19 CFR 10.25 - Textile components cut to shape in the United States and assembled abroad.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 1 2011-04-01 2011-04-01 false Textile components cut to shape in the United States and assembled abroad. 10.25 Section 10.25 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... components cut to shape in the United States and assembled abroad. Where a textile component is cut to shape...
19 CFR 10.25 - Textile components cut to shape in the United States and assembled abroad.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Textile components cut to shape in the United States and assembled abroad. 10.25 Section 10.25 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... components cut to shape in the United States and assembled abroad. Where a textile component is cut to shape...
Code of Federal Regulations, 2010 CFR
2010-04-01
... textile components cut to shape in the United States. 10.26 Section 10.26 Customs Duties U.S. CUSTOMS AND... ingredients; articles assembled in a beneficiary country from textile components cut to shape in the United... assembled in a beneficiary country in whole of textile components cut to shape (but not to length, width, or...
Novel Composites for Wing and Fuselage Applications
NASA Technical Reports Server (NTRS)
Suarez, J. A.; Buttitta, C.
1996-01-01
Design development was successfully completed for textile preforms with continuous cross-stiffened epoxy panels with cut-outs. The preforms developed included 3-D angle interlock weaving of graphite structural fibers impregnated by resin film infiltration (RFI) and shown to be structurally suitable under conditions requiring minimum acquisition costs. Design guidelines/analysis methodology for such textile structures are given. The development was expanded to a fuselage side-panel component of a subsonic commercial airframe and found to be readily scalable. The successfully manufactured panel was delivered to NASA Langley for biaxial testing. This report covers the work performed under Task 3 -- Cross-Stiffened Subcomponent; Task 4 -- Design Guidelines/Analysis of Textile-Reinforced Composites; and Task 5 -- Integrally Woven Fuselage Panel.
Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective
Kaushik, Vishakha; Lee, Jaehong; Hong, Juree; Lee, Seulah; Lee, Sanggeun; Seo, Jungmok; Mahata, Chandreswar; Lee, Taeyoon
2015-01-01
Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study. PMID:28347078
Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective.
Kaushik, Vishakha; Lee, Jaehong; Hong, Juree; Lee, Seulah; Lee, Sanggeun; Seo, Jungmok; Mahata, Chandreswar; Lee, Taeyoon
2015-09-07
Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study.
System of error detection in the manufacture of garments using artificial vision
NASA Astrophysics Data System (ADS)
Moreno, J. J.; Aguila, A.; Partida, E.; Martinez, C. L.; Morales, O.; Tejeida, R.
2017-12-01
A computer vision system is implemented to detect errors in the cutting stage within the manufacturing process of garments in the textile industry. It provides solution to errors within the process that cannot be easily detected by any employee, in addition to significantly increase the speed of quality review. In the textile industry as in many others, quality control is required in manufactured products and this has been carried out manually by means of visual inspection by employees over the years. For this reason, the objective of this project is to design a quality control system using computer vision to identify errors in the cutting stage within the garment manufacturing process to increase the productivity of textile processes by reducing costs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... cutter is a machine consisting of one or more rotary blades used for the purpose of cutting textile... shall mean the point of contact between two in-running rolls. (25) Openers and pickers. Openers and... roller, doctor blades, etc. The machine is used for printing fabrics. (29) Ranges (bleaching continuous...
Code of Federal Regulations, 2013 CFR
2013-07-01
... cutter is a machine consisting of one or more rotary blades used for the purpose of cutting textile... shall mean the point of contact between two in-running rolls. (25) Openers and pickers. Openers and... roller, doctor blades, etc. The machine is used for printing fabrics. (29) Ranges (bleaching continuous...
Code of Federal Regulations, 2011 CFR
2011-07-01
... cutter is a machine consisting of one or more rotary blades used for the purpose of cutting textile... shall mean the point of contact between two in-running rolls. (25) Openers and pickers. Openers and... roller, doctor blades, etc. The machine is used for printing fabrics. (29) Ranges (bleaching continuous...
Code of Federal Regulations, 2014 CFR
2014-07-01
... cutter is a machine consisting of one or more rotary blades used for the purpose of cutting textile... shall mean the point of contact between two in-running rolls. (25) Openers and pickers. Openers and... roller, doctor blades, etc. The machine is used for printing fabrics. (29) Ranges (bleaching continuous...
Code of Federal Regulations, 2012 CFR
2012-07-01
... cutter is a machine consisting of one or more rotary blades used for the purpose of cutting textile... shall mean the point of contact between two in-running rolls. (25) Openers and pickers. Openers and... roller, doctor blades, etc. The machine is used for printing fabrics. (29) Ranges (bleaching continuous...
Analysis of the temperature of the hot tool in the cut of woven fabric using infrared images
NASA Astrophysics Data System (ADS)
Borelli, Joao E.; Verderio, Leonardo A.; Gonzaga, Adilson; Ruffino, Rosalvo T.
2001-03-01
Textile manufacture occupies a prominence place in the national economy. By virtue of its importance researches have been made on the development of new materials, equipment and methods used in the production process. The cutting of textiles starts in the basic stage, to be followed within the process of the making of clothes and other articles. In the hot cutting of fabric, one of the variables of great importance in the control of the process is the contact temperature between the tool and the fabric. The work presents a technique for the measurement of the temperature based on the processing of infrared images. For this a system was developed composed of an infrared camera, a framegrabber PC board and software that analyzes the punctual temperature in the cut area enabling the operator to achieve the necessary control of the other variables involved in the process.
Smart textiles: Challenges and opportunities
NASA Astrophysics Data System (ADS)
Cherenack, Kunigunde; van Pieterson, Liesbeth
2012-11-01
Smart textiles research represents a new model for generating creative and novel solutions for integrating electronics into unusual environments and will result in new discoveries that push the boundaries of science forward. A key driver for smart textiles research is the fact that both textile and electronics fabrication processes are capable of functionalizing large-area surfaces at very high speeds. In this article we review the history of smart textiles development, introducing the main trends and technological challenges faced in this field. Then, we identify key challenges that are the focus of ongoing research. We then proceed to discuss fundamentals of smart textiles: textile fabrication methods and textile interconnect lines, textile sensor, and output device components and integration of commercial components into textile architectures. Next we discuss representative smart textile systems and finally provide our outlook over the field and a prediction for the future.
Life cycle design and design management strategies in fashion apparel manufacturing
NASA Astrophysics Data System (ADS)
Tutia, R.; Mendes, FD; Ventura, A.
2017-10-01
The generation of solid textile waste in the process of development and clothing production is an error that causes serious damages to the environment and must be minimized. The greatest volume of textile residues is generated by the department of cut, such as textiles parings and snips that are not used in the productive process. (MILAN et al, 2007). One way to conceive new products environmently conscious is turned to the adoption of a methodology based on Life Cycle Design (LCD) and Design Management.
Modern laser technologies used for cutting textile materials
NASA Astrophysics Data System (ADS)
Isarie, Claudiu; Dragan, Anca; Isarie, Laura; Nastase, Dan
2006-02-01
With modern laser technologies we can cut multiple layers at once, yielding high production levels and short setup times between cutting runs. One example could be the operation of cutting the material named Nylon 66, used to manufacture automobile airbags. With laser, up to seven layers of Nylon 66 can be cut in one pass, that means high production rates on a single machine. Airbags must be precisely crafted piece of critical safety equipment that is built to very high levels of precision in a mass production environment. Of course, synthetic material, used for airbags, can be cut also by a conventional fixed blade system, but for a high production rates and a long term low-maintenance, laser cutting is most suitable. Most systems, are equipped with two material handling systems, which can cut on one half of he table while the finished product is being removed from the other half and the new stock material laid out. The laser system is reliable and adaptable to any flatbed-cutting task. Computer controlled industrial cutting and plotting machines are the latest offerings from a well established and experienced industrial engineering company that is dedicated to reduce cutting costs and boosting productivity in today's competitive industrial machine tool market. In this way, just one machine can carry out a multitude of production tasks. Authors have studied the cutting parameters for different textile materials, to reach the maximum output of the process.
Local Structure Fixation in the Composite Manufacturing Chain
NASA Astrophysics Data System (ADS)
Girdauskaite, Lina; Krzywinski, Sybille; Rödel, Hartmut; Wildasin-Werner, Andrea; Böhme, Ralf; Jansen, Irene
2010-12-01
Compared to metal materials, textile reinforced composites show interesting features, but also higher production costs because of low automation rate in the manufacturing chain at this time. Their applicability is also limited due to quality problems, which restrict the production of complex shaped dry textile preforms. New technologies, design concepts, and cost-effective manufacturing methods are needed in order to establish further fields of application. This paper deals with possible ways to improve the textile deformation process by locally applying a fixative to the structure parallel to the cut. This hinders unwanted deformation in the textile stock during the subsequent stacking and formation steps. It is found that suitable thermoplastic binders, applied in the appropriate manner do not restrict formation of the textile and have no negative influence on the mechanical properties of the composite.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
... polyester/nylon cut corduroy fabric, as specified below, is not available in commercial quantities in a... cut corduroy fabric, as specified below. On July 29, 2013, in accordance with CITA's procedures, CITA...: Certain Polyester/Nylon Cut Corduroy Fabric. HTS: 5801.32.0000. Fiber Content: 80-95% polyester, 5-20...
Integrated microelectronics for smart textiles.
Lauterbach, Christl; Glaser, Rupert; Savio, Domnic; Schnell, Markus; Weber, Werner
2005-01-01
The combination of textile fabrics with microelectronics will lead to completely new applications, thus achieving elements of ambient intelligence. The integration of sensor or actuator networks, using fabrics with conductive fibres as a textile motherboard enable the fabrication of large active areas. In this paper we describe an integration technology for the fabrication of a "smart textile" based on a wired peer-to-peer network of microcontrollers with integrated sensors or actuators. A self-organizing and fault-tolerant architecture is accomplished which detects the physical shape of the network. Routing paths are formed for data transmission, automatically circumventing defective or missing areas. The network architecture allows the smart textiles to be produced by reel-to-reel processes, cut into arbitrary shapes subsequently and implemented in systems at low installation costs. The possible applications are manifold, ranging from alarm systems to intelligent guidance systems, passenger recognition in car seats, air conditioning control in interior lining and smart wallpaper with software-defined light switches.
ERIC Educational Resources Information Center
Tofel-Grehl, Colby; Fields, Deborah
2015-01-01
Electronic textiles (e-textiles)--fabrics embedded with electrical or electronic components--offer a new model for teaching this content. E-textiles also engage students in programming and engineering design through nontraditional projects and materials. This article describes a four-week electricity curriculum using three e-textiles projects that…
Making Complex Electrically Conductive Patterns on Cloth
NASA Technical Reports Server (NTRS)
Chu, Andrew; Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Scully, Robert C.; Trevino, Robert
2008-01-01
A method for automated fabrication of flexible, electrically conductive patterns on cloth substrates has been demonstrated. Products developed using this method, or related prior methods, are instances of a technology known as 'e-textiles,' in which electrically conductive patterns ar formed in, and on, textiles. For many applications, including high-speed digital circuits, antennas, and radio frequency (RF) circuits, an e-textile method should be capable of providing high surface conductivity, tight tolerances for control of characteristic impedances, and geometrically complex conductive patterns. Unlike prior methods, the present method satisfies all three of these criteria. Typical patterns can include such circuit structures as RF transmission lines, antennas, filters, and other conductive patterns equivalent to those of conventional printed circuits. The present method overcomes the limitations of the prior methods for forming the equivalent of printed circuits on cloth. A typical fabrication process according to the present method involves selecting the appropriate conductive and non-conductive fabric layers to build the e-textile circuit. The present method uses commercially available woven conductive cloth with established surface conductivity specifications. Dielectric constant, loss tangent, and thickness are some of the parameters to be considered for the non-conductive fabric layers. The circuit design of the conductive woven fabric is secured onto a non-conductive fabric layer using sewing, embroidery, and/or adhesive means. The portion of the conductive fabric that is not part of the circuit is next cut from the desired circuit using an automated machine such as a printed-circuit-board milling machine or a laser cutting machine. Fiducials can be used to align the circuit and the cutting machine. Multilayer circuits can be built starting with the inner layer and using conductive thread to make electrical connections between layers.
Barredo-Damas, S; Alcaina-Miranda, M I; Gemma, M; Iborra-Clar, M I; Mendoza-Roca, J A
2011-01-01
This work studies the performance of three commercial ceramic ultrafiltration membranes (ZrO(2)-TiO(2)) treating raw effluent from a textile industry. The effect of crossflow velocity at 3, 4 and 5 m s(-1) as well as membrane characteristics, such as molecular weight cut-off (30, 50 and 150 kDa), on process performance were studied. Experiments were carried out in concentration mode in order to observe the effect of volume reduction factor simultaneously. Results showed a combined influence of both crossflow velocity and molecular weight cut-off on flux performance. TOC and COD removals up to 70% and 84% respectively were reached. On the other hand, almost complete color (>97%) and turbidity (>99%) removals were achieved for all the membranes and operating conditions.
The AMTEX Partnership{trademark}. First quarter report, Fiscal year 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-01
The AMTEX Partnership is a collaborative research and development program among the US Integrated Textile Industry, DOE, the National Laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital industry, thereby preserving and creating US jobs. Topics in this quarters report include: computer-aided fabric evaluation, cotton biotechnology, demand activated manufacturing architecture, electronic embedded fingerprints, on-line process control in flexible fiber manufacturing, rapid cutting, sensors for agile manufacturing, and textile resource conservation.
An overview of the NASA textile composites program
NASA Technical Reports Server (NTRS)
Dexter, H. Benson
1993-01-01
The NASA Langley Research Center is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structures. In addition to in-house research, the program includes major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house research is focused on science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of innovative design concepts, cost-effective fabrication, and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3-D weaving, 2-D and 3-D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced composite materials. The goals of the NASA Langley-sponsored research program are to demonstrate technology readiness with subscale composite components by 1995 and to verify the performance of full-scale composite primary aircraft structural components by 1997. The status of textile reinforced composite structural elements under development by Boeing, Douglas, Lockheed, and Grumman are presented. Included are braided frames and woven/stitched wing and fuselage panels.
Flexible and stretchable microbial fuel cells with modified conductive and hydrophilic textile.
Pang, Sumiao; Gao, Yang; Choi, Seokheun
2018-02-15
We built a flexible, stretchable microbial fuel cell (MFC) by laminating two functional components: a bioanode textile with a conductive and hydrophilic polymer coating and a solid-state cathode textile loaded with silver oxide. The textile MFC used Pseudomonas aeruginosa PAO1 as a biocatalyst to generate the maximum power and current density of 1.0µW/cm 2 and 6.3µA/cm 2 , respectively, which are comparable with or even higher than other flexible MFCs such as paper-based devices (~ a few µW/cm 2 ). Additionally, the textile MFC generated consistent power even with repeated 70 cycles of 50% stretching. A simple batch fabrication method simultaneously produced 20 individual 2cm × 2cm devices by using brushing, spraying, ironing, and computerized sewing, a process that will revolutionize the mass production of textile MFCs. This achievement is scientifically meaningful because developing textile MFCs requires integration of both electronic and fluidic components into the textile three-dimensionally. This flexible and stretchable energy harvesting device is expected to be easily integrated with the next generation stretchable electronics for realizing low-power, stand-alone, self-sustainable systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Comparative toxicity of leachates from 52 textiles to Daphnia magna.
Dave, Göran; Aspegren, Pia
2010-10-01
The environmental aspects of textiles are very complex and include production, processing, transport, usage, and recycling. Textiles are made from a variety of materials and can contain a large number of chemicals. Chemicals are used during production of fibres, for preservation and colouring and they are released during normal wear and during washing. The aim of this study was to investigate the release to water of toxic chemicals from various textiles. Altogether 52 samples of textiles made from cotton (21), linen (4), cotton and linen (7), cellulose (3), synthetic fibres (7), cotton and synthetic fibres (8) and wool (2). Seven were eco-labelled. All textiles were cut into squares and placed into Petri dishes with 50 ml ISO test medium in a concentration series (4-256 cm(2)/50 ml) and tested for acute toxicity to Daphnia magna. Estimated EC50s were converted into weight/volume, and 48-h EC50s ranged between <1 and >182 g/L. It was not possible to detect any difference between fibre type and toxicity (ANOVA), but a significantly higher toxicity was found for printed versus unprinted cotton and cotton/linen textiles, while the opposite was found for synthetic textiles. Eco-labelled products were evenly distributed on a toxicity scale, which means that eco-labelling in its present form does not necessarily protect users or the environment from exposure to toxic chemicals. Therefore, the results from the present study suggest that bioassays and toxicity tests should become an integrated part of textile environmental quality control programs. Copyright © 2010 Elsevier Inc. All rights reserved.
A review-application of physical vapor deposition (PVD) and related methods in the textile industry
NASA Astrophysics Data System (ADS)
Shahidi, Sheila; Moazzenchi, Bahareh; Ghoranneviss, Mahmood
2015-09-01
Physical vapor deposition (PVD) is a coating process in which thin films are deposited by the condensation of a vaporized form of the desired film material onto the substrate. The PVD process is carried out in a vacuum. PVD processes include different types, such as: cathode arc deposition, electron beam physical vapor deposition, evaporative deposition, sputtering, ion plating and enhanced sputtering. In the PVD method, the solid coating material is evaporated by heat or by bombardment with ions (sputtering). At the same time, a reactive gas is also introduced; it forms a compound with the metal vapor and is deposited on the substrate as a thin film with highly adherent coating. Such coatings are used in a wide range of applications such as aerospace, automotive, surgical, medical, dyes and molds for all manner of material processing, cutting tools, firearms, optics, thin films and textiles. The objective of this work is to give a comprehensive description and review of the science and technology related to physical vapor deposition with particular emphasis on their potential use in the textile industry. Physical vapor deposition has opened up new possibilities in the modification of textile materials and is an exciting prospect for usage in textile design and technical textiles. The basic principle of PVD is explained and the major applications, particularly sputter coatings in the modification and functionalization of textiles, are introduced in this research.
An engineering approach for the application of textile composites to a structural component
NASA Technical Reports Server (NTRS)
Baldwin, Jack W.; Gracias, Brian K.; Clark, Steven R.
1993-01-01
An engineering approach for the application of textile composites to a structural component is addressed. The main objective is to improve impact resistance of composite blades by using some form of 3-D reinforcement. Project goals, results, and conclusions are discussed.
Fashion garment manufacturing - FGM and cyclability theory
NASA Astrophysics Data System (ADS)
Mendes, F. D.; Dos Santos, M. C. L.
2017-10-01
This article, derived from an ongoing research, presents the possibilities of reducing the inappropriate disposal of textile residues generated by the fabric cutting sector of the Fashion Garment Manufacturing (FGM). The raw material used is very varied, resulting in a large number of productive processes. FGM produces clothing that has as its main features a short life cycle, a high rate of diversification and differentiation, and small production batches, resulting in few similar parts. The production process is differentiated according to the characteristics of the fabric and the look of the garment. During the production process, at least 10% of textile waste is generated during the cutting process, which is constantly discarded in an inadequate way. The Cyclability theory is researched aiming at the possibility of reduction in the generation of waste and elimination of inappropriate disposal. The case study presents the action research carried out in three small Brazilian companies to study the applicability of the Cyclability theory.
Production of a textile reinforced concrete protective layers with non-woven polypropylene fabric
NASA Astrophysics Data System (ADS)
Žák, J.; Štemberk, P.; Vodička, J.
2017-09-01
Textile concrete with nonwoven polypropylene fabric can be used for protective layers of reinforced concrete structures, reducing the thickness of the cover layer or reducing the water penetration rate into the structure. The material consists of cement matrix with finegrained aggregate and nonwoven textile reinforcement. The maximum grain size of the mixture suitable for the nonwoven textile infiltration is 0.25 mm. The interlayer contains larger aggregates and short fibers. Tensile loading causes a large amount of microcracks in the material. The material can withstand strain over 25% without collapsing. Increased quality and water-cement ratio reduction was achieved using the plasticizers and distribution of the mixture into a fabric using a vibrating trowel. It is possible to make flat plates and even curved structures from this material. Larger curvatures of structures should be solved by cutting and overlapping the fabric. Small curvatures can be solved within the deformability of the fabric. Proper infiltration of the cement mixture into the fabric is the most important task in producing this material.
Interwoven Story: A Narrative Study of Textiles as Educators
ERIC Educational Resources Information Center
Tremblay-Dion, Catherine-Laura
2017-01-01
Drawing from both narrative research and Joe Kincheloe's work of research bricolage this study inquired into how textiles have served as educator throughout my life. Weaving, as the earliest and most integral of textile fabrications, is particularly featured in this narrative inquiry. A loom, in its most basic form, consists of three components; a…
Ning, Xun-An; Liang, Jie-Ying; Li, Rui-Jing; Hong, Zhen; Wang, Yu-Jie; Chang, Ken-Lin; Zhang, Ya-Ping; Yang, Zuo-Yi
2015-09-01
Aromatic amines (AAs), which are components of synthetic dyes, are recalcitrant to the wastewater treatment process and can accumulate in sludge produced by textile-dyeing, which may pose a threat to the environment. A comprehensive investigation of 10 textile-dyeing plants was undertaken in Guangdong Province in China. The contents and component distributions of AAs were evaluated in this study, and a risk assessment was performed. The total concentrations of 14 AAs (Σ14 AAs) varied from 11 μg g(-1)dw to 82.5 μg g(-1)dw, with a mean value of 25 μg g(-1)dw. The component distributions of AAs were characterized by monocyclic anilines, of which 2-methoxy-5-methylaniline and 5-nitro-o-toluidine were the most dominant components. The risk quotient (RQ) value was used to numerically evaluate the ecological risk of 14 AAs in the environment. The result showed that the 14 AAs contents in textile-dyeing sludge may pose a high risk to the soil ecosystem after being discarded on soil or in a landfill. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electroactive polymer-based devices for e-textiles in biomedicine.
Carpi, Federico; De Rossi, Danilo
2005-09-01
This paper describes the early conception and latest developments of electroactive polymer (EAP)-based sensors, actuators, electronic components, and power sources, implemented as wearable devices for smart electronic textiles (e-textiles). Such textiles, functioning as multifunctional wearable human interfaces, are today considered relevant promoters of progress and useful tools in several biomedical fields, such as biomonitoring, rehabilitation, and telemedicine. After a brief outline on ongoing research and the first products on e-textiles under commercial development, this paper presents the most highly performing EAP-based devices developed by our lab and other research groups for sensing, actuation, electronics, and energy generation/storage, with reference to their already demonstrated or potential applicability to electronic textiles.
29 CFR 785.24 - Principles noted in Portal-to-Portal Bulletin.
Code of Federal Regulations, 2010 CFR
2010-07-01
... his machine, or install a new cutting tool. Such activities are an integral part of the principal activity, and are included within such term. (2) In the case of a garment worker in a textile mill, who is...
NASA Technical Reports Server (NTRS)
Dow, Marvin B.; Dexter, H. Benson
1997-01-01
Summary results are presented from the research conducted on woven, braided, knitted and stitched (textile) composites at the Langley Research Center and under the NASA Advanced Composites Technology (ACT) Program in the period from 1985 to 1997. The report also includes an annotated bibliography of 270 U.S. publications on textile composites (with their abstracts). Two major research areas are discussed: (1) the general research in textile composites performed throughout the period under the direction of the Langley Research Center and (2) the development of textile composite aircraft structures by industry under the NASA ACT Program. The annotated bibliography is organized in three subsections: (1) general textiles R&D under the auspices of Langley, (2) ACT Program development of textile structural components, and (3) textiles research by individuals and organizations not associated with the ACT Program. An author index is provided for the reports and documents.
Large-Area All-Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals.
Liu, Mengmeng; Pu, Xiong; Jiang, Chunyan; Liu, Ting; Huang, Xin; Chen, Libo; Du, Chunhua; Sun, Jiangman; Hu, Weiguo; Wang, Zhong Lin
2017-11-01
Wearable pressure sensors, which can perceive and respond to environmental stimuli, are essential components of smart textiles. Here, large-area all-textile-based pressure-sensor arrays are successfully realized on common fabric substrates. The textile sensor unit achieves high sensitivity (14.4 kPa -1 ), low detection limit (2 Pa), fast response (≈24 ms), low power consumption (<6 µW), and mechanical stability under harsh deformations. Thanks to these merits, the textile sensor is demonstrated to be able to recognize finger movement, hand gestures, acoustic vibrations, and real-time pulse wave. Furthermore, large-area sensor arrays are successfully fabricated on one textile substrate to spatially map tactile stimuli and can be directly incorporated into a fabric garment for stylish designs without sacrifice of comfort, suggesting great potential in smart textiles or wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ning, Xun-An; Lin, Mei-Qing; Shen, Ling-Zhi; Zhang, Jian-Hao; Wang, Jing-Yu; Wang, Yu-Jie; Yang, Zuo-Yi; Liu, Jing-Yong
2014-07-01
As components of synthetic dyes, polycyclic aromatic hydrocarbons (PAHs) are present as contaminants in textile dyeing sludge due to the recalcitrance in wastewater treatment process, which may pose a threat to environment in the process of sludge disposal. In order to evaluate PAHs in textile dyeing sludge, comprehensive investigation comprising 10 textile dyeing plants was undertaken. Levels, composition profiles and risk assessment of 16 EPA-priority PAHs were analyzed in this study. The total concentrations of 16 PAHs (∑16 PAHs) varied from 1463 ± 177 ng g(-1) to 16,714 ± 1,507 ng g(-1) with a mean value of 6386 ng g(-1). The composition profiles of PAHs were characterized by 3- and 4-ring PAHs, among which phenanthrene, anthracene and fluoranthene were the most dominant components. The mean benzo[a]pyrene equivalent (BaPeq) concentration of ∑16 PAHs in textile dyeing sludge was 423 ng g(-1), which was 2-3 times higher than concentrations reported for urban soil. According to ecological risk assessment, the levels of PAHs in the textile dyeing sludge may cause a significant risk to soil ecosystem after landfill or dumping on soil. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
de Kok, Margreet M.
2014-10-01
Integration of electronics into materials and objects that have not been functionalized with electronics before, open up extensive possibilities to support mankind. By adding intelligence and/or operating power to materials in close skin contact like clothing, furniture or bandages the health of people can be monitored or even improved. Foil based electronics are interesting components to be integrated as they are thin, large area and cost effective available components Our developed technology of printed electronic structures to which components are reliably bonded, fulfills the promise. We have integrated these components into textiles and built wearable encapsulated products with foil based electronics. Foil components with organic and inorganic LEDs are interconnected and laminated onto electronic textiles by using conductive adhesives to bond the contact pads of the component to conductive yarns in the textile. Modelling and reliability testing under dynamic circumstances provided important insights in order to optimise the technology. The design of the interconnection and choice of conductive adhesive / underfill and lamination contributed to the durability of the system. Transition zones from laminated foil to textile are engineered to withstand dynamic use. As an example of a product, we have realized an electronic wristband that is encapsulated in rubber and has a number of sensor functionalities integrated on stretchable electronic circuits based on Cu and Ag. The encapsulation with silicone or polyurethanes was performed such, that charging and sensor/skin contacts are possible while simultaneously protecting the electronics from mechanical and environmental stresses.
NASA Astrophysics Data System (ADS)
Palanisamy, S.; Tunakova, V.; Karthik, D.; Ali, A.; Militky, J.
2017-10-01
In this study, the different proportion of conductive component blended with polypropylene yarn were taken for making conductive textile samples for analysis of electromagnetic shielding effectiveness, fabric bending moment and air permeability. The ASTM D4935 coaxial transmission line method was used to study the electromagnetic shielding. Electromagnetic shielding effectiveness of textile structures containing different percentage of metal content ranges from 1 to 50 dB at high frequency range. Breathability of structures, more precisely air permeability was considered as one of important parameters for designing of electromagnetic radiation protective fabrics for certain applications. The bending moment of samples is decreases with increasing metal component percent.
Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles.
Specos, M M Miró; García, J J; Tornesello, J; Marino, P; Vecchia, M Della; Tesoriero, M V Defain; Hermida, L G
2010-10-01
Microcapsules containing citronella essential oil were prepared by complex coacervation and applied to cotton textiles in order to study the repellent efficacy of the obtained fabrics. Citronella released from treated textiles was indirectly monitored by the extractable content of its main components. Repellent activity was assessed by exposure of a human hand and arm covered with the treated textiles to Aedes aegypti mosquitoes. Fabrics treated with microencapsulated citronella presented a higher and longer lasting protection from insects compared to fabrics sprayed with an ethanol solution of the essential oil, assuring a repellent effect higher than 90% for three weeks. Complex coacervation is a simple, low cost, scalable and reproducible method of obtaining encapsulated essential oils for textile application. Repellent textiles were achieved by padding cotton fabrics with microcapsules slurries using a conventional pad-dry method. This methodology requires no additional investment for textile finishing industries, which is a desirable factor in developing countries. Copyright © 2010 Royal Society of Tropical Medicine and Hygiene.
Fully Printed Ultraflexible Supercapacitor Supported by a Single-Textile Substrate.
Zhang, Huihui; Qiao, Yan; Lu, Zhisong
2016-11-30
Textile-based supercapacitors have recently attracted much attention owing to their great potential as energy storage components in wearable electronics. However, fabrication of a high-performance, fully printed, and ultraflexible supercapacitor based on a single textile still remains a great challenge. Herein, a facile, low-cost, and textile-compatible method involving screen printing and transfer printing is developed to construct all-solid-state supercapacitors on a single silk fabric. The system exhibits a high specific capacitance of 19.23 mF cm -2 at a current density of 1 mA cm -2 and excellent cycling stability with capacitance retention of 84% after 2000 charging/discharging cycles. In addition, the device possesses superior mechanical stability with stable performance and structures after 100 times of bending and twisting. A butterfly-patterned supercapacitor was manufactured to demonstrate the compatibility of the printing approaches to textile aesthetics. This work may provide a facile and versatile approach for fabricating rationally designed ultraflexible textile-based power-storage elements for potential applications in smart textiles and stretchable/flexible electronics.
Li, Wentao; Xu, Zixiao; Wu, Qian; Li, Yan; Shuang, Chendong; Li, Aimin
2015-03-01
This study focused on the characterization of fluorescent-dissolved organic matter and identification of specific fluorophores in textile effluents. Samples from different textile wastewater treatment plants were characterized by high-performance liquid chromatography and size exclusion chromatography as well as fluorescence excitation-emission matrix spectra. Despite the highly heterogeneous textile effluents, the fluorescent components and their physicochemical properties were found relatively invariable, which is beneficial for the combination of biological and physicochemical treatment processes. The humic-like substance with triple-excitation peaks (excitation (Ex) 250, 310, 365/emission (Em) 460 nm) presented as the specific fluorescence indicator in textile effluents. It was also the major contributor to UV absorbance at 254 nm and resulted in the brown color of biologically treated textile effluents. By spectral comparison, the specific fluorophore in textile effluents could be attributed to the intermediate structure of azo dyes 1-amino-2-naphthol, which was transferred into the special humic-like substances during biological treatment.
Li, Wen-Tao; Xu, Zi-Xiao; Shuang, Chen-Dong; Zhou, Qing; Li, Hai-Bo; Li, Ai-Min
2016-03-01
The efficiency and mechanism of anion exchange resin Nanda Magnetic Polymer (NDMP) for removal of fluorescent dissolved organic matter in biologically treated textile effluents were studied. The bench-scale experiments showed that as well as activated carbon, anion exchange resin could efficiently remove both aniline-like and humic-like fluorescent components, which can be up to 40 % of dissolved organic matter. The humic-like fluorescent component HS-Em460-Ex3 was more hydrophilic than HS-Em430-Ex2 and contained fewer alkyl chains but more acid groups. As a result, HS-Em460-Ex3 was eliminated more preferentially by NDMP anion exchange. However, compared with adsorption resins, the polarity of fluorescent components had a relatively small effect on the performance of anion exchange resin. The long-term pilot-scale experiments showed that the NDMP anion exchange process could remove approximately 30 % of the chemical oxygen demand and about 90 % of color from the biologically treated textile effluents. Once the issue of waste brine from resin desorption is solved, the NDMP anion exchange process could be a promising alternative for the advanced treatment of textile effluents.
Economic and employment potential in textile waste management of Faisalabad.
Noman, Muhammad; Batool, Syeda Adila; Chaudhary, Muhammad Nawaz
2013-05-01
The aim of this study is to characterize the waste from the textile industry, to identify the sources and types of waste generation and to find out the economic and employment potential in this sector. Textile waste, its management, and the economic and employment potential in this sector are unrevealed facts in developing countries such as Pakistan. The textile industry is ranked first in export earning in Pakistan. Textile export of yarn and cloth from Faisalabad is US$3 billion per year. On average 161 325 people are employed in the textile sector in Faisalabad, of which 11 860 are involved in solid waste handling and management. The textile industries generate solid wastes such as fibre, metal, plastic and paper waste. A total of 794 209 kg day(-1) (289 886 285 kg year(-1)) solid waste is produced from this sector and purchased by cotton waste junkshop owners at US$125 027 day(-1) (US$45 634 855 year(-1)). Only pre-consumer textile waste is considered. Interestingly no waste is sent to landfill. The waste is first segregated into different categories/ types by hand and then weighed. Cotton waste is sold to brick kilns where it is used as an alternative fuel as it is cheaper than wood/coal. Iron scrap is sold in the junk market from where it is resold to recycling industries. Paper waste is recycled, minimizing the virgin material used for producing new paper products. Iron and plastic drums are returned to the chemical industries for refilling, thus decreasing the cost of dyes and decreasing the demand for new drums. Cutting rags are used for making different things such as ropes and underlay, it is also shredded and used as fillings for pillows and mattresses, thus improving waste management, reducing cost and minimizing the need for virgin material. As no system of quality control and no monitoring of subsequent products exist there is a need to carry out quality control and monitoring.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka
2016-01-01
In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively. © The Author(s) 2015.
Fabric-based active electrode design and fabrication for health monitoring clothing.
Merritt, Carey R; Nagle, H Troy; Grant, Edward
2009-03-01
In this paper, two versions of fabric-based active electrodes are presented to provide a wearable solution for ECG monitoring clothing. The first version of active electrode involved direct attachment of surface-mountable components to a textile screen-printed circuit using polymer thick film techniques. The second version involved attaching a much smaller, thinner, and less obtrusive interposer containing the active electrode circuitry to a simplified textile circuit. These designs explored techniques for electronic textile interconnection, chip attachment to textiles, and packaging of circuits on textiles for durability. The results from ECG tests indicate that the performance of each active electrode is comparable to commercial Ag/AgCl electrodes. The interposer-based active electrodes survived a five-cycle washing test while maintaining good signal integrity.
Cutting Edge RFID Technologies for NASA Applications
NASA Technical Reports Server (NTRS)
Fink, Patrick W.
2007-01-01
This viewgraph document reviews the use of Radio-frequency identification (RFID) for NASA applications. Some of the uses reviewed are: inventory management in space; potential RFID uses in a remote human outpost; Ultra-Wideband RFID for tracking; Passive, wireless sensors in NASA applications such as Micrometeoroid impact detection and Sensor measurements in environmental facilities; E-textiles for wireless and RFID.
Hospital saves $1 million by outsourcing laundry.
1999-04-01
Thirty-five percent of hospitals nationwide are outsourcing laundry services, according to the Textile Rental Services Association. Pennsylvania Hospital cut its cost per pound of laundry from 61.5 cents to 46 cents, saving $1 million in its first year of outsourcing. Outsourcing also brought the hospital better inventory control, more efficient delivery, and fewer complaints about missing items.
Bae, Hagyoul; Jang, Byung Chul; Park, Hongkeun; Jung, Soo-Ho; Lee, Hye Moon; Park, Jun-Young; Jeon, Seung-Bae; Son, Gyeongho; Tcho, Il-Woong; Yu, Kyoungsik; Im, Sung Gap; Choi, Sung-Yool; Choi, Yang-Kyu
2017-10-11
Fabric-based electronic textiles (e-textiles) are the fundamental components of wearable electronic systems, which can provide convenient hand-free access to computer and electronics applications. However, e-textile technologies presently face significant technical challenges. These challenges include difficulties of fabrication due to the delicate nature of the materials, and limited operating time, a consequence of the conventional normally on computing architecture, with volatile power-hungry electronic components, and modest battery storage. Here, we report a novel poly(ethylene glycol dimethacrylate) (pEGDMA)-textile memristive nonvolatile logic-in-memory circuit, enabling normally off computing, that can overcome those challenges. To form the metal electrode and resistive switching layer, strands of cotton yarn were coated with aluminum (Al) using a solution dip coating method, and the pEGDMA was conformally applied using an initiated chemical vapor deposition process. The intersection of two Al/pEGDMA coated yarns becomes a unit memristor in the lattice structure. The pEGDMA-Textile Memristor (ETM), a form of crossbar array, was interwoven using a grid of Al/pEGDMA coated yarns and untreated yarns. The former were employed in the active memristor and the latter suppressed cell-to-cell disturbance. We experimentally demonstrated for the first time that the basic Boolean functions, including a half adder as well as NOT, NOR, OR, AND, and NAND logic gates, are successfully implemented with the ETM crossbar array on a fabric substrate. This research may represent a breakthrough development for practical wearable and smart fibertronics.
Force Project Technology Presentation to the NRCC
2014-02-04
Functional Bridge components Smart Odometer Adv Pretreatment Smart Bridge Multi-functional Gap Crossing Fuel Automated Tracking System Adv...comprehensive matrix of candidate composite material systems and textile reinforcement architectures via modeling/analyses and testing. Product(s...Validated Dynamic Modeling tool based on parametric study using material models to reliably predict the textile mechanics of the hose
Atomic layer deposition on polymer fibers and fabrics for multifunctional and electronic textiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brozena, Alexandra H.; Oldham, Christopher J.; Parsons, Gregory N., E-mail: gnp@ncsu.edu
Textile materials, including woven cotton, polymer knit fabrics, and synthetic nonwoven fiber mats, are being explored as low-cost, flexible, and light-weight platforms for wearable electronic sensing, communication, energy generation, and storage. The natural porosity and high surface area in textiles is also useful for new applications in environmental protection, chemical decontamination, pharmaceutical and chemical manufacturing, catalytic support, tissue regeneration, and others. These applications raise opportunities for new chemistries, chemical processes, biological coupling, and nanodevice systems that can readily combine with textile manufacturing to create new “multifunctional” fabrics. Atomic layer deposition (ALD) has a unique ability to form highly uniform andmore » conformal thin films at low processing temperature on nonuniform high aspect ratio surfaces. Recent research shows how ALD can coat, modify, and otherwise improve polymer fibers and textiles by incorporating new materials for viable electronic and other multifunctional capabilities. This article provides a current overview of the understanding of ALD coating and modification of textiles, including current capabilities and outstanding problems, with the goal of providing a starting point for further research and advances in this field. After a brief introduction to textile materials and current textile treatment methods, the authors discuss unique properties of ALD-coated textiles, followed by a review of recent electronic and multifunctional textiles that use ALD coatings either as direct functional components or as critical nucleation layers for active materials integration. The article concludes with possible future directions for ALD on textiles, including the challenges in materials, manufacturing, and manufacturing integration that must be overcome for ALD to reach its full potential in electronic and other emerging multifunctional textile systems.« less
Recent progress in NASA Langley textile reinforced composites program
NASA Technical Reports Server (NTRS)
Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.
1992-01-01
The NASA LaRC is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. In addition to in-house research, the program was recently expanded to include major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house focus is as follows: development of a science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of design, fabrication and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3D weaving, 2D and 3D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced composite materials.
A critical review on textile wastewater treatments: Possible approaches.
Holkar, Chandrakant R; Jadhav, Ananda J; Pinjari, Dipak V; Mahamuni, Naresh M; Pandit, Aniruddha B
2016-11-01
Waste water is a major environmental impediment for the growth of the textile industry besides the other minor issues like solid waste and resource waste management. Textile industry uses many kinds of synthetic dyes and discharge large amounts of highly colored wastewater as the uptake of these dyes by fabrics is very poor. This highly colored textile wastewater severely affects photosynthetic function in plant. It also has an impact on aquatic life due to low light penetration and oxygen consumption. It may also be lethal to certain forms of marine life due to the occurrence of component metals and chlorine present in the synthetic dyes. So, this textile wastewater must be treated before their discharge. In this article, different treatment methods to treat the textile wastewater have been presented along with cost per unit volume of treated water. Treatment methods discussed in this paper involve oxidation methods (cavitation, photocatalytic oxidation, ozone, H2O2, fentons process), physical methods (adsorption and filtration), biological methods (fungi, algae, bacteria, microbial fuel cell). This review article will also recommend the possible remedial measures to treat different types of effluent generated from each textile operation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Smart healthcare textile sensor system for unhindered-pervasive health monitoring
NASA Astrophysics Data System (ADS)
Rai, Pratyush; Kumar, Prashanth S.; Oh, Sechang; Kwon, Hyeokjun; Mathur, Gyanesh N.; Varadan, Vijay K.; Agarwal, M. P.
2012-04-01
Simultaneous monitoring of physiological parameters- multi-lead Electrocardiograph (ECG), Heart rate variability, and blood pressure- is imperative to all forms of medical treatments. Using an array of signal recording devices imply that the patient will have to be confined to a bed. Textiles offer durable platform for embedded sensor and communication systems. The smart healthcare textile, presented here, is a mobile system for remote/wireless data recording and conditioning. The wireless textile system has been designed to monitor a patient in a non-obstructive way. It has a potential for facilitating point of care medicine and streamlining ambulatory medicine. The sensor systems were designed and fabricated with textile based components for easy integration on textile platform. An innovative plethysmographic blood pressure monitoring system was designed and tested as an alternative to inflatable blood pressure sphygmomanometer. Flexible dry electrodes technology was implemented for ECG. The sensor systems were tested and conditioned to daily activities of patients, which is not permissible with halter type systems. The signal quality was assessed for it applicability to medical diagnosis. The results were used to corroborate smart textile sensor system's ability to function as a point of care system that can provide quality healthcare.
2D net shape weaving for cost effective manufacture of textile reinforced composites
NASA Astrophysics Data System (ADS)
Vo, D. M. P.; Kern, M.; Hoffmann, G.; Cherif, C.
2017-10-01
Despite significant weight and performance advantages over metal parts, the today’s demand for fibre-reinforced polymer composites (FRPC) has been limited mainly by their large manufacturing cost. The combination of dry textile preforms and low-cost consolidation processes such as resin transfer molding (RTM) has been appointed as a promising approach to low-cost FRPC manufacture. At the current state of the art, tooling and impregnation technology is well understood whereas preform fabrication technology has not been developed effectively. This paper presents an advanced 2D net shape weaving technology developed with the aim to establish a more cost effective system for the manufacture of dry textile preforms for FRPC. 2D net shape weaving is developed based on open reed weave (ORW) technology and enables the manufacture of 2D contoured woven fabrics with firm edge, so that oversize cutting and hand trimming after molding are no longer required. The introduction of 2D net shape woven fabrics helps to reduce material waste, cycle time and preform manufacturing cost significantly. Furthermore, higher grade of automation in preform fabrication can be achieved.
NASA Astrophysics Data System (ADS)
Böhm, R.; Hufnagl, E.; Kupfer, R.; Engler, T.; Hausding, J.; Cherif, C.; Hufenbach, W.
2013-12-01
A significant improvement in the properties of plastic components can be achieved by introducing flexible multiaxial textile grids as reinforcement. This reinforcing concept is based on the layerwise bonding of biaxially or multiaxially oriented, completely stretched filaments of high-performance fibers, e.g. glass or carbon, and thermoplastic components, using modified warp knitting techniques. Such pre-consolidated grid-like textiles are particularly suitable for use in injection moulding, since the grid geometry is very robust with respect to flow pressure and temperature on the one hand and possesses an adjustable spacing to enable a complete filling of the mould cavity on the other hand. The development of pre-consolidated textile grids and their further processing into composites form the basis for providing tailored parts with a large number of additional integrated functions like fibrous sensors or electroconductive fibres. Composites reinforced in that way allow new product groups for promising lightweight structures to be opened up in future. The article describes the manufacturing process of this new composite class and their variability regarding reinforcement and function integration. An experimentally based study of the mechanical properties is performed. For this purpose, quasi-static and highly dynamic tensile tests have been carried out as well as impact penetration experiments. The reinforcing potential of the multiaxial grids is demonstrated by means of evaluating drop tower experiments on automotive components. It has been shown that the load-adapted reinforcement enables a significant local or global improvement of the properties of plastic components depending on industrial requirements.
Graphite fiber textile preform/copper matrix composites
NASA Technical Reports Server (NTRS)
Filatovs, G. J.
1993-01-01
This project has the objective of exploring the use of graphite fiber textile preform/copper matrix composites in spacecraft heat transmitting and radiating components. The preforms are to be fabricated by braiding of tows and when infiltrated with copper will result in a 3-D reinforced, near net shape composite with improved specific properties such as lower density and higher stiffness. It is anticipated that the use of textile technology will result in a more robust preform and consequently better final composite; it is hard to anticipate what performance tradeoffs will result, and these will be explored through testing and characterization.
Cai, Zhipeng; Luo, Kan; Liu, Chengyu; Li, Jianqing
2017-08-09
A smart electrocardiogram (ECG) garment system was designed for continuous, non-invasive and comfortable ECG monitoring, which mainly consists of four components: Conductive textile electrode, garment, flexible printed circuit board (FPCB)-based ECG processing module and android application program. Conductive textile electrode and FPCB-based ECG processing module (6.8 g, 55 mm × 53 mm × 5 mm) are identified as two key techniques to improve the system's comfort and flexibility. Preliminary experimental results verified that the textile electrodes with circle shape, 40 mm size in diameter, and 5 mm thickness sponge are best suited for the long-term ECG monitoring application. The tests on the whole system confirmed that the designed smart garment can obtain long-term ECG recordings with high signal quality.
Textile sensors for stab and cut detection
NASA Astrophysics Data System (ADS)
Graßmann, C.; Obermann, M.; Lempa, E.; Bache, T.; Siegel, P. K.; Freyer, T.; Paschko, S.; Beyer, T.; Kirsche, M.; Schwarz-Pfeiffer, A.
2017-10-01
Manufacturers are aiming for more flexible and lightweight protective clothing to increase wearing comfort. A cardigan with a knitted stab-resistant inlay and an alarm system is presented. The stab-resistant inlay is based on a multilayer ultra-high molecular weight poly ethylene (UHMW-PE) fabric. Stab resistance was evaluated according to the standard of the Association of Test Laboratories for Bullet, Stab or Pike Resistant Materials and Construction Standard (VPAM 2011). Furthermore sensors for the detection of cuts and pressure were integrated. Both sensors can trigger alarms if the wearer is attacked. Normal pressure occurring through leaning on a wall or sitting is filtered out and does not trigger an alarm.
ERIC Educational Resources Information Center
Hill, Allison
A 3-year workplace literacy project combined the resources and efforts of a junior and a technical college, literacy education providers, and businesses to implement an assessment and education program for textile workers. The program included four components: (1) reading, writing, speaking, listening, and mathematics skills; (2) creative…
Imaging tristimulus colorimeter for the evaluation of color in printed textiles
NASA Astrophysics Data System (ADS)
Hunt, Martin A.; Goddard, James S., Jr.; Hylton, Kathy W.; Karnowski, Thomas P.; Richards, Roger K.; Simpson, Marc L.; Tobin, Kenneth W., Jr.; Treece, Dale A.
1999-03-01
The high-speed production of textiles with complicated printed patterns presents a difficult problem for a colorimetric measurement system. Accurate assessment of product quality requires a repeatable measurement using a standard color space, such as CIELAB, and the use of a perceptually based color difference formula, e.g. (Delta) ECMC color difference formula. Image based color sensors used for on-line measurement are not colorimetric by nature and require a non-linear transformation of the component colors based on the spectral properties of the incident illumination, imaging sensor, and the actual textile color. This research and development effort describes a benchtop, proof-of-principle system that implements a projection onto convex sets (POCS) algorithm for mapping component color measurements to standard tristimulus values and incorporates structural and color based segmentation for improved precision and accuracy. The POCS algorithm consists of determining the closed convex sets that describe the constraints on the reconstruction of the true tristimulus values based on the measured imperfect values. We show that using a simulated D65 standard illuminant, commercial filters and a CCD camera, accurate (under perceptibility limits) per-region based (Delta) ECMC values can be measured on real textile samples.
East Europe Report: Economic and Industrial Affairs
1985-04-04
Losses Due to Power Cuts (RUDE PRAVO, PRAVDA, 21 Feb 85) .............................. 43 GERMAN DEMOCRATIC REPUBLIC Analysis of Factors Contributing to...PREGLED, 5 Mar 85) ................................ .110 Briefs Problems at Trepca 112 Fire in Urosevac Combine 112 Fire in Prizren Textile Plant 113...Possible Bankruptcies in Kosovo 113 Private Farm Planting 113 Trade With Iraq 113 Rail Agreement With Hungary, USSR 113 Kosovo Water System Delay 114 -b
Heo, Jae Sang; Eom, Jimi; Kim, Yong-Hoon; Park, Sung Kyu
2018-01-01
Wearable electronics are emerging as a platform for next-generation, human-friendly, electronic devices. A new class of devices with various functionality and amenability for the human body is essential. These new conceptual devices are likely to be a set of various functional devices such as displays, sensors, batteries, etc., which have quite different working conditions, on or in the human body. In these aspects, electronic textiles seem to be a highly suitable possibility, due to the unique characteristics of textiles such as being light weight and flexible and their inherent warmth and the property to conform. Therefore, e-textiles have evolved into fiber-based electronic apparel or body attachable types in order to foster significant industrialization of the key components with adaptable formats. Although the advances are noteworthy, their electrical performance and device features are still unsatisfactory for consumer level e-textile systems. To solve these issues, innovative structural and material designs, and novel processing technologies have been introduced into e-textile systems. Recently reported and significantly developed functional materials and devices are summarized, including their enhanced optoelectrical and mechanical properties. Furthermore, the remaining challenges are discussed, and effective strategies to facilitate the full realization of e-textile systems are suggested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A versatile computer package for mechanism analysis, part 2: Dynamics and balance
NASA Astrophysics Data System (ADS)
Davies, T.
