, L

    2017-08-22

    Korian is a private group specializing in medical accommodations for elderly and dependent people. A professional data warehouse (DWH) established in 2010 hosts all of the residents' data. Inside this information system (IS), clinical narratives (CNs) were used only by medical staff as a residents' care linking tool. The objective of this study was to show that, through qualitative and quantitative textual analysis of a relatively small physiotherapy and well-defined CN sample, it was possible to build a physiotherapy corpus and, through this process, generate a new body of knowledge by adding relevant information to describe the residents' care and lives. Meaningful words were extracted through Standard Query Language (SQL) with the LIKE function and wildcards to perform pattern matching, followed by text mining and a word cloud using R® packages. Another step involved principal components and multiple correspondence analyses, plus clustering on the same residents' sample as well as on other health data using a health model measuring the residents' care level needs. By combining these techniques, physiotherapy treatments could be characterized by a list of constructed keywords, and the residents' health characteristics were built. Feeding defects or health outlier groups could be detected, physiotherapy residents' data and their health data were matched, and differences in health situations showed qualitative and quantitative differences in physiotherapy narratives. This textual experiment using a textual process in two stages showed that text mining and data mining techniques provide convenient tools to improve residents' health and quality of care by adding new, simple, useable data to the electronic health record (EHR). When used with a normalized physiotherapy problem list, text mining through information extraction (IE), named entity recognition (NER) and data mining (DM) can provide a real advantage to describe health care, adding new medical material and helping to integrate the EHR system into the health staff work environment.

  13. Health Terrain: Visualizing Large Scale Health Data

    DTIC Science & Technology

    2015-12-01

    Text mining ; Data mining . 16. SECURITY  CLASSIFICATION  OF: 17... text   mining  algorithms  to  construct  a  concept  space.  A   browser-­‐based  user  interface  is  developed  to...Public  health  data,  Notifiable  condition  detector,   Text   mining ,  Data   mining   4 of 29 Disease Patient Location Term

  14. Accelerating literature curation with text-mining tools: a case study of using PubTator to curate genes in PubMed abstracts

    PubMed Central

    Lu, Zhiyong

    2012-01-01

    Today’s biomedical research has become heavily dependent on access to the biological knowledge encoded in expert curated biological databases. As the volume of biological literature grows rapidly, it becomes increasingly difficult for biocurators to keep up with the literature because manual curation is an expensive and time-consuming endeavour. Past research has suggested that computer-assisted curation can improve efficiency, but few text-mining systems have been formally evaluated in this regard. Through participation in the interactive text-mining track of the BioCreative 2012 workshop, we developed PubTator, a PubMed-like system that assists with two specific human curation tasks: document triage and bioconcept annotation. On the basis of evaluation results from two external user groups, we find that the accuracy of PubTator-assisted curation is comparable with that of manual curation and that PubTator can significantly increase human curatorial speed. These encouraging findings warrant further investigation with a larger number of publications to be annotated. Database URL: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/ PMID:23160414

  15. Introducing Text Analytics as a Graduate Business School Course

    ERIC Educational Resources Information Center

    Edgington, Theresa M.

    2011-01-01

    Text analytics refers to the process of analyzing unstructured data from documented sources, including open-ended surveys, blogs, and other types of web dialog. Text analytics has enveloped the concept of text mining, an analysis approach influenced heavily from data mining. While text mining has been covered extensively in various computer…

  16. BioC implementations in Go, Perl, Python and Ruby

    PubMed Central

    Liu, Wanli; Islamaj Doğan, Rezarta; Kwon, Dongseop; Marques, Hernani; Rinaldi, Fabio; Wilbur, W. John; Comeau, Donald C.

    2014-01-01

    As part of a communitywide effort for evaluating text mining and information extraction systems applied to the biomedical domain, BioC is focused on the goal of interoperability, currently a major barrier to wide-scale adoption of text mining tools. BioC is a simple XML format, specified by DTD, for exchanging data for biomedical natural language processing. With initial implementations in C++ and Java, BioC provides libraries of code for reading and writing BioC text documents and annotations. We extend BioC to Perl, Python, Go and Ruby. We used SWIG to extend the C++ implementation for Perl and one Python implementation. A second Python implementation and the Ruby implementation use native data structures and libraries. BioC is also implemented in the Google language Go. BioC modules are functional in all of these languages, which can facilitate text mining tasks. BioC implementations are freely available through the BioC site: http://bioc.sourceforge.net. Database URL: http://bioc.sourceforge.net/ PMID:24961236

  17. Automated Assessment of Patients' Self-Narratives for Posttraumatic Stress Disorder Screening Using Natural Language Processing and Text Mining.

    PubMed

    He, Qiwei; Veldkamp, Bernard P; Glas, Cees A W; de Vries, Theo

    2017-03-01

    Patients' narratives about traumatic experiences and symptoms are useful in clinical screening and diagnostic procedures. In this study, we presented an automated assessment system to screen patients for posttraumatic stress disorder via a natural language processing and text-mining approach. Four machine-learning algorithms-including decision tree, naive Bayes, support vector machine, and an alternative classification approach called the product score model-were used in combination with n-gram representation models to identify patterns between verbal features in self-narratives and psychiatric diagnoses. With our sample, the product score model with unigrams attained the highest prediction accuracy when compared with practitioners' diagnoses. The addition of multigrams contributed most to balancing the metrics of sensitivity and specificity. This article also demonstrates that text mining is a promising approach for analyzing patients' self-expression behavior, thus helping clinicians identify potential patients from an early stage.

  18. Integration of Text- and Data-Mining Technologies for Use in Banking Applications

    NASA Astrophysics Data System (ADS)

    Maslankowski, Jacek

    Unstructured data, most of it in the form of text files, typically accounts for 85% of an organization's knowledge stores, but it's not always easy to find, access, analyze or use (Robb 2004). That is why it is important to use solutions based on text and data mining. This solution is known as duo mining. This leads to improve management based on knowledge owned in organization. The results are interesting. Data mining provides to lead with structuralized data, usually powered from data warehouses. Text mining, sometimes called web mining, looks for patterns in unstructured data — memos, document and www. Integrating text-based information with structured data enriches predictive modeling capabilities and provides new stores of insightful and valuable information for driving business and research initiatives forward.

  19. PPInterFinder--a mining tool for extracting causal relations on human proteins from literature.

    PubMed

    Raja, Kalpana; Subramani, Suresh; Natarajan, Jeyakumar

    2013-01-01

    One of the most common and challenging problem in biomedical text mining is to mine protein-protein interactions (PPIs) from MEDLINE abstracts and full-text research articles because PPIs play a major role in understanding the various biological processes and the impact of proteins in diseases. We implemented, PPInterFinder--a web-based text mining tool to extract human PPIs from biomedical literature. PPInterFinder uses relation keyword co-occurrences with protein names to extract information on PPIs from MEDLINE abstracts and consists of three phases. First, it identifies the relation keyword using a parser with Tregex and a relation keyword dictionary. Next, it automatically identifies the candidate PPI pairs with a set of rules related to PPI recognition. Finally, it extracts the relations by matching the sentence with a set of 11 specific patterns based on the syntactic nature of PPI pair. We find that PPInterFinder is capable of predicting PPIs with the accuracy of 66.05% on AIMED corpus and outperforms most of the existing systems. DATABASE URL: http://www.biomining-bu.in/ppinterfinder/

  20. PPInterFinder—a mining tool for extracting causal relations on human proteins from literature

    PubMed Central

    Raja, Kalpana; Subramani, Suresh; Natarajan, Jeyakumar

    2013-01-01

    One of the most common and challenging problem in biomedical text mining is to mine protein–protein interactions (PPIs) from MEDLINE abstracts and full-text research articles because PPIs play a major role in understanding the various biological processes and the impact of proteins in diseases. We implemented, PPInterFinder—a web-based text mining tool to extract human PPIs from biomedical literature. PPInterFinder uses relation keyword co-occurrences with protein names to extract information on PPIs from MEDLINE abstracts and consists of three phases. First, it identifies the relation keyword using a parser with Tregex and a relation keyword dictionary. Next, it automatically identifies the candidate PPI pairs with a set of rules related to PPI recognition. Finally, it extracts the relations by matching the sentence with a set of 11 specific patterns based on the syntactic nature of PPI pair. We find that PPInterFinder is capable of predicting PPIs with the accuracy of 66.05% on AIMED corpus and outperforms most of the existing systems. Database URL: http://www.biomining-bu.in/ppinterfinder/ PMID:23325628

  1. SparkText: Biomedical Text Mining on Big Data Framework.

    PubMed

    Ye, Zhan; Tafti, Ahmad P; He, Karen Y; Wang, Kai; He, Max M

    Many new biomedical research articles are published every day, accumulating rich information, such as genetic variants, genes, diseases, and treatments. Rapid yet accurate text mining on large-scale scientific literature can discover novel knowledge to better understand human diseases and to improve the quality of disease diagnosis, prevention, and treatment. In this study, we designed and developed an efficient text mining framework called SparkText on a Big Data infrastructure, which is composed of Apache Spark data streaming and machine learning methods, combined with a Cassandra NoSQL database. To demonstrate its performance for classifying cancer types, we extracted information (e.g., breast, prostate, and lung cancers) from tens of thousands of articles downloaded from PubMed, and then employed Naïve Bayes, Support Vector Machine (SVM), and Logistic Regression to build prediction models to mine the articles. The accuracy of predicting a cancer type by SVM using the 29,437 full-text articles was 93.81%. While competing text-mining tools took more than 11 hours, SparkText mined the dataset in approximately 6 minutes. This study demonstrates the potential for mining large-scale scientific articles on a Big Data infrastructure, with real-time update from new articles published daily. SparkText can be extended to other areas of biomedical research.

  2. SparkText: Biomedical Text Mining on Big Data Framework

    PubMed Central

    He, Karen Y.; Wang, Kai

    2016-01-01

    Background Many new biomedical research articles are published every day, accumulating rich information, such as genetic variants, genes, diseases, and treatments. Rapid yet accurate text mining on large-scale scientific literature can discover novel knowledge to better understand human diseases and to improve the quality of disease diagnosis, prevention, and treatment. Results In this study, we designed and developed an efficient text mining framework called SparkText on a Big Data infrastructure, which is composed of Apache Spark data streaming and machine learning methods, combined with a Cassandra NoSQL database. To demonstrate its performance for classifying cancer types, we extracted information (e.g., breast, prostate, and lung cancers) from tens of thousands of articles downloaded from PubMed, and then employed Naïve Bayes, Support Vector Machine (SVM), and Logistic Regression to build prediction models to mine the articles. The accuracy of predicting a cancer type by SVM using the 29,437 full-text articles was 93.81%. While competing text-mining tools took more than 11 hours, SparkText mined the dataset in approximately 6 minutes. Conclusions This study demonstrates the potential for mining large-scale scientific articles on a Big Data infrastructure, with real-time update from new articles published daily. SparkText can be extended to other areas of biomedical research. PMID:27685652

  3. 75 FR 63518 - Notice of Availability of Environmental Assessment and Finding of No Significant Impact for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... Environmental Assessment and Finding of No Significant Impact for License Amendment No. 61 for Rio Algom Mining... amendment to Source Materials License SUA-1473 issued to Rio Algom Mining LLC (Rio Algom, or the Licensee... access the NRC's Agencywide Document Access and Management System (ADAMS), which provides text and image...

  4. Identifying Engineering Students' English Sentence Reading Comprehension Errors: Applying a Data Mining Technique

    ERIC Educational Resources Information Center

    Tsai, Yea-Ru; Ouyang, Chen-Sen; Chang, Yukon

    2016-01-01

    The purpose of this study is to propose a diagnostic approach to identify engineering students' English reading comprehension errors. Student data were collected during the process of reading texts of English for science and technology on a web-based cumulative sentence analysis system. For the analysis, the association-rule, data mining technique…

  5. Neural networks for data mining electronic text collections

    NASA Astrophysics Data System (ADS)

    Walker, Nicholas; Truman, Gregory

    1997-04-01

    The use of neural networks in information retrieval and text analysis has primarily suffered from the issues of adequate document representation, the ability to scale to very large collections, dynamism in the face of new information and the practical difficulties of basing the design on the use of supervised training sets. Perhaps the most important approach to begin solving these problems is the use of `intermediate entities' which reduce the dimensionality of document representations and the size of documents collections to manageable levels coupled with the use of unsupervised neural network paradigms. This paper describes the issues, a fully configured neural network-based text analysis system--dataHARVEST--aimed at data mining text collections which begins this process, along with the remaining difficulties and potential ways forward.

  6. Text mining for the biocuration workflow

    PubMed Central

    Hirschman, Lynette; Burns, Gully A. P. C; Krallinger, Martin; Arighi, Cecilia; Cohen, K. Bretonnel; Valencia, Alfonso; Wu, Cathy H.; Chatr-Aryamontri, Andrew; Dowell, Karen G.; Huala, Eva; Lourenço, Anália; Nash, Robert; Veuthey, Anne-Lise; Wiegers, Thomas; Winter, Andrew G.

    2012-01-01

    Molecular biology has become heavily dependent on biological knowledge encoded in expert curated biological databases. As the volume of biological literature increases, biocurators need help in keeping up with the literature; (semi-) automated aids for biocuration would seem to be an ideal application for natural language processing and text mining. However, to date, there have been few documented successes for improving biocuration throughput using text mining. Our initial investigations took place for the workshop on ‘Text Mining for the BioCuration Workflow’ at the third International Biocuration Conference (Berlin, 2009). We interviewed biocurators to obtain workflows from eight biological databases. This initial study revealed high-level commonalities, including (i) selection of documents for curation; (ii) indexing of documents with biologically relevant entities (e.g. genes); and (iii) detailed curation of specific relations (e.g. interactions); however, the detailed workflows also showed many variabilities. Following the workshop, we conducted a survey of biocurators. The survey identified biocurator priorities, including the handling of full text indexed with biological entities and support for the identification and prioritization of documents for curation. It also indicated that two-thirds of the biocuration teams had experimented with text mining and almost half were using text mining at that time. Analysis of our interviews and survey provide a set of requirements for the integration of text mining into the biocuration workflow. These can guide the identification of common needs across curated databases and encourage joint experimentation involving biocurators, text mining developers and the larger biomedical research community. PMID:22513129

  7. Text mining for the biocuration workflow.

    PubMed

    Hirschman, Lynette; Burns, Gully A P C; Krallinger, Martin; Arighi, Cecilia; Cohen, K Bretonnel; Valencia, Alfonso; Wu, Cathy H; Chatr-Aryamontri, Andrew; Dowell, Karen G; Huala, Eva; Lourenço, Anália; Nash, Robert; Veuthey, Anne-Lise; Wiegers, Thomas; Winter, Andrew G

    2012-01-01

    Molecular biology has become heavily dependent on biological knowledge encoded in expert curated biological databases. As the volume of biological literature increases, biocurators need help in keeping up with the literature; (semi-) automated aids for biocuration would seem to be an ideal application for natural language processing and text mining. However, to date, there have been few documented successes for improving biocuration throughput using text mining. Our initial investigations took place for the workshop on 'Text Mining for the BioCuration Workflow' at the third International Biocuration Conference (Berlin, 2009). We interviewed biocurators to obtain workflows from eight biological databases. This initial study revealed high-level commonalities, including (i) selection of documents for curation; (ii) indexing of documents with biologically relevant entities (e.g. genes); and (iii) detailed curation of specific relations (e.g. interactions); however, the detailed workflows also showed many variabilities. Following the workshop, we conducted a survey of biocurators. The survey identified biocurator priorities, including the handling of full text indexed with biological entities and support for the identification and prioritization of documents for curation. It also indicated that two-thirds of the biocuration teams had experimented with text mining and almost half were using text mining at that time. Analysis of our interviews and survey provide a set of requirements for the integration of text mining into the biocuration workflow. These can guide the identification of common needs across curated databases and encourage joint experimentation involving biocurators, text mining developers and the larger biomedical research community.

  8. Frontiers of biomedical text mining: current progress

    PubMed Central

    Zweigenbaum, Pierre; Demner-Fushman, Dina; Yu, Hong; Cohen, Kevin B.

    2008-01-01

    It is now almost 15 years since the publication of the first paper on text mining in the genomics domain, and decades since the first paper on text mining in the medical domain. Enormous progress has been made in the areas of information retrieval, evaluation methodologies and resource construction. Some problems, such as abbreviation-handling, can essentially be considered solved problems, and others, such as identification of gene mentions in text, seem likely to be solved soon. However, a number of problems at the frontiers of biomedical text mining continue to present interesting challenges and opportunities for great improvements and interesting research. In this article we review the current state of the art in biomedical text mining or ‘BioNLP’ in general, focusing primarily on papers published within the past year. PMID:17977867

  9. Automated detection of follow-up appointments using text mining of discharge records.

    PubMed

    Ruud, Kari L; Johnson, Matthew G; Liesinger, Juliette T; Grafft, Carrie A; Naessens, James M

    2010-06-01

    To determine whether text mining can accurately detect specific follow-up appointment criteria in free-text hospital discharge records. Cross-sectional study. Mayo Clinic Rochester hospitals. Inpatients discharged from general medicine services in 2006 (n = 6481). Textual hospital dismissal summaries were manually reviewed to determine whether the records contained specific follow-up appointment arrangement elements: date, time and either physician or location for an appointment. The data set was evaluated for the same criteria using SAS Text Miner software. The two assessments were compared to determine the accuracy of text mining for detecting records containing follow-up appointment arrangements. Agreement of text-mined appointment findings with gold standard (manual abstraction) including sensitivity, specificity, positive predictive and negative predictive values (PPV and NPV). About 55.2% (3576) of discharge records contained all criteria for follow-up appointment arrangements according to the manual review, 3.2% (113) of which were missed through text mining. Text mining incorrectly identified 3.7% (107) follow-up appointments that were not considered valid through manual review. Therefore, the text mining analysis concurred with the manual review in 96.6% of the appointment findings. Overall sensitivity and specificity were 96.8 and 96.3%, respectively; and PPV and NPV were 97.0 and 96.1%, respectively. of individual appointment criteria resulted in accuracy rates of 93.5% for date, 97.4% for time, 97.5% for physician and 82.9% for location. Text mining of unstructured hospital dismissal summaries can accurately detect documentation of follow-up appointment arrangement elements, thus saving considerable resources for performance assessment and quality-related research.

  10. Efficient chemical-disease identification and relationship extraction using Wikipedia to improve recall

    PubMed Central

    Lowe, Daniel M.; O’Boyle, Noel M.; Sayle, Roger A.

    2016-01-01

    Awareness of the adverse effects of chemicals is important in biomedical research and healthcare. Text mining can allow timely and low-cost extraction of this knowledge from the biomedical literature. We extended our text mining solution, LeadMine, to identify diseases and chemical-induced disease relationships (CIDs). LeadMine is a dictionary/grammar-based entity recognizer and was used to recognize and normalize both chemicals and diseases to Medical Subject Headings (MeSH) IDs. The disease lexicon was obtained from three sources: MeSH, the Disease Ontology and Wikipedia. The Wikipedia dictionary was derived from pages with a disease/symptom box, or those where the page title appeared in the lexicon. Composite entities (e.g. heart and lung disease) were detected and mapped to their composite MeSH IDs. For CIDs, we developed a simple pattern-based system to find relationships within the same sentence. Our system was evaluated in the BioCreative V Chemical–Disease Relation task and achieved very good results for both disease concept ID recognition (F1-score: 86.12%) and CIDs (F1-score: 52.20%) on the test set. As our system was over an order of magnitude faster than other solutions evaluated on the task, we were able to apply the same system to the entirety of MEDLINE allowing us to extract a collection of over 250 000 distinct CIDs. PMID:27060160

  11. Integrating unified medical language system and association mining techniques into relevance feedback for biomedical literature search.

    PubMed

    Ji, Yanqing; Ying, Hao; Tran, John; Dews, Peter; Massanari, R Michael

    2016-07-19

    Finding highly relevant articles from biomedical databases is challenging not only because it is often difficult to accurately express a user's underlying intention through keywords but also because a keyword-based query normally returns a long list of hits with many citations being unwanted by the user. This paper proposes a novel biomedical literature search system, called BiomedSearch, which supports complex queries and relevance feedback. The system employed association mining techniques to build a k-profile representing a user's relevance feedback. More specifically, we developed a weighted interest measure and an association mining algorithm to find the strength of association between a query and each concept in the article(s) selected by the user as feedback. The top concepts were utilized to form a k-profile used for the next-round search. BiomedSearch relies on Unified Medical Language System (UMLS) knowledge sources to map text files to standard biomedical concepts. It was designed to support queries with any levels of complexity. A prototype of BiomedSearch software was made and it was preliminarily evaluated using the Genomics data from TREC (Text Retrieval Conference) 2006 Genomics Track. Initial experiment results indicated that BiomedSearch increased the mean average precision (MAP) for a set of queries. With UMLS and association mining techniques, BiomedSearch can effectively utilize users' relevance feedback to improve the performance of biomedical literature search.

  12. Medical Named Entity Recognition for Indonesian Language Using Word Representations

    NASA Astrophysics Data System (ADS)

    Rahman, Arief

    2018-03-01

    Nowadays, Named Entity Recognition (NER) system is used in medical texts to obtain important medical information, like diseases, symptoms, and drugs. While most NER systems are applied to formal medical texts, informal ones like those from social media (also called semi-formal texts) are starting to get recognition as a gold mine for medical information. We propose a theoretical Named Entity Recognition (NER) model for semi-formal medical texts in our medical knowledge management system by comparing two kinds of word representations: cluster-based word representation and distributed representation.

  13. A preliminary approach to creating an overview of lactoferrin multi-functionality utilizing a text mining method.

    PubMed

    Shimazaki, Kei-ichi; Kushida, Tatsuya

    2010-06-01

    Lactoferrin is a multi-functional metal-binding glycoprotein that exhibits many biological functions of interest to many researchers from the fields of clinical medicine, dentistry, pharmacology, veterinary medicine, nutrition and milk science. To date, a number of academic reports concerning the biological activities of lactoferrin have been published and are easily accessible through public data repositories. However, as the literature is expanding daily, this presents challenges in understanding the larger picture of lactoferrin function and mechanisms. In order to overcome the "analysis paralysis" associated with lactoferrin information, we attempted to apply a text mining method to the accumulated lactoferrin literature. To this end, we used the information extraction system GENPAC (provided by Nalapro Technologies Inc., Tokyo). This information extraction system uses natural language processing and text mining technology. This system analyzes the sentences and titles from abstracts stored in the PubMed database, and can automatically extract binary relations that consist of interactions between genes/proteins, chemicals and diseases/functions. We expect that such information visualization analysis will be useful in determining novel relationships among a multitude of lactoferrin functions and mechanisms. We have demonstrated the utilization of this method to find pathways of lactoferrin participation in neovascularization, Helicobacter pylori attack on gastric mucosa, atopic dermatitis and lipid metabolism.

  14. LimTox: a web tool for applied text mining of adverse event and toxicity associations of compounds, drugs and genes

    PubMed Central

    Cañada, Andres; Rabal, Obdulia; Oyarzabal, Julen; Valencia, Alfonso

    2017-01-01

    Abstract A considerable effort has been devoted to retrieve systematically information for genes and proteins as well as relationships between them. Despite the importance of chemical compounds and drugs as a central bio-entity in pharmacological and biological research, only a limited number of freely available chemical text-mining/search engine technologies are currently accessible. Here we present LimTox (Literature Mining for Toxicology), a web-based online biomedical search tool with special focus on adverse hepatobiliary reactions. It integrates a range of text mining, named entity recognition and information extraction components. LimTox relies on machine-learning, rule-based, pattern-based and term lookup strategies. This system processes scientific abstracts, a set of full text articles and medical agency assessment reports. Although the main focus of LimTox is on adverse liver events, it enables also basic searches for other organ level toxicity associations (nephrotoxicity, cardiotoxicity, thyrotoxicity and phospholipidosis). This tool supports specialized search queries for: chemical compounds/drugs, genes (with additional emphasis on key enzymes in drug metabolism, namely P450 cytochromes—CYPs) and biochemical liver markers. The LimTox website is free and open to all users and there is no login requirement. LimTox can be accessed at: http://limtox.bioinfo.cnio.es PMID:28531339

  15. Automatic target validation based on neuroscientific literature mining for tractography

    PubMed Central

    Vasques, Xavier; Richardet, Renaud; Hill, Sean L.; Slater, David; Chappelier, Jean-Cedric; Pralong, Etienne; Bloch, Jocelyne; Draganski, Bogdan; Cif, Laura

    2015-01-01

    Target identification for tractography studies requires solid anatomical knowledge validated by an extensive literature review across species for each seed structure to be studied. Manual literature review to identify targets for a given seed region is tedious and potentially subjective. Therefore, complementary approaches would be useful. We propose to use text-mining models to automatically suggest potential targets from the neuroscientific literature, full-text articles and abstracts, so that they can be used for anatomical connection studies and more specifically for tractography. We applied text-mining models to three structures: two well-studied structures, since validated deep brain stimulation targets, the internal globus pallidus and the subthalamic nucleus and, the nucleus accumbens, an exploratory target for treating psychiatric disorders. We performed a systematic review of the literature to document the projections of the three selected structures and compared it with the targets proposed by text-mining models, both in rat and primate (including human). We ran probabilistic tractography on the nucleus accumbens and compared the output with the results of the text-mining models and literature review. Overall, text-mining the literature could find three times as many targets as two man-weeks of curation could. The overall efficiency of the text-mining against literature review in our study was 98% recall (at 36% precision), meaning that over all the targets for the three selected seeds, only one target has been missed by text-mining. We demonstrate that connectivity for a structure of interest can be extracted from a very large amount of publications and abstracts. We believe this tool will be useful in helping the neuroscience community to facilitate connectivity studies of particular brain regions. The text mining tools used for the study are part of the HBP Neuroinformatics Platform, publicly available at http://connectivity-brainer.rhcloud.com/. PMID:26074781

  16. The structural and content aspects of abstracts versus bodies of full text journal articles are different

    PubMed Central

    2010-01-01

    Background An increase in work on the full text of journal articles and the growth of PubMedCentral have the opportunity to create a major paradigm shift in how biomedical text mining is done. However, until now there has been no comprehensive characterization of how the bodies of full text journal articles differ from the abstracts that until now have been the subject of most biomedical text mining research. Results We examined the structural and linguistic aspects of abstracts and bodies of full text articles, the performance of text mining tools on both, and the distribution of a variety of semantic classes of named entities between them. We found marked structural differences, with longer sentences in the article bodies and much heavier use of parenthesized material in the bodies than in the abstracts. We found content differences with respect to linguistic features. Three out of four of the linguistic features that we examined were statistically significantly differently distributed between the two genres. We also found content differences with respect to the distribution of semantic features. There were significantly different densities per thousand words for three out of four semantic classes, and clear differences in the extent to which they appeared in the two genres. With respect to the performance of text mining tools, we found that a mutation finder performed equally well in both genres, but that a wide variety of gene mention systems performed much worse on article bodies than they did on abstracts. POS tagging was also more accurate in abstracts than in article bodies. Conclusions Aspects of structure and content differ markedly between article abstracts and article bodies. A number of these differences may pose problems as the text mining field moves more into the area of processing full-text articles. However, these differences also present a number of opportunities for the extraction of data types, particularly that found in parenthesized text, that is present in article bodies but not in article abstracts. PMID:20920264

  17. Graph-based biomedical text summarization: An itemset mining and sentence clustering approach.

    PubMed

    Nasr Azadani, Mozhgan; Ghadiri, Nasser; Davoodijam, Ensieh

    2018-06-12

    Automatic text summarization offers an efficient solution to access the ever-growing amounts of both scientific and clinical literature in the biomedical domain by summarizing the source documents while maintaining their most informative contents. In this paper, we propose a novel graph-based summarization method that takes advantage of the domain-specific knowledge and a well-established data mining technique called frequent itemset mining. Our summarizer exploits the Unified Medical Language System (UMLS) to construct a concept-based model of the source document and mapping the document to the concepts. Then, it discovers frequent itemsets to take the correlations among multiple concepts into account. The method uses these correlations to propose a similarity function based on which a represented graph is constructed. The summarizer then employs a minimum spanning tree based clustering algorithm to discover various subthemes of the document. Eventually, it generates the final summary by selecting the most informative and relative sentences from all subthemes within the text. We perform an automatic evaluation over a large number of summaries using the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metrics. The results demonstrate that the proposed summarization system outperforms various baselines and benchmark approaches. The carried out research suggests that the incorporation of domain-specific knowledge and frequent itemset mining equips the summarization system in a better way to address the informativeness measurement of the sentences. Moreover, clustering the graph nodes (sentences) can enable the summarizer to target different main subthemes of a source document efficiently. The evaluation results show that the proposed approach can significantly improve the performance of the summarization systems in the biomedical domain. Copyright © 2018. Published by Elsevier Inc.

  18. DiMeX: A Text Mining System for Mutation-Disease Association Extraction.

    PubMed

    Mahmood, A S M Ashique; Wu, Tsung-Jung; Mazumder, Raja; Vijay-Shanker, K

    2016-01-01

    The number of published articles describing associations between mutations and diseases is increasing at a fast pace. There is a pressing need to gather such mutation-disease associations into public knowledge bases, but manual curation slows down the growth of such databases. We have addressed this problem by developing a text-mining system (DiMeX) to extract mutation to disease associations from publication abstracts. DiMeX consists of a series of natural language processing modules that preprocess input text and apply syntactic and semantic patterns to extract mutation-disease associations. DiMeX achieves high precision and recall with F-scores of 0.88, 0.91 and 0.89 when evaluated on three different datasets for mutation-disease associations. DiMeX includes a separate component that extracts mutation mentions in text and associates them with genes. This component has been also evaluated on different datasets and shown to achieve state-of-the-art performance. The results indicate that our system outperforms the existing mutation-disease association tools, addressing the low precision problems suffered by most approaches. DiMeX was applied on a large set of abstracts from Medline to extract mutation-disease associations, as well as other relevant information including patient/cohort size and population data. The results are stored in a database that can be queried and downloaded at http://biotm.cis.udel.edu/dimex/. We conclude that this high-throughput text-mining approach has the potential to significantly assist researchers and curators to enrich mutation databases.

  19. DiMeX: A Text Mining System for Mutation-Disease Association Extraction

    PubMed Central

    Mahmood, A. S. M. Ashique; Wu, Tsung-Jung; Mazumder, Raja; Vijay-Shanker, K.

    2016-01-01

    The number of published articles describing associations between mutations and diseases is increasing at a fast pace. There is a pressing need to gather such mutation-disease associations into public knowledge bases, but manual curation slows down the growth of such databases. We have addressed this problem by developing a text-mining system (DiMeX) to extract mutation to disease associations from publication abstracts. DiMeX consists of a series of natural language processing modules that preprocess input text and apply syntactic and semantic patterns to extract mutation-disease associations. DiMeX achieves high precision and recall with F-scores of 0.88, 0.91 and 0.89 when evaluated on three different datasets for mutation-disease associations. DiMeX includes a separate component that extracts mutation mentions in text and associates them with genes. This component has been also evaluated on different datasets and shown to achieve state-of-the-art performance. The results indicate that our system outperforms the existing mutation-disease association tools, addressing the low precision problems suffered by most approaches. DiMeX was applied on a large set of abstracts from Medline to extract mutation-disease associations, as well as other relevant information including patient/cohort size and population data. The results are stored in a database that can be queried and downloaded at http://biotm.cis.udel.edu/dimex/. We conclude that this high-throughput text-mining approach has the potential to significantly assist researchers and curators to enrich mutation databases. PMID:27073839

  20. Adaptive semantic tag mining from heterogeneous clinical research texts.

    PubMed

    Hao, T; Weng, C

    2015-01-01

    To develop an adaptive approach to mine frequent semantic tags (FSTs) from heterogeneous clinical research texts. We develop a "plug-n-play" framework that integrates replaceable unsupervised kernel algorithms with formatting, functional, and utility wrappers for FST mining. Temporal information identification and semantic equivalence detection were two example functional wrappers. We first compared this approach's recall and efficiency for mining FSTs from ClinicalTrials.gov to that of a recently published tag-mining algorithm. Then we assessed this approach's adaptability to two other types of clinical research texts: clinical data requests and clinical trial protocols, by comparing the prevalence trends of FSTs across three texts. Our approach increased the average recall and speed by 12.8% and 47.02% respectively upon the baseline when mining FSTs from ClinicalTrials.gov, and maintained an overlap in relevant FSTs with the base- line ranging between 76.9% and 100% for varying FST frequency thresholds. The FSTs saturated when the data size reached 200 documents. Consistent trends in the prevalence of FST were observed across the three texts as the data size or frequency threshold changed. This paper contributes an adaptive tag-mining framework that is scalable and adaptable without sacrificing its recall. This component-based architectural design can be potentially generalizable to improve the adaptability of other clinical text mining methods.

  1. PLAN2L: a web tool for integrated text mining and literature-based bioentity relation extraction.

    PubMed

    Krallinger, Martin; Rodriguez-Penagos, Carlos; Tendulkar, Ashish; Valencia, Alfonso

    2009-07-01

    There is an increasing interest in using literature mining techniques to complement information extracted from annotation databases or generated by bioinformatics applications. Here we present PLAN2L, a web-based online search system that integrates text mining and information extraction techniques to access systematically information useful for analyzing genetic, cellular and molecular aspects of the plant model organism Arabidopsis thaliana. Our system facilitates a more efficient retrieval of information relevant to heterogeneous biological topics, from implications in biological relationships at the level of protein interactions and gene regulation, to sub-cellular locations of gene products and associations to cellular and developmental processes, i.e. cell cycle, flowering, root, leaf and seed development. Beyond single entities, also predefined pairs of entities can be provided as queries for which literature-derived relations together with textual evidences are returned. PLAN2L does not require registration and is freely accessible at http://zope.bioinfo.cnio.es/plan2l.

  2. Mining Molecular Pharmacological Effects from Biomedical Text: a Case Study for Eliciting Anti-Obesity/Diabetes Effects of Chemical Compounds.

    PubMed

    Dura, Elzbieta; Muresan, Sorel; Engkvist, Ola; Blomberg, Niklas; Chen, Hongming

    2014-05-01

    In the pharmaceutical industry, efficiently mining pharmacological data from the rapidly increasing scientific literature is very crucial for many aspects of the drug discovery process such as target validation, tool compound selection etc. A quick and reliable way is needed to collect literature assertions of selected compounds' biological and pharmacological effects in order to assist the hypothesis generation and decision-making of drug developers. INFUSIS, the text mining system presented here, extracts data on chemical compounds from PubMed abstracts. It involves an extensive use of customized natural language processing besides a co-occurrence analysis. As a proof-of-concept study, INFUSIS was used to search in abstract texts for several obesity/diabetes related pharmacological effects of the compounds included in a compound dictionary. The system extracts assertions regarding the pharmacological effects of each given compound and scores them by the relevance. For each selected pharmacological effect, the highest scoring assertions in 100 abstracts were manually evaluated, i.e. 800 abstracts in total. The overall accuracy for the inferred assertions was over 90 percent. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. BioC implementations in Go, Perl, Python and Ruby.

    PubMed

    Liu, Wanli; Islamaj Doğan, Rezarta; Kwon, Dongseop; Marques, Hernani; Rinaldi, Fabio; Wilbur, W John; Comeau, Donald C

    2014-01-01

    As part of a communitywide effort for evaluating text mining and information extraction systems applied to the biomedical domain, BioC is focused on the goal of interoperability, currently a major barrier to wide-scale adoption of text mining tools. BioC is a simple XML format, specified by DTD, for exchanging data for biomedical natural language processing. With initial implementations in C++ and Java, BioC provides libraries of code for reading and writing BioC text documents and annotations. We extend BioC to Perl, Python, Go and Ruby. We used SWIG to extend the C++ implementation for Perl and one Python implementation. A second Python implementation and the Ruby implementation use native data structures and libraries. BioC is also implemented in the Google language Go. BioC modules are functional in all of these languages, which can facilitate text mining tasks. BioC implementations are freely available through the BioC site: http://bioc.sourceforge.net. Database URL: http://bioc.sourceforge.net/ Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.

  4. Collaborative biocuration--text-mining development task for document prioritization for curation.

    PubMed

    Wiegers, Thomas C; Davis, Allan Peter; Mattingly, Carolyn J

    2012-01-01

    The Critical Assessment of Information Extraction systems in Biology (BioCreAtIvE) challenge evaluation is a community-wide effort for evaluating text mining and information extraction systems for the biological domain. The 'BioCreative Workshop 2012' subcommittee identified three areas, or tracks, that comprised independent, but complementary aspects of data curation in which they sought community input: literature triage (Track I); curation workflow (Track II) and text mining/natural language processing (NLP) systems (Track III). Track I participants were invited to develop tools or systems that would effectively triage and prioritize articles for curation and present results in a prototype web interface. Training and test datasets were derived from the Comparative Toxicogenomics Database (CTD; http://ctdbase.org) and consisted of manuscripts from which chemical-gene-disease data were manually curated. A total of seven groups participated in Track I. For the triage component, the effectiveness of participant systems was measured by aggregate gene, disease and chemical 'named-entity recognition' (NER) across articles; the effectiveness of 'information retrieval' (IR) was also measured based on 'mean average precision' (MAP). Top recall scores for gene, disease and chemical NER were 49, 65 and 82%, respectively; the top MAP score was 80%. Each participating group also developed a prototype web interface; these interfaces were evaluated based on functionality and ease-of-use by CTD's biocuration project manager. In this article, we present a detailed description of the challenge and a summary of the results.

  5. Redundancy in electronic health record corpora: analysis, impact on text mining performance and mitigation strategies.

    PubMed

    Cohen, Raphael; Elhadad, Michael; Elhadad, Noémie

    2013-01-16

    The increasing availability of Electronic Health Record (EHR) data and specifically free-text patient notes presents opportunities for phenotype extraction. Text-mining methods in particular can help disease modeling by mapping named-entities mentions to terminologies and clustering semantically related terms. EHR corpora, however, exhibit specific statistical and linguistic characteristics when compared with corpora in the biomedical literature domain. We focus on copy-and-paste redundancy: clinicians typically copy and paste information from previous notes when documenting a current patient encounter. Thus, within a longitudinal patient record, one expects to observe heavy redundancy. In this paper, we ask three research questions: (i) How can redundancy be quantified in large-scale text corpora? (ii) Conventional wisdom is that larger corpora yield better results in text mining. But how does the observed EHR redundancy affect text mining? Does such redundancy introduce a bias that distorts learned models? Or does the redundancy introduce benefits by highlighting stable and important subsets of the corpus? (iii) How can one mitigate the impact of redundancy on text mining? We analyze a large-scale EHR corpus and quantify redundancy both in terms of word and semantic concept repetition. We observe redundancy levels of about 30% and non-standard distribution of both words and concepts. We measure the impact of redundancy on two standard text-mining applications: collocation identification and topic modeling. We compare the results of these methods on synthetic data with controlled levels of redundancy and observe significant performance variation. Finally, we compare two mitigation strategies to avoid redundancy-induced bias: (i) a baseline strategy, keeping only the last note for each patient in the corpus; (ii) removing redundant notes with an efficient fingerprinting-based algorithm. (a)For text mining, preprocessing the EHR corpus with fingerprinting yields significantly better results. Before applying text-mining techniques, one must pay careful attention to the structure of the analyzed corpora. While the importance of data cleaning has been known for low-level text characteristics (e.g., encoding and spelling), high-level and difficult-to-quantify corpus characteristics, such as naturally occurring redundancy, can also hurt text mining. Fingerprinting enables text-mining techniques to leverage available data in the EHR corpus, while avoiding the bias introduced by redundancy.

  6. Supporting the annotation of chronic obstructive pulmonary disease (COPD) phenotypes with text mining workflows.

    PubMed

    Fu, Xiao; Batista-Navarro, Riza; Rak, Rafal; Ananiadou, Sophia

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a life-threatening lung disorder whose recent prevalence has led to an increasing burden on public healthcare. Phenotypic information in electronic clinical records is essential in providing suitable personalised treatment to patients with COPD. However, as phenotypes are often "hidden" within free text in clinical records, clinicians could benefit from text mining systems that facilitate their prompt recognition. This paper reports on a semi-automatic methodology for producing a corpus that can ultimately support the development of text mining tools that, in turn, will expedite the process of identifying groups of COPD patients. A corpus of 30 full-text papers was formed based on selection criteria informed by the expertise of COPD specialists. We developed an annotation scheme that is aimed at producing fine-grained, expressive and computable COPD annotations without burdening our curators with a highly complicated task. This was implemented in the Argo platform by means of a semi-automatic annotation workflow that integrates several text mining tools, including a graphical user interface for marking up documents. When evaluated using gold standard (i.e., manually validated) annotations, the semi-automatic workflow was shown to obtain a micro-averaged F-score of 45.70% (with relaxed matching). Utilising the gold standard data to train new concept recognisers, we demonstrated that our corpus, although still a work in progress, can foster the development of significantly better performing COPD phenotype extractors. We describe in this work the means by which we aim to eventually support the process of COPD phenotype curation, i.e., by the application of various text mining tools integrated into an annotation workflow. Although the corpus being described is still under development, our results thus far are encouraging and show great potential in stimulating the development of further automatic COPD phenotype extractors.

  7. Constructing Model of Relationship among Behaviors and Injuries to Products Based on Large Scale Text Data on Injuries

    NASA Astrophysics Data System (ADS)

    Nomori, Koji; Kitamura, Koji; Motomura, Yoichi; Nishida, Yoshifumi; Yamanaka, Tatsuhiro; Komatsubara, Akinori

    In Japan, childhood injury prevention is urgent issue. Safety measures through creating knowledge of injury data are essential for preventing childhood injuries. Especially the injury prevention approach by product modification is very important. The risk assessment is one of the most fundamental methods to design safety products. The conventional risk assessment has been carried out subjectively because product makers have poor data on injuries. This paper deals with evidence-based risk assessment, in which artificial intelligence technologies are strongly needed. This paper describes a new method of foreseeing usage of products, which is the first step of the evidence-based risk assessment, and presents a retrieval system of injury data. The system enables a product designer to foresee how children use a product and which types of injuries occur due to the product in daily environment. The developed system consists of large scale injury data, text mining technology and probabilistic modeling technology. Large scale text data on childhood injuries was collected from medical institutions by an injury surveillance system. Types of behaviors to a product were derived from the injury text data using text mining technology. The relationship among products, types of behaviors, types of injuries and characteristics of children was modeled by Bayesian Network. The fundamental functions of the developed system and examples of new findings obtained by the system are reported in this paper.

  8. Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations.

    PubMed

    Munkhdalai, Tsendsuren; Li, Meijing; Batsuren, Khuyagbaatar; Park, Hyeon Ah; Choi, Nak Hyeon; Ryu, Keun Ho

    2015-01-01

    Chemical and biomedical Named Entity Recognition (NER) is an essential prerequisite task before effective text mining can begin for biochemical-text data. Exploiting unlabeled text data to leverage system performance has been an active and challenging research topic in text mining due to the recent growth in the amount of biomedical literature. We present a semi-supervised learning method that efficiently exploits unlabeled data in order to incorporate domain knowledge into a named entity recognition model and to leverage system performance. The proposed method includes Natural Language Processing (NLP) tasks for text preprocessing, learning word representation features from a large amount of text data for feature extraction, and conditional random fields for token classification. Other than the free text in the domain, the proposed method does not rely on any lexicon nor any dictionary in order to keep the system applicable to other NER tasks in bio-text data. We extended BANNER, a biomedical NER system, with the proposed method. This yields an integrated system that can be applied to chemical and drug NER or biomedical NER. We call our branch of the BANNER system BANNER-CHEMDNER, which is scalable over millions of documents, processing about 530 documents per minute, is configurable via XML, and can be plugged into other systems by using the BANNER Unstructured Information Management Architecture (UIMA) interface. BANNER-CHEMDNER achieved an 85.68% and an 86.47% F-measure on the testing sets of CHEMDNER Chemical Entity Mention (CEM) and Chemical Document Indexing (CDI) subtasks, respectively, and achieved an 87.04% F-measure on the official testing set of the BioCreative II gene mention task, showing remarkable performance in both chemical and biomedical NER. BANNER-CHEMDNER system is available at: https://bitbucket.org/tsendeemts/banner-chemdner.

  9. ParaBTM: A Parallel Processing Framework for Biomedical Text Mining on Supercomputers.

    PubMed

    Xing, Yuting; Wu, Chengkun; Yang, Xi; Wang, Wei; Zhu, En; Yin, Jianping

    2018-04-27

    A prevailing way of extracting valuable information from biomedical literature is to apply text mining methods on unstructured texts. However, the massive amount of literature that needs to be analyzed poses a big data challenge to the processing efficiency of text mining. In this paper, we address this challenge by introducing parallel processing on a supercomputer. We developed paraBTM, a runnable framework that enables parallel text mining on the Tianhe-2 supercomputer. It employs a low-cost yet effective load balancing strategy to maximize the efficiency of parallel processing. We evaluated the performance of paraBTM on several datasets, utilizing three types of named entity recognition tasks as demonstration. Results show that, in most cases, the processing efficiency can be greatly improved with parallel processing, and the proposed load balancing strategy is simple and effective. In addition, our framework can be readily applied to other tasks of biomedical text mining besides NER.

  10. Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research.

    PubMed

    Bravo, Àlex; Piñero, Janet; Queralt-Rosinach, Núria; Rautschka, Michael; Furlong, Laura I

    2015-02-21

    Current biomedical research needs to leverage and exploit the large amount of information reported in scientific publications. Automated text mining approaches, in particular those aimed at finding relationships between entities, are key for identification of actionable knowledge from free text repositories. We present the BeFree system aimed at identifying relationships between biomedical entities with a special focus on genes and their associated diseases. By exploiting morpho-syntactic information of the text, BeFree is able to identify gene-disease, drug-disease and drug-target associations with state-of-the-art performance. The application of BeFree to real-case scenarios shows its effectiveness in extracting information relevant for translational research. We show the value of the gene-disease associations extracted by BeFree through a number of analyses and integration with other data sources. BeFree succeeds in identifying genes associated to a major cause of morbidity worldwide, depression, which are not present in other public resources. Moreover, large-scale extraction and analysis of gene-disease associations, and integration with current biomedical knowledge, provided interesting insights on the kind of information that can be found in the literature, and raised challenges regarding data prioritization and curation. We found that only a small proportion of the gene-disease associations discovered by using BeFree is collected in expert-curated databases. Thus, there is a pressing need to find alternative strategies to manual curation, in order to review, prioritize and curate text-mining data and incorporate it into domain-specific databases. We present our strategy for data prioritization and discuss its implications for supporting biomedical research and applications. BeFree is a novel text mining system that performs competitively for the identification of gene-disease, drug-disease and drug-target associations. Our analyses show that mining only a small fraction of MEDLINE results in a large dataset of gene-disease associations, and only a small proportion of this dataset is actually recorded in curated resources (2%), raising several issues on data prioritization and curation. We propose that joint analysis of text mined data with data curated by experts appears as a suitable approach to both assess data quality and highlight novel and interesting information.

  11. Knowledge acquisition, semantic text mining, and security risks in health and biomedical informatics

    PubMed Central

    Huang, Jingshan; Dou, Dejing; Dang, Jiangbo; Pardue, J Harold; Qin, Xiao; Huan, Jun; Gerthoffer, William T; Tan, Ming

    2012-01-01

    Computational techniques have been adopted in medical and biological systems for a long time. There is no doubt that the development and application of computational methods will render great help in better understanding biomedical and biological functions. Large amounts of datasets have been produced by biomedical and biological experiments and simulations. In order for researchers to gain knowledge from original data, nontrivial transformation is necessary, which is regarded as a critical link in the chain of knowledge acquisition, sharing, and reuse. Challenges that have been encountered include: how to efficiently and effectively represent human knowledge in formal computing models, how to take advantage of semantic text mining techniques rather than traditional syntactic text mining, and how to handle security issues during the knowledge sharing and reuse. This paper summarizes the state-of-the-art in these research directions. We aim to provide readers with an introduction of major computing themes to be applied to the medical and biological research. PMID:22371823

  12. Text-mining and information-retrieval services for molecular biology

    PubMed Central

    Krallinger, Martin; Valencia, Alfonso

    2005-01-01

    Text-mining in molecular biology - defined as the automatic extraction of information about genes, proteins and their functional relationships from text documents - has emerged as a hybrid discipline on the edges of the fields of information science, bioinformatics and computational linguistics. A range of text-mining applications have been developed recently that will improve access to knowledge for biologists and database annotators. PMID:15998455

  13. Text mining for traditional Chinese medical knowledge discovery: a survey.

    PubMed

    Zhou, Xuezhong; Peng, Yonghong; Liu, Baoyan

    2010-08-01

    Extracting meaningful information and knowledge from free text is the subject of considerable research interest in the machine learning and data mining fields. Text data mining (or text mining) has become one of the most active research sub-fields in data mining. Significant developments in the area of biomedical text mining during the past years have demonstrated its great promise for supporting scientists in developing novel hypotheses and new knowledge from the biomedical literature. Traditional Chinese medicine (TCM) provides a distinct methodology with which to view human life. It is one of the most complete and distinguished traditional medicines with a history of several thousand years of studying and practicing the diagnosis and treatment of human disease. It has been shown that the TCM knowledge obtained from clinical practice has become a significant complementary source of information for modern biomedical sciences. TCM literature obtained from the historical period and from modern clinical studies has recently been transformed into digital data in the form of relational databases or text documents, which provide an effective platform for information sharing and retrieval. This motivates and facilitates research and development into knowledge discovery approaches and to modernize TCM. In order to contribute to this still growing field, this paper presents (1) a comparative introduction to TCM and modern biomedicine, (2) a survey of the related information sources of TCM, (3) a review and discussion of the state of the art and the development of text mining techniques with applications to TCM, (4) a discussion of the research issues around TCM text mining and its future directions. Copyright 2010 Elsevier Inc. All rights reserved.

  14. 77 FR 48498 - Executive-Led Trade Mission to South Africa and Zambia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... technologies and equipment; transportation equipment and infrastructure; and mining equipment and technology...'', add the following text: Water Sector [cir] Water supply [cir] Sanitation [cir] Drainage systems [cir... gemstones, and produces 20 percent of the world's emeralds.'', add the following text: Water The Government...

  15. An overview of the biocreative 2012 workshop track III: Interactive text mining task

    USDA-ARS?s Scientific Manuscript database

    An important question is how to make use of text mining to enhance the biocuration workflow. A number of groups have developed tools for text mining from a computer science/linguistics perspective and there are many initiatives to curate some aspect of biology from the literature. In some cases the ...