The algorithms required for the shaking force components, the shaking moment about the crankshaft axis, and the input torque and bearing load components are discussed using the textile machine as a focus for the discussion. The example is also used to provide illustrations of the output for options on the hodograph of the shaking force vector. This provides estimates of the optimum contrarotating masses and their locations for a generalized primary Lanchester balancer. The suitability of generalized Lanchester balancers particularly for textile machinery, and the overall strategy used during the development of the package are outlined.
Allison, Linden; Hoxie, Steven; Andrew, Trisha L
2017-06-29
Traditional textile materials can be transformed into functional electronic components upon being dyed or coated with films of intrinsically conducting polymers, such as poly(aniline), poly(pyrrole) and poly(3,4-ethylenedioxythiophene). A variety of textile electronic devices are built from the conductive fibers and fabrics thus obtained, including: physiochemical sensors, thermoelectric fibers/fabrics, heated garments, artificial muscles and textile supercapacitors. In all these cases, electrical performance and device ruggedness is determined by the morphology of the conducting polymer active layer on the fiber or fabric substrate. Tremendous variation in active layer morphology can be observed with different coating or dyeing conditions. Here, we summarize various methods used to create fiber- and fabric-based devices and highlight the influence of the coating method on active layer morphology and device stability.
NASA Astrophysics Data System (ADS)
Haentzsche, Eric; Mueller, Ralf; Huebner, Matthias; Ruder, Tristan; Unger, Reimar; Nocke, Andreas; Cherif, Chokri
2016-10-01
Based on in situ strain sensors consisting of piezo-resistive carbon filament yarns (CFYs), which have been successfully integrated into textile reinforcement structures during their textile-technological manufacturing process, a continuous load of fibre-reinforced plastic (FRP) components has been realised. These sensors are also suitable for structural health monitoring (SHM) applications. The two-dimensional sensor layout is made feasible by the usage of a modular warp yarn path manipulation unit. Using a functional model of a small wind turbine blade in thermoset composite design, the sensor function for basic SHM applications (e.g. static load monitoring) are demonstrated. Any mechanical loads along the pressure or suction side of the wind turbine blade can be measured and calculated via a correlative change in resistance of the CFYs within the textile reinforcement plies. Performing quasi-static load tests on both tensile specimen and full-scale wind turbine blade, elementary results have been obtained concerning electro-mechanical behaviour and spatial resolution of global and even local static stresses according to the CFY sensor integration length. This paper demonstrates the great potential of textile-based and textile-technological integrated sensors in reinforcement structures for future SHM applications of FRPs.
The AMTEX Partnership{trademark}. Fourth quarter FY95 report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
The AMTEX Partnership{trademark} is a collaborative research and development program among the US Integrated Textile Industry, the Department of Energy (DOE), the national laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital industry, thereby preserving and creating US jobs. The operations and program management of the AMTEX Partnership{trademark} is provided by the Program Office. This report is produced by the Program Office on a quarterly basis and provides information on the progress, operations, and project management of the partnership. Progress is reported on the following projects: computer-aided fabric evaluation;more » cotton biotechnology; demand activated manufacturing architecture; electronic embedded fingerprints; on-line process control for flexible fiber manufacturing; rapid cutting; sensors for agile manufacturing; and textile resource conservation.« less
Van Baelen, Dries
2018-01-01
A novel manufacturing procedure for the fabrication of ultra-wideband cavity-backed substrate integrated waveguide antennas on textile substrates is proposed. The antenna cavity is constructed using a single laser-cut electrotextile patch, which is folded around the substrate. Electrotextile slabs protruding from the laser-cut patch are then vertically folded and glued to form the antenna cavity instead of rigid metal tubelets to implement the vertical cavity walls. This approach drastically improves mechanical flexibility, decreases the antenna weight to slightly more than 1 g and significantly reduces alignment errors. As a proof of concept, a cavity-backed substrate integrated waveguide antenna is designed and realized for ultra-wideband operation in the [5.15–5.85] GHz band. Antenna performance is validated in free space as well as in two on body measurement scenarios. Furthermore, the antenna’s figures of merit are characterized when the prototype is bent at different curvature radii, as commonly encountered during deployment on the human body. Also the effect of humidity content on antenna performance is studied. In all scenarios, the realized antenna covers the entire operating frequency band, meanwhile retaining a stable radiation pattern with a broadside gain above 5 dBi, and a radiation efficiency of at least 70%. PMID:29301378
Van Baelen, Dries; Lemey, Sam; Verhaevert, Jo; Rogier, Hendrik
2018-01-03
A novel manufacturing procedure for the fabrication of ultra-wideband cavity-backed substrate integrated waveguide antennas on textile substrates is proposed. The antenna cavity is constructed using a single laser-cut electrotextile patch, which is folded around the substrate. Electrotextile slabs protruding from the laser-cut patch are then vertically folded and glued to form the antenna cavity instead of rigid metal tubelets to implement the vertical cavity walls. This approach drastically improves mechanical flexibility, decreases the antenna weight to slightly more than 1 g and significantly reduces alignment errors. As a proof of concept, a cavity-backed substrate integrated waveguide antenna is designed and realized for ultra-wideband operation in the [5.15-5.85] GHz band. Antenna performance is validated in free space as well as in two on body measurement scenarios. Furthermore, the antenna's figures of merit are characterized when the prototype is bent at different curvature radii, as commonly encountered during deployment on the human body. Also the effect of humidity content on antenna performance is studied. In all scenarios, the realized antenna covers the entire operating frequency band, meanwhile retaining a stable radiation pattern with a broadside gain above 5 dBi, and a radiation efficiency of at least 70%.
Machine-Washable PEDOT:PSS Dyed Silk Yarns for Electronic Textiles.
Ryan, Jason D; Mengistie, Desalegn Alemu; Gabrielsson, Roger; Lund, Anja; Müller, Christian
2017-03-15
Durable, electrically conducting yarns are a critical component of electronic textiles (e-textiles). Here, such yarns with exceptional wear and wash resistance are realized through dyeing silk from the silkworm Bombyx mori with the conjugated polymer:polyelectrolyte complex PEDOT:PSS. A high Young's modulus of approximately 2 GPa combined with a robust and scalable dyeing process results in up to 40 m long yarns that maintain their bulk electrical conductivity of approximately 14 S cm -1 when experiencing repeated bending stress as well as mechanical wear during sewing. Moreover, a high degree of ambient stability is paired with the ability to withstand both machine washing and dry cleaning. For the potential use for e-textile applications to be illustrated, an in-plane thermoelectric module that comprises 26 p-type legs is demonstrated by embroidery of dyed silk yarns onto a piece of felted wool fabric.
Machine-Washable PEDOT:PSS Dyed Silk Yarns for Electronic Textiles
2017-01-01
Durable, electrically conducting yarns are a critical component of electronic textiles (e-textiles). Here, such yarns with exceptional wear and wash resistance are realized through dyeing silk from the silkworm Bombyx mori with the conjugated polymer:polyelectrolyte complex PEDOT:PSS. A high Young’s modulus of approximately 2 GPa combined with a robust and scalable dyeing process results in up to 40 m long yarns that maintain their bulk electrical conductivity of approximately 14 S cm–1 when experiencing repeated bending stress as well as mechanical wear during sewing. Moreover, a high degree of ambient stability is paired with the ability to withstand both machine washing and dry cleaning. For the potential use for e-textile applications to be illustrated, an in-plane thermoelectric module that comprises 26 p-type legs is demonstrated by embroidery of dyed silk yarns onto a piece of felted wool fabric. PMID:28245105
E-Textile Embroidered Metamaterial Transmission Line for Signal Propagation Control.
Moradi, Bahareh; Fernández-García, Raul; Gil, Ignacio
2018-06-05
In this paper, the utilization of common fabrics for the manufacturing of e-textile metamaterial transmission lines is investigated. In order to filter and control the signal propagation in the ultra-high frequency (UHF) range along the e-textile, a conventional metamaterial transmission line was compared with embroidered metamaterial particles. The proposed design was based on a transmission line loaded with one or several split-ring resonators (SRR) on a felt substrate. To explore the relations between physical parameters and filter performance characteristics, theoretical models based on transmission matrices' description of the filter constituent components were proposed. Excellent agreement between theoretical prediction, electromagnetic simulations, and measurement were found. Experimental results showed stop-band levels higher than -30 dB for compact embroidered metamaterial e-textiles. The validated results confirmed embroidery as a useful technique to obtain customized electromagnetic properties, such as filtering, on wearable applications.
Development of textile-based high-tech products: the new challenge.
da Rocha, Ana Maria M F
2004-01-01
The new generation of smart textiles is represented by fibers, yarns, fabrics and other resulting products that have special properties, regarding mechanical, chemical, electrical and thermal performances. These high-tech products, being able to respond to external stimuli through the integration of electronic components, phase change materials, shape memory materials or nano materials, enabled the development of different active and functional products. These products when combining the functions of medium, carrier and interface for micro-systems applications represent the ideal connecting channel between humans and the environment. This is a field of innovation that broadened the scope of the traditional textile and apparel products to high-tech textiles, designed to meet specific needs, involving different technologies and produced according to required properties, like personal protection, safety, leisure or health wear. The development of smart wear is a new challenge for the textile and clothing industry: it has to develop products based not only on design, fashion and comfort concepts but also in terms of functions. Moreover these products must be easy to care and durable.
Combustion of textile residues in a packed bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Changkook; Phan, Anh N.; Sharifi, Vida N.
2007-08-15
Textile is one of the main components in the municipal waste which is to be diverted from landfill for material and energy recovery. As an initial investigation for energy recovery from textile residues, the combustion of cotton fabrics with a minor fraction of polyester was investigated in a packed bed combustor for air flow rates ranging from 117 to 1638 kg/m{sup 2} h (0.027-0.371 m/s). Tests were also carried out in order to evaluate the co-combustion of textile residues with two segregated waste materials: waste wood and cardboard. Textile residues showed different combustion characteristics when compared to typical waste materialsmore » at low air flow rates below 819 kg/m{sup 2} h (0.186 m/s). The ignition front propagated fast along the air channels randomly formed between packed textile particles while leaving a large amount of unignited material above. This resulted in irregular behaviour of the temperature profile, ignition rate and the percentage of weight loss in the ignition propagation stage. A slow smouldering burn-out stage followed the ignition propagation stage. At air flow rates of 1200-1600 kg/m{sup 2} h (0.272-0.363 m/s), the bed had a maximum burning rate of about 240 kg/m{sup 2} h consuming most of the combustibles in the ignition propagation stage. More uniform combustion with an increased burning rate was achieved when textile residues were co-burned with cardboard that had a similar bulk density. (author)« less
Effect of tow alignment on the mechanical performance of 3D woven textile composites
NASA Technical Reports Server (NTRS)
Norman, Timothy L.; Allison, Patti; Baldwin, Jack W.; Gracias, Brian K.; Seesdorf, Dave
1993-01-01
Three-dimensional (3D) woven preforms are currently being considered for use as primary structural components. Lack of technology to properly manufacture, characterize and predict mechanical properties, and predict damage mechanisms leading to failure are problems facing designers of textile composite materials. Two material systems with identical specifications but different manufacturing approaches are investigated. One manufacturing approach resulted in an irregular (nonuniform) preform geometry. The other approach yielded the expected preform geometry (uniform). The objectives are to compare the mechanical properties of the uniform and nonuniform angle interlock 3D weave constructions. The effect of adding layers of laminated tape to the outer surfaces of the textile preform is also examined. Damage mechanisms are investigated and test methods are evaluated.
NASA Astrophysics Data System (ADS)
Bian, Xing-Ming; Liu, Lin; Li, Hai-Bing; Wang, Chan-Yuan; Xie, Qing; Zhao, Quan-Liang; Bi, Song; Hou, Zhi-Ling
2017-01-01
Since manipulating electromagnetic waves with electromagnetic active materials for environmental and electric engineering is a significant task, here a novel prototype is reported by introducing reduced graphene oxide (RGO) interfaces in carbon fiber (CF) networks for a hierarchical carbon fiber/reduced graphene oxide/nickel (CF-RGO-Ni) composite textile. Upon charaterizations of the microscopic morphologies, electrical and magnetic properties, the presence of three-dimensional RGO interfaces and bifunctional nickel nanoparticles substantially influences the related physical properties in the resulting hierarchical composite textiles. Eletromagnetic interference (EMI) shielding performance suggests that the hierarchical composite textiles hold a strong shielding effectiveness greater than 61 dB, showing greater advantages than conventional polymeric and foamy shielding composites. As a polymer-free lightweight structure, flexible CF-RGO-Ni composites of all electromagnetic active components offer unique understanding of the multi-scale and multiple mechanisms in electromagnetic energy consumption. Such a novel prototype of shielding structures along with convenient technology highlight a strategy to achieve high-performance EMI shielding, coupled with a universal approach for preparing advanced lightweight composites with graphene interfaces.
Irzmańska, Emilia
2015-03-01
The paper presents ergonomic evaluation of footwear used with three types of textile liners differing in terms of design and material composition. Two novel textile composite liners with enhanced hygienic properties were compared with a standard liner used in firefighter boots. The study involved 45 healthy firefighters from fire and rescue units who wore protective footwear with one of the three types of liners. The study was conducted in a laboratory under a normal atmosphere. The ergonomic properties of the protective footwear and liners were evaluated according to the standard EN ISO 20344:2012 as well as using an additional questionnaire concerning the thermal and moisture sensations experienced while wearing the footwear. The study was conducted on a much larger group of subjects (45) than that required by the ISO standard (3) to increase the reliability of subjective evaluations. Some statistically significant differences were found between the different types of textile liners used in firefighter boots. It was confirmed that the ergonomic properties of protective footwear worn in the workplace may be improved by the use of appropriate textile components. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Bento, J. B.; Franca, R. D. G.; Pinheiro, T.; Alves, L. C.; Pinheiro, H. M.; Lourenço, N. D.
2017-08-01
The use of engineered nanoparticles in the textile industry has been rapidly increasing but their fate during biological wastewater treatment is largely unknown. The goal of the current study was to characterize the interaction of silver nanoparticles (AgNPs), used in the textile industry, with a biological wastewater treatment system based on aerobic granular sludge (AGS). The exposure tests were performed using a laboratory-scale sequencing batch reactor (SBR) system with AGS. The behavior and fate of textile AgNPs in the AGS system was studied with nuclear microscopy techniques. Elemental maps of AGS samples collected from the SBR showed that AgNPs typically clustered in agglomerates of small dimensions (<10 μm), which were preferentially associated with extracellular polymeric substances (EPS). This preliminary study highlights the potential application of nuclear microscopy for the characterization of the behavior and fate of AgNPs in AGS. The detailed compartmentalization of AgNPs in AGS components obtained with nuclear microscopy provides new and relevant information concerning AgNPs retention. This will be important in biotechnological terms to delineate strategies for AgNPs removal from textile wastewater.
Wearable Electronics and Smart Textiles: A Critical Review
Stoppa, Matteo; Chiolerio, Alessandro
2014-01-01
Electronic Textiles (e-textiles) are fabrics that feature electronics and interconnections woven into them, presenting physical flexibility and typical size that cannot be achieved with other existing electronic manufacturing techniques. Components and interconnections are intrinsic to the fabric and thus are less visible and not susceptible of becoming tangled or snagged by surrounding objects. E-textiles can also more easily adapt to fast changes in the computational and sensing requirements of any specific application, this one representing a useful feature for power management and context awareness. The vision behind wearable computing foresees future electronic systems to be an integral part of our everyday outfits. Such electronic devices have to meet special requirements concerning wearability. Wearable systems will be characterized by their ability to automatically recognize the activity and the behavioral status of their own user as well as of the situation around her/him, and to use this information to adjust the systems' configuration and functionality. This review focuses on recent advances in the field of Smart Textiles and pays particular attention to the materials and their manufacturing process. Each technique shows advantages and disadvantages and our aim is to highlight a possible trade-off between flexibility, ergonomics, low power consumption, integration and eventually autonomy. PMID:25004153
Wearable electronics and smart textiles: a critical review.
Stoppa, Matteo; Chiolerio, Alessandro
2014-07-07
Electronic Textiles (e-textiles) are fabrics that feature electronics and interconnections woven into them, presenting physical flexibility and typical size that cannot be achieved with other existing electronic manufacturing techniques. Components and interconnections are intrinsic to the fabric and thus are less visible and not susceptible of becoming tangled or snagged by surrounding objects. E-textiles can also more easily adapt to fast changes in the computational and sensing requirements of any specific application, this one representing a useful feature for power management and context awareness. The vision behind wearable computing foresees future electronic systems to be an integral part of our everyday outfits. Such electronic devices have to meet special requirements concerning wearability. Wearable systems will be characterized by their ability to automatically recognize the activity and the behavioral status of their own user as well as of the situation around her/him, and to use this information to adjust the systems' configuration and functionality. This review focuses on recent advances in the field of Smart Textiles and pays particular attention to the materials and their manufacturing process. Each technique shows advantages and disadvantages and our aim is to highlight a possible trade-off between flexibility, ergonomics, low power consumption, integration and eventually autonomy.
Liang, Sai; Zhang, Tianzhu; Xu, Yijian
2012-03-01
Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants.
Liang, Xin; Ning, Xun-an; Chen, Guoxin; Lin, Meiqing; Liu, Jingyong; Wang, Yujie
2013-12-01
The safe disposal of sludge from textile dyeing industry requires research on bioavailability and concentration of heavy metals. In this study, concentrations and chemical speciation of heavy metals (Cd, Cr, Cu, Ni, Zn, Pb) in sludge from nine different textile dyeing plants were examined. Some physiochemical features of sludge from textile dyeing industry were determined, and a sequential extraction procedure recommended by the Community Bureau of Reference (BCR) was used to study the metal speciation. Cluster analysis (CA) and principal component analysis (PCA) were applied to provide additional information regarding differences in sludge composition. The results showed that Zn and Cu contents were the highest, followed by Ni, Cr, Cd and Pb. The concentration of Cd and Ni in some sludge samples exceeded the standard suggested for acidic soils in China (GB18918-2002). In sludge from textile dyeing plants, Pb, Cd and Cr were principally distributed in the oxidizable and residual fraction, Cu in the oxidizable fraction, Ni in all four fractions and Zn in the acid soluble/exchangeable and reducible fractions. The pH and heat-drying method affected the fractionation of heavy metals in sludge. © 2013 Elsevier Inc. All rights reserved.
Bian, Xing-Ming; Liu, Lin; Li, Hai-Bing; Wang, Chan-Yuan; Xie, Qing; Zhao, Quan-Liang; Bi, Song; Hou, Zhi-Ling
2017-01-27
Since manipulating electromagnetic waves with electromagnetic active materials for environmental and electric engineering is a significant task, here a novel prototype is reported by introducing reduced graphene oxide (RGO) interfaces in carbon fiber (CF) networks for a hierarchical carbon fiber/reduced graphene oxide/nickel (CF-RGO-Ni) composite textile. Upon charaterizations of the microscopic morphologies, electrical and magnetic properties, the presence of three-dimensional RGO interfaces and bifunctional nickel nanoparticles substantially influences the related physical properties in the resulting hierarchical composite textiles. Eletromagnetic interference (EMI) shielding performance suggests that the hierarchical composite textiles hold a strong shielding effectiveness greater than 61 dB, showing greater advantages than conventional polymeric and foamy shielding composites. As a polymer-free lightweight structure, flexible CF-RGO-Ni composites of all electromagnetic active components offer unique understanding of the multi-scale and multiple mechanisms in electromagnetic energy consumption. Such a novel prototype of shielding structures along with convenient technology highlight a strategy to achieve high-performance EMI shielding, coupled with a universal approach for preparing advanced lightweight composites with graphene interfaces.
[Identification of varieties of textile fibers by using Vis/NIR infrared spectroscopy technique].
Wu, Gui-Fang; He, Yong
2010-02-01
The aim of the present paper was to provide new insight into Vis/NIR spectroscopic analysis of textile fibers. In order to achieve rapid identification of the varieties of fibers, the authors selected 5 kinds of fibers of cotton, flax, wool, silk and tencel to do a study with Vis/NIR spectroscopy. Firstly, the spectra of each kind of fiber were scanned by spectrometer, and principal component analysis (PCA) method was used to analyze the characteristics of the pattern of Vis/NIR spectra. Principal component scores scatter plot (PC1 x PC2 x PC3) of fiber indicated the classification effect of five varieties of fibers. The former 6 principal components (PCs) were selected according to the quantity and size of PCs. The PCA classification model was optimized by using the least-squares support vector machines (LS-SVM) method. The authors used the 6 PCs extracted by PCA as the inputs of LS-SVM, and PCA-LS-SVM model was built to achieve varieties validation as well as mathematical model building and optimization analysis. Two hundred samples (40 samples for each variety of fibers) of five varieties of fibers were used for calibration of PCA-LS-SVM model, and the other 50 samples (10 samples for each variety of fibers) were used for validation. The result of validation showed that Vis/NIR spectroscopy technique based on PCA-LS-SVM had a powerful classification capability. It provides a new method for identifying varieties of fibers rapidly and real time, so it has important significance for protecting the rights of consumers, ensuring the quality of textiles, and implementing rationalization production and transaction of textile materials and its production.
NASA Astrophysics Data System (ADS)
Ueland, Maiken; Howes, Johanna M.; Forbes, Shari L.; Stuart, Barbara H.
2017-10-01
Textiles are a valuable source of forensic evidence and the nature and condition of textiles collected from a crime scene can assist investigators in determining the nature of the death and aid in the identification of the victim. Until now, much of the knowledge of textile degradation in forensic contexts has been based on the visual inspection of material collected from soil environments. The purpose of the current study was to investigate the potential of a more quantitative approach to the understanding of forensic textile degradation through the application of infrared spectroscopy. Degradation patterns of natural and synthetic textile materials as they were subjected to a natural outdoor environment in Australia were investigated. Cotton, polyester and polyester - cotton blend textiles were placed on a soil surface during the summer and winter seasons and were analysed over periods 1 and 1.5 years, respectively, and examined using attenuated total reflectance (ATR) spectroscopy. Statistical analysis of the spectral data obtained for the cotton material correlated with visual degradation and a difference in the onset of degradation between the summer and winter season was revealed. The synthetic material did not show any signs of degradation either visually or statistically throughout the experimental period and highlighted the importance of material type in terms of preservation. The cotton section from the polyester - cotton blend samples was found to behave in a similar manner to that of the 100% cotton samples, however principal component analysis (PCA) demonstrated that the degradation patterns were less distinct in both the summer and winter trial for the blend samples. These findings indicated that the presence of the synthetic material may have inhibited the degradation of the natural material. The use of statistics to analyse the spectral data obtained for textiles of forensic interest provides a better foundation for the interpretation of the data obtained using ATR-FTIR spectroscopy, and has provided insight into textile degradation processes relevant to a soil environment.
Production of Banana Fiber Yarns for Technical Textile Reinforced Composites
Ortega, Zaida; Morón, Moisés; Monzón, Mario D.; Badalló, Pere; Paz, Rubén
2016-01-01
Natural fibers have been used as an alternative to synthetic ones for their greener character; banana fibers have the advantage of coming from an agricultural residue. Fibers have been extracted by mechanical means from banana tree pseudostems, as a strategy to valorize banana crops residues. To increase the mechanical properties of the composite, technical textiles can be used as reinforcement, instead of short fibers. To do so, fibers must be spun and woven. The aim of this paper is to show the viability of using banana fibers to obtain a yarn suitable to be woven, after an enzymatic treatment, which is more environmentally friendly. Extracted long fibers are cut to 50 mm length and then immersed into an enzymatic bath for their refining. Conditions of enzymatic treatment have been optimized to produce a textile grade of banana fibers, which have then been characterized. The optimum treating conditions were found with the use of Biopectinase K (100% related to fiber weight) at 45 °C, pH 4.5 for 6 h, with bath renewal after three hours. The first spinning trials show that these fibers are suitable to be used for the production of yarns. The next step is the weaving process to obtain a technical fabric for composites production. PMID:28773490
Manimaran, S; Rajalakshmi, R; Bhagyalakshmi, K
2015-01-01
The development of Occupational Safety and Health Management System in textile industry will rejuvenate the workers and energize the economy as a whole. In India, especially in Tamil Nadu, approximately 1371 textile business is running with the help of 38,461 workers under Ginning, Spinning, Weaving, Garment and Dyeing sectors. Textile industry of contributes to the growth of Indian economy but it fails to foster education and health as key components of human development and help new democracies. The present work attempts to measure and develop OSHMS which reduce the hazards and risk involved in textile industry. Among all other industries textile industry is affected by enormous hazards and risk because of negligence by management and Government. It is evident that managements are not abiding by law when an accident has occurred. Managements are easily deceiving workers and least bothered about the Quality of Work Life (QWL). A detailed analysis of factors promoting safety and health to the workers has been done by performing confirmatory factor analysis, evaluating Risk Priority Number and the framework of OHMS has been conceptualized using Structural Equation Model. The data have been collected using questionnaire and interview method. The study finds occupation health for worker in Textile industry is affected not only by safety measure but also by technology and management. The work shows that difficulty in identifying the cause and effect of hazards, the influence of management in controlling and promoting OSHMS under various dimensions. One startling fact is existence of very low and insignificance correlation between health factors and outcome.
Code of Federal Regulations, 2010 CFR
2010-04-01
... knitting machine. Several components with finished edges may be linked by yarn or thread as they are... reference to fabric components, means that all of the production processes, starting with the production of... fabric(s), means that all of the production processes, starting with polymers, fibers, filaments, textile...
Code of Federal Regulations, 2011 CFR
2011-04-01
... knitting machine. Several components with finished edges may be linked by yarn or thread as they are... reference to fabric components, means that all of the production processes, starting with the production of... fabric(s), means that all of the production processes, starting with polymers, fibers, filaments, textile...
Code of Federal Regulations, 2012 CFR
2012-04-01
... knitting machine. Several components with finished edges may be linked by yarn or thread as they are... reference to fabric components, means that all of the production processes, starting with the production of... fabric(s), means that all of the production processes, starting with polymers, fibers, filaments, textile...
Code of Federal Regulations, 2014 CFR
2014-04-01
... knitting machine. Several components with finished edges may be linked by yarn or thread as they are... reference to fabric components, means that all of the production processes, starting with the production of... fabric(s), means that all of the production processes, starting with polymers, fibers, filaments, textile...
Code of Federal Regulations, 2013 CFR
2013-04-01
... knitting machine. Several components with finished edges may be linked by yarn or thread as they are... reference to fabric components, means that all of the production processes, starting with the production of... fabric(s), means that all of the production processes, starting with polymers, fibers, filaments, textile...
Composites of 3D-Printed Polymers and Textile Fabrics*
NASA Astrophysics Data System (ADS)
Martens, Yasmin; Ehrmann, Andrea
2017-08-01
3D printing belongs to the rapidly emerging technologies of our time. Due to its recent drawback - the technology is relatively slow compared with other primary shaping methods, such as injection molding -, 3D printing is often not used for creating complete large components but to add specific features to existing larger objects. One of the possibilities to create such composites with an additional value consists in combining 3D printed polymers with textile fabrics. Several attempts have been made to enhance the adhesion between both materials, a task which is still challenging for diverse material combinations. Our paper reports about new experiments combining 3D printed embossed designs, snap fasteners and zip fasteners with different textile base materials, showing the possibilities and technical limits of these novel composites.
Identification of detergents for forensic fiber analysis.
Heider, Emily C; Mujumdar, Nirvani; Campiglia, Andres D
2016-11-01
Trace fibers are an important form of trace evidence, and identification of exogenous substances on textile fibers provides valuable information about the origin of the fiber. Laundering textiles can provide a unique fluorescent spectral signature of the whitening agent in the detergent that adsorbs to the fiber. Using fluorescence microscopy, the spectral characteristics of seven detergents adsorbed to single fibers drawn from laundered textiles were investigated, and principal component analysis of clusters was used to characterize the type of detergent on the fiber. On dyed nylon fibers, spectra from eight different detergent pairs could be resolved and washed validation fibers correctly classified. On dyed acrylic fibers, five different detergent pairs could be resolved and identified. Identification of the detergent type may prove useful in matching a trace fiber to its bulk specimen of origin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Sai; Zhang, Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn; Xu Yijian
Highlights: Black-Right-Pointing-Pointer Using crop straws and wood wastes for paper production should be promoted. Black-Right-Pointing-Pointer Bagasse and textile waste recycling should be properly limited. Black-Right-Pointing-Pointer Imports of scrap paper should be encouraged. Black-Right-Pointing-Pointer Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for papermore » production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.« less
The Design and Testing of a Dual Fiber Textile Matrix for Accelerating Surface Hemostasis
Fischer, Thomas H.; Vournakis, John N.; Manning, James E.; McCurdy, Shane L.; Rich, Preston B.; Nichols, Timothy C.; Scull, Christopher M.; McCord, Marian G.; Decorta, Joseph A.; Johnson, Peter C.; Smith, Carr J.
2011-01-01
The standard treatment for severe traumatic injury is frequently compression and application of gauze dressing to the site of hemorrhage. However, while able to rapidly absorb pools of shed blood, gauze fails to provide strong surface (topical) hemostasis. The result can be excess hemorrhage-related morbidity and mortality. We hypothesized that cost-effective materials (based on widespread availability of bulk fibers for other commercial uses) could be designed based on fundamental hemostatic principles to partially emulate the wicking properties of gauze while concurrently stimulating superior hemostasis. A panel of readily available textile fibers was screened for the ability to activate platelets and the intrinsic coagulation cascade in vitro. Type E continuous filament glass and a specialty rayon fiber were identified from the material panel as accelerators of hemostatic reactions and were custom woven to produce a dual fiber textile bandage. The glass component strongly activated platelets while the specialty rayon agglutinated red blood cells. In comparison with gauze in vitro, the dual fiber textile significantly enhanced the rate of thrombin generation, clot generation as measured by thromboelastography, adhesive protein adsorption and cellular attachment and activation. These results indicate that hemostatic textiles can be designed that mimic gauze in form but surpass gauze in ability to accelerate hemostatic reactions. PMID:19489008
Ueland, Maiken; Nizio, Katie D; Forbes, Shari L; Stuart, Barbara H
2015-10-01
Textiles are a commonly encountered source of evidence in forensic cases. In the past, most research has been focused on how textiles affect the decomposition process while little attention has been paid to how the decomposition products interact with the textiles. While some studies have shown that the presence of remains will have an effect on the degradation of clothing associated with a decaying body, very little work has been carried out on the specific mechanisms that prevent or delay textile degradation when in contact with decomposing remains. In order to investigate the effect of decomposition fluid on textile degradation, three clothed domestic pig (Sus scrofa domesticus) carcasses were placed on a soil surface, textile specimens were collected over a period of a year and were then analysed using ATR-FTIR spectroscopy and GC-MS. Multivariate statistical analysis was used to analyse the data. Cotton specimens not associated with remains degraded markedly, whereas the samples exposed to decomposition fluids remained relatively intact over the same time frame. An investigation of the decomposition by-products found that the protein-related bands remained stable and unchanged throughout the experiment. Lipid components, on the other hand, demonstrated a significant change; this was confirmed with the use of both ATR-FTIR spectroscopy and GC-MS. Through an advanced statistical approach, information about the decomposition by-products and their characteristics was obtained. There is potential that the lipid profile in a textile specimen could be a valuable tool used in the examination of clothing located at a crime scene. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Feitkenhauer, H; Meyer, U
2001-08-23
Increasing costs for water, wastewater and energy put pressure on textile finishing plants to increase the efficiency of wet processing. An improved water management can decrease the use of these resources and is a prerequisite for the integration of an efficient, anaerobic on-site pretreatment of effluents that will further cut wastewater costs. A two-phase anaerobic treatment is proposed, and successful laboratory experiments with model effluents from the cotton finishing industry are reported. The chemical oxygen demand of this wastewater was reduced by over 88% at retention times of 1 day or longer. The next step to boost the efficiency is to combine the production and wastewater treatment. The example of cotton fabric desizing (removing size from the fabric) illustrates how this final step of integration uses the acidic phase bioreactor as a part of the production and allows to close the water cycle of the system.
Dadi, Diriba; Stellmacher, Till; Senbeta, Feyera; Van Passel, Steven; Azadi, Hossein
2017-01-01
This study focuses on four textile industries (DH-GEDA, NOYA, ALMHADI, and ALSAR) established between 2005 and 2008 in the peri-urban areas of Dukem and Gelan. The objectives of the study were to generate baseline information regarding the concentration levels of selected pollutants and to analyze their effects on biophysical environments. This study also attempts to explore the level of exposure that humans and livestock have to polluted effluents and the effects thereof. The findings of this study are based on data empirically collected from two sources: laboratory analysis of sample effluents from the four selected textile plants and quantitative as well as qualitative socioeconomic data collection. As part of the latter, a household survey and focus group discussions (FGDs) with elderly and other focal persons were employed in the towns of Dukem and Gelan. The results of the study show that large concentrations of biological oxygen demand (BOD 5 ), chemical oxygen demand (COD), total suspended solids (TSS), and pH were found in all the observed textile industries, at levels beyond the permissible discharge limit set by the national Environmental Protection Authority (EPA). Furthermore, sulfide (S 2) , R-phosphate (R-PO 4 3 ), and Zn were found in large concentrations in DH-GEDA and ALMHADI, while high concentrations were also identified in samples taken from ALSAR and ALMHADI. In spite of the clear-cut legal tools, this study shows that the local environment, people, and their livestock are exposed to highly contaminated effluents. We therefore recommend that the respective federal and regional government bodies should reexamine the compliance to and actual implementation of the existing legal procedures and regulations and respond appropriately.
Ferrari, Martina; Mazzoli, Roberto; Morales, Simona; Fedi, Mariaelena; Liccioli, Lucia; Piccirillo, Anna; Cavaleri, Tiziana; Oliva, Cinzia; Gallo, Paolo; Borla, Matilde; Cardinali, Michela; Pessione, Enrica
2017-09-01
The classification and conservation of ancient artworks (belonging to collections) is of important cultural, historical, and economic concern. However, ancient textiles often display structural damage that renders them fragile and unsuitable for exhibition. One of the most common types of damage is linked to erroneous restoration treatments, among which the application of glues to consolidate cuts. Harsh strategies, such as mechanical or chemical treatments, are not suitable since they can cause further impairment of the fabric, whereas mild approaches, like wet cleaning, are often ineffective, as also demonstrated by the present study. Here, we have explored the possibility of using gellan-immobilized enzymes of bacterial origin (Bacillus alpha-amylase) to obtain a satisfactory starch removal from a damaged archaeological tunic-shroud from the Turin Egyptian Museum (Italy), without altering the original yarns or textile fibers. This method, already applied to clean casein-damaged wall paintings, as well as cotton, silk, and linen fabrics, has proved to be optimal for the treatment of a wool burial shroud and to be able to definitively solve fragile textile restoration problems. Moreover, efforts have been made to obtain insights into the artwork: a multidisciplinary approach has allowed to obtain a correct chronological attribution (radiocarbon dating) and fabric fiber characterization (SEM-EDX) as well as shed light on the colored parts and dark stains (FORS+IRFC and XRF). Finally, the evaluation of the type of glue, by Fourier transform infrared spectroscopy, has suggested the best enzyme for glue removal. These results have demonstrated that a mild bio-based approach is a successful tool for the treatment of archaeological textiles in critical conditions.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) that are a product of the United States; and (3) Neither the fabricated components, materials or... footwear and parts of footwear, that are classifiable in an HTSUS subheading which carries a textile and....191(b)(1); and (3) A component, material, ingredient, or article shall be deemed to have not entered...
Code of Federal Regulations, 2012 CFR
2012-04-01
...) that are a product of the United States; and (3) Neither the fabricated components, materials or... footwear and parts of footwear, that are classifiable in an HTSUS subheading which carries a textile and....191(b)(1); and (3) A component, material, ingredient, or article shall be deemed to have not entered...
Code of Federal Regulations, 2011 CFR
2011-04-01
...) that are a product of the United States; and (3) Neither the fabricated components, materials or... footwear and parts of footwear, that are classifiable in an HTSUS subheading which carries a textile and....191(b)(1); and (3) A component, material, ingredient, or article shall be deemed to have not entered...
Code of Federal Regulations, 2013 CFR
2013-04-01
...) that are a product of the United States; and (3) Neither the fabricated components, materials or... footwear and parts of footwear, that are classifiable in an HTSUS subheading which carries a textile and....191(b)(1); and (3) A component, material, ingredient, or article shall be deemed to have not entered...
Lee, Jaehong; Shin, Sera; Lee, Sanggeun; Song, Jaekang; Kang, Subin; Han, Heetak; Kim, SeulGee; Kim, Seunghoe; Seo, Jungmok; Kim, DaeEun; Lee, Taeyoon
2018-05-22
Highly stretchable fiber strain sensors are one of the most important components for various applications in wearable electronics, electronic textiles, and biomedical electronics. Herein, we present a facile approach for fabricating highly stretchable and sensitive fiber strain sensors by embedding Ag nanoparticles into a stretchable fiber with a multifilament structure. The multifilament structure and Ag-rich shells of the fiber strain sensor enable the sensor to simultaneously achieve both a high sensitivity and largely wide sensing range despite its simple fabrication process and components. The fiber strain sensor simultaneously exhibits ultrahigh gauge factors (∼9.3 × 10 5 and ∼659 in the first stretching and subsequent stretching, respectively), a very broad strain-sensing range (450 and 200% for the first and subsequent stretching, respectively), and high durability for more than 10 000 stretching cycles. The fiber strain sensors can also be readily integrated into a glove to control a hand robot and effectively applied to monitor the large volume expansion of a balloon and a pig bladder for an artificial bladder system, thereby demonstrating the potential of the fiber strain sensors as candidates for electronic textiles, wearable electronics, and biomedical engineering.
Ueland, Maiken; Howes, Johanna M; Forbes, Shari L; Stuart, Barbara H
2017-10-05
Textiles are a valuable source of forensic evidence and the nature and condition of textiles collected from a crime scene can assist investigators in determining the nature of the death and aid in the identification of the victim. Until now, much of the knowledge of textile degradation in forensic contexts has been based on the visual inspection of material collected from soil environments. The purpose of the current study was to investigate the potential of a more quantitative approach to the understanding of forensic textile degradation through the application of infrared spectroscopy. Degradation patterns of natural and synthetic textile materials as they were subjected to a natural outdoor environment in Australia were investigated. Cotton, polyester and polyester - cotton blend textiles were placed on a soil surface during the summer and winter seasons and were analysed over periods 1 and 1.5years, respectively, and examined using attenuated total reflectance (ATR) spectroscopy. Statistical analysis of the spectral data obtained for the cotton material correlated with visual degradation and a difference in the onset of degradation between the summer and winter season was revealed. The synthetic material did not show any signs of degradation either visually or statistically throughout the experimental period and highlighted the importance of material type in terms of preservation. The cotton section from the polyester - cotton blend samples was found to behave in a similar manner to that of the 100% cotton samples, however principal component analysis (PCA) demonstrated that the degradation patterns were less distinct in both the summer and winter trial for the blend samples. These findings indicated that the presence of the synthetic material may have inhibited the degradation of the natural material. The use of statistics to analyse the spectral data obtained for textiles of forensic interest provides a better foundation for the interpretation of the data obtained using ATR-FTIR spectroscopy, and has provided insight into textile degradation processes relevant to a soil environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Productivity analysis to overcome the limited availability of production time in SME FBS
NASA Astrophysics Data System (ADS)
Nurhasanah, N.; Jingga; Aribowo, B.; Gayatri, AM; Mardhika, DA; Tanjung, WN; Suri, QA; Safitri, R.; Supriyanto, A.
2017-12-01
Good industrial development should pay attention to the human factor as the main driver. Condition of work procedures, work area, and environment can affect the production result because if not optimal, the production will run slowly. If the work system is less than optimal, the productivity will do so, the operator will work uncomfortably and be easy to undergo work fatigue, even it can cause work accidents. Thus, the optimal and ergonomic arrangement of the the overall work system mechanism and work environment design is required for workers to work well, regularly, safely and comfortably with the aim of improving work productivity. This research measures the performance in textile SME (Small and Medium Enterprise) located in Sukabumi which is SME FBS which produces children’s clothing. This performance measurement is aimed at improving the competitiveness of the textile IKM so that it has the equal competitiveness with other SMEs or with textile industries that already have their name in market. Based on the method of hour standard time and TOC calculation at 2 FBS CMT (Cut-Make-Trim) in Sukabumi, which are the CMT Margaluyu Village and CMT Purabaya Village, the result is that the standard time of shirt work on CMT Margaluyu Village is less than that of CMT Desa Purabaya. It can be seen that more effective in SME FBS production is by process method.
Chen, Qing; Yang, Ying; Zhou, Mengsi; Liu, Meihong; Yu, Sanchuan; Gao, Congjie
2015-03-02
Raw and biologically treated textile effluents were submerged filtrated using lab-fabricated hollow fiber nanofiltration membrane with a molecular weight cut-off of about 650 g/mol. Permeate flux, chemical oxygen demand (COD) reduction, color removal, membrane fouling, and cleaning were investigated and compared by varying the trans-membrane pressure (TMP) and volume concentrating factor (VCF). It was found that both raw and biologically treated textile effluents could be efficiently treated through submerged nanofiltration. The increase of TMP resulted in a decline in water permeability, COD reduction, color removal, and flux recovery ratio, while the increase of VCF resulted in both increased COD reduction and color removal. Under the TMP of 0.4 bar and VCF of 5.0, fluxes of 1.96 and 2.59 l/m(2)h, COD reductions of 95.7 and 94.2%, color removals of 99.0, and 97.3% and flux recovery ratios of 91.1 and 92.9% could be obtained in filtration of raw and biologically treated effluents, respectively. After filtration, the COD and color contents of the raw effluent declined sharply from 1780 to 325 mg/l and 1.200 to 0.060 Abs/cm, respectively, while for the biologically treated effluent, they decreased from 780 to 180 mg/l and 0.370 to 0.045 Abs/cm, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
Old scissors to industrial automation: the impact of technologic evolution on worker's health.
Teodoroski, Rita de Cassia Clark; Koppe, Vanessa Mazzocchi; Merino, Eugênio Andrés Díaz
2012-01-01
To cut a fabric, the professional performs different jobs and among them stands out the cut. The scissors has been the instrument most used for this activity. Over the years, technology has been conquering its space in the textile industry. However, despite the industrial automation able to offer subsidies to answer employment market demands, without appropriate orientation, the worker is exposed to the risks inherent at the job. Ergonomics is a science that search to promote the comfort and well being in consonance with efficacy. Its goals are properly well defined and clearly guide the actions aimed at transforming the working conditions. This study aimed to analyze the activity of cut tissues with a machine by a seamstress and the implications on their body posture. The methodology used was the observation technique and application of the Protocol RULA, where the result obtained was the level 3 and score 5, confirming that "investigations and changes are required soon". Conclude that using the machine to tissue cut should be encouraged, but in conjunction with orientations for improving posture while handling it. It seeks to prevent dysfunction of the musculoskeletal system that prevents employees from performing their work tasks efficiently and productively.
Accommodating multiple illumination sources in an imaging colorimetry environment
NASA Astrophysics Data System (ADS)
Tobin, Kenneth W., Jr.; Goddard, James S., Jr.; Hunt, Martin A.; Hylton, Kathy W.; Karnowski, Thomas P.; Simpson, Marc L.; Richards, Roger K.; Treece, Dale A.
2000-03-01
Researchers at the Oak Ridge National Laboratory have been developing a method for measuring color quality in textile products using a tri-stimulus color camera system. Initial results of the Imaging Tristimulus Colorimeter (ITC) were reported during 1999. These results showed that the projection onto convex sets (POCS) approach to color estimation could be applied to complex printed patterns on textile products with high accuracy and repeatability. Image-based color sensors used for on-line measurement are not colorimetric by nature and require a non-linear transformation of the component colors based on the spectral properties of the incident illumination, imaging sensor, and the actual textile color. Our earlier work reports these results for a broad-band, smoothly varying D65 standard illuminant. To move the measurement to the on-line environment with continuously manufactured textile webs, the illumination source becomes problematic. The spectral content of these light sources varies substantially from the D65 standard illuminant and can greatly impact the measurement performance of the POCS system. Although absolute color measurements are difficult to make under different illumination, referential measurements to monitor color drift provide a useful indication of product quality. Modifications to the ITC system have been implemented to enable the study of different light sources. These results and the subsequent analysis of relative color measurements will be reported for textile products.
Quantitative determination of wool in textile by near-infrared spectroscopy and multivariate models.
Chen, Hui; Tan, Chao; Lin, Zan
2018-08-05
The wool content in textiles is a key quality index and the corresponding quantitative analysis takes an important position due to common adulterations in both raw and finished textiles. Conventional methods are maybe complicated, destructive, time-consuming, environment-unfriendly. Developing a quick, easy-to-use and green alternative method is interesting. The work focuses on exploring the feasibility of combining near-infrared (NIR) spectroscopy and several partial least squares (PLS)-based algorithms and elastic component regression (ECR) algorithms for measuring wool content in textile. A total of 108 cloth samples with wool content ranging from 0% to 100% (w/w) were collected and all the compositions are really existent in the market. The dataset was divided equally into the training and test sets for developing and validating calibration models. When using local PLS, the original spectrum axis was split into 20 sub-intervals. No obvious difference of performance can be seen for the local PLS models. The ECR model is comparable or superior to the other models due its flexibility, i.e., being transition state from PCR to PLS. It seems that ECR combined with NIR technique may be a potential method for determining wool content in textile products. In addition, it might have regulatory advantages to avoid time-consuming and environmental-unfriendly chemical analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
Gotoh, Keiko
2017-01-01
The detergency of products, mainly textiles, was evaluated using various experimental systems and discussed from the viewpoint of interfacial phenomena. The detergency phenomena observed for geometrically simple model systems were explained in terms of the total potential energy of interaction between the soil and the substrate, which was calculated as the sum of the electrical double layer, Lifshitzvan der Waals, and acid-base interactions using electrokinetic potentials and surface free energy components. Cleaning experiments using artificially soiled fabrics were performed using electro-osmotic flow and ultrasound as mechanical actions for soil removal, and the results were compared with those obtained with mechanical actions commonly used in textile washing. Simultaneous hydrophilization of the substrate and soil by an atmospheric pressure plasma jet remarkably improved the detergency in aqueous solutions. The application of the atmospheric pressure plasma jet to anti-fouling textiles was also proposed.
[Reactions to fragrances and textiles].
Hausen, B M
1987-12-01
Allergic reactions to fragrances are caused by perfumes and perfume-containing items of our environment. The most important allergen is cinnamic aldehyde. By means of the mixed perfume test recommended by the International Contact Dermatitis Research Group (ICDRG), however, we are not able to detect more than half of the patients suffering from perfume allergy. Thus we suggest to make use of two new test series comprising most of the relevant fragrance components. Allergic reactions to textiles are mostly due to textile dyes. Special regard must be given to the disperse dyes of the azo group in nylon stockings and tights. The three most important allergens are disperse yellow 3, disperse orange 3, and disperse red 1. According to our experiments, the sensitizing potency of these dyes is comparatively low. In contrast, two recently introduced azo dyes (disperse blue 106 and 124), which are mainly used in blouses and trousers, proved to be strong sensitizers.
Satonin, Darlene K; Ni, Xiao; Mitchell, Malcolm I; Joly, Hellen; Muram, David; Small, David S
2016-02-01
Testosterone 2% solution (Axiron) applied to armpit(s) is used for replacement therapy in men with a deficiency of endogenous testosterone. To determine the amount of testosterone on subjects' T-shirts 12 hours after applying testosterone solution, the residual testosterone on subjects' T-shirts after laundering, and the testosterone transferred to unworn textile items during laundering with worn T-shirts. Healthy males ≥18 years old applied 2 × 1.5 mL of testosterone 2% solution to both axillae (total testosterone dose: 120 mg) and dressed in cotton long-sleeved T-shirts after a ≥3-minute waiting period. T-shirts were worn 12 hours before being removed and cut into halves, after which a 10 × 10 cm sample of each armpit area was excised for testosterone quantification before or after laundering with samples of unworn textiles. Testosterone on worn T-shirts before and after laundering, and on unworn textiles laundered with the worn T-shirts. Twelve subjects enrolled and completed, with only minor adverse events. Mean testosterone in unwashed worn T-shirts was 7603 μg, with high between-subject variability (3359 μg to 13,069 μg), representing 13% of the dose to 1 armpit. Mean testosterone in worn, laundered T-shirts was 260 μg (7.55 μg to 1343 μg), representing 3% of the dose to 1 armpit. Mean transferred testosterone to other textiles during laundering ranged from 69 μg on texturized Dacron 56T Double to 10,402 μg on 87/13 nylon/Lycra knit, representing 0.0382% to 5.78% of the dose to 1 armpit. Thirteen percent of the testosterone applied to axillae was transferred to T-shirts during wear. Ninety-seven percent of the transferred testosterone was removed from the T-shirts during washing, some of which was then absorbed to various degrees by other textiles. Clinical implications of these findings and biological activity of the remaining/transferred testosterone are unknown. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
..., packing crates, decals, textile straps, mirrors, insulation, articles of steel (shapes, angles, bars, rods...-conditioner components, heat exchangers, filters, fire extinguishers, hydraulic jacks/hoists, parts of boring...
Mouri, Chika; Laursen, Richard
2011-10-14
Flavonoids in the grasses (Poaceae family), Arthraxon hispidus (Thunb.) Makino and Miscanthus tinctorius (Steudel) Hackel have long histories of use for producing yellow dyes in Japan and China, but up to now there have been no analytical procedures for characterizing the dye components in textiles dyed with these materials. LC-MS analysis of plant material and of silk dyed with extracts of these plants shows the presence, primarily, of flavonoid C-glycosides, three of which have been tentatively identified as luteolin 8-C-rhamnoside, apigenin 8-C-rhamnoside and luteolin 8-C-(4-ketorhamnoside). Two of these compounds, luteolin 8-C-rhamnoside (M=432), apigenin 8-C-rhamnoside (M=416), along with the previously known tricin (M=330) and several other flavonoids that appear in varying amounts, serve as unique markers for identifying A. hispidus and M. tinctorius as the source of yellow dyes in textiles. Using this information, we have been able to identify grass-derived dyes in Japanese textiles dated to the Nara and Heian periods. However, due to the high variability in the amounts of various flavonoid components, our goal of distinguishing between the two plant sources remains elusive. Copyright © 2011 Elsevier B.V. All rights reserved.
Fire resistant aircraft seat program
NASA Technical Reports Server (NTRS)
Fewell, L. A.
1979-01-01
Foams, textiles, and thermoformable plastics were tested to determine which materials were fire retardant, and safe for aircraft passenger seats. Seat components investigated were the decorative fabric cover, slip covers, fire blocking layer, cushion reinforcement, and the cushioning layer.
Ansah, Emmanuel; Wang, Lijun; Shahbazi, Abolghasem
2016-10-01
The thermogravimetric and calorimetric characteristics during pyrolysis of wood, paper, textile and polyethylene terephthalate (PET) plastic in municipal solid wastes (MSW), and co-pyrolysis of biomass-derived and plastic components with and without torrefaction were investigated. The active pyrolysis of the PET plastic occurred at a much higher temperature range between 360°C and 480°C than 220-380°C for the biomass derived components. The plastic pyrolyzed at a heating rate of 10°C/min had the highest maximum weight loss rate of 18.5wt%/min occurred at 420°C, followed by 10.8wt%/min at 340°C for both paper and textile, and 9.9wt%/min at 360°C for wood. At the end of the active pyrolysis stage, the final mass of paper, wood, textile and PET was 28.77%, 26.78%, 21.62% and 18.31%, respectively. During pyrolysis of individual MSW components at 500°C, the wood required the least amount of heat at 665.2J/g, compared to 2483.2J/g for textile, 2059.4J/g for paper and 2256.1J/g for PET plastic. The PET plastic had much higher activation energy of 181.86kJ/mol, compared to 41.47kJ/mol for wood, 50.01kJ/mol for paper and 36.65kJ/mol for textile during pyrolysis at a heating rate of 10°C/min. H2O and H2 peaks were observed on the MS curves for the pyrolysis of three biomass-derived materials but there was no obvious H2O and H2 peaks on the MS curves of PET plastic. There was a significant interaction between biomass and PET plastic during co-pyrolysis if the biomass fraction was dominant. The amount of heat required for the co-pyrolysis of the biomass and plastic mixture increased with the increase of plastic mass fraction in the mixture. Torrefaction at a proper temperature and time could improve the grindability of PET plastic. The increase of torrefaction temperature and time did not affect the temperature where the maximum pyrolytic rates occurred for both biomass and plastic but decreased the maximum pyrolysis rate of biomass and increased the maximum pyrolysis rate of PET plastic. The amount of heat for the pyrolysis of biomass and PET mixture co-torrefied at 280°C for 30min was 4365J/g at 500°C, compared to 1138J/g for the pyrolysis of raw 50% wood and 50% PET mixture at the same condition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ford, Lauren; Henderson, Robert L; Rayner, Christopher M; Blackburn, Richard S
2017-03-03
Madder (Rubia tinctorum L.) has been widely used as a red dye throughout history. Acid-sensitive colorants present in madder, such as glycosides (lucidin primeveroside, ruberythric acid, galiosin) and sensitive aglycons (lucidin), are degraded in the textile back extraction process; in previous literature these sensitive molecules are either absent or present in only low concentrations due to the use of acid in typical textile back extraction processes. Anthraquinone aglycons alizarin and purpurin are usually identified in analysis following harsh back extraction methods, such those using solvent mixtures with concentrated hydrochloric acid at high temperatures. Use of softer extraction techniques potentially allows for dye components present in madder to be extracted without degradation, which can potentially provide more information about the original dye profile, which varies significantly between madder varieties, species and dyeing technique. Herein, a softer extraction method involving aqueous glucose solution was developed and compared to other back extraction techniques on wool dyed with root extract from different varieties of Rubia tinctorum. Efficiencies of the extraction methods were analysed by HPLC coupled with diode array detection. Acidic literature methods were evaluated and they generally caused hydrolysis and degradation of the dye components, with alizarin, lucidin, and purpurin being the main compounds extracted. In contrast, extraction in aqueous glucose solution provides a highly effective method for extraction of madder dyed wool and is shown to efficiently extract lucidin primeveroside and ruberythric acid without causing hydrolysis and also extract aglycons that are present due to hydrolysis during processing of the plant material. Glucose solution is a favourable extraction medium due to its ability to form extensive hydrogen bonding with glycosides present in madder, and displace them from the fibre. This new glucose method offers an efficient process that preserves these sensitive molecules and is a step-change in analysis of madder dyed textiles as it can provide further information about historical dye preparation and dyeing processes that current methods cannot. The method also efficiently extracts glycosides in artificially aged samples, making it applicable for museum textile artefacts. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ondogan, Ziynet; Pamuk, Oktay; Ondogan, Ece Nuket; Ozguney, Arif
2005-11-01
Denim trousers, commonly known as "blue jeans", have maintained their popularity for many years. For the purpose of supporting customers' purchasing behaviour and to address their aesthetic taste, companies have been trying in recent years to develop various techniques to improve the visual aspects of denim fabrics. These techniques mainly include printing on fabrics, embroidery and washing the final product. Especially, fraying certain areas of the fabric by sanding and stone washing to create designs is a popular technique. However, due to certain inconveniences caused by these procedures and in response to growing demands, research is underway to obtain a similar appearance by creating better quality and more advantageous manufacturing conditions. As is known, the laser is a source of energy which can be directed on desired objects and whose power and intensity can be easily controlled. Use of the laser enables us to cut a great variety of material from metal to fabric. Starting off from this point, we thought it would be possible to transfer certain designs onto the surface of textile material by changing the dye molecules in the fabric and creating alterations in its colour quality values by directing the laser to the material at reduced intensity. This study mainly deals with a machine specially designed for making use of laser beams to transfer pictures, figures as well as graphics of desired variety, size and intensity on all kinds of surfaces in textile manufacturing such as knitted—woven fabrics, leather, etc. at desired precision and without damaging the texture of the material. In the designed system, computer-controlled laser beams are used to change the colour of the dye material on the textile surface by directing the laser beams at a desired wavelength and intensity onto various textile surfaces selected for application. For this purpose, a laser beam source that can reach the initial level of power and that can be controlled by means of a computer interface; reflecting mirrors that can direct this beam at two axes; a galvanometer which comprised of an optical aperture; and a computer program that can transfer images obtained in standard formats to the galvanometer control card were used. Developing new designs by using the computer and transferring the designs that are obtained on textile surfaces will not only increase and facilitate the production in a more practical manner, but also help you to create identical designs. This means serial manufacturing of the products at a standard quality and increasing their added values. Moreover, creating textile designs using laser will also contribute to the value of the product as far as the consumer is concerned because it will not cause any wearing off and deformation in the texture of the fabric unlike the sanding and stoning processes. Another advantage of this system is that it gives a richer look to the product by causing the textile surfaces to get wrinkled and become three-dimensional by deformation as well as enabling you to create pictures and patterns on leather and synthetic fabrics by means of heat. As for the results of the study, the first step was to prepare 40 pairs of denim trousers, half of which were prepared manually and the other half by using laser beam. Time studies were made at every step of the production. So as to determine the abrasion degrees of the trousers in design applications, tensile strength as well as tensile extension tests were conducted for all the trousers.
Smart textiles for tactile sensing and energy storage
NASA Astrophysics Data System (ADS)
Gorgutsa, Stepan
During my master's I have mainly worked on two subjects in the research area of electroactive smart textiles. My first project involved building a touch sensitive textile pad using original home-made all-polymer soft capacitor fibers. The capacitor fibers featuring relatively high capacitance and resistance were fabricated using fiber drawing technique. For the ease of connectorization, a thin copper wire was integrated into the fiber core during drawing procedure. Soft-capacitor fibers have a typical capacitance per unit length of 69 nF/m, and a typical resistivity parameter of 5 kΩ·m. Our measurements and theoretical modeling show that the fiber capacitance is a very stable, geometry defined parameter independent of the fiber diameter, and fiber fabrication parameters. In contrast, fiber resistivity has a very strong positive temperature coefficient, it is highly sensitive to stretching, and it is strongly dependent on the fiber drawing parameters. Next, an individual capacitor fiber was demonstrated to act as a slide sensor that allows determining the touch position along its length by measuring the fiber AC response at a single point at the fiber surface. Electrical response of such a sensor was described by the RC ladder model, with the modelling data in excellent agreement with experimental observations. Developed capacitor fibers are soft, small diameter, lightweight and do not use liquid electrolytes, thus they are ideally suited for the integration into textile products. At the end of the chapter, we have demonstrated that by weaving a one dimensional array of capacitor fibers (in parallel to each other) a fully woven 2D touchpad sensor could be build. Performance of a touchpad sensor was then characterised and the absence of the inter-channel crosstalk was confirmed. We also note that a 2D touchpad has a partial multi-touch functionality. My second project involved assembly of flexible and stretchable Li-ion batteries, their integration into a textile, and their electric characterization in a view of smart textile applications. The chemistry for the battery was developed by my colleague Y. Liu who has combined the relatively conventional Li battery materials including LiFePO4 cathode, Li4Ti 5O12 anode and PEO solid electrolyte into a non-conventional soft electrochemical battery system. I have experimentally demonstrated that flexible batteries can be first cast as sheets, and then cut into thin strips, and finally integrated into textile using conventional weaving techniques. The electrochemical performance of the film batteries was extensively characterized and found to be poorer compared to the performance of batteries based on the powder electrodes and liquid electrolytes. At the same time, cycling performance of the solid film batteries was stable, and together with their soft leather-like feel and appearance, this makes such batteries well suitable for smart textile applications. Although operating voltage of a single flexible battery is relatively low (˜0.3V), nevertheless, when several of them are connected in series, the net voltage can be large enough for practical applications. Finally, as a demonstrator of the technology I have tested a textile battery comprising 8 flexible battery strips woven together and connectorized in series to power up a 3V LED over several hours.
Method and apparatus for suppressing regenerative instability and related chatter in machine tools
Segalman, Daniel J.; Redmond, James M.
2001-01-01
Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.
Method and apparatus for suppressing regenerative instability and related chatter in machine tools
Segalman, Daniel J.; Redmond, James M.
1999-01-01
Methods of and apparatuses for mitigating chatter vibrations in machine tools or components thereof. Chatter therein is suppressed by periodically or continuously varying the stiffness of the cutting tool (or some component of the cutting tool), and hence the resonant frequency of the cutting tool (or some component thereof). The varying of resonant frequency of the cutting tool can be accomplished by modulating the stiffness of the cutting tool, the cutting tool holder, or any other component of the support for the cutting tool. By periodically altering the impedance of the cutting tool assembly, chatter is mitigated. In one embodiment, a cyclic electric (or magnetic) field is applied to the spindle quill which contains an electro-rheological (or magneto-rheological) fluid. The variable yield stress in the fluid affects the coupling of the spindle to the machine tool structure, changing the natural frequency of oscillation. Altering the modal characteristics in this fashion disrupts the modulation of current tool vibrations with previous tool vibrations recorded on the workpiece surface.
Non-destructive NIR-FT-Raman analyses in practice. Part I. Analyses of plants and historic textiles.
Andreev, G N; Schrader, B; Schulz, H; Fuchs, R; Popov, S; Handjieva, N
2001-12-01
Non-destructive analysis of natural substances in plants as well as of old dyed textiles by Raman spectroscopy has not been possible using conventional techniques. Exciting lines from the visible part of the spectrum produced photochemical and thermal decomposition of the objects as well as strong fluorescence. Using Nd:YAG laser excitation at 1,064 nm together with a special sample arrangement and interferometric recording, various polyacetylenes in Aethusa cynapium and in chamomile (Chamomilla recutita) and the main valuable substances in gentian species (Gentiana lutea and G. punctata), curcuma roots (Curcuma longa), cinnamon (Cinnamomum zeylanicum), fennel (Foeniculum vulgare), clove (Caryophyllus aromaticus), and ginger (Zingiber officinale) were analyzed non-destructively and discussed in comparison with the corresponding pure standard compounds. We further analyzed non-destructively the FT Raman spectra of collections of historical textiles and lakes used for dyeing. It is possible to distinguish the main dye component non-destructively by using Raman bands.
SIGPI. Fault Tree Cut Set System Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patenaude, C.J.
1992-01-13
SIGPI computes the probabilistic performance of complex systems by combining cut set or other binary product data with probability information on each basic event. SIGPI is designed to work with either coherent systems, where the system fails when certain combinations of components fail, or noncoherent systems, where at least one cut set occurs only if at least one component of the system is operating properly. The program can handle conditionally independent components, dependent components, or a combination of component types and has been used to evaluate responses to environmental threats and seismic events. The three data types that can bemore » input are cut set data in disjoint normal form, basic component probabilities for independent basic components, and mean and covariance data for statistically dependent basic components.« less
SIGPI. Fault Tree Cut Set System Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patenaude, C.J.
1992-01-14
SIGPI computes the probabilistic performance of complex systems by combining cut set or other binary product data with probability information on each basic event. SIGPI is designed to work with either coherent systems, where the system fails when certain combinations of components fail, or noncoherent systems, where at least one cut set occurs only if at least one component of the system is operating properly. The program can handle conditionally independent components, dependent components, or a combination of component types and has been used to evaluate responses to environmental threats and seismic events. The three data types that can bemore » input are cut set data in disjoint normal form, basic component probabilities for independent basic components, and mean and covariance data for statistically dependent basic components.« less
Braun, Fabian; Ferrario, Damien; Rossi, René M.; Scheel-Sailer, Anke; Wolf, Martin; Bona, Gian-Luca; Hufenus, Rudolf; Scherer, Lukas J.
2017-01-01
Knowledge of an individual's skin condition is important for pressure ulcer prevention. Detecting early changes in skin through perfusion, oxygen saturation values, and pressure on tissue and subsequent therapeutic intervention could increase patients' quality of life drastically. However, most existing sensing options create additional risk of ulcer development due to further pressure on and chafing of the skin. Here, as a first component, we present a flexible, photonic textile-based sensor for the continuous monitoring of the heartbeat and blood flow. Polymer optical fibres (POFs) are melt-spun continuously and characterized optically and mechanically before being embroidered. The resulting sensor shows flexibility when embroidered into a moisture-wicking fabric, and withstands disinfection with hospital-type laundry cycles. Additionally, the new sensor textile shows a lower static coefficient of friction (COF) than conventionally used bedsheets in both dry and sweaty conditions versus a skin model. Finally, we demonstrate the functionality of our sensor by measuring the heartbeat at the forehead in reflection mode and comparing it with commercial finger photoplethysmography for several subjects. Our results will allow the development of flexible, individualized, and fully textile-integrated wearable sensors for sensitive skin conditions and general long-term monitoring of patients with risk for pressure ulcer. PMID:28275123
Quandt, Brit M; Braun, Fabian; Ferrario, Damien; Rossi, René M; Scheel-Sailer, Anke; Wolf, Martin; Bona, Gian-Luca; Hufenus, Rudolf; Scherer, Lukas J; Boesel, Luciano F
2017-03-01
Knowledge of an individual's skin condition is important for pressure ulcer prevention. Detecting early changes in skin through perfusion, oxygen saturation values, and pressure on tissue and subsequent therapeutic intervention could increase patients' quality of life drastically. However, most existing sensing options create additional risk of ulcer development due to further pressure on and chafing of the skin. Here, as a first component, we present a flexible, photonic textile-based sensor for the continuous monitoring of the heartbeat and blood flow. Polymer optical fibres (POFs) are melt-spun continuously and characterized optically and mechanically before being embroidered. The resulting sensor shows flexibility when embroidered into a moisture-wicking fabric, and withstands disinfection with hospital-type laundry cycles. Additionally, the new sensor textile shows a lower static coefficient of friction (COF) than conventionally used bedsheets in both dry and sweaty conditions versus a skin model. Finally, we demonstrate the functionality of our sensor by measuring the heartbeat at the forehead in reflection mode and comparing it with commercial finger photoplethysmography for several subjects. Our results will allow the development of flexible, individualized, and fully textile-integrated wearable sensors for sensitive skin conditions and general long-term monitoring of patients with risk for pressure ulcer. © 2017 The Author(s).
Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining
Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin
2016-01-01
Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing. PMID:27854322
Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining.
Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin
2016-11-16
Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.
Influence of shear cutting parameters on the fatigue behavior of a dual-phase steel
NASA Astrophysics Data System (ADS)
Paetzold, I.; Dittmann, F.; Feistle, M.; Golle, R.; Haefele, P.; Hoffmann, H.; Volk, W.
2017-09-01
The influence of the edge condition of car body and chassis components made of steel sheet on fatigue behavior under dynamic loading presents a major challenge for automotive manufacturers and suppliers. The calculated lifetime is based on material data determined by the fatigue testing of specimens with polished edges. Prototype components are often manufactured by milling or laser cutting, whereby in practice, the series components are produced by shear cutting due to its cost-efficiency. Since the fatigue crack in such components usually starts from a shear cut edge, the calculated and experimental determined lifetime will vary due to the different conditions at the shear cut edges. Therefore, the material data determined with polished edges can result in a non-conservative component design. The aim of this study is to understand the relationship between the shear cutting process and the fatigue behavior of a dual-phase steel sheet. The geometry of the shear cut edge as well as the depth and degree of work hardening in the shear affected zone can be adjusted by using specific shear cutting parameters, such as die clearance and cutting edge radius. Stress-controlled fatigue tests of unnotched specimens were carried out to compare the fatigue behavior of different edge conditions. By evaluating the results of the fatigue experiments, influential shear cutting parameters on fatigue behavior were identified. It was possible to assess investigated shear cutting strategies regarding the fatigue behavior of a high-strength steel DP800.
Melding Vapor-Phase Organic Chemistry and Textile Manufacturing To Produce Wearable Electronics.
Andrew, Trisha L; Zhang, Lushuai; Cheng, Nongyi; Baima, Morgan; Kim, Jae Joon; Allison, Linden; Hoxie, Steven
2018-04-17
Body-mountable electronics and electronically active garments are the future of portable, interactive devices. However, wearable devices and electronic garments are demanding technology platforms because of the large, varied mechanical stresses to which they are routinely subjected, which can easily abrade or damage microelectronic components and electronic interconnects. Furthermore, aesthetics and tactile perception (or feel) can make or break a nascent wearable technology, irrespective of device metrics. The breathability and comfort of commercial fabrics is unmatched. There is strong motivation to use something that is already familiar, such as cotton/silk thread, fabrics, and clothes, and imperceptibly adapt it to a new technological application. (24) Especially for smart garments, the intrinsic breathability, comfort, and feel of familiar fabrics cannot be replicated by devices built on metalized synthetic fabrics or cladded, often-heavy designer fibers. We propose that the strongest strategy to create long-lasting and impactful electronic garments is to start with a mass-produced article of clothing, fabric, or thread/yarn and coat it with conjugated polymers to yield various textile circuit components. Commonly available, mass-produced fabrics, yarns/threads, and premade garments can in theory be transformed into a plethora of comfortably wearable electronic devices upon being coated with films of electronically active conjugated polymers. The definitive hurdle is that premade garments, threads, and fabrics have densely textured, three-dimensional surfaces that display roughness over a large range of length scales, from microns to millimeters. Tremendous variation in the surface morphology of conjugated-polymer-coated fibers and fabrics can be observed with different coating or processing conditions. In turn, the morphology of the conjugated polymer active layer determines the electrical performance and, most importantly, the device ruggedness and lifetime. Reactive vapor coating methods allow a conjugated polymer film to be directly formed on the surface of any premade garment, prewoven fabric, or fiber/yarn substrate without the need for specialized processing conditions, surface pretreatments, detergents, or fixing agents. This feature allows electronic coatings to be applied at the end of existing, high-throughput textile and garment manufacturing routines, irrespective of dye content or surface finish of the final textile. Furthermore, reactive vapor coating produces conductive materials without any insulating moieties and yields uniform and conformal films on fiber/fabric surfaces that are notably wash- and wear-stable and can withstand mechanically demanding textile manufacturing routines. These unique features mean that rugged and practical textile electronic devices can be created using sewing, weaving, or knitting procedures without compromising or otherwise affecting the surface electronic coating. In this Account, we highlight selected electronic fabrics and garments created by melding reactive vapor deposition with traditional textile manipulation processes, including electrically heated gloves that are lightweight, breathable, and sweat-resistant; surface-coated cotton, silk, and bast fiber threads capable of carrying large current densities and acting as sewable circuit interconnects; and surface-coated nylon threads woven together to form triboelectric textiles that can convert surface charge created during small body movements into usable and storable power.
NASA Astrophysics Data System (ADS)
Kosztowny, Cyrus Joseph Robert
Use of carbon fiber textiles in complex manufacturing methods creates new implementations of structural components by increasing performance, lowering manufacturing costs, and making composites overall more attractive across industry. Advantages of textile composites include high area output, ease of handling during the manufacturing process, lower production costs per material used resulting from automation, and provide post-manufacturing assembly mainstreaming because significantly more complex geometries such as stiffened shell structures can be manufactured with fewer pieces. One significant challenge with using stiffened composite structures is stiffener separation under compression. Axial compression loading conditions have frequently observed catastrophic structural failure due to stiffeners separating from the shell skin. Characterizing stiffener separation behavior is often costly computationally and experimentally. The objectives of this research are to demonstrate unitized stiffened textile composite panels can be manufactured to produce quality test specimens, that existing characterization techniques applied to state-of-the-art high-performance composites provide valuable information in modeling such structures, that the unitized structure concept successfully removes stiffener separation as a primary structural failure mode, and that modeling textile material failure modes are sufficient to accurately capture postbuckling and final failure responses of the stiffened structures. The stiffened panels in this study have taken the integrally stiffened concept to an extent such that the stiffeners and skin are manufactured at the same time, as one single piece, and from the same composite textile layers. Stiffener separation is shown to be removed as a primary structural failure mode for unitized stiffened composite textile panels loaded under axial compression well into the postbuckling regime. Instead of stiffener separation, a material damaging and failure model effectively captures local post-peak material response via incorporating a mesoscale model using a multiscaling framework with a smeared crack element-based failure model in the macroscale stiffened panel. Material damage behavior is characterized by simple experimental tests and incorporated into the post-peak stiffness degradation law in the smeared crack implementation. Computational modeling results are in overall excellent agreement compared to the experimental responses.
USDA-ARS?s Scientific Manuscript database
The purpose of the cotton ginning process is to separate a field crop into its salable components. It is a necessary step between the farmer and the textile manufacturer. The original gin was a simple manually operated device that took hand harvested cotton and separated fiber from the cottonseed. T...
NASA Astrophysics Data System (ADS)
Christ, Mirko; Miene, Andrea; Mörschel, Ulrich
2017-08-01
Characterising the drapeability of reinforcement fabrics, is one of the most sought after abilities of those designing composite processes and components. This is not surprising as composite processes are being considered in a greater range of fields and applications. Drapeability effects are formed by the irregular rearrangement of fibres. This displacement can occur within the textile plane and result in fibre disorientations, undulations and gaps or the fibres can be pushed into the third dimension - forming wrinkles or loops. To measure such effects in non-crimp fabrics, the Textechno Drapetest automatic drapeability tester was developed. To show its viability as a tool for composite engineering, a set of fabrics was chosen to show that the influence of textile design parameters on drapeability effects is now quantifiable. The Textechno Drapetest uses a sophisticated digital image analysis system to measure the position and direction of fibres and conclude from this information on the extent and intensity of drapeability effects in the textile surface. To measure effects outside the surface, i.e. wrinkles, a laser triangulation sensor is employed. The textiles were varied in the production parameters of stitch point distance in machine direction (MD) and cross direction (CD), the weight per area, and the stitch pattern (tricot and chain). The measurements showed that the new test method is capable of measuring the effects that were expected from classical test setups as well as a range of additional effects. From the results a significant influence of the stitch yarn on the formation of effects can be deduced. Especially the density of stitch points is a parameter that lets the textile producer control the behaviour of the textile when they are formed into a doubly curved three dimensional shape. To control the gap formation, however, the spacing of the stitch points in machine or in crosswise direction is also of importance with a shorter stitch length decreasing the forming of gaps more than a tighter stitch yarn pitch.
Code of Federal Regulations, 2013 CFR
2013-04-01
... in” means that all of the components of the textile or apparel article (including thread, decorative...,” when used with reference to fabric(s), means that all of the production processes, starting with... with a fabric by a weaving, knitting, needling, tufting, felting, entangling or other process, took...
Code of Federal Regulations, 2010 CFR
2010-04-01
... in” means that all of the components of the textile or apparel article (including thread, decorative...,” when used with reference to fabric(s), means that all of the production processes, starting with... with a fabric by a weaving, knitting, needling, tufting, felting, entangling or other process, took...
Code of Federal Regulations, 2011 CFR
2011-04-01
... in” means that all of the components of the textile or apparel article (including thread, decorative...,” when used with reference to fabric(s), means that all of the production processes, starting with... with a fabric by a weaving, knitting, needling, tufting, felting, entangling or other process, took...
Code of Federal Regulations, 2012 CFR
2012-04-01
... in” means that all of the components of the textile or apparel article (including thread, decorative...,” when used with reference to fabric(s), means that all of the production processes, starting with... with a fabric by a weaving, knitting, needling, tufting, felting, entangling or other process, took...
Code of Federal Regulations, 2014 CFR
2014-04-01
... in” means that all of the components of the textile or apparel article (including thread, decorative...,” when used with reference to fabric(s), means that all of the production processes, starting with... with a fabric by a weaving, knitting, needling, tufting, felting, entangling or other process, took...
Yu, Marcia M L; Sandercock, P Mark L
2012-01-01
During the forensic examination of textile fibers, fibers are usually mounted on glass slides for visual inspection and identification under the microscope. One method that has the capability to accurately identify single textile fibers without subsequent demounting is Raman microspectroscopy. The effect of the mountant Entellan New on the Raman spectra of fibers was investigated to determine if it is suitable for fiber analysis. Raman spectra of synthetic fibers mounted in three different ways were collected and subjected to multivariate analysis. Principal component analysis score plots revealed that while spectra from different fiber classes formed distinct groups, fibers of the same class formed a single group regardless of the mounting method. The spectra of bare fibers and those mounted in Entellan New were found to be statistically indistinguishable by analysis of variance calculations. These results demonstrate that fibers mounted in Entellan New may be identified directly by Raman microspectroscopy without further sample preparation. © 2011 American Academy of Forensic Sciences.
Brominated flame retardants (BFRs) are used as additive or reactive components in a variety of polymers including high-impact polystyrene and epoxy resins, commercial products such as computers, electronics and electrical equipment, thermal insulation, textiles and furniture foam...
Experimental and analytical characterization of triaxially braided textile composites
NASA Technical Reports Server (NTRS)
Masters, John E.; Fedro, Mark J.; Ifju, Peter G.
1993-01-01
There were two components, experimental and analytical, to this investigation of triaxially braided textile composite materials. The experimental portion of the study centered on measuring the materials' longitudinal and transverse tensile moduli, Poisson's ratio, and strengths. The identification of the damage mechanisms exhibited by these materials was also a prime objective of the experimental investigation. The analytical portion of the investigation utilized the Textile Composites Analysis (TECA) model to predict modulus and strength. The analytical and experimental results were compared to assess the effectiveness of the analysis. The figures contained in this paper reflect the presentation made at the conference. They may be divided into four sections: a definition of the material system tested; followed by a series of figures summarizing the experimental results (these figures contain results of a Moire interferometry study of the strain distribution in the material, examples and descriptions of the types of damage encountered in these materials, and a summary of the measured properties); a description of the TECA model follows the experimental results (this includes a series of predicted results and a comparison with measured values); and finally, a brief summary completes the paper.
Physiological parameters monitoring of fire-fighters by means of a wearable wireless sensor system
NASA Astrophysics Data System (ADS)
Stelios, M.; Mitilineos, Stelios A.; Chatzistamatis, Panagiotis; Vassiliadis, Savvas; Primentas, Antonios; Kogias, Dimitris; Michailidis, Emmanouel T.; Rangoussi, Maria; Kurşun Bahadir, Senem; Atalay, Özgür; Kalaoğlu, Fatma; Sağlam, Yusuf
2016-03-01
Physiological parameter monitoring may be useful in many different groups of the population, such as infants, elderly people, athletes, soldiers, drivers, fire-fighters, police etc. This can provide a variety of information ranging from health status to operational readiness. In this article, we focus on the case of first responders and specifically fire-fighters. Firefighters can benefit from a physiological monitoring system that is used to extract multiple indications such as the present position, the possible life risk level, the stress level etc. This work presents a wearable wireless sensor network node, based on low cost, commercial-off- the-self (COTS) electronic modules, which can be easily attached on a standard fire-fighters’ uniform. Due to the low frequency wired interface between the selected electronic components, the proposed solution can be used as a basis for a textile system where all wired connections will be implemented by means of conductive yarn routing in the textile structure, while some of the standard sensors can be replaced by textile ones. System architecture is described in detail, while indicative samples of acquired signals are also presented.
Mechanical behavior of a triaxially braided textile composite at high temperature
NASA Astrophysics Data System (ADS)
El Mourid, Amine
The work presented in this thesis aimed at understanding the influence of viscoelasticity, temperature and aging on the mechanical behaviour of a textile composite using experimental, analytical and numerical tools. The studied material was a triaxially braided composite with fibres in the 0°/+/-60° directions. The yarns were made of carbon fibres, embedded in an MVK10 temperature resistant polyimide matrix. The first step consisted in developing analytical and numerical frameworks to predict viscoelastic behaviour in textile composites. Simulations were performed for both braided and woven textile architectures, at different stiffness contrasts and yarns volume fractions. The analytical framework accuracy was verified with the help of the numerical simulations. An important finding of this study was that the analytical framework, combined with the Mori-Tanaka model, leads to relatively accurate predictions for both the permanent and transient parts. Therefore, the authors believe that the Mori-Tanaka model with an adjusted aspect ratio to take into account yarn curvature is reliable for predicting viscoelastic behaviour in textile composites. The textile composite that was studied in this project did not display viscoelastic behaviour, due to the high yarn volume fraction. However, the framework remains relevant for higher temperature applications or lower yarn volume fractions. The second step was to investigate the temperature effect on the tensile behavior of the carbon/MVK10 triaxially braided composite material studied in this project. To achieve this goal, a series of room and high temperature tensile tests on both matrix and composite samples were performed. The tests on composite samples were performed along two different material directions at the maximum service temperature allowed by the Federal Aviation Administration for aircraft components, and a dedicated replication technique was developed in order to track crack densities as a function of loading, for both test temperatures. Then, both analytical and numerical homogenization models were used to quantify the stress distribution at the yarns level as a function of the applied temperature. Finally, the homogenization models were used to explain the failure mechanisms obtained at both temperatures, for the two material directions tested. The study revealed that the impact of the temperature on the failure mechanisms of the textile composite was dependent on the loading direction. It was observed that the yarns and matrix were more compliant at high temperature, especially for the transverse and shear properties. These changes had negligible effects on the elastic properties of the composite in both directions. However, they created local stress redistributions at the yarns level, which in turn affected the ultimate tensile strength of the composite. The concentration of stress in specific yarns decreased the UTS of the composite and changed the damage profile during loading. The analysis showed the potential of analytical and numerical models to explain failure paths in textile composites. At high temperature, the evolution in the constituent elastic properties was responsible for the changes in the stress profile in the material. The final step consisted in the study of the aging effect on the tensile strength and the failure mechanisms of a carbon/MVK10 triaxially braided composite for two material directions. The damage evolution was monitored with the help of edge and cross-section microscopical observations. At the maximum service temperature, the effect of physical aging on the composite's stiffness and density was negligible while the effect of chemical aging was gradually detrimental to the UTS. It was found that the UTS decreased by 30% in Direction 1 and by 20% in Direction 2 after 9 months of aging. Cracks initiated after 1 month of aging, preferentially on the edge surfaces of the specimen and grew inward as aging time increased. The yarns that were transverse to the sample cutting direction acted as catalyst to the aging process, creating anisotropy in the reduction of mechanical properties. Thermal oxidation was the main agent behind UTS degradation in the triaxially braided composite, causing the initiation of transverse cracks on transverse yarns at the surface of the specimen. The crack density and depth increased during aging, further weakening the material. The FAA requirement for a maximum service temperature is suitable to prevent physical aging. However, it does not prevent UTS degradation caused by chemical aging when fibres are in contact with the oxidizing environment. Nevertheless, the MVK10 matrix tested in this work exhibited relative properties retention similar to that of PMR15, which might make this matrix a suitable replacement. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Fial, Julian; Carosella, Stefan; Langheinz, Mario; Wiest, Patrick; Middendorf, Peter
2018-05-01
This paper investigates the application of sensors on carbon fibre textiles for the purpose of textile characterisation and draping process optimisation. The objective is to analyse a textile's condition during the draping operation and actively manipulate boundary conditions in order to create better preform qualities. Various realisations of textile integrated sensors are presented, focusing on the measurement of textile strain. Furthermore, a complex textile characterisation approach is presented where these sensors shall be implemented in.
2005-01-01
preservative, component of tar, diesel, or crude oil, CP Anthraquinone 0.5 Manuf dye/ textiles , seed treatment, bird repellant Benzo[a]pyrene 0.5...diethyl-meta-toluamide (Deet) 0.5 I, urban uses, mosquito repellent Naphthalene 0.5 Fumigant, moth repellent , major component (about 10%) of...UV, ultraviolet; --, no data] Compound name Laboratory reporting limit Possible compound uses or sources 1,4-Dichlorobenzene 0.5 Moth repellant
Abdel-Kareem, Omar
2010-01-01
Fungal deterioration is one of the highest risk factors for damage of historical textile objects in Egypt. This paper represents both a study case about the fungal microflora deteriorating historical textiles in the Egyptian Museum and the Coptic museum in Cairo, and evaluation of the efficacy of several combinations of polymers with fungicides for the reinforcement of textiles and their prevention against fungal deterioration. Both cotton swab technique and biodeteriorated textile part technique were used for isolation of fungi from historical textile objects. The plate method with the manual key was used for identification of fungi. The results show that the most dominant fungi isolated from the tested textile samples belong to Alternaria, Aspergillus, Chaetomium, Penicillium and Trichoderma species. Microbiological testing was used for evaluating the usefulness of the suggested conservation materials (polymers combined with fungicides) in prevention of the fungal deterioration of ancient Egyptian textiles. Textile samples were treated with 4 selected polymers combined with two selected fungicides. Untreated and treated textile samples were deteriorated by 3 selected active fungal strains isolated from ancient Egyptian textiles. This study reports that most of the tested polymers combined with the tested fungicides prevented the fungal deterioration of textiles. Treatment of ancient textiles by suggested polymers combined with the suggested fungicides not only reinforces these textiles, but also prevents fungal deterioration and increases the durability of these textiles. The tested polymers without fungicides reduce the fungal deterioration of textiles but do not prevent it completely.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
... of Apparel Articles Assembled in Beneficiary ATPDEA Countries From Regional Country Fabric AGENCY... (ATPA) to provide for duty and quota-free treatment for certain textile and apparel articles imported... articles assembled in ATPDEA beneficiary countries from regional fabric and components. More specifically...
The Role of Museum Exhibits in Teaching Textile Science
ERIC Educational Resources Information Center
Diddi, Sonali; Marcketti, Sara B.
2014-01-01
The concept of learning outside of the traditional, formal classroom setting is an important component of family and consumer sciences (FCS) educational pedagogy. Methods of learning beyond the FCS classroom include visiting museums, accessing archives--both in person and virtually--and participating in field studies (Roehl, 2013). Although many…
USDA-ARS?s Scientific Manuscript database
Micronaire is a key cotton fiber classing and quality assessment property, and changes in fiber micronaire can impact downstream fiber processing and dye consistency in the textile manufacturing industry. Micronaire is a function of two fiber components—fiber maturity and fineness. Historically, m...
Experimental investigation of edge hardening and edge cracking sensitivity of burr-free parts
NASA Astrophysics Data System (ADS)
Senn, Sergei; Liewald, Mathias
2018-05-01
This experimental study is focused on characterisation of edge hardening of sheet metal and remaining formability of differently prepared cutted edges. Edge cracking sensitivity of counter cutted, shear cutted, recutted and water-jet cutted components are compared and evaluated. Subsequently, edge hardening and hole expansion ratio were correlated for material HC420 LA with sheet thickness of t = 2 mm. As other studies show, the cutting edge surface quality influences the hole expansion ratio: a high clear cut surface increases formability of cutting edges, whereas micro cracks and rough surfaces result into a large fracture surface, which impact remaining formability noticeably. Thus, cutting edges with lower edge hardening behaviour in conjunction with a higher clear cut surface exhibit higher hole expansion ratios. Counter cutting and the recutting do show a similar effect on edge hardening. Using the hole expansion test, it was possible to prove that counter cutted components show a significantly lower edge cracking sensitivity in comparison to conventionally shear cutted components. The hole expansion ratio of counter cutted specimens looks balanced and is comparable to the hole expansion ratio measured from specimens with recutted or water jet cutted edges. The significant difference of the investigated cutting processes is characterized by size of clear cutting area. This area of recutted edges emerges larger than the area of counter cutted specimens, which evidently leads to an increased hole expansion ratio of recutted specimens compared to conventionally shear cutted ones. However, it is important to note that the hole expansion ratio of counter cutted and recutted specimens appear fairly balanced, but counter cutted samples indeed can be produced burr-free. Using counter cutting technology, it is possible to produce burr free surfaces with high edge formability.
Lymberis, Andreas; Olsson, Silas
2003-01-01
Telemedicine has been introduced to overcome distance in order to get prompt access to medical knowledge and appropriate health care. More recently, work in telemedicine has aimed at developing solutions to support the management of chronic diseases such as diabetes, and lung and heart diseases, as well as to provide support for home care services. Telemedicine is also entering the fields of health promotion/prevention disease, life style management, and well-being. The evolution and broadening of telemedicine gives birth to a nomenclature that includes "e-health," "telehealth," and "telecare." The latest developments in microsystems and nanotechnologies as well as in information processing and communication technologies allow miniaturization and non-invasive smart monitoring of physiological and physical data. Ongoing cutting-edge multidisciplinary research in textile fibers, biomedical sensors, and wireless and mobile telecommunications integrated with telemedicine, aims at developing intelligent biomedical clothing (IBC) that could pave the way to support personalized management of health and diseases at the point of need and at any time. In this study, we aim to describe the current status of multidisciplinary research and development of IBC, based on bibliographic research and reports from seminars, workshops, conferences, and working groups. A further aim is to inform the developers, the decision makers, and users in the health and healthcare sector regarding future solutions to support personalized health care and disease management. Both the textile sector and healthcare sector are looking with great interest at the innovative products and applications that could result from the integration of microsystems, nanotechnologies, biomedical sensors, textiles, and mobile telecommunications. For health monitoring, disease prevention and management, rehabilitation, and sport medicine, IBC may offer, in the mid-term future, a unique, wearable non-obtrusive telemedicine platform for individualized services that is readily accessible and of good quality.
ERIC Educational Resources Information Center
Buechley, Leah, Ed.; Peppler, Kylie, Ed.; Eisenberg, Michael, Ed.; Yasmin, Kafai, Ed.
2013-01-01
"Textile Messages" focuses on the emerging field of electronic textiles, or e-textiles--computers that can be soft, colorful, approachable, and beautiful. E-textiles are articles of clothing, home furnishings, or architectures that include embedded computational and electronic elements. This book introduces a collection of tools that…
Effect of textiles structural parameters on surgical healing; a case study
NASA Astrophysics Data System (ADS)
Marwa, A. Ali
2017-10-01
Medical Textiles is one of the most rapidly expanding sectors in the technical textile market. The huge growth of medical textiles applications was over the last 12 years. “Biomedical Textiles” is a subcategory of medical textiles that narrows the field down to those applications that are intended for active tissue contact, tissue regeneration or surgical implantation. Since the mid-1960s, the current wave of usage is coming as a result of new fibers and new technologies for textile materials construction. “Biotextiles” term include structures composed of textile fibers designed for use in specific biological environments. Medical Textile field was utilizing different materials, textile techniques and structures to provide new medical products with high functionality in the markets. There are other processes that are associated with textiles in terms of the various treatments and finishing. The aim of this article is to draw attention to the medical field in each of Vitro and Vivo trend, and its relation with textile structural parameters, with regard to the fiber material, production techniques, and fabric structures. Also, it is focusing on some cases studies which were applied in our research which produced with different textile parameters. Finally; an overview is presented about modern and innovative applications of the medical textiles.
Nettle as a distinct Bronze Age textile plant.
Bergfjord, C; Mannering, U; Frei, K M; Gleba, M; Scharff, A B; Skals, I; Heinemeier, J; Nosch, M-L; Holst, B
2012-01-01
It is generally assumed that the production of plant fibre textiles in ancient Europe, especially woven textiles for clothing, was closely linked to the development of agriculture through the use of cultivated textile plants (flax, hemp). Here we present a new investigation of the 2800 year old Lusehøj Bronze Age Textile from Voldtofte, Denmark, which challenges this assumption. We show that the textile is made of imported nettle, most probably from the Kärnten-Steiermark region, an area which at the time had an otherwise established flax production. Our results thus suggest that the production of woven plant fibre textiles in Bronze Age Europe was based not only on cultivated textile plants but also on the targeted exploitation of wild plants. The Lusehøj find points to a hitherto unrecognized role of nettle as an important textile plant and suggests the need for a re-evaluation of textile production resource management in prehistoric Europe.
Nettle as a distinct Bronze Age textile plant
Bergfjord, C.; Mannering, U.; Frei, K. M.; Gleba, M.; Scharff, A. B.; Skals, I.; Heinemeier, J.; Nosch, M. -L; Holst, B.
2012-01-01
It is generally assumed that the production of plant fibre textiles in ancient Europe, especially woven textiles for clothing, was closely linked to the development of agriculture through the use of cultivated textile plants (flax, hemp). Here we present a new investigation of the 2800 year old Lusehøj Bronze Age Textile from Voldtofte, Denmark, which challenges this assumption. We show that the textile is made of imported nettle, most probably from the Kärnten-Steiermark region, an area which at the time had an otherwise established flax production. Our results thus suggest that the production of woven plant fibre textiles in Bronze Age Europe was based not only on cultivated textile plants but also on the targeted exploitation of wild plants. The Lusehøj find points to a hitherto unrecognized role of nettle as an important textile plant and suggests the need for a re-evaluation of textile production resource management in prehistoric Europe. PMID:23024858
Van Langenhove, Lieva; Hertleer, Carla; Catrysse, Michael; Puers, Robert; Van Egmond, Harko; Matthijs, Dirk
2004-01-01
After technical textiles and functional textiles, also smart textiles came into force a few years ago. The term 'smart textiles' covers a broad range. The application possibilities are only limited by our imagination and creativity. In this presentation, it is further explored what smart textiles precisely mean. In a second part, an analysis is made of the possibilities, the state of affairs and the needs for further research.
NASA Astrophysics Data System (ADS)
Samadi, Reza
Technical textiles are increasingly being engineered and used in challenging applications, in areas such as safety, biomedical devices, architecture and others, where they must meet stringent demands including excellent and predictable load bearing capabilities. They also form the bases for one of the most widespread group of composite materials, fibre reinforced polymer-matrix composites (PMCs), which comprise materials made of stiff and strong fibres generally available in textile form and selected for their structural potential, combined with a polymer matrix that gives parts their shape. Manufacturing processes for PMCs and technical textiles, as well as parts and advanced textile structures must be engineered, ideally through simulation, and therefore diverse properties of the textiles, textile reinforcements and PMC materials must be available for predictive simulation. Knowing the detailed geometry of technical textiles is essential to predicting accurately the processing and performance properties of textiles and PMC parts. In turn, the geometry taken by a textile or a reinforcement textile is linked in an intricate manner to its constitutive behaviour. This thesis proposes, investigates and validates a general numerical tool for the integrated and comprehensive analysis of textile geometry and constitutive behaviour as required toward engineering applications featuring technical textiles and textile reinforcements. The tool shall be general with regards to the textiles modelled and the loading cases applied. Specifically, the work aims at fulfilling the following objectives: 1) developing and implementing dedicated simulation software for modelling textiles subjected to various load cases; 2) providing, through simulation, geometric descriptions for different textiles subjected to different load cases namely compaction, relaxation and shear; 3) predicting the constitutive behaviour of the textiles undergoing said load cases; 4) identifying parameters affecting the textile geometry and constitutive behaviour under evolving loading; 5) validating simulation results with experimental trials; and 6) demonstrating the applicability of the simulation procedure to textile reinforcements featuring large numbers of small fibres as used in PMCs. As a starting point, the effects of reinforcement configuration on the in-plane permeability of textile reinforcements, through-thickness thermal conductivity of PMCs and in-plane stiffness of unidirectional and bidirectional PMCs were quantified systematically and correlated with specific geometric parameters. Variability was quantified for each property at a constant fibre volume fraction. It was observed that variability differed strongly between properties; as such, the simulated behaviour can be related to variability levels seen in experimental measurements. The effects of the geometry of textile reinforcements on the aforementioned processing and performance properties of the textiles and PMCs made from these textiles was demonstrated and validated, but only for simple cases as thorough and credible geometric models were not available at the onset of this work. Outcomes of this work were published in a peer-reviewed journal [101]. Through this thesis it was demonstrated that predicting changes in textile geometry prior and during loading is feasible using the proposed particle-based modelling method. The particle-based modelling method relies on discrete mechanics and offers an alternative to more traditional methods based on continuum mechanics. Specifically it alleviates issues caused by large strains and management of intricate, evolving contact present in finite element simulations. The particle-based modelling method enables credible, intricate modelling of the geometry of textiles at the mesoscopic scale as well as faithful mechanical modelling under load. Changes to textile geometry and configuration due to the normal compaction pressure, stress relaxation, in-plane shear and other types of loads were successfully predicted.
New textile composite materials development, production, application
NASA Technical Reports Server (NTRS)
Mikhailov, Petr Y.
1993-01-01
New textile composite materials development, production, and application are discussed. Topics covered include: super-high-strength, super-high-modulus fibers, filaments, and materials manufactured on their basis; heat-resistant and nonflammable fibers, filaments, and textile fabrics; fibers and textile fabrics based on fluorocarbon poylmers; antifriction textile fabrics based on polyfen filaments; development of new types of textile combines and composite materials; and carbon filament-based fabrics.
Use of ATR FT-IR spectroscopy in non-destructive and rapid assessment of developmental cotton fibers
USDA-ARS?s Scientific Manuscript database
The knowledge of chemical and compositional components in cotton fibers is of value to cotton breeders and growers for cotton enhancement and to textile processors for quality control. In this work, we applied the previously proposed simple algorithms to analyze the attenuated total reflection Fouri...
Evaluation of the morphology of metal particles in intrinsic conductive polymer dispersions
NASA Astrophysics Data System (ADS)
Lempa, E.; Graßmann, C.; Rabe, M.; Schwarz-Pfeiffer, A.; van Langenhove, L.
2017-10-01
For the production of smart textiles the resistivity of prints and coatings with intrinsic conductive polymers is often too high and the performance properties not sufficient. The addition of metal components enhances many characteristics, however the choice of type of metal, morphology and application method influence results to great extend.
Detection of the Deformation of an Intelligent Textile in a Specific Point
Alsina, Maria; Escudero, Francesc; Margalef, Jordi; Cambra, Vicente; Gisbert, José
2007-01-01
An intelligent textile is a textile structure that measures and reacts in front of external agents or stimulus with or without integrated electronic equipment. The finality of the present textile is to take one more step towards intelligent textile, considering the integration of electronics and textile needs, to be industrially viable and to keep up the necessary competitiveness, raising the final price as little as possible. The finality of these experiments is to develop a textile that varies in conductivity and resistance in relation to the elongation of the textile, detecting changes caused by the alteration of a piece of clothing, from the pressure of a finger on the material, for example. One of the most important characteristics of textile is the capacity of reproducing measures, of varying the response in different tests. Two lines of research were opened: the study of the most adequate structure to achieve a response that can be reproduced and the study of the best way of taking measures without altering the behavior of the textile.
Romanian traditional motif - element of modernity in clothing
NASA Astrophysics Data System (ADS)
Doble, L.; Stan, O.; Suteu, M. D.; Albu, A.; Bohm, G.; Tsatsarou-Michalaki, A.; Gialinou, E.
2017-10-01
In this paper are presented the phases for improving from an aesthetic point of view a clothing item, the jacket respectively, with a straight cut for women using software design patterns, computerised graphics and textile different modern technologies including: industrial embroidery, digital printing, sublimation. In the first phase a documentation was prepared in the Ethnographic Museum of Transylvania from Cluj Napoca where more traditional motifs were selected specific to Transylvania etnographic region and were reintepreted and stylized whilst preserving the symbolism and color range specified to the area. For the styling phase was used CorelDraw vector graphics program that allows changing the shape, size and color of the drawings without affecting the identity of the pattern. In the patterns design phase Gemini CAD software was used and for the modeling and model development Optitex software was used. The part for garnishing the model was performed using Embrodery machine software reproducing the stylized motif identically. In order to obtain a significantly improved aesthetic look and an added artistic value the pattern chosen for the jacket was done using a combination of modern textile technologies. This has allowed the realization of a particular texture on the surface of the designed product, demonstrating that traditional patterns can be reintepreted in modern clothing
Paul-Victor, Cloé; Dalle Vacche, Sara; Sordo, Federica; Fink, Siegfried; Speck, Thomas; Michaud, Véronique; Speck, Olga
2017-01-01
As plant fibres are increasingly used in technical textiles and their composites, underlying principles of wound healing in living plant fibres are relevant to product quality, and provide inspiration for biomimetic healing in synthetic materials. In this work, two Linum usitatissimum cultivars differing in their stem mechanical properties, cv. Eden (stems resistant to lodging) and cv. Drakkar (with more flexible stems), were grown without wound or with stems previously wounded with a cut parallel or transversal to the stem. To investigate wound healing efficiency, growth traits, stem biomechanics with Dynamic Mechanical Analysis and anatomy were analysed after 25-day recovery. Longitudinal incisions formed open wounds while transversal incisions generated stem growth restoring the whole cross-section but not the original stem organisation. In the case of transversal wound healing, all the bast fibre bundles in the perturbed area became lignified and pulled apart by parenchyma cells growth. Both Linum cultivars showed a healing efficiency from 79% to 95% with higher scores for transversal healing. Morphological and anatomical modifications of Linum were related to mechanical properties and healing ability. Alongside with an increased understanding of wound healing in plants, our results highlight their possible impact on textile quality and fibre yield.