  16. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology

    PubMed Central

    2015-01-01

    Background Sufficient knowledge of molecular and genetic interactions, which comprise the entire basis of the functioning of living systems, is one of the necessary requirements for successfully answering almost any research question in the field of biology and medicine. To date, more than 24 million scientific papers can be found in PubMed, with many of them containing descriptions of a wide range of biological processes. The analysis of such tremendous amounts of data requires the use of automated text-mining approaches. Although a handful of tools have recently been developed to meet this need, none of them provide error-free extraction of highly detailed information. Results The ANDSystem package was developed for the reconstruction and analysis of molecular genetic networks based on an automated text-mining technique. It provides a detailed description of the various types of interactions between genes, proteins, microRNA's, metabolites, cellular components, pathways and diseases, taking into account the specificity of cell lines and organisms. Although the accuracy of ANDSystem is comparable to other well known text-mining tools, such as Pathway Studio and STRING, it outperforms them in having the ability to identify an increased number of interaction types. Conclusion The use of ANDSystem, in combination with Pathway Studio and STRING, can improve the quality of the automated reconstruction of molecular and genetic networks. ANDSystem should provide a useful tool for researchers working in a number of different fields, including biology, biotechnology, pharmacology and medicine. PMID:25881313

  17. Text Mining in Cancer Gene and Pathway Prioritization

    PubMed Central

    Luo, Yuan; Riedlinger, Gregory; Szolovits, Peter

    2014-01-01

    Prioritization of cancer implicated genes has received growing attention as an effective way to reduce wet lab cost by computational analysis that ranks candidate genes according to the likelihood that experimental verifications will succeed. A multitude of gene prioritization tools have been developed, each integrating different data sources covering gene sequences, differential expressions, function annotations, gene regulations, protein domains, protein interactions, and pathways. This review places existing gene prioritization tools against the backdrop of an integrative Omic hierarchy view toward cancer and focuses on the analysis of their text mining components. We explain the relatively slow progress of text mining in gene prioritization, identify several challenges to current text mining methods, and highlight a few directions where more effective text mining algorithms may improve the overall prioritization task and where prioritizing the pathways may be more desirable than prioritizing only genes. PMID:25392685

  18. Text mining in cancer gene and pathway prioritization.

    PubMed

    Luo, Yuan; Riedlinger, Gregory; Szolovits, Peter

    2014-01-01

    Prioritization of cancer implicated genes has received growing attention as an effective way to reduce wet lab cost by computational analysis that ranks candidate genes according to the likelihood that experimental verifications will succeed. A multitude of gene prioritization tools have been developed, each integrating different data sources covering gene sequences, differential expressions, function annotations, gene regulations, protein domains, protein interactions, and pathways. This review places existing gene prioritization tools against the backdrop of an integrative Omic hierarchy view toward cancer and focuses on the analysis of their text mining components. We explain the relatively slow progress of text mining in gene prioritization, identify several challenges to current text mining methods, and highlight a few directions where more effective text mining algorithms may improve the overall prioritization task and where prioritizing the pathways may be more desirable than prioritizing only genes.

  19. Citation Mining: Integrating Text Mining and Bibliometrics for Research User Profiling.

    ERIC Educational Resources Information Center

    Kostoff, Ronald N.; del Rio, J. Antonio; Humenik, James A.; Garcia, Esther Ofilia; Ramirez, Ana Maria

    2001-01-01

    Discusses the importance of identifying the users and impact of research, and describes an approach for identifying the pathways through which research can impact other research, technology development, and applications. Describes a study that used citation mining, an integration of citation bibliometrics and text mining, on articles from the…

  20. PKDE4J: Entity and relation extraction for public knowledge discovery.

    PubMed

    Song, Min; Kim, Won Chul; Lee, Dahee; Heo, Go Eun; Kang, Keun Young

    2015-10-01

    Due to an enormous number of scientific publications that cannot be handled manually, there is a rising interest in text-mining techniques for automated information extraction, especially in the biomedical field. Such techniques provide effective means of information search, knowledge discovery, and hypothesis generation. Most previous studies have primarily focused on the design and performance improvement of either named entity recognition or relation extraction. In this paper, we present PKDE4J, a comprehensive text-mining system that integrates dictionary-based entity extraction and rule-based relation extraction in a highly flexible and extensible framework. Starting with the Stanford CoreNLP, we developed the system to cope with multiple types of entities and relations. The system also has fairly good performance in terms of accuracy as well as the ability to configure text-processing components. We demonstrate its competitive performance by evaluating it on many corpora and found that it surpasses existing systems with average F-measures of 85% for entity extraction and 81% for relation extraction. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Efficient chemical-disease identification and relationship extraction using Wikipedia to improve recall.

    PubMed

    Lowe, Daniel M; O'Boyle, Noel M; Sayle, Roger A

    2016-01-01

    Awareness of the adverse effects of chemicals is important in biomedical research and healthcare. Text mining can allow timely and low-cost extraction of this knowledge from the biomedical literature. We extended our text mining solution, LeadMine, to identify diseases and chemical-induced disease relationships (CIDs). LeadMine is a dictionary/grammar-based entity recognizer and was used to recognize and normalize both chemicals and diseases to Medical Subject Headings (MeSH) IDs. The disease lexicon was obtained from three sources: MeSH, the Disease Ontology and Wikipedia. The Wikipedia dictionary was derived from pages with a disease/symptom box, or those where the page title appeared in the lexicon. Composite entities (e.g. heart and lung disease) were detected and mapped to their composite MeSH IDs. For CIDs, we developed a simple pattern-based system to find relationships within the same sentence. Our system was evaluated in the BioCreative V Chemical-Disease Relation task and achieved very good results for both disease concept ID recognition (F1-score: 86.12%) and CIDs (F1-score: 52.20%) on the test set. As our system was over an order of magnitude faster than other solutions evaluated on the task, we were able to apply the same system to the entirety of MEDLINE allowing us to extract a collection of over 250 000 distinct CIDs. © The Author(s) 2016. Published by Oxford University Press.

  2. Mining biomedical images towards valuable information retrieval in biomedical and life sciences

    PubMed Central

    Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas

    2016-01-01

    Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries. PMID:27538578

  3. LimTox: a web tool for applied text mining of adverse event and toxicity associations of compounds, drugs and genes.

    PubMed

    Cañada, Andres; Capella-Gutierrez, Salvador; Rabal, Obdulia; Oyarzabal, Julen; Valencia, Alfonso; Krallinger, Martin

    2017-07-03

    A considerable effort has been devoted to retrieve systematically information for genes and proteins as well as relationships between them. Despite the importance of chemical compounds and drugs as a central bio-entity in pharmacological and biological research, only a limited number of freely available chemical text-mining/search engine technologies are currently accessible. Here we present LimTox (Literature Mining for Toxicology), a web-based online biomedical search tool with special focus on adverse hepatobiliary reactions. It integrates a range of text mining, named entity recognition and information extraction components. LimTox relies on machine-learning, rule-based, pattern-based and term lookup strategies. This system processes scientific abstracts, a set of full text articles and medical agency assessment reports. Although the main focus of LimTox is on adverse liver events, it enables also basic searches for other organ level toxicity associations (nephrotoxicity, cardiotoxicity, thyrotoxicity and phospholipidosis). This tool supports specialized search queries for: chemical compounds/drugs, genes (with additional emphasis on key enzymes in drug metabolism, namely P450 cytochromes-CYPs) and biochemical liver markers. The LimTox website is free and open to all users and there is no login requirement. LimTox can be accessed at: http://limtox.bioinfo.cnio.es. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Using text-mining techniques in electronic patient records to identify ADRs from medicine use.

    PubMed

    Warrer, Pernille; Hansen, Ebba Holme; Juhl-Jensen, Lars; Aagaard, Lise

    2012-05-01

    This literature review included studies that use text-mining techniques in narrative documents stored in electronic patient records (EPRs) to investigate ADRs. We searched PubMed, Embase, Web of Science and International Pharmaceutical Abstracts without restrictions from origin until July 2011. We included empirically based studies on text mining of electronic patient records (EPRs) that focused on detecting ADRs, excluding those that investigated adverse events not related to medicine use. We extracted information on study populations, EPR data sources, frequencies and types of the identified ADRs, medicines associated with ADRs, text-mining algorithms used and their performance. Seven studies, all from the United States, were eligible for inclusion in the review. Studies were published from 2001, the majority between 2009 and 2010. Text-mining techniques varied over time from simple free text searching of outpatient visit notes and inpatient discharge summaries to more advanced techniques involving natural language processing (NLP) of inpatient discharge summaries. Performance appeared to increase with the use of NLP, although many ADRs were still missed. Due to differences in study design and populations, various types of ADRs were identified and thus we could not make comparisons across studies. The review underscores the feasibility and potential of text mining to investigate narrative documents in EPRs for ADRs. However, more empirical studies are needed to evaluate whether text mining of EPRs can be used systematically to collect new information about ADRs. © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.

  5. Using text-mining techniques in electronic patient records to identify ADRs from medicine use

    PubMed Central

    Warrer, Pernille; Hansen, Ebba Holme; Juhl-Jensen, Lars; Aagaard, Lise

    2012-01-01

    This literature review included studies that use text-mining techniques in narrative documents stored in electronic patient records (EPRs) to investigate ADRs. We searched PubMed, Embase, Web of Science and International Pharmaceutical Abstracts without restrictions from origin until July 2011. We included empirically based studies on text mining of electronic patient records (EPRs) that focused on detecting ADRs, excluding those that investigated adverse events not related to medicine use. We extracted information on study populations, EPR data sources, frequencies and types of the identified ADRs, medicines associated with ADRs, text-mining algorithms used and their performance. Seven studies, all from the United States, were eligible for inclusion in the review. Studies were published from 2001, the majority between 2009 and 2010. Text-mining techniques varied over time from simple free text searching of outpatient visit notes and inpatient discharge summaries to more advanced techniques involving natural language processing (NLP) of inpatient discharge summaries. Performance appeared to increase with the use of NLP, although many ADRs were still missed. Due to differences in study design and populations, various types of ADRs were identified and thus we could not make comparisons across studies. The review underscores the feasibility and potential of text mining to investigate narrative documents in EPRs for ADRs. However, more empirical studies are needed to evaluate whether text mining of EPRs can be used systematically to collect new information about ADRs. PMID:22122057

  6. Analysis of the Relevance of Posts in Asynchronous Discussions

    ERIC Educational Resources Information Center

    Azevedo, Breno T.; Reategui, Eliseo; Behar, Patrícia A.

    2014-01-01

    This paper presents ForumMiner, a tool for the automatic analysis of students' posts in asynchronous discussions. ForumMiner uses a text mining system to extract graphs from texts that are given to students as a basis for their discussion. These graphs contain the most relevant terms found in the texts, as well as the relationships between them.…

  7. Gene prioritization and clustering by multi-view text mining

    PubMed Central

    2010-01-01

    Background Text mining has become a useful tool for biologists trying to understand the genetics of diseases. In particular, it can help identify the most interesting candidate genes for a disease for further experimental analysis. Many text mining approaches have been introduced, but the effect of disease-gene identification varies in different text mining models. Thus, the idea of incorporating more text mining models may be beneficial to obtain more refined and accurate knowledge. However, how to effectively combine these models still remains a challenging question in machine learning. In particular, it is a non-trivial issue to guarantee that the integrated model performs better than the best individual model. Results We present a multi-view approach to retrieve biomedical knowledge using different controlled vocabularies. These controlled vocabularies are selected on the basis of nine well-known bio-ontologies and are applied to index the vast amounts of gene-based free-text information available in the MEDLINE repository. The text mining result specified by a vocabulary is considered as a view and the obtained multiple views are integrated by multi-source learning algorithms. We investigate the effect of integration in two fundamental computational disease gene identification tasks: gene prioritization and gene clustering. The performance of the proposed approach is systematically evaluated and compared on real benchmark data sets. In both tasks, the multi-view approach demonstrates significantly better performance than other comparing methods. Conclusions In practical research, the relevance of specific vocabulary pertaining to the task is usually unknown. In such case, multi-view text mining is a superior and promising strategy for text-based disease gene identification. PMID:20074336

  8. A semantic model for multimodal data mining in healthcare information systems.

    PubMed

    Iakovidis, Dimitris; Smailis, Christos

    2012-01-01

    Electronic health records (EHRs) are representative examples of multimodal/multisource data collections; including measurements, images and free texts. The diversity of such information sources and the increasing amounts of medical data produced by healthcare institutes annually, pose significant challenges in data mining. In this paper we present a novel semantic model that describes knowledge extracted from the lowest-level of a data mining process, where information is represented by multiple features i.e. measurements or numerical descriptors extracted from measurements, images, texts or other medical data, forming multidimensional feature spaces. Knowledge collected by manual annotation or extracted by unsupervised data mining from one or more feature spaces is modeled through generalized qualitative spatial semantics. This model enables a unified representation of knowledge across multimodal data repositories. It contributes to bridging the semantic gap, by enabling direct links between low-level features and higher-level concepts e.g. describing body parts, anatomies and pathological findings. The proposed model has been developed in web ontology language based on description logics (OWL-DL) and can be applied to a variety of data mining tasks in medical informatics. It utility is demonstrated for automatic annotation of medical data.

  9. The contribution of the vaccine adverse event text mining system to the classification of possible Guillain-Barré syndrome reports.

    PubMed

    Botsis, T; Woo, E J; Ball, R

    2013-01-01

    We previously demonstrated that a general purpose text mining system, the Vaccine adverse event Text Mining (VaeTM) system, could be used to automatically classify reports of an-aphylaxis for post-marketing safety surveillance of vaccines. To evaluate the ability of VaeTM to classify reports to the Vaccine Adverse Event Reporting System (VAERS) of possible Guillain-Barré Syndrome (GBS). We used VaeTM to extract the key diagnostic features from the text of reports in VAERS. Then, we applied the Brighton Collaboration (BC) case definition for GBS, and an information retrieval strategy (i.e. the vector space model) to quantify the specific information that is included in the key features extracted by VaeTM and compared it with the encoded information that is already stored in VAERS as Medical Dictionary for Regulatory Activities (MedDRA) Preferred Terms (PTs). We also evaluated the contribution of the primary (diagnosis and cause of death) and secondary (second level diagnosis and symptoms) diagnostic VaeTM-based features to the total VaeTM-based information. MedDRA captured more information and better supported the classification of reports for GBS than VaeTM (AUC: 0.904 vs. 0.777); the lower performance of VaeTM is likely due to the lack of extraction by VaeTM of specific laboratory results that are included in the BC criteria for GBS. On the other hand, the VaeTM-based classification exhibited greater specificity than the MedDRA-based approach (94.96% vs. 87.65%). Most of the VaeTM-based information was contained in the secondary diagnostic features. For GBS, clinical signs and symptoms alone are not sufficient to match MedDRA coding for purposes of case classification, but are preferred if specificity is the priority.

  10. Layout-aware text extraction from full-text PDF of scientific articles.

    PubMed

    Ramakrishnan, Cartic; Patnia, Abhishek; Hovy, Eduard; Burns, Gully Apc

    2012-05-28

    The Portable Document Format (PDF) is the most commonly used file format for online scientific publications. The absence of effective means to extract text from these PDF files in a layout-aware manner presents a significant challenge for developers of biomedical text mining or biocuration informatics systems that use published literature as an information source. In this paper we introduce the 'Layout-Aware PDF Text Extraction' (LA-PDFText) system to facilitate accurate extraction of text from PDF files of research articles for use in text mining applications. Our paper describes the construction and performance of an open source system that extracts text blocks from PDF-formatted full-text research articles and classifies them into logical units based on rules that characterize specific sections. The LA-PDFText system focuses only on the textual content of the research articles and is meant as a baseline for further experiments into more advanced extraction methods that handle multi-modal content, such as images and graphs. The system works in a three-stage process: (1) Detecting contiguous text blocks using spatial layout processing to locate and identify blocks of contiguous text, (2) Classifying text blocks into rhetorical categories using a rule-based method and (3) Stitching classified text blocks together in the correct order resulting in the extraction of text from section-wise grouped blocks. We show that our system can identify text blocks and classify them into rhetorical categories with Precision1 = 0.96% Recall = 0.89% and F1 = 0.91%. We also present an evaluation of the accuracy of the block detection algorithm used in step 2. Additionally, we have compared the accuracy of the text extracted by LA-PDFText to the text from the Open Access subset of PubMed Central. We then compared this accuracy with that of the text extracted by the PDF2Text system, 2commonly used to extract text from PDF. Finally, we discuss preliminary error analysis for our system and identify further areas of improvement. LA-PDFText is an open-source tool for accurately extracting text from full-text scientific articles. The release of the system is available at http://code.google.com/p/lapdftext/.

  11. Layout-aware text extraction from full-text PDF of scientific articles

    PubMed Central

    2012-01-01

    Background The Portable Document Format (PDF) is the most commonly used file format for online scientific publications. The absence of effective means to extract text from these PDF files in a layout-aware manner presents a significant challenge for developers of biomedical text mining or biocuration informatics systems that use published literature as an information source. In this paper we introduce the ‘Layout-Aware PDF Text Extraction’ (LA-PDFText) system to facilitate accurate extraction of text from PDF files of research articles for use in text mining applications. Results Our paper describes the construction and performance of an open source system that extracts text blocks from PDF-formatted full-text research articles and classifies them into logical units based on rules that characterize specific sections. The LA-PDFText system focuses only on the textual content of the research articles and is meant as a baseline for further experiments into more advanced extraction methods that handle multi-modal content, such as images and graphs. The system works in a three-stage process: (1) Detecting contiguous text blocks using spatial layout processing to locate and identify blocks of contiguous text, (2) Classifying text blocks into rhetorical categories using a rule-based method and (3) Stitching classified text blocks together in the correct order resulting in the extraction of text from section-wise grouped blocks. We show that our system can identify text blocks and classify them into rhetorical categories with Precision1 = 0.96% Recall = 0.89% and F1 = 0.91%. We also present an evaluation of the accuracy of the block detection algorithm used in step 2. Additionally, we have compared the accuracy of the text extracted by LA-PDFText to the text from the Open Access subset of PubMed Central. We then compared this accuracy with that of the text extracted by the PDF2Text system, 2commonly used to extract text from PDF. Finally, we discuss preliminary error analysis for our system and identify further areas of improvement. Conclusions LA-PDFText is an open-source tool for accurately extracting text from full-text scientific articles. The release of the system is available at http://code.google.com/p/lapdftext/. PMID:22640904

  12. Mining Claim Activity on Federal Land for the Period 1976 through 2003

    USGS Publications Warehouse

    Causey, J. Douglas

    2005-01-01

    Previous reports on mining claim records provided information and statistics (number of claims) using data from the U.S. Bureau of Land Management's (BLM) Mining Claim Recordation System. Since that time, BLM converted their mining claim data to the Legacy Repost 2000 system (LR2000). This report describes a process to extract similar statistical data about mining claims from LR2000 data using different software and procedures than were used in the earlier work. A major difference between this process and the previous work is that every section that has a mining claim record is assigned a value. This is done by proportioning a claim between each section in which it is recorded. Also, the mining claim data in this report includes all BLM records, not just the western states. LR2000 mining claim database tables for the United States were provided by BLM in text format and imported into a Microsoft? Access2000 database in January, 2004. Data from two tables in the BLM LR2000 database were summarized through a series of database queries to determine a number that represents active mining claims in each Public Land Survey (PLS) section for each of the years from 1976 to 2002. For most of the area, spatial databases are also provided. The spatial databases are only configured to work with the statistics provided in the non-spatial data files. They are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller (for example, 1:250,000).

  13. BioCreative V track 4: a shared task for the extraction of causal network information using the Biological Expression Language.

    PubMed

    Rinaldi, Fabio; Ellendorff, Tilia Renate; Madan, Sumit; Clematide, Simon; van der Lek, Adrian; Mevissen, Theo; Fluck, Juliane

    2016-01-01

    Automatic extraction of biological network information is one of the most desired and most complex tasks in biological and medical text mining. Track 4 at BioCreative V attempts to approach this complexity using fragments of large-scale manually curated biological networks, represented in Biological Expression Language (BEL), as training and test data. BEL is an advanced knowledge representation format which has been designed to be both human readable and machine processable. The specific goal of track 4 was to evaluate text mining systems capable of automatically constructing BEL statements from given evidence text, and of retrieving evidence text for given BEL statements. Given the complexity of the task, we designed an evaluation methodology which gives credit to partially correct statements. We identified various levels of information expressed by BEL statements, such as entities, functions, relations, and introduced an evaluation framework which rewards systems capable of delivering useful BEL fragments at each of these levels. The aim of this evaluation method is to help identify the characteristics of the systems which, if combined, would be most useful for achieving the overall goal of automatically constructing causal biological networks from text. © The Author(s) 2016. Published by Oxford University Press.

  14. Text mining for search term development in systematic reviewing: A discussion of some methods and challenges.

    PubMed

    Stansfield, Claire; O'Mara-Eves, Alison; Thomas, James

    2017-09-01

    Using text mining to aid the development of database search strings for topics described by diverse terminology has potential benefits for systematic reviews; however, methods and tools for accomplishing this are poorly covered in the research methods literature. We briefly review the literature on applications of text mining for search term development for systematic reviewing. We found that the tools can be used in 5 overarching ways: improving the precision of searches; identifying search terms to improve search sensitivity; aiding the translation of search strategies across databases; searching and screening within an integrated system; and developing objectively derived search strategies. Using a case study and selected examples, we then reflect on the utility of certain technologies (term frequency-inverse document frequency and Termine, term frequency, and clustering) in improving the precision and sensitivity of searches. Challenges in using these tools are discussed. The utility of these tools is influenced by the different capabilities of the tools, the way the tools are used, and the text that is analysed. Increased awareness of how the tools perform facilitates the further development of methods for their use in systematic reviews. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Mining biomedical images towards valuable information retrieval in biomedical and life sciences.

    PubMed

    Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas

    2016-01-01

    Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries. © The Author(s) 2016. Published by Oxford University Press.

  16. Text mining in livestock animal science: introducing the potential of text mining to animal sciences.

    PubMed

    Sahadevan, S; Hofmann-Apitius, M; Schellander, K; Tesfaye, D; Fluck, J; Friedrich, C M

    2012-10-01

    In biological research, establishing the prior art by searching and collecting information already present in the domain has equal importance as the experiments done. To obtain a complete overview about the relevant knowledge, researchers mainly rely on 2 major information sources: i) various biological databases and ii) scientific publications in the field. The major difference between the 2 information sources is that information from databases is available, typically well structured and condensed. The information content in scientific literature is vastly unstructured; that is, dispersed among the many different sections of scientific text. The traditional method of information extraction from scientific literature occurs by generating a list of relevant publications in the field of interest and manually scanning these texts for relevant information, which is very time consuming. It is more than likely that in using this "classical" approach the researcher misses some relevant information mentioned in the literature or has to go through biological databases to extract further information. Text mining and named entity recognition methods have already been used in human genomics and related fields as a solution to this problem. These methods can process and extract information from large volumes of scientific text. Text mining is defined as the automatic extraction of previously unknown and potentially useful information from text. Named entity recognition (NER) is defined as the method of identifying named entities (names of real world objects; for example, gene/protein names, drugs, enzymes) in text. In animal sciences, text mining and related methods have been briefly used in murine genomics and associated fields, leaving behind other fields of animal sciences, such as livestock genomics. The aim of this work was to develop an information retrieval platform in the livestock domain focusing on livestock publications and the recognition of relevant data from cattle and pigs. For this purpose, the rather noncomprehensive resources of pig and cattle gene and protein terminologies were enriched with orthologue synonyms, integrated in the NER platform, ProMiner, which is successfully used in human genomics domain. Based on the performance tests done, the present system achieved a fair performance with precision 0.64, recall 0.74, and F(1) measure of 0.69 in a test scenario based on cattle literature.

  17. Text mining applied to electronic cardiovascular procedure reports to identify patients with trileaflet aortic stenosis and coronary artery disease.

    PubMed

    Small, Aeron M; Kiss, Daniel H; Zlatsin, Yevgeny; Birtwell, David L; Williams, Heather; Guerraty, Marie A; Han, Yuchi; Anwaruddin, Saif; Holmes, John H; Chirinos, Julio A; Wilensky, Robert L; Giri, Jay; Rader, Daniel J

    2017-08-01

    Interrogation of the electronic health record (EHR) using billing codes as a surrogate for diagnoses of interest has been widely used for clinical research. However, the accuracy of this methodology is variable, as it reflects billing codes rather than severity of disease, and depends on the disease and the accuracy of the coding practitioner. Systematic application of text mining to the EHR has had variable success for the detection of cardiovascular phenotypes. We hypothesize that the application of text mining algorithms to cardiovascular procedure reports may be a superior method to identify patients with cardiovascular conditions of interest. We adapted the Oracle product Endeca, which utilizes text mining to identify terms of interest from a NoSQL-like database, for purposes of searching cardiovascular procedure reports and termed the tool "PennSeek". We imported 282,569 echocardiography reports representing 81,164 individuals and 27,205 cardiac catheterization reports representing 14,567 individuals from non-searchable databases into PennSeek. We then applied clinical criteria to these reports in PennSeek to identify patients with trileaflet aortic stenosis (TAS) and coronary artery disease (CAD). Accuracy of patient identification by text mining through PennSeek was compared with ICD-9 billing codes. Text mining identified 7115 patients with TAS and 9247 patients with CAD. ICD-9 codes identified 8272 patients with TAS and 6913 patients with CAD. 4346 patients with AS and 6024 patients with CAD were identified by both approaches. A randomly selected sample of 200-250 patients uniquely identified by text mining was compared with 200-250 patients uniquely identified by billing codes for both diseases. We demonstrate that text mining was superior, with a positive predictive value (PPV) of 0.95 compared to 0.53 by ICD-9 for TAS, and a PPV of 0.97 compared to 0.86 for CAD. These results highlight the superiority of text mining algorithms applied to electronic cardiovascular procedure reports in the identification of phenotypes of interest for cardiovascular research. Copyright © 2017. Published by Elsevier Inc.

  18. Textpresso Central: a customizable platform for searching, text mining, viewing, and curating biomedical literature.

    PubMed

    Müller, H-M; Van Auken, K M; Li, Y; Sternberg, P W

    2018-03-09

    The biomedical literature continues to grow at a rapid pace, making the challenge of knowledge retrieval and extraction ever greater. Tools that provide a means to search and mine the full text of literature thus represent an important way by which the efficiency of these processes can be improved. We describe the next generation of the Textpresso information retrieval system, Textpresso Central (TPC). TPC builds on the strengths of the original system by expanding the full text corpus to include the PubMed Central Open Access Subset (PMC OA), as well as the WormBase C. elegans bibliography. In addition, TPC allows users to create a customized corpus by uploading and processing documents of their choosing. TPC is UIMA compliant, to facilitate compatibility with external processing modules, and takes advantage of Lucene indexing and search technology for efficient handling of millions of full text documents. Like Textpresso, TPC searches can be performed using keywords and/or categories (semantically related groups of terms), but to provide better context for interpreting and validating queries, search results may now be viewed as highlighted passages in the context of full text. To facilitate biocuration efforts, TPC also allows users to select text spans from the full text and annotate them, create customized curation forms for any data type, and send resulting annotations to external curation databases. As an example of such a curation form, we describe integration of TPC with the Noctua curation tool developed by the Gene Ontology (GO) Consortium. Textpresso Central is an online literature search and curation platform that enables biocurators and biomedical researchers to search and mine the full text of literature by integrating keyword and category searches with viewing search results in the context of the full text. It also allows users to create customized curation interfaces, use those interfaces to make annotations linked to supporting evidence statements, and then send those annotations to any database in the world. Textpresso Central URL: http://www.textpresso.org/tpc.

  19. Improve Data Mining and Knowledge Discovery Through the Use of MatLab

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali; Martin, Dawn (Elliott); Beil, Robert

    2011-01-01

    Data mining is widely used to mine business, engineering, and scientific data. Data mining uses pattern based queries, searches, or other analyses of one or more electronic databases/datasets in order to discover or locate a predictive pattern or anomaly indicative of system failure, criminal or terrorist activity, etc. There are various algorithms, techniques and methods used to mine data; including neural networks, genetic algorithms, decision trees, nearest neighbor method, rule induction association analysis, slice and dice, segmentation, and clustering. These algorithms, techniques and methods used to detect patterns in a dataset, have been used in the development of numerous open source and commercially available products and technology for data mining. Data mining is best realized when latent information in a large quantity of data stored is discovered. No one technique solves all data mining problems; challenges are to select algorithms or methods appropriate to strengthen data/text mining and trending within given datasets. In recent years, throughout industry, academia and government agencies, thousands of data systems have been designed and tailored to serve specific engineering and business needs. Many of these systems use databases with relational algebra and structured query language to categorize and retrieve data. In these systems, data analyses are limited and require prior explicit knowledge of metadata and database relations; lacking exploratory data mining and discoveries of latent information. This presentation introduces MatLab(R) (MATrix LABoratory), an engineering and scientific data analyses tool to perform data mining. MatLab was originally intended to perform purely numerical calculations (a glorified calculator). Now, in addition to having hundreds of mathematical functions, it is a programming language with hundreds built in standard functions and numerous available toolboxes. MatLab's ease of data processing, visualization and its enormous availability of built in functionalities and toolboxes make it suitable to perform numerical computations and simulations as well as a data mining tool. Engineers and scientists can take advantage of the readily available functions/toolboxes to gain wider insight in their perspective data mining experiments.

  20. Improve Data Mining and Knowledge Discovery through the use of MatLab

    NASA Technical Reports Server (NTRS)

    Shaykahian, Gholan Ali; Martin, Dawn Elliott; Beil, Robert

    2011-01-01

    Data mining is widely used to mine business, engineering, and scientific data. Data mining uses pattern based queries, searches, or other analyses of one or more electronic databases/datasets in order to discover or locate a predictive pattern or anomaly indicative of system failure, criminal or terrorist activity, etc. There are various algorithms, techniques and methods used to mine data; including neural networks, genetic algorithms, decision trees, nearest neighbor method, rule induction association analysis, slice and dice, segmentation, and clustering. These algorithms, techniques and methods used to detect patterns in a dataset, have been used in the development of numerous open source and commercially available products and technology for data mining. Data mining is best realized when latent information in a large quantity of data stored is discovered. No one technique solves all data mining problems; challenges are to select algorithms or methods appropriate to strengthen data/text mining and trending within given datasets. In recent years, throughout industry, academia and government agencies, thousands of data systems have been designed and tailored to serve specific engineering and business needs. Many of these systems use databases with relational algebra and structured query language to categorize and retrieve data. In these systems, data analyses are limited and require prior explicit knowledge of metadata and database relations; lacking exploratory data mining and discoveries of latent information. This presentation introduces MatLab(TradeMark)(MATrix LABoratory), an engineering and scientific data analyses tool to perform data mining. MatLab was originally intended to perform purely numerical calculations (a glorified calculator). Now, in addition to having hundreds of mathematical functions, it is a programming language with hundreds built in standard functions and numerous available toolboxes. MatLab's ease of data processing, visualization and its enormous availability of built in functionalities and toolboxes make it suitable to perform numerical computations and simulations as well as a data mining tool. Engineers and scientists can take advantage of the readily available functions/toolboxes to gain wider insight in their perspective data mining experiments.

  1. An Evaluation of Text Mining Tools as Applied to Selected Scientific and Engineering Literature.

    ERIC Educational Resources Information Center

    Trybula, Walter J.; Wyllys, Ronald E.

    2000-01-01

    Addresses an approach to the discovery of scientific knowledge through an examination of data mining and text mining techniques. Presents the results of experiments that investigated knowledge acquisition from a selected set of technical documents by domain experts. (Contains 15 references.) (Author/LRW)

  2. Introduction to the JASIST Special Topic Issue on Web Retrieval and Mining: A Machine Learning Perspective.

    ERIC Educational Resources Information Center

    Chen, Hsinchun

    2003-01-01

    Discusses information retrieval techniques used on the World Wide Web. Topics include machine learning in information extraction; relevance feedback; information filtering and recommendation; text classification and text clustering; Web mining, based on data mining techniques; hyperlink structure; and Web size. (LRW)

  3. Application of text mining in the biomedical domain.

    PubMed

    Fleuren, Wilco W M; Alkema, Wynand

    2015-03-01

    In recent years the amount of experimental data that is produced in biomedical research and the number of papers that are being published in this field have grown rapidly. In order to keep up to date with developments in their field of interest and to interpret the outcome of experiments in light of all available literature, researchers turn more and more to the use of automated literature mining. As a consequence, text mining tools have evolved considerably in number and quality and nowadays can be used to address a variety of research questions ranging from de novo drug target discovery to enhanced biological interpretation of the results from high throughput experiments. In this paper we introduce the most important techniques that are used for a text mining and give an overview of the text mining tools that are currently being used and the type of problems they are typically applied for. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The Islamic State Battle Plan: Press Release Natural Language Processing

    DTIC Science & Technology

    2016-06-01

    Processing, text mining , corpus, generalized linear model, cascade, R Shiny, leaflet, data visualization 15. NUMBER OF PAGES 83 16. PRICE CODE...Terrorism and Responses to Terrorism TDM Term Document Matrix TF Term Frequency TF-IDF Term Frequency-Inverse Document Frequency tm text mining (R...package=leaflet. Feinerer I, Hornik K (2015) Text Mining Package “tm,” Version 0.6-2. (Jul 3) https://cran.r-project.org/web/packages/tm/tm.pdf

  5. OntoGene web services for biomedical text mining.

    PubMed

    Rinaldi, Fabio; Clematide, Simon; Marques, Hernani; Ellendorff, Tilia; Romacker, Martin; Rodriguez-Esteban, Raul

    2014-01-01

    Text mining services are rapidly becoming a crucial component of various knowledge management pipelines, for example in the process of database curation, or for exploration and enrichment of biomedical data within the pharmaceutical industry. Traditional architectures, based on monolithic applications, do not offer sufficient flexibility for a wide range of use case scenarios, and therefore open architectures, as provided by web services, are attracting increased interest. We present an approach towards providing advanced text mining capabilities through web services, using a recently proposed standard for textual data interchange (BioC). The web services leverage a state-of-the-art platform for text mining (OntoGene) which has been tested in several community-organized evaluation challenges,with top ranked results in several of them.

  6. Text mining patents for biomedical knowledge.

    PubMed

    Rodriguez-Esteban, Raul; Bundschus, Markus

    2016-06-01

    Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. OntoGene web services for biomedical text mining

    PubMed Central

    2014-01-01

    Text mining services are rapidly becoming a crucial component of various knowledge management pipelines, for example in the process of database curation, or for exploration and enrichment of biomedical data within the pharmaceutical industry. Traditional architectures, based on monolithic applications, do not offer sufficient flexibility for a wide range of use case scenarios, and therefore open architectures, as provided by web services, are attracting increased interest. We present an approach towards providing advanced text mining capabilities through web services, using a recently proposed standard for textual data interchange (BioC). The web services leverage a state-of-the-art platform for text mining (OntoGene) which has been tested in several community-organized evaluation challenges, with top ranked results in several of them. PMID:25472638

  8. Mining adverse drug reactions from online healthcare forums using hidden Markov model.

    PubMed

    Sampathkumar, Hariprasad; Chen, Xue-wen; Luo, Bo

    2014-10-23

    Adverse Drug Reactions are one of the leading causes of injury or death among patients undergoing medical treatments. Not all Adverse Drug Reactions are identified before a drug is made available in the market. Current post-marketing drug surveillance methods, which are based purely on voluntary spontaneous reports, are unable to provide the early indications necessary to prevent the occurrence of such injuries or fatalities. The objective of this research is to extract reports of adverse drug side-effects from messages in online healthcare forums and use them as early indicators to assist in post-marketing drug surveillance. We treat the task of extracting adverse side-effects of drugs from healthcare forum messages as a sequence labeling problem and present a Hidden Markov Model(HMM) based Text Mining system that can be used to classify a message as containing drug side-effect information and then extract the adverse side-effect mentions from it. A manually annotated dataset from http://www.medications.com is used in the training and validation of the HMM based Text Mining system. A 10-fold cross-validation on the manually annotated dataset yielded on average an F-Score of 0.76 from the HMM Classifier, in comparison to 0.575 from the Baseline classifier. Without the Plain Text Filter component as a part of the Text Processing module, the F-Score of the HMM Classifier was reduced to 0.378 on average, while absence of the HTML Filter component was found to have no impact. Reducing the Drug names dictionary size by half, on average reduced the F-Score of the HMM Classifier to 0.359, while a similar reduction to the side-effects dictionary yielded an F-Score of 0.651 on average. Adverse side-effects mined from http://www.medications.com and http://www.steadyhealth.com were found to match the Adverse Drug Reactions on the Drug Package Labels of several drugs. In addition, some novel adverse side-effects, which can be potential Adverse Drug Reactions, were also identified. The results from the HMM based Text Miner are encouraging to pursue further enhancements to this approach. The mined novel side-effects can act as early indicators for health authorities to help focus their efforts in post-marketing drug surveillance.

  9. Real-time incident detection using social media data.

    DOT National Transportation Integrated Search

    2016-05-09

    The effectiveness of traditional incident detection is often limited by sparse sensor coverage, and reporting incidents to emergency response systems : is labor-intensive. This research project mines tweet texts to extract incident information on bot...

  10. Combining QSAR Modeling and Text-Mining Techniques to Link Chemical Structures and Carcinogenic Modes of Action.

    PubMed

    Papamokos, George; Silins, Ilona

    2016-01-01

    There is an increasing need for new reliable non-animal based methods to predict and test toxicity of chemicals. Quantitative structure-activity relationship (QSAR), a computer-based method linking chemical structures with biological activities, is used in predictive toxicology. In this study, we tested the approach to combine QSAR data with literature profiles of carcinogenic modes of action automatically generated by a text-mining tool. The aim was to generate data patterns to identify associations between chemical structures and biological mechanisms related to carcinogenesis. Using these two methods, individually and combined, we evaluated 96 rat carcinogens of the hematopoietic system, liver, lung, and skin. We found that skin and lung rat carcinogens were mainly mutagenic, while the group of carcinogens affecting the hematopoietic system and the liver also included a large proportion of non-mutagens. The automatic literature analysis showed that mutagenicity was a frequently reported endpoint in the literature of these carcinogens, however, less common endpoints such as immunosuppression and hormonal receptor-mediated effects were also found in connection with some of the carcinogens, results of potential importance for certain target organs. The combined approach, using QSAR and text-mining techniques, could be useful for identifying more detailed information on biological mechanisms and the relation with chemical structures. The method can be particularly useful in increasing the understanding of structure and activity relationships for non-mutagens.

  11. Combining QSAR Modeling and Text-Mining Techniques to Link Chemical Structures and Carcinogenic Modes of Action

    PubMed Central

    Papamokos, George; Silins, Ilona

    2016-01-01

    There is an increasing need for new reliable non-animal based methods to predict and test toxicity of chemicals. Quantitative structure-activity relationship (QSAR), a computer-based method linking chemical structures with biological activities, is used in predictive toxicology. In this study, we tested the approach to combine QSAR data with literature profiles of carcinogenic modes of action automatically generated by a text-mining tool. The aim was to generate data patterns to identify associations between chemical structures and biological mechanisms related to carcinogenesis. Using these two methods, individually and combined, we evaluated 96 rat carcinogens of the hematopoietic system, liver, lung, and skin. We found that skin and lung rat carcinogens were mainly mutagenic, while the group of carcinogens affecting the hematopoietic system and the liver also included a large proportion of non-mutagens. The automatic literature analysis showed that mutagenicity was a frequently reported endpoint in the literature of these carcinogens, however, less common endpoints such as immunosuppression and hormonal receptor-mediated effects were also found in connection with some of the carcinogens, results of potential importance for certain target organs. The combined approach, using QSAR and text-mining techniques, could be useful for identifying more detailed information on biological mechanisms and the relation with chemical structures. The method can be particularly useful in increasing the understanding of structure and activity relationships for non-mutagens. PMID:27625608

  12. Evaluation of the mining techniques in constructing a traditional Chinese-language nursing recording system.

    PubMed

    Liao, Pei-Hung; Chu, William; Chu, Woei-Chyn

    2014-05-01

    In 2009, the Department of Health, part of Taiwan's Executive Yuan, announced the advent of electronic medical records to reduce medical expenses and facilitate the international exchange of medical record information. An information technology platform for nursing records in medical institutions was then quickly established, which improved nursing information systems and electronic databases. The purpose of the present study was to explore the usability of the data mining techniques to enhance completeness and ensure consistency of nursing records in the database system.First, the study used a Chinese word-segmenting system on common and special terms often used by the nursing staff. We also used text-mining techniques to collect keywords and create a keyword lexicon. We then used an association rule and artificial neural network to measure the correlation and forecasting capability for keywords. Finally, nursing staff members were provided with an on-screen pop-up menu to use when establishing nursing records. Our study found that by using mining techniques we were able to create a powerful keyword lexicon and establish a forecasting model for nursing diagnoses, ensuring the consistency of nursing terminology and improving the nursing staff's work efficiency and productivity.

  13. Large-Scale Event Extraction from Literature with Multi-Level Gene Normalization

    PubMed Central

    Wei, Chih-Hsuan; Hakala, Kai; Pyysalo, Sampo; Ananiadou, Sophia; Kao, Hung-Yu; Lu, Zhiyong; Salakoski, Tapio; Van de Peer, Yves; Ginter, Filip

    2013-01-01

    Text mining for the life sciences aims to aid database curation, knowledge summarization and information retrieval through the automated processing of biomedical texts. To provide comprehensive coverage and enable full integration with existing biomolecular database records, it is crucial that text mining tools scale up to millions of articles and that their analyses can be unambiguously linked to information recorded in resources such as UniProt, KEGG, BioGRID and NCBI databases. In this study, we investigate how fully automated text mining of complex biomolecular events can be augmented with a normalization strategy that identifies biological concepts in text, mapping them to identifiers at varying levels of granularity, ranging from canonicalized symbols to unique gene and proteins and broad gene families. To this end, we have combined two state-of-the-art text mining components, previously evaluated on two community-wide challenges, and have extended and improved upon these methods by exploiting their complementary nature. Using these systems, we perform normalization and event extraction to create a large-scale resource that is publicly available, unique in semantic scope, and covers all 21.9 million PubMed abstracts and 460 thousand PubMed Central open access full-text articles. This dataset contains 40 million biomolecular events involving 76 million gene/protein mentions, linked to 122 thousand distinct genes from 5032 species across the full taxonomic tree. Detailed evaluations and analyses reveal promising results for application of this data in database and pathway curation efforts. The main software components used in this study are released under an open-source license. Further, the resulting dataset is freely accessible through a novel API, providing programmatic and customized access (http://www.evexdb.org/api/v001/). Finally, to allow for large-scale bioinformatic analyses, the entire resource is available for bulk download from http://evexdb.org/download/, under the Creative Commons – Attribution – Share Alike (CC BY-SA) license. PMID:23613707

  14. Computational systems biology analysis of biomarkers in lung cancer; unravelling genomic regions which frequently encode biomarkers, enriched pathways, and new candidates.

    PubMed

    Alanazi, Ibrahim O; AlYahya, Sami A; Ebrahimie, Esmaeil; Mohammadi-Dehcheshmeh, Manijeh

    2018-06-15

    Exponentially growing scientific knowledge in scientific publications has resulted in the emergence of a new interdisciplinary science of literature mining. In text mining, the machine reads the published literature and transfers the discovered knowledge to mathematical-like formulas. In an integrative approach in this study, we used text mining in combination with network discovery, pathway analysis, and enrichment analysis of genomic regions for better understanding of biomarkers in lung cancer. Particular attention was paid to non-coding biomarkers. In total, 60 MicroRNA biomarkers were reported for lung cancer, including some prognostic biomarkers. MIR21, MIR155, MALAT1, and MIR31 were the top non-coding RNA biomarkers of lung cancer. Text mining identified 447 proteins which have been studied as biomarkers in lung cancer. EGFR (receptor), TP53 (transcription factor), KRAS, CDKN2A, ENO2, KRT19, RASSF1, GRP (ligand), SHOX2 (transcription factor), and ERBB2 (receptor) were the most studied proteins. Within small molecules, thymosin-a1, oestrogen, and 8-OHdG have received more attention. We found some chromosomal bands, such as 7q32.2, 18q12.1, 6p12, 11p15.5, and 3p21.3 that are highly involved in deriving lung cancer biomarkers. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Text mining approach to predict hospital admissions using early medical records from the emergency department.

    PubMed

    Lucini, Filipe R; S Fogliatto, Flavio; C da Silveira, Giovani J; L Neyeloff, Jeruza; Anzanello, Michel J; de S Kuchenbecker, Ricardo; D Schaan, Beatriz

    2017-04-01

    Emergency department (ED) overcrowding is a serious issue for hospitals. Early information on short-term inward bed demand from patients receiving care at the ED may reduce the overcrowding problem, and optimize the use of hospital resources. In this study, we use text mining methods to process data from early ED patient records using the SOAP framework, and predict future hospitalizations and discharges. We try different approaches for pre-processing of text records and to predict hospitalization. Sets-of-words are obtained via binary representation, term frequency, and term frequency-inverse document frequency. Unigrams, bigrams and trigrams are tested for feature formation. Feature selection is based on χ 2 and F-score metrics. In the prediction module, eight text mining methods are tested: Decision Tree, Random Forest, Extremely Randomized Tree, AdaBoost, Logistic Regression, Multinomial Naïve Bayes, Support Vector Machine (Kernel linear) and Nu-Support Vector Machine (Kernel linear). Prediction performance is evaluated by F1-scores. Precision and Recall values are also informed for all text mining methods tested. Nu-Support Vector Machine was the text mining method with the best overall performance. Its average F1-score in predicting hospitalization was 77.70%, with a standard deviation (SD) of 0.66%. The method could be used to manage daily routines in EDs such as capacity planning and resource allocation. Text mining could provide valuable information and facilitate decision-making by inward bed management teams. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  16. pGenN, a gene normalization tool for plant genes and proteins in scientific literature.

    PubMed

    Ding, Ruoyao; Arighi, Cecilia N; Lee, Jung-Youn; Wu, Cathy H; Vijay-Shanker, K

    2015-01-01

    Automatically detecting gene/protein names in the literature and connecting them to databases records, also known as gene normalization, provides a means to structure the information buried in free-text literature. Gene normalization is critical for improving the coverage of annotation in the databases, and is an essential component of many text mining systems and database curation pipelines. In this manuscript, we describe a gene normalization system specifically tailored for plant species, called pGenN (pivot-based Gene Normalization). The system consists of three steps: dictionary-based gene mention detection, species assignment, and intra species normalization. We have developed new heuristics to improve each of these phases. We evaluated the performance of pGenN on an in-house expertly annotated corpus consisting of 104 plant relevant abstracts. Our system achieved an F-value of 88.9% (Precision 90.9% and Recall 87.2%) on this corpus, outperforming state-of-art systems presented in BioCreative III. We have processed over 440,000 plant-related Medline abstracts using pGenN. The gene normalization results are stored in a local database for direct query from the pGenN web interface (proteininformationresource.org/pgenn/). The annotated literature corpus is also publicly available through the PIR text mining portal (proteininformationresource.org/iprolink/).

  17. Text and Structural Data Mining of Influenza Mentions in Web and Social Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corley, Courtney D.; Cook, Diane; Mikler, Armin R.

    Text and structural data mining of Web and social media (WSM) provides a novel disease surveillance resource and can identify online communities for targeted public health communications (PHC) to assure wide dissemination of pertinent information. WSM that mention influenza are harvested over a 24-week period, 5-October-2008 to 21-March-2009. Link analysis reveals communities for targeted PHC. Text mining is shown to identify trends in flu posts that correlate to real-world influenza-like-illness patient report data. We also bring to bear a graph-based data mining technique to detect anomalies among flu blogs connected by publisher type, links, and user-tags.

  18. Integrating text mining into the MGI biocuration workflow

    PubMed Central

    Dowell, K.G.; McAndrews-Hill, M.S.; Hill, D.P.; Drabkin, H.J.; Blake, J.A.

    2009-01-01

    A major challenge for functional and comparative genomics resource development is the extraction of data from the biomedical literature. Although text mining for biological data is an active research field, few applications have been integrated into production literature curation systems such as those of the model organism databases (MODs). Not only are most available biological natural language (bioNLP) and information retrieval and extraction solutions difficult to adapt to existing MOD curation workflows, but many also have high error rates or are unable to process documents available in those formats preferred by scientific journals. In September 2008, Mouse Genome Informatics (MGI) at The Jackson Laboratory initiated a search for dictionary-based text mining tools that we could integrate into our biocuration workflow. MGI has rigorous document triage and annotation procedures designed to identify appropriate articles about mouse genetics and genome biology. We currently screen ∼1000 journal articles a month for Gene Ontology terms, gene mapping, gene expression, phenotype data and other key biological information. Although we do not foresee that curation tasks will ever be fully automated, we are eager to implement named entity recognition (NER) tools for gene tagging that can help streamline our curation workflow and simplify gene indexing tasks within the MGI system. Gene indexing is an MGI-specific curation function that involves identifying which mouse genes are being studied in an article, then associating the appropriate gene symbols with the article reference number in the MGI database. Here, we discuss our search process, performance metrics and success criteria, and how we identified a short list of potential text mining tools for further evaluation. We provide an overview of our pilot projects with NCBO's Open Biomedical Annotator and Fraunhofer SCAI's ProMiner. In doing so, we prove the potential for the further incorporation of semi-automated processes into the curation of the biomedical literature. PMID:20157492

  19. Integrating text mining into the MGI biocuration workflow.

    PubMed

    Dowell, K G; McAndrews-Hill, M S; Hill, D P; Drabkin, H J; Blake, J A

    2009-01-01

    A major challenge for functional and comparative genomics resource development is the extraction of data from the biomedical literature. Although text mining for biological data is an active research field, few applications have been integrated into production literature curation systems such as those of the model organism databases (MODs). Not only are most available biological natural language (bioNLP) and information retrieval and extraction solutions difficult to adapt to existing MOD curation workflows, but many also have high error rates or are unable to process documents available in those formats preferred by scientific journals.In September 2008, Mouse Genome Informatics (MGI) at The Jackson Laboratory initiated a search for dictionary-based text mining tools that we could integrate into our biocuration workflow. MGI has rigorous document triage and annotation procedures designed to identify appropriate articles about mouse genetics and genome biology. We currently screen approximately 1000 journal articles a month for Gene Ontology terms, gene mapping, gene expression, phenotype data and other key biological information. Although we do not foresee that curation tasks will ever be fully automated, we are eager to implement named entity recognition (NER) tools for gene tagging that can help streamline our curation workflow and simplify gene indexing tasks within the MGI system. Gene indexing is an MGI-specific curation function that involves identifying which mouse genes are being studied in an article, then associating the appropriate gene symbols with the article reference number in the MGI database.Here, we discuss our search process, performance metrics and success criteria, and how we identified a short list of potential text mining tools for further evaluation. We provide an overview of our pilot projects with NCBO's Open Biomedical Annotator and Fraunhofer SCAI's ProMiner. In doing so, we prove the potential for the further incorporation of semi-automated processes into the curation of the biomedical literature.