Paul-Victor, Cloé; Dalle Vacche, Sara; Sordo, Federica; Fink, Siegfried; Speck, Thomas; Michaud, Véronique
2017-01-01
As plant fibres are increasingly used in technical textiles and their composites, underlying principles of wound healing in living plant fibres are relevant to product quality, and provide inspiration for biomimetic healing in synthetic materials. In this work, two Linum usitatissimum cultivars differing in their stem mechanical properties, cv. Eden (stems resistant to lodging) and cv. Drakkar (with more flexible stems), were grown without wound or with stems previously wounded with a cut parallel or transversal to the stem. To investigate wound healing efficiency, growth traits, stem biomechanics with Dynamic Mechanical Analysis and anatomy were analysed after 25-day recovery. Longitudinal incisions formed open wounds while transversal incisions generated stem growth restoring the whole cross-section but not the original stem organisation. In the case of transversal wound healing, all the bast fibre bundles in the perturbed area became lignified and pulled apart by parenchyma cells growth. Both Linum cultivars showed a healing efficiency from 79% to 95% with higher scores for transversal healing. Morphological and anatomical modifications of Linum were related to mechanical properties and healing ability. Alongside with an increased understanding of wound healing in plants, our results highlight their possible impact on textile quality and fibre yield. PMID:28982196
Classification scheme and prevention measures for caught-in-between occupational fatalities.
Chi, Chia-Fen; Lin, Syuan-Zih
2018-04-01
The current study analyzed 312 caught-in-between fatalities caused by machinery and vehicles. A comprehensive and mutually exclusive coding scheme was developed to analyze and code each caught-in-between fatality in terms of age, gender, experience of the victim, type of industry, source of injury, and causes for these accidents. Boolean algebra analysis was applied on these 312 caught-in-between fatalities to derive minimal cut set (MCS) causes associated with each source of injury. Eventually, contributing factors and common accident patterns associated with (1) special process machinery including textile, printing, packaging machinery, (2) metal, woodworking, and special material machinery, (3) conveyor, (4) vehicle, (5) crane, (6) construction machinery, and (7) elevator can be divided into three major groups through Boolean algebra and MCS analysis. The MCS causes associated with conveyor share the same primary causes as those of the special process machinery including textile, printing, packaging and metal, woodworking, and special material machinery. These fatalities can be eliminated by focusing on the prevention measures associated with lack of safeguards, working on a running machine or process, unintentional activation, unsafe posture or position, unsafe clothing, and defective safeguards. Other precise and effective intervention can be developed based on the identified groups of accident causes associated with each source of injury. Copyright © 2017 Elsevier Ltd. All rights reserved.
Clothing and Textiles (Intermediate). Instructor's Guide. Revised.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Instructional Materials Lab.
This clothing and textiles teacher's manual contains five instructional units for a semester course. Units included are (1) Significance of Textiles and Clothing to the Individual in Society; (2) Nature of Textiles and Clothing; (3) Acquisition, Use, and Care of Textiles and Clothing; (4) Garment Construction; and (5) Occupations in…
The future of textile production in high wage countries
NASA Astrophysics Data System (ADS)
Kemper, M.; Gloy, Y.-S.; Gries, T.
2017-10-01
It is undisputed that smart production in the context of industry 4.0 offers significant potential for industrial production in Germany. Exploiting this potential provides an opportunity to meet the growing competitive pressure for textile production in high-wage Germany. The complete cross-linking of textile mills towards Textile Production 4.0 means substantial savings. However, currently there are still some challenges that have to be overcome on the long way to Textile Production 4.0. This paper initially reflects the particular challenges of textile production in high-wage Germany. Later, the vision of the future of smart textile production will be outlined. In addition, first pilot solutions and current research approaches which pave the way for Textile Production 4.0 are described.
Development of smart textiles with embedded fiber optic chemical sensors
NASA Astrophysics Data System (ADS)
Khalil, Saif E.; Yuan, Jianming; El-Sherif, Mahmoud A.
2004-03-01
Smart textiles are defined as textiles capable of monitoring their own health conditions or structural behavior, as well as sensing external environmental conditions. Smart textiles appear to be a future focus of the textile industry. As technology accelerates, textiles are found to be more useful and practical for potential advanced technologies. The majority of textiles are used in the clothing industry, which set up the idea of inventing smart clothes for various applications. Examples of such applications are medical trauma assessment and medical patients monitoring (heart and respiration rates), and environmental monitoring for public safety officials. Fiber optics have played a major role in the development of smart textiles as they have in smart structures in general. Optical fiber integration into textile structures (knitted, woven, and non-woven) is presented, and defines the proper methodology for the manufacturing of smart textiles. Samples of fabrics with integrated optical fibers were processed and tested for optical signal transmission. This was done in order to investigate the effect of textile production procedures on optical fiber performance. The tests proved the effectiveness of the developed methodology for integration of optical fibers without changing their optical performance or structural integrity.
Defined UV protection by apparel textiles.
Hoffmann, K; Laperre, J; Avermaete, A; Altmeyer, P; Gambichler, T
2001-08-01
This article was written to update information on test methods and standards for determining the UV protection of apparel textiles and on factors affecting UV protective properties of fabrics, from dermatological and textile technological viewpoints. Articles from dermatological and textile technological journals published from 1990 to 2001 were identified from MEDLINE, Excerpta Medica/EMBASE, World Textiles, and Textile Technology Digest. Peer-reviewed dermatological articles, textile technological research articles, and normative publications were selected. Independent data extraction was performed by several observers. Spectrophotometry is the preferred method for determining UV protection factor of textile materials. Various textile qualities affect the UV protection factor of a finished garment; important elements are the fabric porosity, type, color, weight, and thickness. The application of UV absorbers in the yarns significantly improves the UV protection factor of a garment. With wear and use, several factors can alter the UV protective properties of a textile, including stretch, wetness, and degradation due to laundering. Standards in the field exist in Australia and Great Britain, and organizations such as the European Standardization Commission in Europe and the American Association of Textile Chemists and Colorists and the American Society for Testing and Materials in the United States are also establishing standards for the determination and labeling of sun protective clothing. Various textile qualities and conditions of wear and use affect UV protective properties of apparel textiles. The use of UV blocking fabrics can provide excellent protection against the hazards of sunlight; this is especially true for garments manufactured as UV protective clothing.
Textile industry and occupational cancer.
Singh, Zorawar; Chadha, Pooja
2016-01-01
Thousands of workers are engaged in textile industry worldwide. Textile industry involves the use of different kinds of dyes which are known to possess carcinogenic properties. Solvents used in these industries are also associated with different health related hazards including cancer. In previous studies on textile and iron industries, the authors have reported genotoxicity among them and observed occurrence of cancer deaths among textile industry workers. Thus, an attempt has been made to compile the studies on the prevalence of different types of cancers among textile industry workers. A wide literature search has been done for compiling the present paper. Papers on cancer occurrence among textile industry workers have been taken from 1976 to 2015. A variety of textile dyes and solvents, many of them being carcinogenic, are being used worldwide in the textile industry. The textile industry workers are therefore, in continuous exposure to these dyes, solvents, fibre dusts and various other toxic chemicals. The present study evaluates the potential of different chemicals and physical factors to be carcinogenic agents among occupationally exposed workers by going through various available reports and researches. Papers were collected using different databases and a number of studies report the association of textile industry and different types of cancer including lung, bladder, colorectal and breast cancer. After going through the available reports, it can be concluded that workers under varied job categories in textile industries are at a higher risk of developing cancer as various chemicals used in the textile industry are toxic and can act as potential health risk in inducing cancer among them. Assessing the cancer risk at different job levels in textile industries may be found useful in assessing the overall risk to the workers and formulating the future cancer preventive strategies.
Surface-Roughness-Based Virtual Textiles: Evaluation Using a Multi-Contactor Display.
Philpott, Matthew; Summers, Ian R
2015-01-01
Virtual textiles, generated in response to exploratory movements, are presented to the fingertip via a 24-contactor vibrotactile array. Software models are based on surface-roughness profiles from real textiles. Results suggest that distinguishable "textile-like" surfaces are produced, but these lack the necessary accuracy for reliable matching to real textiles.
Arslan-Alaton, Idil; Seremet, Ozden
2004-01-01
Biotreated textile wastewater (CODo = 248 mg L(-1); TOCo = 58 mg L(-1); A620 = 0.007 cm(-1); A525 = 0.181 cm(-1); A436 = 0.198 cm(-1)) was subjected to advanced treatment with ozonation, granular activated carbon (GAC) adsorption in serial and simultaneous applications. Experiments were conducted to investigate the effects of applied ozone dose, ozone absorption rate, specific ozone absorption efficiency, GAC dose, and reaction pH on the treatment performance of the selected tertiary treatment scheme. In separate experiments, the impact of virgin GAC ozonation on its adsorptive capacity for biotreated and biotreated + ozonated textile effluent was also investigated. Ozonation appeared to be more effective for decolorization (kd = 0.15 min(-1) at pH = 3), whereas GAC adsorption yielded higher COD removal rates (54% at pH = 3). It was also found that GAC addition (4 g/L) at pH = 7 and 9 enhanced the COD abatement rate of the ozonation process significantly and that the sequential application of ozonation (at pH = 3-11, 675 mg L(-1) O3) followed by GAC adsorption (at pH = 3-7, 10 g L(-1) GAC) resulted in the highest treatment performances both in terms of color and COD reduction. Simultaneous application of GAC and ozone at acidic and alkaline pH seriously inhibited COD abatement rates as a consequence of competitive adsorption and partial oxidation of textile components and GAC. It could also be established that ozone absorption efficiency decreased after color removal was complete. Ozonation of biotreated textile wastewater with 113 mg L(-1) ozone resulted in an appreciable enhancement of GAC adsorptive capacity in terms of residual color removal. Ozonation of GAC at relatively low doses (= 10.8 mg/g GAC) did not improve its overall adsorption capacity.
NASA Astrophysics Data System (ADS)
Akyuz, Sevim; Akyuz, Tanil; Cakan, Banu; Basaran, Sait
2014-09-01
Some metal ornamented textile specimens and a textile button, excavated from Ancient Ainos (Enez - Turkey), have been investigated using FTIR and EDXRF spectrometry, for the purpose of material identification. FTIR spectral results indicated that textiles were made from partially degummed Bombyx mori silk. The IR spectral investigation of the textile button revealed that some cellulose fillings were used inside the button. The EDXRF analysis of the metal ornaments showed that they were silver plated copper. Surface morphology of the textiles and the metal ornaments were investigated by SEM images. It was shown that textile fibers were highly degraded.
Textile Retrieval Based on Image Content from CDC and Webcam Cameras in Indoor Environments.
García-Olalla, Oscar; Alegre, Enrique; Fernández-Robles, Laura; Fidalgo, Eduardo; Saikia, Surajit
2018-04-25
Textile based image retrieval for indoor environments can be used to retrieve images that contain the same textile, which may indicate that scenes are related. This makes up a useful approach for law enforcement agencies who want to find evidence based on matching between textiles. In this paper, we propose a novel pipeline that allows searching and retrieving textiles that appear in pictures of real scenes. Our approach is based on first obtaining regions containing textiles by using MSER on high pass filtered images of the RGB, HSV and Hue channels of the original photo. To describe the textile regions, we demonstrated that the combination of HOG and HCLOSIB is the best option for our proposal when using the correlation distance to match the query textile patch with the candidate regions. Furthermore, we introduce a new dataset, TextilTube, which comprises a total of 1913 textile regions labelled within 67 classes. We yielded 84.94% of success in the 40 nearest coincidences and 37.44% of precision taking into account just the first coincidence, which outperforms the current deep learning methods evaluated. Experimental results show that this pipeline can be used to set up an effective textile based image retrieval system in indoor environments.
Textile Retrieval Based on Image Content from CDC and Webcam Cameras in Indoor Environments
García-Olalla, Oscar; Saikia, Surajit
2018-01-01
Textile based image retrieval for indoor environments can be used to retrieve images that contain the same textile, which may indicate that scenes are related. This makes up a useful approach for law enforcement agencies who want to find evidence based on matching between textiles. In this paper, we propose a novel pipeline that allows searching and retrieving textiles that appear in pictures of real scenes. Our approach is based on first obtaining regions containing textiles by using MSER on high pass filtered images of the RGB, HSV and Hue channels of the original photo. To describe the textile regions, we demonstrated that the combination of HOG and HCLOSIB is the best option for our proposal when using the correlation distance to match the query textile patch with the candidate regions. Furthermore, we introduce a new dataset, TextilTube, which comprises a total of 1913 textile regions labelled within 67 classes. We yielded 84.94% of success in the 40 nearest coincidences and 37.44% of precision taking into account just the first coincidence, which outperforms the current deep learning methods evaluated. Experimental results show that this pipeline can be used to set up an effective textile based image retrieval system in indoor environments. PMID:29693590
Wagener, Sandra; Dommershausen, Nils; Jungnickel, Harald; Laux, Peter; Mitrano, Denise; Nowack, Bernd; Schneider, Gregor; Luch, Andreas
2016-06-07
This study addresses the release of total silver (Ag) and silver nanoparticles (Ag-NPs) from textiles into artificial sweat, particularly considering the functionalization technology used in textile finishing. Migration experiments were conducted for four commercially available textiles and for six laboratory-prepared textiles. Two among these lab-prepared textiles represent materials in which Ag-NPs were embedded within the textile fibers (composites), whereas the other lab-prepared textiles contain Ag particles on the respective fiber surfaces (coatings). The results indicate a smaller release of total Ag from composites in comparison to surface-coated textiles. The particulate fraction determined within the artificial sweat was negligible for most textiles, meaning that the majority of the released Ag is present as dissolved Ag. It is also relevant to note that nanotextiles do not release more particulate Ag than conventional Ag textiles. The results rather indicate that the functionalization type is the most important parameter affecting the migration. Furthermore, after measuring different Ag-NP types in their pristine form with inductively coupled plasma mass spectrometry in the single particle mode, there is evidence that particle modifications, like surface coating, may also influence the dissolution behavior of the Ag-NPs in the sweat solutions. These factors are important when discussing the likelihood of consumer exposure.
Flexible Textile-Based Organic Transistors Using Graphene/Ag Nanoparticle Electrode
Kim, Youn; Kwon, Yeon Ju; Lee, Kang Eun; Oh, Youngseok; Um, Moon-Kwang; Seong, Dong Gi; Lee, Jea Uk
2016-01-01
Highly flexible and electrically-conductive multifunctional textiles are desirable for use in wearable electronic applications. In this study, we fabricated multifunctional textile composites by vacuum filtration and wet-transfer of graphene oxide films on a flexible polyethylene terephthalate (PET) textile in association with embedding Ag nanoparticles (AgNPs) to improve the electrical conductivity. A flexible organic transistor can be developed by direct transfer of a dielectric/semiconducting double layer on the graphene/AgNP textile composite, where the textile composite was used as both flexible substrate and conductive gate electrode. The thermal treatment of a textile-based transistor enhanced the electrical performance (mobility = 7.2 cm2·V−1·s−1, on/off current ratio = 4 × 105, and threshold voltage = −1.1 V) due to the improvement of interfacial properties between the conductive textile electrode and the ion-gel dielectric layer. Furthermore, the textile transistors exhibited highly stable device performance under extended bending conditions (with a bending radius down to 3 mm and repeated tests over 1000 cycles). We believe that our simple methods for the fabrication of graphene/AgNP textile composite for use in textile-type transistors can potentially be applied to the development of flexible large-area electronic clothes. PMID:28335276
21 CFR 178.3650 - Odorless light petroleum hydrocarbons.
Code of Federal Regulations, 2014 CFR
2014-04-01
... follows: Wavelength (Mµ) Maximum absorb-ance per centimeter optical pathlength 280 to 289 4.0 290 to 299 3... practice. As a lubricant of fibers of textiles authorized for food contact use At a use level not to exceed 0.15 percent by weight of finished fibers. As a component of adhesives Complying with § 175.105 of...
49 CFR 178.520 - Standards for textile bags.
Code of Federal Regulations, 2012 CFR
2012-10-01
... for a sift-proof textile bag; and (3) 5L3 for a water-resistant textile bag. (b) Construction requirements for textile bags are as follows: (1) The textiles used must be of good quality. The strength of... use of paper bonded to the inner surface of the bag by a water-resistant adhesive such as bitumen...
49 CFR 178.520 - Standards for textile bags.
Code of Federal Regulations, 2014 CFR
2014-10-01
... for a sift-proof textile bag; and (3) 5L3 for a water-resistant textile bag. (b) Construction requirements for textile bags are as follows: (1) The textiles used must be of good quality. The strength of... use of paper bonded to the inner surface of the bag by a water-resistant adhesive such as bitumen...
49 CFR 178.520 - Standards for textile bags.
Code of Federal Regulations, 2013 CFR
2013-10-01
... for a sift-proof textile bag; and (3) 5L3 for a water-resistant textile bag. (b) Construction requirements for textile bags are as follows: (1) The textiles used must be of good quality. The strength of... use of paper bonded to the inner surface of the bag by a water-resistant adhesive such as bitumen...
Automation of cutting and drilling of composite components
NASA Technical Reports Server (NTRS)
Warren, Charles W.
1991-01-01
The task was to develop a preliminary plan for an automated system for the cutting and drilling of advanced aerospace composite components. The goal was to automate the production of these components, but the technology developed can be readily extended to other systems. There is an excellent opportunity for developing a state of the art automated system for the cutting and drilling of large composite components at NASA-Marshall. Most of the major system components are in place: the robot, the water jet pump, and the off-line programming system. The drilling system and the part location system are the only major components that need to be developed. Also, another water jet nozzle and a small amount of high pressure plumbing need to be purchased from, and installed.
Hospital Textiles, Are They a Possible Vehicle for Healthcare-Associated Infections?
Fijan, Sabina; Šostar Turk, Sonja
2012-01-01
Textiles are a common material in healthcare facilities; therefore it is important that they do not pose as a vehicle for the transfer of pathogens to patients or hospital workers. During the course of use hospital textiles become contaminated and laundering is necessary. Laundering of healthcare textiles is most commonly adequate, but in some instances, due to inappropriate disinfection or subsequent recontamination, the textiles may become a contaminated inanimate surface with the possibility to transfer pathogens. In this review we searched the published literature in order to answer four review questions: (1) Are there any reports on the survival of microorganisms on hospital textiles after laundering? (2) Are there any reports that indicate the presence of microorganisms on hospital textiles during use? (3) Are there any reports that microorganisms on textiles are a possible source infection of patients? (4) Are there any reports that microorganisms on textiles are a possible source infection for healthcare workers? PMID:23202690
Development of a 2-stage shear-cutting-process to reduce cut-edge-sensitivity of steels
NASA Astrophysics Data System (ADS)
Gläsner, T.; Sunderkötter, C.; Hoffmann, H.; Volk, W.; Golle, R.
2017-09-01
The edge cracking sensitivity of AHSS and UHSS is a challenging factor in the cold forming process. Expanding cut holes during flanging operations is rather common in automotive components. During these flanging operations the pierced hole is stretched so that its diameter is increased. These flanging operations stretch material that has already been subjected to large amounts of plastic deformation, therefore forming problems may occur. An innovative cutting process decreases micro cracks in the cutting surface and facilitates the subsequent cold forming process. That cutting process consists of two stages, which produces close dimensional tolerance and smooth edges. As a result the hole expanding ratio was increased by nearly 100 % when using thick high strength steels for suspension components. The paper describes the mechanisms of the trimming process at the cut edge, and the positive effect of the 2-stage shear-cutting process on the hole extension capability of multiphase steels.
Ghayempour, Soraya; Montazer, Majid
2016-09-01
Herbal products have been widely used due to good antimicrobial, fragrance and medical properties. Essential oils and fragrances can be applied on the textile substrates as micro/nanocapsules to prolong lifetime by controlling the release rate. The present review tries to give a general overview on the application of micro/nanoencapsulated essential oils on the textile substrates to achieve aromatherapy textiles. These are divided into four diverse categories as the following: antimicrobial, perfumed, mosquito-repellent and medical textiles. The reports in this field revealed that the encapsulation technique plays an important role in the finishing of plant extracts on the textile substrates. It is also anticipated that aromatherapy textiles have to be developed in the new fields such as multifunctional textiles having wound-healing, antimicrobial and fragrant properties.
NASA Astrophysics Data System (ADS)
Schmitt, R.; Niggemann, C.; Mersmann, C.
2008-04-01
Fibre-reinforced plastics (FRP) are particularly suitable for components where light-weight structures with advanced mechanical properties are required, e.g. for aerospace parts. Nevertheless, many manufacturing processes for FRP include manual production steps without an integrated quality control. A vital step in the process chain is the lay-up of the textile preform, as it greatly affects the geometry and the mechanical performance of the final part. In order to automate the FRP production, an inline machine vision system is needed for a closed-loop control of the preform lay-up. This work describes the development of a novel laser light-section sensor for optical inspection of textile preforms and its integration and validation in a machine vision prototype. The proposed method aims at the determination of the contour position of each textile layer through edge scanning. The scanning route is automatically derived by using texture analysis algorithms in a preliminary step. As sensor output a distinct stage profile is computed from the acquired greyscale image. The contour position is determined with sub-pixel accuracy using a novel algorithm based on a non-linear least-square fitting to a sigmoid function. The whole contour position is generated through data fusion of the measured edge points. The proposed method provides robust process automation for the FRP production improving the process quality and reducing the scrap quota. Hence, the range of economically feasible FRP products can be increased and new market segments with cost sensitive products can be addressed.
Clementi, Catia; Nowik, Witold; Romani, Aldo; Cardon, Dominique; Trojanowicz, Marek; Davantès, Athénaïs; Chaminade, Pierre
2016-07-05
In this paper, partial least square (PLS) regression is innovatively applied for a semi-quantitative non invasive study of the most precious dye of Antiquity: Tyrian purple. This original approach for the study of organic dyes in the cultural heritage field, is based on the correlation of spectrophotometric (UV-Visible) and chromatographic (Fast-HT-HPLC-PDA) data from an extensive set of textiles prepared with different snail species according to historical recipes. A cross-validated PLS model, based on the quantity of 6,6'-dibromoindigotin, displays an excellent correlation factor (R(2)Y = 0.987) between values determined by chromatography and those predicted from reflectance spectra. This indicates that the spectral features of Tyrian purple on textile fibre is strictly related to the amount of this indigoid component whose content may be non invasively predicted from reflectance spectrum. The studied correlation also highlights that, independently of the dyeing method and nature of the textile fibre used, the relative content of 6,6'-dibromindigotin may be used as a parameter to distinguish samples prepared with Hexaplex trunculus L. snails from those prepared with further mollusc species. To validate this model, archaeological textile fragments dating from the Roman period were successfully examined. The results achieved open an absolutely new way in Tyrian purple analysis in cultural heritage by non invasive spectroscopic techniques attesting their convergence with HPLC and giving them a semi-quantitative value. Copyright © 2016 Elsevier B.V. All rights reserved.
Performance of a contact textile-based light diffuser for photodynamic therapy.
Khan, Tania; Unternährer, Merthan; Buchholz, Julia; Kaser-Hotz, Barbara; Selm, Bärbel; Rothmaier, Markus; Walt, Heinrich
2006-03-01
Medical textiles offer a unique contact opportunity that could provide value-added comfort, reliability, and safety for light or laser-based applications. We investigated a luminous textile diffuser for use in photodynamic therapy. Textile diffusers are produced by an embroidery process. Plastic optical fibers are bent and sewn into textile to release light by macrobending. A reflective backing is incorporated to improve surface homogeneity, intensity, and safety. Clonogenic assay (MCF-7 cells) and trypan blue exclusion (NuTu19 cells) tests were performed in vitro using 0.1μg/ml m-THPC with three textile diffusers and a standard front lens diffuser. Heating effects were studied in solution and on human skin. PDT application in vivo was performed with the textile diffuser on equine sarcoids (three animals, 50mW/cm(2), 10-20J) and eight research animals. Lastly, computer simulations were performed to see how the textile diffuser might work on a curved object. At low fluency rate, there is a trend for the textile diffuser to have lower survival rates than the front lens diffuser for both cell lines. The textile diffuser was observed to retain more heat over a long period (>1min). All animals tolerated the treatments well and showed similar initial reactions. The simulations showed a likely focusing effect in a curved geometry. The initial feasibility and application using a textile-based optical diffuser has been demonstrated. Possibilities that provide additional practical advantages of the textile diffuser are discussed.
2012-01-01
Background For millennia, iron-tannate dyes have been used to colour ceremonial and domestic objects shades of black, grey, or brown. Surviving iron-tannate dyed objects are part of our cultural heritage but their existence is threatened by the dye itself which can accelerate oxidation and acid hydrolysis of the substrate. This causes many iron-tannate dyed textiles to discolour and decrease in tensile strength and flexibility at a faster rate than equivalent undyed textiles. The current lack of suitable stabilisation treatments means that many historic iron-tannate dyed objects are rapidly crumbling to dust with the knowledge and value they hold being lost forever. This paper describes the production, characterisation, and validation of model iron-tannate dyed textiles as substitutes for historic iron-tannate dyed textiles in the development of stabilisation treatments. Spectrophotometry, surface pH, tensile testing, SEM-EDX, and XRF have been used to characterise the model textiles. Results On application to textiles, the model dyes imparted mid to dark blue-grey colouration, an immediate tensile strength loss of the textiles and an increase in surface acidity. The dyes introduced significant quantities of iron into the textiles which was distributed in the exterior and interior of the cotton, abaca, and silk fibres but only in the exterior of the wool fibres. As seen with historic iron-tannate dyed objects, the dyed cotton, abaca, and silk textiles lost tensile strength faster and more significantly than undyed equivalents during accelerated thermal ageing and all of the dyed model textiles, most notably the cotton, discoloured more than the undyed equivalents on ageing. Conclusions The abaca, cotton, and silk model textiles are judged to be suitable for use as substitutes for cultural heritage materials in the testing of stabilisation treatments. PMID:22616934
Wilson, Helen; Carr, Chris; Hacke, Marei
2012-05-22
For millennia, iron-tannate dyes have been used to colour ceremonial and domestic objects shades of black, grey, or brown. Surviving iron-tannate dyed objects are part of our cultural heritage but their existence is threatened by the dye itself which can accelerate oxidation and acid hydrolysis of the substrate. This causes many iron-tannate dyed textiles to discolour and decrease in tensile strength and flexibility at a faster rate than equivalent undyed textiles. The current lack of suitable stabilisation treatments means that many historic iron-tannate dyed objects are rapidly crumbling to dust with the knowledge and value they hold being lost forever.This paper describes the production, characterisation, and validation of model iron-tannate dyed textiles as substitutes for historic iron-tannate dyed textiles in the development of stabilisation treatments. Spectrophotometry, surface pH, tensile testing, SEM-EDX, and XRF have been used to characterise the model textiles. On application to textiles, the model dyes imparted mid to dark blue-grey colouration, an immediate tensile strength loss of the textiles and an increase in surface acidity. The dyes introduced significant quantities of iron into the textiles which was distributed in the exterior and interior of the cotton, abaca, and silk fibres but only in the exterior of the wool fibres. As seen with historic iron-tannate dyed objects, the dyed cotton, abaca, and silk textiles lost tensile strength faster and more significantly than undyed equivalents during accelerated thermal ageing and all of the dyed model textiles, most notably the cotton, discoloured more than the undyed equivalents on ageing. The abaca, cotton, and silk model textiles are judged to be suitable for use as substitutes for cultural heritage materials in the testing of stabilisation treatments.
NASA Technical Reports Server (NTRS)
Said, Magdi A; Schur, Willi W.; Gupta, Amit; Mock, Gary N.; Seyam, Abdelfattah M.; Theyson, Thomas
2004-01-01
Science and technology development from balloon-borne telescopes and experiments is a rich return on a relatively modest involvement of NASA resources. For the past three decades, the development of increasingly competitive and complex science payloads and observational programs from high altitude balloon-borne platforms has yielded significant scientific discoveries. The success and capabilities of scientific balloons are closely related to advancements in the textile and plastic industries. This paper will present an overview of scientific balloons as a viable and economical platform for transporting large telescopes and scientific instruments to the upper atmosphere to conduct scientific missions. Additionally, the paper sheds the light on the problems associated with UV degradation of high performance textile components that are used to support the payload of the balloon and proposes future research to reduce/eliminate Ultra Violet (UV) degradation in order to conduct long-term scientific missions.
Analysis for the Progressive Failure Response of Textile Composite Fuselage Frames
NASA Technical Reports Server (NTRS)
Johnson, Eric R.; Boitnott, Richard L. (Technical Monitor)
2002-01-01
A part of aviation accident mitigation is a crashworthy airframe structure, and an important measure of merit for a crashworthy structure is the amount of kinetic energy that can be absorbed in the crush of the structure. Prediction of the energy absorbed from finite element analyses requires modeling the progressive failure sequence. Progressive failure modes may include material degradation, fracture and crack growth, and buckling and collapse. The design of crashworthy airframe components will benefit from progressive failure analyses that have been validated by tests. The subject of this research is the development of a progressive failure analysis for a textile composite, circumferential fuselage frame subjected to a quasi-static, crash-type load. The test data for the frame are reported, and these data are used to develop and to validate methods for the progressive failure response.
Graphite Fiber Textile Preform/Copper Matrix Composites
NASA Technical Reports Server (NTRS)
Filatovs, G. J.; Lee, Bruce; Bass, Lowell
1996-01-01
Graphite fiber reinforced/copper matrix composites are candidate materials for critical heat transmitting and rejection components because of their high thermal conduction. The use of textile (braid) preforms allows near-net shapes which confers additional advantages, both for enhanced thermal conduction and increased robustness of the preform against infiltration and handling damage. Issues addressed in the past year center on the determination of the braid structure following infiltration, and the braidability vs. the conductivity of the fibers. Highly conductive fibers eventuate from increased graphitization, which increases the elastic modulus, but lowers the braidability; a balance between these factors must be achieved. Good quality braided preform bars have been fabricated and infiltrated, and their thermal expansion characterized; their analytic modeling is underway. The braided preform of an integral finned tube has been fabricated and is being prepared for infiltration.
Machinability of experimental Ti-Ag alloys.
Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu
2008-03-01
This study investigated the machinability of experimental Ti-Ag alloys (5, 10, 20, and 30 mass% Ag) as a new dental titanium alloy candidate for CAD/CAM use. The alloys were slotted with a vertical milling machine and carbide square end mills under two cutting conditions. Machinability was evaluated through cutting force using a three-component force transducer fixed on the table of the milling machine. The horizontal cutting force of the Ti-Ag alloys tended to decrease as the concentration of silver increased. Values of the component of the horizontal cutting force perpendicular to the feed direction for Ti-20% Ag and Ti-30% Ag were more than 20% lower than those for titanium under both cutting conditions. Alloying with silver significantly improved the machinability of titanium in terms of cutting force under the present cutting conditions.
Wu, Chaoxing; Kim, Tae Whan; Li, Fushan; Guo, Tailiang
2016-07-26
The technological realization of wearable triboelectric generators is attractive because of their promising applications in wearable self-powered intelligent systems. However, the low electrical conductivity, the low electrical stability, and the low compatibility of current electronic textiles (e-textiles) and clothing restrict the comfortable and aesthetic integration of wearable generators into human clothing. Here, we present high-performance, transparent, smart e-textiles that employ commercial textiles coated with silver nanowire/graphene sheets fabricated by using a scalable, environmentally friendly, full-solution process. The smart e-textiles show superb and stable conduction of below 20 Ω/square as well as excellent flexibility, stretchability, foldability, and washability. In addition, wearable electricity-generating textiles, in which the e-textiles act as electrodes as well as wearable substrates, are presented. Because of the high compatibility of smart e-textiles and clothing, the electricity-generating textiles can be easily integrated into a glove to harvest the mechanical energy induced by the motion of the fingers. The effective output power generated by a single generator due to that motion reached as high as 7 nW/cm(2). The successful demonstration of the electricity-generating glove suggests a promising future for polyester/Ag nanowire/graphene core-shell nanocomposite-based smart e-textiles for real wearable electronic systems and self-powered clothing.
Role of alginate in antibacterial finishing of textiles.
Li, Jiwei; He, Jinmei; Huang, Yudong
2017-01-01
Antibacterial finishing of textiles has been introduced as a necessary process for various purposes especially creating a fabric with antimicrobial activities. Currently, the textile industry continues to look for textiles antimicrobial finishing process based on sustainable biopolymers from the viewpoints of environmental friendliness, industrialization, and economic concerns. This paper reviews the role of alginate, a sustainable biopolymer, in the development of antimicrobial textiles, including both basic physicochemical properties of alginate such as preparation, chemical structure, molecular weight, solubility, viscosity, and sol-gel transformation property. Then different processing routes (e.g. nanocomposite coating, ionic cross-linking coating, and Layer-by-Layer coating) for the antibacterial finishing of textiles by using alginate are revised in some detail. The achievements in this area have increased our knowledge of alginate application in the field of textile industry and promoted the development of green textile finishing. Copyright © 2016 Elsevier B.V. All rights reserved.
Scalable and Environmentally Benign Process for Smart Textile Nanofinishing.
Feng, Jicheng; Hontañón, Esther; Blanes, Maria; Meyer, Jörg; Guo, Xiaoai; Santos, Laura; Paltrinieri, Laura; Ramlawi, Nabil; Smet, Louis C P M de; Nirschl, Hermann; Kruis, Frank Einar; Schmidt-Ott, Andreas; Biskos, George
2016-06-15
A major challenge in nanotechnology is that of determining how to introduce green and sustainable principles when assembling individual nanoscale elements to create working devices. For instance, textile nanofinishing is restricted by the many constraints of traditional pad-dry-cure processes, such as the use of costly chemical precursors to produce nanoparticles (NPs), the high liquid and energy consumption, the production of harmful liquid wastes, and multistep batch operations. By integrating low-cost, scalable, and environmentally benign aerosol processes of the type proposed here into textile nanofinishing, these constraints can be circumvented while leading to a new class of fabrics. The proposed one-step textile nanofinishing process relies on the diffusional deposition of aerosol NPs onto textile fibers. As proof of this concept, we deposit Ag NPs onto a range of textiles and assess their antimicrobial properties for two strains of bacteria (i.e., Staphylococcus aureus and Klebsiella pneumoniae). The measurements show that the logarithmic reduction in bacterial count can get as high as ca. 5.5 (corresponding to a reduction efficiency of 99.96%) when the Ag loading is 1 order of magnitude less (10 ppm; i.e., 10 mg Ag NPs per kg of textile) than that of textiles treated by traditional wet-routes. The antimicrobial activity does not increase in proportion to the Ag content above 10 ppm as a consequence of a "saturation" effect. Such low NP loadings on antimicrobial textiles minimizes the risk to human health (during textile use) and to the ecosystem (after textile disposal), as well as it reduces potential changes in color and texture of the resulting textile products. After three washes, the release of Ag is in the order of 1 wt %, which is comparable to textiles nanofinished with wet routes using binders. Interestingly, the washed textiles exhibit almost no reduction in antimicrobial activity, much as those of as-deposited samples. Considering that a realm of functional textiles can be nanofinished by aerosol NP deposition, our results demonstrate that the proposed approach, which is universal and sustainable, can potentially lead to a wide number of applications.
Ding, Dahu; Chen, Lulu; Dong, Shaowei; Cai, Hao; Chen, Jifei; Jiang, Canlan; Cai, Tianming
2016-01-01
Natural ageing process occurs throughout the life cycle of textile products, which may possess influences on the release behavior of additives such as silver nanoparticles (Ag NPs). In this study, we assessed the releasability of Ag NPs from a Ag NPs functionalized textile in five different exposure scenarios (i.e. tap water (TW), pond water (PW), rain water (RW), artificial sweat (AS), and detergent solution (DS) along with deionized water (DW) as reference), which were very likely to occur throughout the life cycle of the textile. For the pristine textile, although the most remarkable release was found in DW (6–15 μg Ag/g textile), the highest release rate was found in RW (around 7 μg Ag/(g textile·h)). After ageing treatment, the total released Ag could be increased by 75.7~386.0% in DW, AS and DS. Morphological analysis clearly showed that the Ag NPs were isolated from the surface of the textile fibre due to the ageing treatment. This study provides useful information for risk assessment of nano-enhanced textile products. PMID:27869136
Scalable Production of Graphene-Based Wearable E-Textiles.
Karim, Nazmul; Afroj, Shaila; Tan, Sirui; He, Pei; Fernando, Anura; Carr, Chris; Novoselov, Kostya S
2017-12-26
Graphene-based wearable e-textiles are considered to be promising due to their advantages over traditional metal-based technology. However, the manufacturing process is complex and currently not suitable for industrial scale application. Here we report a simple, scalable, and cost-effective method of producing graphene-based wearable e-textiles through the chemical reduction of graphene oxide (GO) to make stable reduced graphene oxide (rGO) dispersion which can then be applied to the textile fabric using a simple pad-dry technique. This application method allows the potential manufacture of conductive graphene e-textiles at commercial production rates of ∼150 m/min. The graphene e-textile materials produced are durable and washable with acceptable softness/hand feel. The rGO coating enhanced the tensile strength of cotton fabric and also the flexibility due to the increase in strain% at maximum load. We demonstrate the potential application of these graphene e-textiles for wearable electronics with activity monitoring sensor. This could potentially lead to a multifunctional single graphene e-textile garment that can act both as sensors and flexible heating elements powered by the energy stored in graphene textile supercapacitors.
NASA Astrophysics Data System (ADS)
Ding, Dahu; Chen, Lulu; Dong, Shaowei; Cai, Hao; Chen, Jifei; Jiang, Canlan; Cai, Tianming
2016-11-01
Natural ageing process occurs throughout the life cycle of textile products, which may possess influences on the release behavior of additives such as silver nanoparticles (Ag NPs). In this study, we assessed the releasability of Ag NPs from a Ag NPs functionalized textile in five different exposure scenarios (i.e. tap water (TW), pond water (PW), rain water (RW), artificial sweat (AS), and detergent solution (DS) along with deionized water (DW) as reference), which were very likely to occur throughout the life cycle of the textile. For the pristine textile, although the most remarkable release was found in DW (6-15 μg Ag/g textile), the highest release rate was found in RW (around 7 μg Ag/(g textile·h)). After ageing treatment, the total released Ag could be increased by 75.7~386.0% in DW, AS and DS. Morphological analysis clearly showed that the Ag NPs were isolated from the surface of the textile fibre due to the ageing treatment. This study provides useful information for risk assessment of nano-enhanced textile products.
Core-Shell-Yarn-Based Triboelectric Nanogenerator Textiles as Power Cloths.
Yu, Aifang; Pu, Xiong; Wen, Rongmei; Liu, Mengmeng; Zhou, Tao; Zhang, Ke; Zhang, Yang; Zhai, Junyi; Hu, Weiguo; Wang, Zhong Lin
2017-12-26
Although textile-based triboelectric nanogenerators (TENGs) are highly promising because they scavenge energy from their working environment to sustainably power wearable/mobile electronics, the challenge of simultaneously possessing the qualities of cloth remains. In this work, we propose a strategy for TENG textiles as power cloths in which core-shell yarns with core conductive fibers as the electrode and artificial polymer fibers or natural fibrous materials tightly twined around core conductive fibers are applied as the building blocks. The resulting TENG textiles are comfortable, flexible, and fashionable, and their production processes are compatible with industrial, large-scale textile manufacturing. More importantly, the comfortable TENG textiles demonstrate excellent washability and tailorability and can be fully applied in further garment processing. TENG textiles worn under the arm or foot have also been demonstrated to scavenge various types of energy from human motion, such as patting, walking, and running. All of these merits of proposed TENG textiles for clothing uses suggest their great potentials for viable applications in wearable electronics or smart textiles in the near future.
Color tunable photonic textiles for wearable display applications
NASA Astrophysics Data System (ADS)
Sayed, I.; Berzowska, J.; Skorobogatiy, M.
2010-04-01
Integration of optical functionalities such as light emission, processing and collection into flexible woven matrices of fabric have grabbed a lot of attention in the last few years. Photonic textiles frequently involve optical fibers as they can be easily processed together with supporting fabric fibers. This technology finds uses in various fields of application such as interactive clothing, signage, wearable health monitoring sensors and mechanical strain and deformation detectors. Recent development in the field of Photonic Band Gap optical fibers (PBG) could potentially lead to novel photonic textiles applications and techniques. Particularly, plastic PBG Bragg fibers fabricated in our group have strong potential in the field of photonic textiles as they offer many advantages over standard silica fibers at the same low cost. Among many unusual properties of PBG textiles we mention that they are highly reflective, PBG textiles are colored without using any colorants, PBG textiles can change their color by controlling the relative intensities of guided and reflected light, and finally, PBG textiles can change their colors when stretched. Some of the many experimental realization of photonic bandgap fiber textiles and their potential applications in wearable displays are discussed.
Pensupa, Nattha; Leu, Shao-Yuan; Hu, Yunzi; Du, Chenyu; Liu, Hao; Jing, Houde; Wang, Huaimin; Lin, Carol Sze Ki
2017-08-16
In recent years, there have been increasing concerns in the disposal of textile waste around the globe. The growth of textile markets not only depends on population growth but also depends on economic and fashion cycles. The fast fashion cycle in the textile industry has led to a high level of consumption and waste generation. This can cause a negative environmental impact since the textile and clothing industry is one of the most polluting industries. Textile manufacturing is a chemical-intensive process and requires a high volume of water throughout its operations. Wastewater and fiber wastes are the major wastes generated during the textile production process. On the other hand, the fiber waste was mainly created from unwanted clothes in the textile supply chain. This fiber waste includes natural fiber, synthetic fiber, and natural/synthetic blends. The natural fiber is mostly comprised of cellulosic material, which can be used as a resource for producing bio-based products. The main challenge for utilization of textile waste is finding the method that is able to recover sugars as monosaccharides. This review provides an overview of valorization of textile waste to value-added products, as well as an overview of different strategies for sugar recovery from cellulosic fiber and their hindrances.
Silver speciation and release in commercial antimicrobial textiles as influenced by washing.
Lombi, Enzo; Donner, Erica; Scheckel, Kirk G; Sekine, Ryo; Lorenz, Christiane; Von Goetz, Natalie; Nowack, Bernd
2014-09-01
The use of nanoscale Ag in textiles is one the most often mentioned uses of nano-Ag. It has previously been shown that significant amounts of the Ag in the textiles are released upon washing. However, the form of Ag present in the textiles remains largely unknown as product labelling is insufficient. The aim of this study was therefore to investigate the solid phase speciation of Ag in original and washed silver textiles using XANES. The original Ag speciation in the textiles was found to vary greatly between different materials with Ag(0), AgCl, Ag2S, Ag-phosphate, ionic Ag and other species identified. Furthermore, within the same textile a number of different species were found to coexist. This is likely due to a combination of factors such as the synthesis processes at industrial scale and the possible reaction of Ag with atmospheric gases. Washing with two different detergents resulted in marked changes in Ag-speciation. For some textiles the two detergents induced similar transformation, in other textiles they resulted in very different Ag species. This study demonstrates that in functional Ag textiles a variety of different Ag species coexist before and after washing. These results have important implications for the risk assessment of Ag textiles because they show that the metallic Ag is only one of the many silver species that need to be considered. Copyright © 2014 Elsevier Ltd. All rights reserved.
Industrial recovered-materials-utilization targets for the textile-mill-products industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1979-01-01
The Congress, in the National Energy Conservation and Policy Act of 1978 (NECPA), directed the Department of Energy to establish materials recovery targets for the metals and metal products, paper and allied products, rubber, and textile-mill-products industries. The targets were developed to provide incentives for using energy-saving recorded materials and to provied a yardstick for measuring progress and improvement in this endeavor. The NECPA indicates that the targets should represent the maximum technically and economically feasible increase in the use of energy-saving recovered materials that each industry can achieve progressively by January 1, 1987. Materials affected by recovered-materials targets includemore » and are limited to aluminum, copper, lead, zinc, iron, steel, paper and associated products, textile-mill, products, and rubber. Using information gathered from the textile-mill-products industry and from other textile-relaed sources, DOE has developed recovered materials targets for that industry. This report presents those targets and their basis and justification. Following an overview of the textile industry, the chapters are: Textile-Mill-Products Industry Operations; Economic Analysis of the Textile-Mill-Products Industry; Governmental and Regulatory Influence on the US Textile Industry; Current Mill Use of Recovered Materials in the Textile-Mill-Products Industry; Limitations on the Use of Recovered Materials in the US Textile-Mill-Products Industry; Materials-Recovery Targets; and Government and Industry Actions That Could Increase the Use of Recovered Materials.« less
ERIC Educational Resources Information Center
Texas Tech Univ., Lubbock. Home Economics Curriculum Center.
This document contains teacher's materials for a seven-unit secondary education vocational home economics course on textiles and apparel design. The units cover: (1) fiber/fiber characteristics and textile development (including fabrication and dyeing, printing, and finishing); (2) textile and apparel design industries (including their history and…
Marcus, Esther-Lee; Yosef, Hana; Borkow, Gadi; Caine, Yehezkel; Sasson, Ady; Moses, Allon E
2017-04-01
Copper oxide has potent wide-spectrum biocidal properties. The purpose of this study is to determine if replacing hospital textiles with copper oxide-impregnated textiles reduces the following health care-associated infection (HAI) indicators: antibiotic treatment initiation events (ATIEs), fever days, and antibiotic usage in hospitalized chronic ventilator-dependent patients. A 7-month, crossover, double-blind controlled trial including all patients in 2 ventilator-dependent wards in a long-term care hospital. For 3 months (period 1), one ward received copper oxide-impregnated textiles and the other received untreated textiles. After a 1-month washout period of using regular textiles, for 3 months (period 2) the ward that received the treated textiles received the control textiles and vice versa. The personnel were blinded to which were treated or control textiles. There were no differences in infection control measures during the study. There were reductions of 29.3% (P = .002), 55.5% (P < .0001), 23.0% (P < .0001), and 27.5% (P < .0001) in the ATIEs, fever days (>37.6°C), days of antibiotic treatment, and antibiotic defined daily dose per 1,000 hospitalization days, respectively, when using the copper oxide-impregnated textiles. Use of copper oxide-impregnated biocidal textiles in a long-term care ward of ventilator-dependent patients was associated with a significant reduction of HAI indicators and antibiotic utilization. Using copper oxide-impregnated biocidal textiles may be an important measure aimed at reducing HAIs in long-term care medical settings. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
One-step manufacturing of innovative flat-knitted 3D net-shape preforms for composite applications
NASA Astrophysics Data System (ADS)
Bollengier, Quentin; Wieczorek, Florian; Hellmann, Sven; Trümper, Wolfgang; Cherif, Chokri
2017-10-01
Mostly due to the cost-intensive manually performed processing operations, the production of complex-shaped fibre reinforced plastic composites (FRPC) is currently very expensive and therefore either restricted to sectors with high added value or for small batch applications (e.g. in the aerospace or automotive industry). Previous works suggest that the successful integration of conventional textile manufacturing processes in the FRPC-process chain is the key to a cost-efficient manufacturing of complex three-dimensional (3D) FRPC-components with stress-oriented fibre arrangement. Therefore, this work focuses on the development of the multilayer weft knitting technology for the one-step manufacturing of complex 3D net-shaped preforms for high performance FRPC applications. In order to highlight the advantages of net-shaped multilayer weft knitted fabrics for the production of complex FRPC parts, seamless preforms such as 3D skin-stringer structures and tubular fabrics with load oriented fibre arrangement are realised. In this paper, the development of the textile bindings and performed technical modifications on flat knitting machines are presented. The results show that the multilayer weft knitting technology meets perfectly the requirements for a fully automated and reproducible manufacturing of complex 3D textile preforms with stress-oriented fibre arrangement.
Cochran, Kristin H.; Barry, Jeremy A.; Muddiman, David C.; Hinks, David
2012-01-01
The forensic analysis of textile fibers uses a variety of techniques from microscopy to spectroscopy. One such technique that is often used to identify the dye(s) within the fiber is mass spectrometry (MS). In the traditional MS method, the dye must be extracted from the fabric and the dye components are separated by chromatography prior to mass spectrometric analysis. Direct analysis of the dye from the fabric allows the omission of the lengthy sample preparation involved in extraction, thereby significantly reducing the overall analysis time. Herein, a direct analysis of dyed textile fabric was performed using the infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source for MS. In MALDESI, an IR laser with wavelength tuned to 2.94 μm is used to desorb the dye from the fabric sample with the aid of water as the matrix. The desorbed dye molecules are then post-ionized by electrospray ionization (ESI). A variety of dye classes were analyzed from various fabrics with little to no sample preparation allowing for the identification of the dye mass and in some cases the fiber polymer. Those dyes that were not detected using MALDESI were also not observed by direct infusion ESI of the dye standard. PMID:23237031
Organics and nitrogen removal from textile auxiliaries wastewater with A2O-MBR in a pilot-scale.
Sun, Faqian; Sun, Bin; Hu, Jian; He, Yangyang; Wu, Weixiang
2015-04-09
The removal of organic compounds and nitrogen in an anaerobic-anoxic-aerobic membrane bioreactor process (A(2)O-MBR) for treatment of textile auxiliaries (TA) wastewater was investigated. The results show that the average effluent concentrations of chemical oxygen demand (COD), ammonium nitrogen (NH4(+)-N) and total nitrogen (TN) were about 119, 3 and 48 mg/L under an internal recycle ratio of 1.5. The average removal efficiency of COD, NH4(+)-N and TN were 87%, 96% and 55%, respectively. Gas chromatograph-mass spectrometer analysis indicated that, although as much as 121 different types of organic compounds were present in the TA wastewater, only 20 kinds of refractory organic compounds were found in the MBR effluent, which could be used as indicators of effluents from this kind of industrial wastewater. Scanning electron microscopy analysis revealed that bacterial foulants were significant contributors to membrane fouling. An examination of foulants components by wavelength dispersive X-ray fluorescence showed that the combination of organic foulants and inorganic compounds enhanced the formation of gel layer and thus caused membrane fouling. The results will provide valuable information for optimizing the design and operation of wastewater treatment system in the textile industry. Copyright © 2015 Elsevier B.V. All rights reserved.
Hampp, Emily L; Chughtai, Morad; Scholl, Laura Y; Sodhi, Nipun; Bhowmik-Stoker, Manoshi; Jacofsky, David J; Mont, Michael A
2018-05-01
This study determined if robotic-arm assisted total knee arthroplasty (RATKA) allows for more accurate and precise bone cuts and component position to plan compared with manual total knee arthroplasty (MTKA). Specifically, we assessed the following: (1) final bone cuts, (2) final component position, and (3) a potential learning curve for RATKA. On six cadaver specimens (12 knees), a MTKA and RATKA were performed on the left and right knees, respectively. Bone-cut and final-component positioning errors relative to preoperative plans were compared. Median errors and standard deviations (SDs) in the sagittal, coronal, and axial planes were compared. Median values of the absolute deviation from plan defined the accuracy to plan. SDs described the precision to plan. RATKA bone cuts were as or more accurate to plan based on nominal median values in 11 out of 12 measurements. RATKA bone cuts were more precise to plan in 8 out of 12 measurements ( p ≤ 0.05). RATKA final component positions were as or more accurate to plan based on median values in five out of five measurements. RATKA final component positions were more precise to plan in four out of five measurements ( p ≤ 0.05). Stacked error results from all cuts and implant positions for each specimen in procedural order showed that RATKA error was less than MTKA error. Although this study analyzed a small number of cadaver specimens, there were clear differences that separated these two groups. When compared with MTKA, RATKA demonstrated more accurate and precise bone cuts and implant positioning to plan. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Cao, Ran; Pu, Xianjie; Du, Xinyu; Yang, Wei; Wang, Jiaona; Guo, Hengyu; Zhao, Shuyu; Yuan, Zuqing; Zhang, Chi; Li, Congju; Wang, Zhong Lin
2018-05-22
Multifunctional electronic textiles (E-textiles) with embedded electric circuits hold great application prospects for future wearable electronics. However, most E-textiles still have critical challenges, including air permeability, satisfactory washability, and mass fabrication. In this work, we fabricate a washable E-textile that addresses all of the concerns and shows its application as a self-powered triboelectric gesture textile for intelligent human-machine interfacing. Utilizing conductive carbon nanotubes (CNTs) and screen-printing technology, this kind of E-textile embraces high conductivity (0.2 kΩ/sq), high air permeability (88.2 mm/s), and can be manufactured on common fabric at large scales. Due to the advantage of the interaction between the CNTs and the fabrics, the electrode shows excellent stability under harsh mechanical deformation and even after being washed. Moreover, based on a single-electrode mode triboelectric nanogenerator and electrode pattern design, our E-textile exhibits highly sensitive touch/gesture sensing performance and has potential applications for human-machine interfacing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.
2011-09-22
This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect themore » best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.« less
NASA Astrophysics Data System (ADS)
Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.
2011-09-01
This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect the best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.
Recent progress in NASA Langley Research Center textile reinforced composites program
NASA Technical Reports Server (NTRS)
Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.
1992-01-01
Research was conducted to explore the benefits of textile reinforced composites for transport aircraft primary structures. The objective is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. Some program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. Textile 3-D weaving, 3-D braiding, and knitting and/or stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighted against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural parts are required to establish the potential of textile reinforced composite materials.
Stretchable, porous, and conductive energy textiles.
Hu, Liangbing; Pasta, Mauro; Mantia, Fabio La; Cui, Lifeng; Jeong, Sangmoo; Deshazer, Heather Dawn; Choi, Jang Wook; Han, Seung Min; Cui, Yi
2010-02-10
Recently there is strong interest in lightweight, flexible, and wearable electronics to meet the technological demands of modern society. Integrated energy storage devices of this type are a key area that is still significantly underdeveloped. Here, we describe wearable power devices using everyday textiles as the platform. With an extremely simple "dipping and drying" process using single-walled carbon nanotube (SWNT) ink, we produced highly conductive textiles with conductivity of 125 S cm(-1) and sheet resistance less than 1 Omega/sq. Such conductive textiles show outstanding flexibility and stretchability and demonstrate strong adhesion between the SWNTs and the textiles of interest. Supercapacitors made from these conductive textiles show high areal capacitance, up to 0.48F/cm(2), and high specific energy. We demonstrate the loading of pseudocapacitor materials into these conductive textiles that leads to a 24-fold increase of the areal capacitance of the device. These highly conductive textiles can provide new design opportunities for wearable electronics and energy storage applications.
Cutting process simulation of flat drill
NASA Astrophysics Data System (ADS)
Tamura, Shoichi; Matsumura, Takashi
2018-05-01
Flat drills at a point angle of 180 deg. have recently been developed for drilling of automobile parts with the inclination of the workpiece surfaces. The paper studies the cutting processes of the flat drills in the analytical simulation. A predictive force model is applied to simulation of the cutting force with the chip flow direction. The chip flow model is piled up with orthogonal cuttings in the plane containing the cutting velocities and the chip flow velocities, in which the chip flow direction is determined to minimize the cutting energy. Then, the cutting force is predicted in the determined in the chip flow model. The typical cutting force of the flat drill is discussed with comparing to that of the standard drill. The typical differences are confirmed in the cutting force change during the tool engagement and disengagement. The cutting force, then, is simulated in drilling for an inclined workpiece with a flat drill. The horizontal components in the cutting forces are simulated with changing the inclination angle of the plate. The horizontal force component in the flat drilling is stable to be controlled in terms of the machining accuracy and the tool breakage.
Scalable Production of Graphene-Based Wearable E-Textiles
2017-01-01
Graphene-based wearable e-textiles are considered to be promising due to their advantages over traditional metal-based technology. However, the manufacturing process is complex and currently not suitable for industrial scale application. Here we report a simple, scalable, and cost-effective method of producing graphene-based wearable e-textiles through the chemical reduction of graphene oxide (GO) to make stable reduced graphene oxide (rGO) dispersion which can then be applied to the textile fabric using a simple pad-dry technique. This application method allows the potential manufacture of conductive graphene e-textiles at commercial production rates of ∼150 m/min. The graphene e-textile materials produced are durable and washable with acceptable softness/hand feel. The rGO coating enhanced the tensile strength of cotton fabric and also the flexibility due to the increase in strain% at maximum load. We demonstrate the potential application of these graphene e-textiles for wearable electronics with activity monitoring sensor. This could potentially lead to a multifunctional single graphene e-textile garment that can act both as sensors and flexible heating elements powered by the energy stored in graphene textile supercapacitors. PMID:29185706
Antimicrobial Approaches for Textiles: From Research to Market
Morais, Diana Santos; Guedes, Rui Miranda; Lopes, Maria Ascensão
2016-01-01
The large surface area and ability to retain moisture of textile structures enable microorganisms’ growth, which causes a range of undesirable effects, not only on the textile itself, but also on the user. Due to the public health awareness of the pathogenic effects on personal hygiene and associated health risks, over the last few years, intensive research has been promoted in order to minimize microbes’ growth on textiles. Therefore, to impart an antimicrobial ability to textiles, different approaches have been studied, being mainly divided into the inclusion of antimicrobial agents in the textile polymeric fibers or their grafting onto the polymer surface. Regarding the antimicrobial agents, different types have been used, such as quaternary ammonium compounds, triclosan, metal salts, polybiguanides or even natural polymers. Any antimicrobial treatment performed on a textile, besides being efficient against microorganisms, must be non-toxic to the consumer and to the environment. This review mainly intends to provide an overview of antimicrobial agents and treatments that can be performed to produce antimicrobial textiles, using chemical or physical approaches, which are under development or already commercially available in the form of isolated agents or textile fibers or fabrics. PMID:28773619
Cosmetic textiles with biological benefits: gelatin microcapsules containing vitamin C.
Cheng, Shuk Yan; Yuen, Marcus Chun Wah; Kan, Chi Wai; Cheuk, Kevin Ka Leung; Chui, Chung Hin; Lam, Kim Hung
2009-10-01
In recent years, textile materials with special applications in the cosmetic field have been developed. A new sector of cosmetic textiles is opened up and several cosmetic textile products are currently available in the market. Microencapsulation technology is an effective technique to control the release properties of active ingredients that prolong the functionality of cosmetic textiles. This study discusses the development of cosmetic textiles and addresses microencapsulation technology with respect to its historical background, significant advantages, microencapsulation methods and recent applications in the textile industry. Gelatin microcapsules containing vitamin C were prepared using emulsion hardening technique. Both the optical microscopy and scanning electron microscopy demonstrated that the newly developed microcapsules were in the form of core-shell spheres with relatively smooth surface. The particle size of microcapsules ranged from 5.0 to 44.1 microm with the average particle size being 24.6 microm. The gelatin microcapsules were proved to be non-cytotoxic based on the research findings of the toxicity studies conducted on human liver and breast cell lines as well as primary bone marrow culture obtained from patient with non-malignant haematological disorder. The gelatin microcapsules were successfully grafted into textile materials for the development of cosmetic textiles.
Optimal Design of Magnetic ComponentsinPlasma Cutting Power Supply
NASA Astrophysics Data System (ADS)
Jiang, J. F.; Zhu, B. R.; Zhao, W. N.; Yang, X. J.; Tang, H. J.
2017-10-01
Phase-shifted transformer and DC reactor are usually needed in chopper plasma cutting power supply. Because of high power rate, the loss of magnetic components may reach to several kilowatts, which seriously affects the conversion efficiency. Therefore, it is necessary to research and design low loss magnetic components by means of efficient magnetic materials and optimal design methods. The main task in this paper is to compare the core loss of different magnetic material, to analyze the influence of transformer structure, winding arrangement and wire structure on the characteristics of magnetic component. Then another task is to select suitable magnetic material, structure and wire in order to reduce the loss and volume of magnetic components. Based on the above outcome, the optimization design process of transformer and dc reactor are proposed in chopper plasma cutting power supply with a lot of solutions. These solutions are analyzed and compared before the determination of the optimal solution in order to reduce the volume and power loss of the two magnetic components and improve the conversion efficiency of plasma cutting power supply.
From Wood to Textiles: Top-Down Assembly of Aligned Cellulose Nanofibers.
Jia, Chao; Chen, Chaoji; Kuang, Yudi; Fu, Kun; Wang, Yilin; Yao, Yonggang; Kronthal, Spencer; Hitz, Emily; Song, Jianwei; Xu, Fujun; Liu, Boyang; Hu, Liangbing
2018-06-07
Advanced textiles made of macroscopic fibers are usually prepared from synthetic fibers, which have changed lives over the past century. The shortage of petrochemical resources, however, greatly limits the development of the textile industry. Here, a facile top-down approach for fabricating macroscopic wood fibers for textile applications (wood-textile fibers) comprising aligned cellulose nanofibers directly from natural wood via delignification and subsequent twisting is demonstrated. Inherently aligned cellulose nanofibers are well retained, while the microchannels in the delignified wood are squeezed and totally removed by twisting, resulting in a dense structure with approximately two times higher mechanical strength (106.5 vs 54.9 MPa) and ≈20 times higher toughness (7.70 vs 0.36 MJ m -3 ) than natural wood. Dramatically different from natural wood, which is brittle in nature, the resultant wood-textile fibers are highly flexible and bendable, likely due to the twisted structures. The wood-textile fibers also exhibit excellent knitting properties and dyeability, which are critical for textile applications. Furthermore, functional wood-textile fibers can be achieved by preinfiltrating functional materials in the delignified wood film before twisting. This top-down approach of fabricating aligned macrofibers is simple, scalable, and cost-effective, representing a promising direction for the development of smart textiles and wearable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Econazole imprinted textiles with antifungal activity.
Hossain, Mirza Akram; Lalloz, Augustine; Benhaddou, Aicha; Pagniez, Fabrice; Raymond, Martine; Le Pape, Patrice; Simard, Pierre; Théberge, Karine; Leblond, Jeanne
2016-04-01
In this work, we propose pharmaceutical textiles imprinted with lipid microparticles of Econazole nitrate (ECN) as a mean to improve patient compliance while maintaining drug activity. Lipid microparticles were prepared and characterized by laser diffraction (3.5±0.1 μm). Using an optimized screen-printing method, microparticles were deposited on textiles, as observed by scanning electron microscopy. The drug content of textiles (97±3 μg/cm(2)) was reproducible and stable up to 4 months storage at 25 °C/65% Relative Humidity. Imprinted textiles exhibited a thermosensitive behavior, as witnessed by a fusion temperature of 34.8 °C, which enabled a larger drug release at 32 °C (temperature of the skin) than at room temperature. In vitro antifungal activity of ECN textiles was compared to commercial 1% (wt/wt) ECN cream Pevaryl®. ECN textiles maintained their antifungal activity against a broad range of Candida species as well as major dermatophyte species. In vivo, ECN textiles also preserved the antifungal efficacy of ECN on cutaneous candidiasis infection in mice. Ex vivo percutaneous absorption studies demonstrated that ECN released from pharmaceutical textiles concentrated more in the upper skin layers, where the fungal infections develop, as compared to dermal absorption of Pevaryl®. Overall, these results showed that this technology is promising to develop pharmaceutical garments textiles for the treatment of superficial fungal infections. Copyright © 2016 Elsevier B.V. All rights reserved.
Rant, Darja; Rijavec, Tatjana; Pavko-Čuden, Alenka
2013-01-01
Common materials have Poisson's ratio values ranging from 0.0 to 0.5. Auxetic materials exhibit negative Poisson's ratio. They expand laterally when stretched longitudinally and contract laterally when compressed. In recent years the use of textile technology to fabricate auxetic materials has attracted more and more attention. It is reflected in the extent of available research work exploring the auxetic potential of various textile structures and subsequent increase in the number of research papers published. Generally there are two approaches to producing auxetic textiles. The first one includes the use of auxetic fibers to produce an auxetic textile structure, whereas the other utilizes conventional fibres to produce a textile structure with auxetic properties. This review deals with auxetic materials in general and in the specific context of auxetic polymers, auxetic fibers, and auxetic textile structures made from conventional fibers and knitted structures with auxetic potential.
Developing a national programme for textiles and clothing recovery.
Bukhari, Mohammad Abdullatif; Carrasco-Gallego, Ruth; Ponce-Cueto, Eva
2018-04-01
Textiles waste is relatively small in terms of weight as compared to other waste streams, but it has a large impact on human health and environment, and its rate is increasing due to the 'fast fashion' model. In this paper, we examine the French national programme for managing post-consumer textiles and clothing through a case study research. To date, France is the only country in the world implementing an extended producer responsibility (EPR) policy for end-of-use clothing, linen and shoes. The case highlights the benefits of using an EPR policy and provides interesting insights about the challenges faced by the textiles waste sector. For instance, the EPR policy has contributed to a threefold increase in the collection and recycling rates of post-consumer textiles since 2006. In addition, the material recovery rate of the post-consumer textiles can reach 90%, 50% of which can be directly reused. However, the 'reuse' stream is facing some challenges because its main market is in Africa and many African countries are considering banning the import of used textiles to encourage a competitive textiles industry locally and internationally. The EPR policy shows a great potential to identify new markets for 'reuse' and to improve the textiles waste sector. Such an EPR policy also could drive societies to financially support innovation and research to provide feasible solutions for fashion producers to adopt eco-design and design for recycling practices. This paper provides guidance for policy makers, shareholders, researchers and practitioners interested in diverting post-consumer textiles and clothing waste from landfills and promoting circular textiles transition.
Textile materials for the design of wearable antennas: a survey.
Salvado, Rita; Loss, Caroline; Gonçalves, Ricardo; Pinho, Pedro
2012-11-15
In the broad context of Wireless Body Sensor Networks for healthcare and pervasive applications, the design of wearable antennas offers the possibility of ubiquitous monitoring, communication and energy harvesting and storage. Specific requirements for wearable antennas are a planar structure and flexible construction materials. Several properties of the materials influence the behaviour of the antenna. For instance, the bandwidth and the efficiency of a planar microstrip antenna are mainly determined by the permittivity and the thickness of the substrate. The use of textiles in wearable antennas requires the characterization of their properties. Specific electrical conductive textiles are available on the market and have been successfully used. Ordinary textile fabrics have been used as substrates. However, little information can be found on the electromagnetic properties of regular textiles. Therefore this paper is mainly focused on the analysis of the dielectric properties of normal fabrics. In general, textiles present a very low dielectric constant that reduces the surface wave losses and increases the impedance bandwidth of the antenna. However, textile materials are constantly exchanging water molecules with the surroundings, which affects their electromagnetic properties. In addition, textile fabrics are porous, anisotropic and compressible materials whose thickness and density might change with low pressures. Therefore it is important to know how these characteristics influence the behaviour of the antenna in order to minimize unwanted effects. This paper presents a survey of the key points for the design and development of textile antennas, from the choice of the textile materials to the framing of the antenna. An analysis of the textile materials that have been used is also presented.
Textile Materials for the Design of Wearable Antennas: A Survey
Salvado, Rita; Loss, Caroline; Gonçalves, Ricardo; Pinho, Pedro
2012-01-01
In the broad context of Wireless Body Sensor Networks for healthcare and pervasive applications, the design of wearable antennas offers the possibility of ubiquitous monitoring, communication and energy harvesting and storage. Specific requirements for wearable antennas are a planar structure and flexible construction materials. Several properties of the materials influence the behaviour of the antenna. For instance, the bandwidth and the efficiency of a planar microstrip antenna are mainly determined by the permittivity and the thickness of the substrate. The use of textiles in wearable antennas requires the characterization of their properties. Specific electrical conductive textiles are available on the market and have been successfully used. Ordinary textile fabrics have been used as substrates. However, little information can be found on the electromagnetic properties of regular textiles. Therefore this paper is mainly focused on the analysis of the dielectric properties of normal fabrics. In general, textiles present a very low dielectric constant that reduces the surface wave losses and increases the impedance bandwidth of the antenna. However, textile materials are constantly exchanging water molecules with the surroundings, which affects their electromagnetic properties. In addition, textile fabrics are porous, anisotropic and compressible materials whose thickness and density might change with low pressures. Therefore it is important to know how these characteristics influence the behaviour of the antenna in order to minimize unwanted effects. This paper presents a survey of the key points for the design and development of textile antennas, from the choice of the textile materials to the framing of the antenna. An analysis of the textile materials that have been used is also presented. PMID:23202235
Mass Spectrometric Analysis of Synthetic Organic Pigments.
Sugaya, Naeko; Takahashi, Mitsuko; Sakurai, Katsumi; Tanaka, Nobuko; Okubo, Ichiro; Kawakami, Tsuyoshi
2018-04-18
Though synthetic organic colorants are used in various applications nowadays, there is the concern that impurities by-produced during the manufacturing and degradation products in some of these colorants are persistent organic pollutants and carcinogens. Thus, it is important to identify the synthetic organic colorants in various products, such as commercial paints, ink, cosmetics, food, textile, and plastics. Dyes, which are soluble in water and other solvents, could be analyzed by chromatographic methods. In contrast, it is difficult to analyze synthetic organic pigments by these methods because of their insolubility. This review is an overview of mass spectrometric analysis of synthetic organic pigments by various ionization methods. We highlight a recent study of textile samples by atmospheric pressure solid analysis probe MS. Furthermore, the mass spectral features of synthetic organic pigments and their separation from other components such as paint media and plasticizers are discussed.
Forsman, Nina; Lozhechnikova, Alina; Khakalo, Alexey; Johansson, Leena-Sisko; Vartiainen, Jari; Österberg, Monika
2017-10-01
Herein we present a simple method to render cellulosic materials highly hydrophobic while retaining their breathability and moisture buffering properties, thus allowing for their use as functional textiles. The surfaces are coated via layer-by-layer deposition of two natural components, cationic poly-l-lysine and anionic carnauba wax particles. The combination of multiscale roughness, open film structure, and low surface energy of wax colloids, resulted in long-lasting superhydrophobicity on cotton surface already after two bilayers. Atomic force microscopy, interference microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy were used to decouple structural effects from changes in surface energy. Furthermore, the effect of thermal annealing on the coating was evaluated. The potential of this simple and green approach to enhance the use of natural cellulosic materials is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shimonaka, Atsushi; Koga, Jinichiro; Baba, Yuko; Nishimura, Tomoko; Murashima, Koichiro; Kubota, Hidetoshi; Kono, Toshiaki
2006-04-01
We examined the characteristics of family 45 endoglucanases (glycoside hydrolases family 45; GH45) from Mucorales belonging to Zygomycota in the use of textiles and laundry. The defibrillation activities on lyocell fabric of family 45 endoglucanases from Mucorales, such as RCE1 and RCE2 from Rhizopus oryzae, MCE1 and MCE2 from Mucor circinelloides, and PCE1 from Phycomyces nitens, were much higher than those of the other family 45 endoglucanases. By contrast, family 45 endoglucanases from Mucorales were less resistant to anionic surfactant and oxidizing agent, main components in detergents, than the other family 45 endoglucanases. RCE1 consists of two distinct modules, a catalytic module and a carbohydrate-binding module family 1 (CBM1), and these common specific characteristics were considered to due to the catalytic module, but not to the CBM1.
Smart textile-based wearable biomedical systems: a transition plan for research to reality.
Park, Sungmee; Jayaraman, Sundaresan
2010-01-01
The field of smart textile-based wearable biomedical systems (ST-WBSs) has of late been generating a lot of interest in the research and business communities since its early beginnings in the mid-nineties. However, the technology is yet to enter the marketplace and realize its original goal of enhancing the quality of life for individuals through enhanced real-time biomedical monitoring. In this paper, we propose a framework for analyzing the transition of ST-WBS from research to reality. We begin with a look at the evolution of the field and describe the major components of an ST-WBS. We then analyze the key issues encompassing the technical, medical, economic, public policy, and business facets from the viewpoints of various stakeholders in the continuum. We conclude with a plan of action for transitioning ST-WBS from "research to reality."
Analysis for the Progressive Failure Response of Textile Composite Fuselage Frames
NASA Technical Reports Server (NTRS)
Johnson, Eric R.; Boitnott, Richard L. (Technical Monitor)
2002-01-01
A part of aviation accident mitigation is a crash worthy airframe structure, and an important measure of merit for a crash worthy structure is the amount of kinetic energy that can be absorbed in the crush of the structure. Prediction of the energy absorbed from finite element analyses requires modeling the progressive failure sequence. Progressive failure modes may include material degradation, fracture and crack growth, and buckling and collapse. The design of crash worthy airframe components will benefit from progressive failure analyses that have been validated by tests. The subject of this research is the development of a progressive failure analysis for textile composite. circumferential fuselage frames subjected to a quasi-static, crash-type load. The test data for these frames are reported, and these data, along with stub column test data, are to be used to develop and to validate methods for the progressive failure response.
Printable elastic conductors with a high conductivity for electronic textile applications
Matsuhisa, Naoji; Kaltenbrunner, Martin; Yokota, Tomoyuki; Jinno, Hiroaki; Kuribara, Kazunori; Sekitani, Tsuyoshi; Someya, Takao
2015-01-01
The development of advanced flexible large-area electronics such as flexible displays and sensors will thrive on engineered functional ink formulations for printed electronics where the spontaneous arrangement of molecules aids the printing processes. Here we report a printable elastic conductor with a high initial conductivity of 738 S cm−1 and a record high conductivity of 182 S cm−1 when stretched to 215% strain. The elastic conductor ink is comprised of Ag flakes, a fluorine rubber and a fluorine surfactant. The fluorine surfactant constitutes a key component which directs the formation of surface-localized conductive networks in the printed elastic conductor, leading to a high conductivity and stretchability. We demonstrate the feasibility of our inks by fabricating a stretchable organic transistor active matrix on a rubbery stretchability-gradient substrate with unimpaired functionality when stretched to 110%, and a wearable electromyogram sensor printed onto a textile garment. PMID:26109453
16 CFR 303.12 - Trimmings of household textile articles.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Trimmings of household textile articles. 303... household textile articles. (a) Trimmings incorporated in articles of wearing apparel and other household textile articles may, among other forms of trim, include: (1) Rick-rack, tape, belting, binding, braid...
16 CFR 303.12 - Trimmings of household textile articles.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Trimmings of household textile articles. 303... household textile articles. (a) Trimmings incorporated in articles of wearing apparel and other household textile articles may, among other forms of trim, include: (1) Rick-rack, tape, belting, binding, braid...
16 CFR 303.12 - Trimmings of household textile articles.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Trimmings of household textile articles. 303... household textile articles. (a) Trimmings incorporated in articles of wearing apparel and other household textile articles may, among other forms of trim, include: (1) Rick-rack, tape, belting, binding, braid...
16 CFR 303.12 - Trimmings of household textile articles.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Trimmings of household textile articles. 303... household textile articles. (a) Trimmings incorporated in articles of wearing apparel and other household textile articles may, among other forms of trim, include: (1) Rick-rack, tape, belting, binding, braid...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-03
... Standards for Clothing Textiles and Vinyl Plastic Film AGENCY: Consumer Product Safety Commission. ACTION... Commission's flammability standards for clothing textiles and vinyl plastic film. DATES: Written comments on... collection requirements should be captioned ``Clothing Textiles and Film, Collection of Information'' and...
16 CFR 303.12 - Trimmings of household textile articles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Trimmings of household textile articles. 303... CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT § 303.12 Trimmings of household textile articles. (a) Trimmings incorporated in articles of wearing apparel and other household...
Invited review nonmulberry silk biopolymers.
Kundu, S C; Kundu, Banani; Talukdar, Sarmistha; Bano, Subia; Nayak, Sunita; Kundu, Joydip; Mandal, Biman B; Bhardwaj, Nandana; Botlagunta, Mahendran; Dash, Biraja C; Acharya, Chitrangada; Ghosh, Ananta K
2012-06-01
The silk produced by silkworms are biopolymers and can be classified into two types--mulberry and nonmulberry. Mulberry silk of silkworm Bombyx mori has been extensively explored and used for century old textiles and sutures. But for the last few decades it is being extensively exploited for biomedical applications. However, the transformation of nonmulberry silk from being a textile commodity to biomaterials is relatively new. Within a very short period of time, the combination of load bearing capability and tensile strength of nonmulberry silk has been equally envisioned for bone, cartilage, adipose, and other tissue regeneration. Adding to its advantage is its diverse morphology, including macro to nano architectures with controllable degradation and biocompatibility yields novel natural material systems in vitro. Its follow on applications involve sustained release of model compounds and anticancer drugs. Its 3D cancer models provide compatible microenvironment systems for better understanding of the cancer progression mechanism and screening of anticancer compounds. Diversely designed nonmulberry matrices thus provide an array of new cutting age technologies, which is unattainable with the current synthetic materials that lack biodegradability and biocompatibility. Scientific exploration of nonmulberry silk in tissue engineering, regenerative medicine, and biotechnological applications promises advancement of sericulture industries in India and China, largest nonmulberry silk producers of the world. This review discusses the prospective biomedical applications of nonmulberry silk proteins as natural biomaterials. Copyright © 2012 Wiley Periodicals, Inc.
A Review of the NASA Textile Composites Research
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.; Dexter, H. B.; Raju, I. S.
1997-01-01
During the past 15 years NASA has taken the lead role in exploiting the benefits of textile reinforced composite materials for application to aircraft structures. The NASA Advanced Composites Technology (ACT) program was started in 1989 to develop composite primary structures for commercial transport airplanes with costs that are competitive with metal structures. As part of this program, several contractors investigated the cost, weight, and performance attributes of textile reinforced composites. Textile composites made using resin transfer molding type processes were evaluated for numerous applications. Methods were also developed to predict resin infiltration and flow in textile preforms and to predict and measure mechanical properties of the textile composites. This paper describes the salient results of that program.
Viking and Early Middle Ages Northern Scandinavian Textiles Proven to be made with Hemp
NASA Astrophysics Data System (ADS)
Skoglund, G.; Nockert, M.; Holst, B.
2013-10-01
Nowadays most plant textiles used for clothing and household are made of cotton and viscose. Before the 19th century however, plant textiles were mainly made from locally available raw materials, in Scandinavia these were: nettle, hemp and flax. It is generally believed that in Viking and early Middle Ages Scandinavia hemp was used only for coarse textiles (i.e. rope and sailcloth). Here we present an investigation of 10 Scandinavian plant fibre textiles from the Viking and Early Middle Ages, believed to be locally produced. Up till now they were all believed to be made of flax. We show that 4 textiles, including two pieces of the famous Överhogdal Viking wall-hanging are in fact made with hemp (in three cases hemp and flax are mixed). This indicates that hemp was important, not only for coarse but also for fine textile production in Viking and Early Middle Ages in Scandinavia.
The solar textile challenge: how it will not work and where it might.
Krebs, Frederik C; Hösel, Markus
2015-03-01
Solar textiles are highlighted as a future technology with transformative power within the fields of both textiles and solar cells provided that developments are made in critical areas. Specifically, these are fundamental solutions to materials and material combinations with mechanical stability and flexibility imposed by textile architectures, scientific solutions to achieve high carrier transport efficiency and optical transmission in a textile topology, technical solutions to controlling the physical disposition of the anode and cathode along with their specific and error-free contacting and, finally, practical solutions to fast and efficient manufacture and integration. The areas of application and the penetration of solar textiles into our everyday life are expected to be explosive pending efficient developments within these four key areas. A shortcoming in one or more of these will, however, lead to the solar textiles being banned to academic existence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Freney, Jean; Renaud, François N. R.
Microbes can be carried by and even multiply on textiles. The first real, premeditated, microbiological warfare happened in 1763, during the Anglo-French wars in North America, when Native American emissaries were given blankets or handkerchiefs contaminated with smallpox. Thus, a small epidemic started and spread rapidly, causing considerable damage to the rank and file of the Native Americans. Nowadays, it could be said that textiles could be vectors of infections in hospitals or communities. The making of antimicrobial textiles could prevent them from becoming a reservoir of microbes in the transmission of infections and in cases of voluntary contamination in a terrorist threat for example. However, methods have to show that textiles are really active and do not attack the cutaneous flora they are in contact with. In this chapter, the role of textiles in the transmission of infections is summarized and the main characteristics of antimicrobial textiles are described.
Textile electrode characterization: dependencies in the skin-clothing-electrode interface
NASA Astrophysics Data System (ADS)
Macías, R.; Fernández, M.; Bragós, R.
2013-04-01
Given the advances in the technology known as smart textiles, the use of textile electrodes is more and more common. However this kind of electrodes presents some differences regarding the standard ones as the Ag-AgCl electrodes. Therefore to characterize them as best as possible is required. In order to make the characterization reproducible and repetitive, a skin dummy made of agar-agar and a standardized measurement set-up is used in this article. Thus, some dependencies in the skin-electrode interface are described. These dependencies are related to the surface of the textile electrode, the conductive material and the applied pressure. Furthermore, the dependencies on clothing in the skin-textile electrode interface are also analyzed. Thus, based on some parameters such as textile material, width and number of layers, the behavior of the interface made up by the skin, the textile electrode and clothing is depicted.
Viking and early Middle Ages northern Scandinavian textiles proven to be made with hemp.
Skoglund, G; Nockert, M; Holst, B
2013-10-18
Nowadays most plant textiles used for clothing and household are made of cotton and viscose. Before the 19th century however, plant textiles were mainly made from locally available raw materials, in Scandinavia these were: nettle, hemp and flax. It is generally believed that in Viking and early Middle Ages Scandinavia hemp was used only for coarse textiles (i.e. rope and sailcloth). Here we present an investigation of 10 Scandinavian plant fibre textiles from the Viking and Early Middle Ages, believed to be locally produced. Up till now they were all believed to be made of flax. We show that 4 textiles, including two pieces of the famous Överhogdal Viking wall-hanging are in fact made with hemp (in three cases hemp and flax are mixed). This indicates that hemp was important, not only for coarse but also for fine textile production in Viking and Early Middle Ages in Scandinavia.
Silver speciation and release in commercial antimicrobial textiles as influenced by washing
The use of nanoscale Ag in textiles is one the most often mentioned uses of nano-Ag. It has previously been shown that significant amounts of the Ag in the textiles are released upon washing. However, the form of Ag present in the textiles remains largely unknown as product label...
4-H Textile Science Textile Arts Projects.
ERIC Educational Resources Information Center
Scholl, Jan
This packet contains three 4-H textile arts projects for students in the textile sciences area. The projects cover weaving, knitting, and crocheting. Each project provides an overview of what the student will learn, what materials are needed, and suggested projects for the area. Projects can be adapted for beginning, intermediate, or advanced…
16 CFR 1610.33 - Test procedures for textile fabrics and film.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Test procedures for textile fabrics and film... for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose fiber... under the procedures outlined in part 1611, Standard for the Flammability of Vinyl Plastic Film, and if...
16 CFR 1610.33 - Test procedures for textile fabrics and film.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Test procedures for textile fabrics and film... for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose fiber... under the procedures outlined in part 1611, Standard for the Flammability of Vinyl Plastic Film, and if...
16 CFR 1610.33 - Test procedures for textile fabrics and film.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Test procedures for textile fabrics and film... for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose fiber... under the procedures outlined in part 1611, Standard for the Flammability of Vinyl Plastic Film, and if...
16 CFR 1611.33 - Test procedures for textile fabrics and film.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Test procedures for textile fabrics and film... REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.33 Test procedures for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose...
16 CFR 1611.33 - Test procedures for textile fabrics and film.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Test procedures for textile fabrics and film... REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.33 Test procedures for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose...
16 CFR 1611.33 - Test procedures for textile fabrics and film.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Test procedures for textile fabrics and film... REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.33 Test procedures for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose...
16 CFR 1610.33 - Test procedures for textile fabrics and film.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test procedures for textile fabrics and film... for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose fiber... under the procedures outlined in part 1611, Standard for the Flammability of Vinyl Plastic Film, and if...
16 CFR 1611.33 - Test procedures for textile fabrics and film.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test procedures for textile fabrics and film... REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.33 Test procedures for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose...
Xu, Junqian
2017-11-30
The UK textile industry was very prosperous in the past but in the 1970s Britain started to import textile materials from abroad. Since 1990, half of its textile materials have been imported from the EEA (European Economic Area), ASEAN (Association of Southeast Asian Nations) and North America countries. Meanwhile, UK imports from China have increased dramatically. Through comparisons, this paper calculates the trade competitiveness index and relative competitive advantages of regions and investigates the impact of Chinese textiles on UK imports from three key free trade regions across the textile sectors in the period 1990-2016 on the basis of United Nation Comtrade Rev. 3. We find that China's textile prices, product techniques, political trade barriers and even tax system have made a varied impact on the UK's imports across related sectors in the context of green trade and the strengthening of barriers, which helps us recognize China's competitiveness in international trading and also provides advice on China's sustainable development of textile exports.
Health and safety concerns of textiles with nanomaterials
NASA Astrophysics Data System (ADS)
Almeida, L.; Ramos, D.
2017-10-01
There is a growing concern related to the effects of nanomaterials in health and safety.Nanotechnologies are already present in many consumer products, including textiles. “Nanotextiles” can be considered as traditional textiles with the incorporation of nanoparticles. They present often functionalities such as antibacterial, ultraviolet radiation protection, water and dirt repellency, self-cleaning or flame retardancy. Nanoparticles can be released from the textile materials due to different effects (abrasion and other mechanical stresses, sweat, irradiation, washing, temperature changes, etc.). It is then expectable that “nanotextiles” may release individual nanoparticles, agglomerates of nanoparticles or small particles of textile with or without nanoparticles, depending on the type of integration of the nanoparticles in textiles. The most important exposure route of the human body to nanoparticles in case of textiles is skin contact. Several standards are being developed under the auspices of the European Committee for Standardization. In this paper, it is presented the development and application of a test method to evaluate the skin exposure to nanoparticles, to evaluate the transfer of the nanoparticles from the textile to the skin by the effect of abrasion and sweat.
Highly Flexible Dye-sensitized Solar Cells Produced by Sewing Textile Electrodes on Cloth
Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; Lee, Dong Y.
2014-01-01
Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices. PMID:24957920
Highly flexible dye-sensitized solar cells produced by sewing textile electrodes on cloth.
Yun, Min Ju; Cha, Seung I; Seo, Seon Hee; Lee, Dong Y
2014-06-24
Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices.
Smart textiles: a new drug delivery system for symptomatic treatment of a common cold.
Wienforth, F; Landrock, A; Schindler, C; Siegert, J; Kirch, W
2007-05-01
Smart textiles provide the possibility of being coated with cineole, menthol, and camphor. Due to over-the-counter availability, ethereal oils are frequently used to treat a common cold. The existing pharmaceutical forms entail the risk of oral ingestion by children, which can cause severe intoxications. This risk could be limited by a smart textile application. Prior to applicability tests in children, the principal traceability of smart textile-applied ethereal oils at their site of action in the alveoli has to be demonstrated. Therefore, a crossover trial (ointment vs smart textiles) with 6 healthy volunteers was carried out as a proof-of-concept study. As a result, the principle proof is given that smart textile-applied ethereal oils are available at their site of action. Because of the volatility of the active ingredients, a close-fitting textile form has to be developed for further clinical development of smart textiles to achieve higher concentrations in the alveoli. Slower liberation properties and a more convenient skin sensation in comparison to available pharmaceutical forms may provide advantages for the applicability in both children and adults.
Xu, Junqian
2017-01-01
The UK textile industry was very prosperous in the past but in the 1970s Britain started to import textile materials from abroad. Since 1990, half of its textile materials have been imported from the EEA (European Economic Area), ASEAN (Association of Southeast Asian Nations) and North America countries. Meanwhile, UK imports from China have increased dramatically. Through comparisons, this paper calculates the trade competitiveness index and relative competitive advantages of regions and investigates the impact of Chinese textiles on UK imports from three key free trade regions across the textile sectors in the period 1990–2016 on the basis of United Nation Comtrade Rev. 3. We find that China’s textile prices, product techniques, political trade barriers and even tax system have made a varied impact on the UK’s imports across related sectors in the context of green trade and the strengthening of barriers, which helps us recognize China’s competitiveness in international trading and also provides advice on China’s sustainable development of textile exports. PMID:29189756
An Evaluation Model for Sustainable Development of China’s Textile Industry: An Empirical Study
NASA Astrophysics Data System (ADS)
Zhao, Hong; Lu, Xiaodong; Yu, Ting; Yin, Yanbin
2018-04-01
With economy’s continuous rapid growth, textile industry is required to search for new rules and adjust strategies in order to optimize industrial structure and rationalize social spending. The sustainable development of China’s textile industry is a comprehensive research subject. This study analyzed the status of China’s textile industry and constructed the evaluation model based on the economical, ecologic, and social benefits. Analytic Hierarchy Process (AHP) and Data Envelopment Analysis (DEA) were used for an empirical study of textile industry. The result of evaluation model suggested that the status of the textile industry has become the major problems in the sustainable development of China’s textile industry. It’s nearly impossible to integrate into the global economy if no measures are taken. The enterprises concerned with the textile industry status should be reformed in terms of product design, raw material selection, technological reform, technological progress, and management, in accordance with the ideas and requirements of sustainable development. The results of this study are benefit for 1) discover the main elements restricting the industry’s sustainable development; 2) seek for corresponding solutions for policy formulation and implementation of textile industry; 3) provide references for enterprises’ development transformation in strategic deployment, fund allocation, and personnel assignment.
Blue and grey water footprint of textile industry in China.
Wang, Laili; Ding, Xuemei; Wu, Xiongying
2013-01-01
Water footprint (WF) is a newly developed idea that indicates impacts of freshwater appropriation and wastewater discharge. The textile industry is one of the oldest, longest and most complicated industrial chains in the world's manufacturing industries. However, the textile industry is also water intensive. In this paper, we applied a bottom-up approach to estimate the direct blue water footprint (WFdir,blue) and direct grey water footprint (WFdir,grey) of China's textile industry at sector level based on WF methodology. The results showed that WFdir,blue of China's textile industry had an increasing trend from 2001 to 2010. The annual WFdir,blue surpassed 0.92 Gm(3)/yr (giga cubic meter a year) since 2004 and rose to peak value of 1.09 Gm(3)/yr in 2007. The original and residuary WFdir,grey (both were calculated based on the concentration of chemical oxygen demand (CODCr)) of China's textile industry had a similar variation trend with that of WFdir,blue. Among the three sub-sectors of China's textile industry, the manufacture of textiles sector's annual WFdir,blue and WFdir,grey were much larger than those of the manufacture of textile wearing apparel, footware and caps sector and the manufacture of chemical fibers sector. The intensities of WFdir,blue and WF(res)dir,grey of China's textile industry were year by year decreasing through the efforts of issuing restriction policies on freshwater use and wastewater generation and discharge, and popularization of water saving and wastewater treatment technologies.
Textile dye degradation using nano zero valent iron: A review.
Raman, Chandra Devi; Kanmani, S
2016-07-15
Water soluble unfixed dyes and inorganic salts are the major pollutants in textile dyeing industry wastewater. Existing treatment methods fail to degrade textile dyes and have limitations too. The inadequate treatment of textile dyeing wastewater is a major concern when effluent is directly discharged into the nearby environment. Long term disposal threatens the environment, which needs reclamation. This article reviews the current knowledge of nano zero valent iron (nZVI) technique in the degradation of textile dyes. The application of nZVI on textile dye degradation is receiving great attention in the recent years because nZVI particles are highly reactive towards the pollutant, less toxic, and economical. The nZVI particles aggregate quickly with respect to time and the addition of supports such as resin, nickel, zinc, bentonite, biopolymer, kaolin, rectorite, nickel-montmorillonite, bamboo, cellulose, biochar, graphene, and clinoptilolite enhanced the stability of iron nanoparticles. Inclusion of supports may in turn introduce additional toxic pollutants, hence green supports are recommended. The majority of investigations concluded dye color removal as textile dye compound removal, which is not factual. Very few studies monitored the removal of total organic carbon and observed the products formed. The results revealed that partial mineralization of the textile dye compound was achieved. Instead of stand alone technique, nZVI can be integrated with other suitable technique to achieve complete degradation of textile dye and also to treat multiple pollutants in the real textile dyeing wastewater. It is highly recommended to perform more bench-scale and pilot-scale studies to apply this technique to the textile effluent contaminated sites. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Jinjie; Dong, Liubing; Xu, Chengjun; Ren, Danyang; Ma, Xinpei; Kang, Feiyu
2018-04-04
Polymorphous supercapacitors were constructed from flexible three-dimensional carbon network/polyaniline (PANI)/MnO 2 composite textile electrodes. The flexible textile electrodes were fabricated through a layer-by-layer construction strategy: PANI, carbon nanotubes (CNTs), and MnO 2 were deposited on activated carbon fiber cloth (ACFC) in turn through an electropolymerization process, "dipping and drying" method, and in situ chemical reaction, respectively. In the fabricated ACFC/PANI/CNTs/MnO 2 textile electrodes, the ACFC/CNT hybrid framework serves as a porous and electrically conductive 3D network for the rapid transmission of electrons and electrolyte ions, where ACFC, PANI, and MnO 2 are high-performance supercapacitor electrode materials. In the electrolyte of H 2 SO 4 solution, the textile electrode-based symmetric supercapacitor delivers superior areal capacitance, energy density, and power density of 4615 mF cm -2 (for single electrode), 157 μW h cm -2 , and 10372 μW cm -2 , respectively, whereas asymmetric supercapacitor assembled with the prepared composite textile as the positive electrode and ACFC as the negative electrode exhibits an improved energy density of 413 μW h cm -2 and a power density of 16120 μW cm -2 . On the basis of the ACFC/PANI/CNTs/MnO 2 textile electrodes, symmetric and asymmetric solid-state textile supercapacitors with a PVA/H 2 SO 4 gel electrolyte were also produced. These solid-state textile supercapacitors exhibit good electrochemical performance and high flexibility. Furthermore, flexible solid-state fiber-like supercapacitors were prepared with fiber bundle electrodes dismantled from the above composite textiles. Overall, this work makes a meaningful exploration of the versatile applications of textile electrodes to produce polymorphous supercapacitors.
Measurement of EMG activity with textile electrodes embedded into clothing.
Finni, T; Hu, M; Kettunen, P; Vilavuo, T; Cheng, S
2007-11-01
Novel textile electrodes that can be embedded into sports clothing to measure averaged rectified electromyography (EMG) have been developed for easy use in field tests and in clinical settings. The purpose of this study was to evaluate the validity, reliability and feasibility of this new product to measure averaged rectified EMG. The validity was tested by comparing the signals from bipolar textile electrodes (42 cm(2)) and traditional bipolar surface electrodes (1.32 cm(2)) during bilateral isometric knee extension exercise with two electrode locations (A: both electrodes located in the same place, B: traditional electrodes placed on the individual muscles according to SENIAM, n=10 persons for each). Within-session repeatability (the coefficient of variation CV%, n=10) was calculated from five repetitions of 60% maximum voluntary contraction (MVC). The day-to-day repeatability (n=8) was assessed by measuring three different isometric force levels on five consecutive days. The feasibility of the textile electrodes in field conditions was assessed during a maximal treadmill test (n=28). Bland-Altman plots showed a good agreement within 2SD between the textile and traditional electrodes, demonstrating that the textile electrodes provide similar information on the EMG signal amplitude to the traditional electrodes. The within-session CV ranged from 13% to 21% in both the textile and traditional electrodes. The day-to-day CV was smaller, ranging from 4% to 11% for the textile electrodes. A similar relationship (r(2)=0.5) was found between muscle strength and the EMG of traditional and textile electrodes. The feasibility study showed that the textile electrode technique can potentially make EMG measurements very easy in field conditions. This study indicates that textile electrodes embedded into shorts is a valid and feasible method for assessing the average rectified value of EMG.
Analysis of fabric materials cut using ultraviolet laser ablation
NASA Astrophysics Data System (ADS)
Tsai, Hsin-Yi; Yang, Chih-Chung; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Andrew Yeh, J.
2016-04-01
Laser ablation technology has widely been applied in the clothing industry in recent years. However, the laser mechanism would affect the quality of fabric contours and its components. Hence, this study examined carbonization and oxidation conditions and contour variation in nonwoven, cotton, and composite leather fabrics cut by using an ultraviolet laser at a wavelength of 355 nm. Processing parameters such as laser power, pulse frequency, scanning speed, and number of pulses per spot were adjusted to investigate component variation of the materials and to determine suitable cutting parameters for the fabrics. The experimental results showed that the weights of the component changed substantially by pulse frequency but slightly by laser power, so pulse frequency of 100 kHz and laser power of 14 W were the approximate parameters for three fabrics for the smaller carbonization and a sufficient energy for rapidly cutting, which the pulse duration of laser system was fixed at 300 μs and laser irradiance was 0.98 J/mm2 simultaneously. In addition, the etiolate phenomenon of nonwoven was reduced, and the component weight of cotton and composite leather was closed to the value of knife-cut fabric as the scanning speed increased. The approximate scanning speed for nonwoven and composite leather was 200 mm/s, and one for cotton was 150 mm/s, respectively. The sharper and firmer edge is obtained by laser ablation mechanism in comparison with traditional knife cutting. Experimental results can serve as the reference for laser cutting in the clothing industry, for rapidly providing smoother patterns with lower carbonization and oxidation edge in the fashion industry.
ERIC Educational Resources Information Center
Baah, Anthony
2010-01-01
The purpose of the qualitative positivistic case study was to explore whether resource communication technology has helped or would help the marketing of textile products in the U.S. textile industry. The contributions of human capital in the marketing department, the marketing-demand information system function, and the product supply chain…
16 CFR § 1611.33 - Test procedures for textile fabrics and film.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Test procedures for textile fabrics and film... FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.33 Test procedures for textile fabrics and film. (a)(1) All textile fabrics (except those with a...
16 CFR § 1610.33 - Test procedures for textile fabrics and film.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Test procedures for textile fabrics and film... Test procedures for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro... of Vinyl Plastic Film, and if such coated fabrics do not exhibit a rate of burning in excess of that...
Cutaneous Recording and Stimulation of Muscles Using Organic Electronic Textiles.
Papaiordanidou, Maria; Takamatsu, Seiichi; Rezaei-Mazinani, Shahab; Lonjaret, Thomas; Martin, Alain; Ismailova, Esma
2016-08-01
Electronic textiles are an emerging field providing novel and non-intrusive solutions for healthcare. Conducting polymer-coated textiles enable a new generation of fully organic surface electrodes for electrophysiological evaluations. Textile electrodes are able to assess high quality muscular monitoring and to perform transcutaneous electrical stimulation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Weng, Wei; Chen, Peining; He, Sisi; Sun, Xuemei; Peng, Huisheng
2016-05-17
This Review describes the state-of-the-art of wearable electronics (smart textiles). The unique and promising advantages of smart electronic textiles are highlighted by comparing them with the conventional planar counterparts. The main kinds of smart electronic textiles based on different functionalities, namely the generation, storage, and utilization of electricity, are then discussed with an emphasis on the use of functional materials. The remaining challenges are summarized together with important new directions to provide some useful clues for the future development of smart electronic textiles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Micromechanical models for textile structural composites
NASA Technical Reports Server (NTRS)
Marrey, Ramesh V.; Sankar, Bhavani V.