  20. Text mining electronic hospital records to automatically classify admissions against disease: Measuring the impact of linking data sources.

    PubMed

    Kocbek, Simon; Cavedon, Lawrence; Martinez, David; Bain, Christopher; Manus, Chris Mac; Haffari, Gholamreza; Zukerman, Ingrid; Verspoor, Karin

    2016-12-01

    Text and data mining play an important role in obtaining insights from Health and Hospital Information Systems. This paper presents a text mining system for detecting admissions marked as positive for several diseases: Lung Cancer, Breast Cancer, Colon Cancer, Secondary Malignant Neoplasm of Respiratory and Digestive Organs, Multiple Myeloma and Malignant Plasma Cell Neoplasms, Pneumonia, and Pulmonary Embolism. We specifically examine the effect of linking multiple data sources on text classification performance. Support Vector Machine classifiers are built for eight data source combinations, and evaluated using the metrics of Precision, Recall and F-Score. Sub-sampling techniques are used to address unbalanced datasets of medical records. We use radiology reports as an initial data source and add other sources, such as pathology reports and patient and hospital admission data, in order to assess the research question regarding the impact of the value of multiple data sources. Statistical significance is measured using the Wilcoxon signed-rank test. A second set of experiments explores aspects of the system in greater depth, focusing on Lung Cancer. We explore the impact of feature selection; analyse the learning curve; examine the effect of restricting admissions to only those containing reports from all data sources; and examine the impact of reducing the sub-sampling. These experiments provide better understanding of how to best apply text classification in the context of imbalanced data of variable completeness. Radiology questions plus patient and hospital admission data contribute valuable information for detecting most of the diseases, significantly improving performance when added to radiology reports alone or to the combination of radiology and pathology reports. Overall, linking data sources significantly improved classification performance for all the diseases examined. However, there is no single approach that suits all scenarios; the choice of the most effective combination of data sources depends on the specific disease to be classified. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Using Text Mining to Uncover Students' Technology-Related Problems in Live Video Streaming

    ERIC Educational Resources Information Center

    Abdous, M'hammed; He, Wu

    2011-01-01

    Because of their capacity to sift through large amounts of data, text mining and data mining are enabling higher education institutions to reveal valuable patterns in students' learning behaviours without having to resort to traditional survey methods. In an effort to uncover live video streaming (LVS) students' technology related-problems and to…

  2. Data Mining SIAM Presentation

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok; McIntosh, Dawn; Castle, Pat; Pontikakis, Manos; Diev, Vesselin; Zane-Ulman, Brett; Turkov, Eugene; Akella, Ram; Xu, Zuobing; Kumaresan, Sakthi Preethi

    2006-01-01

    This viewgraph document describes the data mining system developed at NASA Ames. Many NASA programs have large numbers (and types) of problem reports.These free text reports are written by a number of different people, thus the emphasis and wording vary considerably With so much data to sift through, analysts (subject experts) need help identifying any possible safety issues or concerns and help them confirm that they haven't missed important problems. Unsupervised clustering is the initial step to accomplish this; We think we can go much farther, specifically, identify possible recurring anomalies. Recurring anomalies may be indicators of larger systemic problems. The requirement to identify these anomalies has led to the development of Recurring Anomaly Discovery System (ReADS).

  3. Influence on Learning of a Collaborative Learning Method Comprising the Jigsaw Method and Problem-based Learning (PBL).

    PubMed

    Takeda, Kayoko; Takahashi, Kiyoshi; Masukawa, Hiroyuki; Shimamori, Yoshimitsu

    2017-01-01

    Recently, the practice of active learning has spread, increasingly recognized as an essential component of academic studies. Classes incorporating small group discussion (SGD) are conducted at many universities. At present, assessments of the effectiveness of SGD have mostly involved evaluation by questionnaires conducted by teachers, by peer assessment, and by self-evaluation of students. However, qualitative data, such as open-ended descriptions by students, have not been widely evaluated. As a result, we have been unable to analyze the processes and methods involved in how students acquire knowledge in SGD. In recent years, due to advances in information and communication technology (ICT), text mining has enabled the analysis of qualitative data. We therefore investigated whether the introduction of a learning system comprising the jigsaw method and problem-based learning (PBL) would improve student attitudes toward learning; we did this by text mining analysis of the content of student reports. We found that by applying the jigsaw method before PBL, we were able to improve student attitudes toward learning and increase the depth of their understanding of the area of study as a result of working with others. The use of text mining to analyze qualitative data also allowed us to understand the processes and methods by which students acquired knowledge in SGD and also changes in students' understanding and performance based on improvements to the class. This finding suggests that the use of text mining to analyze qualitative data could enable teachers to evaluate the effectiveness of various methods employed to improve learning.

  4. The Feasibility of Using Large-Scale Text Mining to Detect Adverse Childhood Experiences in a VA-Treated Population.

    PubMed

    Hammond, Kenric W; Ben-Ari, Alon Y; Laundry, Ryan J; Boyko, Edward J; Samore, Matthew H

    2015-12-01

    Free text in electronic health records resists large-scale analysis. Text records facts of interest not found in encoded data, and text mining enables their retrieval and quantification. The U.S. Department of Veterans Affairs (VA) clinical data repository affords an opportunity to apply text-mining methodology to study clinical questions in large populations. To assess the feasibility of text mining, investigation of the relationship between exposure to adverse childhood experiences (ACEs) and recorded diagnoses was conducted among all VA-treated Gulf war veterans, utilizing all progress notes recorded from 2000-2011. Text processing extracted ACE exposures recorded among 44.7 million clinical notes belonging to 243,973 veterans. The relationship of ACE exposure to adult illnesses was analyzed using logistic regression. Bias considerations were assessed. ACE score was strongly associated with suicide attempts and serious mental disorders (ORs = 1.84 to 1.97), and less so with behaviorally mediated and somatic conditions (ORs = 1.02 to 1.36) per unit. Bias adjustments did not remove persistent associations between ACE score and most illnesses. Text mining to detect ACE exposure in a large population was feasible. Analysis of the relationship between ACE score and adult health conditions yielded patterns of association consistent with prior research. Copyright © 2015 International Society for Traumatic Stress Studies.

  5. The Contribution of the Vaccine Adverse Event Text Mining System to the Classification of Possible Guillain-Barré Syndrome Reports

    PubMed Central

    Botsis, T.; Woo, E. J.; Ball, R.

    2013-01-01

    Background We previously demonstrated that a general purpose text mining system, the Vaccine adverse event Text Mining (VaeTM) system, could be used to automatically classify reports of an-aphylaxis for post-marketing safety surveillance of vaccines. Objective To evaluate the ability of VaeTM to classify reports to the Vaccine Adverse Event Reporting System (VAERS) of possible Guillain-Barré Syndrome (GBS). Methods We used VaeTM to extract the key diagnostic features from the text of reports in VAERS. Then, we applied the Brighton Collaboration (BC) case definition for GBS, and an information retrieval strategy (i.e. the vector space model) to quantify the specific information that is included in the key features extracted by VaeTM and compared it with the encoded information that is already stored in VAERS as Medical Dictionary for Regulatory Activities (MedDRA) Preferred Terms (PTs). We also evaluated the contribution of the primary (diagnosis and cause of death) and secondary (second level diagnosis and symptoms) diagnostic VaeTM-based features to the total VaeTM-based information. Results MedDRA captured more information and better supported the classification of reports for GBS than VaeTM (AUC: 0.904 vs. 0.777); the lower performance of VaeTM is likely due to the lack of extraction by VaeTM of specific laboratory results that are included in the BC criteria for GBS. On the other hand, the VaeTM-based classification exhibited greater specificity than the MedDRA-based approach (94.96% vs. 87.65%). Most of the VaeTM-based information was contained in the secondary diagnostic features. Conclusion For GBS, clinical signs and symptoms alone are not sufficient to match MedDRA coding for purposes of case classification, but are preferred if specificity is the priority. PMID:23650490

  6. 75 FR 52780 - Notice of Availability of Final Supplemental Environmental Impact Statement for the Moore Ranch...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... considered, but were eliminated from detailed analysis include: conventional mining (whether by open pit or... Agencywide Documents and Management System (ADAMS), which provides text and image files of the NRC's public...

  7. BioC: a minimalist approach to interoperability for biomedical text processing

    PubMed Central

    Comeau, Donald C.; Islamaj Doğan, Rezarta; Ciccarese, Paolo; Cohen, Kevin Bretonnel; Krallinger, Martin; Leitner, Florian; Lu, Zhiyong; Peng, Yifan; Rinaldi, Fabio; Torii, Manabu; Valencia, Alfonso; Verspoor, Karin; Wiegers, Thomas C.; Wu, Cathy H.; Wilbur, W. John

    2013-01-01

    A vast amount of scientific information is encoded in natural language text, and the quantity of such text has become so great that it is no longer economically feasible to have a human as the first step in the search process. Natural language processing and text mining tools have become essential to facilitate the search for and extraction of information from text. This has led to vigorous research efforts to create useful tools and to create humanly labeled text corpora, which can be used to improve such tools. To encourage combining these efforts into larger, more powerful and more capable systems, a common interchange format to represent, store and exchange the data in a simple manner between different language processing systems and text mining tools is highly desirable. Here we propose a simple extensible mark-up language format to share text documents and annotations. The proposed annotation approach allows a large number of different annotations to be represented including sentences, tokens, parts of speech, named entities such as genes or diseases and relationships between named entities. In addition, we provide simple code to hold this data, read it from and write it back to extensible mark-up language files and perform some sample processing. We also describe completed as well as ongoing work to apply the approach in several directions. Code and data are available at http://bioc.sourceforge.net/. Database URL: http://bioc.sourceforge.net/ PMID:24048470

  8. VisualUrText: A Text Analytics Tool for Unstructured Textual Data

    NASA Astrophysics Data System (ADS)

    Zainol, Zuraini; Jaymes, Mohd T. H.; Nohuddin, Puteri N. E.

    2018-05-01

    The growing amount of unstructured text over Internet is tremendous. Text repositories come from Web 2.0, business intelligence and social networking applications. It is also believed that 80-90% of future growth data is available in the form of unstructured text databases that may potentially contain interesting patterns and trends. Text Mining is well known technique for discovering interesting patterns and trends which are non-trivial knowledge from massive unstructured text data. Text Mining covers multidisciplinary fields involving information retrieval (IR), text analysis, natural language processing (NLP), data mining, machine learning statistics and computational linguistics. This paper discusses the development of text analytics tool that is proficient in extracting, processing, analyzing the unstructured text data and visualizing cleaned text data into multiple forms such as Document Term Matrix (DTM), Frequency Graph, Network Analysis Graph, Word Cloud and Dendogram. This tool, VisualUrText, is developed to assist students and researchers for extracting interesting patterns and trends in document analyses.

  9. Toward Personalized Pressure Ulcer Care Planning: Development of a Bioinformatics System for Individualized Prioritization of Clinical Pratice Guideline

    DTIC Science & Technology

    2016-10-01

    and text data mining . A Spinal Cord Injury Pressure Ulcer and Deep tissue injury ontology, SCIPUDO, will be developed to ensure robust and extensive...on natural language programming and the need to convert text in to data for analysis. In progress c) Define Physio-MIMI based SCIPUD+ Resource...information extraction from the free text clinical note. 3) Significant Results Nothing to report 4) Other Achievements Nothing to report

  10. PolySearch2: a significantly improved text-mining system for discovering associations between human diseases, genes, drugs, metabolites, toxins and more.

    PubMed

    Liu, Yifeng; Liang, Yongjie; Wishart, David

    2015-07-01

    PolySearch2 (http://polysearch.ca) is an online text-mining system for identifying relationships between biomedical entities such as human diseases, genes, SNPs, proteins, drugs, metabolites, toxins, metabolic pathways, organs, tissues, subcellular organelles, positive health effects, negative health effects, drug actions, Gene Ontology terms, MeSH terms, ICD-10 medical codes, biological taxonomies and chemical taxonomies. PolySearch2 supports a generalized 'Given X, find all associated Ys' query, where X and Y can be selected from the aforementioned biomedical entities. An example query might be: 'Find all diseases associated with Bisphenol A'. To find its answers, PolySearch2 searches for associations against comprehensive collections of free-text collections, including local versions of MEDLINE abstracts, PubMed Central full-text articles, Wikipedia full-text articles and US Patent application abstracts. PolySearch2 also searches 14 widely used, text-rich biological databases such as UniProt, DrugBank and Human Metabolome Database to improve its accuracy and coverage. PolySearch2 maintains an extensive thesaurus of biological terms and exploits the latest search engine technology to rapidly retrieve relevant articles and databases records. PolySearch2 also generates, ranks and annotates associative candidates and present results with relevancy statistics and highlighted key sentences to facilitate user interpretation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. PolySearch2: a significantly improved text-mining system for discovering associations between human diseases, genes, drugs, metabolites, toxins and more

    PubMed Central

    Liu, Yifeng; Liang, Yongjie; Wishart, David

    2015-01-01

    PolySearch2 (http://polysearch.ca) is an online text-mining system for identifying relationships between biomedical entities such as human diseases, genes, SNPs, proteins, drugs, metabolites, toxins, metabolic pathways, organs, tissues, subcellular organelles, positive health effects, negative health effects, drug actions, Gene Ontology terms, MeSH terms, ICD-10 medical codes, biological taxonomies and chemical taxonomies. PolySearch2 supports a generalized ‘Given X, find all associated Ys’ query, where X and Y can be selected from the aforementioned biomedical entities. An example query might be: ‘Find all diseases associated with Bisphenol A’. To find its answers, PolySearch2 searches for associations against comprehensive collections of free-text collections, including local versions of MEDLINE abstracts, PubMed Central full-text articles, Wikipedia full-text articles and US Patent application abstracts. PolySearch2 also searches 14 widely used, text-rich biological databases such as UniProt, DrugBank and Human Metabolome Database to improve its accuracy and coverage. PolySearch2 maintains an extensive thesaurus of biological terms and exploits the latest search engine technology to rapidly retrieve relevant articles and databases records. PolySearch2 also generates, ranks and annotates associative candidates and present results with relevancy statistics and highlighted key sentences to facilitate user interpretation. PMID:25925572

  12. DrugQuest - a text mining workflow for drug association discovery.

    PubMed

    Papanikolaou, Nikolas; Pavlopoulos, Georgios A; Theodosiou, Theodosios; Vizirianakis, Ioannis S; Iliopoulos, Ioannis

    2016-06-06

    Text mining and data integration methods are gaining ground in the field of health sciences due to the exponential growth of bio-medical literature and information stored in biological databases. While such methods mostly try to extract bioentity associations from PubMed, very few of them are dedicated in mining other types of repositories such as chemical databases. Herein, we apply a text mining approach on the DrugBank database in order to explore drug associations based on the DrugBank "Description", "Indication", "Pharmacodynamics" and "Mechanism of Action" text fields. We apply Name Entity Recognition (NER) techniques on these fields to identify chemicals, proteins, genes, pathways, diseases, and we utilize the TextQuest algorithm to find additional biologically significant words. Using a plethora of similarity and partitional clustering techniques, we group the DrugBank records based on their common terms and investigate possible scenarios why these records are clustered together. Different views such as clustered chemicals based on their textual information, tag clouds consisting of Significant Terms along with the terms that were used for clustering are delivered to the user through a user-friendly web interface. DrugQuest is a text mining tool for knowledge discovery: it is designed to cluster DrugBank records based on text attributes in order to find new associations between drugs. The service is freely available at http://bioinformatics.med.uoc.gr/drugquest .

  13. 75 FR 51291 - National Science Board: Sunshine Act Meetings; Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ...-Gathering Activities. [cir] COV Report Text-Mining. [cir] Design of Research Questions for External Input. [cir] SBE/CISE Text-Mining Projects. [cir] Using a Blog for Informal Input. Committee on Education and...

  14. Using Workflows to Explore and Optimise Named Entity Recognition for Chemistry

    PubMed Central

    Kolluru, BalaKrishna; Hawizy, Lezan; Murray-Rust, Peter; Tsujii, Junichi; Ananiadou, Sophia

    2011-01-01

    Chemistry text mining tools should be interoperable and adaptable regardless of system-level implementation, installation or even programming issues. We aim to abstract the functionality of these tools from the underlying implementation via reconfigurable workflows for automatically identifying chemical names. To achieve this, we refactored an established named entity recogniser (in the chemistry domain), OSCAR and studied the impact of each component on the net performance. We developed two reconfigurable workflows from OSCAR using an interoperable text mining framework, U-Compare. These workflows can be altered using the drag-&-drop mechanism of the graphical user interface of U-Compare. These workflows also provide a platform to study the relationship between text mining components such as tokenisation and named entity recognition (using maximum entropy Markov model (MEMM) and pattern recognition based classifiers). Results indicate that, for chemistry in particular, eliminating noise generated by tokenisation techniques lead to a slightly better performance than others, in terms of named entity recognition (NER) accuracy. Poor tokenisation translates into poorer input to the classifier components which in turn leads to an increase in Type I or Type II errors, thus, lowering the overall performance. On the Sciborg corpus, the workflow based system, which uses a new tokeniser whilst retaining the same MEMM component, increases the F-score from 82.35% to 84.44%. On the PubMed corpus, it recorded an F-score of 84.84% as against 84.23% by OSCAR. PMID:21633495

  15. Using workflows to explore and optimise named entity recognition for chemistry.

    PubMed

    Kolluru, Balakrishna; Hawizy, Lezan; Murray-Rust, Peter; Tsujii, Junichi; Ananiadou, Sophia

    2011-01-01

    Chemistry text mining tools should be interoperable and adaptable regardless of system-level implementation, installation or even programming issues. We aim to abstract the functionality of these tools from the underlying implementation via reconfigurable workflows for automatically identifying chemical names. To achieve this, we refactored an established named entity recogniser (in the chemistry domain), OSCAR and studied the impact of each component on the net performance. We developed two reconfigurable workflows from OSCAR using an interoperable text mining framework, U-Compare. These workflows can be altered using the drag-&-drop mechanism of the graphical user interface of U-Compare. These workflows also provide a platform to study the relationship between text mining components such as tokenisation and named entity recognition (using maximum entropy Markov model (MEMM) and pattern recognition based classifiers). Results indicate that, for chemistry in particular, eliminating noise generated by tokenisation techniques lead to a slightly better performance than others, in terms of named entity recognition (NER) accuracy. Poor tokenisation translates into poorer input to the classifier components which in turn leads to an increase in Type I or Type II errors, thus, lowering the overall performance. On the Sciborg corpus, the workflow based system, which uses a new tokeniser whilst retaining the same MEMM component, increases the F-score from 82.35% to 84.44%. On the PubMed corpus, it recorded an F-score of 84.84% as against 84.23% by OSCAR.

  16. Building a glaucoma interaction network using a text mining approach.

    PubMed

    Soliman, Maha; Nasraoui, Olfa; Cooper, Nigel G F

    2016-01-01

    The volume of biomedical literature and its underlying knowledge base is rapidly expanding, making it beyond the ability of a single human being to read through all the literature. Several automated methods have been developed to help make sense of this dilemma. The present study reports on the results of a text mining approach to extract gene interactions from the data warehouse of published experimental results which are then used to benchmark an interaction network associated with glaucoma. To the best of our knowledge, there is, as yet, no glaucoma interaction network derived solely from text mining approaches. The presence of such a network could provide a useful summative knowledge base to complement other forms of clinical information related to this disease. A glaucoma corpus was constructed from PubMed Central and a text mining approach was applied to extract genes and their relations from this corpus. The extracted relations between genes were checked using reference interaction databases and classified generally as known or new relations. The extracted genes and relations were then used to construct a glaucoma interaction network. Analysis of the resulting network indicated that it bears the characteristics of a small world interaction network. Our analysis showed the presence of seven glaucoma linked genes that defined the network modularity. A web-based system for browsing and visualizing the extracted glaucoma related interaction networks is made available at http://neurogene.spd.louisville.edu/GlaucomaINViewer/Form1.aspx. This study has reported the first version of a glaucoma interaction network using a text mining approach. The power of such an approach is in its ability to cover a wide range of glaucoma related studies published over many years. Hence, a bigger picture of the disease can be established. To the best of our knowledge, this is the first glaucoma interaction network to summarize the known literature. The major findings were a set of relations that could not be found in existing interaction databases and that were found to be new, in addition to a smaller subnetwork consisting of interconnected clusters of seven glaucoma genes. Future improvements can be applied towards obtaining a better version of this network.

  17. Application of the EVEX resource to event extraction and network construction: Shared Task entry and result analysis

    PubMed Central

    2015-01-01

    Background Modern methods for mining biomolecular interactions from literature typically make predictions based solely on the immediate textual context, in effect a single sentence. No prior work has been published on extending this context to the information automatically gathered from the whole biomedical literature. Thus, our motivation for this study is to explore whether mutually supporting evidence, aggregated across several documents can be utilized to improve the performance of the state-of-the-art event extraction systems. In this paper, we describe our participation in the latest BioNLP Shared Task using the large-scale text mining resource EVEX. We participated in the Genia Event Extraction (GE) and Gene Regulation Network (GRN) tasks with two separate systems. In the GE task, we implemented a re-ranking approach to improve the precision of an existing event extraction system, incorporating features from the EVEX resource. In the GRN task, our system relied solely on the EVEX resource and utilized a rule-based conversion algorithm between the EVEX and GRN formats. Results In the GE task, our re-ranking approach led to a modest performance increase and resulted in the first rank of the official Shared Task results with 50.97% F-score. Additionally, in this paper we explore and evaluate the usage of distributed vector representations for this challenge. In the GRN task, we ranked fifth in the official results with a strict/relaxed SER score of 0.92/0.81 respectively. To try and improve upon these results, we have implemented a novel machine learning based conversion system and benchmarked its performance against the original rule-based system. Conclusions For the GRN task, we were able to produce a gene regulatory network from the EVEX data, warranting the use of such generic large-scale text mining data in network biology settings. A detailed performance and error analysis provides more insight into the relatively low recall rates. In the GE task we demonstrate that both the re-ranking approach and the word vectors can provide slight performance improvement. A manual evaluation of the re-ranking results pinpoints some of the challenges faced in applying large-scale text mining knowledge to event extraction. PMID:26551766

  18. Detection and Evaluation of Cheating on College Exams Using Supervised Classification

    ERIC Educational Resources Information Center

    Cavalcanti, Elmano Ramalho; Pires, Carlos Eduardo; Cavalcanti, Elmano Pontes; Pires, Vládia Freire

    2012-01-01

    Text mining has been used for various purposes, such as document classification and extraction of domain-specific information from text. In this paper we present a study in which text mining methodology and algorithms were properly employed for academic dishonesty (cheating) detection and evaluation on open-ended college exams, based on document…

  19. pGenN, a Gene Normalization Tool for Plant Genes and Proteins in Scientific Literature

    PubMed Central

    Ding, Ruoyao; Arighi, Cecilia N.; Lee, Jung-Youn; Wu, Cathy H.; Vijay-Shanker, K.

    2015-01-01

    Background Automatically detecting gene/protein names in the literature and connecting them to databases records, also known as gene normalization, provides a means to structure the information buried in free-text literature. Gene normalization is critical for improving the coverage of annotation in the databases, and is an essential component of many text mining systems and database curation pipelines. Methods In this manuscript, we describe a gene normalization system specifically tailored for plant species, called pGenN (pivot-based Gene Normalization). The system consists of three steps: dictionary-based gene mention detection, species assignment, and intra species normalization. We have developed new heuristics to improve each of these phases. Results We evaluated the performance of pGenN on an in-house expertly annotated corpus consisting of 104 plant relevant abstracts. Our system achieved an F-value of 88.9% (Precision 90.9% and Recall 87.2%) on this corpus, outperforming state-of-art systems presented in BioCreative III. We have processed over 440,000 plant-related Medline abstracts using pGenN. The gene normalization results are stored in a local database for direct query from the pGenN web interface (proteininformationresource.org/pgenn/). The annotated literature corpus is also publicly available through the PIR text mining portal (proteininformationresource.org/iprolink/). PMID:26258475

  20. Data Mining.

    ERIC Educational Resources Information Center

    Benoit, Gerald

    2002-01-01

    Discusses data mining (DM) and knowledge discovery in databases (KDD), taking the view that KDD is the larger view of the entire process, with DM emphasizing the cleaning, warehousing, mining, and visualization of knowledge discovery in databases. Highlights include algorithms; users; the Internet; text mining; and information extraction.…

  1. Ask and Ye Shall Receive? Automated Text Mining of Michigan Capital Facility Finance Bond Election Proposals to Identify Which Topics Are Associated with Bond Passage and Voter Turnout

    ERIC Educational Resources Information Center

    Bowers, Alex J.; Chen, Jingjing

    2015-01-01

    The purpose of this study is to bring together recent innovations in the research literature around school district capital facility finance, municipal bond elections, statistical models of conditional time-varying outcomes, and data mining algorithms for automated text mining of election ballot proposals to examine the factors that influence the…

  2. New directions in biomedical text annotation: definitions, guidelines and corpus construction

    PubMed Central

    Wilbur, W John; Rzhetsky, Andrey; Shatkay, Hagit

    2006-01-01

    Background While biomedical text mining is emerging as an important research area, practical results have proven difficult to achieve. We believe that an important first step towards more accurate text-mining lies in the ability to identify and characterize text that satisfies various types of information needs. We report here the results of our inquiry into properties of scientific text that have sufficient generality to transcend the confines of a narrow subject area, while supporting practical mining of text for factual information. Our ultimate goal is to annotate a significant corpus of biomedical text and train machine learning methods to automatically categorize such text along certain dimensions that we have defined. Results We have identified five qualitative dimensions that we believe characterize a broad range of scientific sentences, and are therefore useful for supporting a general approach to text-mining: focus, polarity, certainty, evidence, and directionality. We define these dimensions and describe the guidelines we have developed for annotating text with regard to them. To examine the effectiveness of the guidelines, twelve annotators independently annotated the same set of 101 sentences that were randomly selected from current biomedical periodicals. Analysis of these annotations shows 70–80% inter-annotator agreement, suggesting that our guidelines indeed present a well-defined, executable and reproducible task. Conclusion We present our guidelines defining a text annotation task, along with annotation results from multiple independently produced annotations, demonstrating the feasibility of the task. The annotation of a very large corpus of documents along these guidelines is currently ongoing. These annotations form the basis for the categorization of text along multiple dimensions, to support viable text mining for experimental results, methodology statements, and other forms of information. We are currently developing machine learning methods, to be trained and tested on the annotated corpus, that would allow for the automatic categorization of biomedical text along the general dimensions that we have presented. The guidelines in full detail, along with annotated examples, are publicly available. PMID:16867190

  3. Science and Technology Text Mining: Electric Power Sources

    DTIC Science & Technology

    2004-04-01

    Transactions of Power Systems), Thermal Engineering (Applied Thermal Engineering, JSME International Journal Series B – Fluids Thermal Engineering...Renewables ( International Journal of Hydrogen Energy, Biomass and Bioenergy, Solar Energy), Electrochemistry (Solid State Ionics, Journal of the...pollutants, with balanced emphasis given to solar and biomass systems. The papers in International Journal of Energy Research focus on performance of total

  4. An Enhanced Text-Mining Framework for Extracting Disaster Relevant Data through Social Media and Remote Sensing Data Fusion

    NASA Astrophysics Data System (ADS)

    Scheele, C. J.; Huang, Q.

    2016-12-01

    In the past decade, the rise in social media has led to the development of a vast number of social media services and applications. Disaster management represents one of such applications leveraging massive data generated for event detection, response, and recovery. In order to find disaster relevant social media data, current approaches utilize natural language processing (NLP) methods based on keywords, or machine learning algorithms relying on text only. However, these approaches cannot be perfectly accurate due to the variability and uncertainty in language used on social media. To improve current methods, the enhanced text-mining framework is proposed to incorporate location information from social media and authoritative remote sensing datasets for detecting disaster relevant social media posts, which are determined by assessing the textual content using common text mining methods and how the post relates spatiotemporally to the disaster event. To assess the framework, geo-tagged Tweets were collected for three different spatial and temporal disaster events: hurricane, flood, and tornado. Remote sensing data and products for each event were then collected using RealEarthTM. Both Naive Bayes and Logistic Regression classifiers were used to compare the accuracy within the enhanced text-mining framework. Finally, the accuracies from the enhanced text-mining framework were compared to the current text-only methods for each of the case study disaster events. The results from this study address the need for more authoritative data when using social media in disaster management applications.

  5. Text Mining for Neuroscience

    NASA Astrophysics Data System (ADS)

    Tirupattur, Naveen; Lapish, Christopher C.; Mukhopadhyay, Snehasis

    2011-06-01

    Text mining, sometimes alternately referred to as text analytics, refers to the process of extracting high-quality knowledge from the analysis of textual data. Text mining has wide variety of applications in areas such as biomedical science, news analysis, and homeland security. In this paper, we describe an approach and some relatively small-scale experiments which apply text mining to neuroscience research literature to find novel associations among a diverse set of entities. Neuroscience is a discipline which encompasses an exceptionally wide range of experimental approaches and rapidly growing interest. This combination results in an overwhelmingly large and often diffuse literature which makes a comprehensive synthesis difficult. Understanding the relations or associations among the entities appearing in the literature not only improves the researchers current understanding of recent advances in their field, but also provides an important computational tool to formulate novel hypotheses and thereby assist in scientific discoveries. We describe a methodology to automatically mine the literature and form novel associations through direct analysis of published texts. The method first retrieves a set of documents from databases such as PubMed using a set of relevant domain terms. In the current study these terms yielded a set of documents ranging from 160,909 to 367,214 documents. Each document is then represented in a numerical vector form from which an Association Graph is computed which represents relationships between all pairs of domain terms, based on co-occurrence. Association graphs can then be subjected to various graph theoretic algorithms such as transitive closure and cycle (circuit) detection to derive additional information, and can also be visually presented to a human researcher for understanding. In this paper, we present three relatively small-scale problem-specific case studies to demonstrate that such an approach is very successful in replicating a neuroscience expert's mental model of object-object associations entirely by means of text mining. These preliminary results provide the confidence that this type of text mining based research approach provides an extremely powerful tool to better understand the literature and drive novel discovery for the neuroscience community.

  6. Using text mining techniques to extract phenotypic information from the PhenoCHF corpus

    PubMed Central

    2015-01-01

    Background Phenotypic information locked away in unstructured narrative text presents significant barriers to information accessibility, both for clinical practitioners and for computerised applications used for clinical research purposes. Text mining (TM) techniques have previously been applied successfully to extract different types of information from text in the biomedical domain. They have the potential to be extended to allow the extraction of information relating to phenotypes from free text. Methods To stimulate the development of TM systems that are able to extract phenotypic information from text, we have created a new corpus (PhenoCHF) that is annotated by domain experts with several types of phenotypic information relating to congestive heart failure. To ensure that systems developed using the corpus are robust to multiple text types, it integrates text from heterogeneous sources, i.e., electronic health records (EHRs) and scientific articles from the literature. We have developed several different phenotype extraction methods to demonstrate the utility of the corpus, and tested these methods on a further corpus, i.e., ShARe/CLEF 2013. Results Evaluation of our automated methods showed that PhenoCHF can facilitate the training of reliable phenotype extraction systems, which are robust to variations in text type. These results have been reinforced by evaluating our trained systems on the ShARe/CLEF corpus, which contains clinical records of various types. Like other studies within the biomedical domain, we found that solutions based on conditional random fields produced the best results, when coupled with a rich feature set. Conclusions PhenoCHF is the first annotated corpus aimed at encoding detailed phenotypic information. The unique heterogeneous composition of the corpus has been shown to be advantageous in the training of systems that can accurately extract phenotypic information from a range of different text types. Although the scope of our annotation is currently limited to a single disease, the promising results achieved can stimulate further work into the extraction of phenotypic information for other diseases. The PhenoCHF annotation guidelines and annotations are publicly available at https://code.google.com/p/phenochf-corpus. PMID:26099853

  7. Using text mining techniques to extract phenotypic information from the PhenoCHF corpus.

    PubMed

    Alnazzawi, Noha; Thompson, Paul; Batista-Navarro, Riza; Ananiadou, Sophia

    2015-01-01

    Phenotypic information locked away in unstructured narrative text presents significant barriers to information accessibility, both for clinical practitioners and for computerised applications used for clinical research purposes. Text mining (TM) techniques have previously been applied successfully to extract different types of information from text in the biomedical domain. They have the potential to be extended to allow the extraction of information relating to phenotypes from free text. To stimulate the development of TM systems that are able to extract phenotypic information from text, we have created a new corpus (PhenoCHF) that is annotated by domain experts with several types of phenotypic information relating to congestive heart failure. To ensure that systems developed using the corpus are robust to multiple text types, it integrates text from heterogeneous sources, i.e., electronic health records (EHRs) and scientific articles from the literature. We have developed several different phenotype extraction methods to demonstrate the utility of the corpus, and tested these methods on a further corpus, i.e., ShARe/CLEF 2013. Evaluation of our automated methods showed that PhenoCHF can facilitate the training of reliable phenotype extraction systems, which are robust to variations in text type. These results have been reinforced by evaluating our trained systems on the ShARe/CLEF corpus, which contains clinical records of various types. Like other studies within the biomedical domain, we found that solutions based on conditional random fields produced the best results, when coupled with a rich feature set. PhenoCHF is the first annotated corpus aimed at encoding detailed phenotypic information. The unique heterogeneous composition of the corpus has been shown to be advantageous in the training of systems that can accurately extract phenotypic information from a range of different text types. Although the scope of our annotation is currently limited to a single disease, the promising results achieved can stimulate further work into the extraction of phenotypic information for other diseases. The PhenoCHF annotation guidelines and annotations are publicly available at https://code.google.com/p/phenochf-corpus.

  8. Using Open Web APIs in Teaching Web Mining

    ERIC Educational Resources Information Center

    Chen, Hsinchun; Li, Xin; Chau, M.; Ho, Yi-Jen; Tseng, Chunju

    2009-01-01

    With the advent of the World Wide Web, many business applications that utilize data mining and text mining techniques to extract useful business information on the Web have evolved from Web searching to Web mining. It is important for students to acquire knowledge and hands-on experience in Web mining during their education in information systems…

  9. Text-mining-assisted biocuration workflows in Argo

    PubMed Central

    Rak, Rafal; Batista-Navarro, Riza Theresa; Rowley, Andrew; Carter, Jacob; Ananiadou, Sophia

    2014-01-01

    Biocuration activities have been broadly categorized into the selection of relevant documents, the annotation of biological concepts of interest and identification of interactions between the concepts. Text mining has been shown to have a potential to significantly reduce the effort of biocurators in all the three activities, and various semi-automatic methodologies have been integrated into curation pipelines to support them. We investigate the suitability of Argo, a workbench for building text-mining solutions with the use of a rich graphical user interface, for the process of biocuration. Central to Argo are customizable workflows that users compose by arranging available elementary analytics to form task-specific processing units. A built-in manual annotation editor is the single most used biocuration tool of the workbench, as it allows users to create annotations directly in text, as well as modify or delete annotations created by automatic processing components. Apart from syntactic and semantic analytics, the ever-growing library of components includes several data readers and consumers that support well-established as well as emerging data interchange formats such as XMI, RDF and BioC, which facilitate the interoperability of Argo with other platforms or resources. To validate the suitability of Argo for curation activities, we participated in the BioCreative IV challenge whose purpose was to evaluate Web-based systems addressing user-defined biocuration tasks. Argo proved to have the edge over other systems in terms of flexibility of defining biocuration tasks. As expected, the versatility of the workbench inevitably lengthened the time the curators spent on learning the system before taking on the task, which may have affected the usability of Argo. The participation in the challenge gave us an opportunity to gather valuable feedback and identify areas of improvement, some of which have already been introduced. Database URL: http://argo.nactem.ac.uk PMID:25037308

  10. MSL: Facilitating automatic and physical analysis of published scientific literature in PDF format.

    PubMed

    Ahmed, Zeeshan; Dandekar, Thomas

    2015-01-01

    Published scientific literature contains millions of figures, including information about the results obtained from different scientific experiments e.g. PCR-ELISA data, microarray analysis, gel electrophoresis, mass spectrometry data, DNA/RNA sequencing, diagnostic imaging (CT/MRI and ultrasound scans), and medicinal imaging like electroencephalography (EEG), magnetoencephalography (MEG), echocardiography  (ECG), positron-emission tomography (PET) images. The importance of biomedical figures has been widely recognized in scientific and medicine communities, as they play a vital role in providing major original data, experimental and computational results in concise form. One major challenge for implementing a system for scientific literature analysis is extracting and analyzing text and figures from published PDF files by physical and logical document analysis. Here we present a product line architecture based bioinformatics tool 'Mining Scientific Literature (MSL)', which supports the extraction of text and images by interpreting all kinds of published PDF files using advanced data mining and image processing techniques. It provides modules for the marginalization of extracted text based on different coordinates and keywords, visualization of extracted figures and extraction of embedded text from all kinds of biological and biomedical figures using applied Optimal Character Recognition (OCR). Moreover, for further analysis and usage, it generates the system's output in different formats including text, PDF, XML and images files. Hence, MSL is an easy to install and use analysis tool to interpret published scientific literature in PDF format.

  11. Text mining of rheumatoid arthritis and diabetes mellitus to understand the mechanisms of Chinese medicine in different diseases with same treatment.

    PubMed

    Zhao, Ning; Zheng, Guang; Li, Jian; Zhao, Hong-Yan; Lu, Cheng; Jiang, Miao; Zhang, Chi; Guo, Hong-Tao; Lu, Ai-Ping

    2018-01-09

    To identify the commonalities between rheumatoid arthritis (RA) and diabetes mellitus (DM) to understand the mechanisms of Chinese medicine (CM) in different diseases with the same treatment. A text mining approach was adopted to analyze the commonalities between RA and DM according to CM and biological elements. The major commonalities were subsequently verifified in RA and DM rat models, in which herbal formula for the treatment of both RA and DM identifified via text mining was used as the intervention. Similarities were identifified between RA and DM regarding the CM approach used for diagnosis and treatment, as well as the networks of biological activities affected by each disease, including the involvement of adhesion molecules, oxidative stress, cytokines, T-lymphocytes, apoptosis, and inflfl ammation. The Ramulus Cinnamomi-Radix Paeoniae Alba-Rhizoma Anemarrhenae is an herbal combination used to treat RA and DM. This formula demonstrated similar effects on oxidative stress and inflfl ammation in rats with collagen-induced arthritis, which supports the text mining results regarding the commonalities between RA and DM. Commonalities between the biological activities involved in RA and DM were identifified through text mining, and both RA and DM might be responsive to the same intervention at a specifific stage.

  12. Matisse: A Visual Analytics System for Exploring Emotion Trends in Social Media Text Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A; Drouhard, Margaret MEG G; Beaver, Justin M

    Dynamically mining textual information streams to gain real-time situational awareness is especially challenging with social media systems where throughput and velocity properties push the limits of a static analytical approach. In this paper, we describe an interactive visual analytics system, called Matisse, that aids with the discovery and investigation of trends in streaming text. Matisse addresses the challenges inherent to text stream mining through the following technical contributions: (1) robust stream data management, (2) automated sentiment/emotion analytics, (3) interactive coordinated visualizations, and (4) a flexible drill-down interaction scheme that accesses multiple levels of detail. In addition to positive/negative sentiment prediction,more » Matisse provides fine-grained emotion classification based on Valence, Arousal, and Dominance dimensions and a novel machine learning process. Information from the sentiment/emotion analytics are fused with raw data and summary information to feed temporal, geospatial, term frequency, and scatterplot visualizations using a multi-scale, coordinated interaction model. After describing these techniques, we conclude with a practical case study focused on analyzing the Twitter sample stream during the week of the 2013 Boston Marathon bombings. The case study demonstrates the effectiveness of Matisse at providing guided situational awareness of significant trends in social media streams by orchestrating computational power and human cognition.« less

  13. Mining of relations between proteins over biomedical scientific literature using a deep-linguistic approach.

    PubMed

    Rinaldi, Fabio; Schneider, Gerold; Kaljurand, Kaarel; Hess, Michael; Andronis, Christos; Konstandi, Ourania; Persidis, Andreas

    2007-02-01

    The amount of new discoveries (as published in the scientific literature) in the biomedical area is growing at an exponential rate. This growth makes it very difficult to filter the most relevant results, and thus the extraction of the core information becomes very expensive. Therefore, there is a growing interest in text processing approaches that can deliver selected information from scientific publications, which can limit the amount of human intervention normally needed to gather those results. This paper presents and evaluates an approach aimed at automating the process of extracting functional relations (e.g. interactions between genes and proteins) from scientific literature in the biomedical domain. The approach, using a novel dependency-based parser, is based on a complete syntactic analysis of the corpus. We have implemented a state-of-the-art text mining system for biomedical literature, based on a deep-linguistic, full-parsing approach. The results are validated on two different corpora: the manually annotated genomics information access (GENIA) corpus and the automatically annotated arabidopsis thaliana circadian rhythms (ATCR) corpus. We show how a deep-linguistic approach (contrary to common belief) can be used in a real world text mining application, offering high-precision relation extraction, while at the same time retaining a sufficient recall.

  14. Text Mining of the Classical Medical Literature for Medicines That Show Potential in Diabetic Nephropathy

    PubMed Central

    Zhang, Lei; Li, Yin; Guo, Xinfeng; May, Brian H.; Xue, Charlie C. L.; Yang, Lihong; Liu, Xusheng

    2014-01-01

    Objectives. To apply modern text-mining methods to identify candidate herbs and formulae for the treatment of diabetic nephropathy. Methods. The method we developed includes three steps: (1) identification of candidate ancient terms; (2) systemic search and assessment of medical records written in classical Chinese; (3) preliminary evaluation of the effect and safety of candidates. Results. Ancient terms Xia Xiao, Shen Xiao, and Xiao Shen were determined as the most likely to correspond with diabetic nephropathy and used in text mining. A total of 80 Chinese formulae for treating conditions congruent with diabetic nephropathy recorded in medical books from Tang Dynasty to Qing Dynasty were collected. Sao si tang (also called Reeling Silk Decoction) was chosen to show the process of preliminary evaluation of the candidates. It had promising potential for development as new agent for the treatment of diabetic nephropathy. However, further investigations about the safety to patients with renal insufficiency are still needed. Conclusions. The methods developed in this study offer a targeted approach to identifying traditional herbs and/or formulae as candidates for further investigation in the search for new drugs for modern disease. However, more effort is still required to improve our techniques, especially with regard to compound formulae. PMID:24744808

  15. Detection of interaction articles and experimental methods in biomedical literature.

    PubMed

    Schneider, Gerold; Clematide, Simon; Rinaldi, Fabio

    2011-10-03

    This article describes the approaches taken by the OntoGene group at the University of Zurich in dealing with two tasks of the BioCreative III competition: classification of articles which contain curatable protein-protein interactions (PPI-ACT) and extraction of experimental methods (PPI-IMT). Two main achievements are described in this paper: (a) a system for document classification which crucially relies on the results of an advanced pipeline of natural language processing tools; (b) a system which is capable of detecting all experimental methods mentioned in scientific literature, and listing them with a competitive ranking (AUC iP/R > 0.5). The results of the BioCreative III shared evaluation clearly demonstrate that significant progress has been achieved in the domain of biomedical text mining in the past few years. Our own contribution, together with the results of other participants, provides evidence that natural language processing techniques have become by now an integral part of advanced text mining approaches.

  16. Text Mining of Journal Articles for Sleep Disorder Terminologies.

    PubMed

    Lam, Calvin; Lai, Fu-Chih; Wang, Chia-Hui; Lai, Mei-Hsin; Hsu, Nanly; Chung, Min-Huey

    2016-01-01

    Research on publication trends in journal articles on sleep disorders (SDs) and the associated methodologies by using text mining has been limited. The present study involved text mining for terms to determine the publication trends in sleep-related journal articles published during 2000-2013 and to identify associations between SD and methodology terms as well as conducting statistical analyses of the text mining findings. SD and methodology terms were extracted from 3,720 sleep-related journal articles in the PubMed database by using MetaMap. The extracted data set was analyzed using hierarchical cluster analyses and adjusted logistic regression models to investigate publication trends and associations between SD and methodology terms. MetaMap had a text mining precision, recall, and false positive rate of 0.70, 0.77, and 11.51%, respectively. The most common SD term was breathing-related sleep disorder, whereas narcolepsy was the least common. Cluster analyses showed similar methodology clusters for each SD term, except narcolepsy. The logistic regression models showed an increasing prevalence of insomnia, parasomnia, and other sleep disorders but a decreasing prevalence of breathing-related sleep disorder during 2000-2013. Different SD terms were positively associated with different methodology terms regarding research design terms, measure terms, and analysis terms. Insomnia-, parasomnia-, and other sleep disorder-related articles showed an increasing publication trend, whereas those related to breathing-related sleep disorder showed a decreasing trend. Furthermore, experimental studies more commonly focused on hypersomnia and other SDs and less commonly on insomnia, breathing-related sleep disorder, narcolepsy, and parasomnia. Thus, text mining may facilitate the exploration of the publication trends in SDs and the associated methodologies.

  17. [Text mining, a method for computer-assisted analysis of scientific texts, demonstrated by an analysis of author networks].

    PubMed

    Hahn, P; Dullweber, F; Unglaub, F; Spies, C K

    2014-06-01

    Searching for relevant publications is becoming more difficult with the increasing number of scientific articles. Text mining as a specific form of computer-based data analysis may be helpful in this context. Highlighting relations between authors and finding relevant publications concerning a specific subject using text analysis programs are illustrated graphically by 2 performed examples. © Georg Thieme Verlag KG Stuttgart · New York.

  18. A method for integrating and ranking the evidence for biochemical pathways by mining reactions from text

    PubMed Central

    Miwa, Makoto; Ohta, Tomoko; Rak, Rafal; Rowley, Andrew; Kell, Douglas B.; Pyysalo, Sampo; Ananiadou, Sophia

    2013-01-01

    Motivation: To create, verify and maintain pathway models, curators must discover and assess knowledge distributed over the vast body of biological literature. Methods supporting these tasks must understand both the pathway model representations and the natural language in the literature. These methods should identify and order documents by relevance to any given pathway reaction. No existing system has addressed all aspects of this challenge. Method: We present novel methods for associating pathway model reactions with relevant publications. Our approach extracts the reactions directly from the models and then turns them into queries for three text mining-based MEDLINE literature search systems. These queries are executed, and the resulting documents are combined and ranked according to their relevance to the reactions of interest. We manually annotate document-reaction pairs with the relevance of the document to the reaction and use this annotation to study several ranking methods, using various heuristic and machine-learning approaches. Results: Our evaluation shows that the annotated document-reaction pairs can be used to create a rule-based document ranking system, and that machine learning can be used to rank documents by their relevance to pathway reactions. We find that a Support Vector Machine-based system outperforms several baselines and matches the performance of the rule-based system. The success of the query extraction and ranking methods are used to update our existing pathway search system, PathText. Availability: An online demonstration of PathText 2 and the annotated corpus are available for research purposes at http://www.nactem.ac.uk/pathtext2/. Contact: makoto.miwa@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23813008

  19. Content Abstract Classification Using Naive Bayes

    NASA Astrophysics Data System (ADS)

    Latif, Syukriyanto; Suwardoyo, Untung; Aldrin Wihelmus Sanadi, Edwin

    2018-03-01

    This study aims to classify abstract content based on the use of the highest number of words in an abstract content of the English language journals. This research uses a system of text mining technology that extracts text data to search information from a set of documents. Abstract content of 120 data downloaded at www.computer.org. Data grouping consists of three categories: DM (Data Mining), ITS (Intelligent Transport System) and MM (Multimedia). Systems built using naive bayes algorithms to classify abstract journals and feature selection processes using term weighting to give weight to each word. Dimensional reduction techniques to reduce the dimensions of word counts rarely appear in each document based on dimensional reduction test parameters of 10% -90% of 5.344 words. The performance of the classification system is tested by using the Confusion Matrix based on comparative test data and test data. The results showed that the best classification results were obtained during the 75% training data test and 25% test data from the total data. Accuracy rates for categories of DM, ITS and MM were 100%, 100%, 86%. respectively with dimension reduction parameters of 30% and the value of learning rate between 0.1-0.5.

  20. Event-based text mining for biology and functional genomics

    PubMed Central

    Thompson, Paul; Nawaz, Raheel; McNaught, John; Kell, Douglas B.

    2015-01-01

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of ‘events’, i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research. PMID:24907365

  1. Using text mining for study identification in systematic reviews: a systematic review of current approaches.

    PubMed

    O'Mara-Eves, Alison; Thomas, James; McNaught, John; Miwa, Makoto; Ananiadou, Sophia

    2015-01-14

    The large and growing number of published studies, and their increasing rate of publication, makes the task of identifying relevant studies in an unbiased way for inclusion in systematic reviews both complex and time consuming. Text mining has been offered as a potential solution: through automating some of the screening process, reviewer time can be saved. The evidence base around the use of text mining for screening has not yet been pulled together systematically; this systematic review fills that research gap. Focusing mainly on non-technical issues, the review aims to increase awareness of the potential of these technologies and promote further collaborative research between the computer science and systematic review communities. Five research questions led our review: what is the state of the evidence base; how has workload reduction been evaluated; what are the purposes of semi-automation and how effective are they; how have key contextual problems of applying text mining to the systematic review field been addressed; and what challenges to implementation have emerged? We answered these questions using standard systematic review methods: systematic and exhaustive searching, quality-assured data extraction and a narrative synthesis to synthesise findings. The evidence base is active and diverse; there is almost no replication between studies or collaboration between research teams and, whilst it is difficult to establish any overall conclusions about best approaches, it is clear that efficiencies and reductions in workload are potentially achievable. On the whole, most suggested that a saving in workload of between 30% and 70% might be possible, though sometimes the saving in workload is accompanied by the loss of 5% of relevant studies (i.e. a 95% recall). Using text mining to prioritise the order in which items are screened should be considered safe and ready for use in 'live' reviews. The use of text mining as a 'second screener' may also be used cautiously. The use of text mining to eliminate studies automatically should be considered promising, but not yet fully proven. In highly technical/clinical areas, it may be used with a high degree of confidence; but more developmental and evaluative work is needed in other disciplines.