1995-01-01
The objective is to develop micromechanical models for predicting the stiffness and strength properties of textile composite materials. Two models are presented to predict the homogeneous elastic constants and coefficients of thermal expansion of a textile composite. The first model is based on rigorous finite element analysis of the textile composite unit-cell. Periodic boundary conditions are enforced between opposite faces of the unit-cell to simulate deformations accurately. The second model implements the selective averaging method (SAM), which is based on a judicious combination of stiffness and compliance averaging. For thin textile composites, both models can predict the plate stiffness coefficients and plate thermal coefficients. The finite element procedure is extended to compute the thermal residual microstresses, and to estimate the initial failure envelope for textile composites.
Exploring dynamic lighting, colour and form with smart textiles
NASA Astrophysics Data System (ADS)
Cabral, I.; Silva, C.; Worbin, L.; Souto, A. P.
2017-10-01
This paper addresses an ongoing research, aiming at the development of smart textiles that transform the incident light that passes through them - light transmittance - to design dynamic light without acting upon the light source. A colour and shape change prototype was developed with the objective of studying textile changes in time; to explore temperature as a dynamic variable through electrical activation of the smart materials and conductive threads integrated in the textile substrate; and to analyse the relation between textile chromic and morphologic behaviour in interaction with light. Based on the experiments conducted, results have highlighted some considerations of the dynamic parameters involved in the behaviour of thermo-responsive textiles and demonstrated design possibilities to create interactive lighting scenarios.
Nilsson, Johanna; Axelsson, Östen
2015-08-01
Aesthetic quality is central to textile conservators when evaluating a conservation method. However, the literature on textile conservation chiefly focuses on physical properties, and little is known about what factors determine aesthetic quality according to textile conservators. The latter was explored through two experiments. Experiment 1 explored the underlying attributes of aesthetic quality of textile conservation interventions. Experiment 2 explored the relationships between these attributes and how well they predicted aesthetic quality. Rank-order correlation analyses revealed two latent factors called Coherence and Completeness. Ordinal regression analysis revealed that Coherence was the most important predictor of aesthetic quality. This means that a successful conservation intervention is visually well-integrated with the textile item in terms of the material and method.
Low excess air burners keep boiler and air cleaner while cutting fuel costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, H.
1981-11-01
In the 1970s at the Humko Chemical Co., producers of fatty acids used in plastics, soaps, rubber products, and textiles, it was deemed necessary to modify existing boiler equipment to insure an adequate fuel supply and to increase efficienct. Existing equipment operated at an overall average efficiency of 77% and only 6% excess O/sub 2/ could be achieved with number 6 fuel oil and only 2.6% with natural gas. Cleaning the boilers and replacing existing burners with oil and gas firing units led to overall efficiency up to 84% with only 1% excess O/sub 2/. Even though fuel costs havemore » approximately tripled during the ensuing time, Humko's cost of producing steam has only doubled with the more efficienct equipment. (BLM)« less
Implementation Analysis of Cutting Tool Carbide with Cast Iron Material S45 C on Universal Lathe
NASA Astrophysics Data System (ADS)
Junaidi; hestukoro, Soni; yanie, Ahmad; Jumadi; Eddy
2017-12-01
Cutting tool is the tools lathe. Cutting process tool CARBIDE with Cast Iron Material Universal Lathe which is commonly found at Analysiscutting Process by some aspects numely Cutting force, Cutting Speed, Cutting Power, Cutting Indication Power, Temperature Zone 1 and Temperatur Zone 2. Purpose of this Study was to determine how big the cutting Speed, Cutting Power, electromotor Power,Temperatur Zone 1 and Temperatur Zone 2 that drives the chisel cutting CARBIDE in the Process of tur ning Cast Iron Material. Cutting force obtained from image analysis relationship between the recommended Component Cuting Force with plane of the cut and Cutting Speed obtained from image analysis of relationships between the recommended Cutting Speed Feed rate.
X-ray Imaging of Transplanar Liquid Transport Mechanisms in Single Layer Textiles.
Zhang, Gannian; Parwani, Rachna; Stone, Corinne A; Barber, Asa H; Botto, Lorenzo
2017-10-31
Understanding the penetration of liquids within textile fibers is critical for the development of next-generation smart textiles. Despite substantial research on liquid penetration in the plane of the textile, little is known about how the liquid penetrates in the thickness direction. Here we report a time-resolved high-resolution X-ray measurement of the motion of the liquid-air interface within a single layer textile, as the liquid is transported across the textile thickness following the deposition of a droplet. The measurement of the time-dependent position of the liquid meniscus is made possible by the use of ultrahigh viscosity liquids (dynamic viscosity from 10 5 to 2.5 × 10 6 times larger than water). This approach enables imaging due to the slow penetration kinetics. Imaging results suggest a three-stage penetration process with each stage being associated with one of the three types of capillary channels existing in the textile geometry, providing insights into the effect of the textile structure on the path of the three-dimensional liquid meniscus. One dimensional kinetics studies show that our data for the transplanar penetration depth Δx L vs time do not conform to a power law, and that the measured rate of penetration for long times is smaller than that predicted by Lucas-Washburn kinetics, challenging commonly held assumptions regarding the validity of power laws when applied to relatively thin textiles.
Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation.
Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin
2015-07-16
Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes.
Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation
Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin
2015-01-01
Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes. PMID:26193273
Song, Min; Wei, Yuexing; Yu, Lei; Tang, Xinhong
2016-06-01
In this study, five typical municipal solid waste (MSW) components (tyres, cardboard, polyvinyl chloride (PVC), acrylic textile, toilet paper) were used as raw materials to prepare four kinds of MSW-based carbon materials (paperboard-based carbon materials (AC1); the tyres and paperboard-based carbon materials (AC2); the tyres, paperboard and PVC-based carbon materials (AC3); the tyres, paperboard, toilet paper, PVC and acrylic textile-based carbon materials (AC4)) by the KOH activation method. The characteristic results illustrate that the prepared carbon adsorbents exhibited a large pore volume, high surface area and sufficient oxygen functional groups. Furthermore, the application of AC1, AC2, AC3, AC4 on different heavy metal (Cu(2+), Zn(2+), Pb(2+), Cr(3+)) removals was explored to investigate their adsorption properties. The effects of reaction time, pH, temperature and adsorbent dosage on the adsorption capability of heavy metals were investigated. Comparisons of heavy metal adsorption on carbon of different components were carried out. Among the four samples, AC1 exhibits the highest adsorption capacity for Cu(2+); the highest adsorption capacities of Pb(2+) and Zn(2+) are obtained for AC2; that of Cr(3+) are obtained for AC4. In addition, the carbon materials exhibit better adsorption capability of Cu(2+) and Pb(2+) than the other two kind of metal ions (Zn(2+) and Cr(3+)). © The Author(s) 2016.
ERIC Educational Resources Information Center
Lee, Victor R.; Fields, Deborah A.
2017-01-01
Purpose: In light of growing interest in the maker movement and electronic textiles (e-textiles) as an educational technology, the purpose of this paper is to characterize competence change in undergraduate students who participated in a semester-length course that used e-textiles. Design/methodology/approach: This qualitative and exploratory…
Long-term respiratory health effects in textile workers.
Lai, Peggy S; Christiani, David C
2013-03-01
Over 60 million people worldwide work in the textile or clothing industry. Recent studies have recognized the contribution of workplace exposures to chronic lung diseases, in particular chronic obstructive pulmonary disease (COPD). Early studies in textile workers have focused on the relationship between hemp or cotton dust exposure and the development of a syndrome termed byssinosis. The purpose of this review is to evaluate the effect of long-term exposure to organic dust in textile workers on chronic respiratory disease in the broader context of disease classifications, such as reversible or irreversible obstructive lung disease (i.e. asthma or COPD), and restrictive lung disease. Cessation of exposure to cotton dust leads to improvement in lung function. Recent animal models have suggested a shift in the lung macrophage:dendritic cell population ratio as a potential mechanistic explanation for persistent inflammation in the lung due to repeated cotton dust-related endotoxin exposure. Other types of textile dust, such as silk, may contribute to COPD in textile workers. Textile dust-related obstructive lung disease has characteristics of both asthma and COPD. Significant progress has been made in the understanding of chronic lung disease due to organic dust exposure in textile workers.
Dermal exposure potential from textiles that contain silver nanoparticles
Stefaniak, Aleksandr B; Duling, Mathew G; Lawrence, Robert B; Thomas, Treye A; LeBouf, Ryan F; Wade, Eleanor E; Abbas Virji, M
2014-01-01
Background: Factors that influence exposure to silver particles from the use of textiles are not well understood. Objectives: The aim of this study was to evaluate the influence of product treatment and physiological factors on silver release from two textiles. Methods: Atomic and absorbance spectroscopy, electron microscopy, and dynamic light scattering (DLS) were applied to characterize the chemical and physical properties of the textiles and evaluate silver release in artificial sweat and saliva under varying physiological conditions. One textile had silver incorporated into fiber threads (masterbatch process) and the other had silver nanoparticles coated on fiber surfaces (finishing process). Results: Several complementary and confirmatory analytical techniques (spectroscopy, microscopy, etc.) were required to properly assess silver release. Silver released into artificial sweat or saliva was primarily in ionic form. In a simulated “use” and laundering experiment, the total cumulative amount of silver ion released was greater for the finishing process textile (0.51±0.04%) than the masterbatch process textile (0.21±0.01%); P<0.01. Conclusions: We found that the process (masterbatch vs finishing) used to treat textile fibers was a more influential exposure factor than physiological properties of artificial sweat or saliva. PMID:25000110
Interactive textiles for warrior systems applications.
Leitch, D Paul
2004-01-01
The purpose of this paper is to briefly summarize the basis of the U.S. Army's interest in Interactive Textiles and to describe some of the salient needs in the area of healthcare and E-Textiles and finally to indicate the current and near term market for interactive textile solutions. The basis of current Army, indeed DoD interest in Interactive Textiles including E-Textiles is found in the concept of Network-Centric Warfare. The individual soldier in this concept is often at the hub of a vast information network than shares information across platforms such as vehicles and aircraft as well as across echelongs of command from the font line to the rearmost command and control centers. In order to realize the advantages of such a war fighting concept, E-Textiles are required in a number of areas including soldier's uniforms, tentage and airdrop systems. With respect to healthcare, the Army's interest in E-Textile solutions lie in the areas of human performance monitoring (broadly defined to include physiological states such as blood pressure and hydration as well as the more difficult to measure states of attentiveness and cognitive functioning), wound detection and treatment, energy harvesting and flexible displays.
Dermal exposure potential from textiles that contain silver nanoparticles.
Stefaniak, Aleksandr B; Duling, Mathew G; Lawrence, Robert B; Thomas, Treye A; LeBouf, Ryan F; Wade, Eleanor E; Virji, M Abbas
2014-01-01
Factors that influence exposure to silver particles from the use of textiles are not well understood. The aim of this study was to evaluate the influence of product treatment and physiological factors on silver release from two textiles. Atomic and absorbance spectroscopy, electron microscopy, and dynamic light scattering (DLS) were applied to characterize the chemical and physical properties of the textiles and evaluate silver release in artificial sweat and saliva under varying physiological conditions. One textile had silver incorporated into fiber threads (masterbatch process) and the other had silver nanoparticles coated on fiber surfaces (finishing process). Several complementary and confirmatory analytical techniques (spectroscopy, microscopy, etc.) were required to properly assess silver release. Silver released into artificial sweat or saliva was primarily in ionic form. In a simulated "use" and laundering experiment, the total cumulative amount of silver ion released was greater for the finishing process textile (0·51±0·04%) than the masterbatch process textile (0·21±0·01%); P<0·01. We found that the process (masterbatch vs finishing) used to treat textile fibers was a more influential exposure factor than physiological properties of artificial sweat or saliva.
NASA Astrophysics Data System (ADS)
Normann, M.; Grethe, T.; Zöll, K.; Ehrmann, A.; Schwarz-Pfeiffer, A.
2017-10-01
In recent years smart textiles have gained a significant increase of attention. Electrotherapeutic socks, light emitting dresses or shirts with integrated sensors, having the ability to process data of vital parameters, are just a few examples and the full potential is not yet exhausted: Smart textiles are not only used for clothing purposes. Sensors for the care of the elderly, light applications for home textiles and monitoring systems in the automotive section are promising fields for the future. For all these electrical and electronic features, the supply of power is needed. The most common used power supplies, however, are not flexible, often not lightweight and therefore a huge problem for the integration into textile products. In recent projects, textile-based batteries are being developed. Metal-coated fabrics and yarns (e.g. silver, copper, nickel, zinc) as well as carbon based materials were used to create textile based energy sources. This article gives an overview of textile based electrochemical cells by combining different conductive yarns and a gel-electrolyte. The available materials will be processed by embroidering utilizing tailored fiber placement (TFP). The electrical characteristics of different embroidered patterns and material combinations are examined.
Recent researches concerning the obtaining of functional textiles based on conductive yarns
NASA Astrophysics Data System (ADS)
Leon, A. L.; Manea, L. R.; Hristian, L.
2016-08-01
Modem textile industry is influenced both by consumers' lifestyle and by novel materials. Functional textiles can be included into the group of technical textiles. The functional activity can be shortly interpreted as "sense - react - adapt" to the environment while traditional materials meet only passive protective role, a barrier between body and environment. Functional materials cross the conventional limits because they are designed for specific performances, being part of domains as: telemedicine, medicine, aeronautics, biotechnology, nanotechnology, protective clothes, sportswear, etc. This paper highlights the most recent developments in the field of using conductive yarns for obtaining functional textiles. Conductive fabrics can be done by incorporating into the textile structure the conductive fibers / yarns. The technologies differ from embroidering, sewing, weaving, knitting to braiding and obtaining nonwovens. The conductive fabrics production has a quickly growth because it is a high demand for these textiles used for data transfer in clothing, monitoring vital signs, germ-free garments, brain-computer interface, etc. Nowadays it is of high interest surface treatments of fibers/yarns which can be considered as a novel kind of textile finishing. There are presented some researches related to obtaining conductive yarns by coating PET and PP yarns with PANi conductive polymer.
Long term respiratory health effects in textile workers
Lai, Peggy S.; Christiani, David C.
2013-01-01
Purpose of review Over 60 million people worldwide work in the textile or clothing industry. Recent studies have recognized the contribution of workplace exposures to chronic lung diseases, in particular chronic obstructive pulmonary disease (COPD). Early studies in textile workers have focused on the relationship between hemp or cotton dust exposure and the development of a syndrome termed Byssinosis. The purpose of this review is to evaluate the effect of long term exposure to organic dust in textile workers on chronic respiratory disease in the broader context of disease classifications such as reversible or irreversible obstructive lung disease (i.e. asthma or COPD), and restrictive lung disease. Recent findings Cessation of exposure to cotton dusts leads to improvement in lung function. Recent animal models have suggested a shift in the lung macrophage:dendritic cell population as a potential mechanistic explanation for persistent inflammation in the lung due to repeated cotton-dust related endotoxin exposure. Other types of textile dust, such as silk, may contribute to COPD in textile workers. Summary Textile dust related obstructive lung disease has characteristics of both asthma and COPD. Significant progress has been made in the understanding of chronic lung disease due to organic dust exposure in textile workers. PMID:23361196
Possible Applications of 3D Printing Technology on Textile Substrates
NASA Astrophysics Data System (ADS)
Korger, M.; Bergschneider, J.; Lutz, M.; Mahltig, B.; Finsterbusch, K.; Rabe, M.
2016-07-01
3D printing is a rapidly emerging additive manufacturing technology which can offer cost efficiency and flexibility in product development and production. In textile production 3D printing can also serve as an add-on process to apply 3D structures on textiles. In this study the low-cost fused deposition modeling (FDM) technique was applied using different thermoplastic printing materials available on the market with focus on flexible filaments such as thermoplastic elastomers (TPE) or Soft PLA. Since a good adhesion and stability of the 3D printed structures on textiles are essential, separation force and abrasion resistance tests were conducted with different kinds of printed woven fabrics demonstrating that a sufficient adhesion can be achieved. The main influencing factor can be attributed to the topography of the textile surface affected by the weave, roughness and hairiness offering formlocking connections followed by the wettability of the textile surface by the molten polymer, which depends on the textile surface energy and can be specifically controlled by washing (desizing), finishing or plasma treatment of the textile before the print. These basic adhesion mechanisms can also be considered crucial for 3D printing on knitwear.
Goy, C B; Dominguez, J M; Gómez López, M A; Madrid, R E; Herrera, M C
2013-08-01
The ambulatory monitoring of biosignals involves the use of sensors, electrodes, actuators, processing tools and wireless communication modules. When a garment includes these elements with the purpose of recording vital signs and responding to specific situations it is call a 'Smart Wearable System'. Over the last years several authors have suggested that conductive textile material (e-textiles) could perform as electrode for these systems. This work aims at implementing an electrical characterization of e-textiles and an evaluation of their ability to act as textile electrodes for lower extremity venous occlusion plethysmography (LEVOP). The e-textile electrical characterization is carried out using two experimental set-ups (in vitro evaluation). Besides, LEVOP records are obtained from healthy volunteers (in vivo evaluation). Standard Ag/AgCl electrodes are used for comparison in all tests. Results shown that the proposed e-textiles are suitable for LEVOP recording and a good agreement between evaluations (in vivo and in vitro) is found.
Characterization of Textile-Insulated Capacitive Biosensors
Ng, Charn Loong; Reaz, Mamun Bin Ibne
2017-01-01
Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test. PMID:28287493
Fu, Bo; Zhang, Jingjing; Fan, Jinfeng; Wang, Jin; Liu, He
2012-01-01
Increasing textile wastewaters and their biotreatment byproduct-waste activated sludge are serious pollution problems. Butyric acid production from textile wastewater sludge by anaerobic digestion at different C/N ratios was investigated. Adding starch to textile wastewater sludge with a C/N ratio of 30 increased the butyric acid concentration and percentage accounting for total volatile fatty acids (TVFAs) to 21.42 g/L and 81.5%, respectively, as compared with 21.42 g/L and 10.6% of textile wastewater sludge alone. The maximum butyric acid yield (0.45 g/g VS), conversion rate (0.74 g/g VS(digest)) and production rate (2.25 g/L d) was achieved at a C/N ratio of 30. The biological toxicity of textile wastewater sludge also significantly decreased after the anaerobic digestion. The study indicated that the anaerobic co-digestion of textile wastewater sludge and carbohydrate-rich waste with appropriate C/N ratio is possible for butyric acid production.
Tibesku, C O; Innocenti, B; Wong, P; Salehi, A; Labey, L
2012-02-01
Long-term success of contemporary total knee replacements relies to a large extent on proper implant alignment. This study was undertaken to test whether specimen-matched cutting blocks based on computed axial tomography (CT) scans could provide accurate rotational alignment of the femoral component. CT scans of five fresh frozen full leg cadaver specimens, equipped with infrared reflective markers, were used to produce a specimen-matched femoral cutting block. Using those blocks, the bone cuts were made to implant a bi-compartmental femoral component. Rotational alignment of the components in the horizontal plane was determined using an optical measurement system and compared with all relevant rotational reference axes identified on the CT scans. Average rotational alignment for the bi-compartmental component in the horizontal plane was 1.9° (range 0°-6.3°; standard deviation 2.6°). One specimen that showed the highest deviation from the planned alignment also featured a completely degraded medial articular surface. The CT-based specimen-matched cutting blocks achieved good rotational alignment accuracy except for one specimen with badly damaged cartilage. In such cases, imaging techniques that visualize the cartilage layer might be more suitable to design cutting blocks, as they will provide a better fit and increased surface support.
Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes
Liang, Qiaokang; Zhang, Dan; Coppola, Gianmarc; Mao, Jianxu; Sun, Wei; Wang, Yaonan; Ge, Yunjian
2016-01-01
Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE) is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis) as well as the cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis) simultaneously. Optimal structural parameters of the EE are carefully designed via simulation-driven optimization. Moreover, a prototype sensor system is fabricated, which is applied to a 5-axis parallel kinematic machining center. Calibration experimental results demonstrate that the system is capable of measuring cutting forces and moments with good linearity while minimizing coupling error. Both the Finite Element Analysis (FEA) and calibration experimental studies validate the high performance of the proposed sensor system that is expected to be adopted into machining processes. PMID:26751451
Design and Analysis of a Sensor System for Cutting Force Measurement in Machining Processes.
Liang, Qiaokang; Zhang, Dan; Coppola, Gianmarc; Mao, Jianxu; Sun, Wei; Wang, Yaonan; Ge, Yunjian
2016-01-07
Multi-component force sensors have infiltrated a wide variety of automation products since the 1970s. However, one seldom finds full-component sensor systems available in the market for cutting force measurement in machine processes. In this paper, a new six-component sensor system with a compact monolithic elastic element (EE) is designed and developed to detect the tangential cutting forces Fx, Fy and Fz (i.e., forces along x-, y-, and z-axis) as well as the cutting moments Mx, My and Mz (i.e., moments about x-, y-, and z-axis) simultaneously. Optimal structural parameters of the EE are carefully designed via simulation-driven optimization. Moreover, a prototype sensor system is fabricated, which is applied to a 5-axis parallel kinematic machining center. Calibration experimental results demonstrate that the system is capable of measuring cutting forces and moments with good linearity while minimizing coupling error. Both the Finite Element Analysis (FEA) and calibration experimental studies validate the high performance of the proposed sensor system that is expected to be adopted into machining processes.
Applying NISHIJIN historical textile technique for e-Textile.
Kuroda, Tomohiro; Hirano, Kikuo; Sugimura, Kazushige; Adachi, Satoshi; Igarashi, Hidetsugu; Ueshima, Kazuo; Nakamura, Hideo; Nambu, Masayuki; Doi, Takahiro
2013-01-01
The e-Textile is the key technology for continuous ambient health monitoring to increase quality of life of patients with chronic diseases. The authors introduce techniques of Japanese historical textile, NISHIJIN, which illustrate almost any pattern from one continuous yarn within the machine weaving process, which is suitable for mixed flow production. Thus, NISHIJIN is suitable for e-Textile production, which requires rapid prototyping and mass production of very complicated patterns. The authors prototyped and evaluated a few vests to take twelve-lead electrocardiogram. The result tells that the prototypes obtains electrocardiogram, which is good enough for diagnosis.
NASA Technical Reports Server (NTRS)
Buckley, John D. (Editor)
1992-01-01
This document is a compilation of papers presented at a joint NASA/North Carolina State University/DoD/Clemson University/Drexel University conference on Fibers, Textile Technology, and Composites Structures held at the College of Textiles Building on Centennial Campus of North Carolina State University, Raleigh, North Carolina on October 15-17, 1991. Conference papers presented information on advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, pultruded composites, and the latest requirements for the use of textiles in the production of composite materials and structures.
Lech, Katarzyna; Jarosz, Maciej
2011-03-01
High-performance liquid chromatography coupled with spectrophotometric and electrospray mass spectrometric detection (HPLC-UV-Vis-ESI MS) was used for characterization of natural dyes present in historical art works. The gradient program was developed for identification of 29 colorants of various polarities. Dual detection system (UV-Vis and ESI MS) allowed differentiation of all compounds, even if they were not completely separated. This enabled examination of more color compounds over a substantially shorter time in comparison with previously recommended methods. Moreover, for extraction of colorants from historical textiles a two-step sequential procedure was proposed, excluding evaporation used in earlier procedures. The developed method was successfully applied to identification of indigotin, carminic, kermesic, flavokermesic, dcII, dcIV, dcVII, and ellagic acids as well as luteolin, apigenin, and genistein in red, violet, and green fibers taken from three selected historical chasubles which belong to the collection of the Wawel Cathedral treasury (Cracow, Poland). Italian textiles from the fifteenth and sixteenth centuries, of which chasubles were made, were dyed with a limited number of dyestuffs, consistently used for all batches of fabrics. The obtained results also allowed confirmation of the structure of the so-called "dcII" component of cochineal as a C-glucose derivative of flavokermesic acid.
Regeneration outlook on BLM Lands in the Siskiyou Mountains.
William I. Stein
1986-01-01
A survey of timberland cut over from 1956 to 1971 in the Applegate, Evans, and Galice-Glendale areas of southwestern Oregon showed that both partial cuts and clearcuts were well stocked with a combination of regeneration that started before and after harvest cutting. Advance regeneration was a major stocking component in partial cuts. Douglas-fir (Pseudotsuga...
Wunder, Sophia; Hunold, Alexander; Fiedler, Patrique; Schlegelmilch, Falk; Schellhorn, Klaus; Haueisen, Jens
2018-05-08
Neuromodulation induced by transcranial electric stimulation (TES) exhibited promising potential for clinical practice. However, the underlying mechanisms remain subject of research. The combination of TES and electroencephalography (EEG) offers great potential for investigating these mechanisms and brain function in general, especially when performed simultaneously. In conventional applications, the combination of EEG and TES suffers from limitations on the electrode level (gel for electrode-skin interface) and the usability level (preparation time, reproducibility of positioning). To overcome these limitations, we designed a bifunctional cap for simultaneous TES-EEG applications. We used novel electrode materials, namely textile stimulation electrodes and dry EEG electrodes integrated in a flexible textile cap. We verified the functionality of this cap by analysing the effect of TES on visual evoked potentials (VEPs). In accordance with previous reports using standard TES, the amplitude of the N75 component was significantly decreased post-stimulation, indicating the feasibility of using this novel flexible cap for simultaneous TES and EEG. Further, we found a significant reduction of the P100 component only during TES, indicating a different brain modulation effect during and after TES. In conclusion, the novel bifunctional cap offers a novel tool for simultaneous TES-EEG applications in clinical research, therapy monitoring and closed-loop stimulation.
USDA-ARS?s Scientific Manuscript database
This study was designed to provide updated information on the separable components, cooking yields, and nutrient values of retail cuts from the beef chuck. Ultimately, these data will be used in the United States Department of Agriculture (USDA) Nutrient Data Laboratory’s (NDL) National Nutrient Da...
[Local impact of antiseptic medical textile on tissues of organism].
Nazarchuk, O A; Vernyhorods'kyĭ, S V; Paliĭ, V H; Nazarchuk, H H; Paliĭ, D V; Honchar, O O; Zadereĭ, N V
2013-07-01
Morphological investigation for studying of a local impact on the tissues, localized in the antiseptic textile implantation zone, was conducted. The textile was impregnated by composition of decametoxine with modified polysaccharides. Basing on the investigation result there was established the absence of a toxic impact of antiseptic medical textile on the macroorganism tissues, the regenerative processes course, the wounds epithelization, antioedematous and anti-inflammatory effects.
Avagyan, Rozanna; Luongo, Giovanna; Thorsén, Gunnar; Östman, Conny
2015-04-01
Textiles play an important role in our daily life, and textile production is one of the oldest industries. In the manufacturing chain from natural and/or synthetic fibers to the final clothing products, the use of many different chemicals is ubiquitous. A lot of research has focused on chemicals in textile wastewater, but the knowledge of the actual content of harmful chemicals in clothes sold on the retail market is limited. In this paper, we have focused on eight benzothiazole and benzotriazole derivatives, compounds rated as high production volume chemicals. Twenty-six clothing samples of various textile materials and colors manufactured in 14 different countries were analyzed in textile clothing using liquid chromatography tandem mass spectrometry. Among the investigated textile products, 11 clothes were for babies, toddlers, and children. Eight of the 11 compounds included in the investigation were detected in the textiles. Benzothiazole was present in 23 of 26 investigated garments in concentrations ranging from 0.45 to 51 μg/g textile. The garment with the highest concentration of benzothiazole contained a total amount of 8.3 mg of the chemical. The third highest concentration of benzothiazole (22 μg/g) was detected in a baby body made from "organic cotton" equipped with the "Nordic Ecolabel" ("Svanenmärkt"). It was also found that concentrations of benzothiazoles in general were much higher than those for benzotriazoles. This study implicates that clothing textiles can be a possible route for human exposure to harmful chemicals by skin contact, as well as being a potential source of environmental pollutants via laundering and release to household wastewater.
Hatamie, Amir; Khan, Azam; Golabi, Mohsen; Turner, Anthony P F; Beni, Valerio; Mak, Wing Cheung; Sadollahkhani, Azar; Alnoor, Hatim; Zargar, Behrooz; Bano, Sumaira; Nur, Omer; Willander, Magnus
2015-10-06
Recently, one-dimensional nanostructures with different morphologies (such as nanowires, nanorods (NRs), and nanotubes) have become the focus of intensive research, because of their unique properties with potential applications. Among them, zinc oxide (ZnO) nanomaterials has been found to be highly attractive, because of the remarkable potential for applications in many different areas such as solar cells, sensors, piezoelectric devices, photodiode devices, sun screens, antireflection coatings, and photocatalysis. Here, we present an innovative approach to create a new modified textile by direct in situ growth of vertically aligned one-dimensional (1D) ZnO NRs onto textile surfaces, which can serve with potential for biosensing, photocatalysis, and antibacterial applications. ZnO NRs were grown by using a simple aqueous chemical growth method. Results from analyses such as X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed that the ZnO NRs were dispersed over the entire surface of the textile. We have demonstrated the following applications of these multifunctional textiles: (1) as a flexible working electrode for the detection of aldicarb (ALD) pesticide, (2) as a photocatalyst for the degradation of organic molecules (i.e., Methylene Blue and Congo Red), and (3) as antibacterial agents against Escherichia coli. The ZnO-based textile exhibited excellent photocatalytic and antibacterial activities, and it showed a promising sensing response. The combination of sensing, photocatalysis, and antibacterial properties provided by the ZnO NRs brings us closer to the concept of smart textiles for wearable sensing without a deodorant and antibacterial control. Perhaps the best known of the products that is available in markets for such purposes are textiles with silver nanoparticles. Our modified textile is thus providing acceptable antibacterial properties, compared to available commercial modified textiles.
Tribological investigation of a functional medical textile with lubricating drug-delivery finishing.
Gerhardt, L-C; Lottenbach, R; Rossi, R M; Derler, S
2013-08-01
Textile-based drug delivery systems have a high potential for innovative medical and gerontechnological applications. In this study, the tribological behaviour and lubrication properties of a novel textile with drug delivery function/finishing was investigated by means of friction experiments that simulated cyclic dynamic contacts with skin under dry and wet conditions. The textile drug delivery system is based on a loadable biopolymer dressing on a polyester (PES) woven fabric. The fabrics were finished with low (LC) and highly cross-linked (HC) polysaccharide dressings and investigated in the unloaded condition as well as loaded with phytotherapeutic substances. The mechanical resistance and possible abrasion of the functional coatings on the textile substrate were assessed by friction measurements and scanning electron microscopical analyses. Under dry contact conditions, all investigated fabrics (PES substrate alone and textiles with loaded and unloaded dressings) showed generally low friction coefficients (0.20-0.26). Under wet conditions, the measured friction coefficients were typically higher (0.34-0.51) by a factor of 1.5-2. In the wet condition, both loaded drug delivery textiles exhibited 7-29% lower friction (0.34-0.41) than the PES fabric with unloaded dressings (0.42-0.51), indicating pronounced lubrication effects. The lubrication effects as well as the abrasion resistance of the studied textiles with drug delivery function depended on the degree of dilution of the phytotherapeutic substances. Lubricating formulations of textile-based drug delivery systems which reduce friction against the skin might be promising candidates for advanced medical textile finishes in connection with skin care and wound (decubitus ulcer) prevention. Copyright © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Talbot, R. S.
1978-01-01
Presents a literature review of wastes from textile industry, covering publications of 1977. This review covers studies such as removing heavy metals in textile wastes, and the biodegradability of six dyes. A list of references is also presented. (HM)
Illustrated glossary of textile terms for composites
NASA Technical Reports Server (NTRS)
Pastore, Christopher M.
1993-01-01
A glossary was developed to define textile terminology applicable to the manufacture of composites. Terms describing fabric structure were illustrated for clarity. Descriptive terms for defects from both textile and composites industry were included.
The interactive optical fiber fabrics for smart interior environment
NASA Astrophysics Data System (ADS)
Bai, Z. Q.; Dong, A. H.; Du, Z. Y.; Tan, J.
2017-10-01
Comparing to conventional textiles, interactive photonic textiles can emit light, present different colors, change the surface pattern and can interact with users. They are particularly suitable for decorative purpose. Home furniture is one possible application [1]. With attractive illumination and color effect, the photonic textiles can also be used in hotels, exhibition halls, restaurants and many other circumstances to enhance the interior environment. However, the functionality of the interactive photonic textile for interior purpose is still underdeveloped, since there are still sever challenges about how to improve the usability and functionality of the interactive textile. This project aims to study how to improve the interactive function of photonic textiles, which can enhance the well-being of the end-user. In the end, a color-changeable interactive cushion which can detect the main primary particulate matter (PM) 2.5 was developed.
Jerkovic, Ivona; Koncar, Vladan; Grancaric, Ana Marija
2017-01-01
Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts. In order to optimize composites’ quality and their lifetime all the production steps have to be monitored in real time. Textile sensors embedded in the composite reinforcement and having the same mechanical properties as the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper presents a new generation of textile fibrous sensors based on the conductive polymer complex poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) developed by an original roll to roll coating method. Conductive coating for yarn treatment was defined according to the preliminary study of percolation threshold of this polymer complex. The percolation threshold determination was based on conductive dry films’ electrical properties analysis, in order to develop highly sensitive sensors. A novel laboratory equipment was designed and produced for yarn coating to ensure effective and equally distributed coating of electroconductive polymer without distortion of textile properties. The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ structural damages detection of textile reinforced thermoplastic composites in real time. PMID:28994733
Jerkovic, Ivona; Koncar, Vladan; Grancaric, Ana Marija
2017-10-10
Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts. In order to optimize composites' quality and their lifetime all the production steps have to be monitored in real time. Textile sensors embedded in the composite reinforcement and having the same mechanical properties as the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper presents a new generation of textile fibrous sensors based on the conductive polymer complex poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) developed by an original roll to roll coating method. Conductive coating for yarn treatment was defined according to the preliminary study of percolation threshold of this polymer complex. The percolation threshold determination was based on conductive dry films' electrical properties analysis, in order to develop highly sensitive sensors. A novel laboratory equipment was designed and produced for yarn coating to ensure effective and equally distributed coating of electroconductive polymer without distortion of textile properties. The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ structural damages detection of textile reinforced thermoplastic composites in real time.
ERIC Educational Resources Information Center
Gylling, Margaret
This competency-based preservice home economics teacher education module on merchandising textiles and ready-to-wear is the third in a set of three modules on occupational aspects of textiles and clothing. (This set is part of a larger series of sixty-seven modules on the Management Approach to Teaching Consumer and Homemaking Education…
Review of Synthetic Fiber Ropes,
1970-08-01
Publishing Co., New York, 1962, p. 57. 4) Morton, W.E., Hearle, J.W.S., Physical Properties of Textile Fibres , Butterworth & Co., The Textile Institute...made from coconut fibers) has only 10% of the strength of nylon rope, and is little used, it is omitted here. It generally follows the same...Testing and Materials definition, quoted by Morton, W.E.; Hearle, J.W.S.; "Physical Properties of Textile Fibres , The Textile Institute, Manchester
Van Lam, Do; Shim, Hyung Cheoul; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Seung-Mo
2017-11-01
It is demonstrated that, via V 2 O 5 coating by low temperature atomic layer deposition and subsequent pyrolysis, ubiquitous cotton textile can readily turn into high-surface-area carbon textile fully decorated with pseudocapacitive V x O y /VC widely usable as electrodes of high-performance supercapacitor. It is found that carbothermic reduction of V 2 O 5 (C + V 2 O 5 → C' + VC + CO/CO 2 (g)) leads to chemical/mechanical activation of carbon textile, thereby producing high-surface-area conductive carbon textile. In addition, sequential phase transformation and carbide formation (V 2 O 5 → V x O y → VC) occurred by carbothermic reduction trigger decoration of the carbon textile with redox-active V x O y /VC. Thanks to the synergistic effect of electrical double layer and pseudocapacitance, the supercapacitors made of the hybrid carbon textile exhibit far better energy density (over 30-fold increase) with excellent cycling stability than the carbon textile simply undergone pyrolysis. The method can open up a promising and facile way to synthesize hybrid electrode materials for electrochemical energy storages possessing advantages of both electrical double layer and pseudocapacitive material. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells.
Yun, Min Ju; Cha, Seung I; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y
2016-10-06
Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells-including the preparation of fibre-type solar cells woven into textiles-face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes' surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research.
Silva Lisboa, Dianny; Santos, Cledir; Barbosa, Renan N; Magalhães, Oliane; Paiva, Laura M; Moreira, Keila A; Lima, Nelson; Souza-Motta, Cristina M
2017-04-01
Water contamination with large amounts of industrial textile coloured effluents is an environmental concern. For the treatment of textile effluents, white-rot fungi have received extensive attention due to their powerful capability to produce oxidative (e.g., ligninolytic) enzymes. In addition, other groups of fungi, such as species of Aspergillus and Trichoderma , have also been used for textile effluents treatment. The main aim of the present study was to requalify a Brazilian Trichoderma culture collection of 51 Trichoderma strains, isolated from different sources in Brazil and preserved in the oldest Latin-American Fungal Service Culture Collection, The Micoteca URM WDCM 804 (Recife, Brazil). Fungal isolates were re-identified through a polyphasic approach including macro- and micro-morphology and molecular biology, and screened for their capability to decolourise real effluents collected directly from storage tanks of a textile manufacture. Trichoderma atroviride URM 4950 presented the best performance on the dye decolourisation in real textile effluent and can be considered in a scale-up process at industrial level. Overall, the potential of Trichoderma strains in decolourising real textile dye present in textile effluent and the production of the oxidative enzymes Lac, LiP and MnP was demonstrated. Fungal strains are available in the collection e-catalogue to be further explored from the biotechnological point of view.
A dual-mode textile for human body radiative heating and cooling
Hsu, Po-Chun; Liu, Chong; Song, Alex Y.; Zhang, Ze; Peng, Yucan; Xie, Jin; Liu, Kai; Wu, Chun-Lan; Catrysse, Peter B.; Cai, Lili; Zhai, Shang; Majumdar, Arun; Fan, Shanhui; Cui, Yi
2017-01-01
Maintaining human body temperature is one of the most basic needs for living, which often consumes a huge amount of energy to keep the ambient temperature constant. To expand the ambient temperature range while maintaining human thermal comfort, the concept of personal thermal management has been recently demonstrated in heating and cooling textiles separately through human body infrared radiation control. Realizing these two opposite functions within the same textile would represent an exciting scientific challenge and a significant technological advancement. We demonstrate a dual-mode textile that can perform both passive radiative heating and cooling using the same piece of textile without any energy input. The dual-mode textile is composed of a bilayer emitter embedded inside an infrared-transparent nanoporous polyethylene (nanoPE) layer. We demonstrate that the asymmetrical characteristics of both emissivity and nanoPE thickness can result in two different heat transfer coefficients and achieve heating when the low-emissivity layer is facing outside and cooling by wearing the textile inside out when the high-emissivity layer is facing outside. This can expand the thermal comfort zone by 6.5°C. Numerical fitting of the data further predicts 14.7°C of comfort zone expansion for dual-mode textiles with large emissivity contrast. PMID:29296678
Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving
Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein
2016-01-01
Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. PMID:26924450
Sportswear textiles emissivity measurement: comparison of IR thermography and emissometry techniques
NASA Astrophysics Data System (ADS)
Bison, P.; Grinzato, E.; Libbra, A.; Muscio, A.
2012-06-01
Three sportswear textiles are compared, one normal and two 'special' with Ag+ ions and Carbon powder added, with different colors. The emissivity of the textiles has been measured to determine if it is increased in the 'special' textiles with respect to the normal one. The test implied some non-standard procedure due to the semitransparent nature of the textiles, in comparison with the normal procedure that is commonly used on opaque surfaces. The test is also carried out by a standard emissometry technique, based on a comparative approach with reference samples having known thermal emissivity. The results are compared and discussed.
Comparison of Quantitative Antifungal Testing Methods for Textile Fabrics.
Imoto, Yasuo; Seino, Satoshi; Nakagawa, Takashi; Yamamoto, Takao A
2017-01-01
Quantitative antifungal testing methods for textile fabrics under growth-supportive conditions were studied. Fungal growth activities on unfinished textile fabrics and textile fabrics modified with Ag nanoparticles were investigated using the colony counting method and the luminescence method. Morphological changes of the fungi during incubation were investigated by microscopic observation. Comparison of the results indicated that the fungal growth activity values obtained with the colony counting method depended on the morphological state of the fungi on textile fabrics, whereas those obtained with the luminescence method did not. Our findings indicated that unique characteristics of each testing method must be taken into account for the proper evaluation of antifungal activity.
Aerothermo-Structural Analysis of Low Cost Composite Nozzle/Inlet Components
NASA Technical Reports Server (NTRS)
Shivakumar, Kuwigai; Challa, Preeli; Sree, Dave; Reddy, D.
1999-01-01
This research is a cooperative effort among the Turbomachinery and Propulsion Division of NASA Glenn, CCMR of NC A&T State University, and the Tuskegee University. The NC A&T is the lead center and Tuskegee University is the participating institution. Objectives of the research were to develop an integrated aerodynamic, thermal and structural analysis code for design of aircraft engine components, such as, nozzles and inlets made of textile composites; conduct design studies on typical inlets for hypersonic transportation vehicles and setup standards test examples and finally manufacture a scaled down composite inlet. These objectives are accomplished through the following seven tasks: (1) identify the relevant public domain codes for all three types of analysis; (2) evaluate the codes for the accuracy of results and computational efficiency; (3) develop aero-thermal and thermal structural mapping algorithms; (4) integrate all the codes into one single code; (5) write a graphical user interface to improve the user friendliness of the code; (6) conduct test studies for rocket based combined-cycle engine inlet; and finally (7) fabricate a demonstration inlet model using textile preform composites. Tasks one, two and six are being pursued. Selected and evaluated NPARC for flow field analysis, CSTEM for in-depth thermal analysis of inlets and nozzles and FRAC3D for stress analysis. These codes have been independently verified for accuracy and performance. In addition, graphical user interface based on micromechanics analysis for laminated as well as textile composites was developed. Demonstration of this code will be made at the conference. A rocket based combined cycle engine was selected for test studies. Flow field analysis of various inlet geometries were studied. Integration of codes is being continued. The codes developed are being applied to a candidate example of trailblazer engine proposed for space transportation. A successful development of the code will provide a simpler, faster and user-friendly tool for conducting design studies of aircraft and spacecraft engines, applicable in high speed civil transport and space missions.
Ankhili, Amale; Tao, Xuyuan; Cochrane, Cédric; Coulon, David; Koncar, Vladan
2018-01-01
A medical quality electrocardiogram (ECG) signal is necessary for permanent monitoring, and an accurate heart examination can be obtained from instrumented underwear only if it is equipped with high-quality, flexible, textile-based electrodes guaranteeing low contact resistance with the skin. The main objective of this article is to develop reliable and washable ECG monitoring underwear able to record and wirelessly send an ECG signal in real time to a smart phone and further to a cloud. The article focuses on textile electrode design and production guaranteeing optimal contact impedance. Therefore, different types of textile fabrics were coated with modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in order to develop and manufacture reliable and washable textile electrodes assembled to female underwear (bras), by sewing using commercially available conductive yarns. Washability tests of connected underwear containing textile electrodes and conductive threads were carried out up to 50 washing cycles. The influence of standardized washing cycles on the quality of ECG signals and the electrical properties of the textile electrodes were investigated and characterized. PMID:29414849
Greensilica® vectors for smart textiles.
Matos, Joana C; Avelar, Inês; Martins, M Bárbara F; Gonçalves, M Clara
2017-01-20
The present work aims developing a versatile Greensilica ® vector/carrier, able to bind to a wide range of textile matrices of carbohydrate polymers and susceptible of being loaded with chemicals/drugs/therapeutic molecules, to create a green tailor-made (multi)functional high-tech textile. A green, eco-friendly, ammonia-free, easily scalable, time-saving sol-gel process was established for the production of those silica-based colloidal particles (SiO 2 , amine-SiO 2 , diamine-SiO 2 , and epoxy-SiO 2 ). Two different textile matrices (cotton, polyester) were functionalized, through the impregnation of Greensilica® particles. The impregnation was performed with and without cure. Diamine-SiO 2 colloidal particles exhibited the higher bonding efficiency in cured textile matrices (both cotton and polyester), while with no cure the best adherence to cotton and polyester textile matrices was achieved with diamine-SiO 2 and amine-SiO 2 , respectively. Use once and throw away and continued use applications were envisaged and screened through washing tests. The efficiency of the textiles impregnation was confirmed by SEM, and quantified by ICP. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage.
Chai, Zhisheng; Zhang, Nannan; Sun, Peng; Huang, Yi; Zhao, Chuanxi; Fan, Hong Jin; Fan, Xing; Mai, Wenjie
2016-10-05
The pursuit of harmonic combination of technology and fashion intrinsically points to the development of smart garments. Herein, we present an all-solid tailorable energy textile possessing integrated function of simultaneous solar energy harvesting and storage, and we call it tailorable textile device. Our technique makes it possible to tailor the multifunctional textile into any designed shape without impairing its performance and produce stylish smart energy garments for wearable self-powering system with enhanced user experience and more room for fashion design. The "threads" (fiber electrodes) featuring tailorability and knittability can be large-scale fabricated and then woven into energy textiles. The fiber supercapacitor with merits of tailorability, ultrafast charging capability, and ultrahigh bending-resistance is used as the energy storage module, while an all-solid dye-sensitized solar cell textile is used as the solar energy harvesting module. Our textile sample can be fully charged to 1.2 V in 17 s by self-harvesting solar energy and fully discharged in 78 s at a discharge current density of 0.1 mA.
Bacterial Growth on Chitosan-Coated Polypropylene Textile
Erben, D.; Hola, V.; Jaros, J.; Rahel, J.
2012-01-01
Biofouling is a problem common in all systems where microorganisms and aqueous environment meet. Prevention of biofouling is therefore important in many industrial processes. The aim of this study was to develop a method to evaluate the ability of material coating to inhibit biofilm formation. Chitosan-coated polypropylene nonwoven textile was prepared using dielectric barrier discharge plasma activation. Resistance of the textile to biofouling was then tested. First, the textile was submerged into a growth medium inoculated with green fluorescein protein labelled Pseudomonas aeruginosa. After overnight incubation at 33°C, the textile was observed using confocal laser scanning microscopy for bacterial enumeration and biofilm structure characterisation. In the second stage, the textile was used as a filter medium for prefiltered river water, and the pressure development on the in-flow side was measured to quantify the overall level of biofouling. In both cases, nontreated textile samples were used as a control. The results indicate that the chitosan coating exhibits antibacterial properties. The developed method is applicable for the evaluation of the ability to inhibit biofilm formation. PMID:23724330
Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers.
Seyedin, Shayan; Razal, Joselito M; Innis, Peter C; Jeiranikhameneh, Ali; Beirne, Stephen; Wallace, Gordon G
2015-09-30
A scaled-up fiber wet-spinning production of electrically conductive and highly stretchable PU/PEDOT:PSS fibers is demonstrated for the first time. The PU/PEDOT:PSS fibers possess the mechanical properties appropriate for knitting various textile structures. The knitted textiles exhibit strain sensing properties that were dependent upon the number of PU/PEDOT:PSS fibers used in knitting. The knitted textiles show sensitivity (as measured by the gauge factor) that increases with the number of PU/PEDOT:PSS fibers deployed. A highly stable sensor response was observed when four PU/PEDOT:PSS fibers were co-knitted with a commercial Spandex yarn. The knitted textile sensor can distinguish different magnitudes of applied strain with cyclically repeatable sensor responses at applied strains of up to 160%. When used in conjunction with a commercial wireless transmitter, the knitted textile responded well to the magnitude of bending deformations, demonstrating potential for remote strain sensing applications. The feasibility of an all-polymeric knitted textile wearable strain sensor was demonstrated in a knee sleeve prototype with application in personal training and rehabilitation following injury.
Ankhili, Amale; Tao, Xuyuan; Cochrane, Cédric; Coulon, David; Koncar, Vladan
2018-02-07
A medical quality electrocardiogram (ECG) signal is necessary for permanent monitoring, and an accurate heart examination can be obtained from instrumented underwear only if it is equipped with high-quality, flexible, textile-based electrodes guaranteeing low contact resistance with the skin. The main objective of this article is to develop reliable and washable ECG monitoring underwear able to record and wirelessly send an ECG signal in real time to a smart phone and further to a cloud. The article focuses on textile electrode design and production guaranteeing optimal contact impedance. Therefore, different types of textile fabrics were coated with modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in order to develop and manufacture reliable and washable textile electrodes assembled to female underwear (bras), by sewing using commercially available conductive yarns. Washability tests of connected underwear containing textile electrodes and conductive threads were carried out up to 50 washing cycles. The influence of standardized washing cycles on the quality of ECG signals and the electrical properties of the textile electrodes were investigated and characterized.
ERIC Educational Resources Information Center
California State Univ., Fresno. Dept. of Home Economics.
This competency-based preservice home economics teacher education module on consumer approach to textiles and clothing is the first in a set of four modules on consumer education related to textiles and clothing. (This set is part of a larger series of sixty-seven modules on the Management Approach to Teaching Consumer and Homemaking Education…
Electrical Textile Valves for Paper Microfluidics.
Ainla, Alar; Hamedi, Mahiar M; Güder, Firat; Whitesides, George M
2017-10-01
This paper describes electrically-activated fluidic valves that operate based on electrowetting through textiles. The valves are fabricated from electrically conductive, insulated, hydrophobic textiles, but the concept can be extended to other porous materials. When the valve is closed, the liquid cannot pass through the hydrophobic textile. Upon application of a potential (in the range of 100-1000 V) between the textile and the liquid, the valve opens and the liquid penetrates the textile. These valves actuate in less than 1 s, require low energy (≈27 µJ per actuation), and work with a variety of aqueous solutions, including those with low surface tension and those containing bioanalytes. They are bistable in function, and are, in a sense, the electrofluidic analog of thyristors. They can be integrated into paper microfluidic devices to make circuits that are capable of controlling liquid, including autonomous fluidic timers and fluidic logic. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Digital fabrication of textiles: an analysis of electrical networks in 3D knitted functional fabrics
NASA Astrophysics Data System (ADS)
Vallett, Richard; Knittel, Chelsea; Christe, Daniel; Castaneda, Nestor; Kara, Christina D.; Mazur, Krzysztof; Liu, Dani; Kontsos, Antonios; Kim, Youngmoo; Dion, Genevieve
2017-05-01
Digital fabrication methods are reshaping design and manufacturing processes through the adoption of pre-production visualization and analysis tools, which help minimize waste of materials and time. Despite the increasingly widespread use of digital fabrication techniques, comparatively few of these advances have benefited the design and fabrication of textiles. The development of functional fabrics such as knitted touch sensors, antennas, capacitors, and other electronic textiles could benefit from the same advances in electrical network modeling that revolutionized the design of integrated circuits. In this paper, the efficacy of using current state-of-the-art digital fabrication tools over the more common trialand- error methods currently used in textile design is demonstrated. Gaps are then identified in the current state-of-the-art tools that must be resolved to further develop and streamline the rapidly growing field of smart textiles and devices, bringing textile production into the realm of 21st century manufacturing.
Zhang, Shuang-Yuan; Guan, Guijian; Jiang, Shan; Guo, Hongchen; Xia, Jing; Regulacio, Michelle D; Wu, Mingda; Shah, Kwok Wei; Dong, Zhili; Zhang, Jie; Han, Ming-Yong
2015-09-30
Throughout history earth-abundant copper has been incorporated into textiles and it still caters to various needs in modern society. In this paper, we present a two-step copper metallization strategy to realize sequentially nondiffusive copper(II) patterning and rapid copper deposition on various textile materials, including cotton, polyester, nylon, and their mixtures. A new, cost-effective formulation is designed to minimize the copper pattern migration on textiles and to achieve user-defined copper patterns. The metallized copper is found to be very adhesive and stable against washing and oxidation. Furthermore, the copper-metallized textile exhibits excellent electrical conductivity that is ~3 times better than that of stainless steel and also inhibits the growth of bacteria effectively. This new copper metallization approach holds great promise as a commercially viable method to metallize an insulating textile, opening up research avenues for wearable electronics and functional garments.
Emerging Concern from Short-Term Textile Leaching: A Preliminary Ecotoxicological Survey.
Lofrano, G; Libralato, G; Carotenuto, M; Guida, M; Inglese, M; Siciliano, A; Meriç, S
2016-11-01
Textile dyes and their residues gained growing attention worldwide. Textile industry is a strong water consumer potentially releasing xenobiotics from washing and rinsing procedures during finishing processes. On a decentralised basis, also final consumers generate textile waste streams. Thus, a procedure simulating home washing with tap water screened cotton textiles leachates (n = 28) considering physico-chemical (COD, BOD 5 , and UV absorbance) and ecotoxicological data (Daphnia magna, Pseudokirchneriella subcapitata and Lepidium sativum). Results evidenced that: (i) leachates presented low biodegradability levels; (ii) toxicity in more than half leachates presented slight acute or acute effects; (iii) the remaining leachates presented "no effect" suggesting the use of green dyes/additives, and/or well established finishing processes; (iv) no specific correlations were found between traditional physico-chemical and ecotoxicological data. Further investigations will be necessary to identify textile residues, and their potential interactions with simulated human sweat in order to evidence potential adverse effects on human health.
Liu, Mingyao; Bing, Junjun; Xiao, Li; Yun, Kang; Wan, Liang
2018-01-01
Cutting force measurement is of great importance in machining processes. Hence, various methods of measuring the cutting force have been proposed by many researchers. In this work, a novel integrated rotating dynamometer based on fiber Bragg grating (FBG) was designed, constructed, and tested to measure four-component cutting force. The dynamometer consists of FBGs that are pasted on the newly designed elastic structure which is then mounted on the rotating spindle. The elastic structure is designed as two mutual-perpendicular semi-octagonal rings. The signals of the FBGs are transmitted to FBG interrogator via fiber optic rotary joints and optical fiber, and the wavelength values are displayed on a computer. In order to determine the static and dynamic characteristics, many tests have been done. The results show that it is suitable for measuring cutting force. PMID:29670062
Liu, Mingyao; Bing, Junjun; Xiao, Li; Yun, Kang; Wan, Liang
2018-04-18
Cutting force measurement is of great importance in machining processes. Hence, various methods of measuring the cutting force have been proposed by many researchers. In this work, a novel integrated rotating dynamometer based on fiber Bragg grating (FBG) was designed, constructed, and tested to measure four-component cutting force. The dynamometer consists of FBGs that are pasted on the newly designed elastic structure which is then mounted on the rotating spindle. The elastic structure is designed as two mutual-perpendicular semi-octagonal rings. The signals of the FBGs are transmitted to FBG interrogator via fiber optic rotary joints and optical fiber, and the wavelength values are displayed on a computer. In order to determine the static and dynamic characteristics, many tests have been done. The results show that it is suitable for measuring cutting force.
Scope of nanotechnology in modern textiles
USDA-ARS?s Scientific Manuscript database
This review article demonstrates the scope and applications of nanotechnology towards modification and development of advanced textile fibers, yarns and fabrics and their processing techniques. Basically, it summarizes the recent advances made in nanotechnology and its applications to cotton textil...
Multi-Layer E-Textile Circuits
NASA Technical Reports Server (NTRS)
Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory
2012-01-01
Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.
Properties of CF/PA6 friction spun hybrid yarns for textile reinforced thermoplastic composites
NASA Astrophysics Data System (ADS)
Hasan, MMB; Nitsche, S.; Abdkader, A.; Cherif, Ch
2017-10-01
Due to their excellent strength, rigidity and damping properties as well as low weight, carbon fibre reinforced composites (CFRC) are widely being used for load bearing structures. On the other hand, with an increased demand und usage of CFRCs, effective methods to re-use waste carbon fibre (CF) materials, which are recoverable either from the process scraps or from the end-of-life components are attracting increased attention. In this paper, hybrid yarns consisting of staple CF and polyamide 6 (PA 6) are manufactured on a DREF-3000 friction spinning machine with various machine parameters such as spinning drum speed and suction air pressure. The relationship between different textile physical properties of the hybrid yarns, such as tensile strength and elongation with different spinning parameters and CF content of hybrid yarn is investigated. Furthermore, the tensile properties of uni-directional (UD) composites manufactured from the developed hybrid yarn shows 80% of the UD composite strength made from CF filament yarn.
NASA Astrophysics Data System (ADS)
Vankar, Padma S.; Shukla, Dhara
2012-06-01
Preparation of silver nanoparticles have been carried out using aqueous extract of lemon leaves ( Citrus limon) which acts as reducing agent and encapsulating cage for the silver nanoparticles. These silver nanoparticles have been used for durable textile finish on cotton and silk fabrics. Remarkable antifungal activity has been observed in the treated fabrics. The antimicrobial activity of silver nanoparticles derived from lemon leaves showed enhancement in activity due to synergistic effect of silver and essential oil components of lemon leaves. The present investigation shows the extracellular synthesis of highly stable silver nanoparticles by biotransformation using the extract of lemon leaves by controlled reduction of the Ag+ ion to Ag0. Further the silver nanoparticles were used for antifungal treatment of fabrics which was tested by antifungal activity assessment of textile material by Agar diffusion method against Fusarium oxysporum and Alternaria brassicicola. Formation of the metallic nanoparticles was established by FT-IR, UV-Visible spectroscopy, transmission electron microscopy, scanning electron microscopy, atomic force microscopy.
Doué, Ginette; Bédikou, Micaël; Koua, Gisèle; Mégnanou, Rose-Monde; Niamké, Sébastien
2014-01-01
The enzymatic and acid hydrolysis have converted eight new starches into a range of chain lengths mainly including glucose, maltose, and maltodextrins as observed on TLC plates, irrespective to the starch variety and treatment. Results of the enzymatic hydrolysis have highlighted the possibility of the use of V4 and V64, which can be labelled as "dietary fibres", to enhance the organoleptic qualities of foods and for fibre fortification of low-calorie products. Concerning V66 and V69, they have much relevant in food, textile and pharmaceutical applications. The acid hydrolysis showed that V73 is the best starch in the chemical industry for making environment-friendly products such as plastics. Because starch is a natural component that degrade quickly in normal composting condition, the whole studied starches could be advised for various utilizations in the food, textile, paper, biofuel, pharmaceutical and plastic industries for sustainable development.
Khalaf, Mahmoud A
2008-09-01
The potential of Aspergillus niger fungus and Spirogyra sp., a fresh water green algae, was investigated as a biosorbents for removal of reactive dye (Synazol) from its multi component textile wastewater. The results showed that pre-treatment of fungal and algal biomasses with autoclaving increased the removal of dye than pre-treatment with gamma-irradiation. The effects of operational parameters (pH, temperature, biomass concentration and time) on dye removal were examined. The results obtained revealed that dried autoclaved biomass of A. niger and Spirogyra sp. exhibited maximum dye removal (88% and 85%, respectively) at pH3, temperature 30 degrees C and 8 gl(-1)(w/v) biomass conc. after 18h contact time. The stability and efficiency of both organisms in the long-term repetitive operation were also investigated. The results showed that the non-viable biomasses possessed high stability and efficiency of dye removal over 3 repeated batches.
Wiklund, Urban; Karlsson, Marcus; Ostlund, Nils; Berglin, Lena; Lindecrantz, Kaj; Karlsson, Stefan; Sandsjö, Leif
2007-06-01
Intermittent disturbances are common in ECG signals recorded with smart clothing: this is mainly because of displacement of the electrodes over the skin. We evaluated a novel adaptive method for spatio-temporal filtering for heartbeat detection in noisy multi-channel ECGs including short signal interruptions in single channels. Using multi-channel database recordings (12-channel ECGs from 10 healthy subjects), the results showed that multi-channel spatio-temporal filtering outperformed regular independent component analysis. We also recorded seven channels of ECG using a T-shirt with textile electrodes. Ten healthy subjects performed different sequences during a 10-min recording: resting, standing, flexing breast muscles, walking and pushups. Using adaptive multi-channel filtering, the sensitivity and precision was above 97% in nine subjects. Adaptive multi-channel spatio-temporal filtering can be used to detect heartbeats in ECGs with high noise levels. One application is heartbeat detection in noisy ECG recordings obtained by integrated textile electrodes in smart clothing.
Olmez, T; Kabdaşli, I; Tünay, O
2007-01-01
In this study, the effects of the phosphonic acid based sequestering agent EDTMPA used in the textile dye baths on colour and organic matter removal by ozone oxidation was experimentally investigated. Procion Navy HEXL dyestuff that has been commonly used for the reactive dyeing of cellulose fibers was selected as the model component. The organic matter oxidation by ozone was determined to obey the pseudo-first order kinetics as they are treated singly or in combination. COD removal rates obtained from pseudo-first order reaction kinetics showed that oxidation of Navy HEXL alone (0.0947 L/min) was faster than that of EDTMPA (0.0171 L/min) and EDTMPA with dye (0.0155 L/min) at pH 3.0. It was also found that reaction rates of single EDTMPA removal and EDTMPA and dye mixture removal increased as the reaction pH was increased from 3.0 to 10.5.
Green piezoelectric for autonomous smart textile
NASA Astrophysics Data System (ADS)
Lemaire, E.; Borsa, C. J.; Briand, D.
2015-12-01
In this work, the fabrication of Rochelle salt based piezoelectric textiles are shown. Structures composed of fibers and Rochelle salt are easily produced using green processes. Both manufacturing and the material itself are really efficient in terms of environmental impact, considering the fabrication processes and the material resources involved. Additionally Rochelle salt is biocompatible. In this green paradigm, active sensing or actuating textiles are developed. Thus processing method and piezoelectric properties have been studied: (1) pure crystals are used as acoustic actuator, (2) fabrication of the textile-based composite is detailed, (3) converse effective d33 is evaluated and compared to lead zirconate titanate ceramic. The utility of textile-based piezoelectric merits its use in a wide array of applications.
Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.
Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein; Khademhosseini, Ali
2016-04-06
Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, microarchitecture, and mechanical properties of the fabrics play important roles in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemochromic Detector for Sensing Gas Leakage and Process for Producing the Same
NASA Technical Reports Server (NTRS)
Williams, Martha K. (Inventor); Captain, Janine E. (Inventor); Roberson, Luke B. (Inventor); Tate, LaNetra Clayton (Inventor)
2015-01-01
A chemochromic sensor for detecting a combustible gas, such as hydrogen, includes a chemochromic pigment and a textile polymer. The textile material includes a chemochromic pigment operably responsive to a combustible gas. The combustible gas sensing textile material can be made by melt spinning, solution spinning, or other similar techniques. In a preferred embodiment carbon nanotubes are used with the textile material which will increase the material strength and alter the thermal and/or electrical properties. These textiles woven into fabrics can provide garments not only with hydrogen sensing capabilities but the carbon nanotubes will allow for a range of sensing capabilities to be embedded (i.e. gas, health, and electronic monitors) within the garments.
ERIC Educational Resources Information Center
Joseph, Marjory
This competency-based preservice home economics teacher education module on applications and implications of new technology in textiles and clothing is the fourth in a set of four modules on consumer education related to textiles and clothing. (This set is part of a larger series of sixty-seven modules on the Management Approach to Teaching…
Facile preparation of super durable superhydrophobic materials.
Wu, Lei; Zhang, Junping; Li, Bucheng; Fan, Ling; Li, Lingxiao; Wang, Aiqin
2014-10-15
The low stability, complicated and expensive fabrication procedures seriously hinder practical applications of superhydrophobic materials. Here we report an extremely simple method for preparing super durable superhydrophobic materials, e.g., textiles and sponges, by dip coating in fluoropolymers (FPs). The morphology, surface chemical composition, mechanical, chemical and environmental stabilities of the superhydrophobic textiles were investigated. The results show how simple the preparation of super durable superhydrophobic textiles can be! The superhydrophobic textiles outperform their natural counterparts and most of the state-of-the-art synthetic superhydrophobic materials in stability. The intensive mechanical abrasion, long time immersion in various liquids and repeated washing have no obvious influence on the superhydrophobicity. Water drops are spherical in shape on the samples and could easily roll off after these harsh stability tests. In addition, this simple dip coating approach is applicable to various synthetic and natural textiles and can be easily scaled up. Furthermore, the results prove that a two-tier roughness is helpful but not essential with regard to the creation of super durable superhydrophobic textiles. The combination of microscale roughness of textiles and materials with very low surface tension is enough to form super durable superhydrophobic textiles. According to the same procedure, superhydrophobic polyurethane sponges can be prepared, which show high oil absorbency, oil/water separation efficiency and stability. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jost, Kristy Alana
Innovative and interdisciplinary solutions to wearable textile energy storage are explored as power sources for wearable electronics and smart textiles. Due to their long cycle life, non-toxic and inexpensive materials, supercapacitors were converted into textiles. Textile supercapacitors were developed using scalable fabrication methods including screen-printing, yarn making, and 3D computerized knitting. The electrode materials reported in this thesis undergo thorough electrochemical analysis, and are capable of storing up to 0.5 F/cm2 which is on par with conventionally solid supercapacitors (0.6 F/cm2). Capacitive yarns are capable of storing up to 37 mF/cm and are shown to be knittable on industrial knitting equipment. Both are some of the highest reported capacitance for all-carbon systems in the field. Yet both are the only systems composed of inexpensive and non-toxic activated carbon, the most commonly used electrode material used in supercapacitors, opposed to carbon nanotubes or graphene, which are typically more 10-100 times more expensive. However, all of the fabrication techniques reported here are also capable of incorporating a wide variety of materials, ultimately broadening the applications of textile energy storage as a whole. Fully machine knitted supercapacitors are also explored and electrochemically characterized in order to determine how the textile structure affects the capacitance. In conclusion, a wide variety of fabrication techniques for making textile supercapacitors were successfully explored.
Kadam, Avinash A; Telke, Amar A; Jagtap, Sujit S; Govindwar, Sanjay P
2011-05-15
The objective of this study was to develop consortium using Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 to decolorize adsorbed dyes from textile effluent wastewater under solid state fermentation. Among various agricultural wastes rice bran showed dye adsorption up to 90, 62 and 80% from textile dye reactive navy blue HE2R (RNB HE2R) solution, mixture of textile dyes and textile industry wastewater, respectively. Pseudomonas sp. SUK1 and A. ochraceus NCIM-1146 showed 62 and 38% decolorization of RNB HE2R adsorbed on rice bran in 24h under solid state fermentation. However, the consortium of Pseudomonas sp. SUK1 and A. ochraceus NCIM-1146 (consortium-PA) showed 80% decolorization in 24h. The consortium-PA showed effective ADMI removal ratio of adsorbed dyes from textile industry wastewater (77%), mixture of textile dyes (82%) and chemical precipitate of textile dye effluent (CPTDE) (86%). Secretion of extracellular enzymes such as laccase, azoreductase, tyrosinase and NADH-DCIP reductase and their significant induction in the presence of adsorbed dye suggests their role in the decolorization of RNB HE2R. GCMS and HPLC analysis of product suggests the different fates of biodegradation of RNB HE2R when used Pseudomonas sp. SUK1, A. ochraceus NCIM-1146 and consortium PA. Copyright © 2011 Elsevier B.V. All rights reserved.
Silva Lisboa, Dianny; Santos, Cledir; Barbosa, Renan N.; Magalhães, Oliane; Paiva, Laura M.; Moreira, Keila A.; Lima, Nelson; Souza-Motta, Cristina M.
2017-01-01
Water contamination with large amounts of industrial textile coloured effluents is an environmental concern. For the treatment of textile effluents, white-rot fungi have received extensive attention due to their powerful capability to produce oxidative (e.g., ligninolytic) enzymes. In addition, other groups of fungi, such as species of Aspergillus and Trichoderma, have also been used for textile effluents treatment. The main aim of the present study was to requalify a Brazilian Trichoderma culture collection of 51 Trichoderma strains, isolated from different sources in Brazil and preserved in the oldest Latin-American Fungal Service Culture Collection, The Micoteca URM WDCM 804 (Recife, Brazil). Fungal isolates were re-identified through a polyphasic approach including macro- and micro-morphology and molecular biology, and screened for their capability to decolourise real effluents collected directly from storage tanks of a textile manufacture. Trichoderma atroviride URM 4950 presented the best performance on the dye decolourisation in real textile effluent and can be considered in a scale-up process at industrial level. Overall, the potential of Trichoderma strains in decolourising real textile dye present in textile effluent and the production of the oxidative enzymes Lac, LiP and MnP was demonstrated. Fungal strains are available in the collection e-catalogue to be further explored from the biotechnological point of view. PMID:28368305
The effect of soil texture on the degradation of textiles associated with buried bodies.
Lowe, A C; Beresford, D V; Carter, D O; Gaspari, F; O'Brien, R C; Stuart, B H; Forbes, S L
2013-09-10
There are many factors which affect the rate of decomposition in a grave site including; the depth of burial, climatic conditions, physical conditions of the soil (e.g. texture, pH, moisture), and method of burial (e.g. clothing, wrappings). Clothing is often studied as a factor that can slow the rate of soft tissue decomposition. In contrast, the effect of soft tissue decomposition on the rate of textile degradation is usually reported as anecdotal evidence rather than being studied under controlled conditions. The majority of studies in this area have focused on the degradation of textiles buried directly in soil. The purpose of this study was to investigate the effect of soil texture on the degradation and/or preservation of textile materials associated with buried bodies. The study involved the burial of clothed domestic pig carcasses and control clothing in contrasting soil textures (silty clay loam, fine sand and fine sandy loam) at three field sites in southern Ontario, Canada. Graves were exhumed after 2, 12 and 14 months burial to observe the degree of degradation for both natural and synthetic textiles. Recovered textile samples were chemically analyzed using infrared (IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) to investigate the lipid decomposition by-products retained in the textiles. The findings of this study demonstrate that natural textile in contact with a buried decomposing body will be preserved for longer periods of time when compared to the same textile buried directly in soil and not in contact with a body. The soil texture did not visually impact the degree of degradation or preservation. Furthermore, the natural-synthetic textile blend was resistant to degradation, regardless of soil texture, contact with the body or time since deposition. Chemical analysis of the textiles using GC-MS correctly identified a lipid degradation profile consistent with the degree of soft tissue decomposition. Such information may be important for estimating time since deposition in instances where only grave goods and associated materials are recovered from a burial site. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Distribution of contact loads over the flank-land of the cutter with a rounded cutting edge
NASA Astrophysics Data System (ADS)
Kozlov, V.; Gerasimov, A.; Kim, A.
2016-04-01
In this paper, contact conditions between a tool and a workpiece material for wear-simulating turning by a cutter with a sharp-cornered edge and with a rounded cutting edge are analysed. The results of the experimental study of specific contact load distribution over the artificial flank wear-land of the cutter in free orthogonal turning of the disk from titanium alloy (Ti6Al2Mo2Cr), ductile (63Cu) and brittle (57Cu1Al3Mn) brasses are described. Investigations were carried out by the method of ‘split cutter’ and by the method of the artificial flank-land of variable width. The experiments with a variable feed rate and a cutting speed show that in titanium alloy machining with a sharp-cornered cutting edge the highest normal contact load (σh max = 3400…2200 MPa) is observed immediately at the cutting edge, and the curve has a horizontal region with the length of 0.2… 0.6 mm. At a distance from the cutting edge, the value of specific normal contact load is dramatically reduced to 1100…500 MPa. The character of normal contact load for a rounded cutting edge is different -it is uniform, and its value is approximately 2 times smaller compared to machining with a sharp-cornered cutting edge. In author’s opinion it is connected with generation of a seizure zone in a chip formation region and explains the capacity of highly worn-out cutting tools for titanium alloys machining. The paper analyses the distribution of tangential contact loads over the flank land, which pattern differs considerably for machining with a sharp-cornered edge and with a rounded cutting edge. Abbreviation and symbols: m/s - meter per second (cutting speed v); mm/r - millimeter per revolution (feed rate f); MPa - mega Pascal (specific contact load as a stress σ or τ) hf - the width of the flank wear land (chamfer) of the cutting tool, flank wear land can be natural or artificial like the one in this paper [mm]; xh - distance from the cutting edge on the surface of the flank-land [mm]; σh - normal specific contact load on the flank land [MPa]; τh - tangential (shear) specific contact load on the flank land [MPa]; HSS - high speed steel (material of cutting tool); Py - radial component of cutting force [N]; Py r - radial component of cutting force on the rake face [N]; Pz - tangential component of cutting force [N]; γ - rake angle of the cutting tool [°] α - clearance angle of the sharp cutting tool [°] αh - clearance angle of the flank wear land [°] ρ - rounding off radius of the cutting edge [mm]; b - width of the machined disk [mm].
Thermal cut-off response modelling of universal motors
NASA Astrophysics Data System (ADS)
Thangaveloo, Kashveen; Chin, Yung Shin
2017-04-01
This paper presents a model to predict the thermal cut-off (TCO) response behaviour in universal motors. The mathematical model includes the calculations of heat loss in the universal motor and the flow characteristics around the TCO component which together are the main parameters for TCO response prediction. In order to accurately predict the TCO component temperature, factors like the TCO component resistance, the effect of ambient, and the flow conditions through the motor are taken into account to improve the prediction accuracy of the model.
COMCAN: a computer program for common cause analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdick, G.R.; Marshall, N.H.; Wilson, J.R.
1976-05-01
The computer program, COMCAN, searches the fault tree minimal cut sets for shared susceptibility to various secondary events (common causes) and common links between components. In the case of common causes, a location check may also be performed by COMCAN to determine whether barriers to the common cause exist between components. The program can locate common manufacturers of components having events in the same minimal cut set. A relative ranking scheme for secondary event susceptibility is included in the program.
49 CFR 178.520 - Standards for textile bags.
Code of Federal Regulations, 2011 CFR
2011-10-01
... for a sift-proof textile bag; and (3) 5L3 for a water-resistant textile bag. (b) Construction... bag. (2) Bags, sift-proof, 5L2: The bag must be made sift-proof, by appropriate means, such as by the...
Lasers in automobile production
NASA Astrophysics Data System (ADS)
Pizzi, P.
There is a trend in mechanical equipment to replace complicated mechanical components with electronics, especially microprocessors, laser technology represents an important new tool. The effects of laser technology can be seen in production systems concerned with cutting, welding, heat treatment, and the alloying of mechanical components. Applications in the automobile industry today are not very widespread and are concerned essentially with welding and cutting.
Handorean, Alina; Robertson, Charles E; Harris, J Kirk; Frank, Daniel; Hull, Natalie; Kotter, Cassandra; Stevens, Mark J; Baumgardner, Darrel; Pace, Norman R; Hernandez, Mark
2015-12-09
A wide variety of specialty textiles are used in health care settings for bedding, clothing, and privacy. The ability of textiles to host or otherwise sequester microbes has been well documented; however, their reciprocal potential for liberating airborne bacteria remains poorly characterized. In response, a multi-season survey of bacterial bioaerosols was conducted in the origin and terminus of residual paths which are specifically designed to isolate soiled hospital textiles as they are moved to laundering. This survey used conventional optical particle counting which incorporated multi-channel fluorescence in conjunction with molecular phylogenetic analyses to characterize the bioaerosols liberated during soiled textile storage--immediately before and after the occupation of a modern hospital. Although outfitted with a HEPA filtration system, the number of airborne particles presenting fluorescing optical signatures consistent with airborne bacteria and fungi significantly increased in textile holding rooms soon after the hospital's commissioning, even though these isolated residual areas rarely host personnel. The bioaerosol liberated during textile storage was characterized using Illumina MiSeq sequencing of bacterial 16S ribosomal ribonucleic acid (rRNA) genes. Gene copies recovered by quantitative PCR from aerosol collected in co-located impingers were consistent with fluorescence gated optical particle counting. The relative abundance patterns of proximal bacterial bioaerosol were such that the air in the origin and terminus of textile storage rooms could not be differentiated once the hospital began processing soiled linens. Genes from microbes typically associating with human skin, feces, and hair--Staphylococcus, Propionibacteria, Corynebacteria, Lactobacillus, and Streptococcus spp.--dominated the aerosol abundance profiles in textile holding rooms, which were generally far less diverse than communities recovered from surfaces in patient rooms. These results suggest that aerosol partitioning from the routine handling of soiled textiles can contribute to airborne exposures in the health care environment.
A review on utilization of textile composites in transportation towards sustainability
NASA Astrophysics Data System (ADS)
Aly, Nermin M.
2017-10-01
Transportation industry is rapidly developing owing to its size and importance which affects on various aspects of life. It includes all the transport means that facilitate mobility of people or goods either by air, land or sea like aircrafts, automotives, ships, trains, etc. The utilization of textiles in this industry is increasing as a result of moving towards achieving sustainability and enhancing performance, comfort and safety. Through substituting heavier materials with textiles of high performance specifications and textile reinforced composites to reduce weight, fuel consumption and CO2 emissions. Composite materials can fulfil the demands for sustainability in the transportation sector through using renewable, recycled and lightweight materials, considering the requirements of each category of transport vehicles. Textiles used in reinforcing composites are diverse including fibers, yarns or fabric preforms such as woven, nonwoven, knitted, braided which varies from 2D to complex 3D structures. This paper presents a brief review on the utilization of textiles in reinforcing composites for various transportation applications to achieve sustainability. Also, discussing the influence of textiles structural parameters like fiber material properties, fabric production technique and construction on their mechanical behaviour. Focusing on researches findings in this area and highlighting some prospects for further developments domestically.
Elimination and ecotoxicity evaluation of phthalic acid esters from textile-dyeing wastewater.
Liang, Jieying; Ning, Xun-An; Kong, Minyi; Liu, Daohua; Wang, Guangwen; Cai, Haili; Sun, Jian; Zhang, Yaping; Lu, Xingwen; Yuan, Yong
2017-12-01
Phthalic acid esters (PAEs), presented in fabrics, surfactants and detergents, were discharged into the ecosystem during textile-dyeing wastewater treatment and might have adverse effects on water ecosystems. In this study, comprehensive investigations of the content and component distributions of 12 PAEs across different units of four textile-dyeing wastewater plants were carried out in Guangdong Province, China. Ecotoxicity assessments were also conducted based on risk quotients (RQs). On average, 93.54% TOC and 80.14% COD Cr were removed following treatment at the four plants. The average concentration of Σ 12 PAEs in effluent was 11.78 μg/L. PAEs with highest concentrations were dimethylphthalate (6.58 μg/L), bis(2-ethylhexyl)phthalate (2.23 μg/L), and dibutylphthalate (1.98 μg/L). The concentrations of the main toxic PAEs were 2.23 μg/L (bis(2-ethylhexyl)phthalate), 0.19 μg/L (diisononylphthalate) and 0.67 μg/L (dinoctylphthalate); corresponding RQs were 1.4, 0.55, and 0.54 for green algae, respectively. The RQs of Σ 12 PAEs in effluent of the four plants were >0.1, indicating that Σ 12 PAEs posed medium or higher ecological risk to fish, Daphnia and green algae. Physicochemical-biochemical system was found to be more effective than biochemical-physicochemical system for TOC and COD Cr removal, because pre-physicochemical treatment helped to remove macromolecular organic substances, and reduced the competition with other pollutants during biochemical treatment. However, biochemical-physicochemical system was more effective than physicochemical-biochemical system for elimination of PAEs and for detoxification, since the biochemical treatment might produce the toxic PAEs that could helpfully be settled by post-physicochemical treatment. Moreover, ecotoxicity evaluation was recommended for current textile-dyeing wastewater treatment plants. Copyright © 2017. Published by Elsevier Ltd.
Pinsornsak, Piya; Harnroongroj, Thos
2016-11-01
The specialized instrument system used in minimally invasive surgery (MIS) has been developed for reducing soft tissue trauma in total knee arthroplasty (TKA). Compared with front-cutting MIS instruments, side-cutting quadriceps sparing MIS instruments have the advantage of creating a smaller incision and causing fewer traumas to the quadriceps tendon. However, the accuracy of side-cutting instruments concerns surgeons in prosthesis malalignment. To compare the accuracy of side-cutting quadriceps sparing instruments versus front-cutting instruments in MIS-TKA. In this prospective randomized controlled study, we compared the accuracy of side-cutting quadriceps sparing instruments versus the front-cutting instruments used in MIS-TKA. Sixty knees were included in the study, with 30 knees in each group. All the operations were performed by single surgeon. Coronal alignment (tibiofemoral angle, lateral distal femoral angle, and medial proximal tibial angle), and sagittal alignment (femoral component flexion and tibial posterior slope) were measured and compared. Tibiofemoral angle, lateral distal femoral angle, and medial proximal tibial angle, all of which are considered in the assessment of acceptable coronal radiographic alignment, were not different between groups (p = 0.353, 0.500, and 0.177, respectively). However, side-cutting quadriceps sparing instruments produced less acceptable sagittal radiographic alignment, femoral component flexion (63% vs. 93%, p = 0.005), and tibial posterior slope (73% vs. 93%, p = 0.04). Side-cutting quadriceps sparing MIS-TKA instruments had similar accuracy to front-cutting MIS-TKA instruments for coronal alignment but is less accurate for sagittal alignment.
New developments in functional medical textiles and their mechanism of action
USDA-ARS?s Scientific Manuscript database
Functional medical textiles are undergoing a revolution in structural design. Medical textiles as non-implantables, implantables, and extracorporeals, are playing central roles in healthcare improvements enhancing and prolonging the quality of life. Developments in the design of materials that funct...
Handbook of Analytical Methods for Textile Composites
NASA Technical Reports Server (NTRS)
Cox, Brian N.; Flanagan, Gerry
1997-01-01
The purpose of this handbook is to introduce models and computer codes for predicting the properties of textile composites. The handbook includes several models for predicting the stress-strain response all the way to ultimate failure; methods for assessing work of fracture and notch sensitivity; and design rules for avoiding certain critical mechanisms of failure, such as delamination, by proper textile design. The following textiles received some treatment: 2D woven, braided, and knitted/stitched laminates and 3D interlock weaves, and braids.
Fabric opto-electronics enabling healthcare applications; a case study.
van Pieterson, L; van Abeelen, F A; van Os, K; Hornix, E; Zhou, G; Oversluizen, G
2011-01-01
Textiles are a ubiquitous part of human life. By combining them with electronics to create electronic textile systems, new application fields emerge. In this paper, technology and applications of light-emitting textile systems are presented, with emphasis on the healthcare domain: A fabric substrate is described for electronic textile with robust interwoven connections between the conductive yarns in it. This fabric enables the creation of different forms of comfortable light therapy systems. Specific challenges to enable this use in medical applications are discussed.
U.S. Clothing and Textile Trade with China and the World: Trends Since the End of Quotas
2007-07-10
the road to quota-free trade for clothing and textiles, the MFA expanded the scope of the LTA to include wool and man-made fibers. However, concerns...starting a 10-year process of eliminating quotas for international trade in clothing and textiles. The ATC’s quota phase-out contained two concurrent...goods. The ATC also required that products from different categories — textiles and clothing, wool , cotton or man-made fibres, etc. — be included in
Mechanics of Textile Composites Conference
NASA Technical Reports Server (NTRS)
Poe, Clarence C. (Editor); Harris, Charles E. (Editor)
1995-01-01
This document is a compilation of papers presented at the Mechanics of Textile Composites Conference in Hampton, Virginia, December 6-8, 1994. This conference was the culmination of a 3-year program that was initiated by NASA late in 1990 to develop mechanics of textile composites in support of the NASA Advance Composites Technology Program (ACT). The goal of the program was to develop mathematical models of textile preform materials and test methods to facilitate structural analysis and design. Participants in the program were from NASA, academia, and industry.
Xiao, Linda; Alder, Rhiannon; Mehta, Megha; Krayem, Nadine; Cavasinni, Bianca; Laracy, Sean; Cameron, Shane; Fu, Shanlin
2018-04-01
Cocaine trafficking in the form of textile impregnation is routinely encountered as a concealment method. Raman spectroscopy has been a popular and successful testing method used for in situ screening of cocaine in textiles and other matrices. Quantitative analysis of cocaine in these matrices using Raman spectroscopy has not been reported to date. This study aimed to develop a simple Raman method for quantifying cocaine using atropine as the model analogue in various types of textiles. Textiles were impregnated with solutions of atropine in methanol. The impregnated atropine was extracted using less hazardous acidified water with the addition of potassium thiocyanate (KSCN) as an internal standard for Raman analysis. Despite the presence of background matrix signals arising from the textiles, the cocaine analogue could easily be identified by its characteristic Raman bands. The successful use of KSCN normalised the analyte signal response due to different textile matrix background interferences and thus removed the need for a matrix-matched calibration. The method was linear over a concentration range of 6.25-37.5 mg/cm 2 with a coefficient of determination (R 2 ) at 0.975 and acceptable precision and accuracy. A simple and accurate Raman spectroscopy method for the analysis and quantification of a cocaine analogue impregnated in textiles has been developed and validated for the first time. This proof-of-concept study has demonstrated that atropine can act as an ideal model compound to study the problem of cocaine impregnation in textile. The method has the potential to be further developed and implemented in real world forensic cases. Copyright © 2017 John Wiley & Sons, Ltd.
Eisen, Lars; Rose, Dominic; Prose, Robert; Breuner, Nicole E; Dolan, Marc C; Thompson, Karen; Connally, Neeta
2017-10-01
Summer-weight clothing articles impregnated with permethrin are available as a personal protective measure against human-biting ticks in the United States. However, very few studies have addressed the impact of contact with summer-weight permethrin-treated textiles on tick vigor and behavior. Our aim was to generate new knowledge of how permethrin-treated textiles impact nymphal Ixodes scapularis ticks, the primary vectors in the eastern United States of the causative agents of Lyme disease, human anaplasmosis, and human babesiosis. We developed a series of bioassays designed to: (i) clarify whether permethrin-treated textiles impact ticks through non-contact spatial repellency or contact irritancy; (ii) evaluate the ability of ticks to remain in contact with vertically oriented permethrin-treated textiles, mimicking contact with treated clothing on arms or legs; and (iii) determine the impact of timed exposure to permethrin-treated textiles on the ability of ticks to move and orient toward a human finger stimulus, thus demonstrating normal behavior. Our results indicate that permethrin-treated textiles provide minimal non-contact spatial repellency but strong contact irritancy against ticks, manifesting as a "hot-foot" effect and resulting in ticks actively dislodging from contact with vertically oriented treated textile. Preliminary data suggest that the contact irritancy hot-foot response may be weaker for field-collected nymphs as compared with laboratory-reared nymphs placed upon permethrin-treated textile. We also demonstrate that contact with permethrin-treated textiles negatively impacts the vigor and behavior of nymphal ticks for >24h, with outcomes ranging from complete lack of movement to impaired movement and unwillingness of ticks displaying normal movement to ascend onto a human finger. The protective effect of summer-weight permethrin-treated clothing against tick bites merits further study. Published by Elsevier GmbH.
A review of e-textiles in neurological rehabilitation: How close are we?
McLaren, Ruth; Joseph, Frances; Baguley, Craig; Taylor, Denise
2016-06-21
Textiles able to perform electronic functions are known as e-textiles, and are poised to revolutionise the manner in which rehabilitation and assistive technology is provided. With numerous reports in mainstream media of the possibilities and promise of e-textiles it is timely to review research work in this area related to neurological rehabilitation.This paper provides a review based on a systematic search conducted using EBSCO- Health, Scopus, AMED, PEDro and ProQuest databases, complemented by articles sourced from reference lists. Articles were included if the e-textile technology described had the potential for use in neurological rehabilitation and had been trialled on human participants. A total of 108 records were identified and screened, with 20 meeting the broad review inclusion criteria. Nineteen user trials of healthy people and one pilot study with stroke participants have been reported.The review identifies two areas of research focus; motion sensing, and the measurement of, or stimulation of, muscle activity. In terms of motion sensing, E-textiles appear able to reliably measure gross movement and whether an individual has achieved a predetermined movement pattern. However, the technology still remains somewhat cumbersome and lacking in resolution at present. The measurement of muscle activity and the provision of functional electrical stimulation via e-textiles is in the initial stages of development but shows potential for e-textile expansion into assistive technologies.The review identified a lack of high quality clinical evidence and, in some cases, a lack of practicality for clinical application. These issues may be overcome by engagement of clinicians in e-textile research and using their expertise to develop products that augment and enhance neurological rehabilitation practice.
Pernicious anaemia in the textile industry.
Roman, E; Beral, V; Sanjose, S; Schilling, R; Watson, A
1991-05-01
The objective was to examine whether the observed excess mortality from anaemia in textile and clothing workers was associated with any specific anaemia type or occupational activity. The design was a death certificate based case-control study of textile and clothing workers who died in England and Wales in the years surrounding the decennial censuses of 1961, 1971, and 1981. The main outcome measures were type of anaemia, place of residence, place of birth, and occupation. The frequency of the different types of anaemia in textile and clothing workers differed from that of England and Wales with relatively more deaths from pernicious anaemia than in the country as a whole (74 observed v 55 expected deaths). Within the industry, those whose death was attributed to pernicious anaemia were more than twice as likely as other textile and clothing workers to have worked in textile mills (odds ratio = 2.4, 95% confidence interval 1.4-4.2). These results could not be explained by age, sex, place of residence, or place of birth, and review of the death certificates did not suggest that pernicious anaemia as a cause of death had been recorded in error. Historical support for the finding was found in the Registrar General's 1931 decennial supplement on occupational mortality, in which the standardised mortality ratio from pernicious anaemia in male textile mill workers was estimated to be twice that of the general population. In conclusion, occupational factors, specifically work in textile mills, could be implicated in the pathogenesis of pernicious anaemia. The aetiology of this disease is not well understood and further study of pernicious anaemia in textile mill workers is required.
Infrared spectroscopic investigations on the distribution of residual grease on textiles
NASA Astrophysics Data System (ADS)
Siedler, J.; Schumacher-Hamedat, Ursula; Hoecker, Hartwig
1992-03-01
Surface modification of textile materials is of major importance in the modern textile industry. Several methods are commonly applied to produce a broad range of coated materials. The adhesion between the coating polymers and the textile fibers often determines the quality. Improved adhesion of the coating is achieved by a chemical bonding (covalent or ionic) between the coating materials and the textile. The efficiency,however, is dependent on the orientation of the functional groups of the outmost molecular layers of the fibers. Therefore, we have used surface sensitive methods to analyze the surface structure of proteinaceous fibers. Homopoly(aminoacid) films like poly(-(gamma) -benzyl-L-glutamate) and poly(- (Beta) -benzyl-L-aspartate) have been chosen as models for natural fibers like wool.
Fundamental Aspects on Conductive Textiles Implemented in Intelligent System
NASA Astrophysics Data System (ADS)
Manea, L. R.; Hristian, L.; Ene, D.; Amariei, N.; Popa, A.
2017-06-01
Conductive fibers, which are electrically conductive elements having the structure of a fiber, have a fairly long history and have been used for applications in electronic textiles as well as for aesthetics, anti-static and shielding purposes. Electrically conducting textile fibers, such as gold-coated threads, were produced in antiquity for aesthetic purposes, before the discovery of electricity, using various manufacturing methods. The textile intelligent systems, which comprise conducting textile structures (electroconducting wires or structures), present a dynamic behavior which favors the self regulation of the thermal insulation and vapor permeability with the purpose to maintain the thermo-physiological balance; the clothing assembly aims at monitoring the biologic potential, used only in critical situation (ex. accidents, falling down in a precipice etc.).
49 CFR 178.520 - Standards for textile bags.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) 5L2 for a sift-proof textile bag; and (3) 5L3 for a water-resistant textile bag. (b) Construction... bag. (2) Bags, sift-proof, 5L2: The bag must be made sift-proof, by appropriate means, such as by the...
USDA-ARS?s Scientific Manuscript database
The immediate customer of the cotton gin is the producer; however the ultimate customers are the textile mill and the consumer. The ginner has the challenging job to satisfy both the producer and the textile industry. The classing and grading systems are intended to assign economic value to the ba...
Chemistry of Durable and Regenerable Biocidal Textiles
ERIC Educational Resources Information Center
Gang Sun; Worley, S. Dave
2005-01-01
Antimicrobial textiles can be categorized into two groups, biocidal and biostatic materials, according to their functions. Biostatic functions refer to inhibiting growth of microorganisms on textiles and preventing the materials from biodegradation and biocidal materials are able to kill microorganisms, thus eliminating their growth, sterilizing…
Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP).
Ulson de Souza, Selene Maria Arruda Guelli; Forgiarini, Eliane; Ulson de Souza, Antônio Augusto
2007-08-25
The enzyme peroxidase is known for its capacity to remove phenolic compounds and aromatic amines from aqueous solutions and also to decolorize textile effluents. This study evaluates the potential of the enzyme horseradish peroxidase (HRP) in the decolorization of textile dyes and effluents. Some factors such as pH and the amount of H(2)O(2) and the enzyme were evaluated in order to determine the optimum conditions for the enzyme performance. For the dyes tested, the results indicated that the decolorization of the dye Remazol Turquoise Blue G 133% was approximately 59%, and 94% for the Lanaset Blue 2R; for the textile effluent, the decolorization was 52%. The tests for toxicity towards Daphnia magna showed that there was a reduction in toxicity after the enzymatic treatment. However, the toxicity of the textile effluent showed no change towards Artemia salina after the enzyme treatment. This study verifies the viability of the use of the enzyme horseradish peroxidase in the biodegradation of textile dyes.
Photonic textiles for pulse oximetry.
Rothmaier, Markus; Selm, Bärbel; Spichtig, Sonja; Haensse, Daniel; Wolf, Martin
2008-08-18
Biomedical sensors, integrated into textiles would enable monitoring of many vitally important physiological parameters during our daily life. In this paper we demonstrate the design and performance of a textile based pulse oximeter, operating on the forefinger tip in transmission mode. The sensors consisted of plastic optical fibers integrated into common fabrics. To emit light to the human tissue and to collect transmitted light the fibers were either integrated into a textile substrate by embroidery (producing microbends with a nominal diameter of 0.5 to 2 mm) or the fibers inside woven patterns have been altered mechanically after fabric production. In our experiments we used a two-wavelength approach (690 and 830 nm) for pulse wave acquisition and arterial oxygen saturation calculation. We have fabricated different specimens to study signal yield and quality, and a cotton glove, equipped with textile based light emitter and detector, has been used to examine movement artifacts. Our results show that textile-based oximetry is feasible with sufficient data quality and its potential as a wearable health monitoring device is promising.
Printing Smart Designs of Light Emitting Devices with Maintained Textile Properties.
Verboven, Inge; Stryckers, Jeroen; Mecnika, Viktorija; Vandevenne, Glen; Jose, Manoj; Deferme, Wim
2018-02-13
To maintain typical textile properties, smart designs of light emitting devices are printed directly onto textile substrates. A first approach shows improved designs for alternating current powder electroluminescence (ACPEL) devices. A configuration with the following build-up, starting from the textile substrate, was applied using the screen printing technique: silver (10 µm)/barium titanate (10 µm)/zinc-oxide (10 µm) and poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (10 µm). Textile properties such as flexibility, drapability and air permeability are preserved by implementing a pixel-like design of the printed layers. Another route is the application of organic light emitting devices (OLEDs) fabricated out of following layers, also starting from the textile substrate: polyurethane or acrylate (10-20 µm) as smoothing layer/silver (200 nm)/poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (35 nm)/super yellow (80 nm)/calcium/aluminum (12/17 nm). Their very thin nm-range layer thickness, preserving the flexibility and drapability of the substrate, and their low working voltage, makes these devices the possible future in light-emitting wearables.
Development and characterization of textile batteries
NASA Astrophysics Data System (ADS)
Normann, M.; Grethe, T.; Schwarz-Pfeiffer, A.; Ehrmann, A.
2017-02-01
During the past years, smart textiles have gained more and more attention. Products cover a broad range of possible applications, from fashion items such as LED garments to sensory shirts detecting vital signs to clothes with included electrical stimulation of muscles. For all electrical or electronic features included in garments, a power supply is needed - which is usually the bottleneck in the development of smart textiles, since common power supplies are not flexible and often not lightweight, prohibiting their unobtrusive integration in electronic textiles. In a recent project, textile-based batteries are developed. For this, metallized woven fabrics (e.g. copper, zinc, or silver) are used in combinations with carbon fabrics. The article gives an overview of our recent advances in optimizing power storage capacity and durability of the textile batteries by tailoring the gel-electrolyte. The gel-electrolyte is modified with respect to thickness and electrolyte concentration; additionally, the influence of additives on the long-time stability of the batteries is examined.
Smart fabric sensors and e-textile technologies: a review
NASA Astrophysics Data System (ADS)
Castano, Lina M.; Flatau, Alison B.
2014-05-01
This paper provides a review of recent developments in the rapidly changing and advancing field of smart fabric sensor and electronic textile technologies. It summarizes the basic principles and approaches employed when building fabric sensors as well as the most commonly used materials and techniques used in electronic textiles. This paper shows that sensing functionality can be created by intrinsic and extrinsic modifications to textile substrates depending on the level of integration into the fabric platform. The current work demonstrates that fabric sensors can be tailored to measure force, pressure, chemicals, humidity and temperature variations. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with fabric technologies prove to be customizable and versatile but less robust than their conventional electronics counterparts. The findings of this survey suggest that a complete smart fabric system is possible through the integration of the different types of textile based functional elements. This work intends to be a starting point for standardization of smart fabric sensing techniques and e-textile fabrication methods.
Water-oil separation performance of technical textiles used for marine pollution disasters.
Seddighi, Mahdi; Hejazi, Sayyed Mahdi
2015-07-15
Oil is principally one of the most important energy sources in the world. However, as long as oil is explored and transported for being used, there will be the risk of the spillage into the marine environment. The use of technical textiles, i.e. fibrous beds, is a conventional separation technique for oil/water emulsion since it is efficient and easy to design. In this paper, the recovery of oil by technical textiles was mathematically modeled based on the structural parameters of textile and the capillary mechanism. Eleven types of commercial technical textiles with different properties were prepared for the experimental program. The experimental design included fiber type (polypropylene and polyester), fabric type (woven and/or nonwoven), fabric thickness and fabric areal density. Consequently, the absorption capacities of different technical textile samples were derived by the use of theoretical and experimental methods. The results show that there is a well fitness between theoretical outputs and experimental data. Copyright © 2015 Elsevier Ltd. All rights reserved.
Arif, Muhammad Saleem; Riaz, Muhammad; Shahzad, Sher Muhammad; Yasmeen, Tahira; Buttler, Alexandre; Garcıa-Gil, Juan Carlos; Roohi, Mahnaz; Rasool, Akhtar
2016-02-01
Water shortage and soil qualitative degradation are significant environmental problems in arid and semi-arid regions of the world. The increasing demand for water in agriculture and industry has resulted in the emergence of wastewater use as an alternative in these areas. Textile wastewater is produced in surplus amounts which poses threat to the environment as well as associated flora and fauna. A 60-day incubation study was performed to assess the effects of untreated textile wastewater at 0, 25, 50, 75, and 100% dilution levels on the physico-chemical and some microbial and enzymatic properties of an aridisol soil. The addition of textile wastewater provoked a significant change in soil pH and electrical conductivity and soil dehydrogenase and urease activities compared to the distilled-water treated control soil. Moreover, compared to the control treatment, soil phosphomonoesterase activity was significantly increased from 25 to 75% application rates, but decreased at 100% textile wastewater application rate. Total and available soil N contents increased significantly in response to application of textile wastewater. Despite significant increases in the soil total P contents after the addition of textile wastewater, soil available P content decreased with increasing concentration of wastewater. Changes in soil nutrient contents and related enzymatic activities suggested a dynamic match between substrate availability and soil N and P contents. Aridisols have high fixation and low P availability, application of textile wastewater to such soils should be considered only after careful assessment.