  2. String Mining in Bioinformatics

    NASA Astrophysics Data System (ADS)

    Abouelhoda, Mohamed; Ghanem, Moustafa

    Sequence analysis is a major area in bioinformatics encompassing the methods and techniques for studying the biological sequences, DNA, RNA, and proteins, on the linear structure level. The focus of this area is generally on the identification of intra- and inter-molecular similarities. Identifying intra-molecular similarities boils down to detecting repeated segments within a given sequence, while identifying inter-molecular similarities amounts to spotting common segments among two or multiple sequences. From a data mining point of view, sequence analysis is nothing but string- or pattern mining specific to biological strings. For a long time, this point of view, however, has not been explicitly embraced neither in the data mining nor in the sequence analysis text books, which may be attributed to the co-evolution of the two apparently independent fields. In other words, although the word "data-mining" is almost missing in the sequence analysis literature, its basic concepts have been implicitly applied. Interestingly, recent research in biological sequence analysis introduced efficient solutions to many problems in data mining, such as querying and analyzing time series [49,53], extracting information from web pages [20], fighting spam mails [50], detecting plagiarism [22], and spotting duplications in software systems [14].

  3. Recent Advances and Emerging Applications in Text and Data Mining for Biomedical Discovery.

    PubMed

    Gonzalez, Graciela H; Tahsin, Tasnia; Goodale, Britton C; Greene, Anna C; Greene, Casey S

    2016-01-01

    Precision medicine will revolutionize the way we treat and prevent disease. A major barrier to the implementation of precision medicine that clinicians and translational scientists face is understanding the underlying mechanisms of disease. We are starting to address this challenge through automatic approaches for information extraction, representation and analysis. Recent advances in text and data mining have been applied to a broad spectrum of key biomedical questions in genomics, pharmacogenomics and other fields. We present an overview of the fundamental methods for text and data mining, as well as recent advances and emerging applications toward precision medicine. © The Author 2015. Published by Oxford University Press.

  4. Recent Advances and Emerging Applications in Text and Data Mining for Biomedical Discovery

    PubMed Central

    Gonzalez, Graciela H.; Tahsin, Tasnia; Goodale, Britton C.; Greene, Anna C.

    2016-01-01

    Precision medicine will revolutionize the way we treat and prevent disease. A major barrier to the implementation of precision medicine that clinicians and translational scientists face is understanding the underlying mechanisms of disease. We are starting to address this challenge through automatic approaches for information extraction, representation and analysis. Recent advances in text and data mining have been applied to a broad spectrum of key biomedical questions in genomics, pharmacogenomics and other fields. We present an overview of the fundamental methods for text and data mining, as well as recent advances and emerging applications toward precision medicine. PMID:26420781

  5. Application of text mining for customer evaluations in commercial banking

    NASA Astrophysics Data System (ADS)

    Tan, Jing; Du, Xiaojiang; Hao, Pengpeng; Wang, Yanbo J.

    2015-07-01

    Nowadays customer attrition is increasingly serious in commercial banks. To combat this problem roundly, mining customer evaluation texts is as important as mining customer structured data. In order to extract hidden information from customer evaluations, Textual Feature Selection, Classification and Association Rule Mining are necessary techniques. This paper presents all three techniques by using Chinese Word Segmentation, C5.0 and Apriori, and a set of experiments were run based on a collection of real textual data that includes 823 customer evaluations taken from a Chinese commercial bank. Results, consequent solutions, some advice for the commercial bank are given in this paper.

  6. Individual Profiling Using Text Analysis

    DTIC Science & Technology

    2016-04-15

    Mining a Text for Errors. . . . on Knowledge discovery in data mining , pages 624–628, 2005. [12] Michal Kosinski, David Stillwell, and Thore Graepel...AFRL-AFOSR-UK-TR-2016-0011 Individual Profiling using Text Analysis 140333 Mark Stevenson UNIVERSITY OF SHEFFIELD, DEPARTMENT OF PSYCHOLOGY Final...REPORT TYPE      Final 3.  DATES COVERED (From - To)      15 Sep 2014 to 14 Sep 2015 4.  TITLE AND SUBTITLE Individual Profiling using Text Analysis

  7. Mining the pharmacogenomics literature—a survey of the state of the art

    PubMed Central

    Cohen, K. Bretonnel; Garten, Yael; Shah, Nigam H.

    2012-01-01

    This article surveys efforts on text mining of the pharmacogenomics literature, mainly from the period 2008 to 2011. Pharmacogenomics (or pharmacogenetics) is the field that studies how human genetic variation impacts drug response. Therefore, publications span the intersection of research in genotypes, phenotypes and pharmacology, a topic that has increasingly become a focus of active research in recent years. This survey covers efforts dealing with the automatic recognition of relevant named entities (e.g. genes, gene variants and proteins, diseases and other pathological phenomena, drugs and other chemicals relevant for medical treatment), as well as various forms of relations between them. A wide range of text genres is considered, such as scientific publications (abstracts, as well as full texts), patent texts and clinical narratives. We also discuss infrastructure and resources needed for advanced text analytics, e.g. document corpora annotated with corresponding semantic metadata (gold standards and training data), biomedical terminologies and ontologies providing domain-specific background knowledge at different levels of formality and specificity, software architectures for building complex and scalable text analytics pipelines and Web services grounded to them, as well as comprehensive ways to disseminate and interact with the typically huge amounts of semiformal knowledge structures extracted by text mining tools. Finally, we consider some of the novel applications that have already been developed in the field of pharmacogenomic text mining and point out perspectives for future research. PMID:22833496

  8. Mining the pharmacogenomics literature--a survey of the state of the art.

    PubMed

    Hahn, Udo; Cohen, K Bretonnel; Garten, Yael; Shah, Nigam H

    2012-07-01

    This article surveys efforts on text mining of the pharmacogenomics literature, mainly from the period 2008 to 2011. Pharmacogenomics (or pharmacogenetics) is the field that studies how human genetic variation impacts drug response. Therefore, publications span the intersection of research in genotypes, phenotypes and pharmacology, a topic that has increasingly become a focus of active research in recent years. This survey covers efforts dealing with the automatic recognition of relevant named entities (e.g. genes, gene variants and proteins, diseases and other pathological phenomena, drugs and other chemicals relevant for medical treatment), as well as various forms of relations between them. A wide range of text genres is considered, such as scientific publications (abstracts, as well as full texts), patent texts and clinical narratives. We also discuss infrastructure and resources needed for advanced text analytics, e.g. document corpora annotated with corresponding semantic metadata (gold standards and training data), biomedical terminologies and ontologies providing domain-specific background knowledge at different levels of formality and specificity, software architectures for building complex and scalable text analytics pipelines and Web services grounded to them, as well as comprehensive ways to disseminate and interact with the typically huge amounts of semiformal knowledge structures extracted by text mining tools. Finally, we consider some of the novel applications that have already been developed in the field of pharmacogenomic text mining and point out perspectives for future research.

  9. Using Text Mining to Characterize Online Discussion Facilitation

    ERIC Educational Resources Information Center

    Ming, Norma; Baumer, Eric

    2011-01-01

    Facilitating class discussions effectively is a critical yet challenging component of instruction, particularly in online environments where student and faculty interaction is limited. Our goals in this research were to identify facilitation strategies that encourage productive discussion, and to explore text mining techniques that can help…

  10. 40 CFR 372.23 - SIC and NAICS codes to which this Part applies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... facilities primarily engaged in reproducing text, drawings, plans, maps, or other copy, by blueprinting...)); 212324Kaolin and Ball Clay Mining Limited to facilities operating without a mine or quarry and that are...)); 212393Other Chemical and Fertilizer Mineral Mining Limited to facilities operating without a mine or quarry...

  11. pubmed.mineR: an R package with text-mining algorithms to analyse PubMed abstracts.

    PubMed

    Rani, Jyoti; Shah, A B Rauf; Ramachandran, Srinivasan

    2015-10-01

    The PubMed literature database is a valuable source of information for scientific research. It is rich in biomedical literature with more than 24 million citations. Data-mining of voluminous literature is a challenging task. Although several text-mining algorithms have been developed in recent years with focus on data visualization, they have limitations such as speed, are rigid and are not available in the open source. We have developed an R package, pubmed.mineR, wherein we have combined the advantages of existing algorithms, overcome their limitations, and offer user flexibility and link with other packages in Bioconductor and the Comprehensive R Network (CRAN) in order to expand the user capabilities for executing multifaceted approaches. Three case studies are presented, namely, 'Evolving role of diabetes educators', 'Cancer risk assessment' and 'Dynamic concepts on disease and comorbidity' to illustrate the use of pubmed.mineR. The package generally runs fast with small elapsed times in regular workstations even on large corpus sizes and with compute intensive functions. The pubmed.mineR is available at http://cran.rproject. org/web/packages/pubmed.mineR.

  12. PubstractHelper: A Web-based Text-Mining Tool for Marking Sentences in Abstracts from PubMed Using Multiple User-Defined Keywords.

    PubMed

    Chen, Chou-Cheng; Ho, Chung-Liang

    2014-01-01

    While a huge amount of information about biological literature can be obtained by searching the PubMed database, reading through all the titles and abstracts resulting from such a search for useful information is inefficient. Text mining makes it possible to increase this efficiency. Some websites use text mining to gather information from the PubMed database; however, they are database-oriented, using pre-defined search keywords while lacking a query interface for user-defined search inputs. We present the PubMed Abstract Reading Helper (PubstractHelper) website which combines text mining and reading assistance for an efficient PubMed search. PubstractHelper can accept a maximum of ten groups of keywords, within each group containing up to ten keywords. The principle behind the text-mining function of PubstractHelper is that keywords contained in the same sentence are likely to be related. PubstractHelper highlights sentences with co-occurring keywords in different colors. The user can download the PMID and the abstracts with color markings to be reviewed later. The PubstractHelper website can help users to identify relevant publications based on the presence of related keywords, which should be a handy tool for their research. http://bio.yungyun.com.tw/ATM/PubstractHelper.aspx and http://holab.med.ncku.edu.tw/ATM/PubstractHelper.aspx.

  13. Systematic Review of Data Mining Applications in Patient-Centered Mobile-Based Information Systems.

    PubMed

    Fallah, Mina; Niakan Kalhori, Sharareh R

    2017-10-01

    Smartphones represent a promising technology for patient-centered healthcare. It is claimed that data mining techniques have improved mobile apps to address patients' needs at subgroup and individual levels. This study reviewed the current literature regarding data mining applications in patient-centered mobile-based information systems. We systematically searched PubMed, Scopus, and Web of Science for original studies reported from 2014 to 2016. After screening 226 records at the title/abstract level, the full texts of 92 relevant papers were retrieved and checked against inclusion criteria. Finally, 30 papers were included in this study and reviewed. Data mining techniques have been reported in development of mobile health apps for three main purposes: data analysis for follow-up and monitoring, early diagnosis and detection for screening purpose, classification/prediction of outcomes, and risk calculation (n = 27); data collection (n = 3); and provision of recommendations (n = 2). The most accurate and frequently applied data mining method was support vector machine; however, decision tree has shown superior performance to enhance mobile apps applied for patients' self-management. Embedded data-mining-based feature in mobile apps, such as case detection, prediction/classification, risk estimation, or collection of patient data, particularly during self-management, would save, apply, and analyze patient data during and after care. More intelligent methods, such as artificial neural networks, fuzzy logic, and genetic algorithms, and even the hybrid methods may result in more patients-centered recommendations, providing education, guidance, alerts, and awareness of personalized output.

  14. Text Classification for Organizational Researchers

    PubMed Central

    Kobayashi, Vladimer B.; Mol, Stefan T.; Berkers, Hannah A.; Kismihók, Gábor; Den Hartog, Deanne N.

    2017-01-01

    Organizations are increasingly interested in classifying texts or parts thereof into categories, as this enables more effective use of their information. Manual procedures for text classification work well for up to a few hundred documents. However, when the number of documents is larger, manual procedures become laborious, time-consuming, and potentially unreliable. Techniques from text mining facilitate the automatic assignment of text strings to categories, making classification expedient, fast, and reliable, which creates potential for its application in organizational research. The purpose of this article is to familiarize organizational researchers with text mining techniques from machine learning and statistics. We describe the text classification process in several roughly sequential steps, namely training data preparation, preprocessing, transformation, application of classification techniques, and validation, and provide concrete recommendations at each step. To help researchers develop their own text classifiers, the R code associated with each step is presented in a tutorial. The tutorial draws from our own work on job vacancy mining. We end the article by discussing how researchers can validate a text classification model and the associated output. PMID:29881249

  15. Graphics-based intelligent search and abstracting using Data Modeling

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Handley, James W.; Case, Carl T.; Songy, Claude G.

    2002-11-01

    This paper presents an autonomous text and context-mining algorithm that converts text documents into point clouds for visual search cues. This algorithm is applied to the task of data-mining a scriptural database comprised of the Old and New Testaments from the Bible and the Book of Mormon, Doctrine and Covenants, and the Pearl of Great Price. Results are generated which graphically show the scripture that represents the average concept of the database and the mining of the documents down to the verse level.

  16. Text-mining strategies to support computational research in chemical toxicity (ACS 2017 Spring meeting)

    EPA Science Inventory

    With 26 million citations, PubMed is one of the largest sources of information about the activity of chemicals in biological systems. Because this information is expressed in natural language and not stored as data, using the biomedical literature directly in computational resear...

  17. Brain model of text animation as a data mining strategy.

    PubMed

    Astakhova, Tamara; Astakhov, Vadim

    2009-01-01

    Imagination is the critical point in developing of realistic intelligence (AI) systems. One way to approach imagination would be simulation of its properties and operations. We developed two models "Brain Network Hierarchy of Languages," and "Semantical Holographic Calculus" and simulation system ScriptWriter that emulate the process of imagination through an automatic animation of English texts. The purpose of this paper is to demonstrate the model and present "ScriptWriter" system http://nvo.sdsc.edu/NVO/JCSG/get_SRB_mime_file2.cgi//home/tamara.sdsc/test/demo.zip?F=/home/tamara.sdsc/test/demo.zip&M=application/x-gtar for simulation of the imagination.

  18. Are figure legends sufficient? Evaluating the contribution of associated text to biomedical figure comprehension.

    PubMed

    Yu, Hong; Agarwal, Shashank; Johnston, Mark; Cohen, Aaron

    2009-01-06

    Biomedical scientists need to access figures to validate research facts and to formulate or to test novel research hypotheses. However, figures are difficult to comprehend without associated text (e.g., figure legend and other reference text). We are developing automated systems to extract the relevant explanatory information along with figures extracted from full text articles. Such systems could be very useful in improving figure retrieval and in reducing the workload of biomedical scientists, who otherwise have to retrieve and read the entire full-text journal article to determine which figures are relevant to their research. As a crucial step, we studied the importance of associated text in biomedical figure comprehension. Twenty subjects evaluated three figure-text combinations: figure+legend, figure+legend+title+abstract, and figure+full-text. Using a Likert scale, each subject scored each figure+text according to the extent to which the subject thought he/she understood the meaning of the figure and the confidence in providing the assigned score. Additionally, each subject entered a free text summary for each figure-text. We identified missing information using indicator words present within the text summaries. Both the Likert scores and the missing information were statistically analyzed for differences among the figure-text types. We also evaluated the quality of text summaries with the text-summarization evaluation method the ROUGE score. Our results showed statistically significant differences in figure comprehension when varying levels of text were provided. When the full-text article is not available, presenting just the figure+legend left biomedical researchers lacking 39-68% of the information about a figure as compared to having complete figure comprehension; adding the title and abstract improved the situation, but still left biomedical researchers missing 30% of the information. When the full-text article is available, figure comprehension increased to 86-97%; this indicates that researchers felt that only 3-14% of the necessary information for full figure comprehension was missing when full text was available to them. Clearly there is information in the abstract and in the full text that biomedical scientists deem important for understanding the figures that appear in full-text biomedical articles. We conclude that the texts that appear in full-text biomedical articles are useful for understanding the meaning of a figure, and an effective figure-mining system needs to unlock the information beyond figure legend. Our work provides important guidance to the figure mining systems that extract information only from figure and figure legend.

  19. Are figure legends sufficient? Evaluating the contribution of associated text to biomedical figure comprehension

    PubMed Central

    2009-01-01

    Background Biomedical scientists need to access figures to validate research facts and to formulate or to test novel research hypotheses. However, figures are difficult to comprehend without associated text (e.g., figure legend and other reference text). We are developing automated systems to extract the relevant explanatory information along with figures extracted from full text articles. Such systems could be very useful in improving figure retrieval and in reducing the workload of biomedical scientists, who otherwise have to retrieve and read the entire full-text journal article to determine which figures are relevant to their research. As a crucial step, we studied the importance of associated text in biomedical figure comprehension. Methods Twenty subjects evaluated three figure-text combinations: figure+legend, figure+legend+title+abstract, and figure+full-text. Using a Likert scale, each subject scored each figure+text according to the extent to which the subject thought he/she understood the meaning of the figure and the confidence in providing the assigned score. Additionally, each subject entered a free text summary for each figure-text. We identified missing information using indicator words present within the text summaries. Both the Likert scores and the missing information were statistically analyzed for differences among the figure-text types. We also evaluated the quality of text summaries with the text-summarization evaluation method the ROUGE score. Results Our results showed statistically significant differences in figure comprehension when varying levels of text were provided. When the full-text article is not available, presenting just the figure+legend left biomedical researchers lacking 39–68% of the information about a figure as compared to having complete figure comprehension; adding the title and abstract improved the situation, but still left biomedical researchers missing 30% of the information. When the full-text article is available, figure comprehension increased to 86–97%; this indicates that researchers felt that only 3–14% of the necessary information for full figure comprehension was missing when full text was available to them. Clearly there is information in the abstract and in the full text that biomedical scientists deem important for understanding the figures that appear in full-text biomedical articles. Conclusion We conclude that the texts that appear in full-text biomedical articles are useful for understanding the meaning of a figure, and an effective figure-mining system needs to unlock the information beyond figure legend. Our work provides important guidance to the figure mining systems that extract information only from figure and figure legend. PMID:19126221

  20. The Labour Welfare Fund Laws (Amendment) Act, 1987 (No. 15 of 1987), 22 May 1987.

    PubMed

    1987-01-01

    This Act authorizes funds constituted under the Mica Mines Labour Welfare Fund Act, 1946, the Limestone and Dolomite Mines Labour Welfare Fund Act, 1972, the Iron Ore Mines, Manganese Ore Mines and Chrome Mines Labour Welfare Fund Act, 1976, and the Beedi Workers Welfare Fund Act, 1976, to be applied for the provision of family welfare, including family planning education and services. full text

  1. Mining Tasks from the Web Anchor Text Graph: MSR Notebook Paper for the TREC 2015 Tasks Track

    DTIC Science & Technology

    2015-11-20

    Mining Tasks from the Web Anchor Text Graph: MSR Notebook Paper for the TREC 2015 Tasks Track Paul N. Bennett Microsoft Research Redmond, USA pauben...anchor text graph has proven useful in the general realm of query reformulation [2], we sought to quantify the value of extracting key phrases from...anchor text in the broader setting of the task understanding track. Given a query, our approach considers a simple method for identifying a relevant

  2. 76 FR 70075 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... proposed rule addressing Proximity Detection Systems for Continuous Mining Machines in Underground Coal... Detection Systems for Continuous Mining Machines in Underground Coal Mines. MSHA conducted hearings on...

  3. 76 FR 63238 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... Agency's proposed rule addressing Proximity Detection Systems for Continuous Mining Machines in... proposed rule for Proximity Detection Systems on Continuous Mining Machines in Underground Coal Mines. Due...

  4. Automated Text Data Mining Analysis of Five Decades of Educational Leadership Research Literature: Probabilistic Topic Modeling of "EAQ" Articles From 1965 to 2014

    ERIC Educational Resources Information Center

    Wang, Yinying; Bowers, Alex J.; Fikis, David J.

    2017-01-01

    Purpose: The purpose of this study is to describe the underlying topics and the topic evolution in the 50-year history of educational leadership research literature. Method: We used automated text data mining with probabilistic latent topic models to examine the full text of the entire publication history of all 1,539 articles published in…

  5. Automatically classifying sentences in full-text biomedical articles into Introduction, Methods, Results and Discussion.

    PubMed

    Agarwal, Shashank; Yu, Hong

    2009-12-01

    Biomedical texts can be typically represented by four rhetorical categories: Introduction, Methods, Results and Discussion (IMRAD). Classifying sentences into these categories can benefit many other text-mining tasks. Although many studies have applied different approaches for automatically classifying sentences in MEDLINE abstracts into the IMRAD categories, few have explored the classification of sentences that appear in full-text biomedical articles. We first evaluated whether sentences in full-text biomedical articles could be reliably annotated into the IMRAD format and then explored different approaches for automatically classifying these sentences into the IMRAD categories. Our results show an overall annotation agreement of 82.14% with a Kappa score of 0.756. The best classification system is a multinomial naïve Bayes classifier trained on manually annotated data that achieved 91.95% accuracy and an average F-score of 91.55%, which is significantly higher than baseline systems. A web version of this system is available online at-http://wood.ims.uwm.edu/full_text_classifier/.

  6. The Use of Systemic-Functional Linguistics in Automated Text Mining

    DTIC Science & Technology

    2009-03-01

    what degree two or more documents are similar in terms of their meaning. Simply put, such a cognitive model aims to link the physical manifestation...These features, both in terms of frequency and their chaining across a text, were taken as salient stylistic features that had a direct relationship to...because SFL attempts to model these cognitive processes, this has the potential to improve NLP tasks by making them more ’human-like’. Secondly

  7. Text Mining Improves Prediction of Protein Functional Sites

    PubMed Central

    Cohn, Judith D.; Ravikumar, Komandur E.

    2012-01-01

    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions. PMID:22393388

  8. Gene Prioritization of Resistant Rice Gene against Xanthomas oryzae pv. oryzae by Using Text Mining Technologies

    PubMed Central

    Xia, Jingbo; Zhang, Xing; Yuan, Daojun; Chen, Lingling; Webster, Jonathan; Fang, Alex Chengyu

    2013-01-01

    To effectively assess the possibility of the unknown rice protein resistant to Xanthomonas oryzae pv. oryzae, a hybrid strategy is proposed to enhance gene prioritization by combining text mining technologies with a sequence-based approach. The text mining technique of term frequency inverse document frequency is used to measure the importance of distinguished terms which reflect biomedical activity in rice before candidate genes are screened and vital terms are produced. Afterwards, a built-in classifier under the chaos games representation algorithm is used to sieve the best possible candidate gene. Our experiment results show that the combination of these two methods achieves enhanced gene prioritization. PMID:24371834

  9. Gene prioritization of resistant rice gene against Xanthomas oryzae pv. oryzae by using text mining technologies.

    PubMed

    Xia, Jingbo; Zhang, Xing; Yuan, Daojun; Chen, Lingling; Webster, Jonathan; Fang, Alex Chengyu

    2013-01-01

    To effectively assess the possibility of the unknown rice protein resistant to Xanthomonas oryzae pv. oryzae, a hybrid strategy is proposed to enhance gene prioritization by combining text mining technologies with a sequence-based approach. The text mining technique of term frequency inverse document frequency is used to measure the importance of distinguished terms which reflect biomedical activity in rice before candidate genes are screened and vital terms are produced. Afterwards, a built-in classifier under the chaos games representation algorithm is used to sieve the best possible candidate gene. Our experiment results show that the combination of these two methods achieves enhanced gene prioritization.

  10. Finding novel relationships with integrated gene-gene association network analysis of Synechocystis sp. PCC 6803 using species-independent text-mining.

    PubMed

    Kreula, Sanna M; Kaewphan, Suwisa; Ginter, Filip; Jones, Patrik R

    2018-01-01

    The increasing move towards open access full-text scientific literature enhances our ability to utilize advanced text-mining methods to construct information-rich networks that no human will be able to grasp simply from 'reading the literature'. The utility of text-mining for well-studied species is obvious though the utility for less studied species, or those with no prior track-record at all, is not clear. Here we present a concept for how advanced text-mining can be used to create information-rich networks even for less well studied species and apply it to generate an open-access gene-gene association network resource for Synechocystis sp. PCC 6803, a representative model organism for cyanobacteria and first case-study for the methodology. By merging the text-mining network with networks generated from species-specific experimental data, network integration was used to enhance the accuracy of predicting novel interactions that are biologically relevant. A rule-based algorithm (filter) was constructed in order to automate the search for novel candidate genes with a high degree of likely association to known target genes by (1) ignoring established relationships from the existing literature, as they are already 'known', and (2) demanding multiple independent evidences for every novel and potentially relevant relationship. Using selected case studies, we demonstrate the utility of the network resource and filter to ( i ) discover novel candidate associations between different genes or proteins in the network, and ( ii ) rapidly evaluate the potential role of any one particular gene or protein. The full network is provided as an open-source resource.

  11. DDMGD: the database of text-mined associations between genes methylated in diseases from different species.

    PubMed

    Bin Raies, Arwa; Mansour, Hicham; Incitti, Roberto; Bajic, Vladimir B

    2015-01-01

    Gathering information about associations between methylated genes and diseases is important for diseases diagnosis and treatment decisions. Recent advancements in epigenetics research allow for large-scale discoveries of associations of genes methylated in diseases in different species. Searching manually for such information is not easy, as it is scattered across a large number of electronic publications and repositories. Therefore, we developed DDMGD database (http://www.cbrc.kaust.edu.sa/ddmgd/) to provide a comprehensive repository of information related to genes methylated in diseases that can be found through text mining. DDMGD's scope is not limited to a particular group of genes, diseases or species. Using the text mining system DEMGD we developed earlier and additional post-processing, we extracted associations of genes methylated in different diseases from PubMed Central articles and PubMed abstracts. The accuracy of extracted associations is 82% as estimated on 2500 hand-curated entries. DDMGD provides a user-friendly interface facilitating retrieval of these associations ranked according to confidence scores. Submission of new associations to DDMGD is provided. A comparison analysis of DDMGD with several other databases focused on genes methylated in diseases shows that DDMGD is comprehensive and includes most of the recent information on genes methylated in diseases. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. 30 CFR 900.2 - Objectives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... texts of State and Federal cooperative agreements for regulation of mining on Federal lands. The... Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE INTRODUCTION § 900.2 Objectives. The objective of...

  13. 76 FR 40649 - Indiana Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... at 312 IAC 25-6-30 Surface mining; explosives; general requirements. The full text of the program... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 914... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period on proposed...

  14. Complementing the Numbers: A Text Mining Analysis of College Course Withdrawals

    ERIC Educational Resources Information Center

    Michalski, Greg V.

    2011-01-01

    Excessive college course withdrawals are costly to the student and the institution in terms of time to degree completion, available classroom space, and other resources. Although generally well quantified, detailed analysis of the reasons given by students for course withdrawal is less common. To address this, a text mining analysis was performed…

  15. Can abstract screening workload be reduced using text mining? User experiences of the tool Rayyan.

    PubMed

    Olofsson, Hanna; Brolund, Agneta; Hellberg, Christel; Silverstein, Rebecca; Stenström, Karin; Österberg, Marie; Dagerhamn, Jessica

    2017-09-01

    One time-consuming aspect of conducting systematic reviews is the task of sifting through abstracts to identify relevant studies. One promising approach for reducing this burden uses text mining technology to identify those abstracts that are potentially most relevant for a project, allowing those abstracts to be screened first. To examine the effectiveness of the text mining functionality of the abstract screening tool Rayyan. User experiences were collected. Rayyan was used to screen abstracts for 6 reviews in 2015. After screening 25%, 50%, and 75% of the abstracts, the screeners logged the relevant references identified. A survey was sent to users. After screening half of the search result with Rayyan, 86% to 99% of the references deemed relevant to the study were identified. Of those studies included in the final reports, 96% to 100% were already identified in the first half of the screening process. Users rated Rayyan 4.5 out of 5. The text mining function in Rayyan successfully helped reviewers identify relevant studies early in the screening process. Copyright © 2017 John Wiley & Sons, Ltd.

  16. A Framework for Text Mining in Scientometric Study: A Case Study in Biomedicine Publications

    NASA Astrophysics Data System (ADS)

    Silalahi, V. M. M.; Hardiyati, R.; Nadhiroh, I. M.; Handayani, T.; Rahmaida, R.; Amelia, M.

    2018-04-01

    The data of Indonesians research publications in the domain of biomedicine has been collected to be text mined for the purpose of a scientometric study. The goal is to build a predictive model that provides a classification of research publications on the potency for downstreaming. The model is based on the drug development processes adapted from the literatures. An effort is described to build the conceptual model and the development of a corpus on the research publications in the domain of Indonesian biomedicine. Then an investigation is conducted relating to the problems associated with building a corpus and validating the model. Based on our experience, a framework is proposed to manage the scientometric study based on text mining. Our method shows the effectiveness of conducting a scientometric study based on text mining in order to get a valid classification model. This valid model is mainly supported by the iterative and close interactions with the domain experts starting from identifying the issues, building a conceptual model, to the labelling, validation and results interpretation.

  17. Data Processing and Text Mining Technologies on Electronic Medical Records: A Review

    PubMed Central

    Sun, Wencheng; Li, Yangyang; Liu, Fang; Fang, Shengqun; Wang, Guoyan

    2018-01-01

    Currently, medical institutes generally use EMR to record patient's condition, including diagnostic information, procedures performed, and treatment results. EMR has been recognized as a valuable resource for large-scale analysis. However, EMR has the characteristics of diversity, incompleteness, redundancy, and privacy, which make it difficult to carry out data mining and analysis directly. Therefore, it is necessary to preprocess the source data in order to improve data quality and improve the data mining results. Different types of data require different processing technologies. Most structured data commonly needs classic preprocessing technologies, including data cleansing, data integration, data transformation, and data reduction. For semistructured or unstructured data, such as medical text, containing more health information, it requires more complex and challenging processing methods. The task of information extraction for medical texts mainly includes NER (named-entity recognition) and RE (relation extraction). This paper focuses on the process of EMR processing and emphatically analyzes the key techniques. In addition, we make an in-depth study on the applications developed based on text mining together with the open challenges and research issues for future work. PMID:29849998

  18. BioCreative III interactive task: an overview

    PubMed Central

    2011-01-01

    Background The BioCreative challenge evaluation is a community-wide effort for evaluating text mining and information extraction systems applied to the biological domain. The biocurator community, as an active user of biomedical literature, provides a diverse and engaged end user group for text mining tools. Earlier BioCreative challenges involved many text mining teams in developing basic capabilities relevant to biological curation, but they did not address the issues of system usage, insertion into the workflow and adoption by curators. Thus in BioCreative III (BC-III), the InterActive Task (IAT) was introduced to address the utility and usability of text mining tools for real-life biocuration tasks. To support the aims of the IAT in BC-III, involvement of both developers and end users was solicited, and the development of a user interface to address the tasks interactively was requested. Results A User Advisory Group (UAG) actively participated in the IAT design and assessment. The task focused on gene normalization (identifying gene mentions in the article and linking these genes to standard database identifiers), gene ranking based on the overall importance of each gene mentioned in the article, and gene-oriented document retrieval (identifying full text papers relevant to a selected gene). Six systems participated and all processed and displayed the same set of articles. The articles were selected based on content known to be problematic for curation, such as ambiguity of gene names, coverage of multiple genes and species, or introduction of a new gene name. Members of the UAG curated three articles for training and assessment purposes, and each member was assigned a system to review. A questionnaire related to the interface usability and task performance (as measured by precision and recall) was answered after systems were used to curate articles. Although the limited number of articles analyzed and users involved in the IAT experiment precluded rigorous quantitative analysis of the results, a qualitative analysis provided valuable insight into some of the problems encountered by users when using the systems. The overall assessment indicates that the system usability features appealed to most users, but the system performance was suboptimal (mainly due to low accuracy in gene normalization). Some of the issues included failure of species identification and gene name ambiguity in the gene normalization task leading to an extensive list of gene identifiers to review, which, in some cases, did not contain the relevant genes. The document retrieval suffered from the same shortfalls. The UAG favored achieving high performance (measured by precision and recall), but strongly recommended the addition of features that facilitate the identification of correct gene and its identifier, such as contextual information to assist in disambiguation. Discussion The IAT was an informative exercise that advanced the dialog between curators and developers and increased the appreciation of challenges faced by each group. A major conclusion was that the intended users should be actively involved in every phase of software development, and this will be strongly encouraged in future tasks. The IAT Task provides the first steps toward the definition of metrics and functional requirements that are necessary for designing a formal evaluation of interactive curation systems in the BioCreative IV challenge. PMID:22151968

  19. [Exploring pharmacological principle of Artemisia carvifolia with textmining technology].

    PubMed

    Zhao, Yu-Ping; Wang, Hui; Yang, Guang; Qiu, Zhi-Dong; Qu, Xiao-Bo; Zhang, Xiao-Bo

    2016-08-01

    To explore the pharmacological principle of Artemisia carvifolia,the text mining technique was used. All the references of A. carvifolia were collected from PubMed database, and then the rules of the main ingredient,relative diseases, organs, tissues, proteins and metabolites were analyzed. Finally, a network was set up. Then it was found that the main ingredients included sesquiterpenoids,flavonoids,and volatileoils.The diseases such as malaria, cerebral malaria, falciparum malaria, visceral leishmaniasis and systemic lupus erythematosus were often treated with A. carvifolia. In association in organ were the liver, skin, trachea,lungs,and spleen.Correlations with tissues were mainly including macrophages, T lymphocytes, blood vessels, epithelial cells.The protein was correlation with it involved CYP450, PI3K, TNF-α, AASDPPT, DNA polymerase and so on. Comprehensive and systematic treatment principle of A. carvifolia was obtained by text mining, which was helpful in clinical application. Copyright© by the Chinese Pharmaceutical Association.

  20. Rating prediction using textual reviews

    NASA Astrophysics Data System (ADS)

    NithyaKalyani, A.; Ushasukhanya, S.; Nagamalleswari, TYJ; Girija, S.

    2018-04-01

    Information today is present in the form of opinions. Two & a half quintillion bytes are exchanged today in Internet everyday and a large amount consists of people’s speculation and reflection over an issue. It is the need of the hour to be able to mine this information that is presented to us. Sentimental analysis refers to mining of this raw information to make sense. The discipline of opinion mining has seen a lot of encouragement in the past few years augmented by involvement of social media like Instagram, Facebook, and twitter. The hidden message in this web of information is useful in several fields such as marketing, political polls, product review, forecast market movement, Identifying detractor and promoter. In this endeavor, we introduced sentiment rating system for a particular text or paragraph to determine the opinions polarity. Firstly we resolve the searching problem, tokenization, classification, and reliable content identification. Secondly we extract probability for given text or paragraph for both positive & negative sentiment value using naive bayes classifier. At last we use sentiment dictionary (SD), sentiment degree dictionary (SDD) and negation dictionary (ND) for more accuracy. Later we blend all above mentioned factor into given formula to find the rating for the review.

  1. Advancing Science through Mining Libraries, Ontologies, and Communities*

    PubMed Central

    Evans, James A.; Rzhetsky, Andrey

    2011-01-01

    Life scientists today cannot hope to read everything relevant to their research. Emerging text-mining tools can help by identifying topics and distilling statements from books and articles with increased accuracy. Researchers often organize these statements into ontologies, consistent systems of reality claims. Like scientific thinking and interchange, however, text-mined information (even when accurately captured) is complex, redundant, sometimes incoherent, and often contradictory: it is rooted in a mixture of only partially consistent ontologies. We review work that models scientific reason and suggest how computational reasoning across ontologies and the broader distribution of textual statements can assess the certainty of statements and the process by which statements become certain. With the emergence of digitized data regarding networks of scientific authorship, institutions, and resources, we explore the possibility of accounting for social dependences and cultural biases in reasoning models. Computational reasoning is starting to fill out ontologies and flag internal inconsistencies in several areas of bioscience. In the not too distant future, scientists may be able to use statements and rich models of the processes that produced them to identify underexplored areas, resurrect forgotten findings and ideas, deconvolute the spaghetti of underlying ontologies, and synthesize novel knowledge and hypotheses. PMID:21566119

  2. Multi-dimensional classification of biomedical text: Toward automated, practical provision of high-utility text to diverse users

    PubMed Central

    Shatkay, Hagit; Pan, Fengxia; Rzhetsky, Andrey; Wilbur, W. John

    2008-01-01

    Motivation: Much current research in biomedical text mining is concerned with serving biologists by extracting certain information from scientific text. We note that there is no ‘average biologist’ client; different users have distinct needs. For instance, as noted in past evaluation efforts (BioCreative, TREC, KDD) database curators are often interested in sentences showing experimental evidence and methods. Conversely, lab scientists searching for known information about a protein may seek facts, typically stated with high confidence. Text-mining systems can target specific end-users and become more effective, if the system can first identify text regions rich in the type of scientific content that is of interest to the user, retrieve documents that have many such regions, and focus on fact extraction from these regions. Here, we study the ability to characterize and classify such text automatically. We have recently introduced a multi-dimensional categorization and annotation scheme, developed to be applicable to a wide variety of biomedical documents and scientific statements, while intended to support specific biomedical retrieval and extraction tasks. Results: The annotation scheme was applied to a large corpus in a controlled effort by eight independent annotators, where three individual annotators independently tagged each sentence. We then trained and tested machine learning classifiers to automatically categorize sentence fragments based on the annotation. We discuss here the issues involved in this task, and present an overview of the results. The latter strongly suggest that automatic annotation along most of the dimensions is highly feasible, and that this new framework for scientific sentence categorization is applicable in practice. Contact: shatkay@cs.queensu.ca PMID:18718948

  3. 76 FR 12849 - Kentucky Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... (underground mining). The text of the Kentucky regulations can be found in the administrative record and online... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 917 [KY-252-FOR; OSM-2009-0011] Kentucky Regulatory Program AGENCY: Office of Surface Mining Reclamation...

  4. Research on Classification of Chinese Text Data Based on SVM

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Yu, Hongzhi; Wan, Fucheng; Xu, Tao

    2017-09-01

    Data Mining has important application value in today’s industry and academia. Text classification is a very important technology in data mining. At present, there are many mature algorithms for text classification. KNN, NB, AB, SVM, decision tree and other classification methods all show good classification performance. Support Vector Machine’ (SVM) classification method is a good classifier in machine learning research. This paper will study the classification effect based on the SVM method in the Chinese text data, and use the support vector machine method in the chinese text to achieve the classify chinese text, and to able to combination of academia and practical application.

  5. StemTextSearch: Stem cell gene database with evidence from abstracts.

    PubMed

    Chen, Chou-Cheng; Ho, Chung-Liang

    2017-05-01

    Previous studies have used many methods to find biomarkers in stem cells, including text mining, experimental data and image storage. However, no text-mining methods have yet been developed which can identify whether a gene plays a positive or negative role in stem cells. StemTextSearch identifies the role of a gene in stem cells by using a text-mining method to find combinations of gene regulation, stem-cell regulation and cell processes in the same sentences of biomedical abstracts. The dataset includes 5797 genes, with 1534 genes having positive roles in stem cells, 1335 genes having negative roles, 1654 genes with both positive and negative roles, and 1274 with an uncertain role. The precision of gene role in StemTextSearch is 0.66, and the recall is 0.78. StemTextSearch is a web-based engine with queries that specify (i) gene, (ii) category of stem cell, (iii) gene role, (iv) gene regulation, (v) cell process, (vi) stem-cell regulation, and (vii) species. StemTextSearch is available through http://bio.yungyun.com.tw/StemTextSearch.aspx. Copyright © 2017. Published by Elsevier Inc.

  6. Discovering Genres of Online Discussion Threads via Text Mining

    ERIC Educational Resources Information Center

    Lin, Fu-Ren; Hsieh, Lu-Shih; Chuang, Fu-Tai

    2009-01-01

    As course management systems (CMS) gain popularity in facilitating teaching. A forum is a key component to facilitate the interactions among students and teachers. Content analysis is the most popular way to study a discussion forum. But content analysis is a human labor intensity process; for example, the coding process relies heavily on manual…

  7. Managing the data deluge: data-driven GO category assignment improves while complexity of functional annotation increases.

    PubMed

    Gobeill, Julien; Pasche, Emilie; Vishnyakova, Dina; Ruch, Patrick

    2013-01-01

    The available curated data lag behind current biological knowledge contained in the literature. Text mining can assist biologists and curators to locate and access this knowledge, for instance by characterizing the functional profile of publications. Gene Ontology (GO) category assignment in free text already supports various applications, such as powering ontology-based search engines, finding curation-relevant articles (triage) or helping the curator to identify and encode functions. Popular text mining tools for GO classification are based on so called thesaurus-based--or dictionary-based--approaches, which exploit similarities between the input text and GO terms themselves. But their effectiveness remains limited owing to the complex nature of GO terms, which rarely occur in text. In contrast, machine learning approaches exploit similarities between the input text and already curated instances contained in a knowledge base to infer a functional profile. GO Annotations (GOA) and MEDLINE make possible to exploit a growing amount of curated abstracts (97 000 in November 2012) for populating this knowledge base. Our study compares a state-of-the-art thesaurus-based system with a machine learning system (based on a k-Nearest Neighbours algorithm) for the task of proposing a functional profile for unseen MEDLINE abstracts, and shows how resources and performances have evolved. Systems are evaluated on their ability to propose for a given abstract the GO terms (2.8 on average) used for curation in GOA. We show that since 2006, although a massive effort was put into adding synonyms in GO (+300%), our thesaurus-based system effectiveness is rather constant, reaching from 0.28 to 0.31 for Recall at 20 (R20). In contrast, thanks to its knowledge base growth, our machine learning system has steadily improved, reaching from 0.38 in 2006 to 0.56 for R20 in 2012. Integrated in semi-automatic workflows or in fully automatic pipelines, such systems are more and more efficient to provide assistance to biologists. DATABASE URL: http://eagl.unige.ch/GOCat/

  8. Implementation of a Flexible Tool for Automated Literature-Mining and Knowledgebase Development (DevToxMine)

    EPA Science Inventory

    Deriving novel relationships from the scientific literature is an important adjunct to datamining activities for complex datasets in genomics and high-throughput screening activities. Automated text-mining algorithms can be used to extract relevant content from the literature and...

  9. A Feature Mining Based Approach for the Classification of Text Documents into Disjoint Classes.

    ERIC Educational Resources Information Center

    Nieto Sanchez, Salvador; Triantaphyllou, Evangelos; Kraft, Donald

    2002-01-01

    Proposes a new approach for classifying text documents into two disjoint classes. Highlights include a brief overview of document clustering; a data mining approach called the One Clause at a Time (OCAT) algorithm which is based on mathematical logic; vector space model (VSM); and comparing the OCAT to the VSM. (Author/LRW)

  10. Examining Mobile Learning Trends 2003-2008: A Categorical Meta-Trend Analysis Using Text Mining Techniques

    ERIC Educational Resources Information Center

    Hung, Jui-Long; Zhang, Ke

    2012-01-01

    This study investigated the longitudinal trends of academic articles in Mobile Learning (ML) using text mining techniques. One hundred and nineteen (119) refereed journal articles and proceedings papers from the SCI/SSCI database were retrieved and analyzed. The taxonomies of ML publications were grouped into twelve clusters (topics) and four…

  11. Trends of E-Learning Research from 2000 to 2008: Use of Text Mining and Bibliometrics

    ERIC Educational Resources Information Center

    Hung, Jui-long

    2012-01-01

    This study investigated the longitudinal trends of e-learning research using text mining techniques. Six hundred and eighty-nine (689) refereed journal articles and proceedings were retrieved from the Science Citation Index/Social Science Citation Index database in the period from 2000 to 2008. All e-learning publications were grouped into two…

  12. Finding novel relationships with integrated gene-gene association network analysis of Synechocystis sp. PCC 6803 using species-independent text-mining

    PubMed Central

    Kreula, Sanna M.; Kaewphan, Suwisa; Ginter, Filip

    2018-01-01

    The increasing move towards open access full-text scientific literature enhances our ability to utilize advanced text-mining methods to construct information-rich networks that no human will be able to grasp simply from ‘reading the literature’. The utility of text-mining for well-studied species is obvious though the utility for less studied species, or those with no prior track-record at all, is not clear. Here we present a concept for how advanced text-mining can be used to create information-rich networks even for less well studied species and apply it to generate an open-access gene-gene association network resource for Synechocystis sp. PCC 6803, a representative model organism for cyanobacteria and first case-study for the methodology. By merging the text-mining network with networks generated from species-specific experimental data, network integration was used to enhance the accuracy of predicting novel interactions that are biologically relevant. A rule-based algorithm (filter) was constructed in order to automate the search for novel candidate genes with a high degree of likely association to known target genes by (1) ignoring established relationships from the existing literature, as they are already ‘known’, and (2) demanding multiple independent evidences for every novel and potentially relevant relationship. Using selected case studies, we demonstrate the utility of the network resource and filter to (i) discover novel candidate associations between different genes or proteins in the network, and (ii) rapidly evaluate the potential role of any one particular gene or protein. The full network is provided as an open-source resource. PMID:29844966

  13. String Mining in Bioinformatics

    NASA Astrophysics Data System (ADS)

    Abouelhoda, Mohamed; Ghanem, Moustafa

    Sequence analysis is a major area in bioinformatics encompassing the methods and techniques for studying the biological sequences, DNA, RNA, and proteins, on the linear structure level. The focus of this area is generally on the identification of intra- and inter-molecular similarities. Identifying intra-molecular similarities boils down to detecting repeated segments within a given sequence, while identifying inter-molecular similarities amounts to spotting common segments among two or multiple sequences. From a data mining point of view, sequence analysis is nothing but string- or pattern mining specific to biological strings. For a long time, this point of view, however, has not been explicitly embraced neither in the data mining nor in the sequence analysis text books, which may be attributed to the co-evolution of the two apparently independent fields. In other words, although the word “data-mining” is almost missing in the sequence analysis literature, its basic concepts have been implicitly applied. Interestingly, recent research in biological sequence analysis introduced efficient solutions to many problems in data mining, such as querying and analyzing time series [49,53], extracting information from web pages [20], fighting spam mails [50], detecting plagiarism [22], and spotting duplications in software systems [14].

  14. Generative Topic Modeling in Image Data Mining and Bioinformatics Studies

    ERIC Educational Resources Information Center

    Chen, Xin

    2012-01-01

    Probabilistic topic models have been developed for applications in various domains such as text mining, information retrieval and computer vision and bioinformatics domain. In this thesis, we focus on developing novel probabilistic topic models for image mining and bioinformatics studies. Specifically, a probabilistic topic-connection (PTC) model…

  15. 78 FR 40496 - Notice of availability of the Final Environmental Impact Statement for the Proposed Hollister...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... silver mining operation. Most of the infrastructure to support a mining operation was authorized and.... The Proposed Action consists of underground mining, constructing a new production shaft, improving.... Public comments resulted in the addition of clarifying text, but did not significantly change the...

  16. Text mining to decipher free-response consumer complaints: insights from the NHTSA vehicle owner's complaint database.

    PubMed

    Ghazizadeh, Mahtab; McDonald, Anthony D; Lee, John D

    2014-09-01

    This study applies text mining to extract clusters of vehicle problems and associated trends from free-response data in the National Highway Traffic Safety Administration's vehicle owner's complaint database. As the automotive industry adopts new technologies, it is important to systematically assess the effect of these changes on traffic safety. Driving simulators, naturalistic driving data, and crash databases all contribute to a better understanding of how drivers respond to changing vehicle technology, but other approaches, such as automated analysis of incident reports, are needed. Free-response data from incidents representing two severity levels (fatal incidents and incidents involving injury) were analyzed using a text mining approach: latent semantic analysis (LSA). LSA and hierarchical clustering identified clusters of complaints for each severity level, which were compared and analyzed across time. Cluster analysis identified eight clusters of fatal incidents and six clusters of incidents involving injury. Comparisons showed that although the airbag clusters across the two severity levels have the same most frequent terms, the circumstances around the incidents differ. The time trends show clear increases in complaints surrounding the Ford/Firestone tire recall and the Toyota unintended acceleration recall. Increases in complaints may be partially driven by these recall announcements and the associated media attention. Text mining can reveal useful information from free-response databases that would otherwise be prohibitively time-consuming and difficult to summarize manually. Text mining can extend human analysis capabilities for large free-response databases to support earlier detection of problems and more timely safety interventions.

  17. Analysis of Nature of Science Included in Recent Popular Writing Using Text Mining Techniques

    ERIC Educational Resources Information Center

    Jiang, Feng; McComas, William F.

    2014-01-01

    This study examined the inclusion of nature of science (NOS) in popular science writing to determine whether it could serve supplementary resource for teaching NOS and to evaluate the accuracy of text mining and classification as a viable research tool in science education research. Four groups of documents published from 2001 to 2010 were…

  18. The Determination of Children's Knowledge of Global Lunar Patterns from Online Essays Using Text Mining Analysis

    ERIC Educational Resources Information Center

    Cheon, Jongpil; Lee, Sangno; Smith, Walter; Song, Jaeki; Kim, Yongjin

    2013-01-01

    The purpose of this study was to use text mining analysis of early adolescents' online essays to determine their knowledge of global lunar patterns. Australian and American students in grades five to seven wrote about global lunar patterns they had discovered by sharing observations with each other via the Internet. These essays were analyzed for…

  19. Impact of Text-Mining and Imitating Strategies on Lexical Richness, Lexical Diversity and General Success in Second Language Writing

    ERIC Educational Resources Information Center

    Çepni, Sevcan Bayraktar; Demirel, Elif Tokdemir

    2016-01-01

    This study aimed to find out the impact of "text mining and imitating" strategies on lexical richness, lexical diversity and general success of students in their compositions in second language writing. The participants were 98 students studying their first year in Karadeniz Technical University in English Language and Literature…

  20. Science and Technology Text Mining: Text Mining of the Journal Cortex

    DTIC Science & Technology

    2004-01-01

    Amnesia Retrograde Amnesia GENERAL Semantic Memory Episodic Memory Working Memory TEST Serial Position Curve...in Cortex can be reasonably divided into four categories (papers in each category in parenthesis): Semantic Memory (151); Handedness (145); Amnesia ... Semantic Memory (151) is divided into Verbal/ Numerical (76) and Visual/ Spatial (75). Amnesia (119) is divided into Amnesia Symptoms (50) and

  1. Evaluation of an open source tool for indexing and searching enterprise radiology and pathology reports

    NASA Astrophysics Data System (ADS)

    Kim, Woojin; Boonn, William

    2010-03-01

    Data mining of existing radiology and pathology reports within an enterprise health system can be used for clinical decision support, research, education, as well as operational analyses. In our health system, the database of radiology and pathology reports exceeds 13 million entries combined. We are building a web-based tool to allow search and data analysis of these combined databases using freely available and open source tools. This presentation will compare performance of an open source full-text indexing tool to MySQL's full-text indexing and searching and describe implementation procedures to incorporate these capabilities into a radiology-pathology search engine.

  2. Mining Bug Databases for Unidentified Software Vulnerabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumidu Wijayasekara; Milos Manic; Jason Wright

    2012-06-01

    Identifying software vulnerabilities is becoming more important as critical and sensitive systems increasingly rely on complex software systems. It has been suggested in previous work that some bugs are only identified as vulnerabilities long after the bug has been made public. These vulnerabilities are known as hidden impact vulnerabilities. This paper discusses the feasibility and necessity to mine common publicly available bug databases for vulnerabilities that are yet to be identified. We present bug database analysis of two well known and frequently used software packages, namely Linux kernel and MySQL. It is shown that for both Linux and MySQL, amore » significant portion of vulnerabilities that were discovered for the time period from January 2006 to April 2011 were hidden impact vulnerabilities. It is also shown that the percentage of hidden impact vulnerabilities has increased in the last two years, for both software packages. We then propose an improved hidden impact vulnerability identification methodology based on text mining bug databases, and conclude by discussing a few potential problems faced by such a classifier.« less

  3. Biomedical hypothesis generation by text mining and gene prioritization.

    PubMed

    Petric, Ingrid; Ligeti, Balazs; Gyorffy, Balazs; Pongor, Sandor

    2014-01-01

    Text mining methods can facilitate the generation of biomedical hypotheses by suggesting novel associations between diseases and genes. Previously, we developed a rare-term model called RaJoLink (Petric et al, J. Biomed. Inform. 42(2): 219-227, 2009) in which hypotheses are formulated on the basis of terms rarely associated with a target domain. Since many current medical hypotheses are formulated in terms of molecular entities and molecular mechanisms, here we extend the methodology to proteins and genes, using a standardized vocabulary as well as a gene/protein network model. The proposed enhanced RaJoLink rare-term model combines text mining and gene prioritization approaches. Its utility is illustrated by finding known as well as potential gene-disease associations in ovarian cancer using MEDLINE abstracts and the STRING database.

  4. The Functional Genomics Network in the evolution of biological text mining over the past decade.

    PubMed

    Blaschke, Christian; Valencia, Alfonso

    2013-03-25

    Different programs of The European Science Foundation (ESF) have contributed significantly to connect researchers in Europe and beyond through several initiatives. This support was particularly relevant for the development of the areas related with extracting information from papers (text-mining) because it supported the field in its early phases long before it was recognized by the community. We review the historical development of text mining research and how it was introduced in bioinformatics. Specific applications in (functional) genomics are described like it's integration in genome annotation pipelines and the support to the analysis of high-throughput genomics experimental data, and we highlight the activities of evaluation of methods and benchmarking for which the ESF programme support was instrumental. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. 78 FR 64397 - Mississippi Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... text of the program amendment available at www.regulations.gov . A. Mississippi Surface Coal Mining... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 924...; S2D2SSS08011000SX066A00033F13XS501520] Mississippi Regulatory Program AGENCY: Office of Surface Mining Reclamation and Enforcement...

  6. Redundancy and Novelty Mining in the Business Blogosphere

    ERIC Educational Resources Information Center

    Tsai, Flora S.; Chan, Kap Luk

    2010-01-01

    Purpose: The paper aims to explore the performance of redundancy and novelty mining in the business blogosphere, which has not been studied before. Design/methodology/approach: Novelty mining techniques are implemented to single out novel information out of a massive set of text documents. This paper adopted the mixed metric approach which…

  7. Construction of phosphorylation interaction networks by text mining of full-length articles using the eFIP system.

    PubMed

    Tudor, Catalina O; Ross, Karen E; Li, Gang; Vijay-Shanker, K; Wu, Cathy H; Arighi, Cecilia N

    2015-01-01

    Protein phosphorylation is a reversible post-translational modification where a protein kinase adds a phosphate group to a protein, potentially regulating its function, localization and/or activity. Phosphorylation can affect protein-protein interactions (PPIs), abolishing interaction with previous binding partners or enabling new interactions. Extracting phosphorylation information coupled with PPI information from the scientific literature will facilitate the creation of phosphorylation interaction networks of kinases, substrates and interacting partners, toward knowledge discovery of functional outcomes of protein phosphorylation. Increasingly, PPI databases are interested in capturing the phosphorylation state of interacting partners. We have previously developed the eFIP (Extracting Functional Impact of Phosphorylation) text mining system, which identifies phosphorylated proteins and phosphorylation-dependent PPIs. In this work, we present several enhancements for the eFIP system: (i) text mining for full-length articles from the PubMed Central open-access collection; (ii) the integration of the RLIMS-P 2.0 system for the extraction of phosphorylation events with kinase, substrate and site information; (iii) the extension of the PPI module with new trigger words/phrases describing interactions and (iv) the addition of the iSimp tool for sentence simplification to aid in the matching of syntactic patterns. We enhance the website functionality to: (i) support searches based on protein roles (kinases, substrates, interacting partners) or using keywords; (ii) link protein entities to their corresponding UniProt identifiers if mapped and (iii) support visual exploration of phosphorylation interaction networks using Cytoscape. The evaluation of eFIP on full-length articles achieved 92.4% precision, 76.5% recall and 83.7% F-measure on 100 article sections. To demonstrate eFIP for knowledge extraction and discovery, we constructed phosphorylation-dependent interaction networks involving 14-3-3 proteins identified from cancer-related versus diabetes-related articles. Comparison of the phosphorylation interaction network of kinases, phosphoproteins and interactants obtained from eFIP searches, along with enrichment analysis of the protein set, revealed several shared interactions, highlighting common pathways discussed in the context of both diseases. © The Author(s) 2015. Published by Oxford University Press.

  8. Document Exploration and Automatic Knowledge Extraction for Unstructured Biomedical Text

    NASA Astrophysics Data System (ADS)

    Chu, S.; Totaro, G.; Doshi, N.; Thapar, S.; Mattmann, C. A.; Ramirez, P.

    2015-12-01

    We describe our work on building a web-browser based document reader with built-in exploration tool and automatic concept extraction of medical entities for biomedical text. Vast amounts of biomedical information are offered in unstructured text form through scientific publications and R&D reports. Utilizing text mining can help us to mine information and extract relevant knowledge from a plethora of biomedical text. The ability to employ such technologies to aid researchers in coping with information overload is greatly desirable. In recent years, there has been an increased interest in automatic biomedical concept extraction [1, 2] and intelligent PDF reader tools with the ability to search on content and find related articles [3]. Such reader tools are typically desktop applications and are limited to specific platforms. Our goal is to provide researchers with a simple tool to aid them in finding, reading, and exploring documents. Thus, we propose a web-based document explorer, which we called Shangri-Docs, which combines a document reader with automatic concept extraction and highlighting of relevant terms. Shangri-Docsalso provides the ability to evaluate a wide variety of document formats (e.g. PDF, Words, PPT, text, etc.) and to exploit the linked nature of the Web and personal content by performing searches on content from public sites (e.g. Wikipedia, PubMed) and private cataloged databases simultaneously. Shangri-Docsutilizes Apache cTAKES (clinical Text Analysis and Knowledge Extraction System) [4] and Unified Medical Language System (UMLS) to automatically identify and highlight terms and concepts, such as specific symptoms, diseases, drugs, and anatomical sites, mentioned in the text. cTAKES was originally designed specially to extract information from clinical medical records. Our investigation leads us to extend the automatic knowledge extraction process of cTAKES for biomedical research domain by improving the ontology guided information extraction process. We will describe our experience and implementation of our system and share lessons learned from our development. We will also discuss ways in which this could be adapted to other science fields. [1] Funk et al., 2014. [2] Kang et al., 2014. [3] Utopia Documents, http://utopiadocs.com [4] Apache cTAKES, http://ctakes.apache.org

  9. Application of Ferulic Acid for Alzheimer’s Disease: Combination of Text Mining and Experimental Validation

    PubMed Central

    Meng, Guilin; Meng, Xiulin; Ma, Xiaoye; Zhang, Gengping; Hu, Xiaolin; Jin, Aiping; Liu, Xueyuan

    2018-01-01

    Alzheimer’s disease (AD) is an increasing concern in human health. Despite significant research, highly effective drugs to treat AD are lacking. The present study describes the text mining process to identify drug candidates from a traditional Chinese medicine (TCM) database, along with associated protein target mechanisms. We carried out text mining to identify literatures that referenced both AD and TCM and focused on identifying compounds and protein targets of interest. After targeting one potential TCM candidate, corresponding protein-protein interaction (PPI) networks were assembled in STRING to decipher the most possible mechanism of action. This was followed by validation using Western blot and co-immunoprecipitation in an AD cell model. The text mining strategy using a vast amount of AD-related literature and the TCM database identified curcumin, whose major component was ferulic acid (FA). This was used as a key candidate compound for further study. Using the top calculated interaction score in STRING, BACE1 and MMP2 were implicated in the activity of FA in AD. Exposure of SHSY5Y-APP cells to FA resulted in the decrease in expression levels of BACE-1 and APP, while the expression of MMP-2 and MMP-9 increased in a dose-dependent manner. This suggests that FA induced BACE1 and MMP2 pathways maybe novel potential mechanisms involved in AD. The text mining of literature and TCM database related to AD suggested FA as a promising TCM ingredient for the treatment of AD. Potential mechanisms interconnected and integrated with Aβ aggregation inhibition and extracellular matrix remodeling underlying the activity of FA were identified using in vitro studies. PMID:29896095

  10. Application of Ferulic Acid for Alzheimer's Disease: Combination of Text Mining and Experimental Validation.

    PubMed

    Meng, Guilin; Meng, Xiulin; Ma, Xiaoye; Zhang, Gengping; Hu, Xiaolin; Jin, Aiping; Zhao, Yanxin; Liu, Xueyuan

    2018-01-01

    Alzheimer's disease (AD) is an increasing concern in human health. Despite significant research, highly effective drugs to treat AD are lacking. The present study describes the text mining process to identify drug candidates from a traditional Chinese medicine (TCM) database, along with associated protein target mechanisms. We carried out text mining to identify literatures that referenced both AD and TCM and focused on identifying compounds and protein targets of interest. After targeting one potential TCM candidate, corresponding protein-protein interaction (PPI) networks were assembled in STRING to decipher the most possible mechanism of action. This was followed by validation using Western blot and co-immunoprecipitation in an AD cell model. The text mining strategy using a vast amount of AD-related literature and the TCM database identified curcumin, whose major component was ferulic acid (FA). This was used as a key candidate compound for further study. Using the top calculated interaction score in STRING, BACE1 and MMP2 were implicated in the activity of FA in AD. Exposure of SHSY5Y-APP cells to FA resulted in the decrease in expression levels of BACE-1 and APP, while the expression of MMP-2 and MMP-9 increased in a dose-dependent manner. This suggests that FA induced BACE1 and MMP2 pathways maybe novel potential mechanisms involved in AD. The text mining of literature and TCM database related to AD suggested FA as a promising TCM ingredient for the treatment of AD. Potential mechanisms interconnected and integrated with Aβ aggregation inhibition and extracellular matrix remodeling underlying the activity of FA were identified using in vitro studies.

  11. Text Mining Effectively Scores and Ranks the Literature for Improving Chemical-Gene-Disease Curation at the Comparative Toxicogenomics Database

    PubMed Central

    Johnson, Robin J.; Lay, Jean M.; Lennon-Hopkins, Kelley; Saraceni-Richards, Cynthia; Sciaky, Daniela; Murphy, Cynthia Grondin; Mattingly, Carolyn J.

    2013-01-01

    The Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) is a public resource that curates interactions between environmental chemicals and gene products, and their relationships to diseases, as a means of understanding the effects of environmental chemicals on human health. CTD provides a triad of core information in the form of chemical-gene, chemical-disease, and gene-disease interactions that are manually curated from scientific articles. To increase the efficiency, productivity, and data coverage of manual curation, we have leveraged text mining to help rank and prioritize the triaged literature. Here, we describe our text-mining process that computes and assigns each article a document relevancy score (DRS), wherein a high DRS suggests that an article is more likely to be relevant for curation at CTD. We evaluated our process by first text mining a corpus of 14,904 articles triaged for seven heavy metals (cadmium, cobalt, copper, lead, manganese, mercury, and nickel). Based upon initial analysis, a representative subset corpus of 3,583 articles was then selected from the 14,094 articles and sent to five CTD biocurators for review. The resulting curation of these 3,583 articles was analyzed for a variety of parameters, including article relevancy, novel data content, interaction yield rate, mean average precision, and biological and toxicological interpretability. We show that for all measured parameters, the DRS is an effective indicator for scoring and improving the ranking of literature for the curation of chemical-gene-disease information at CTD. Here, we demonstrate how fully incorporating text mining-based DRS scoring into our curation pipeline enhances manual curation by prioritizing more relevant articles, thereby increasing data content, productivity, and efficiency. PMID:23613709

  12. A New Framework for Textual Information Mining over Parse Trees. CRESST Report 805

    ERIC Educational Resources Information Center

    Mousavi, Hamid; Kerr, Deirdre; Iseli, Markus R.

    2011-01-01

    Textual information mining is a challenging problem that has resulted in the creation of many different rule-based linguistic query languages. However, these languages generally are not optimized for the purpose of text mining. In other words, they usually consider queries as individuals and only return raw results for each query. Moreover they…

  13. Data Mining: A Hybrid Methodology for Complex and Dynamic Research

    ERIC Educational Resources Information Center

    Lang, Susan; Baehr, Craig

    2012-01-01

    This article provides an overview of the ways in which data and text mining have potential as research methodologies in composition studies. It introduces data mining in the context of the field of composition studies and discusses ways in which this methodology can complement and extend our existing research practices by blending the best of what…

  14. Design of material management system of mining group based on Hadoop

    NASA Astrophysics Data System (ADS)

    Xia, Zhiyuan; Tan, Zhuoying; Qi, Kuan; Li, Wen

    2018-01-01

    Under the background of persistent slowdown in mining market at present, improving the management level in mining group has become the key link to improve the economic benefit of the mine. According to the practical material management in mining group, three core components of Hadoop are applied: distributed file system HDFS, distributed computing framework Map/Reduce and distributed database HBase. Material management system of mining group based on Hadoop is constructed with the three core components of Hadoop and SSH framework technology. This system was found to strengthen collaboration between mining group and affiliated companies, and then the problems such as inefficient management, server pressure, hardware equipment performance deficiencies that exist in traditional mining material-management system are solved, and then mining group materials management is optimized, the cost of mining management is saved, the enterprise profit is increased.

  15. Overview of the gene ontology task at BioCreative IV.

    PubMed

    Mao, Yuqing; Van Auken, Kimberly; Li, Donghui; Arighi, Cecilia N; McQuilton, Peter; Hayman, G Thomas; Tweedie, Susan; Schaeffer, Mary L; Laulederkind, Stanley J F; Wang, Shur-Jen; Gobeill, Julien; Ruch, Patrick; Luu, Anh Tuan; Kim, Jung-Jae; Chiang, Jung-Hsien; Chen, Yu-De; Yang, Chia-Jung; Liu, Hongfang; Zhu, Dongqing; Li, Yanpeng; Yu, Hong; Emadzadeh, Ehsan; Gonzalez, Graciela; Chen, Jian-Ming; Dai, Hong-Jie; Lu, Zhiyong

    2014-01-01

    Gene ontology (GO) annotation is a common task among model organism databases (MODs) for capturing gene function data from journal articles. It is a time-consuming and labor-intensive task, and is thus often considered as one of the bottlenecks in literature curation. There is a growing need for semiautomated or fully automated GO curation techniques that will help database curators to rapidly and accurately identify gene function information in full-length articles. Despite multiple attempts in the past, few studies have proven to be useful with regard to assisting real-world GO curation. The shortage of sentence-level training data and opportunities for interaction between text-mining developers and GO curators has limited the advances in algorithm development and corresponding use in practical circumstances. To this end, we organized a text-mining challenge task for literature-based GO annotation in BioCreative IV. More specifically, we developed two subtasks: (i) to automatically locate text passages that contain GO-relevant information (a text retrieval task) and (ii) to automatically identify relevant GO terms for the genes in a given article (a concept-recognition task). With the support from five MODs, we provided teams with >4000 unique text passages that served as the basis for each GO annotation in our task data. Such evidence text information has long been recognized as critical for text-mining algorithm development but was never made available because of the high cost of curation. In total, seven teams participated in the challenge task. From the team results, we conclude that the state of the art in automatically mining GO terms from literature has improved over the past decade while much progress is still needed for computer-assisted GO curation. Future work should focus on addressing remaining technical challenges for improved performance of automatic GO concept recognition and incorporating practical benefits of text-mining tools into real-world GO annotation. http://www.biocreative.org/tasks/biocreative-iv/track-4-GO/. Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.

  16. Mining Clinicians' Electronic Documentation to Identify Heart Failure Patients with Ineffective Self-Management: A Pilot Text-Mining Study.

    PubMed

    Topaz, Maxim; Radhakrishnan, Kavita; Lei, Victor; Zhou, Li

    2016-01-01

    Effective self-management can decrease up to 50% of heart failure hospitalizations. Unfortunately, self-management by patients with heart failure remains poor. This pilot study aimed to explore the use of text-mining to identify heart failure patients with ineffective self-management. We first built a comprehensive self-management vocabulary based on the literature and clinical notes review. We then randomly selected 545 heart failure patients treated within Partners Healthcare hospitals (Boston, MA, USA) and conducted a regular expression search with the compiled vocabulary within 43,107 interdisciplinary clinical notes of these patients. We found that 38.2% (n = 208) patients had documentation of ineffective heart failure self-management in the domains of poor diet adherence (28.4%), missed medical encounters (26.4%) poor medication adherence (20.2%) and non-specified self-management issues (e.g., "compliance issues", 34.6%). We showed the feasibility of using text-mining to identify patients with ineffective self-management. More natural language processing algorithms are needed to help busy clinicians identify these patients.

  17. System Analysis of LWDH Related Genes Based on Text Mining in Biological Networks

    PubMed Central

    Miao, Yingbo; Zhang, Liangcai; Wang, Yang; Feng, Rennan; Yang, Lei; Zhang, Shihua; Jiang, Yongshuai; Liu, Guiyou

    2014-01-01

    Liuwei-dihuang (LWDH) is widely used in traditional Chinese medicine (TCM), but its molecular mechanism about gene interactions is unclear. LWDH genes were extracted from the existing literatures based on text mining technology. To simulate the complex molecular interactions that occur in the whole body, protein-protein interaction networks (PPINs) were constructed and the topological properties of LWDH genes were analyzed. LWDH genes have higher centrality properties and may play important roles in the complex biological network environment. It was also found that the distances within LWDH genes are smaller than expected, which means that the communication of LWDH genes during the biological process is rapid and effectual. At last, a comprehensive network of LWDH genes, including the related drugs and regulatory pathways at both the transcriptional and posttranscriptional levels, was constructed and analyzed. The biological network analysis strategy used in this study may be helpful for the understanding of molecular mechanism of TCM. PMID:25243143

  18. @Note: a workbench for biomedical text mining.

    PubMed

    Lourenço, Anália; Carreira, Rafael; Carneiro, Sónia; Maia, Paulo; Glez-Peña, Daniel; Fdez-Riverola, Florentino; Ferreira, Eugénio C; Rocha, Isabel; Rocha, Miguel

    2009-08-01

    Biomedical Text Mining (BioTM) is providing valuable approaches to the automated curation of scientific literature. However, most efforts have addressed the benchmarking of new algorithms rather than user operational needs. Bridging the gap between BioTM researchers and biologists' needs is crucial to solve real-world problems and promote further research. We present @Note, a platform for BioTM that aims at the effective translation of the advances between three distinct classes of users: biologists, text miners and software developers. Its main functional contributions are the ability to process abstracts and full-texts; an information retrieval module enabling PubMed search and journal crawling; a pre-processing module with PDF-to-text conversion, tokenisation and stopword removal; a semantic annotation schema; a lexicon-based annotator; a user-friendly annotation view that allows to correct annotations and a Text Mining Module supporting dataset preparation and algorithm evaluation. @Note improves the interoperability, modularity and flexibility when integrating in-home and open-source third-party components. Its component-based architecture allows the rapid development of new applications, emphasizing the principles of transparency and simplicity of use. Although it is still on-going, it has already allowed the development of applications that are currently being used.

  19. Text mining a self-report back-translation.

    PubMed

    Blanch, Angel; Aluja, Anton

    2016-06-01

    There are several recommendations about the routine to undertake when back translating self-report instruments in cross-cultural research. However, text mining methods have been generally ignored within this field. This work describes a text mining innovative application useful to adapt a personality questionnaire to 12 different languages. The method is divided in 3 different stages, a descriptive analysis of the available back-translated instrument versions, a dissimilarity assessment between the source language instrument and the 12 back-translations, and an item assessment of item meaning equivalence. The suggested method contributes to improve the back-translation process of self-report instruments for cross-cultural research in 2 significant intertwined ways. First, it defines a systematic approach to the back translation issue, allowing for a more orderly and informed evaluation concerning the equivalence of different versions of the same instrument in different languages. Second, it provides more accurate instrument back-translations, which has direct implications for the reliability and validity of the instrument's test scores when used in different cultures/languages. In addition, this procedure can be extended to the back-translation of self-reports measuring psychological constructs in clinical assessment. Future research works could refine the suggested methodology and use additional available text mining tools. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Automation and robotics technology for intelligent mining systems

    NASA Technical Reports Server (NTRS)

    Welsh, Jeffrey H.

    1989-01-01

    The U.S. Bureau of Mines is approaching the problems of accidents and efficiency in the mining industry through the application of automation and robotics to mining systems. This technology can increase safety by removing workers from hazardous areas of the mines or from performing hazardous tasks. The short-term goal of the Automation and Robotics program is to develop technology that can be implemented in the form of an autonomous mining machine using current continuous mining machine equipment. In the longer term, the goal is to conduct research that will lead to new intelligent mining systems that capitalize on the capabilities of robotics. The Bureau of Mines Automation and Robotics program has been structured to produce the technology required for the short- and long-term goals. The short-term goal of application of automation and robotics to an existing mining machine, resulting in autonomous operation, is expected to be accomplished within five years. Key technology elements required for an autonomous continuous mining machine are well underway and include machine navigation systems, coal-rock interface detectors, machine condition monitoring, and intelligent computer systems. The Bureau of Mines program is described, including status of key technology elements for an autonomous continuous mining machine, the program schedule, and future work. Although the program is directed toward underground mining, much of the technology being developed may have applications for space systems or mining on the Moon or other planets.

  1. Information Retrieval and Text Mining Technologies for Chemistry.

    PubMed

    Krallinger, Martin; Rabal, Obdulia; Lourenço, Anália; Oyarzabal, Julen; Valencia, Alfonso

    2017-06-28

    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.

  2. Mining Quality Phrases from Massive Text Corpora

    PubMed Central

    Liu, Jialu; Shang, Jingbo; Wang, Chi; Ren, Xiang; Han, Jiawei

    2015-01-01

    Text data are ubiquitous and play an essential role in big data applications. However, text data are mostly unstructured. Transforming unstructured text into structured units (e.g., semantically meaningful phrases) will substantially reduce semantic ambiguity and enhance the power and efficiency at manipulating such data using database technology. Thus mining quality phrases is a critical research problem in the field of databases. In this paper, we propose a new framework that extracts quality phrases from text corpora integrated with phrasal segmentation. The framework requires only limited training but the quality of phrases so generated is close to human judgment. Moreover, the method is scalable: both computation time and required space grow linearly as corpus size increases. Our experiments on large text corpora demonstrate the quality and efficiency of the new method. PMID:26705375

  3. 30 CFR 48.6 - Experienced miner training.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... mine; the check-in and checkout system in effect at the mine; the procedures for riding on and in mine... communication systems, warning signals, and directional signs. (5) Mine map; escapeways; emergency evacuation... escapeway system; the escape, firefighting, and emergency evacuation plans in effect at the mine; and the...

  4. 30 CFR 48.6 - Experienced miner training.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... mine; the check-in and checkout system in effect at the mine; the procedures for riding on and in mine... communication systems, warning signals, and directional signs. (5) Mine map; escapeways; emergency evacuation... escapeway system; the escape, firefighting, and emergency evacuation plans in effect at the mine; and the...

  5. PubMedPortable: A Framework for Supporting the Development of Text Mining Applications.

    PubMed

    Döring, Kersten; Grüning, Björn A; Telukunta, Kiran K; Thomas, Philippe; Günther, Stefan

    2016-01-01

    Information extraction from biomedical literature is continuously growing in scope and importance. Many tools exist that perform named entity recognition, e.g. of proteins, chemical compounds, and diseases. Furthermore, several approaches deal with the extraction of relations between identified entities. The BioCreative community supports these developments with yearly open challenges, which led to a standardised XML text annotation format called BioC. PubMed provides access to the largest open biomedical literature repository, but there is no unified way of connecting its data to natural language processing tools. Therefore, an appropriate data environment is needed as a basis to combine different software solutions and to develop customised text mining applications. PubMedPortable builds a relational database and a full text index on PubMed citations. It can be applied either to the complete PubMed data set or an arbitrary subset of downloaded PubMed XML files. The software provides the infrastructure to combine stand-alone applications by exporting different data formats, e.g. BioC. The presented workflows show how to use PubMedPortable to retrieve, store, and analyse a disease-specific data set. The provided use cases are well documented in the PubMedPortable wiki. The open-source software library is small, easy to use, and scalable to the user's system requirements. It is freely available for Linux on the web at https://github.com/KerstenDoering/PubMedPortable and for other operating systems as a virtual container. The approach was tested extensively and applied successfully in several projects.

  6. PubMedPortable: A Framework for Supporting the Development of Text Mining Applications

    PubMed Central

    Döring, Kersten; Grüning, Björn A.; Telukunta, Kiran K.; Thomas, Philippe; Günther, Stefan

    2016-01-01

    Information extraction from biomedical literature is continuously growing in scope and importance. Many tools exist that perform named entity recognition, e.g. of proteins, chemical compounds, and diseases. Furthermore, several approaches deal with the extraction of relations between identified entities. The BioCreative community supports these developments with yearly open challenges, which led to a standardised XML text annotation format called BioC. PubMed provides access to the largest open biomedical literature repository, but there is no unified way of connecting its data to natural language processing tools. Therefore, an appropriate data environment is needed as a basis to combine different software solutions and to develop customised text mining applications. PubMedPortable builds a relational database and a full text index on PubMed citations. It can be applied either to the complete PubMed data set or an arbitrary subset of downloaded PubMed XML files. The software provides the infrastructure to combine stand-alone applications by exporting different data formats, e.g. BioC. The presented workflows show how to use PubMedPortable to retrieve, store, and analyse a disease-specific data set. The provided use cases are well documented in the PubMedPortable wiki. The open-source software library is small, easy to use, and scalable to the user’s system requirements. It is freely available for Linux on the web at https://github.com/KerstenDoering/PubMedPortable and for other operating systems as a virtual container. The approach was tested extensively and applied successfully in several projects. PMID:27706202

  7. Argo: an integrative, interactive, text mining-based workbench supporting curation

    PubMed Central

    Rak, Rafal; Rowley, Andrew; Black, William; Ananiadou, Sophia

    2012-01-01

    Curation of biomedical literature is often supported by the automatic analysis of textual content that generally involves a sequence of individual processing components. Text mining (TM) has been used to enhance the process of manual biocuration, but has been focused on specific databases and tasks rather than an environment integrating TM tools into the curation pipeline, catering for a variety of tasks, types of information and applications. Processing components usually come from different sources and often lack interoperability. The well established Unstructured Information Management Architecture is a framework that addresses interoperability by defining common data structures and interfaces. However, most of the efforts are targeted towards software developers and are not suitable for curators, or are otherwise inconvenient to use on a higher level of abstraction. To overcome these issues we introduce Argo, an interoperable, integrative, interactive and collaborative system for text analysis with a convenient graphic user interface to ease the development of processing workflows and boost productivity in labour-intensive manual curation. Robust, scalable text analytics follow a modular approach, adopting component modules for distinct levels of text analysis. The user interface is available entirely through a web browser that saves the user from going through often complicated and platform-dependent installation procedures. Argo comes with a predefined set of processing components commonly used in text analysis, while giving the users the ability to deposit their own components. The system accommodates various areas and levels of user expertise, from TM and computational linguistics to ontology-based curation. One of the key functionalities of Argo is its ability to seamlessly incorporate user-interactive components, such as manual annotation editors, into otherwise completely automatic pipelines. As a use case, we demonstrate the functionality of an in-built manual annotation editor that is well suited for in-text corpus annotation tasks. Database URL: http://www.nactem.ac.uk/Argo PMID:22434844

  8. Data mining learning bootstrap through semantic thumbnail analysis

    NASA Astrophysics Data System (ADS)

    Battiato, Sebastiano; Farinella, Giovanni Maria; Giuffrida, Giovanni; Tribulato, Giuseppe

    2007-01-01

    The rapid increase of technological innovations in the mobile phone industry induces the research community to develop new and advanced systems to optimize services offered by mobile phones operators (telcos) to maximize their effectiveness and improve their business. Data mining algorithms can run over data produced by mobile phones usage (e.g. image, video, text and logs files) to discover user's preferences and predict the most likely (to be purchased) offer for each individual customer. One of the main challenges is the reduction of the learning time and cost of these automatic tasks. In this paper we discuss an experiment where a commercial offer is composed by a small picture augmented with a short text describing the offer itself. Each customer's purchase is properly logged with all relevant information. Upon arrival of new items we need to learn who the best customers (prospects) for each item are, that is, the ones most likely to be interested in purchasing that specific item. Such learning activity is time consuming and, in our specific case, is not applicable given the large number of new items arriving every day. Basically, given the current customer base we are not able to learn on all new items. Thus, we need somehow to select among those new items to identify the best candidates. We do so by using a joint analysis between visual features and text to estimate how good each new item could be, that is, whether or not is worth to learn on it. Preliminary results show the effectiveness of the proposed approach to improve classical data mining techniques.

  9. A Review of Recent Advancement in Integrating Omics Data with Literature Mining towards Biomedical Discoveries

    PubMed Central

    Raja, Kalpana; Patrick, Matthew; Gao, Yilin; Madu, Desmond; Yang, Yuyang

    2017-01-01

    In the past decade, the volume of “omics” data generated by the different high-throughput technologies has expanded exponentially. The managing, storing, and analyzing of this big data have been a great challenge for the researchers, especially when moving towards the goal of generating testable data-driven hypotheses, which has been the promise of the high-throughput experimental techniques. Different bioinformatics approaches have been developed to streamline the downstream analyzes by providing independent information to interpret and provide biological inference. Text mining (also known as literature mining) is one of the commonly used approaches for automated generation of biological knowledge from the huge number of published articles. In this review paper, we discuss the recent advancement in approaches that integrate results from omics data and information generated from text mining approaches to uncover novel biomedical information. PMID:28331849

  10. Systematic drug repositioning through mining adverse event data in ClinicalTrials.gov.

    PubMed

    Su, Eric Wen; Sanger, Todd M

    2017-01-01

    Drug repositioning (i.e., drug repurposing) is the process of discovering new uses for marketed drugs. Historically, such discoveries were serendipitous. However, the rapid growth in electronic clinical data and text mining tools makes it feasible to systematically identify drugs with the potential to be repurposed. Described here is a novel method of drug repositioning by mining ClinicalTrials.gov. The text mining tools I2E (Linguamatics) and PolyAnalyst (Megaputer) were utilized. An I2E query extracts "Serious Adverse Events" (SAE) data from randomized trials in ClinicalTrials.gov. Through a statistical algorithm, a PolyAnalyst workflow ranks the drugs where the treatment arm has fewer predefined SAEs than the control arm, indicating that potentially the drug is reducing the level of SAE. Hypotheses could then be generated for the new use of these drugs based on the predefined SAE that is indicative of disease (for example, cancer).

  11. Using uncertainty to link and rank evidence from biomedical literature for model curation

    PubMed Central

    Zerva, Chrysoula; Batista-Navarro, Riza; Day, Philip; Ananiadou, Sophia

    2017-01-01

    Abstract Motivation In recent years, there has been great progress in the field of automated curation of biomedical networks and models, aided by text mining methods that provide evidence from literature. Such methods must not only extract snippets of text that relate to model interactions, but also be able to contextualize the evidence and provide additional confidence scores for the interaction in question. Although various approaches calculating confidence scores have focused primarily on the quality of the extracted information, there has been little work on exploring the textual uncertainty conveyed by the author. Despite textual uncertainty being acknowledged in biomedical text mining as an attribute of text mined interactions (events), it is significantly understudied as a means of providing a confidence measure for interactions in pathways or other biomedical models. In this work, we focus on improving identification of textual uncertainty for events and explore how it can be used as an additional measure of confidence for biomedical models. Results We present a novel method for extracting uncertainty from the literature using a hybrid approach that combines rule induction and machine learning. Variations of this hybrid approach are then discussed, alongside their advantages and disadvantages. We use subjective logic theory to combine multiple uncertainty values extracted from different sources for the same interaction. Our approach achieves F-scores of 0.76 and 0.88 based on the BioNLP-ST and Genia-MK corpora, respectively, making considerable improvements over previously published work. Moreover, we evaluate our proposed system on pathways related to two different areas, namely leukemia and melanoma cancer research. Availability and implementation The leukemia pathway model used is available in Pathway Studio while the Ras model is available via PathwayCommons. Online demonstration of the uncertainty extraction system is available for research purposes at http://argo.nactem.ac.uk/test. The related code is available on https://github.com/c-zrv/uncertainty_components.git. Details on the above are available in the Supplementary Material. Contact sophia.ananiadou@manchester.ac.uk Supplementary information Supplementary data are available at Bioinformatics online. PMID:29036627

  12. Using uncertainty to link and rank evidence from biomedical literature for model curation.

    PubMed

    Zerva, Chrysoula; Batista-Navarro, Riza; Day, Philip; Ananiadou, Sophia

    2017-12-01

    In recent years, there has been great progress in the field of automated curation of biomedical networks and models, aided by text mining methods that provide evidence from literature. Such methods must not only extract snippets of text that relate to model interactions, but also be able to contextualize the evidence and provide additional confidence scores for the interaction in question. Although various approaches calculating confidence scores have focused primarily on the quality of the extracted information, there has been little work on exploring the textual uncertainty conveyed by the author. Despite textual uncertainty being acknowledged in biomedical text mining as an attribute of text mined interactions (events), it is significantly understudied as a means of providing a confidence measure for interactions in pathways or other biomedical models. In this work, we focus on improving identification of textual uncertainty for events and explore how it can be used as an additional measure of confidence for biomedical models. We present a novel method for extracting uncertainty from the literature using a hybrid approach that combines rule induction and machine learning. Variations of this hybrid approach are then discussed, alongside their advantages and disadvantages. We use subjective logic theory to combine multiple uncertainty values extracted from different sources for the same interaction. Our approach achieves F-scores of 0.76 and 0.88 based on the BioNLP-ST and Genia-MK corpora, respectively, making considerable improvements over previously published work. Moreover, we evaluate our proposed system on pathways related to two different areas, namely leukemia and melanoma cancer research. The leukemia pathway model used is available in Pathway Studio while the Ras model is available via PathwayCommons. Online demonstration of the uncertainty extraction system is available for research purposes at http://argo.nactem.ac.uk/test. The related code is available on https://github.com/c-zrv/uncertainty_components.git. Details on the above are available in the Supplementary Material. sophia.ananiadou@manchester.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  13. Exploratory analysis of textual data from the Mother and Child Handbook using the text-mining method: Relationships with maternal traits and post-partum depression.

    PubMed

    Matsuda, Yoshio; Manaka, Tomoko; Kobayashi, Makiko; Sato, Shuhei; Ohwada, Michitaka

    2016-06-01

    The aim of the present study was to examine the possibility of screening apprehensive pregnant women and mothers at risk for post-partum depression from an analysis of the textual data in the Mother and Child Handbook by using the text-mining method. Uncomplicated pregnant women (n = 58) were divided into two groups according to State-Trait Anxiety Inventory grade (high trait [group I, n = 21] and low trait [group II, n = 37]) or Edinburgh Postnatal Depression Scale score (high score [group III, n = 15] and low score [group IV, n = 43]). An exploratory analysis of the textual data from the Maternal and Child Handbook was conducted using the text-mining method with the Word Miner software program. A comparison of the 'structure elements' was made between the two groups. The number of structure elements extracted by separated words from text data was 20 004 and the number of structure elements with a threshold of 2 or more as an initial value was 1168. Fifteen key words related to maternal anxiety, and six key words related to post-partum depression were extracted. The text-mining method is useful for the exploratory analysis of textual data obtained from pregnant woman, and this screening method has been suggested to be useful for apprehensive pregnant women and mothers at risk for post-partum depression. © 2016 Japan Society of Obstetrics and Gynecology.

  14. An Integrated Suite of Text and Data Mining Tools - Phase II

    DTIC Science & Technology

    2005-08-30

    Riverside, CA, USA Mazda Motor Corp, Jpn Univ of Darmstadt, Darmstadt, Ger Navy Center for Applied Research in Artificial Intelligence Univ of...with Georgia Tech Research Corporation developed a desktop text-mining software tool named TechOASIS (known commercially as VantagePoint). By the...of this dataset and groups the Corporate Source items that co-occur with the found items. He decides he is only interested in the institutions

  15. Using ontology network structure in text mining.

    PubMed

    Berndt, Donald J; McCart, James A; Luther, Stephen L

    2010-11-13

    Statistical text mining treats documents as bags of words, with a focus on term frequencies within documents and across document collections. Unlike natural language processing (NLP) techniques that rely on an engineered vocabulary or a full-featured ontology, statistical approaches do not make use of domain-specific knowledge. The freedom from biases can be an advantage, but at the cost of ignoring potentially valuable knowledge. The approach proposed here investigates a hybrid strategy based on computing graph measures of term importance over an entire ontology and injecting the measures into the statistical text mining process. As a starting point, we adapt existing search engine algorithms such as PageRank and HITS to determine term importance within an ontology graph. The graph-theoretic approach is evaluated using a smoking data set from the i2b2 National Center for Biomedical Computing, cast as a simple binary classification task for categorizing smoking-related documents, demonstrating consistent improvements in accuracy.

  16. Automated assessment of medical training evaluation text.

    PubMed

    Zhang, Rui; Pakhomov, Serguei; Gladding, Sophia; Aylward, Michael; Borman-Shoap, Emily; Melton, Genevieve B

    2012-01-01

    Medical post-graduate residency training and medical student training increasingly utilize electronic systems to evaluate trainee performance based on defined training competencies with quantitative and qualitative data, the later of which typically consists of text comments. Medical education is concomitantly becoming a growing area of clinical research. While electronic systems have proliferated in number, little work has been done to help manage and analyze qualitative data from these evaluations. We explored the use of text-mining techniques to assist medical education researchers in sentiment analysis and topic analysis of residency evaluations with a sample of 812 evaluation statements. While comments were predominantly positive, sentiment analysis improved the ability to discriminate statements with 93% accuracy. Similar to other domains, Latent Dirichlet Analysis and Information Gain revealed groups of core subjects and appear to be useful for identifying topics from this data.

  17. The Voice of Chinese Health Consumers: A Text Mining Approach to Web-Based Physician Reviews

    PubMed Central

    Zhang, Kunpeng

    2016-01-01

    Background Many Web-based health care platforms allow patients to evaluate physicians by posting open-end textual reviews based on their experiences. These reviews are helpful resources for other patients to choose high-quality doctors, especially in countries like China where no doctor referral systems exist. Analyzing such a large amount of user-generated content to understand the voice of health consumers has attracted much attention from health care providers and health care researchers. Objective The aim of this paper is to automatically extract hidden topics from Web-based physician reviews using text-mining techniques to examine what Chinese patients have said about their doctors and whether these topics differ across various specialties. This knowledge will help health care consumers, providers, and researchers better understand this information. Methods We conducted two-fold analyses on the data collected from the “Good Doctor Online” platform, the largest online health community in China. First, we explored all reviews from 2006-2014 using descriptive statistics. Second, we applied the well-known topic extraction algorithm Latent Dirichlet Allocation to more than 500,000 textual reviews from over 75,000 Chinese doctors across four major specialty areas to understand what Chinese health consumers said online about their doctor visits. Results On the “Good Doctor Online” platform, 112,873 out of 314,624 doctors had been reviewed at least once by April 11, 2014. Among the 772,979 textual reviews, we chose to focus on four major specialty areas that received the most reviews: Internal Medicine, Surgery, Obstetrics/Gynecology and Pediatrics, and Chinese Traditional Medicine. Among the doctors who received reviews from those four medical specialties, two-thirds of them received more than two reviews and in a few extreme cases, some doctors received more than 500 reviews. Across the four major areas, the most popular topics reviewers found were the experience of finding doctors, doctors’ technical skills and bedside manner, general appreciation from patients, and description of various symptoms. Conclusions To the best of our knowledge, our work is the first study using an automated text-mining approach to analyze a large amount of unstructured textual data of Web-based physician reviews in China. Based on our analysis, we found that Chinese reviewers mainly concentrate on a few popular topics. This is consistent with the goal of Chinese online health platforms and demonstrates the health care focus in China’s health care system. Our text-mining approach reveals a new research area on how to use big data to help health care providers, health care administrators, and policy makers hear patient voices, target patient concerns, and improve the quality of care in this age of patient-centered care. Also, on the health care consumer side, our text mining technique helps patients make more informed decisions about which specialists to see without reading thousands of reviews, which is simply not feasible. In addition, our comparison analysis of Web-based physician reviews in China and the United States also indicates some cultural differences. PMID:27165558

  18. The Voice of Chinese Health Consumers: A Text Mining Approach to Web-Based Physician Reviews.

    PubMed

    Hao, Haijing; Zhang, Kunpeng

    2016-05-10

    Many Web-based health care platforms allow patients to evaluate physicians by posting open-end textual reviews based on their experiences. These reviews are helpful resources for other patients to choose high-quality doctors, especially in countries like China where no doctor referral systems exist. Analyzing such a large amount of user-generated content to understand the voice of health consumers has attracted much attention from health care providers and health care researchers. The aim of this paper is to automatically extract hidden topics from Web-based physician reviews using text-mining techniques to examine what Chinese patients have said about their doctors and whether these topics differ across various specialties. This knowledge will help health care consumers, providers, and researchers better understand this information. We conducted two-fold analyses on the data collected from the "Good Doctor Online" platform, the largest online health community in China. First, we explored all reviews from 2006-2014 using descriptive statistics. Second, we applied the well-known topic extraction algorithm Latent Dirichlet Allocation to more than 500,000 textual reviews from over 75,000 Chinese doctors across four major specialty areas to understand what Chinese health consumers said online about their doctor visits. On the "Good Doctor Online" platform, 112,873 out of 314,624 doctors had been reviewed at least once by April 11, 2014. Among the 772,979 textual reviews, we chose to focus on four major specialty areas that received the most reviews: Internal Medicine, Surgery, Obstetrics/Gynecology and Pediatrics, and Chinese Traditional Medicine. Among the doctors who received reviews from those four medical specialties, two-thirds of them received more than two reviews and in a few extreme cases, some doctors received more than 500 reviews. Across the four major areas, the most popular topics reviewers found were the experience of finding doctors, doctors' technical skills and bedside manner, general appreciation from patients, and description of various symptoms. To the best of our knowledge, our work is the first study using an automated text-mining approach to analyze a large amount of unstructured textual data of Web-based physician reviews in China. Based on our analysis, we found that Chinese reviewers mainly concentrate on a few popular topics. This is consistent with the goal of Chinese online health platforms and demonstrates the health care focus in China's health care system. Our text-mining approach reveals a new research area on how to use big data to help health care providers, health care administrators, and policy makers hear patient voices, target patient concerns, and improve the quality of care in this age of patient-centered care. Also, on the health care consumer side, our text mining technique helps patients make more informed decisions about which specialists to see without reading thousands of reviews, which is simply not feasible. In addition, our comparison analysis of Web-based physician reviews in China and the United States also indicates some cultural differences.

  19. Screening Electronic Health Record-Related Patient Safety Reports Using Machine Learning.

    PubMed

    Marella, William M; Sparnon, Erin; Finley, Edward

    2017-03-01

    The objective of this study was to develop a semiautomated approach to screening cases that describe hazards associated with the electronic health record (EHR) from a mandatory, population-based patient safety reporting system. Potentially relevant cases were identified through a query of the Pennsylvania Patient Safety Reporting System. A random sample of cases were manually screened for relevance and divided into training, testing, and validation data sets to develop a machine learning model. This model was used to automate screening of remaining potentially relevant cases. Of the 4 algorithms tested, a naive Bayes kernel performed best, with an area under the receiver operating characteristic curve of 0.927 ± 0.023, accuracy of 0.855 ± 0.033, and F score of 0.877 ± 0.027. The machine learning model and text mining approach described here are useful tools for identifying and analyzing adverse event and near-miss reports. Although reporting systems are beginning to incorporate structured fields on health information technology and the EHR, these methods can identify related events that reporters classify in other ways. These methods can facilitate analysis of legacy safety reports by retrieving health information technology-related and EHR-related events from databases without fields and controlled values focused on this subject and distinguishing them from reports in which the EHR is mentioned only in passing. Machine learning and text mining are useful additions to the patient safety toolkit and can be used to semiautomate screening and analysis of unstructured text in safety reports from frontline staff.

  20. 30 CFR 75.215 - Longwall mining systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Longwall mining systems. 75.215 Section 75.215... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.215 Longwall mining systems. For each longwall mining section, the roof control plan shall specify— (a) The methods that will be used to maintain...

  1. 30 CFR 75.215 - Longwall mining systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Longwall mining systems. 75.215 Section 75.215... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.215 Longwall mining systems. For each longwall mining section, the roof control plan shall specify— (a) The methods that will be used to maintain...

  2. The structure and infrastructure of the global nanotechnology literature

    NASA Astrophysics Data System (ADS)

    Kostoff, Ronald N.; Stump, Jesse A.; Johnson, Dustin; Murday, James S.; Lau, Clifford G. Y.; Tolles, William M.

    2006-08-01

    Text mining is the extraction of useful information from large volumes of text. A text mining analysis of the global open nanotechnology literature was performed. Records from the Science Citation Index (SCI)/Social SCI were analyzed to provide the infrastructure of the global nanotechnology literature (prolific authors/journals/institutions/countries, most cited authors/papers/journals) and the thematic structure (taxonomy) of the global nanotechnology literature, from a science perspective. Records from the Engineering Compendex (EC) were analyzed to provide a taxonomy from a technology perspective. The Far Eastern countries have expanded nanotechnology publication output dramatically in the past decade.

  3. PubMed-EX: a web browser extension to enhance PubMed search with text mining features.

    PubMed

    Tsai, Richard Tzong-Han; Dai, Hong-Jie; Lai, Po-Ting; Huang, Chi-Hsin

    2009-11-15

    PubMed-EX is a browser extension that marks up PubMed search results with additional text-mining information. PubMed-EX's page mark-up, which includes section categorization and gene/disease and relation mark-up, can help researchers to quickly focus on key terms and provide additional information on them. All text processing is performed server-side, freeing up user resources. PubMed-EX is freely available at http://bws.iis.sinica.edu.tw/PubMed-EX and http://iisr.cse.yzu.edu.tw:8000/PubMed-EX/.

  4. Science and Technology Text Mining: Near-Earth Space

    DTIC Science & Technology

    2003-07-21

    TRANSFER; 177SATELLITE IMAGES; 175 SPATIAL RESOLUTION ; 174 SEA ICE; 166 SYSTEM GPS; 166 TOPEX POSEIDON; 165 SATELLITE MEASUREMENTS; 163 RADIATION BUDGET...1073 ICE; 1065 SATELLITES; 1062 PAPER; 1009 EARTH; 1008 RESOLUTION ; 1000 MODELS; 962 RADIATION; 943 DERIVED; 938 OCEAN; 928 CURRENT; 925 SPATIAL ; 899...PARAMETERS; 729 TECHNIQUE; 714 OPTICAL; 714 SPACECRAFT; 711 DEGREE; 702 TRANSMISSION; 696 LARGE; 693 TEST; 686 NUMBER; 671 EFFECTS ; 662 SPECTRAL ; 661

  5. Learning in the context of distribution drift

    DTIC Science & Technology

    2017-05-09

    published in the leading data mining journal, Data Mining and Knowledge Discovery (Webb et. al., 2016)1. We have shown that the previous qualitative...learner Low-bias learner Aggregated classifier Figure 7: Architecture for learning fr m streaming data in th co text of variable or unknown...Learning limited dependence Bayesian classifiers, in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD

  6. Database citation in full text biomedical articles.

    PubMed

    Kafkas, Şenay; Kim, Jee-Hyub; McEntyre, Johanna R

    2013-01-01

    Molecular biology and literature databases represent essential infrastructure for life science research. Effective integration of these data resources requires that there are structured cross-references at the level of individual articles and biological records. Here, we describe the current patterns of how database entries are cited in research articles, based on analysis of the full text Open Access articles available from Europe PMC. Focusing on citation of entries in the European Nucleotide Archive (ENA), UniProt and Protein Data Bank, Europe (PDBe), we demonstrate that text mining doubles the number of structured annotations of database record citations supplied in journal articles by publishers. Many thousands of new literature-database relationships are found by text mining, since these relationships are also not present in the set of articles cited by database records. We recommend that structured annotation of database records in articles is extended to other databases, such as ArrayExpress and Pfam, entries from which are also cited widely in the literature. The very high precision and high-throughput of this text-mining pipeline makes this activity possible both accurately and at low cost, which will allow the development of new integrated data services.

  7. Database Citation in Full Text Biomedical Articles

    PubMed Central

    Kafkas, Şenay; Kim, Jee-Hyub; McEntyre, Johanna R.

    2013-01-01

    Molecular biology and literature databases represent essential infrastructure for life science research. Effective integration of these data resources requires that there are structured cross-references at the level of individual articles and biological records. Here, we describe the current patterns of how database entries are cited in research articles, based on analysis of the full text Open Access articles available from Europe PMC. Focusing on citation of entries in the European Nucleotide Archive (ENA), UniProt and Protein Data Bank, Europe (PDBe), we demonstrate that text mining doubles the number of structured annotations of database record citations supplied in journal articles by publishers. Many thousands of new literature-database relationships are found by text mining, since these relationships are also not present in the set of articles cited by database records. We recommend that structured annotation of database records in articles is extended to other databases, such as ArrayExpress and Pfam, entries from which are also cited widely in the literature. The very high precision and high-throughput of this text-mining pipeline makes this activity possible both accurately and at low cost, which will allow the development of new integrated data services. PMID:23734176

  8. Image Information Mining Utilizing Hierarchical Segmentation

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Marchisio, Giovanni; Koperski, Krzysztof; Datcu, Mihai

    2002-01-01

    The Hierarchical Segmentation (HSEG) algorithm is an approach for producing high quality, hierarchically related image segmentations. The VisiMine image information mining system utilizes clustering and segmentation algorithms for reducing visual information in multispectral images to a manageable size. The project discussed herein seeks to enhance the VisiMine system through incorporating hierarchical segmentations from HSEG into the VisiMine system.

  9. Terminologies for text-mining; an experiment in the lipoprotein metabolism domain

    PubMed Central

    Alexopoulou, Dimitra; Wächter, Thomas; Pickersgill, Laura; Eyre, Cecilia; Schroeder, Michael

    2008-01-01

    Background The engineering of ontologies, especially with a view to a text-mining use, is still a new research field. There does not yet exist a well-defined theory and technology for ontology construction. Many of the ontology design steps remain manual and are based on personal experience and intuition. However, there exist a few efforts on automatic construction of ontologies in the form of extracted lists of terms and relations between them. Results We share experience acquired during the manual development of a lipoprotein metabolism ontology (LMO) to be used for text-mining. We compare the manually created ontology terms with the automatically derived terminology from four different automatic term recognition (ATR) methods. The top 50 predicted terms contain up to 89% relevant terms. For the top 1000 terms the best method still generates 51% relevant terms. In a corpus of 3066 documents 53% of LMO terms are contained and 38% can be generated with one of the methods. Conclusions Given high precision, automatic methods can help decrease development time and provide significant support for the identification of domain-specific vocabulary. The coverage of the domain vocabulary depends strongly on the underlying documents. Ontology development for text mining should be performed in a semi-automatic way; taking ATR results as input and following the guidelines we described. Availability The TFIDF term recognition is available as Web Service, described at PMID:18460175

  10. Stopping Antidepressants and Anxiolytics as Major Concerns Reported in Online Health Communities: A Text Mining Approach.

    PubMed

    Abbe, Adeline; Falissard, Bruno

    2017-10-23

    Internet is a particularly dynamic way to quickly capture the perceptions of a population in real time. Complementary to traditional face-to-face communication, online social networks help patients to improve self-esteem and self-help. The aim of this study was to use text mining on material from an online forum exploring patients' concerns about treatment (antidepressants and anxiolytics). Concerns about treatment were collected from discussion titles in patients' online community related to antidepressants and anxiolytics. To examine the content of these titles automatically, we used text mining methods, such as word frequency in a document-term matrix and co-occurrence of words using a network analysis. It was thus possible to identify topics discussed on the forum. The forum included 2415 discussions on antidepressants and anxiolytics over a period of 3 years. After a preprocessing step, the text mining algorithm identified the 99 most frequently occurring words in titles, among which were escitalopram, withdrawal, antidepressant, venlafaxine, paroxetine, and effect. Patients' concerns were related to antidepressant withdrawal, the need to share experience about symptoms, effects, and questions on weight gain with some drugs. Patients' expression on the Internet is a potential additional resource in addressing patients' concerns about treatment. Patient profiles are close to that of patients treated in psychiatry. ©Adeline Abbe, Bruno Falissard. Originally published in JMIR Mental Health (http://mental.jmir.org), 23.10.2017.

  11. Text Mining for Drugs and Chemical Compounds: Methods, Tools and Applications.

    PubMed

    Vazquez, Miguel; Krallinger, Martin; Leitner, Florian; Valencia, Alfonso

    2011-06-01

    Providing prior knowledge about biological properties of chemicals, such as kinetic values, protein targets, or toxic effects, can facilitate many aspects of drug development. Chemical information is rapidly accumulating in all sorts of free text documents like patents, industry reports, or scientific articles, which has motivated the development of specifically tailored text mining applications. Despite the potential gains, chemical text mining still faces significant challenges. One of the most salient is the recognition of chemical entities mentioned in text. To help practitioners contribute to this area, a good portion of this review is devoted to this issue, and presents the basic concepts and principles underlying the main strategies. The technical details are introduced and accompanied by relevant bibliographic references. Other tasks discussed are retrieving relevant articles, identifying relationships between chemicals and other entities, or determining the chemical structures of chemicals mentioned in text. This review also introduces a number of published applications that can be used to build pipelines in topics like drug side effects, toxicity, and protein-disease-compound network analysis. We conclude the review with an outlook on how we expect the field to evolve, discussing its possibilities and its current limitations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Mining free-text medical records for companion animal enteric syndrome surveillance.

    PubMed

    Anholt, R M; Berezowski, J; Jamal, I; Ribble, C; Stephen, C

    2014-03-01

    Large amounts of animal health care data are present in veterinary electronic medical records (EMR) and they present an opportunity for companion animal disease surveillance. Veterinary patient records are largely in free-text without clinical coding or fixed vocabulary. Text-mining, a computer and information technology application, is needed to identify cases of interest and to add structure to the otherwise unstructured data. In this study EMR's were extracted from veterinary management programs of 12 participating veterinary practices and stored in a data warehouse. Using commercially available text-mining software (WordStat™), we developed a categorization dictionary that could be used to automatically classify and extract enteric syndrome cases from the warehoused electronic medical records. The diagnostic accuracy of the text-miner for retrieving cases of enteric syndrome was measured against human reviewers who independently categorized a random sample of 2500 cases as enteric syndrome positive or negative. Compared to the reviewers, the text-miner retrieved cases with enteric signs with a sensitivity of 87.6% (95%CI, 80.4-92.9%) and a specificity of 99.3% (95%CI, 98.9-99.6%). Automatic and accurate detection of enteric syndrome cases provides an opportunity for community surveillance of enteric pathogens in companion animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Analyzing asset management data using data and text mining.

    DOT National Transportation Integrated Search

    2014-07-01

    Predictive models using text from a sample competitively bid California highway projects have been used to predict a construction : projects likely level of cost overrun. A text description of the project and the text of the five largest project line...

  14. MET network in PubMed: a text-mined network visualization and curation system.

    PubMed

    Dai, Hong-Jie; Su, Chu-Hsien; Lai, Po-Ting; Huang, Ming-Siang; Jonnagaddala, Jitendra; Rose Jue, Toni; Rao, Shruti; Chou, Hui-Jou; Milacic, Marija; Singh, Onkar; Syed-Abdul, Shabbir; Hsu, Wen-Lian

    2016-01-01

    Metastasis is the dissemination of a cancer/tumor from one organ to another, and it is the most dangerous stage during cancer progression, causing more than 90% of cancer deaths. Improving the understanding of the complicated cellular mechanisms underlying metastasis requires investigations of the signaling pathways. To this end, we developed a METastasis (MET) network visualization and curation tool to assist metastasis researchers retrieve network information of interest while browsing through the large volume of studies in PubMed. MET can recognize relations among genes, cancers, tissues and organs of metastasis mentioned in the literature through text-mining techniques, and then produce a visualization of all mined relations in a metastasis network. To facilitate the curation process, MET is developed as a browser extension that allows curators to review and edit concepts and relations related to metastasis directly in PubMed. PubMed users can also view the metastatic networks integrated from the large collection of research papers directly through MET. For the BioCreative 2015 interactive track (IAT), a curation task was proposed to curate metastatic networks among PubMed abstracts. Six curators participated in the proposed task and a post-IAT task, curating 963 unique metastatic relations from 174 PubMed abstracts using MET.Database URL: http://btm.tmu.edu.tw/metastasisway. © The Author(s) 2016. Published by Oxford University Press.

  15. TOY SAFETY SURVEILLANCE FROM ONLINE REVIEWS

    PubMed Central

    Winkler, Matt; Abrahams, Alan S.; Gruss, Richard; Ehsani, Johnathan P.

    2016-01-01

    Toy-related injuries account for a significant number of childhood injuries and the prevention of these injuries remains a goal for regulatory agencies and manufacturers. Text-mining is an increasingly prevalent method for uncovering the significance of words using big data. This research sets out to determine the effectiveness of text-mining in uncovering potentially dangerous children’s toys. We develop a danger word list, also known as a ‘smoke word’ list, from injury and recall text narratives. We then use the smoke word lists to score over one million Amazon reviews, with the top scores denoting potential safety concerns. We compare the smoke word list to conventional sentiment analysis techniques, in terms of both word overlap and effectiveness. We find that smoke word lists are highly distinct from conventional sentiment dictionaries and provide a statistically significant method for identifying safety concerns in children’s toy reviews. Our findings indicate that text-mining is, in fact, an effective method for the surveillance of safety concerns in children’s toys and could be a gateway to effective prevention of toy-product-related injuries. PMID:27942092

  16. TEES 2.2: Biomedical Event Extraction for Diverse Corpora

    PubMed Central

    2015-01-01

    Background The Turku Event Extraction System (TEES) is a text mining program developed for the extraction of events, complex biomedical relationships, from scientific literature. Based on a graph-generation approach, the system detects events with the use of a rich feature set built via dependency parsing. The TEES system has achieved record performance in several of the shared tasks of its domain, and continues to be used in a variety of biomedical text mining tasks. Results The TEES system was quickly adapted to the BioNLP'13 Shared Task in order to provide a public baseline for derived systems. An automated approach was developed for learning the underlying annotation rules of event type, allowing immediate adaptation to the various subtasks, and leading to a first place in four out of eight tasks. The system for the automated learning of annotation rules is further enhanced in this paper to the point of requiring no manual adaptation to any of the BioNLP'13 tasks. Further, the scikit-learn machine learning library is integrated into the system, bringing a wide variety of machine learning methods usable with TEES in addition to the default SVM. A scikit-learn ensemble method is also used to analyze the importances of the features in the TEES feature sets. Conclusions The TEES system was introduced for the BioNLP'09 Shared Task and has since then demonstrated good performance in several other shared tasks. By applying the current TEES 2.2 system to multiple corpora from these past shared tasks an overarching analysis of the most promising methods and possible pitfalls in the evolving field of biomedical event extraction are presented. PMID:26551925

  17. TEES 2.2: Biomedical Event Extraction for Diverse Corpora.

    PubMed

    Björne, Jari; Salakoski, Tapio

    2015-01-01

    The Turku Event Extraction System (TEES) is a text mining program developed for the extraction of events, complex biomedical relationships, from scientific literature. Based on a graph-generation approach, the system detects events with the use of a rich feature set built via dependency parsing. The TEES system has achieved record performance in several of the shared tasks of its domain, and continues to be used in a variety of biomedical text mining tasks. The TEES system was quickly adapted to the BioNLP'13 Shared Task in order to provide a public baseline for derived systems. An automated approach was developed for learning the underlying annotation rules of event type, allowing immediate adaptation to the various subtasks, and leading to a first place in four out of eight tasks. The system for the automated learning of annotation rules is further enhanced in this paper to the point of requiring no manual adaptation to any of the BioNLP'13 tasks. Further, the scikit-learn machine learning library is integrated into the system, bringing a wide variety of machine learning methods usable with TEES in addition to the default SVM. A scikit-learn ensemble method is also used to analyze the importances of the features in the TEES feature sets. The TEES system was introduced for the BioNLP'09 Shared Task and has since then demonstrated good performance in several other shared tasks. By applying the current TEES 2.2 system to multiple corpora from these past shared tasks an overarching analysis of the most promising methods and possible pitfalls in the evolving field of biomedical event extraction are presented.

  18. MSL: Facilitating automatic and physical analysis of published scientific literature in PDF format

    PubMed Central

    Ahmed, Zeeshan; Dandekar, Thomas

    2018-01-01

    Published scientific literature contains millions of figures, including information about the results obtained from different scientific experiments e.g. PCR-ELISA data, microarray analysis, gel electrophoresis, mass spectrometry data, DNA/RNA sequencing, diagnostic imaging (CT/MRI and ultrasound scans), and medicinal imaging like electroencephalography (EEG), magnetoencephalography (MEG), echocardiography  (ECG), positron-emission tomography (PET) images. The importance of biomedical figures has been widely recognized in scientific and medicine communities, as they play a vital role in providing major original data, experimental and computational results in concise form. One major challenge for implementing a system for scientific literature analysis is extracting and analyzing text and figures from published PDF files by physical and logical document analysis. Here we present a product line architecture based bioinformatics tool ‘Mining Scientific Literature (MSL)’, which supports the extraction of text and images by interpreting all kinds of published PDF files using advanced data mining and image processing techniques. It provides modules for the marginalization of extracted text based on different coordinates and keywords, visualization of extracted figures and extraction of embedded text from all kinds of biological and biomedical figures using applied Optimal Character Recognition (OCR). Moreover, for further analysis and usage, it generates the system’s output in different formats including text, PDF, XML and images files. Hence, MSL is an easy to install and use analysis tool to interpret published scientific literature in PDF format. PMID:29721305

  19. ASCOT: a text mining-based web-service for efficient search and assisted creation of clinical trials

    PubMed Central

    2012-01-01

    Clinical trials are mandatory protocols describing medical research on humans and among the most valuable sources of medical practice evidence. Searching for trials relevant to some query is laborious due to the immense number of existing protocols. Apart from search, writing new trials includes composing detailed eligibility criteria, which might be time-consuming, especially for new researchers. In this paper we present ASCOT, an efficient search application customised for clinical trials. ASCOT uses text mining and data mining methods to enrich clinical trials with metadata, that in turn serve as effective tools to narrow down search. In addition, ASCOT integrates a component for recommending eligibility criteria based on a set of selected protocols. PMID:22595088

  20. ASCOT: a text mining-based web-service for efficient search and assisted creation of clinical trials.

    PubMed

    Korkontzelos, Ioannis; Mu, Tingting; Ananiadou, Sophia

    2012-04-30

    Clinical trials are mandatory protocols describing medical research on humans and among the most valuable sources of medical practice evidence. Searching for trials relevant to some query is laborious due to the immense number of existing protocols. Apart from search, writing new trials includes composing detailed eligibility criteria, which might be time-consuming, especially for new researchers. In this paper we present ASCOT, an efficient search application customised for clinical trials. ASCOT uses text mining and data mining methods to enrich clinical trials with metadata, that in turn serve as effective tools to narrow down search. In addition, ASCOT integrates a component for recommending eligibility criteria based on a set of selected protocols.

  1. Studies on medicinal herbs for cognitive enhancement based on the text mining of Dongeuibogam and preliminary evaluation of its effects.

    PubMed

    Pak, Malk Eun; Kim, Yu Ri; Kim, Ha Neui; Ahn, Sung Min; Shin, Hwa Kyoung; Baek, Jin Ung; Choi, Byung Tae

    2016-02-17

    In literature on Korean medicine, Dongeuibogam (Treasured Mirror of Eastern Medicine), published in 1613, represents the overall results of the traditional medicines of North-East Asia based on prior medicinal literature of this region. We utilized this medicinal literature by text mining to establish a list of candidate herbs for cognitive enhancement in the elderly and then performed an evaluation of their effects. Text mining was performed for selection of candidate herbs. Cell viability was determined in HT22 hippocampal cells and immunohistochemistry and behavioral analysis was performed in a kainic acid (KA) mice model in order to observe alterations of hippocampal cells and cognition. Twenty four herbs for cognitive enhancement in the elderly were selected by text mining of Dongeuibogam. In HT22 cells, pretreatment with 3 candidate herbs resulted in significantly reduced glutamate-induced cell death. Panax ginseng was the most neuroprotective herb against glutamate-induced cell death. In the hippocampus of a KA mice model, pretreatment with 11 candidate herbs resulted in suppression of caspase-3 expression. Treatment with 7 candidate herbs resulted in significantly enhanced expression levels of phosphorylated cAMP response element binding protein. Number of proliferated cells indicated by BrdU labeling was increased by treatment with 10 candidate herbs. Schisandra chinensis was the most effective herb against cell death and proliferation of progenitor cells and Rehmannia glutinosa in neuroprotection in the hippocampus of a KA mice model. In a KA mice model, we confirmed improved spatial and short memory by treatment with the 3 most effective candidate herbs and these recovered functions were involved in a higher number of newly formed neurons from progenitor cells in the hippocampus. These established herbs and their combinations identified by text-mining technique and evaluation for effectiveness may have value in further experimental and clinical applications for cognitive enhancement in the elderly. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Mining the Text: 34 Text Features that Can Ease or Obstruct Text Comprehension and Use

    ERIC Educational Resources Information Center

    White, Sheida

    2012-01-01

    This article presents 34 characteristics of texts and tasks ("text features") that can make continuous (prose), noncontinuous (document), and quantitative texts easier or more difficult for adolescents and adults to comprehend and use. The text features were identified by examining the assessment tasks and associated texts in the national…

  3. Knowledge Discovery from Massive Healthcare Claims Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandola, Varun; Sukumar, Sreenivas R; Schryver, Jack C

    The role of big data in addressing the needs of the present healthcare system in US and rest of the world has been echoed by government, private, and academic sectors. There has been a growing emphasis to explore the promise of big data analytics in tapping the potential of the massive healthcare data emanating from private and government health insurance providers. While the domain implications of such collaboration are well known, this type of data has been explored to a limited extent in the data mining community. The objective of this paper is two fold: first, we introduce the emergingmore » domain of big"healthcare claims data to the KDD community, and second, we describe the success and challenges that we encountered in analyzing this data using state of art analytics for massive data. Specically, we translate the problem of analyzing healthcare data into some of the most well-known analysis problems in the data mining community, social network analysis, text mining, and temporal analysis and higher order feature construction, and describe how advances within each of these areas can be leveraged to understand the domain of healthcare. Each case study illustrates a unique intersection of data mining and healthcare with a common objective of improving the cost-care ratio by mining for opportunities to improve healthcare operations and reducing hat seems to fall under fraud, waste,and abuse.« less

  4. Text Mining the History of Medicine.

    PubMed

    Thompson, Paul; Batista-Navarro, Riza Theresa; Kontonatsios, Georgios; Carter, Jacob; Toon, Elizabeth; McNaught, John; Timmermann, Carsten; Worboys, Michael; Ananiadou, Sophia

    2016-01-01

    Historical text archives constitute a rich and diverse source of information, which is becoming increasingly readily accessible, due to large-scale digitisation efforts. However, it can be difficult for researchers to explore and search such large volumes of data in an efficient manner. Text mining (TM) methods can help, through their ability to recognise various types of semantic information automatically, e.g., instances of concepts (places, medical conditions, drugs, etc.), synonyms/variant forms of concepts, and relationships holding between concepts (which drugs are used to treat which medical conditions, etc.). TM analysis allows search systems to incorporate functionality such as automatic suggestions of synonyms of user-entered query terms, exploration of different concepts mentioned within search results or isolation of documents in which concepts are related in specific ways. However, applying TM methods to historical text can be challenging, according to differences and evolutions in vocabulary, terminology, language structure and style, compared to more modern text. In this article, we present our efforts to overcome the various challenges faced in the semantic analysis of published historical medical text dating back to the mid 19th century. Firstly, we used evidence from diverse historical medical documents from different periods to develop new resources that provide accounts of the multiple, evolving ways in which concepts, their variants and relationships amongst them may be expressed. These resources were employed to support the development of a modular processing pipeline of TM tools for the robust detection of semantic information in historical medical documents with varying characteristics. We applied the pipeline to two large-scale medical document archives covering wide temporal ranges as the basis for the development of a publicly accessible semantically-oriented search system. The novel resources are available for research purposes, while the processing pipeline and its modules may be used and configured within the Argo TM platform.

  5. Text Mining the History of Medicine

    PubMed Central

    Thompson, Paul; Batista-Navarro, Riza Theresa; Kontonatsios, Georgios; Carter, Jacob; Toon, Elizabeth; McNaught, John; Timmermann, Carsten; Worboys, Michael; Ananiadou, Sophia

    2016-01-01

    Historical text archives constitute a rich and diverse source of information, which is becoming increasingly readily accessible, due to large-scale digitisation efforts. However, it can be difficult for researchers to explore and search such large volumes of data in an efficient manner. Text mining (TM) methods can help, through their ability to recognise various types of semantic information automatically, e.g., instances of concepts (places, medical conditions, drugs, etc.), synonyms/variant forms of concepts, and relationships holding between concepts (which drugs are used to treat which medical conditions, etc.). TM analysis allows search systems to incorporate functionality such as automatic suggestions of synonyms of user-entered query terms, exploration of different concepts mentioned within search results or isolation of documents in which concepts are related in specific ways. However, applying TM methods to historical text can be challenging, according to differences and evolutions in vocabulary, terminology, language structure and style, compared to more modern text. In this article, we present our efforts to overcome the various challenges faced in the semantic analysis of published historical medical text dating back to the mid 19th century. Firstly, we used evidence from diverse historical medical documents from different periods to develop new resources that provide accounts of the multiple, evolving ways in which concepts, their variants and relationships amongst them may be expressed. These resources were employed to support the development of a modular processing pipeline of TM tools for the robust detection of semantic information in historical medical documents with varying characteristics. We applied the pipeline to two large-scale medical document archives covering wide temporal ranges as the basis for the development of a publicly accessible semantically-oriented search system. The novel resources are available for research purposes, while the processing pipeline and its modules may be used and configured within the Argo TM platform. PMID:26734936

  6. Automatic mine detection based on multiple features

    NASA Astrophysics Data System (ADS)

    Yu, Ssu-Hsin; Gandhe, Avinash; Witten, Thomas R.; Mehra, Raman K.

    2000-08-01

    Recent research sponsored by the Army, Navy and DARPA has significantly advanced the sensor technologies for mine detection. Several innovative sensor systems have been developed and prototypes were built to investigate their performance in practice. Most of the research has been focused on hardware design. However, in order for the systems to be in wide use instead of in limited use by a small group of well-trained experts, an automatic process for mine detection is needed to make the final decision process on mine vs. no mine easier and more straightforward. In this paper, we describe an automatic mine detection process consisting of three stage, (1) signal enhancement, (2) pixel-level mine detection, and (3) object-level mine detection. The final output of the system is a confidence measure that quantifies the presence of a mine. The resulting system was applied to real data collected using radar and acoustic technologies.

  7. Performance analysis of a multispectral system for mine detection in the littoral zone

    NASA Astrophysics Data System (ADS)

    Hargrove, John T.; Louchard, Eric

    2004-09-01

    Science & Technology International (STI) has developed, under contract with the Office of Naval Research, a system of multispectral airborne sensors and processing algorithms capable of detecting mine-like objects in the surf zone. STI has used this system to detect mine-like objects in a littoral environment as part of blind tests at Kaneohe Marine Corps Base Hawaii, and Panama City, Florida. The airborne and ground subsystems are described. The detection algorithm is graphically illustrated. We report on the performance of the system configured to operate without a human in the loop. A subsurface (underwater bottom proud mine in the surf zone and moored mine in shallow water) mine detection capability is demonstrated in the surf zone, and in shallow water with wave spillage and foam. Our analysis demonstrates that this STI-developed multispectral airborne mine detection system provides a technical foundation for a viable mine counter-measures system for use prior to an amphibious assault.

  8. Ontology-based literature mining and class effect analysis of adverse drug reactions associated with neuropathy-inducing drugs.

    PubMed

    Hur, Junguk; Özgür, Arzucan; He, Yongqun

    2018-06-07

    Adverse drug reactions (ADRs), also called as drug adverse events (AEs), are reported in the FDA drug labels; however, it is a big challenge to properly retrieve and analyze the ADRs and their potential relationships from textual data. Previously, we identified and ontologically modeled over 240 drugs that can induce peripheral neuropathy through mining public drug-related databases and drug labels. However, the ADR mechanisms of these drugs are still unclear. In this study, we aimed to develop an ontology-based literature mining system to identify ADRs from drug labels and to elucidate potential mechanisms of the neuropathy-inducing drugs (NIDs). We developed and applied an ontology-based SciMiner literature mining strategy to mine ADRs from the drug labels provided in the Text Analysis Conference (TAC) 2017, which included drug labels for 53 neuropathy-inducing drugs (NIDs). We identified an average of 243 ADRs per NID and constructed an ADR-ADR network, which consists of 29 ADR nodes and 149 edges, including only those ADR-ADR pairs found in at least 50% of NIDs. Comparison to the ADR-ADR network of non-NIDs revealed that the ADRs such as pruritus, pyrexia, thrombocytopenia, nervousness, asthenia, acute lymphocytic leukaemia were highly enriched in the NID network. Our ChEBI-based ontology analysis identified three benzimidazole NIDs (i.e., lansoprazole, omeprazole, and pantoprazole), which were associated with 43 ADRs. Based on ontology-based drug class effect definition, the benzimidazole drug group has a drug class effect on all of these 43 ADRs. Many of these 43 ADRs also exist in the enriched NID ADR network. Our Ontology of Adverse Events (OAE) classification further found that these 43 benzimidazole-related ADRs were distributed in many systems, primarily in behavioral and neurological, digestive, skin, and immune systems. Our study demonstrates that ontology-based literature mining and network analysis can efficiently identify and study specific group of drugs and their associated ADRs. Furthermore, our analysis of drug class effects identified 3 benzimidazole drugs sharing 43 ADRs, leading to new hypothesis generation and possible mechanism understanding of drug-induced peripheral neuropathy.

  9. Regional and temporal variability of the isotope composition (O, S) of atmospheric sulphate in the region of Freiberg, Germany, and consequences for dissolved sulphate in groundwater and river water.

    PubMed

    Tichomirowa, Marion; Heidel, Claudia

    2012-01-01

    The isotope composition of dissolved sulphate and strontium in atmospheric deposition, groundwater, mine water and river water in the region of Freiberg was investigated to better understand the fate of these components in the regional and global water cycle. Most of the isotope variations of dissolved sulphates in atmospheric deposition from three locations sampled bi- or tri-monthly can be explained by fractionation processes leading to lower [Formula: see text] (of about 2-3‰) and higher [Formula: see text] (of about 8-10‰) values in summer compared with the winter period. These samples showed a negative correlation between [Formula: see text] and [Formula: see text] values and a weak positive correlation between [Formula: see text] and [Formula: see text] values. They reflect the sulphate formed by aqueous oxidation from long-range transport in clouds. However, these isotope variations were superimposed by changes of the dominating atmospheric sulphate source. At two of the sampling points, large variations of mean annual [Formula: see text] values from atmospheric bulk deposition were recorded. From 2008 to 2009, the mean annual [Formula: see text] value increased by about 5‰; and decreased by about 4‰ from 2009 to 2010. A change in the dominating sulphate source or oxidation pathways of SO(2) in the atmosphere is proposed to cause these shifts. No changes were found in corresponding [Formula: see text] values. Groundwater, river water and some mine waters (where groundwater was the dominating sulphate source) also showed temporal shifts in their [Formula: see text] values corresponding to those of bulk atmospheric deposition, albeit to a lower degree. The mean transit time of atmospheric sulphur through the soil into the groundwater and river water was less than a year and therefore much shorter than previously suggested. Mining activities of about 800 years in the Freiberg region may have led to large subsurface areas with an enhanced groundwater flow along fractures and mined-refilled ore lodes which may shorten transit times of sulphate from precipitation through groundwater into river water.

  10. Application of Modern Tools and Techniques for Mine Safety & Disaster Management

    NASA Astrophysics Data System (ADS)

    Kumar, Dheeraj

    2016-04-01

    The implementation of novel systems and adoption of improvised equipment in mines help mining companies in two important ways: enhanced mine productivity and improved worker safety. There is a substantial need for adoption of state-of-the-art automation technologies in the mines to ensure the safety and to protect health of mine workers. With the advent of new autonomous equipment used in the mine, the inefficiencies are reduced by limiting human inconsistencies and error. The desired increase in productivity at a mine can sometimes be achieved by changing only a few simple variables. Significant developments have been made in the areas of surface and underground communication, robotics, smart sensors, tracking systems, mine gas monitoring systems and ground movements etc. Advancement in information technology in the form of internet, GIS, remote sensing, satellite communication, etc. have proved to be important tools for hazard reduction and disaster management. This paper is mainly focused on issues pertaining to mine safety and disaster management and some of the recent innovations in the mine automations that could be deployed in mines for safe mining operations and for avoiding any unforeseen mine disaster.

  11. Science and Technology Text Mining: Nonlinear Dynamics

    DTIC Science & Technology

    2004-02-01

    journal/ institution publication and citation data. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...systems whose time evolution has a sensitive dependence on initial conditions. An approximately 100 term query was developed for accessing records from the...SCI papers by a factor of ~ 2. Appendix 4 contains a co-occurrence matrix of the top 15 countries. In terms of absolute numbers of co-authored papers

  12. Applying Web Usage Mining for Personalizing Hyperlinks in Web-Based Adaptive Educational Systems

    ERIC Educational Resources Information Center

    Romero, Cristobal; Ventura, Sebastian; Zafra, Amelia; de Bra, Paul

    2009-01-01

    Nowadays, the application of Web mining techniques in e-learning and Web-based adaptive educational systems is increasing exponentially. In this paper, we propose an advanced architecture for a personalization system to facilitate Web mining. A specific Web mining tool is developed and a recommender engine is integrated into the AHA! system in…

  13. 30 CFR 75.215 - Longwall mining systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Longwall mining systems. 75.215 Section 75.215... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.215 Longwall mining systems. For each... a safe travelway out of the section through the tailgate side of the longwall; and (b) The...

  14. 30 CFR 75.215 - Longwall mining systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Longwall mining systems. 75.215 Section 75.215... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.215 Longwall mining systems. For each... a safe travelway out of the section through the tailgate side of the longwall; and (b) The...

  15. 30 CFR 75.215 - Longwall mining systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Longwall mining systems. 75.215 Section 75.215... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.215 Longwall mining systems. For each... a safe travelway out of the section through the tailgate side of the longwall; and (b) The...

  16. Correlating mammographic and pathologic findings in clinical decision support using natural language processing and data mining methods.

    PubMed

    Patel, Tejal A; Puppala, Mamta; Ogunti, Richard O; Ensor, Joe E; He, Tiancheng; Shewale, Jitesh B; Ankerst, Donna P; Kaklamani, Virginia G; Rodriguez, Angel A; Wong, Stephen T C; Chang, Jenny C

    2017-01-01

    A key challenge to mining electronic health records for mammography research is the preponderance of unstructured narrative text, which strikingly limits usable output. The imaging characteristics of breast cancer subtypes have been described previously, but without standardization of parameters for data mining. The authors searched the enterprise-wide data warehouse at the Houston Methodist Hospital, the Methodist Environment for Translational Enhancement and Outcomes Research (METEOR), for patients with Breast Imaging Reporting and Data System (BI-RADS) category 5 mammogram readings performed between January 2006 and May 2015 and an available pathology report. The authors developed natural language processing (NLP) software algorithms to automatically extract mammographic and pathologic findings from free text mammogram and pathology reports. The correlation between mammographic imaging features and breast cancer subtype was analyzed using one-way analysis of variance and the Fisher exact test. The NLP algorithm was able to obtain key characteristics for 543 patients who met the inclusion criteria. Patients with estrogen receptor-positive tumors were more likely to have spiculated margins (P = .0008), and those with tumors that overexpressed human epidermal growth factor receptor 2 (HER2) were more likely to have heterogeneous and pleomorphic calcifications (P = .0078 and P = .0002, respectively). Mammographic imaging characteristics, obtained from an automated text search and the extraction of mammogram reports using NLP techniques, correlated with pathologic breast cancer subtype. The results of the current study validate previously reported trends assessed by manual data collection. Furthermore, NLP provides an automated means with which to scale up data extraction and analysis for clinical decision support. Cancer 2017;114-121. © 2016 American Cancer Society. © 2016 American Cancer Society.

  17. Data Visualization in Information Retrieval and Data Mining (SIG VIS).

    ERIC Educational Resources Information Center

    Efthimiadis, Efthimis

    2000-01-01

    Presents abstracts that discuss using data visualization for information retrieval and data mining, including immersive information space and spatial metaphors; spatial data using multi-dimensional matrices with maps; TREC (Text Retrieval Conference) experiments; users' information needs in cartographic information retrieval; and users' relevance…

  18. Macromolecule mass spectrometry: citation mining of user documents.

    PubMed

    Kostoff, Ronald N; Bedford, Clifford D; del Río, J Antonio; Cortes, Héctor D; Karypis, George

    2004-03-01

    Identifying research users, applications, and impact is important for research performers, managers, evaluators, and sponsors. Identification of the user audience and the research impact is complex and time consuming due to the many indirect pathways through which fundamental research can impact applications. This paper identified the literature pathways through which two highly-cited papers of 2002 Chemistry Nobel Laureates Fenn and Tanaka impacted research, technology development, and applications. Citation Mining, an integration of citation bibliometrics and text mining, was applied to the >1600 first generation Science Citation Index (SCI) citing papers to Fenn's 1989 Science paper on Electrospray Ionization for Mass Spectrometry, and to the >400 first generation SCI citing papers to Tanaka's 1988 Rapid Communications in Mass Spectrometry paper on Laser Ionization Time-of-Flight Mass Spectrometry. Bibliometrics was performed on the citing papers to profile the user characteristics. Text mining was performed on the citing papers to identify the technical areas impacted by the research, and the relationships among these technical areas.

  19. Detecting Malicious Tweets in Twitter Using Runtime Monitoring With Hidden Information

    DTIC Science & Technology

    2016-06-01

    text mining using Twitter streaming API and python [Online]. Available: http://adilmoujahid.com/posts/2014/07/twitter-analytics/ [22] M. Singh, B...sites with 645,750,000 registered users [3] and has open source public tweets for data mining . 2. Malicious Users and Tweets In the modern world...want to data mine in Twitter, and presents the natural language assertions and corresponding rule patterns. It then describes the steps performed using

  20. Numerical linear algebra in data mining

    NASA Astrophysics Data System (ADS)

    Eldén, Lars

    Ideas and algorithms from numerical linear algebra are important in several areas of data mining. We give an overview of linear algebra methods in text mining (information retrieval), pattern recognition (classification of handwritten digits), and PageRank computations for web search engines. The emphasis is on rank reduction as a method of extracting information from a data matrix, low-rank approximation of matrices using the singular value decomposition and clustering, and on eigenvalue methods for network analysis.

  1. Method to Select Technical Terms for Glossaries in Support of Joint Task Force Operations

    DTIC Science & Technology

    2012-01-01

    have been prohibitively time-consuming. Instead, we identified two publicly available terminology extractor tools: TerMine (NaCTEM, 2011) and Alchemy ...and that from the latter, by high recall. The Alchemy approach contrasts with that used in TerMine in that Alchemy will process the text with...information categories, such as person, location, and organization, in addition to returning topic keywords. Output from both TerMine and Alchemy

  2. Identifying Understudied Nuclear Reactions by Text-mining the EXFOR Experimental Nuclear Reaction Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirdt, J.A.; Brown, D.A., E-mail: dbrown@bnl.gov

    The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of socialmore » networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.« less

  3. Systematic analysis of molecular mechanisms for HCC metastasis via text mining approach.

    PubMed

    Zhen, Cheng; Zhu, Caizhong; Chen, Haoyang; Xiong, Yiru; Tan, Junyuan; Chen, Dong; Li, Jin

    2017-02-21

    To systematically explore the molecular mechanism for hepatocellular carcinoma (HCC) metastasis and identify regulatory genes with text mining methods. Genes with highest frequencies and significant pathways related to HCC metastasis were listed. A handful of proteins such as EGFR, MDM2, TP53 and APP, were identified as hub nodes in PPI (protein-protein interaction) network. Compared with unique genes for HBV-HCCs, genes particular to HCV-HCCs were less, but may participate in more extensive signaling processes. VEGFA, PI3KCA, MAPK1, MMP9 and other genes may play important roles in multiple phenotypes of metastasis. Genes in abstracts of HCC-metastasis literatures were identified. Word frequency analysis, KEGG pathway and PPI network analysis were performed. Then co-occurrence analysis between genes and metastasis-related phenotypes were carried out. Text mining is effective for revealing potential regulators or pathways, but the purpose of it should be specific, and the combination of various methods will be more useful.

  4. Unapparent Information Revelation: Text Mining for Counterterrorism

    NASA Astrophysics Data System (ADS)

    Srihari, Rohini K.

    Unapparent information revelation (UIR) is a special case of text mining that focuses on detecting possible links between concepts across multiple text documents by generating an evidence trail explaining the connection. A traditional search involving, for example, two or more person names will attempt to find documents mentioning both these individuals. This research focuses on a different interpretation of such a query: what is the best evidence trail across documents that explains a connection between these individuals? For example, all may be good golfers. A generalization of this task involves query terms representing general concepts (e.g. indictment, foreign policy). Previous approaches to this problem have focused on graph mining involving hyperlinked documents, and link analysis exploiting named entities. A new robust framework is presented, based on (i) generating concept chain graphs, a hybrid content representation, (ii) performing graph matching to select candidate subgraphs, and (iii) subsequently using graphical models to validate hypotheses using ranked evidence trails. We adapt the DUC data set for cross-document summarization to evaluate evidence trails generated by this approach

  5. Chemical named entities recognition: a review on approaches and applications.

    PubMed

    Eltyeb, Safaa; Salim, Naomie

    2014-01-01

    The rapid increase in the flow rate of published digital information in all disciplines has resulted in a pressing need for techniques that can simplify the use of this information. The chemistry literature is very rich with information about chemical entities. Extracting molecules and their related properties and activities from the scientific literature to "text mine" these extracted data and determine contextual relationships helps research scientists, particularly those in drug development. One of the most important challenges in chemical text mining is the recognition of chemical entities mentioned in the texts. In this review, the authors briefly introduce the fundamental concepts of chemical literature mining, the textual contents of chemical documents, and the methods of naming chemicals in documents. We sketch out dictionary-based, rule-based and machine learning, as well as hybrid chemical named entity recognition approaches with their applied solutions. We end with an outlook on the pros and cons of these approaches and the types of chemical entities extracted.

  6. Identifying Understudied Nuclear Reactions by Text-mining the EXFOR Experimental Nuclear Reaction Library

    NASA Astrophysics Data System (ADS)

    Hirdt, J. A.; Brown, D. A.

    2016-01-01

    The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of social networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.

  7. A review on computational systems biology of pathogen–host interactions

    PubMed Central

    Durmuş, Saliha; Çakır, Tunahan; Özgür, Arzucan; Guthke, Reinhard

    2015-01-01

    Pathogens manipulate the cellular mechanisms of host organisms via pathogen–host interactions (PHIs) in order to take advantage of the capabilities of host cells, leading to infections. The crucial role of these interspecies molecular interactions in initiating and sustaining infections necessitates a thorough understanding of the corresponding mechanisms. Unlike the traditional approach of considering the host or pathogen separately, a systems-level approach, considering the PHI system as a whole is indispensable to elucidate the mechanisms of infection. Following the technological advances in the post-genomic era, PHI data have been produced in large-scale within the last decade. Systems biology-based methods for the inference and analysis of PHI regulatory, metabolic, and protein–protein networks to shed light on infection mechanisms are gaining increasing demand thanks to the availability of omics data. The knowledge derived from the PHIs may largely contribute to the identification of new and more efficient therapeutics to prevent or cure infections. There are recent efforts for the detailed documentation of these experimentally verified PHI data through Web-based databases. Despite these advances in data archiving, there are still large amounts of PHI data in the biomedical literature yet to be discovered, and novel text mining methods are in development to unearth such hidden data. Here, we review a collection of recent studies on computational systems biology of PHIs with a special focus on the methods for the inference and analysis of PHI networks, covering also the Web-based databases and text-mining efforts to unravel the data hidden in the literature. PMID:25914674

  8. Filling the gaps between tools and users: a tool comparator, using protein-protein interaction as an example.

    PubMed

    Kano, Yoshinobu; Nguyen, Ngan; Saetre, Rune; Yoshida, Kazuhiro; Miyao, Yusuke; Tsuruoka, Yoshimasa; Matsubayashi, Yuichiro; Ananiadou, Sophia; Tsujii, Jun'ichi

    2008-01-01

    Recently, several text mining programs have reached a near-practical level of performance. Some systems are already being used by biologists and database curators. However, it has also been recognized that current Natural Language Processing (NLP) and Text Mining (TM) technology is not easy to deploy, since research groups tend to develop systems that cater specifically to their own requirements. One of the major reasons for the difficulty of deployment of NLP/TM technology is that re-usability and interoperability of software tools are typically not considered during development. While some effort has been invested in making interoperable NLP/TM toolkits, the developers of end-to-end systems still often struggle to reuse NLP/TM tools, and often opt to develop similar programs from scratch instead. This is particularly the case in BioNLP, since the requirements of biologists are so diverse that NLP tools have to be adapted and re-organized in a much more extensive manner than was originally expected. Although generic frameworks like UIMA (Unstructured Information Management Architecture) provide promising ways to solve this problem, the solution that they provide is only partial. In order for truly interoperable toolkits to become a reality, we also need sharable type systems and a developer-friendly environment for software integration that includes functionality for systematic comparisons of available tools, a simple I/O interface, and visualization tools. In this paper, we describe such an environment that was developed based on UIMA, and we show its feasibility through our experience in developing a protein-protein interaction (PPI) extraction system.

  9. Performance analysis of a multispectral framing camera for detecting mines in the littoral zone and beach zone

    NASA Astrophysics Data System (ADS)

    Louchard, Eric; Farm, Brian; Acker, Andrew

    2008-04-01

    BAE Systems Sensor Systems Identification & Surveillance (IS) has developed, under contract with the Office of Naval Research, a multispectral airborne sensor system and processing algorithms capable of detecting mine-like objects in the surf zone and land mines in the beach zone. BAE Systems has used this system in a blind test at a test range established by the Naval Surface Warfare Center - Panama City Division (NSWC-PCD) at Eglin Air Force Base. The airborne and ground subsystems used in this test are described, with graphical illustrations of the detection algorithms. We report on the performance of the system configured to operate with a human operator analyzing data on a ground station. A subsurface (underwater bottom proud mine in the surf zone and moored mine in shallow water) mine detection capability is demonstrated in the surf zone. Surface float detection and proud land mine detection capability is also demonstrated. Our analysis shows that this BAE Systems-developed multispectral airborne sensor provides a robust technical foundation for a viable system for mine counter-measures, and would be a valuable asset for use prior to an amphibious assault.

  10. Underground coal mine instrumentation and test

    NASA Technical Reports Server (NTRS)

    Burchill, R. F.; Waldron, W. D.

    1976-01-01

    The need to evaluate mechanical performance of mine tools and to obtain test performance data from candidate systems dictate that an engineering data recording system be built. Because of the wide range of test parameters which would be evaluated, a general purpose data gathering system was designed and assembled to permit maximum versatility. A primary objective of this program was to provide a specific operating evaluation of a longwall mining machine vibration response under normal operating conditions. A number of mines were visited and a candidate for test evaluation was selected, based upon management cooperation, machine suitability, and mine conditions. Actual mine testing took place in a West Virginia mine.

  11. Extraction of CYP chemical interactions from biomedical literature using natural language processing methods.

    PubMed

    Jiao, Dazhi; Wild, David J

    2009-02-01

    This paper proposes a system that automatically extracts CYP protein and chemical interactions from journal article abstracts, using natural language processing (NLP) and text mining methods. In our system, we employ a maximum entropy based learning method, using results from syntactic, semantic, and lexical analysis of texts. We first present our system architecture and then discuss the data set for training our machine learning based models and the methods in building components in our system, such as part of speech (POS) tagging, Named Entity Recognition (NER), dependency parsing, and relation extraction. An evaluation of the system is conducted at the end, yielding very promising results: The POS, dependency parsing, and NER components in our system have achieved a very high level of accuracy as measured by precision, ranging from 85.9% to 98.5%, and the precision and the recall of the interaction extraction component are 76.0% and 82.6%, and for the overall system are 68.4% and 72.2%, respectively.

  12. Mine-hunting dolphins of the Navy

    NASA Astrophysics Data System (ADS)

    Moore, Patrick W.

    1997-07-01

    Current counter-mine and obstacle avoidance technology is inadequate, and limits the Navy's capability to conduct shallow water (SW) and very shallow water (VSW) MCM in support of beach assaults by Marine Corps forces. Without information as to the location or density of mined beach areas, it must be assumed that if mines are present in one area then they are present in all areas. Marine mammal systems (MMS) are an unusual, effective and unique solution to current problems of mine and obstacle hunting. In the US Navy Mine Warfare Plan for 1994-1995 Marine Mammal Systems are explicitly identified as the Navy's only means of countering buried mines and the best means for dealing with close-tethered mines. The dolphins in these systems possess a biological sonar specifically adapted for their shallow and very shallow water habitat. Research has demonstrated that the dolphin biosonar outperforms any current hardware system available for SW and VSW applications. This presentation will cover current Fleet MCM systems and future technology application to the littoral region.

  13. Exploratory analysis of textual data from the Mother and Child Handbook using a text mining method (II): Monthly changes in the words recorded by mothers.

    PubMed

    Tagawa, Miki; Matsuda, Yoshio; Manaka, Tomoko; Kobayashi, Makiko; Ohwada, Michitaka; Matsubara, Shigeki

    2017-01-01

    The aim of the study was to examine the possibility of converting subjective textual data written in the free column space of the Mother and Child Handbook (MCH) into objective information using text mining and to compare any monthly changes in the words written by the mothers. Pregnant women without complications (n = 60) were divided into two groups according to State-Trait Anxiety Inventory grade: low trait anxiety (group I, n = 39) and high trait anxiety (group II, n = 21). Exploratory analysis of the textual data from the MCH was conducted by text mining using the Word Miner software program. Using 1203 structural elements extracted after processing, a comparison of monthly changes in the words used in the mothers' comments was made between the two groups. The data was mainly analyzed by a correspondence analysis. The structural elements in groups I and II were divided into seven and six clusters, respectively, by cluster analysis. Correspondence analysis revealed clear monthly changes in the words used in the mothers' comments as the pregnancy progressed in group I, whereas the association was not clear in group II. The text mining method was useful for exploratory analysis of the textual data obtained from pregnant women, and the monthly change in the words used in the mothers' comments as pregnancy progressed differed according to their degree of unease. © 2016 Japan Society of Obstetrics and Gynecology.

  14. A Text-Mining Framework for Supporting Systematic Reviews.

    PubMed

    Li, Dingcheng; Wang, Zhen; Wang, Liwei; Sohn, Sunghwan; Shen, Feichen; Murad, Mohammad Hassan; Liu, Hongfang

    2016-11-01

    Systematic reviews (SRs) involve the identification, appraisal, and synthesis of all relevant studies for focused questions in a structured reproducible manner. High-quality SRs follow strict procedures and require significant resources and time. We investigated advanced text-mining approaches to reduce the burden associated with abstract screening in SRs and provide high-level information summary. A text-mining SR supporting framework consisting of three self-defined semantics-based ranking metrics was proposed, including keyword relevance, indexed-term relevance and topic relevance. Keyword relevance is based on the user-defined keyword list used in the search strategy. Indexed-term relevance is derived from indexed vocabulary developed by domain experts used for indexing journal articles and books. Topic relevance is defined as the semantic similarity among retrieved abstracts in terms of topics generated by latent Dirichlet allocation, a Bayesian-based model for discovering topics. We tested the proposed framework using three published SRs addressing a variety of topics (Mass Media Interventions, Rectal Cancer and Influenza Vaccine). The results showed that when 91.8%, 85.7%, and 49.3% of the abstract screening labor was saved, the recalls were as high as 100% for the three cases; respectively. Relevant studies identified manually showed strong topic similarity through topic analysis, which supported the inclusion of topic analysis as relevance metric. It was demonstrated that advanced text mining approaches can significantly reduce the abstract screening labor of SRs and provide an informative summary of relevant studies.

  15. tmBioC: improving interoperability of text-mining tools with BioC.

    PubMed

    Khare, Ritu; Wei, Chih-Hsuan; Mao, Yuqing; Leaman, Robert; Lu, Zhiyong

    2014-01-01

    The lack of interoperability among biomedical text-mining tools is a major bottleneck in creating more complex applications. Despite the availability of numerous methods and techniques for various text-mining tasks, combining different tools requires substantial efforts and time owing to heterogeneity and variety in data formats. In response, BioC is a recent proposal that offers a minimalistic approach to tool interoperability by stipulating minimal changes to existing tools and applications. BioC is a family of XML formats that define how to present text documents and annotations, and also provides easy-to-use functions to read/write documents in the BioC format. In this study, we introduce our text-mining toolkit, which is designed to perform several challenging and significant tasks in the biomedical domain, and repackage the toolkit into BioC to enhance its interoperability. Our toolkit consists of six state-of-the-art tools for named-entity recognition, normalization and annotation (PubTator) of genes (GenNorm), diseases (DNorm), mutations (tmVar), species (SR4GN) and chemicals (tmChem). Although developed within the same group, each tool is designed to process input articles and output annotations in a different format. We modify these tools and enable them to read/write data in the proposed BioC format. We find that, using the BioC family of formats and functions, only minimal changes were required to build the newer versions of the tools. The resulting BioC wrapped toolkit, which we have named tmBioC, consists of our tools in BioC, an annotated full-text corpus in BioC, and a format detection and conversion tool. Furthermore, through participation in the 2013 BioCreative IV Interoperability Track, we empirically demonstrate that the tools in tmBioC can be more efficiently integrated with each other as well as with external tools: Our experimental results show that using BioC reduces >60% in lines of code for text-mining tool integration. The tmBioC toolkit is publicly available at http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/. Database URL: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/. Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US.

  16. COMPARISON OF APATITE II™ TREATMENT SYSTEM AT TWO MINES FOR METALS REMOVAL

    EPA Science Inventory

    Two abandoned lead-zinc mine sites, the Nevada Stewart Mine (NSM) and Success Mine, are located within the Coeur d'Alene Mining District, in northern Idaho. An Apatite II™ Treatment System (ATS) was implemented at each site to treat metal-laden water, mainly zinc. In the ATS, f...

  17. A tutorial on information retrieval: basic terms and concepts

    PubMed Central

    Zhou, Wei; Smalheiser, Neil R; Yu, Clement

    2006-01-01

    This informal tutorial is intended for investigators and students who would like to understand the workings of information retrieval systems, including the most frequently used search engines: PubMed and Google. Having a basic knowledge of the terms and concepts of information retrieval should improve the efficiency and productivity of searches. As well, this knowledge is needed in order to follow current research efforts in biomedical information retrieval and text mining that are developing new systems not only for finding documents on a given topic, but extracting and integrating knowledge across documents. PMID:16722601

  18. Mining Health-Related Issues in Consumer Product Reviews by Using Scalable Text Analytics

    PubMed Central

    Torii, Manabu; Tilak, Sameer S.; Doan, Son; Zisook, Daniel S.; Fan, Jung-wei

    2016-01-01

    In an era when most of our life activities are digitized and recorded, opportunities abound to gain insights about population health. Online product reviews present a unique data source that is currently underexplored. Health-related information, although scarce, can be systematically mined in online product reviews. Leveraging natural language processing and machine learning tools, we were able to mine 1.3 million grocery product reviews for health-related information. The objectives of the study were as follows: (1) conduct quantitative and qualitative analysis on the types of health issues found in consumer product reviews; (2) develop a machine learning classifier to detect reviews that contain health-related issues; and (3) gain insights about the task characteristics and challenges for text analytics to guide future research. PMID:27375358

  19. Mining Health-Related Issues in Consumer Product Reviews by Using Scalable Text Analytics.

    PubMed

    Torii, Manabu; Tilak, Sameer S; Doan, Son; Zisook, Daniel S; Fan, Jung-Wei

    2016-01-01

    In an era when most of our life activities are digitized and recorded, opportunities abound to gain insights about population health. Online product reviews present a unique data source that is currently underexplored. Health-related information, although scarce, can be systematically mined in online product reviews. Leveraging natural language processing and machine learning tools, we were able to mine 1.3 million grocery product reviews for health-related information. The objectives of the study were as follows: (1) conduct quantitative and qualitative analysis on the types of health issues found in consumer product reviews; (2) develop a machine learning classifier to detect reviews that contain health-related issues; and (3) gain insights about the task characteristics and challenges for text analytics to guide future research.

  20. Weighted mining of massive collections of [Formula: see text]-values by convex optimization.

    PubMed

    Dobriban, Edgar

    2018-06-01

    Researchers in data-rich disciplines-think of computational genomics and observational cosmology-often wish to mine large bodies of [Formula: see text]-values looking for significant effects, while controlling the false discovery rate or family-wise error rate. Increasingly, researchers also wish to prioritize certain hypotheses, for example, those thought to have larger effect sizes, by upweighting, and to impose constraints on the underlying mining, such as monotonicity along a certain sequence. We introduce Princessp , a principled method for performing weighted multiple testing by constrained convex optimization. Our method elegantly allows one to prioritize certain hypotheses through upweighting and to discount others through downweighting, while constraining the underlying weights involved in the mining process. When the [Formula: see text]-values derive from monotone likelihood ratio families such as the Gaussian means model, the new method allows exact solution of an important optimal weighting problem previously thought to be non-convex and computationally infeasible. Our method scales to massive data set sizes. We illustrate the applications of Princessp on a series of standard genomics data sets and offer comparisons with several previous 'standard' methods. Princessp offers both ease of operation and the ability to scale to extremely large problem sizes. The method is available as open-source software from github.com/dobriban/pvalue_weighting_matlab (accessed 11 October 2017).

  1. 30 CFR 900.15 - Federal lands program cooperative agreements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... 900.15 Section 900.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE INTRODUCTION § 900.15 Federal lands program cooperative agreements. The full text of any State and Federal...

  2. 30 CFR 900.12 - State regulatory programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE INTRODUCTION § 900.12 State... to be codified under the applicable part number assigned to the State. The full text will not appear...

  3. Literature Mining Methods for Toxicology and Construction of ...

    EPA Pesticide Factsheets

    Webinar Presentation on text-mining methodologies in use at NCCT and how they can be used to assist with the OECD Retinoid project. Presentation to 1st Workshop/Scientific Expert Group meeting on the OECD Retinoid Project - April 26, 2016 –Brussels, Presented remotely via web.

  4. Untangling Topic Threads in Chat-Based Communication: A Case Study

    DTIC Science & Technology

    2011-08-01

    learning techniques such as clustering are very popular for analyzing text for topic identification (Anjewierden,, Kollöffel and Hulshof 2007; Adams...Anjewierden, A., Kollöffel, B., and Hulshof , C. (2007). Towards educational data mining: Using data mining methods for automated chat analysis to

  5. Mines Systems Safety Improvement Using an Integrated Event Tree and Fault Tree Analysis

    NASA Astrophysics Data System (ADS)

    Kumar, Ranjan; Ghosh, Achyuta Krishna

    2017-04-01

    Mines systems such as ventilation system, strata support system, flame proof safety equipment, are exposed to dynamic operational conditions such as stress, humidity, dust, temperature, etc., and safety improvement of such systems can be done preferably during planning and design stage. However, the existing safety analysis methods do not handle the accident initiation and progression of mine systems explicitly. To bridge this gap, this paper presents an integrated Event Tree (ET) and Fault Tree (FT) approach for safety analysis and improvement of mine systems design. This approach includes ET and FT modeling coupled with redundancy allocation technique. In this method, a concept of top hazard probability is introduced for identifying system failure probability and redundancy is allocated to the system either at component or system level. A case study on mine methane explosion safety with two initiating events is performed. The results demonstrate that the presented method can reveal the accident scenarios and improve the safety of complex mine systems simultaneously.

  6. Comparison between BIDE, PrefixSpan, and TRuleGrowth for Mining of Indonesian Text

    NASA Astrophysics Data System (ADS)

    Sa'adillah Maylawati, Dian; Irfan, Mohamad; Budiawan Zulfikar, Wildan

    2017-01-01

    Mining proscess for Indonesian language still be an interesting research. Multiple of words representation was claimed can keep the meaning of text better than bag of words. In this paper, we compare several sequential pattern algortihm, among others BIDE (BIDirectional Extention), PrefixSpan, and TRuleGrowth. All of those algorithm produce frequent word sequence to keep the meaning of text. However, the experiment result, with 14.006 of Indonesian tweet from Twitter, shows that BIDE can produce more efficient frequent word sequence than PrefixSpan and TRuleGrowth without missing the meaning of text. Then, the average of time process of PrefixSpan is faster than BIDE and TRuleGrowth. In the other hand, PrefixSpan and TRuleGrowth is more efficient in using memory than BIDE.

  7. Online discourse on fibromyalgia: text-mining to identify clinical distinction and patient concerns.

    PubMed

    Park, Jungsik; Ryu, Young Uk

    2014-10-07

    The purpose of this study was to evaluate the possibility of using text-mining to identify clinical distinctions and patient concerns in online memoires posted by patients with fibromyalgia (FM). A total of 399 memoirs were collected from an FM group website. The unstructured data of memoirs associated with FM were collected through a crawling process and converted into structured data with a concordance, parts of speech tagging, and word frequency. We also conducted a lexical analysis and phrase pattern identification. After examining the data, a set of FM-related keywords were obtained and phrase net relationships were set through a web-based visualization tool. The clinical distinction of FM was verified. Pain is the biggest issue to the FM patients. The pains were affecting body parts including 'muscles,' 'leg,' 'neck,' 'back,' 'joints,' and 'shoulders' with accompanying symptoms such as 'spasms,' 'stiffness,' and 'aching,' and were described as 'sever,' 'chronic,' and 'constant.' This study also demonstrated that it was possible to understand the interests and concerns of FM patients through text-mining. FM patients wanted to escape from the pain and symptoms, so they were interested in medical treatment and help. Also, they seemed to have interest in their work and occupation, and hope to continue to live life through the relationships with the people around them. This research shows the potential for extracting keywords to confirm the clinical distinction of a certain disease, and text-mining can help objectively understand the concerns of patients by generalizing their large number of subjective illness experiences. However, it is believed that there are limitations to the processes and methods for organizing and classifying large amounts of text, so these limits have to be considered when analyzing the results. The development of research methodology to overcome these limitations is greatly needed.

  8. Study on perception and control layer of mine CPS with mixed logic dynamic approach

    NASA Astrophysics Data System (ADS)

    Li, Jingzhao; Ren, Ping; Yang, Dayu

    2017-01-01

    Mine inclined roadway transportation system of mine cyber physical system is a hybrid system consisting of a continuous-time system and a discrete-time system, which can be divided into inclined roadway signal subsystem, error-proofing channel subsystems, anti-car subsystems, and frequency control subsystems. First, to ensure stable operation, improve efficiency and production safety, this hybrid system model with n inputs and m outputs is constructed and analyzed in detail, then its steady schedule state to be solved. Second, on the basis of the formal modeling for real-time systems, we use hybrid toolbox for system security verification. Third, the practical application of mine cyber physical system shows that the method for real-time simulation of mine cyber physical system is effective.

  9. Unsupervised text mining for assessing and augmenting GWAS results.

    PubMed

    Ailem, Melissa; Role, François; Nadif, Mohamed; Demenais, Florence

    2016-04-01

    Text mining can assist in the analysis and interpretation of large-scale biomedical data, helping biologists to quickly and cheaply gain confirmation of hypothesized relationships between biological entities. We set this question in the context of genome-wide association studies (GWAS), an actively emerging field that contributed to identify many genes associated with multifactorial diseases. These studies allow to identify groups of genes associated with the same phenotype, but provide no information about the relationships between these genes. Therefore, our objective is to leverage unsupervised text mining techniques using text-based cosine similarity comparisons and clustering applied to candidate and random gene vectors, in order to augment the GWAS results. We propose a generic framework which we used to characterize the relationships between 10 genes reported associated with asthma by a previous GWAS. The results of this experiment showed that the similarities between these 10 genes were significantly stronger than would be expected by chance (one-sided p-value<0.01). The clustering of observed and randomly selected gene also allowed to generate hypotheses about potential functional relationships between these genes and thus contributed to the discovery of new candidate genes for asthma. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. U-Compare: share and compare text mining tools with UIMA.

    PubMed

    Kano, Yoshinobu; Baumgartner, William A; McCrohon, Luke; Ananiadou, Sophia; Cohen, K Bretonnel; Hunter, Lawrence; Tsujii, Jun'ichi

    2009-08-01

    Due to the increasing number of text mining resources (tools and corpora) available to biologists, interoperability issues between these resources are becoming significant obstacles to using them effectively. UIMA, the Unstructured Information Management Architecture, is an open framework designed to aid in the construction of more interoperable tools. U-Compare is built on top of the UIMA framework, and provides both a concrete framework for out-of-the-box text mining and a sophisticated evaluation platform allowing users to run specific tools on any target text, generating both detailed statistics and instance-based visualizations of outputs. U-Compare is a joint project, providing the world's largest, and still growing, collection of UIMA-compatible resources. These resources, originally developed by different groups for a variety of domains, include many famous tools and corpora. U-Compare can be launched straight from the web, without needing to be manually installed. All U-Compare components are provided ready-to-use and can be combined easily via a drag-and-drop interface without any programming. External UIMA components can also simply be mixed with U-Compare components, without distinguishing between locally and remotely deployed resources. http://u-compare.org/

  11. TREC Microblog 2012 Track: Real-Time Algorithm for Microblog Ranking Systems

    DTIC Science & Technology

    2012-11-01

    such as information about the tweet and the user profile. We collected those tweets by means of web crawler and extract several features from the raw...Mining Text Data. 2012. [5] D. Feltoni. Twittersa: un sistema per l’analisi del sentimento nelle reti sociali. Master’s thesis, Roma Tre University...Morris. Twittersearch: a comparison of microblog search and web search. Proceedings of the fourth ACM international conference on Web search, 2011

  12. Using Perilog to Explore "Decision Making at NASA"

    NASA Technical Reports Server (NTRS)

    McGreevy, Michael W.

    2005-01-01

    Perilog, a context intensive text mining system, is used as a discovery tool to explore topics and concerns in "Decision Making at NASA," chapter 6 of the Columbia Accident Investigation Board (CAIB) Report, Volume I. Two examples illustrate how Perilog can be used to discover highly significant safety-related information in the text without prior knowledge of the contents of the document. A third example illustrates how "if-then" statements found by Perilog can be used in logical analysis of decision making. In addition, in order to serve as a guide for future work, the technical details of preparing a PDF document for input to Perilog are included in an appendix.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zvi H. Meiksin

    Two industrial prototype units for through-the-earth wireless communication were constructed and tested. Preparation for a temporary installation in NIOSH's Lake Lynn mine for the through-the-earth and the in-mine system were completed. Progress was made in the programming of the in-mine system to provide data communication. Work has begun to implement a wireless interface between equipment controllers and our in-mine system.

  14. Analysis of radon reduction and ventilation systems in uranium mines in China.

    PubMed

    Hu, Peng-hua; Li, Xian-jie

    2012-09-01

    Mine ventilation is the most important way of reducing radon in uranium mines. At present, the radon and radon progeny levels in Chinese uranium mines where the cut and fill stoping method is used are 3-5 times higher than those in foreign uranium mines, as there is not much difference in the investments for ventilation protection between Chinese uranium mines and international advanced uranium mines with compaction methodology. In this paper, through the analysis of radon reduction and ventilation systems in Chinese uranium mines and the comparison of advantages and disadvantages between a variety of ventilation systems in terms of radon control, the authors try to illustrate the reasons for the higher radon and radon progeny levels in Chinese uranium mines and put forward some problems in three areas, namely the theory of radon control and ventilation systems, radon reduction ventilation measures and ventilation management. For these problems, this paper puts forward some proposals regarding some aspects, such as strengthening scrutiny, verifying and monitoring the practical situation, making clear ventilation plans, strictly following the mining sequence, promoting training of ventilation staff, enhancing ventilation system management, developing radon reduction ventilation technology, purchasing ventilation equipment as soon as possible in the future, and so on.

  15. VRLane: a desktop virtual safety management program for underground coal mine

    NASA Astrophysics Data System (ADS)

    Li, Mei; Chen, Jingzhu; Xiong, Wei; Zhang, Pengpeng; Wu, Daozheng

    2008-10-01

    VR technologies, which generate immersive, interactive, and three-dimensional (3D) environments, are seldom applied to coal mine safety work management. In this paper, a new method that combined the VR technologies with underground mine safety management system was explored. A desktop virtual safety management program for underground coal mine, called VRLane, was developed. The paper mainly concerned about the current research advance in VR, system design, key techniques and system application. Two important techniques were introduced in the paper. Firstly, an algorithm was designed and implemented, with which the 3D laneway models and equipment models can be built on the basis of the latest mine 2D drawings automatically, whereas common VR programs established 3D environment by using 3DS Max or the other 3D modeling software packages with which laneway models were built manually and laboriously. Secondly, VRLane realized system integration with underground industrial automation. VRLane not only described a realistic 3D laneway environment, but also described the status of the coal mining, with functions of displaying the run states and related parameters of equipment, per-alarming the abnormal mining events, and animating mine cars, mine workers, or long-wall shearers. The system, with advantages of cheap, dynamic, easy to maintenance, provided a useful tool for safety production management in coal mine.

  16. 29 CFR 570.33 - Prohibited occupations for minors 14 and 15 years of age.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... shall apply to all occupations other than the following: (a) Manufacturing, mining, or processing... revised text is set forth as follows: § 570.33 Occupations that are prohibited to minors 14 and 15 years... age: (a) Manufacturing, mining, or processing occupations, including occupations requiring the...

  17. 30 CFR 732.17 - State program amendments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR... the number or size of coal exploration or surface coal mining and reclamation operations in the State... amendment(s) is being reviewed by the Director and will include the following: (i) The text or a summary of...

  18. 30 CFR 745.11 - Application and agreement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....11 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR... approval under part 731 of this chapter, and has or may have within the State surface coal mining and... the full text of the terms of the proposed cooperative agreement as submitted or as subsequently...

  19. 29 CFR 570.118 - Sixteen-year minimum.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for employment in manufacturing or mining occupations. Furthermore, this age minimum is applicable to... convenience of the user, the revised text is set forth as follows: § 570.118 Sixteen-year minimum. The Act sets a 16-year-age minimum for employment in manufacturing or mining occupations, although under FLSA...

  20. 29 CFR 570.122 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... other than the following: (1) Manufacturing, (2) Mining, (3) An occupation found by the Secretary to be..., the revised text is set forth as follows: § 570.122 General. (a) Specific exemptions from the child... sixteen years in any occupation other than manufacturing, mining, or an occupation found by the Secretary...

  1. 29 CFR 570.119 - Fourteen-year minimum.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... occupations other than manufacturing and mining, the Secretary is authorized to issue regulations or orders... Subpart C of this part. 29-30 [Reserved] (a) Manufacturing, mining, or processing occupations; (b... of the user, the revised text is set forth as follows: § 570.119 Fourteen-year minimum. With respect...

  2. OSCAR4: a flexible architecture for chemical text-mining.

    PubMed

    Jessop, David M; Adams, Sam E; Willighagen, Egon L; Hawizy, Lezan; Murray-Rust, Peter

    2011-10-14

    The Open-Source Chemistry Analysis Routines (OSCAR) software, a toolkit for the recognition of named entities and data in chemistry publications, has been developed since 2002. Recent work has resulted in the separation of the core OSCAR functionality and its release as the OSCAR4 library. This library features a modular API (based on reduction of surface coupling) that permits client programmers to easily incorporate it into external applications. OSCAR4 offers a domain-independent architecture upon which chemistry specific text-mining tools can be built, and its development and usage are discussed.

  3. A system for classifying disease comorbidity status from medical discharge summaries using automated hotspot and negated concept detection.

    PubMed

    Ambert, Kyle H; Cohen, Aaron M

    2009-01-01

    OBJECTIVE Free-text clinical reports serve as an important part of patient care management and clinical documentation of patient disease and treatment status. Free-text notes are commonplace in medical practice, but remain an under-used source of information for clinical and epidemiological research, as well as personalized medicine. The authors explore the challenges associated with automatically extracting information from clinical reports using their submission to the Integrating Informatics with Biology and the Bedside (i2b2) 2008 Natural Language Processing Obesity Challenge Task. DESIGN A text mining system for classifying patient comorbidity status, based on the information contained in clinical reports. The approach of the authors incorporates a variety of automated techniques, including hot-spot filtering, negated concept identification, zero-vector filtering, weighting by inverse class-frequency, and error-correcting of output codes with linear support vector machines. MEASUREMENTS Performance was evaluated in terms of the macroaveraged F1 measure. RESULTS The automated system performed well against manual expert rule-based systems, finishing fifth in the Challenge's intuitive task, and 13(th) in the textual task. CONCLUSIONS The system demonstrates that effective comorbidity status classification by an automated system is possible.

  4. THROUGH-THE-EARTH (TTE) COMMUNICATIONS SYSTEM AND THE IN-MINE POWER LINE (IMPL) COMMUNICATIONS SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zvi H. Meiksin

    Work has progressed on both subsystems: the Through-the-Earth (TTE) Communications system and the In-Mine Power Line (IMPL) Communications system. The TTE system: The system was fabricated and repackaged as an industrial product enclosed in a commercial rugged, waterproof housing suitable for installation in mines. Features were added to the system to appeal to the preferences of different mine managers. Arrangements were made with NIOSH to install the system in the Lake Lynn underground mine for evaluation and demonstration to potential users. The IMPL system: Voice compression was successfully implemented and incorporated into the laboratory model. Compressed voice was transmitted throughmore » a power line, expanded at the receiving end, and received with high clarity.« less

  5. Comparative Analysis of Document level Text Classification Algorithms using R

    NASA Astrophysics Data System (ADS)

    Syamala, Maganti; Nalini, N. J., Dr; Maguluri, Lakshamanaphaneendra; Ragupathy, R., Dr.

    2017-08-01

    From the past few decades there has been tremendous volumes of data available in Internet either in structured or unstructured form. Also, there is an exponential growth of information on Internet, so there is an emergent need of text classifiers. Text mining is an interdisciplinary field which draws attention on information retrieval, data mining, machine learning, statistics and computational linguistics. And to handle this situation, a wide range of supervised learning algorithms has been introduced. Among all these K-Nearest Neighbor(KNN) is efficient and simplest classifier in text classification family. But KNN suffers from imbalanced class distribution and noisy term features. So, to cope up with this challenge we use document based centroid dimensionality reduction(CentroidDR) using R Programming. By combining these two text classification techniques, KNN and Centroid classifiers, we propose a scalable and effective flat classifier, called MCenKNN which works well substantially better than CenKNN.

  6. Mining Consumer Health Vocabulary from Community-Generated Text

    PubMed Central

    Vydiswaran, V.G. Vinod; Mei, Qiaozhu; Hanauer, David A.; Zheng, Kai

    2014-01-01

    Community-generated text corpora can be a valuable resource to extract consumer health vocabulary (CHV) and link them to professional terminologies and alternative variants. In this research, we propose a pattern-based text-mining approach to identify pairs of CHV and professional terms from Wikipedia, a large text corpus created and maintained by the community. A novel measure, leveraging the ratio of frequency of occurrence, was used to differentiate consumer terms from professional terms. We empirically evaluated the applicability of this approach using a large data sample consisting of MedLine abstracts and all posts from an online health forum, MedHelp. The results show that the proposed approach is able to identify synonymous pairs and label the terms as either consumer or professional term with high accuracy. We conclude that the proposed approach provides great potential to produce a high quality CHV to improve the performance of computational applications in processing consumer-generated health text. PMID:25954426

  7. Lunar vertical-shaft mining system

    NASA Technical Reports Server (NTRS)

    Introne, Steven D. (Editor); Krause, Roy; Williams, Erik; Baskette, Keith; Martich, Frederick; Weaver, Brad; Meve, Jeff; Alexander, Kyle; Dailey, Ron; White, Matt

    1994-01-01

    This report proposes a method that will allow lunar vertical-shaft mining. Lunar mining allows the exploitation of mineral resources imbedded within the surface. The proposed lunar vertical-shaft mining system is comprised of five subsystems: structure, materials handling, drilling, mining, and planning. The structure provides support for the exploration and mining equipment in the lunar environment. The materials handling subsystem moves mined material outside the structure and mining and drilling equipment inside the structure. The drilling process bores into the surface for the purpose of collecting soil samples, inserting transducer probes, or locating ore deposits. Once the ore deposits are discovered and pinpointed, mining operations bring the ore to the surface. The final subsystem is planning, which involves the construction of the mining structure.

  8. OntoMate: a text-mining tool aiding curation at the Rat Genome Database

    PubMed Central

    Liu, Weisong; Laulederkind, Stanley J. F.; Hayman, G. Thomas; Wang, Shur-Jen; Nigam, Rajni; Smith, Jennifer R.; De Pons, Jeff; Dwinell, Melinda R.; Shimoyama, Mary

    2015-01-01

    The Rat Genome Database (RGD) is the premier repository of rat genomic, genetic and physiologic data. Converting data from free text in the scientific literature to a structured format is one of the main tasks of all model organism databases. RGD spends considerable effort manually curating gene, Quantitative Trait Locus (QTL) and strain information. The rapidly growing volume of biomedical literature and the active research in the biological natural language processing (bioNLP) community have given RGD the impetus to adopt text-mining tools to improve curation efficiency. Recently, RGD has initiated a project to use OntoMate, an ontology-driven, concept-based literature search engine developed at RGD, as a replacement for the PubMed (http://www.ncbi.nlm.nih.gov/pubmed) search engine in the gene curation workflow. OntoMate tags abstracts with gene names, gene mutations, organism name and most of the 16 ontologies/vocabularies used at RGD. All terms/ entities tagged to an abstract are listed with the abstract in the search results. All listed terms are linked both to data entry boxes and a term browser in the curation tool. OntoMate also provides user-activated filters for species, date and other parameters relevant to the literature search. Using the system for literature search and import has streamlined the process compared to using PubMed. The system was built with a scalable and open architecture, including features specifically designed to accelerate the RGD gene curation process. With the use of bioNLP tools, RGD has added more automation to its curation workflow. Database URL: http://rgd.mcw.edu PMID:25619558

  9. Gimli: open source and high-performance biomedical name recognition

    PubMed Central

    2013-01-01

    Background Automatic recognition of biomedical names is an essential task in biomedical information extraction, presenting several complex and unsolved challenges. In recent years, various solutions have been implemented to tackle this problem. However, limitations regarding system characteristics, customization and usability still hinder their wider application outside text mining research. Results We present Gimli, an open-source, state-of-the-art tool for automatic recognition of biomedical names. Gimli includes an extended set of implemented and user-selectable features, such as orthographic, morphological, linguistic-based, conjunctions and dictionary-based. A simple and fast method to combine different trained models is also provided. Gimli achieves an F-measure of 87.17% on GENETAG and 72.23% on JNLPBA corpus, significantly outperforming existing open-source solutions. Conclusions Gimli is an off-the-shelf, ready to use tool for named-entity recognition, providing trained and optimized models for recognition of biomedical entities from scientific text. It can be used as a command line tool, offering full functionality, including training of new models and customization of the feature set and model parameters through a configuration file. Advanced users can integrate Gimli in their text mining workflows through the provided library, and extend or adapt its functionalities. Based on the underlying system characteristics and functionality, both for final users and developers, and on the reported performance results, we believe that Gimli is a state-of-the-art solution for biomedical NER, contributing to faster and better research in the field. Gimli is freely available at http://bioinformatics.ua.pt/gimli. PMID:23413997

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zvi H. Meiksin

    A temporary installation of Transtek's in-mine communications system in the Lake Lynn mine was used in the mine rescue training programs offered by NIOSH in April and May 2002. We developed and implemented a software program that permits point-to-point data transmission through our in-mine system. We also developed a wireless data transceiver for use in a PLC (programmed logic controller) to remotely control long-wall mining equipment.

  11. Protein interaction networks from literature mining

    NASA Astrophysics Data System (ADS)

    Ihara, Sigeo

    2005-03-01

    The ability to accurately predict and understand physiological changes in the biological network system in response to disease or drug therapeutics is of crucial importance in life science. The extensive amount of gene expression data generated from even a single microarray experiment often proves difficult to fully interpret and comprehend the biological significance. An increasing knowledge of protein interactions stored in the PubMed database, as well as the advancement of natural language processing, however, makes it possible to construct protein interaction networks from the gene expression information that are essential for understanding the biological meaning. From the in house literature mining system we have developed, the protein interaction network for humans was constructed. By analysis based on the graph-theoretical characterization of the total interaction network in literature, we found that the network is scale-free and semantic long-ranged interactions (i.e. inhibit, induce) between proteins dominate in the total interaction network, reducing the degree exponent. Interaction networks generated based on scientific text in which the interaction event is ambiguously described result in disconnected networks. In contrast interaction networks based on text in which the interaction events are clearly stated result in strongly connected networks. The results of protein-protein interaction networks obtained in real applications from microarray experiments are discussed: For example, comparisons of the gene expression data indicative of either a good or a poor prognosis for acute lymphoblastic leukemia with MLL rearrangements, using our system, showed newly discovered signaling cross-talk.

  12. Intelligent Mining Engineering Systems in the Structure of Industry 4.0

    NASA Astrophysics Data System (ADS)

    Rylnikova, Marina; Radchenko, Dmitriy; Klebanov, Dmitriy

    2017-11-01

    The solution of the problem of improving the human environment and working conditions at mines is based on the provision of the rationale of parameters and conditions for the implementation of an environmentally balanced cycle of comprehensive development of mineral deposits on the basis of the design of mining engineering systems characterized by the minimization of the human factor effect in danger zones of mining operations. In this area, robotized technologies are being developed, machinery and mechanisms with the elements of artificial intelligence, and mining and transport system automatic controls are being put into service throughout the world. In the upcoming decades, mining machines and mechanisms will be virtually industrial robots. The article presents the results of zoning of open-pit and underground mine production areas, as well as mining engineering system of combined development depending on the fact and periodicity of human presence in zones of mining processes. As a surface geotechnology case study, the software structure based on a modular concept is described. The performance philosophy of mining and transport equipment with the elements of artificial intelligence is shown when it is put into service in an open pit.

  13. Development and testing of a text-mining approach to analyse patients' comments on their experiences of colorectal cancer care.

    PubMed

    Wagland, Richard; Recio-Saucedo, Alejandra; Simon, Michael; Bracher, Michael; Hunt, Katherine; Foster, Claire; Downing, Amy; Glaser, Adam; Corner, Jessica

    2016-08-01

    Quality of cancer care may greatly impact on patients' health-related quality of life (HRQoL). Free-text responses to patient-reported outcome measures (PROMs) provide rich data but analysis is time and resource-intensive. This study developed and tested a learning-based text-mining approach to facilitate analysis of patients' experiences of care and develop an explanatory model illustrating impact on HRQoL. Respondents to a population-based survey of colorectal cancer survivors provided free-text comments regarding their experience of living with and beyond cancer. An existing coding framework was tested and adapted, which informed learning-based text mining of the data. Machine-learning algorithms were trained to identify comments relating to patients' specific experiences of service quality, which were verified by manual qualitative analysis. Comparisons between coded retrieved comments and a HRQoL measure (EQ5D) were explored. The survey response rate was 63.3% (21 802/34 467), of which 25.8% (n=5634) participants provided free-text comments. Of retrieved comments on experiences of care (n=1688), over half (n=1045, 62%) described positive care experiences. Most negative experiences concerned a lack of post-treatment care (n=191, 11% of retrieved comments) and insufficient information concerning self-management strategies (n=135, 8%) or treatment side effects (n=160, 9%). Associations existed between HRQoL scores and coded algorithm-retrieved comments. Analysis indicated that the mechanism by which service quality impacted on HRQoL was the extent to which services prevented or alleviated challenges associated with disease and treatment burdens. Learning-based text mining techniques were found useful and practical tools to identify specific free-text comments within a large dataset, facilitating resource-efficient qualitative analysis. This method should be considered for future PROM analysis to inform policy and practice. Study findings indicated that perceived care quality directly impacts on HRQoL. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Development, installation, and testing services for an automatic, point type thermal sensor, fire protection system on a mining dozer. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lease, W.D.

    1976-08-01

    Lease AFEX, Inc., modified its standard design of an automatic fire protection system used in the past on logging equipment, and long-term, in-mine tested system on a Fiat-Alli's HD-41B dozer at the Lemmons and Company coal mine, Boonville, Ind. The modification of the standard AFEX system involved improving the actuation device. The AFEX system is called a point-type thermal sensor, automatic fire protection system. The in-mine test took place in late 1975, and early 1976. The system was then tested by simulating a fire on the dozer. The system operated successfully after the 4 months of in-mine endurance testing. (Colormore » illustrations reproduced in black and white.)« less

  15. A Closed Network Queue Model of Underground Coal Mining Production, Failure, and Repair

    NASA Technical Reports Server (NTRS)

    Lohman, G. M.

    1978-01-01

    Underground coal mining system production, failures, and repair cycles were mathematically modeled as a closed network of two queues in series. The model was designed to better understand the technological constraints on availability of current underground mining systems, and to develop guidelines for estimating the availability of advanced mining systems and their associated needs for spares as well as production and maintenance personnel. It was found that: mine performance is theoretically limited by the maintainability ratio, significant gains in availability appear possible by means of small improvements in the time between failures the number of crews and sections should be properly balanced for any given maintainability ratio, and main haulage systems closest to the mine mouth require the most attention to reliability.

  16. Application of Quality Management Tools for Evaluating the Failure Frequency of Cutter-Loader and Plough Mining Systems

    NASA Astrophysics Data System (ADS)

    Biały, Witold

    2017-06-01

    Failure frequency in the mining process, with a focus on the mining machine, has been presented and illustrated by the example of two coal-mines. Two mining systems have been subjected to analysis: a cutter-loader and a plough system. In order to reduce costs generated by failures, maintenance teams should regularly make sure that the machines are used and operated in a rational and effective way. Such activities will allow downtimes to be reduced, and, in consequence, will increase the effectiveness of a mining plant. The evaluation of mining machines' failure frequency contained in this study has been based on one of the traditional quality management tools - the Pareto chart.

  17. Product Recommendation System Based on Personal Preference Model Using CAM

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoko; Yoshioka, Nobukazu; Orihara, Ryohei; Furukawa, Koichi

    Product recommendation system is realized by applying business rules acquired by data maining techniques. Business rules such as demographical patterns of purchase, are able to cover the groups of users that have a tendency to purchase products, but it is difficult to recommend products adaptive to various personal preferences only by utilizing them. In addition to that, it is very costly to gather the large volume of high quality survey data, which is necessary for good recommendation based on personal preference model. A method collecting kansei information automatically without questionnaire survey is required. The constructing personal preference model from less favor data is also necessary, since it is costly for the user to input favor data. In this paper, we propose product recommendation system based on kansei information extracted by text mining and user's preference model constructed by Category-guided Adaptive Modeling, CAM for short. CAM is a feature construction method that can generate new features constructing the space where same labeled examples are close and different labeled examples are far away from some labeled examples. It is possible to construct personal preference model by CAM despite less information of likes and dislikes categories. In the system, retrieval agent gathers the products' specification and user agent manages preference model, user's likes and dislikes. Kansei information of the products is gained by applying text mining technique to the reputation documents about the products on the web site. We carry out some experimental studies to make sure that prefrence model obtained by our method performs effectively.

  18. Extraction and Classification of Emotions for Business Research

    NASA Astrophysics Data System (ADS)

    Verma, Rajib

    The commercial study of emotions has not embraced Internet / social mining yet, even though it has important applications in management. This is surprising since the emotional content is freeform, wide spread, can give a better indication of feelings (for instance with taboo subjects), and is inexpensive compared to other business research methods. A brief framework for applying text mining to this new research domain is shown and classification issues are discussed in an effort to quickly get businessman and researchers to adopt the mining methodology.

  19. Clustering and Dimensionality Reduction to Discover Interesting Patterns in Binary Data

    NASA Astrophysics Data System (ADS)

    Palumbo, Francesco; D'Enza, Alfonso Iodice

    The attention towards binary data coding increased consistently in the last decade due to several reasons. The analysis of binary data characterizes several fields of application, such as market basket analysis, DNA microarray data, image mining, text mining and web-clickstream mining. The paper illustrates two different approaches exploiting a profitable combination of clustering and dimensionality reduction for the identification of non-trivial association structures in binary data. An application in the Association Rules framework supports the theory with the empirical evidence.

  20. A Cloud-based Approach to Medical NLP

    PubMed Central

    Chard, Kyle; Russell, Michael; Lussier, Yves A.; Mendonça, Eneida A; Silverstein, Jonathan C.

    2011-01-01

    Natural Language Processing (NLP) enables access to deep content embedded in medical texts. To date, NLP has not fulfilled its promise of enabling robust clinical encoding, clinical use, quality improvement, and research. We submit that this is in part due to poor accessibility, scalability, and flexibility of NLP systems. We describe here an approach and system which leverages cloud-based approaches such as virtual machines and Representational State Transfer (REST) to extract, process, synthesize, mine, compare/contrast, explore, and manage medical text data in a flexibly secure and scalable architecture. Available architectures in which our Smntx (pronounced as semantics) system can be deployed include: virtual machines in a HIPAA-protected hospital environment, brought up to run analysis over bulk data and destroyed in a local cloud; a commercial cloud for a large complex multi-institutional trial; and within other architectures such as caGrid, i2b2, or NHIN. PMID:22195072

  1. A cloud-based approach to medical NLP.

    PubMed

    Chard, Kyle; Russell, Michael; Lussier, Yves A; Mendonça, Eneida A; Silverstein, Jonathan C

    2011-01-01

    Natural Language Processing (NLP) enables access to deep content embedded in medical texts. To date, NLP has not fulfilled its promise of enabling robust clinical encoding, clinical use, quality improvement, and research. We submit that this is in part due to poor accessibility, scalability, and flexibility of NLP systems. We describe here an approach and system which leverages cloud-based approaches such as virtual machines and Representational State Transfer (REST) to extract, process, synthesize, mine, compare/contrast, explore, and manage medical text data in a flexibly secure and scalable architecture. Available architectures in which our Smntx (pronounced as semantics) system can be deployed include: virtual machines in a HIPAA-protected hospital environment, brought up to run analysis over bulk data and destroyed in a local cloud; a commercial cloud for a large complex multi-institutional trial; and within other architectures such as caGrid, i2b2, or NHIN.

  2. DeTEXT: A Database for Evaluating Text Extraction from Biomedical Literature Figures

    PubMed Central

    Yin, Xu-Cheng; Yang, Chun; Pei, Wei-Yi; Man, Haixia; Zhang, Jun; Learned-Miller, Erik; Yu, Hong

    2015-01-01

    Hundreds of millions of figures are available in biomedical literature, representing important biomedical experimental evidence. Since text is a rich source of information in figures, automatically extracting such text may assist in the task of mining figure information. A high-quality ground truth standard can greatly facilitate the development of an automated system. This article describes DeTEXT: A database for evaluating text extraction from biomedical literature figures. It is the first publicly available, human-annotated, high quality, and large-scale figure-text dataset with 288 full-text articles, 500 biomedical figures, and 9308 text regions. This article describes how figures were selected from open-access full-text biomedical articles and how annotation guidelines and annotation tools were developed. We also discuss the inter-annotator agreement and the reliability of the annotations. We summarize the statistics of the DeTEXT data and make available evaluation protocols for DeTEXT. Finally we lay out challenges we observed in the automated detection and recognition of figure text and discuss research directions in this area. DeTEXT is publicly available for downloading at http://prir.ustb.edu.cn/DeTEXT/. PMID:25951377

  3. A Study on Environmental Research Trends Using Text-Mining Method - Focus on Spatial information and ICT -

    NASA Astrophysics Data System (ADS)

    Lee, M. J.; Oh, K. Y.; Joung-ho, L.

    2016-12-01

    Recently there are many research about analysing the interaction between entities by text-mining analysis in various fields. In this paper, we aimed to quantitatively analyse research-trends in the area of environmental research relating either spatial information or ICT (Information and Communications Technology) by Text-mining analysis. To do this, we applied low-dimensional embedding method, clustering analysis, and association rule to find meaningful associative patterns of key words frequently appeared in the articles. As the authors suppose that KCI (Korea Citation Index) articles reflect academic demands, total 1228 KCI articles that have been published from 1996 to 2015 were reviewed and analysed by Text-mining method. First, we derived KCI articles from NDSL(National Discovery for Science Leaders) site. And then we pre-processed their key-words elected from abstract and then classified those in separable sectors. We investigated the appearance rates and association rule of key-words for articles in the two fields: spatial-information and ICT. In order to detect historic trends, analysis was conducted separately for the four periods: 1996-2000, 2001-2005, 2006-2010, 2011-2015. These analysis were conducted with the usage of R-software. As a result, we conformed that environmental research relating spatial information mainly focused upon such fields as `GIS(35%)', `Remote-Sensing(25%)', `environmental theme map(15.7%)'. Next, `ICT technology(23.6%)', `ICT service(5.4%)', `mobile(24%)', `big data(10%)', `AI(7%)' are primarily emerging from environmental research relating ICT. Thus, from the analysis results, this paper asserts that research trends and academic progresses are well-structured to review recent spatial information and ICT technology and the outcomes of the analysis can be an adequate guidelines to establish environment policies and strategies. KEY WORDS: Big data, Test-mining, Environmental research, Spatial-information, ICT Acknowledgements: The authors appreciate the support that this study has received from `Building application frame of environmental issues, to respond to the latest ICT trends'.

  4. Text mining-based in silico drug discovery in oral mucositis caused by high-dose cancer therapy.

    PubMed

    Kirk, Jon; Shah, Nirav; Noll, Braxton; Stevens, Craig B; Lawler, Marshall; Mougeot, Farah B; Mougeot, Jean-Luc C

    2018-08-01

    Oral mucositis (OM) is a major dose-limiting side effect of chemotherapy and radiation used in cancer treatment. Due to the complex nature of OM, currently available drug-based treatments are of limited efficacy. Our objectives were (i) to determine genes and molecular pathways associated with OM and wound healing using computational tools and publicly available data and (ii) to identify drugs formulated for topical use targeting the relevant OM molecular pathways. OM and wound healing-associated genes were determined by text mining, and the intersection of the two gene sets was selected for gene ontology analysis using the GeneCodis program. Protein interaction network analysis was performed using STRING-db. Enriched gene sets belonging to the identified pathways were queried against the Drug-Gene Interaction database to find drug candidates for topical use in OM. Our analysis identified 447 genes common to both the "OM" and "wound healing" text mining concepts. Gene enrichment analysis yielded 20 genes representing six pathways and targetable by a total of 32 drugs which could possibly be formulated for topical application. A manual search on ClinicalTrials.gov confirmed no relevant pathway/drug candidate had been overlooked. Twenty-five of the 32 drugs can directly affect the PTGS2 (COX-2) pathway, the pathway that has been targeted in previous clinical trials with limited success. Drug discovery using in silico text mining and pathway analysis tools can facilitate the identification of existing drugs that have the potential of topical administration to improve OM treatment.

  5. Text feature extraction based on deep learning: a review.

    PubMed

    Liang, Hong; Sun, Xiao; Sun, Yunlei; Gao, Yuan

    2017-01-01

    Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.

  6. Nano-enabled drug delivery systems for brain cancer and Alzheimer's disease: research patterns and opportunities.

    PubMed

    Ma, Jing; Porter, Alan L; Aminabhavi, Tejraj M; Zhu, Donghua

    2015-10-01

    "Tech mining" applies bibliometric and text analytic methods to scientific literature of a target field. In this study, we compare the evolution of nano-enabled drug delivery (NEDD) systems for two different applications - viz., brain cancer (BC) and Alzheimer's disease (AD) - using this approach. In this process, we derive research intelligence from papers indexed in MEDLINE. Review by domain specialists helps understand the macro-level disease problems and pathologies to identify commonalities and differences between BC and AD. Results provide a fresh perspective on the developmental pathways for NEDD approaches that have been used in the treatment of BC and AD. Results also point toward finding future solutions to drug delivery issues that are critical to medical practitioners and pharmaceutical scientists addressing the brain. Drug delivery to brain cells has been very challenging due to the presence of the blood-brain barrier (BBB). Suitable and effective nano-enabled drug delivery (NEDD) system is urgently needed. In this study, the authors utilized "tech-mining" tools to describe and compare various choices of delivery system available for the diagnosis, as well as treatment, of brain cancer and Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Evaluation of the Kloswall longwall mining system

    NASA Astrophysics Data System (ADS)

    Guay, P. J.

    1982-04-01

    A new longwal mining system specifically designed to extract a very deep web (48 inches or deeper) from a longwall panel was studied. Productivity and cost analysis comparing the new mining system with a conventional longwall operation taking a 30 inch wide web is presented. It is shown that the new system will increase annual production and return on investment in most cases. Conceptual drawings and specifications for a high capacity three drum shearer and a unique shield type of roof support specifically designed for very wide web operation are reported. The advantages and problems associated with wide web mining in general and as they relate specifically to the equipment selected for the new mining system are discussed.

  8. Teleoperated control system for underground room and pillar mining

    DOEpatents

    Mayercheck, William D.; Kwitowski, August J.; Brautigam, Albert L.; Mueller, Brian K.

    1992-01-01

    A teleoperated mining system is provided for remotely controlling the various machines involved with thin seam mining. A thin seam continuous miner located at a mining face includes a camera mounted thereon and a slave computer for controlling the miner and the camera. A plurality of sensors for relaying information about the miner and the face to the slave computer. A slave computer controlled ventilation sub-system which removes combustible material from the mining face. A haulage sub-system removes material mined by the continuous miner from the mining face to a collection site and is also controlled by the slave computer. A base station, which controls the supply of power and water to the continuous miner, haulage system, and ventilation systems, includes cable/hose handling module for winding or unwinding cables/hoses connected to the miner, an operator control module, and a hydraulic power and air compressor module for supplying air to the miner. An operator controlled host computer housed in the operator control module is connected to the slave computer via a two wire communications line.

  9. 30 CFR 730.11 - Inconsistent and more stringent State laws and regulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... regulations. 730.11 Section 730.11 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... Register setting forth the text or a summary of any State law or regulation initially determined by him to... stringent land use and environmental controls and regulations of coal exploration and surface coal mining...

  10. Using Syntactic Patterns to Enhance Text Analytics

    ERIC Educational Resources Information Center

    Meyer, Bradley B.

    2017-01-01

    Large scale product and service reviews proliferate and are commonly found across the web. The ability to harvest, digest and analyze a large corpus of reviews from online websites is still however a difficult problem. This problem is referred to as "opinion mining." Opinion mining is an important area of research as advances in the…

  11. 76 FR 53500 - Notice of the Nuclear Regulatory Commission Issuance of Materials License SUA-1598 and Record of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... (ADAMS), which provides text and image files of the NRC's public documents in the NRC Library at http... considered, but eliminated from detailed analysis, include conventional uranium mining and milling, conventional mining and heap leach processing, alternate lixiviants, and alternative wastewater disposal...

  12. Third symposium on underground mining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1977-01-01

    The Third Symposium on Underground Mining was held at the Kentucky Fair and Exposition Center, Louisville, KY, October 18--20, 1977. Thirty-one papers have been entered individually into EDB and ERA. The topics covered include mining system (longwall, shortwall, room and pillar, etc.), mining equipment (continuous miners, longwall equipment, supports, roof bolters, shaft excavation equipment, monitoring and control systems. Maintenance and rebuilding facilities, lighting systems, etc.), ventilation, noise abatement, economics, accidents (cost), dust control and on-line computer systems. (LTN)

  13. 40 CFR 98.320 - Definition of the source category.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... under development that have operational pre-mining degasification systems. An underground coal mine is a mine at which coal is produced by tunneling into the earth to the coalbed, which is then mined with... destroyed (including by flaring). (2) Each degasification system well or shaft, including degasification...

  14. 40 CFR 98.320 - Definition of the source category.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... under development that have operational pre-mining degasification systems. An underground coal mine is a mine at which coal is produced by tunneling into the earth to the coalbed, which is then mined with... (MSHA). (b) This source category includes the following: (1) Each ventilation system shaft or vent hole...

  15. 40 CFR 98.320 - Definition of the source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... under development that have operational pre-mining degasification systems. An underground coal mine is a mine at which coal is produced by tunneling into the earth to the coalbed, which is then mined with... destroyed (including by flaring). (2) Each degasification system well or shaft, including degasification...

  16. 40 CFR 98.320 - Definition of the source category.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... under development that have operational pre-mining degasification systems. An underground coal mine is a mine at which coal is produced by tunneling into the earth to the coalbed, which is then mined with... destroyed (including by flaring). (2) Each degasification system well or shaft, including degasification...

  17. Lunar site characterization and mining

    NASA Technical Reports Server (NTRS)

    Glass, Charles E.

    1992-01-01

    Lunar mining requirements do not appear to be excessively demanding in terms of volume of material processed. It seems clear, however, that the labor-intensive practices that characterize terrestrial mining will not suffice at the low-gravity, hard-vacuum, and inaccessible sites on the Moon. New research efforts are needed in three important areas: (1) to develop high-speed, high-resolution through-rock vision systems that will permit more detailed and efficient mine site investigation and characterization; (2) to investigate the impact of lunar conditions on our ability to convert conventional mining and exploration equipment to lunar prototypes; and (3) to develop telerobotic or fully robotic mining systems for operations on the Moon and other bodies in the inner solar system. Other aspects of lunar site characterization and mining are discussed.

  18. OrganismTagger: detection, normalization and grounding of organism entities in biomedical documents.

    PubMed

    Naderi, Nona; Kappler, Thomas; Baker, Christopher J O; Witte, René

    2011-10-01

    Semantic tagging of organism mentions in full-text articles is an important part of literature mining and semantic enrichment solutions. Tagged organism mentions also play a pivotal role in disambiguating other entities in a text, such as proteins. A high-precision organism tagging system must be able to detect the numerous forms of organism mentions, including common names as well as the traditional taxonomic groups: genus, species and strains. In addition, such a system must resolve abbreviations and acronyms, assign the scientific name and if possible link the detected mention to the NCBI Taxonomy database for further semantic queries and literature navigation. We present the OrganismTagger, a hybrid rule-based/machine learning system to extract organism mentions from the literature. It includes tools for automatically generating lexical and ontological resources from a copy of the NCBI Taxonomy database, thereby facilitating system updates by end users. Its novel ontology-based resources can also be reused in other semantic mining and linked data tasks. Each detected organism mention is normalized to a canonical name through the resolution of acronyms and abbreviations and subsequently grounded with an NCBI Taxonomy database ID. In particular, our system combines a novel machine-learning approach with rule-based and lexical methods for detecting strain mentions in documents. On our manually annotated OT corpus, the OrganismTagger achieves a precision of 95%, a recall of 94% and a grounding accuracy of 97.5%. On the manually annotated corpus of Linnaeus-100, the results show a precision of 99%, recall of 97% and grounding accuracy of 97.4%. The OrganismTagger, including supporting tools, resources, training data and manual annotations, as well as end user and developer documentation, is freely available under an open-source license at http://www.semanticsoftware.info/organism-tagger. witte@semanticsoftware.info.

  19. Automated Coal-Mining System

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Isenberg, L.; Lewis, E. V.

    1985-01-01

    Proposed system offers safety and large return on investment. System, operating by year 2000, employs machines and processes based on proven principles. According to concept, line of parallel machines, connected in groups of four to service modules, attacks face of coal seam. High-pressure water jets and central auger on each machine break face. Jaws scoop up coal chunks, and auger grinds them and forces fragments into slurry-transport system. Slurry pumped through pipeline to point of use. Concept for highly automated coal-mining system increases productivity, makes mining safer, and protects health of mine workers.

  20. Fuzzy Document Clustering Approach using WordNet Lexical Categories

    NASA Astrophysics Data System (ADS)

    Gharib, Tarek F.; Fouad, Mohammed M.; Aref, Mostafa M.

    Text mining refers generally to the process of extracting interesting information and knowledge from unstructured text. This area is growing rapidly mainly because of the strong need for analysing the huge and large amount of textual data that reside on internal file systems and the Web. Text document clustering provides an effective navigation mechanism to organize this large amount of data by grouping their documents into a small number of meaningful classes. In this paper we proposed a fuzzy text document clustering approach using WordNet lexical categories and Fuzzy c-Means algorithm. Some experiments are performed to compare efficiency of the proposed approach with the recently reported approaches. Experimental results show that Fuzzy clustering leads to great performance results. Fuzzy c-means algorithm overcomes other classical clustering algorithms like k-means and bisecting k-means in both clustering quality and running time efficiency.

  1. Enabling the Discovery of Recurring Anomalies in Aerospace System Problem Reports using High-Dimensional Clustering Techniques

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok, N.; Akella, Ram; Diev, Vesselin; Kumaresan, Sakthi Preethi; McIntosh, Dawn M.; Pontikakis, Emmanuel D.; Xu, Zuobing; Zhang, Yi

    2006-01-01

    This paper describes the results of a significant research and development effort conducted at NASA Ames Research Center to develop new text mining techniques to discover anomalies in free-text reports regarding system health and safety of two aerospace systems. We discuss two problems of significant importance in the aviation industry. The first problem is that of automatic anomaly discovery about an aerospace system through the analysis of tens of thousands of free-text problem reports that are written about the system. The second problem that we address is that of automatic discovery of recurring anomalies, i.e., anomalies that may be described m different ways by different authors, at varying times and under varying conditions, but that are truly about the same part of the system. The intent of recurring anomaly identification is to determine project or system weakness or high-risk issues. The discovery of recurring anomalies is a key goal in building safe, reliable, and cost-effective aerospace systems. We address the anomaly discovery problem on thousands of free-text reports using two strategies: (1) as an unsupervised learning problem where an algorithm takes free-text reports as input and automatically groups them into different bins, where each bin corresponds to a different unknown anomaly category; and (2) as a supervised learning problem where the algorithm classifies the free-text reports into one of a number of known anomaly categories. We then discuss the application of these methods to the problem of discovering recurring anomalies. In fact the special nature of recurring anomalies (very small cluster sizes) requires incorporating new methods and measures to enhance the original approach for anomaly detection. ?& pant 0-

  2. Louhi 2010: Special issue on Text and Data Mining of Health Documents

    PubMed Central

    2011-01-01

    The papers presented in this supplement focus and reflect on computer use in every-day clinical work in hospitals and clinics such as electronic health record systems, pre-processing for computer aided summaries, clinical coding, computer decision systems, as well as related ethical concerns and security. Much of this work concerns itself by necessity with incorporation and development of language processing tools and methods, and as such this supplement aims at providing an arena for reporting on development in a diversity of languages. In the supplement we can read about some of the challenges identified above. PMID:21992545

  3. OSCAR4: a flexible architecture for chemical text-mining

    PubMed Central

    2011-01-01

    The Open-Source Chemistry Analysis Routines (OSCAR) software, a toolkit for the recognition of named entities and data in chemistry publications, has been developed since 2002. Recent work has resulted in the separation of the core OSCAR functionality and its release as the OSCAR4 library. This library features a modular API (based on reduction of surface coupling) that permits client programmers to easily incorporate it into external applications. OSCAR4 offers a domain-independent architecture upon which chemistry specific text-mining tools can be built, and its development and usage are discussed. PMID:21999457

  4. Literature evidence in open targets - a target validation platform.

    PubMed

    Kafkas, Şenay; Dunham, Ian; McEntyre, Johanna

    2017-06-06

    We present the Europe PMC literature component of Open Targets - a target validation platform that integrates various evidence to aid drug target identification and validation. The component identifies target-disease associations in documents and ranks the documents based on their confidence from the Europe PMC literature database, by using rules utilising expert-provided heuristic information. The confidence score of a given document represents how valuable the document is in the scope of target validation for a given target-disease association by taking into account the credibility of the association based on the properties of the text. The component serves the platform regularly with the up-to-date data since December, 2015. Currently, there are a total number of 1168365 distinct target-disease associations text mined from >26 million PubMed abstracts and >1.2 million Open Access full text articles. Our comparative analyses on the current available evidence data in the platform revealed that 850179 of these associations are exclusively identified by literature mining. This component helps the platform's users by providing the most relevant literature hits for a given target and disease. The text mining evidence along with the other types of evidence can be explored visually through https://www.targetvalidation.org and all the evidence data is available for download in json format from https://www.targetvalidation.org/downloads/data .

  5. U-Compare: share and compare text mining tools with UIMA

    PubMed Central

    Kano, Yoshinobu; Baumgartner, William A.; McCrohon, Luke; Ananiadou, Sophia; Cohen, K. Bretonnel; Hunter, Lawrence; Tsujii, Jun'ichi

    2009-01-01

    Summary: Due to the increasing number of text mining resources (tools and corpora) available to biologists, interoperability issues between these resources are becoming significant obstacles to using them effectively. UIMA, the Unstructured Information Management Architecture, is an open framework designed to aid in the construction of more interoperable tools. U-Compare is built on top of the UIMA framework, and provides both a concrete framework for out-of-the-box text mining and a sophisticated evaluation platform allowing users to run specific tools on any target text, generating both detailed statistics and instance-based visualizations of outputs. U-Compare is a joint project, providing the world's largest, and still growing, collection of UIMA-compatible resources. These resources, originally developed by different groups for a variety of domains, include many famous tools and corpora. U-Compare can be launched straight from the web, without needing to be manually installed. All U-Compare components are provided ready-to-use and can be combined easily via a drag-and-drop interface without any programming. External UIMA components can also simply be mixed with U-Compare components, without distinguishing between locally and remotely deployed resources. Availability: http://u-compare.org/ Contact: kano@is.s.u-tokyo.ac.jp PMID:19414535

  6. On the unsupervised analysis of domain-specific Chinese texts

    PubMed Central

    Deng, Ke; Bol, Peter K.; Li, Kate J.; Liu, Jun S.

    2016-01-01

    With the growing availability of digitized text data both publicly and privately, there is a great need for effective computational tools to automatically extract information from texts. Because the Chinese language differs most significantly from alphabet-based languages in not specifying word boundaries, most existing Chinese text-mining methods require a prespecified vocabulary and/or a large relevant training corpus, which may not be available in some applications. We introduce an unsupervised method, top-down word discovery and segmentation (TopWORDS), for simultaneously discovering and segmenting words and phrases from large volumes of unstructured Chinese texts, and propose ways to order discovered words and conduct higher-level context analyses. TopWORDS is particularly useful for mining online and domain-specific texts where the underlying vocabulary is unknown or the texts of interest differ significantly from available training corpora. When outputs from TopWORDS are fed into context analysis tools such as topic modeling, word embedding, and association pattern finding, the results are as good as or better than that from using outputs of a supervised segmentation method. PMID:27185919

  7. Protective and control relays as coal-mine power-supply ACS subsystem

    NASA Astrophysics Data System (ADS)

    Kostin, V. N.; Minakova, T. E.

    2017-10-01

    The paper presents instantaneous selective short-circuit protection for the cabling of the underground part of a coal mine and central control algorithms as a Coal-Mine Power-Supply ACS Subsystem. In order to improve the reliability of electricity supply and reduce the mining equipment down-time, a dual channel relay protection and central control system is proposed as a subsystem of the coal-mine power-supply automated control system (PS ACS).

  8. Supporting the education evidence portal via text mining

    PubMed Central

    Ananiadou, Sophia; Thompson, Paul; Thomas, James; Mu, Tingting; Oliver, Sandy; Rickinson, Mark; Sasaki, Yutaka; Weissenbacher, Davy; McNaught, John

    2010-01-01

    The UK Education Evidence Portal (eep) provides a single, searchable, point of access to the contents of the websites of 33 organizations relating to education, with the aim of revolutionizing work practices for the education community. Use of the portal alleviates the need to spend time searching multiple resources to find relevant information. However, the combined content of the websites of interest is still very large (over 500 000 documents and growing). This means that searches using the portal can produce very large numbers of hits. As users often have limited time, they would benefit from enhanced methods of performing searches and viewing results, allowing them to drill down to information of interest more efficiently, without having to sift through potentially long lists of irrelevant documents. The Joint Information Systems Committee (JISC)-funded ASSIST project has produced a prototype web interface to demonstrate the applicability of integrating a number of text-mining tools and methods into the eep, to facilitate an enhanced searching, browsing and document-viewing experience. New features include automatic classification of documents according to a taxonomy, automatic clustering of search results according to similar document content, and automatic identification and highlighting of key terms within documents. PMID:20643679

  9. Towards cross-lingual alerting for bursty epidemic events.

    PubMed

    Collier, Nigel

    2011-10-06

    Online news reports are increasingly becoming a source for event-based early warning systems that detect natural disasters. Harnessing the massive volume of information available from multilingual newswire presents as many challanges as opportunities due to the patterns of reporting complex spatio-temporal events. In this article we study the problem of utilising correlated event reports across languages. We track the evolution of 16 disease outbreaks using 5 temporal aberration detection algorithms on text-mined events classified according to disease and outbreak country. Using ProMED reports as a silver standard, comparative analysis of news data for 13 languages over a 129 day trial period showed improved sensitivity, F1 and timeliness across most models using cross-lingual events. We report a detailed case study analysis for Cholera in Angola 2010 which highlights the challenges faced in correlating news events with the silver standard. The results show that automated health surveillance using multilingual text mining has the potential to turn low value news into high value alerts if informed choices are used to govern the selection of models and data sources. An implementation of the C2 alerting algorithm using multilingual news is available at the BioCaster portal http://born.nii.ac.jp/?page=globalroundup.

  10. Integrated Text Mining and Chemoinformatics Analysis Associates Diet to Health Benefit at Molecular Level

    PubMed Central

    Jensen, Kasper; Panagiotou, Gianni; Kouskoumvekaki, Irene

    2014-01-01

    Awareness that disease susceptibility is not only dependent on genetic make up, but can be affected by lifestyle decisions, has brought more attention to the role of diet. However, food is often treated as a black box, or the focus is limited to few, well-studied compounds, such as polyphenols, lipids and nutrients. In this work, we applied text mining and Naïve Bayes classification to assemble the knowledge space of food-phytochemical and food-disease associations, where we distinguish between disease prevention/amelioration and disease progression. We subsequently searched for frequently occurring phytochemical-disease pairs and we identified 20,654 phytochemicals from 16,102 plants associated to 1,592 human disease phenotypes. We selected colon cancer as a case study and analyzed our results in three directions; i) one stop legacy knowledge-shop for the effect of food on disease, ii) discovery of novel bioactive compounds with drug-like properties, and iii) discovery of novel health benefits from foods. This works represents a systematized approach to the association of food with health effect, and provides the phytochemical layer of information for nutritional systems biology research. PMID:24453957

  11. Use of an automatic earth resistivity system for detection of abandoned mine workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, W.R.; Burdick, R.

    1982-04-01

    Under the sponsorship of the US Bureau of Mines, a surface-operated automatic high resolution earth resistivity system and associated computer data processing techniques have been designed and constructed for use as a potential means of detecting abandoned coal mine workings. The hardware and software aspects of the new system are described together with applications of the method to the survey and mapping of abandoned mine workings.

  12. Parsing Citations in Biomedical Articles Using Conditional Random Fields

    PubMed Central

    Zhang, Qing; Cao, Yong-Gang; Yu, Hong

    2011-01-01

    Citations are used ubiquitously in biomedical full-text articles and play an important role for representing both the rhetorical structure and the semantic content of the articles. As a result, text mining systems will significantly benefit from a tool that automatically extracts the content of a citation. In this study, we applied the supervised machine-learning algorithms Conditional Random Fields (CRFs) to automatically parse a citation into its fields (e.g., Author, Title, Journal, and Year). With a subset of html format open-access PubMed Central articles, we report an overall 97.95% F1-score. The citation parser can be accessed at: http://www.cs.uwm.edu/~qing/projects/cithit/index.html. PMID:21419403

  13. 75 FR 55678 - Minerals Management: Adjustment of Cost Recovery Fees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-14

    ... text to the general cost recovery fee table so that mineral cost recovery fees can be found in one... Coal and Oil Shale) Program's lease renewal fee will increase from $480 to $485; (C) The Mining Law... $2,840; and (D) The Mining Law Administration Program's fee for mineral patent adjudication of 10 or...

  14. Economic baselines for current underground coal mining technology

    NASA Technical Reports Server (NTRS)

    Mabe, W. B.

    1979-01-01

    The cost of mining coal using a room pillar mining method with continuous miner and a longwall mining system was calculated. Costs were calculated for the years 1975 and 2000 time periods and are to be used as economic standards against which advanced mining concepts and systems will be compared. Some assumptions were changed and some internal model stored data was altered from the original calculations procedure chosen, to obtain a result that more closely represented what was considered to be a standard mine. Coal seam thicknesses were varied from one and one-half feet to eight feet to obtain the cost of mining coal over a wide range. Geologic conditions were selected that had a minimum impact on the mining productivity.

  15. Information Gain Based Dimensionality Selection for Classifying Text Documents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumidu Wijayasekara; Milos Manic; Miles McQueen

    2013-06-01

    Selecting the optimal dimensions for various knowledge extraction applications is an essential component of data mining. Dimensionality selection techniques are utilized in classification applications to increase the classification accuracy and reduce the computational complexity. In text classification, where the dimensionality of the dataset is extremely high, dimensionality selection is even more important. This paper presents a novel, genetic algorithm based methodology, for dimensionality selection in text mining applications that utilizes information gain. The presented methodology uses information gain of each dimension to change the mutation probability of chromosomes dynamically. Since the information gain is calculated a priori, the computational complexitymore » is not affected. The presented method was tested on a specific text classification problem and compared with conventional genetic algorithm based dimensionality selection. The results show an improvement of 3% in the true positives and 1.6% in the true negatives over conventional dimensionality selection methods.« less

  16. 30 CFR 57.22308 - Methane monitors (III mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane monitors (III mines). 57.22308 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22308 Methane monitors (III mines). (a) Methane monitors shall be installed on continuous mining machines and longwall mining systems. (b) The...

  17. 30 CFR 57.22308 - Methane monitors (III mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane monitors (III mines). 57.22308 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22308 Methane monitors (III mines). (a) Methane monitors shall be installed on continuous mining machines and longwall mining systems. (b) The...

  18. A baseline lunar mine

    NASA Technical Reports Server (NTRS)

    Gertsch, Richard E.

    1992-01-01

    A models lunar mining method is proposed that illustrates the problems to be expected in lunar mining and how they might be solved. While the method is quite feasible, it is, more importantly, a useful baseline system against which to test other, possible better, methods. Our study group proposed the slusher to stimulate discussion of how a lunar mining operation might be successfully accomplished. Critics of the slusher system were invited to propose better methods. The group noted that while nonterrestrial mining has been a vital part of past space manufacturing proposals, no one has proposed a lunar mining system in any real detail. The group considered it essential that the design of actual, workable, and specific lunar mining methods begin immediately. Based on an earlier proposal, the method is a three-drum slusher, also known as a cable-operated drag scraper. Its terrestrial application is quite limited, as it is relatively inefficient and inflexible. The method usually finds use in underwater mining from the shore and in moving small amounts of ore underground. When lunar mining scales up, the lunarized slusher will be replaced by more efficient, high-volume methods. Other aspects of lunar mining are discussed.

  19. Digital mining claim density map for federal lands in Wyoming: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Wyoming as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  20. Digital mining claim density map for federal lands in Colorado: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Colorado as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  1. Digital mining claim density map for federal lands in Washington: 1996

    USGS Publications Warehouse

    Hyndman, Paul C.; Campbell, Harry W.

    1999-01-01

    This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Washington as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.

  2. Design of intelligent proximity detection zones to prevent striking and pinning fatalities around continuous mining machines.

    PubMed

    Bissert, P T; Carr, J L; DuCarme, J P; Smith, A K

    2016-01-01

    The continuous mining machine is a key piece of equipment used in underground coal mining operations. Over the past several decades these machines have been involved in a number of mine worker fatalities. Proximity detection systems have been developed to avert hazards associated with operating continuous mining machines. Incorporating intelligent design into proximity detection systems allows workers greater freedom to position themselves to see visual cues or avoid other hazards such as haulage equipment or unsupported roof or ribs. However, intelligent systems must be as safe as conventional proximity detection systems. An evaluation of the 39 fatal accidents for which the Mine Safety and Health Administration has published fatality investigation reports was conducted to determine whether the accident may have been prevented by conventional or intelligent proximity. Multiple zone configurations for the intelligent systems were studied to determine how system performance might be affected by the zone configuration. Researchers found that 32 of the 39 fatalities, or 82 percent, may have been prevented by both conventional and intelligent proximity systems. These results indicate that, by properly configuring the zones of an intelligent proximity detection system, equivalent protection to a conventional system is possible.

  3. Unmanned Mine of the 21st Centuries

    NASA Astrophysics Data System (ADS)

    Semykina, Irina; Grigoryev, Aleksandr; Gargayev, Andrey; Zavyalov, Valeriy

    2017-11-01

    The article is analytical. It considers the construction principles of the automation system structure which realize the concept of «unmanned mine». All of these principles intend to deal with problems caused by a continuous complication of mining-and-geological conditions at coalmine such as the labor safety and health protection, the weak integration of different mining automation subsystems and the deficiency of optimal balance between a quantity of resource and energy consumed by mining machines and their throughput. The authors describe the main problems and neck stage of mining machines autonomation and automation subsystem. The article makes a general survey of the applied «unmanned technology» in the field of mining such as the remotely operated autonomous complexes, the underground positioning systems of mining machines using infrared radiation in mine workings etc. The concept of «unmanned mine» is considered with an example of the robotic road heading machine. In the final, the authors analyze the techniques and methods that could solve the task of underground mining without human labor.

  4. Deploying and sharing U-Compare workflows as web services.

    PubMed

    Kontonatsios, Georgios; Korkontzelos, Ioannis; Kolluru, Balakrishna; Thompson, Paul; Ananiadou, Sophia

    2013-02-18

    U-Compare is a text mining platform that allows the construction, evaluation and comparison of text mining workflows. U-Compare contains a large library of components that are tuned to the biomedical domain. Users can rapidly develop biomedical text mining workflows by mixing and matching U-Compare's components. Workflows developed using U-Compare can be exported and sent to other users who, in turn, can import and re-use them. However, the resulting workflows are standalone applications, i.e., software tools that run and are accessible only via a local machine, and that can only be run with the U-Compare platform. We address the above issues by extending U-Compare to convert standalone workflows into web services automatically, via a two-click process. The resulting web services can be registered on a central server and made publicly available. Alternatively, users can make web services available on their own servers, after installing the web application framework, which is part of the extension to U-Compare. We have performed a user-oriented evaluation of the proposed extension, by asking users who have tested the enhanced functionality of U-Compare to complete questionnaires that assess its functionality, reliability, usability, efficiency and maintainability. The results obtained reveal that the new functionality is well received by users. The web services produced by U-Compare are built on top of open standards, i.e., REST and SOAP protocols, and therefore, they are decoupled from the underlying platform. Exported workflows can be integrated with any application that supports these open standards. We demonstrate how the newly extended U-Compare enhances the cross-platform interoperability of workflows, by seamlessly importing a number of text mining workflow web services exported from U-Compare into Taverna, i.e., a generic scientific workflow construction platform.

  5. Deploying and sharing U-Compare workflows as web services

    PubMed Central

    2013-01-01

    Background U-Compare is a text mining platform that allows the construction, evaluation and comparison of text mining workflows. U-Compare contains a large library of components that are tuned to the biomedical domain. Users can rapidly develop biomedical text mining workflows by mixing and matching U-Compare’s components. Workflows developed using U-Compare can be exported and sent to other users who, in turn, can import and re-use them. However, the resulting workflows are standalone applications, i.e., software tools that run and are accessible only via a local machine, and that can only be run with the U-Compare platform. Results We address the above issues by extending U-Compare to convert standalone workflows into web services automatically, via a two-click process. The resulting web services can be registered on a central server and made publicly available. Alternatively, users can make web services available on their own servers, after installing the web application framework, which is part of the extension to U-Compare. We have performed a user-oriented evaluation of the proposed extension, by asking users who have tested the enhanced functionality of U-Compare to complete questionnaires that assess its functionality, reliability, usability, efficiency and maintainability. The results obtained reveal that the new functionality is well received by users. Conclusions The web services produced by U-Compare are built on top of open standards, i.e., REST and SOAP protocols, and therefore, they are decoupled from the underlying platform. Exported workflows can be integrated with any application that supports these open standards. We demonstrate how the newly extended U-Compare enhances the cross-platform interoperability of workflows, by seamlessly importing a number of text mining workflow web services exported from U-Compare into Taverna, i.e., a generic scientific workflow construction platform. PMID:23419017

  6. Biomedical text mining for research rigor and integrity: tasks, challenges, directions.

    PubMed

    Kilicoglu, Halil

    2017-06-13

    An estimated quarter of a trillion US dollars is invested in the biomedical research enterprise annually. There is growing alarm that a significant portion of this investment is wasted because of problems in reproducibility of research findings and in the rigor and integrity of research conduct and reporting. Recent years have seen a flurry of activities focusing on standardization and guideline development to enhance the reproducibility and rigor of biomedical research. Research activity is primarily communicated via textual artifacts, ranging from grant applications to journal publications. These artifacts can be both the source and the manifestation of practices leading to research waste. For example, an article may describe a poorly designed experiment, or the authors may reach conclusions not supported by the evidence presented. In this article, we pose the question of whether biomedical text mining techniques can assist the stakeholders in the biomedical research enterprise in doing their part toward enhancing research integrity and rigor. In particular, we identify four key areas in which text mining techniques can make a significant contribution: plagiarism/fraud detection, ensuring adherence to reporting guidelines, managing information overload and accurate citation/enhanced bibliometrics. We review the existing methods and tools for specific tasks, if they exist, or discuss relevant research that can provide guidance for future work. With the exponential increase in biomedical research output and the ability of text mining approaches to perform automatic tasks at large scale, we propose that such approaches can support tools that promote responsible research practices, providing significant benefits for the biomedical research enterprise. Published by Oxford University Press 2017. This work is written by a US Government employee and is in the public domain in the US.

  7. The systematic assessment of traditional evidence from the premodern Chinese medical literature: a text-mining approach.

    PubMed

    May, Brian H; Zhang, Anthony; Lu, Yubo; Lu, Chuanjian; Xue, Charlie C L

    2014-12-01

    This project aimed to develop an approach to evaluating information contained in the premodern Traditional Chinese Medicine (TCM) literature that was (1) comprehensive, systematic, and replicable and (2) able to produce quantifiable output that could be used to answer specific research questions in order to identify natural products for clinical and experimental research. The project involved two stages. In stage 1, 14 TCM collections and compendia were evaluated for suitability as sources for searching; 8 of these were compared in detail. The results were published in the Journal of Alternative and Complementary Medicine. Stage 2 developed a text-mining approach for two of these sources. The text-mining approach was developed for Zhong Hua Yi Dian; Encyclopaedia of Traditional Chinese Medicine, 4th edition) and Zhong Yi Fang Ji Da Ci Dian; Great Compendium of Chinese Medical Formulae). This approach developed procedures for search term selection; methods for screening, classifying, and scoring data; procedures for systematic searching and data extraction; data checking procedures; and approaches for analyzing results. Examples are provided for studies of memory impairment and diabetic nephropathy, and issues relating to data interpretation are discussed. This approach to the analysis of large collections of the premodern TCM literature uses widely available sources and provides a text-mining approach that is systematic, replicable, and adaptable to the requirements of the particular project. Researchers can use these methods to explore changes in the names and conceptions of a disease over time, to identify which therapeutic methods have been more or less frequently used in different eras for particular disorders, and to assist in the selection of natural products for research efforts.

  8. A construction scheme of web page comment information extraction system based on frequent subtree mining

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowen; Chen, Bingfeng

    2017-08-01

    Based on the frequent sub-tree mining algorithm, this paper proposes a construction scheme of web page comment information extraction system based on frequent subtree mining, referred to as FSM system. The entire system architecture and the various modules to do a brief introduction, and then the core of the system to do a detailed description, and finally give the system prototype.

  9. Text mining for neuroanatomy using WhiteText with an updated corpus and a new web application

    PubMed Central

    French, Leon; Liu, Po; Marais, Olivia; Koreman, Tianna; Tseng, Lucia; Lai, Artemis; Pavlidis, Paul

    2015-01-01

    We describe the WhiteText project, and its progress towards automatically extracting statements of neuroanatomical connectivity from text. We review progress to date on the three main steps of the project: recognition of brain region mentions, standardization of brain region mentions to neuroanatomical nomenclature, and connectivity statement extraction. We further describe a new version of our manually curated corpus that adds 2,111 connectivity statements from 1,828 additional abstracts. Cross-validation classification within the new corpus replicates results on our original corpus, recalling 67% of connectivity statements at 51% precision. The resulting merged corpus provides 5,208 connectivity statements that can be used to seed species-specific connectivity matrices and to better train automated techniques. Finally, we present a new web application that allows fast interactive browsing of the over 70,000 sentences indexed by the system, as a tool for accessing the data and assisting in further curation. Software and data are freely available at http://www.chibi.ubc.ca/WhiteText/. PMID:26052282

  10. Detection of coal mine workings using high-resolution earth resistivity techniques. Final technical report, September 1979-September 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, W.R.; Campbell, T.M.; Sturdivant, V.R.

    1980-09-26

    Shallow underground voids resulting from early coal mining and other resource recovery activities over the past several decades are now being recognized as a significant cause of ground subsidence problems in developing urban areas. Uncertain knowledge of abandoned coal mines also imposes potential hazards in coal excavation operations since water inundation or the release of methane gas is a principal hazard when mine excavation operations break into an abandoned mine. US Army requirements for an effective method for detecting and mapping subversive abandoned tunnels have resulted in a surface-operated automatic earth resistivity survey system with a digital computer data processingmore » system. Field tests aimed at demonstrating the system performance resulted in successful detection of tunnels having depth-to-diameter ratios up to 15 to 1. Under the sponsorship of the Bureau of Mines, a similar system was designed and constructed for use in the detection of coal mine workings. This report discusses the hardware and software aspects of the system and the application of the high-resolution earth resistivity method to the survey and mapping of abandoned coal mine workings. In the field tests reported, the targets of interest were both air- and water-filled workings.« less

  11. Earth Conductivity Estimation from Through-the-Earth Measurements of 94 Coal Mines Using Different Electromagnetic Models

    PubMed Central

    Yan, Lincan; Waynert, Joseph; Sunderman, Carl

    2015-01-01

    Through-the-Earth (TTE) communication systems require minimal infrastructure to operate. Hence, they are assumed to be more survivable and more conventional than other underground mine communications systems. This survivability is a major advantage for TTE systems. In 2006, Congress passed the Mine Improvement and New Emergency Response Act (MINER Act), which requires all underground coal mines to install wireless communications systems. The intent behind this mandate is for trapped miners to be able to communicate with surface personnel after a major accident-hence, the interest in TTE communications. To determine the likelihood of establishing a TTE communication link, it would be ideal to be able to predict the apparent conductivity of the overburden above underground mines. In this paper, all 94 mine TTE measurement data collected by Bureau of Mines in the 1970s and early 1980s, are analyzed for the first time to determine the apparent conductivity of the overburden based on three different models: a homogenous half-space model, a thin sheet model, and an attenuation factor or Q-factor model. A statistical formula is proposed to estimate the apparent earth conductivity for a specific mine based on the TTE modeling results given the mine depth and signal frequency. PMID:26213457

  12. Earth Conductivity Estimation from Through-the-Earth Measurements of 94 Coal Mines Using Different Electromagnetic Models.

    PubMed

    Yan, Lincan; Waynert, Joseph; Sunderman, Carl

    2014-10-01

    Through-the-Earth (TTE) communication systems require minimal infrastructure to operate. Hence, they are assumed to be more survivable and more conventional than other underground mine communications systems. This survivability is a major advantage for TTE systems. In 2006, Congress passed the Mine Improvement and New Emergency Response Act (MINER Act), which requires all underground coal mines to install wireless communications systems. The intent behind this mandate is for trapped miners to be able to communicate with surface personnel after a major accident-hence, the interest in TTE communications. To determine the likelihood of establishing a TTE communication link, it would be ideal to be able to predict the apparent conductivity of the overburden above underground mines. In this paper, all 94 mine TTE measurement data collected by Bureau of Mines in the 1970s and early 1980s, are analyzed for the first time to determine the apparent conductivity of the overburden based on three different models: a homogenous half-space model, a thin sheet model, and an attenuation factor or Q-factor model. A statistical formula is proposed to estimate the apparent earth conductivity for a specific mine based on the TTE modeling results given the mine depth and signal frequency.

  13. Borehole hydraulic coal mining system analysis

    NASA Technical Reports Server (NTRS)

    Floyd, E. L.

    1977-01-01

    The borehole hydraulic coal mining system accesses the coal seam through a hole drilled in the overburden. The mining device is lowered through the hole into the coal seam where it fragments the coal with high pressure water jets which pump it to the surface as a slurry by a jet pump located in the center of the mining device. The coal slurry is then injected into a pipeline for transport to the preparation plant. The system was analyzed for performance in the thick, shallow coal seams of Wyoming, and the steeply pitching seams of western Colorado. Considered were all the aspects of the mining operation for a 20-year mine life, producing 2,640,000 tons/yr. Effects on the environment and the cost of restoration, as well as concern for health and safety, were studied. Assumptions for design of the mine, the analytical method, and results of the analysis are detailed.

  14. Mineral resources management based on GIS and RS: a case study of the Laozhaiwan Gold Mine

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Hua, Xianghong; Wang, Xinzhou; Ma, Liguang; Yuan, Yanbin

    2005-10-01

    With the development of digital information technology in mining industry, the concept of DM (Digital Mining) and MGIS (Mining Geographical Information System) are becoming the research focus but not perfect. How to effectively manage the dataset of geological, surveying and mineral products grade is the key point that concerned the sustainable development and standardized management in mining industry. Based on the existing combined GIS and remote sensing technology, we propose a model named DMMIS (Digital Mining Management Information System), which is composed of the database layer, the ActiveX layer and the user interface layer. The system is used in Laozhaiwan Gold Mine, Yunnan Province of China, which is shown to demonstrate the feasibility of the research and development achievement stated in this paper. Finally, some conclusions and constructive advices for future research work are given.

  15. Web Mining for Web Image Retrieval.

    ERIC Educational Resources Information Center

    Chen, Zheng; Wenyin, Liu; Zhang, Feng; Li, Mingjing; Zhang, Hongjiang

    2001-01-01

    Presents a prototype system for image retrieval from the Internet using Web mining. Discusses the architecture of the Web image retrieval prototype; document space modeling; user log mining; and image retrieval experiments to evaluate the proposed system. (AEF)

  16. Enhancements for a Dynamic Data Warehousing and Mining System for Large-Scale HSCB Data

    DTIC Science & Technology

    2016-04-21

    Intelligent Automation Incorporated Enhancements for a Dynamic Data Warehousing and Mining ...Page | 2 Intelligent Automation Incorporated Progress Report No. 1 Enhancements for a Dynamic Data Warehousing and Mining System Large-Scale

  17. Microcomputer keeps watch at Emerald Mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-04-01

    This paper reviews the computerized mine monitoring system set up at the Emerald Mine, SW Pennsylvania, USA. This coal mine has pioneered the automation of many production and safety features and this article covers their work in fire detection and conveyor belt monitoring. A central computer control room can safely watch over the whole underground mining operation using one 25 inch colour monitor. These new data-acquisition systems will lead the way, in the future, to safer move efficient coal mining. Multi-point monitoring of carbon monoxide, heat anomalies, toxic gases and the procedures in conveyor belt operation from start-up to closedown.

  18. Study on Evaluation Index System of Green mine construction

    NASA Astrophysics Data System (ADS)

    Li, xin; Yang, JunJie; Yan, Hongcai; Cao, Hongjun

    2017-11-01

    Green mine is a new and science comprehensive construction mode of mine, which runs the concept of green development through the whole process of mineral resources development and utilization, promotes the transformation and upgrading of mineral enterprises and achieves the healthy and sustainable development of mining industry. This paper is based on “the basic conditions of national green mine”, combined with the current situation of green mine construction, constructing green mine construction evaluation index system which is divided into five areas, including management, comprehensive utilization of mineral resources. technological innovation. ecological environment and cultural construction.

  19. New Paradigms for Patient-Centered Outcomes Research in Electronic Medical Records: An Example of Detecting Urinary Incontinence Following Prostatectomy.

    PubMed

    Hernandez-Boussard, Tina; Tamang, Suzanne; Blayney, Douglas; Brooks, Jim; Shah, Nigam

    2016-01-01

    National initiatives to develop quality metrics emphasize the need to include patient-centered outcomes. Patient-centered outcomes are complex, require documentation of patient communications, and have not been routinely collected by healthcare providers. The widespread implementation of electronic medical records (EHR) offers opportunities to assess patient-centered outcomes within the routine healthcare delivery system. The objective of this study was to test the feasibility and accuracy of identifying patient centered outcomes within the EHR. Data from patients with localized prostate cancer undergoing prostatectomy were used to develop and test algorithms to accurately identify patient-centered outcomes in post-operative EHRs - we used urinary incontinence as the use case. Standard data mining techniques were used to extract and annotate free text and structured data to assess urinary incontinence recorded within the EHRs. A total 5,349 prostate cancer patients were identified in our EHR-system between 1998-2013. Among these EHRs, 30.3% had a text mention of urinary incontinence within 90 days post-operative compared to less than 1.0% with a structured data field for urinary incontinence (i.e. ICD-9 code). Our workflow had good precision and recall for urinary incontinence (positive predictive value: 0.73 and sensitivity: 0.84). Our data indicate that important patient-centered outcomes, such as urinary incontinence, are being captured in EHRs as free text and highlight the long-standing importance of accurate clinician documentation. Standard data mining algorithms can accurately and efficiently identify these outcomes in existing EHRs; the complete assessment of these outcomes is essential to move practice into the patient-centered realm of healthcare.

  20. Incorporating linguistic knowledge for learning distributed word representations.

    PubMed

    Wang, Yan; Liu, Zhiyuan; Sun, Maosong

    2015-01-01

    Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining.

  1. Incorporating Linguistic Knowledge for Learning Distributed Word Representations

    PubMed Central

    Wang, Yan; Liu, Zhiyuan; Sun, Maosong

    2015-01-01

    Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining. PMID:25874581

  2. Text Mining of UU-ITE Implementation in Indonesia

    NASA Astrophysics Data System (ADS)

    Hakim, Lukmanul; Kusumasari, Tien F.; Lubis, Muharman

    2018-04-01

    At present, social media and networks act as one of the main platforms for sharing information, idea, thought and opinions. Many people share their knowledge and express their views on the specific topics or current hot issues that interest them. The social media texts have rich information about the complaints, comments, recommendation and suggestion as the automatic reaction or respond to government initiative or policy in order to overcome certain issues.This study examines the sentiment from netizensas part of citizen who has vocal sound about the implementation of UU ITE as the first cyberlaw in Indonesia as a means to identify the current tendency of citizen perception. To perform text mining techniques, this study used Twitter Rest API while R programming was utilized for the purpose of classification analysis based on hierarchical cluster.

  3. Interactive text mining with Pipeline Pilot: a bibliographic web-based tool for PubMed.

    PubMed

    Vellay, S G P; Latimer, N E Miller; Paillard, G

    2009-06-01

    Text mining has become an integral part of all research in the medical field. Many text analysis software platforms support particular use cases and only those. We show an example of a bibliographic tool that can be used to support virtually any use case in an agile manner. Here we focus on a Pipeline Pilot web-based application that interactively analyzes and reports on PubMed search results. This will be of interest to any scientist to help identify the most relevant papers in a topical area more quickly and to evaluate the results of query refinement. Links with Entrez databases help both the biologist and the chemist alike. We illustrate this application with Leishmaniasis, a neglected tropical disease, as a case study.

  4. Spectral signature verification using statistical analysis and text mining

    NASA Astrophysics Data System (ADS)

    DeCoster, Mallory E.; Firpi, Alexe H.; Jacobs, Samantha K.; Cone, Shelli R.; Tzeng, Nigel H.; Rodriguez, Benjamin M.

    2016-05-01

    In the spectral science community, numerous spectral signatures are stored in databases representative of many sample materials collected from a variety of spectrometers and spectroscopists. Due to the variety and variability of the spectra that comprise many spectral databases, it is necessary to establish a metric for validating the quality of spectral signatures. This has been an area of great discussion and debate in the spectral science community. This paper discusses a method that independently validates two different aspects of a spectral signature to arrive at a final qualitative assessment; the textual meta-data and numerical spectral data. Results associated with the spectral data stored in the Signature Database1 (SigDB) are proposed. The numerical data comprising a sample material's spectrum is validated based on statistical properties derived from an ideal population set. The quality of the test spectrum is ranked based on a spectral angle mapper (SAM) comparison to the mean spectrum derived from the population set. Additionally, the contextual data of a test spectrum is qualitatively analyzed using lexical analysis text mining. This technique analyzes to understand the syntax of the meta-data to provide local learning patterns and trends within the spectral data, indicative of the test spectrum's quality. Text mining applications have successfully been implemented for security2 (text encryption/decryption), biomedical3 , and marketing4 applications. The text mining lexical analysis algorithm is trained on the meta-data patterns of a subset of high and low quality spectra, in order to have a model to apply to the entire SigDB data set. The statistical and textual methods combine to assess the quality of a test spectrum existing in a database without the need of an expert user. This method has been compared to other validation methods accepted by the spectral science community, and has provided promising results when a baseline spectral signature is present for comparison. The spectral validation method proposed is described from a practical application and analytical perspective.

  5. Reproducibility in Natural Language Processing: A Case Study of Two R Libraries for Mining PubMed/MEDLINE.

    PubMed

    Cohen, K Bretonnel; Xia, Jingbo; Roeder, Christophe; Hunter, Lawrence E

    2016-05-01

    There is currently a crisis in science related to highly publicized failures to reproduce large numbers of published studies. The current work proposes, by way of case studies, a methodology for moving the study of reproducibility in computational work to a full stage beyond that of earlier work. Specifically, it presents a case study in attempting to reproduce the reports of two R libraries for doing text mining of the PubMed/MEDLINE repository of scientific publications. The main findings are that a rational paradigm for reproduction of natural language processing papers can be established; the advertised functionality was difficult, but not impossible, to reproduce; and reproducibility studies can produce additional insights into the functioning of the published system. Additionally, the work on reproducibility lead to the production of novel user-centered documentation that has been accessed 260 times since its publication-an average of once a day per library.

  6. [The method and application to construct experience recommendation platform of acupuncture ancient books based on data mining technology].

    PubMed

    Chen, Chuyun; Hong, Jiaming; Zhou, Weilin; Lin, Guohua; Wang, Zhengfei; Zhang, Qufei; Lu, Cuina; Lu, Lihong

    2017-07-12

    To construct a knowledge platform of acupuncture ancient books based on data mining technology, and to provide retrieval service for users. The Oracle 10 g database was applied and JAVA was selected as development language; based on the standard library and ancient books database established by manual entry, a variety of data mining technologies, including word segmentation, speech tagging, dependency analysis, rule extraction, similarity calculation, ambiguity analysis, supervised classification technology were applied to achieve text automatic extraction of ancient books; in the last, through association mining and decision analysis, the comprehensive and intelligent analysis of disease and symptom, meridians, acupoints, rules of acupuncture and moxibustion in acupuncture ancient books were realized, and retrieval service was provided for users through structure of browser/server (B/S). The platform realized full-text retrieval, word frequency analysis and association analysis; when diseases or acupoints were searched, the frequencies of meridian, acupoints (diseases) and techniques were presented from high to low, meanwhile the support degree and confidence coefficient between disease and acupoints (special acupoint), acupoints and acupoints in prescription, disease or acupoints and technique were presented. The experience platform of acupuncture ancient books based on data mining technology could be used as a reference for selection of disease, meridian and acupoint in clinical treatment and education of acupuncture and moxibustion.

  7. Mine fire experiments and simulation with MFIRE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laage, L.W.; Yang, Hang

    1995-12-31

    A major concern of mine fires is the heat generated ventilation disturbances which can move products of combustion (POC) through unexpected passageways. Fire emergency planning requires simulation of the interaction of the fire and ventilation system to predict the state of the ventilation system and the subsequent distribution of temperatures and POC. Several computer models were developed by the U.S. Bureau of Mines (USBM) to perform this simulation. The most recent, MFIRE, simulates a mine`s ventilation system and its response to altered ventilation parameters such as the development of new mine workings or changes in ventilation control structures, external influencemore » such as varying outside temperatures, and internal influences such as fires. Extensive output allows quantitative analysis of the effects of the proposed alteration to die ventilation system. This paper describes recent USBM research to validate MFIRE`s calculation of temperature distribution in an airway due to a mine fire, as temperatures are the most significant source of ventilation disturbances. Fire tests were conducted at the Waldo Mine near Magdalena, NM. From these experiments, temperature profiles were developed as functions of time and distance from the fire and compared with simulations from MFIRE.« less

  8. The enviornmental assessment of a contemporary coal mining system

    NASA Technical Reports Server (NTRS)

    Dutzi, E. J.; Sullivan, P. J.; Hutchinson, C. F.; Stevens, C. M.

    1980-01-01

    A contemporary underground coal mine in eastern Kentucky was assessed in order to determine potential off-site and on-site environmental impacts associated with the mining system in the given environmental setting. A 4 section, continuous room and pillor mine plan was developed for an appropriate site in eastern Kentucky. Potential environmental impacts were identified, and mitigation costs determined. The major potential environmental impacts were determined to be: acid water drainage from the mine and refuse site, uneven subsidence of the surface as a result of mining activity, and alteration of ground water aquifers in the subsidence zone. In the specific case examined, the costs of environmental impact mitigation to levels prescribed by regulations would not exceed $1/ton of coal mined, and post mining land values would not be affected.

  9. 30 CFR 57.22306 - Methane monitors (I-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane monitors (I-A mines). 57.22306 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22306 Methane monitors (I-A mines). (a) Methane monitors shall be installed on continuous mining machines, longwall mining systems, and on loading...

  10. 30 CFR 57.22307 - Methane monitors (II-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane monitors (II-A mines). 57.22307 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22307 Methane monitors (II-A mines). (a) Methane monitors shall be installed on continuous mining machines, longwall mining systems, bench and face...

  11. 36 CFR 6.7 - Mining wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Mining wastes. 6.7 Section 6... DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.7 Mining wastes. (a) Solid waste from mining includes but is not limited to mining overburden, mining byproducts, solid waste from the extraction...

  12. 30 CFR 57.22306 - Methane monitors (I-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane monitors (I-A mines). 57.22306 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22306 Methane monitors (I-A mines). (a) Methane monitors shall be installed on continuous mining machines, longwall mining systems, and on loading...

  13. 30 CFR 57.22307 - Methane monitors (II-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane monitors (II-A mines). 57.22307 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22307 Methane monitors (II-A mines). (a) Methane monitors shall be installed on continuous mining machines, longwall mining systems, bench and face...

  14. Effects of surface coal mining and reclamation on the geohydrology of six small watersheds in west-central Indiana

    USGS Publications Warehouse

    Martin, Jeffrey D.; Duwelius, Richard F.; Crawford, Charles G.

    1987-01-01

    The watersheds studied include mined and reclaimed; mined and unreclaimed; and unmined, agricultural land uses, and are each < 3 sq mi in area. Surface water, groundwater, and meteorologic data for the 1981 and 1982 water years were used to describe and compare hydrologic systems of the six watersheds and to identify hydrologic effects of mining and reclamation. Peak discharges were greater at the agricultural watersheds than at the unreclaimed watersheds, primarily because of large final-cut lakes in the unreclaimed watersheds. Annual runoff was greatest at the unreclaimed watersheds, intermediate at the agricultural watersheds, and least at the reclaimed watersheds. Hydrologic effects of mining were identified by comparing the hydrologic systems at mined and unreclaimed watersheds with those at unmined, agricultural watersheds. Comparisons of the hydrologic systems of these watersheds indicate that surface coal mining without reclamation has the potential to increase annual runoff, base flow, and groundwater recharge to the bedrock; reduce peak flow rates and variation in flow; lower the water table in upland areas; change the relation between surface water and groundwater divides; and create numerous, local flow systems in the shallow groundwater. Hydrologic effects of reclamation were identified by comparing the hydrologic systems at mined and reclaimed watersheds with those at mined and unreclaimed watersheds. Reclamation has the potential to decrease annual runoff, base flow, and recharge to the bedrock; increase peak flow rates, variation in flow, and response to thunderstorms; reestablish the premining relation between surface and groundwater divides; and create fewer local flow systems in the shallow groundwater. (Lantz-PTT)

  15. Public reactions to e-cigarette regulations on Twitter: a text mining analysis.

    PubMed

    Lazard, Allison J; Wilcox, Gary B; Tuttle, Hannah M; Glowacki, Elizabeth M; Pikowski, Jessica

    2017-12-01

    In May 2016, the Food and Drug Administration (FDA) issued a final rule that deemed e-cigarettes to be within their regulatory authority as a tobacco product. News and opinions about the regulation were shared on social media platforms, such as Twitter, which can play an important role in shaping the public's attitudes. We analysed information shared on Twitter for insights into initial public reactions. A text mining approach was used to uncover important topics among reactions to the e-cigarette regulations on Twitter. SAS Text Miner V.12.1 software was used for descriptive text mining to uncover the primary topics from tweets collected from May 1 to May 17 2016 using NUVI software to gather the data. A total of nine topics were generated. These topics reveal initial reactions to whether the FDA's e-cigarette regulations will benefit or harm public health, how the regulations will impact the emerging e-cigarette market and efforts to share the news. The topics were dominated by negative or mixed reactions. In the days following the FDA's announcement of the new deeming regulations, the public reaction on Twitter was largely negative. Public health advocates should consider using social media outlets to better communicate the policy's intentions, reach and potential impact for public good to create a more balanced conversation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Implicit prosody mining based on the human eye image capture technology

    NASA Astrophysics Data System (ADS)

    Gao, Pei-pei; Liu, Feng

    2013-08-01

    The technology of eye tracker has become the main methods of analyzing the recognition issues in human-computer interaction. Human eye image capture is the key problem of the eye tracking. Based on further research, a new human-computer interaction method introduced to enrich the form of speech synthetic. We propose a method of Implicit Prosody mining based on the human eye image capture technology to extract the parameters from the image of human eyes when reading, control and drive prosody generation in speech synthesis, and establish prosodic model with high simulation accuracy. Duration model is key issues for prosody generation. For the duration model, this paper put forward a new idea for obtaining gaze duration of eyes when reading based on the eye image capture technology, and synchronous controlling this duration and pronunciation duration in speech synthesis. The movement of human eyes during reading is a comprehensive multi-factor interactive process, such as gaze, twitching and backsight. Therefore, how to extract the appropriate information from the image of human eyes need to be considered and the gaze regularity of eyes need to be obtained as references of modeling. Based on the analysis of current three kinds of eye movement control model and the characteristics of the Implicit Prosody reading, relative independence between speech processing system of text and eye movement control system was discussed. It was proved that under the same text familiarity condition, gaze duration of eyes when reading and internal voice pronunciation duration are synchronous. The eye gaze duration model based on the Chinese language level prosodic structure was presented to change previous methods of machine learning and probability forecasting, obtain readers' real internal reading rhythm and to synthesize voice with personalized rhythm. This research will enrich human-computer interactive form, and will be practical significance and application prospect in terms of disabled assisted speech interaction. Experiments show that Implicit Prosody mining based on the human eye image capture technology makes the synthesized speech has more flexible expressions.

  17. Analysis of Mining Terrain Deformation Characteristics with Deformation Information System

    NASA Astrophysics Data System (ADS)

    Blachowski, Jan; Milczarek, Wojciech; Grzempowski, Piotr

    2014-05-01

    Mapping and prediction of mining related deformations of the earth surface is an important measure for minimising threat to surface infrastructure, human population, the environment and safety of the mining operation itself arising from underground extraction of useful minerals. The number of methods and techniques used for monitoring and analysis of mining terrain deformations is wide and increasing with the development of geographical information technologies. These include for example: terrestrial geodetic measurements, global positioning systems, remote sensing, spatial interpolation, finite element method modelling, GIS based modelling, geological modelling, empirical modelling using the Knothe theory, artificial neural networks, fuzzy logic calculations and other. The aim of this paper is to introduce the concept of an integrated Deformation Information System (DIS) developed in geographic information systems environment for analysis and modelling of various spatial data related to mining activity and demonstrate its applications for mapping and visualising, as well as identifying possible mining terrain deformation areas with various spatial modelling methods. The DIS concept is based on connected modules that include: the spatial database - the core of the system, the spatial data collection module formed by: terrestrial, satellite and remote sensing measurements of the ground changes, the spatial data mining module for data discovery and extraction, the geological modelling module, the spatial data modeling module with data processing algorithms for spatio-temporal analysis and mapping of mining deformations and their characteristics (e.g. deformation parameters: tilt, curvature and horizontal strain), the multivariate spatial data classification module and the visualization module allowing two-dimensional interactive and static mapping and three-dimensional visualizations of mining ground characteristics. The Systems's functionality has been presented on the case study of a coal mining region in SW Poland where it has been applied to study characteristics and map mining induced ground deformations in a city in the last two decades of underground coal extraction and in the first decade after the end of mining. The mining subsidence area and its deformation parameters (tilt and curvature) have been calculated and the latter classified and mapped according to the Polish regulations. In addition possible areas of ground deformation have been indicated based on multivariate spatial data analysis of geological and mining operation characteristics with the geographically weighted regression method.

  18. Use of an automatic resistivity system for detecting abandoned mine workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, W.R.; Burdick, R.G.

    1983-01-01

    A high-resolution earth resistivity system has been designed and constructed for use as a means of detecting abandoned coal mine workings. The automatic pole-dipole earth resistivity technique has already been applied to the detection of subsurface voids for military applications. The hardware and software of the system are described, together with applications for surveying and mapping abandoned coal mine workings. Field tests are presented to illustrate the detection of both air-filled and water-filled mine workings.

  19. Mutation extraction tools can be combined for robust recognition of genetic variants in the literature

    PubMed Central

    Jimeno Yepes, Antonio; Verspoor, Karin

    2014-01-01

    As the cost of genomic sequencing continues to fall, the amount of data being collected and studied for the purpose of understanding the genetic basis of disease is increasing dramatically. Much of the source information relevant to such efforts is available only from unstructured sources such as the scientific literature, and significant resources are expended in manually curating and structuring the information in the literature. As such, there have been a number of systems developed to target automatic extraction of mutations and other genetic variation from the literature using text mining tools. We have performed a broad survey of the existing publicly available tools for extraction of genetic variants from the scientific literature. We consider not just one tool but a number of different tools, individually and in combination, and apply the tools in two scenarios. First, they are compared in an intrinsic evaluation context, where the tools are tested for their ability to identify specific mentions of genetic variants in a corpus of manually annotated papers, the Variome corpus. Second, they are compared in an extrinsic evaluation context based on our previous study of text mining support for curation of the COSMIC and InSiGHT databases. Our results demonstrate that no single tool covers the full range of genetic variants mentioned in the literature. Rather, several tools have complementary coverage and can be used together effectively. In the intrinsic evaluation on the Variome corpus, the combined performance is above 0.95 in F-measure, while in the extrinsic evaluation the combined recall performance is above 0.71 for COSMIC and above 0.62 for InSiGHT, a substantial improvement over the performance of any individual tool. Based on the analysis of these results, we suggest several directions for the improvement of text mining tools for genetic variant extraction from the literature. PMID:25285203

  20. 30 CFR 75.1101-9 - Back-up water system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Back-up water system. 75.1101-9 Section 75.1101-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-9 Back-up water system...

Top