Chang, J Y M; Michielsen, S
2016-05-01
Textiles may provide valuable bloodstain evidence to help piece together events or activities at violent crime scenes. However, in spite of over 75 years of research, there are still difficulties encountered in many cases in the interpretation and identification of bloodstains on textiles. In this study, we dripped porcine blood onto three types of fabric (plain woven, single jersey knit, and denim) that are supported in four different ways (hard, taut, loose, and semi-hard, i.e., fabric laid on denim). These four mounting methods represent different ways in which a textile may be present when blood from a violent act lands on it. This study investigates how the fabric mounting method and backing material affect the appearance of drip stains on textiles. We found that bloodstain patterns formed on fabric lying flat on a hard surface were very different from when the same fabric was suspended loosely. We also found that bloodstains formed on the technical back of single jersey knit were vastly different from those on the technical face. Interestingly, some drip stains showed blood passing through the textile and leaving a stain behind it that resembled insect stains. By observing, recording, and describing how a blood stained textile is found or presented at the scene, the analyst may be able to better understand bloodstains and bloodstain patterns on textiles, which could be useful to confirm or refute a witness's account of how blood came to be where it was found after a bloodshed event.
Potential Space Applications for Body-Centric Wireless and E-Textile Antennas
NASA Technical Reports Server (NTRS)
Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.; Studor, George F.
2007-01-01
Space environment benefits of body-centric wireless communications are numerous, particularly in the context of long duration Lunar and Martian outposts that are in planning stages at several space agencies around the world. Since crew time for such missions is a scarce commodity, seamless integration of body-centric wireless from various sources is paramount. Sources include traditional data, such as audio, video, tracking, and biotelemetry. Newer data sources include positioning, orientation, and status of handheld tools and devices, as well as management and status of on-body inventories. In addition to offering lighter weight and flexibility, performance benefits of e-textile antennas are anticipated due to advantageous use of the body s surface area. In creating e-textile antennas and RF devices, researchers are faced with the challenge of transferring conventional and novel designs to textiles. Lack of impedance control, limited conductivity, and the inability to automatically create intricate designs are examples of limitations frequently attributed to e-textiles. Reliable interfaces between e-textiles and conventional hardware also represent significant challenges. Addressing these limitations is critical to the continued development and acceptance of fabric-based circuits for body-centric wireless applications. Here we present several examples of e-textile antennas and RF devices, created using a NASA-developed process, that overcome several of these limitations. The design and performance of an equiangular spiral, miniaturized spiral-loaded slot antenna, and a hybrid coupler are considered, with the e-textile devices showing comparable performance to like designs using conventional materials.
Cinnamaldehyde inhibits phenylalanine ammonia-lyase and enzymatic browning of cut lettuce.
Fujita, Narumi; Tanaka, Eriko; Murata, Masatsune
2006-03-01
Stored cut lettuce gradually turns brown on the cut section after several days of storage, because cutting induces phenylalanine ammonia-lyase (PAL) activity, the biosynthesis of polyphenol is promoted, and the polyphenols are oxidized by polyphenol oxidase. In this study, we screened for inhibitors of PAL derived from fermented broths of microbes and from foods and found that a cinnamon extract definitely inhibited PLA of cut lettuce. An active component was isolated by chromatographic procedures and was identified as trans-cinnamaldehyde. Browning of cut lettuce immersed in a solution containing trans-cinnamaldehyde was definitely repressed.
de Oliveira, Bruna Maria S; Melo, Carlisson R; Alves, Péricles B; Santos, Abraão A; Santos, Ane Caroline C; Santana, Alisson da S; Araújo, Ana Paula A; Nascimento, Pedro E S; Blank, Arie F; Bacci, Leandro
2017-02-25
Plants of the genus Aristolochia have been frequently reported as important medicinal plants. Despite their high bioactive potential, to date, there are no reports of their effects on leaf-cutting ants. Therefore, the present study aimed to evaluate the insecticidal activity of the essential oil of Aristolochia trilobata and its major components on Atta sexdens and Acromyrmex balzani , two species of leaf-cutting ants. The bioassays were performed regarding routes of exposure, acute toxicity, binary mixtures of the major components and behavioral effects. Twenty-five components were identified in the essential oil of A. trilobata using a gas chromatographic system equipped with a mass spectrometer and a flame ionization detector. The components found in higher proportions were sulcatyl acetate, limonene, p -cymene and linalool. The essential oil of A. trilobata and its individual major components were efficient against A. balzani and A. sexdens workers when applied by fumigation. These components showed fast and efficient insecticidal activity on ants. The components acted synergistically and additively on A. balzani and A. sexdens , respectively, and caused a strong repellency/irritability in the ants. Thus, our results demonstrate the great potential of the essential oil of A. trilobata and its major components for the development of new insecticides.
Modelling bucket excavation by finite element
NASA Astrophysics Data System (ADS)
Pecingina, O. M.
2015-11-01
Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the rectangular profile appears the "clogging" phenomenon of the cutting edge and at the polygonal profile the point of application remains constant without going inside. From the finite element method done in this paper it can be concluded that the polygonal profiles made of dihedral angles are much more durable and asymmetric cups tend to have uniform tension along the entire perimeter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability...
Code of Federal Regulations, 2010 CFR
2010-07-01
... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability; description...
Code of Federal Regulations, 2012 CFR
2012-07-01
... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability...
Code of Federal Regulations, 2013 CFR
2013-07-01
... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability...
Code of Federal Regulations, 2011 CFR
2011-07-01
... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability; description...
2001-01-01
crops, we can use fermentation and chemistry to make hundreds of products including: • Alcohols, such as ethanol, glycols, and sorbitol. Ethanol is...organic acid that is a component of vinegar and that is an important starting substance for making textile fibers, vinyl plastics, polyesters, and other...C2H5OH: a colorless liquid that is the product of fermentation used in alcoholic beverages, industrial processes, and as a fuel additive. Also known as
Combustible and incombustible speciation of Cl and S in various components of municipal solid waste.
Watanabe, Nobuhisa; Yamamoto, Osamu; Sakai, Mamoru; Fukuyama, Johji
2004-01-01
Chlorine (Cl) and sulfur (S) in municipal solid waste (MSW) are important reactive elements during combustion. They generate the acidic pollutants HCl and SOx, and, furthermore, produce and suppress organic chlorinated compounds. Nevertheless, few practical reports about Cl and S content in MSW have been published. In combustion and recycling processes, both combustible Cl and S, and incombustible Cl and S species are equally important. This paper presents the results of a comprehensive study about combustible and incombustible Cl and S in MSW components, including kitchen garbage, paper, textiles, wood and leaves, plastics and small chips. By integrating this collected data with data about MSW composition, not only the overall content of Cl and S in MSW, but also the origins of both combustible and incombustible Cl and S were estimated. The average Cl content in bulk MSW was 3.7 g/kg of raw MSW, of which 2.7 and 1.0 g/kg were combustible and incombustible, respectively. The Cl contribution from plastics was 76% and 27% with respect to combustible and incombustible states. The average S content in bulk MSW was 0.81 g/kg of raw MSW, of which 0.46 g/kg was combustible and 0.35 g/kg was incombustible. Combustible S was mainly due to synthetic textiles, while incombustible S was primarily from paper.
NASA Technical Reports Server (NTRS)
Scardino, Frank L.
1992-01-01
In the design of textile composites, the selection of materials and constructional techniques must be matched with product performance, productivity, and cost requirements. Constructional techniques vary. A classification of various textile composite systems is given. In general, the chopped fiber system is not suitable for structural composite applications because of fiber discontinuity, uncontrolled fiber orientation and a lack of fiber integration or entanglement. Linear filament yarn systems are acceptable for structural components which are exposed to simple tension in their applications. To qualify for more general use as structural components, filament yarn systems must be multi-directionally positioned. With the most sophisticated filament winding and laying techniques, however, the Type 2 systems have limited potential for general load-bearing applications because of a lack of filament integration or entanglement, which means vulnerability to splitting and delamination among filament layers. The laminar systems (Type 3) represented by a variety of simple fabrics (woven, knitted, braided and nonwoven) are especially suitable for load-bearing panels in flat form and for beams in a roled up to wound form. The totally integrated, advanced fabric system (Type 4) are thought to be the most reliable for general load-bearing applications because of fiber continuity and because of controlled multiaxial fiber orientation and entanglement. Consequently, the risk of splitting and delamination is minimized and practically omitted. Type 4 systems can be woven, knitted, braided or stitched through with very special equipment. Multiaxial fabric technologies are discussed.
Problem Based Learning in Constructed Textile Design
ERIC Educational Resources Information Center
Sayer, Kate; Wilson, Jacquie; Challis, Simon
2006-01-01
Staff observing undergraduate students enrolled on the BSc Hons Textile Design and Design Management programme in The School of Materials, The University of Manchester, identified difficulties with knowledge retention in the area of constructed textile design. Consequently an experimental pilot was carried out in seamless knitwear design using a…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-19
... specifications and the production capabilities of Panamanian and U.S. textile producers to determine whether... information collection instrument and instructions should be directed to Laurie Mease, Office of Textiles and... Agreement, pursuant to the textile provisions of the Agreement, fabric, yarn, and fiber produced in Panama...
78 FR 29263 - Rules andRegulations Under the Textile Fiber Products Identification Act
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-20
... revise defined terms relating to the electronic fulfillment processes widespread in the textile industry... definitions that the Commission has established through its textile petition process. Second, it establishes... and threads inserted or added to the product in minor proportion for holding, reinforcing or similar...
76 FR 14575 - Country of Origin of Textile and Apparel Products
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-17
... necessary origin information from the European supplier. Comment: Ten commenters raised business...) Country of Origin of Textile and Apparel Products AGENCY: U.S. Customs and Border Protection, Department... relating to the country of origin of textile and apparel products. The regulatory amendments adopted as a...
Post-Secondary Analysis of Clothing/Textiles Technology Programs in Texas.
ERIC Educational Resources Information Center
Glosson, Linda R.; And Others
A study examined postsecondary occupational programs in clothing and textiles technology in Texas in order to (1) identify common essential competencies taught in postsecondary clothing/textiles technology programs, (2) develop and distribute student competency profiles of essential common competencies shared by the eight areas of study within…
The application of ultrasound and enzymes in textile processing of greige cotton
USDA-ARS?s Scientific Manuscript database
Research progress made at the USDA’s Southern Regional Research Center to provide an ultrasound and enzymatic alternative to the current textile processing method of scouring greige cotton textile with caustic chemicals is reported. The review covers early efforts to measure pectin and wax removal ...
MANUAL: BEST MANAGEMENT PRACTICES FOR POLLUTION PREVENTION IN THE TEXTILE INDUSTRY
Textiles is one the nation's oldest industries, dating back to the beginning of the American Industrial revolution in the 1790s. Despite perceptions of the decline of U.S. textile manufacturing in the face of offshore competition, the industry remains one of the largest, most di...
Math for Textile Technicians. Workforce 2000 Partnership.
ERIC Educational Resources Information Center
Enterprise State Junior Coll., AL.
This curriculum package on math for textile technicians has been developed by the Workforce 2000 Partnership, a network of industries and educational institutions provides training in communication, computation, and creative thinking to employees and supervisors in textile, apparel, and carpet industries at 15 plants in Alabama, Georgia, and South…
Introduction to Textiles for Team Building. Workforce 2000 Partnership.
ERIC Educational Resources Information Center
Enterprise State Junior Coll., AL.
This curriculum package on introduction to textiles for team building for all associates has been developed by the Workforce 2000 Partnership, a network of industries and educational institutions that provides training in communication, computation, and creative thinking to employees and supervisors in textile, apparel, and carpet industries at 15…
Resin transfer molding of textile composites
NASA Technical Reports Server (NTRS)
Falcone, Anthony; Dursch, Harry; Nelson, Karl; Avery, William
1993-01-01
The design and manufacture of textile composite panels, tubes, and angle sections that were provided to NASA for testing and evaluation are documented. The textile preform designs and requirements were established by NASA in collaboration with Boeing and several vendors of textile reinforcements. The following four types of preform architectures were used: stitched uniweave, 2D-braids, 3D-braids, and interlock weaves. The preforms consisted primarily of Hercules AS4 carbon fiber; Shell RSL-1895 resin was introduced using a resin transfer molding process. All the finished parts were inspected using ultrasonics.
NASA Astrophysics Data System (ADS)
Kuhtz, M.; Maron, B.; Hornig, A.; Müller, M.; Langkamp, A.; Gude, M.
2018-05-01
Textile reinforced thermoplastic composites are predestined for highly automated medium- and high-volume production processes. The presented work focusses on experimental studies of different types of glass fibre reinforced polypropylene (GF-PP) semi-finished thermoplastic textiles to characterise the forming behaviour. The main deformation modes fabric shear, tension, thought-thickness compression and bending are investigated with special emphasis on the impact of the textile structure, the deformation temperature and rate dependency. The understanding of the fundamental forming behaviour is required to allow FEM based assessment and improvement of thermoforming process chains.
Manufacturing of polylactic acid nanocomposite 3D printer filaments for smart textile applications
NASA Astrophysics Data System (ADS)
Hashemi Sanatgar, R.; Cayla, A.; Campagne, C.; Nierstrasz, V.
2017-10-01
In this paper, manufacturing of polylactic acid nanocomposite 3D printer filaments was considered for smart textile applications. 3D printing process was applied as a novel process for deposition of nanocomposites on PLA fabrics to introduce more flexible, resourceefficient and cost effective textile functionalization processes than conventional printing process like screen and inkjet printing. The aim is to develop an integrated or tailored production process for smart and functional textiles which avoid unnecessary use of water, energy, chemicals and minimize the waste to improve ecological footprint and productivity.
Mechanics of Textile Composites Conference. Part 1
NASA Technical Reports Server (NTRS)
Poe, Clarence C., Jr. (Editor); Harris, Charles E. (Editor)
1995-01-01
This document is a compilation of papers presented at the Mechanics of Textile Composites Conference in Hampton, Virginia, December 6-8, 1994. This conference was the culmination of a 3-year program that was initiated by NASA late in 1990 to develop mechanics of textile composites in support of the NASA Advanced Composites Technology Program (ACT). The goal of the program was to develop mathematical models of textile preform materials and test methods to facilitate structural analysis and design. Participants in the program were from NASA, academia, and industry.
De Jonckheere, J; Narbonneau, F; Jeanne, M; Kinet, D; Witt, J; Krebber, K; Paquet, B; Depre, A; Logier, R
2009-01-01
The potential impact of optical fiber sensors embedded into medical textiles for the continuous monitoring of the patient during Magnetic Resonance Imaging is presented. We report on two pure optical sensing technologies for respiratory movements monitoring - a macro bending sensor and a Bragg grating sensor, designed to measure the elongation due to abdominal and thoracic motions during breathing. We demonstrate that the two sensors can successfully sense textile elongation between, 0% and 3%, while maintaining the stretching properties of the textile substrates for a good comfort of the patient.
NASA Astrophysics Data System (ADS)
Li, Zhou; Tang, Haoying; Yuan, Weiwei; Song, Wei; Niu, Yongshan; Yan, Ling; Yu, Min; Dai, Ming; Feng, Siyu; Wang, Menghang; Liu, Tengjiao; Jiang, Peng; Fan, Yubo; Wang, Zhong Lin
2014-04-01
A new approach for fabrication of a long-term and recoverable antimicrobial nanostructure/textile hybrid without increasing the antimicrobial resistance is demonstrated. Using in situ synthesized Ag nanoparticles (NPs) anchored on ZnO nanowires (NWs) grown on textiles by a ‘dip-in and light-irradiation’ green chemical method, we obtained ZnONW@AgNP nanocomposites with small-size and uniform Ag NPs, which have shown superior performance for antibacterial applications. These new Ag/ZnO/textile antimicrobial composites can be used for wound dressings and medical textiles for topical and prophylactic antibacterial treatments, point-of-use water treatment to improve the cleanliness of water and antimicrobial air filters to prevent bioaerosols accumulating in ventilation, heating, and air-conditioning systems.
Novel Wireless-Communicating Textiles Made from Multi-Material and Minimally-Invasive Fibers
Gorgutsa, Stepan; Bélanger-Garnier, Victor; Ung, Bora; Viens, Jeff; Gosselin, Benoit; LaRochelle, Sophie; Messaddeq, Younes
2014-01-01
The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications. PMID:25325335
Novel textile systems for the continuous monitoring of vital signals: design and characterization.
Trindade, Isabel G; Martins, Frederico; Dias, Rúben; Oliveira, Cristina; Machado da Silva, José
2015-08-01
In this article we present a smart textile system for the continuous monitoring of cardiorespiratory signals, produced and integrated with an industrial embroidery unit. The design of a T-shirt system, having embedded textile sensors and interconnects and custom designed circuit for data collection and Bluetooth transmission is presented. The performance of skin-contact textile electrodes, having distinctive electrical characteristics and surface morphologies, was characterized by measurements of signal to noise ratio, under dry and moisture conditions. The influence of the electrodes size and the wear resistance were addressed. Results of an electrocardiogram acquisition with a subject wearing the T-shirt and display on a smartphone are also shown. The presented smart textile systems exhibit good performance and versatility for custom demand production.
Reiter, Harald; Muehlsteff, Jens; Sipilä, Auli
2011-01-01
Functional textiles are seen as promising technology to enable healthcare services and medical care outside hospitals due to their ability to integrate textile-based sensing and monitoring technologies into the daily life. In the past much effort has been spent onto basic functional textile research already showing that reliable monitoring solutions can be realized. The challenge remains to find and develop suited medical application and to fulfil the boundary conditions for medical endorsement and exploitation. The HeartCycle vest described in this abstract will serve as an example for a functional textile carefully developed according to the requirements of a specific medical application, its clinical validation, the related certification aspects and the next improvement steps towards exploitation.
Novel wireless-communicating textiles made from multi-material and minimally-invasive fibers.
Bélanger-Garnier, Victor; Gorgutsa, Stephan; Ung, Bora; Viens, Jeff; Gosselin, Benoit; LaRochelle, Sophie; Messaddeq, Younes
2014-01-01
The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications.
Novel wireless-communicating textiles made from multi-material and minimally-invasive fibers.
Gorgutsa, Stepan; Bélanger-Garnier, Victor; Ung, Bora; Viens, Jeff; Gosselin, Benoit; LaRochelle, Sophie; Messaddeq, Younes
2014-10-16
The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications.
Activated Carbon Textile via Chemistry of Metal Extraction for Supercapacitors.
Lam, Do Van; Jo, Kyungmin; Kim, Chang-Hyun; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Seung-Mo
2016-12-27
Carbothermic reduction in the chemistry of metal extraction (MO(s) + C(s) → M(s) + CO(g)) using carbon as a sacrificial agent has been used to smelt metals from diverse oxide ores since ancient times. Here, we paid attention to another aspect of the carbothermic reduction to prepare an activated carbon textile for high-rate-performance supercapacitors. On the basis of thermodynamic reducibility of metal oxides reported by Ellingham, we employed not carbon, but metal oxide as a sacrificial agent in order to prepare an activated carbon textile. We conformally coated ZnO on a bare cotton textile using atomic layer deposition, followed by pyrolysis at high temperature (C(s) + ZnO(s) → C'(s) + Zn(g) + CO(g)). We figured out that it leads to concurrent carbonization and activation in a chemical as well as mechanical way. Particularly, the combined effects of mechanical buckling and fracture that occurred between ZnO and cotton turned out to play an important role in carbonizing and activating the cotton textile, thereby significantly increasing surface area (nearly 10 times) compared with the cotton textile prepared without ZnO. The carbon textiles prepared by carbothermic reduction showed impressive combination properties of high power and energy densities (over 20-fold increase) together with high cyclic stability.
Highly Stretchable Non-volatile Nylon Thread Memory
NASA Astrophysics Data System (ADS)
Kang, Ting-Kuo
2016-04-01
Integration of electronic elements into textiles, to afford e-textiles, can provide an ideal platform for the development of lightweight, thin, flexible, and stretchable e-textiles. This approach will enable us to meet the demands of the rapidly growing market of wearable-electronics on arbitrary non-conventional substrates. However the actual integration of the e-textiles that undergo mechanical deformations during both assembly and daily wear or satisfy the requirements of the low-end applications, remains a challenge. Resistive memory elements can also be fabricated onto a nylon thread (NT) for e-textile applications. In this study, a simple dip-and-dry process using graphene-PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) ink is proposed for the fabrication of a highly stretchable non-volatile NT memory. The NT memory appears to have typical write-once-read-many-times characteristics. The results show that an ON/OFF ratio of approximately 103 is maintained for a retention time of 106 s. Furthermore, a highly stretchable strain and a long-term digital-storage capability of the ON-OFF-ON states are demonstrated in the NT memory. The actual integration of the knitted NT memories into textiles will enable new design possibilities for low-cost and large-area e-textile memory applications.
A dual-mode textile for human body radiative heating and cooling
Hsu, Po -Chun; Liu, Chong; Song, Alex Y.; ...
2017-11-10
Maintaining human body temperature is one of the most basic needs for living, which often consumes a huge amount of energy to keep the ambient temperature constant. To expand the ambient temperature range while maintaining human thermal comfort, the concept of personal thermal management has been recently demonstrated in heating and cooling textiles separately through human body infrared radiation control. Realizing these two opposite functions within the same textile would represent an exciting scientific challenge and a significant technological advancement. We demonstrate a dual-mode textile that can perform both passive radiative heating and cooling using the same piece of textilemore » without any energy input. The dual-mode textile is composed of a bilayer emitter embedded inside an infrared-transparent nanoporous polyethylene (nanoPE) layer. We demonstrate that the asymmetrical characteristics of both emissivity and nanoPE thickness can result in two different heat transfer coefficients and achieve heating when the low-emissivity layer is facing outside and cooling by wearing the textile inside out when the high-emissivity layer is facing outside. This can expand the thermal comfort zone by 6.5°C. As a result, numerical fitting of the data further predicts 14.7°C of comfort zone expansion for dual-mode textiles with large emissivity contrast.« less
A dual-mode textile for human body radiative heating and cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Po -Chun; Liu, Chong; Song, Alex Y.
Maintaining human body temperature is one of the most basic needs for living, which often consumes a huge amount of energy to keep the ambient temperature constant. To expand the ambient temperature range while maintaining human thermal comfort, the concept of personal thermal management has been recently demonstrated in heating and cooling textiles separately through human body infrared radiation control. Realizing these two opposite functions within the same textile would represent an exciting scientific challenge and a significant technological advancement. We demonstrate a dual-mode textile that can perform both passive radiative heating and cooling using the same piece of textilemore » without any energy input. The dual-mode textile is composed of a bilayer emitter embedded inside an infrared-transparent nanoporous polyethylene (nanoPE) layer. We demonstrate that the asymmetrical characteristics of both emissivity and nanoPE thickness can result in two different heat transfer coefficients and achieve heating when the low-emissivity layer is facing outside and cooling by wearing the textile inside out when the high-emissivity layer is facing outside. This can expand the thermal comfort zone by 6.5°C. As a result, numerical fitting of the data further predicts 14.7°C of comfort zone expansion for dual-mode textiles with large emissivity contrast.« less
Uzunova, S; Baĭnova, A; Iordanova, I; Dolova, D
1986-01-01
The new anti-flammable preparations, proposed by the Higher Chemical Technology Institute (Sofia), were studied, namely: Pyrofix 2--for treatment of textile materials and Torflam--for production of anti-inflammable polyester fibres. The following parameters were studied: skin-irritating and skin-sensitizing effect of both preparations, skin toxic effect of Pyrofix 2 and migration of chemicals from the anti-inflammable textile materials (from the composition of the preparations used). The results obtained revealed the absence of skin-irritating and skin-sensitizing effect of both preparations and cumulative dermal toxicity of Pyrofix 2. The textile materials with reduced combustibility are chemically stable and do not release compounds in the contact aqueous medium, imitating the underclothes space. Formaldehyde from recipe for the treatment of Pyrofix 2 migrates in the air environment. In conclusion, Pyrofix 2 could be applied for the final anti-inflammable treatment of the textile materials for industrial needs, working garments and everyday textile (with the elimination of formaldehyde compound from the recipe). Torflam could be used in the production of anti-inflammable polyester fibres for textile materials intended for industry and everyday life without immediate contact with the skin of the consumers.
Franceschi, J-P; Sbihi, A
2014-10-01
The precision of bone cuts and the positioning of components influence the functionality and longevity of total knee arthroplasty (TKA). The objective of this study was to evaluate the results of TKA, performed after 3D preoperative templating, with the prosthesis implanted using custom cutting guides (Knee-Plan system, Symbios Orthopédie SA). This prospective study investigated 107 TKAs. Three-dimensional preoperative templating was carried out on the surface views and CT views to analyze the deformation of the lower limb and plan the implantation. The components were positioned in an individualized manner to realign the lower limb and provide ligament balance based on bone landmarks. Final component positioning was analyzed in the three planes with a postoperative CT scan. The preoperative and 1 year follow-up IKS and WOMAC scores were collected and compared. All the cutting guides were stable and functional. Femoral component planning was reproduced with 0 ± 2 precision in the frontal plane (94%± 3), 2 ± 3 in the sagittal plane, and 0 ± 2 in the transverse plane. The precision of the tibial component was reproduced with 0 ± 2 precision in the frontal plane (93%± 3) and 0 ± 4 in the sagittal plane. The HKA angle increased from 177 ± 7 preoperatively to 180 ± 3 at 1 year of follow-up. The IKS and WOMAC scores were significantly improved at 1 year (P<0.0001). The Knee-Plan system can be a realistic, simple, and reliable alternative to conventional cutting guides and to computer-assisted surgery for TKA implantation. IV; prospective cohort study. Copyright © 2014. Published by Elsevier Masson SAS.
Laundering in the prevention of skin infections.
Kurz, Josef
2003-01-01
The statistics at the Hohenstein Institutes and the detergent industry show that the number of complaints due to skin irritations or allergies of washed laundry are relatively low. A clear interdependence between the number of complaints and the season of the year is existing. An interesting fact is that work wear made of cotton shows a relatively higher number of complaints than blends of polyester with cotton. The highest number of complaints results from operating theatre textiles, which is probably due to the exceptional strain of the skin of the operating-theatre staff by surgical disinfecting measures. During washing in household washing machines and also in the industrial sector it is mainly the mechanical action of the washing machines and the chemistry of the detergents which influence the textiles. The effects of the washing process on the textiles if assessed regarding the dermatological point of view, can go in two different directions: Changes of the textile itself and the formation of residues on the washed laundry, whereby the residues can be unintended, i.e. inevitable or desired, so to speak as finishing, for example optical brighteners, softeners, etc. The changes of the textile substance itself can result in a raising. This can either mean that the textile becomes more harsh in feel or fluffier. Textiles which become harsher only have little influence on the skin. Whereas the change to a fluffier textile has positive effects on the skin as there are so-called 'distance holders' formed on the textile surface, which prevents an early sticking of the textiles to a perspirating skin. This increases the wear comfort. Inevitable residues on the washed laundry can be caused by wear (this is not important), the washing water and the detergent. Within the detergents only the surfactants and alkalines are of interest. Desired residues are for example optical brighteners to increase the degree of whiteness, softeners, finishing baths (starch), scents and water-repellent finishes. Regarding special cases like for example flame-retardant finishes, antistatic additives and antimicrobial effects, there is only little experience available so far.
Development of Textile Reinforced Composites for Aircraft Structures
NASA Technical Reports Server (NTRS)
Dexter, H. Benson
1998-01-01
NASA has been a leader in development of composite materials for aircraft applications during the past 25 years. In the early 1980's NASA and others conducted research to improve damage tolerance of composite structures through the use of toughened resins but these resins were not cost-effective. The aircraft industry wanted affordable, robust structures that could withstand the rigors of flight service with minimal damage. The cost and damage tolerance barriers of conventional laminated composites led NASA to focus on new concepts in composites which would incorporate the automated manufacturing methods of the textiles industry and which would incorporate through-the-thickness reinforcements. The NASA Advanced Composites Technology (ACT) Program provided the resources to extensively investigate the application of textile processes to next generation aircraft wing and fuselage structures. This paper discusses advanced textile material forms that have been developed, innovative machine concepts and key technology advancements required for future application of textile reinforced composites in commercial transport aircraft. Multiaxial warp knitting, triaxial braiding and through-the-thickness stitching are the three textile processes that have surfaced as the most promising for further development. Textile reinforced composite structural elements that have been developed in the NASA ACT Program are discussed. Included are braided fuselage frames and window-belt reinforcements, woven/stitched lower fuselage side panels, stitched multiaxial warp knit wing skins, and braided wing stiffeners. In addition, low-cost processing concepts such as resin transfer molding (RTM), resin film infusion (RFI), and vacuum-assisted resin transfer molding (VARTM) are discussed. Process modeling concepts to predict resin flow and cure in textile preforms are also discussed.
Application of solar photo-Fenton toward toxicity removal and textile wastewater reuse.
Starling, Maria Clara V M; Dos Santos, Paulo Henrique Rodrigues; de Souza, Felipe Antônio Ribeiro; Oliveira, Sílvia Corrêa; Leão, Mônica M D; Amorim, Camila C
2017-05-01
Solar photo-Fenton represents an innovative and low-cost option for the treatment of recalcitrant industrial wastewater, such as the textile wastewater. Textile wastewater usually shows high acute toxic and variability and may be composed of many different chemical compounds. This study aimed at optimizing and validating solar photo-Fenton treatment of textile wastewater in a semi-pilot compound parabolic collector (CPC) for toxicity removal and wastewater reclamation. In addition, treated wastewater reuse feasibility was investigated through pilot tests. Experimental design performed in this study indicated optimum condition for solar photo-Fenton reaction (20 mg L -1 of Fe 2+ and 500 mg L -1 of H 2 O 2 ; pH 2.8), which achieved 96 % removal of dissolved organic carbon (DOC) and 99 % absorbance removal. A toxicity peak was detected during treatment, suggesting that highly toxic transformation products were formed during reaction. Toxic intermediates were properly removed during solar photo-Fenton (SPF) treatment along with the generation of oxalic acid as an ultimate product of degradation and COS increase. Different samples of real textile wastewater were treated in order to validate optimized treatment condition with regard to wastewater variability. Results showed median organic carbon removal near 90 %. Finally, reuse of treated textile wastewater in both dyeing and washing stages of production was successful. These results confirm that solar photo-Fenton, as a single treatment, enables wastewater reclamation in the textile industry. Graphical abstract Solar photo-Fenton as a revolutionary treatment technology for "closing-the-loop" in the textile industry.
Improving lumber yield using a dual system
R. Edward Thomas; Omar Espinoza; Urs Buehlmann
2015-01-01
Rough mills embody the process of cutting up kiln-dried lumber to components used by discrete wood products manufacturers to manufacture products like furniture, kitchen cabinets, flooring, or other items. Rough mills traditionally have either ripped the lumber first (e.g., the lumber is first cut into strips lengthwise) then cut the strips to the required part lengths...
Identification and Characterization of Textile Fibers by Thermal Analysis
ERIC Educational Resources Information Center
Gray, Fiona M.; Smith, Michael J.; Silva, Magda B.
2011-01-01
Textile fibers are ubiquitous in the sense that they are present in the fabric of clothing, furniture, and floor and wall coverings. A remarkable variety of textile fibers with different chemical compositions are produced for many different commercial applications. As fibers are readily transferred, they are frequently recovered from crime scenes…
Sustainability Knowledge and Behaviors of Apparel and Textile Undergraduates
ERIC Educational Resources Information Center
Hiller Connell, Kim Y.; Kozar, Joy M.
2012-01-01
Purpose: The purpose of this paper is to analyze changes in undergraduate student knowledge of issues of sustainability relevant to the apparel and textiles industry. Assessment occurred prior to and upon completion of a course that addressed topics specific to the global production and distribution of apparel and textile goods. The study also…
Submicron Surface-Patterned Fibers and Textiles
2016-11-04
These authors contributed equally Keywords: grating, fiber, polymer , patterning, textile Distribution A: approved for public release...requirements. Second, textile materials are primarily polymer -based, while most surface-patterning techniques have been developed for silicon...Alternative substrates, especially flexible polymers , remain challenging to pattern [25,26] due to the highly specific surface chemistry of different
Health Care Practices for Medical Textiles in Government Hospitals
ERIC Educational Resources Information Center
Akubue, B. N.; Anikweze, G. U.
2015-01-01
The purpose of this study was to investigate the health care practices for medical textiles in government hospitals Enugu State, Nigeria. Specifically, the study determined the availability and maintenance of medical textiles in government hospitals in Enugu State, Nigeria. A sample of 1200 hospital personnel were studied. One thousand two hundred…
19 CFR 10.453 - Treatment of textile and apparel sets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Free Trade Agreement Rules of Origin § 10.453 Treatment of textile and apparel sets. Notwithstanding the specific rules specified in General Note 26(n), HTSUS, textile and apparel goods classifiable as goods put up in sets for retail sale as provided for in General Rule of Interpretation 3, HTSUS, will...
19 CFR 10.771 - Textile or apparel goods.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Agreement Rules of Origin § 10.771 Textile or apparel goods. (a) De minimis. Except as provided in paragraph... specific rules specified in General Note 27(h), HTSUS, textile or apparel goods classifiable as goods put up in sets for retail sale as provided for in General Rule of Interpretation 3, HTSUS, will not be...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
... Information Collection; Comment Request: Clothing Textiles, Vinyl Plastic Film AGENCY: Consumer Product Safety... Clothing Textiles (16 CFR part 1610) and the Standard for the Flammability of Vinyl Plastic Film (16 CFR... vinyl plastic film and vinyl plastic film intended for use in clothing (except children's sleepwear in...
16 CFR 303.42 - Arrangement of information in advertising textile fiber products.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Arrangement of information in advertising... ACT § 303.42 Arrangement of information in advertising textile fiber products. (a) Where a textile fiber product is advertised in such manner as to require disclosure of the information required by the...
Vocational Home Economics Curriculum Guide for Occupational Clothing and Textiles.
ERIC Educational Resources Information Center
Dewald, Margaret R.
The training program outlined in this guide focuses upon the development of students for gainful employment through a two-year course of study in clothing and textiles. Instructional topics are provided in six areas: clothing and textiles careers; alterationist; custom dressmaker; industrial sewing; getting, keeping, and using the paycheck; and…
Rural Textile Workers Literacy Enhancement Project. Final Performance Report.
ERIC Educational Resources Information Center
Enterprise State Junior Coll., AL.
This document consists of the final report and sample curricula from the Rural Textile Workers Literacy Enhancement Project. The final report details how the project was initiated in April 1993 to help employees of five textile and apparel manufacturing companies in southeastern Alabama improve their literacy and numeracy skills. A second…
A User's Applications of Imaging Techniques: The University of Maryland Historic Textile Database.
ERIC Educational Resources Information Center
Anderson, Clarita S.
1991-01-01
Describes the incorporation of textile images into the University of Maryland Historic Textile Database by a computer user rather than a computer expert. Selection of a database management system is discussed, and PICTUREPOWER, a system that integrates photographic quality images with text and numeric information in databases, is described. (three…
Stories in the Cloth: Art Therapy and Narrative Textiles
ERIC Educational Resources Information Center
Garlock, Lisa Raye
2016-01-01
In this article I weave together the relevance of narrative textile work in therapeutic and human rights contexts; showcase Common Threads, an international nonprofit that uses story cloths with survivors of gender-based violence; outline a master's level art therapy course in story cloths; and relate how textiles helped build a sibling…
Apparel and Textiles Production, Management, and Services. Reference Book.
ERIC Educational Resources Information Center
Texas Tech Univ., Lubbock. Home Economics Curriculum Center.
Developed with input from personnel in the industries, this reference book complements a matching curriculum guide for a course on the textiles and apparel industries. The book emphasizes job skills and the attitudes and interpersonal skills needed for successful employment in the textiles/apparel industry. Each of the 22 chapters of the book…
USDA-ARS?s Scientific Manuscript database
The mobile industry comprised of airplanes, automotives, and ships uses enormous quantities of various types of textiles. Just a few decades ago, most of these textile products and composites were made with woven or knitted fabrics that were mostly made with the then only available natural fibers, i...
Textile Inspired Lithium-Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways.
Xu, Shaomao; Yao, Yonggang; Guo, Yuanyuan; Zeng, Xiaoqiao; Lacey, Steven D; Song, Huiyu; Chen, Chaoji; Li, Yiju; Dai, Jiaqi; Wang, Yanbin; Chen, Yanan; Liu, Boyang; Fu, Kun; Amine, Khalil; Lu, Jun; Hu, Liangbing
2018-01-01
The lithium-air (Li-O 2 ) battery has been deemed one of the most promising next-generation energy-storage devices due to its ultrahigh energy density. However, in conventional porous carbon-air cathodes, the oxygen gas and electrolyte often compete for transport pathways, which limit battery performance. Here, a novel textile-based air cathode is developed with a triple-phase structure to improve overall battery performance. The hierarchical structure of the conductive textile network leads to decoupled pathways for oxygen gas and electrolyte: oxygen flows through the woven mesh while the electrolyte diffuses along the textile fibers. Due to noncompetitive transport, the textile-based Li-O 2 cathode exhibits a high discharge capacity of 8.6 mAh cm -2 , a low overpotential of 1.15 V, and stable operation exceeding 50 cycles. The textile-based structure can be applied to a range of applications (fuel cells, water splitting, and redox flow batteries) that involve multiple phase reactions. The reported decoupled transport pathway design also spurs potential toward flexible/wearable Li-O 2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kaushik, Priya; Garg, V K
2004-09-01
In India, thousands of tons of textile mill sludge are produced every year. We studied the ability of epigeic earthworm Eisenia foetida to transform textile mill sludge mixed with cow dung and/or agricultural residues into value added product, i.e., vermicompost. The growth, maturation, mortality, cocoon production, hatching success and the number of hatchlings were monitored in a range of different feed mixtures for 11 weeks in the laboratory under controlled environmental conditions. The maximum growth and reproduction was obtained in 100% cow dung, but worms grew and reproduced favorably in 80% cow dung + 20% solid textile mill sludge and 70% cow dung + 30% solid textile mill sludge also. Addition of agricultural residues had adverse effects on growth and reproduction of worms. Vermicomposting resulted in significant reduction in C:N ratio and increase in TKN, TP, TK and TCa after 77 days of worm activity in all the feeds. Vermicomposting can be an alternate technology for the management of textile mill sludge if mixed with cow dung in appropriate quantities. Copyright 2003 Elsevier Ltd.
Effect of low-purity Fenton reagents on toxicity of textile dyeing effluent to Daphnia magna.
Na, Joorim; Yoo, Jisu; Nam, Gwiwoong; Jung, Jinho
2017-09-20
This study aimed to identify the source of toxicity in textile dyeing effluent collected from February to July 2016, using Daphnia magna as a test organism. Toxicity identification evaluation (TIE) procedures were used to identify the toxicants in textile dyeing effluent, and Jar testing to simulate the Fenton process was conducted to identify the source of toxicants. Textile dyeing effluent was acutely toxic to D. magna [from 1.5 to 9.7 toxic units (TU)] during the study period. TIE results showed that Zn derived from the Fenton process was a key toxicant in textile dyeing effluent. Additionally, Jar testing revealed that low-purity Fenton reagents (FeCl 2 and FeSO 4 ), which contained large amounts of Zn (89 838 and 610 mg L -1 , respectively), were the source of toxicity. Although we were unable to conclusively identify the residual toxicity (approx. 1.4 TU of 9.71 TU) attributable to unknown toxicants in textile dyeing effluent, the findings of this study suggest that careful operation of the Fenton treatment process could contribute to eliminating its unintended toxic effects on aquatic organisms.
Printing Smart Designs of Light Emitting Devices with Maintained Textile Properties †
Verboven, Inge; Stryckers, Jeroen; Mecnika, Viktorija; Vandevenne, Glen; Jose, Manoj
2018-01-01
To maintain typical textile properties, smart designs of light emitting devices are printed directly onto textile substrates. A first approach shows improved designs for alternating current powder electroluminescence (ACPEL) devices. A configuration with the following build-up, starting from the textile substrate, was applied using the screen printing technique: silver (10 µm)/barium titanate (10 µm)/zinc-oxide (10 µm) and poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (10 µm). Textile properties such as flexibility, drapability and air permeability are preserved by implementing a pixel-like design of the printed layers. Another route is the application of organic light emitting devices (OLEDs) fabricated out of following layers, also starting from the textile substrate: polyurethane or acrylate (10–20 µm) as smoothing layer/silver (200 nm)/poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (35 nm)/super yellow (80 nm)/calcium/aluminum (12/17 nm). Their very thin nm-range layer thickness, preserving the flexibility and drapability of the substrate, and their low working voltage, makes these devices the possible future in light-emitting wearables. PMID:29438276
Bedekar, Priyanka A; Bhalkar, Bhumika N; Patil, Swapnil M; Govindwar, Sanjay P
2016-10-01
Generation of secondary sludge is a major concern of textile dye removal by coagulation process. Combinatorial coagulation-biodegradation treatment system has been found efficient in degradation of coagulated textile dye sludge. Moringa oleifera seed powder (700 mg L -1 ) was able to coagulate textile dyestuff from real textile wastewater with 98 % color removal. Novel consortium-BBA was found to decolorize coagulated dye sludge. Parameters that significantly affect coagulation process were optimized using response surface methodology. The bench-scale stirred tank reactor (50-L capacity) designed with optimized parameters for coagulation process could efficiently remove 98, 89, 78, and 67 % of American Dye Manufacturer's Institute (ADMI) in four repetitive cycles, respectively. Solid-state fermentation composting reactor designed to treat coagulated dye sludge showed 96 % removal of dye within 10 days. Coagulation of dyes from textile wastewater and degradation of coagulated dye sludge were confirmed by Fourier transform infrared spectroscopy (FTIR) analysis. Cell morphology assay, comet assay, and phytotoxicity confirmed the formation of less toxic products after coagulation and degradation mechanism.
Lindh, Markus V.; Pinhassi, Jarone; Welander, Ulrika
2017-01-01
Textile dying processes often pollute wastewater with recalcitrant azo and anthraquinone dyes. Yet, there is little development of effective and affordable degradation systems for textile wastewater applicable in countries where water technologies remain poor. We determined biodegradation of actual textile wastewater in biofilters containing rice husks by spectrophotometry and liquid chromatography mass spectrometry. The indigenous microflora from the rice husks consistently performed >90% decolorization at a hydraulic retention time of 67 h. Analysis of microbial community composition of bacterial 16S rRNA genes and fungal internal transcribed spacer (ITS) gene fragments in the biofilters revealed a bacterial consortium known to carry azoreductase genes, such as Dysgonomonas, and Pseudomonas and the presence of fungal phylotypes such as Gibberella and Fusarium. Our findings emphasize that rice husk biofilters support a microbial community of both bacteria and fungi with key features for biodegradation of actual textile wastewater. These results suggest that microbial processes can substantially contribute to efficient and reliable degradation of actual textile wastewater. Thus, development of biodegradation systems holds promise for application of affordable wastewater treatment in polluted environments. PMID:28114377
Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors.
Li, Zheng; Huang, Tieqi; Gao, Weiwei; Xu, Zhen; Chang, Dan; Zhang, Chunxiao; Gao, Chao
2017-11-28
Carbon textiles are promising electrode materials for wearable energy storage devices owing to their conductive, flexible, and lightweight features. However, there still lacks a perfect choice for high-performance carbon textile electrodes with sufficient electrochemical activity. Graphene fiber fabrics (GFFs) are newly discovered carbon textiles, exhibiting various attractive properties, especially a large variability on the microstructure. Here we report the fabrication of hierarchical GFFs with significantly enlarged specific surface area using a hydrothermal activation strategy. By carefully optimize the activation process, the hydrothermally activated graphene fiber fabrics (HAGFFs) could achieve an areal capacitance of 1060 mF cm -2 in a very thin thickness (150 μm) and the capacitance is easily magnified by overlaying several layers of HAGFFs, even up to a record value of 7398 mF cm -2 . Meanwhile, a good rate capability and a long cycle life are also attained. As compared with other carbon textiles, including the commercial carbon fiber cloths, our HAGFFs present much better capacitive performance. Therefore, the mechanically stable, flexible, conductive, and highly active HAGFFs have provided an option for high-performance textile electrodes.
Carney Almroth, Bethanie M; Åström, Linn; Roslund, Sofia; Petersson, Hanna; Johansson, Mats; Persson, Nils-Krister
2018-01-01
Microplastics in the environment are a subject of intense research as they pose a potential threat to marine organisms. Plastic fibers from textiles have been indicated as a major source of this type of contaminant, entering the oceans via wastewater and diverse non-point sources. Their presence is also documented in terrestrial samples. In this study, the amount of microfibers shedding from synthetic textiles was measured for three materials (acrylic, nylon, polyester), knit using different gauges and techniques. All textiles were found to shed, but polyester fleece fabrics shed the greatest amounts, averaging 7360 fibers/m -2 /L -1 in one wash, compared with polyester fabrics which shed 87 fibers/m -2 /L -1 . We found that loose textile constructions shed more, as did worn fabrics, and high twist yarns are to be preferred for shed reduction. Since fiber from clothing is a potentially important source of microplastics, we suggest that smarter textile construction, prewashing and vacuum exhaustion at production sites, and use of more efficient filters in household washing machines could help mitigate this problem.
Instrumental color control in textile printing
NASA Astrophysics Data System (ADS)
Connelly, Roland L., Sr.
1996-03-01
In textile printing there are several color outputs that need to be controlled. Just as important is the color coordination of these outputs. The types of color output are the video display on the textile design system (CATD for Computer Aided Textile Design), the color scanner, the color pattern printer, and the actual pattern printed on the textile substrate. Each of these systems has its own gamut(s) that is partially overlapping of the others and will require mapping and/or truncation to adequately represent the colors of the final print in the other systems. One of the goals of instrumentation systems is to control these devices so that the message of the pattern is the same on all four media. To accomplish this is a significant task that has yet to be completed to meet the rigorous requirements of the textile and apparel industries. Several of the major problems and directions for solving them will be discussed in this paper. These include getting good instrumental measurements, translation of data between systems, and specific problems related to the hard copy output.
A system for respiratory motion detection using optical fibers embedded into textiles.
D'Angelo, L T; Weber, S; Honda, Y; Thiel, T; Narbonneau, F; Luth, T C
2008-01-01
In this contribution, a first prototype for mobile respiratory motion detection using optical fibers embedded into textiles is presented. The developed system consists of a T-shirt with an integrated fiber sensor and a portable monitoring unit with a wireless communication link enabling the data analysis and visualization on a PC. A great effort is done worldwide to develop mobile solutions for health monitoring of vital signs for patients needing continuous medical care. Wearable, comfortable and smart textiles incorporating sensors are good approaches to solve this problem. In most of the cases, electrical sensors are integrated, showing significant limits such as for the monitoring of anaesthetized patients during Magnetic Resonance Imaging (MRI). OFSETH (Optical Fibre Embedded into technical Textile for Healthcare) uses optical sensor technologies to extend the current capabilities of medical technical textiles.
Electrical Switchability and Dry-Wash Durability of Conductive Textiles
Wu, Bangting; Zhang, Bowu; Wu, Jingxia; Wang, Ziqiang; Ma, Hongjuan; Yu, Ming; Li, Linfan; Li, Jingye
2015-01-01
There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions. PMID:26066704
Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge.
Peng, Xiaowei; Ma, Xiaoqian; Xu, Zhibin
2015-03-01
The synergistic interaction and kinetics of microalgae, textile dyeing sludge and their blends were investigated under combustion condition by thermogravimetric analysis. The textile dyeing sludge was blended with microalgae in the range of 10-90wt.% to investigate their co-combustion behavior. Results showed that the synergistic interaction between microalgae and textile dyeing sludge improved the char catalytic effect and alkali metals melt-induced effect on the decomposition of textile dyeing sludge residue at high temperature of 530-800°C. As the heating rate increasing, the entire combustion process was delayed but the combustion intensity was enhanced. The lowest average activation energy was obtained when the percentage of microalgae was 60%, which was 227.1kJ/mol by OFW and 227.4kJ/mol by KAS, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Advanced resin systems and 3D textile preforms for low cost composite structures
NASA Technical Reports Server (NTRS)
Shukla, J. G.; Bayha, T. D.
1993-01-01
Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.
Textile sustainability: reuse of clean waste from the textile and apparel industry
NASA Astrophysics Data System (ADS)
Broega, A. C.; Jordão, C.; Martins, S. B.
2017-10-01
Today societies are already experiencing changes in their production systems and even consumption in order to guarantee the survival and well-being of future generations. This fact emerges from the need to adopt a more sustainable posture in both people’s daily lives and productive systems. Within this context, textile sustainability emerges as the object of study of this work whose aim is to analyse which sustainability dimensions are being prioritized by the clean waste management systems of the textile and garment industries. This article aims to analyse solutions that are being proposed by sustainable creative business models in the reuse of discarded fabrics by the textile industry. Search also through a qualitative research by a case study (the Reuse Fabric Bank) understand the benefits generated by the re-use in environmental, economic, social and ways to add value.
Characterization and thermal behaviour of textile waste from the industrial city of Aleppo in Syria.
Majanny, Abdulkader; Nassour, Abdallah; Gose, Sven; Scholz, Reinhard; Nelles, Michael
2011-03-01
This paper describes the present waste management practices in the industrial city Alsheikh Najjar of Aleppo, mainly with regard to textile waste materials, and provides some insights into future prospects. As a first exploration for energy recovery from textile waste materials, the thermal behaviour of seven different types of textile waste were studied by thermogravimetry. There were assorted differential thermogravimetry peaks found over a particular range of temperatures. Pyrolysis experiments were carried out to identify the pyrolysis products such as gas, liquid, and solid residues known as char. In a subsequent analysis, the combustion behaviour of textile waste was determined and analysed. Typical parameters - reaction front velocity, ignition rate - were considered for the evaluation of the combustion behaviour and the results were compared with values observed for waste wood.
Impact behavior of basalt/epoxy composite: Comparison between flat and twill fabric
NASA Astrophysics Data System (ADS)
Papa, I.; Ricciardi, M. R.; Antonucci, V.; Langella, A.; Lopresto, V.
2018-05-01
Two types of basalt fibre reinforced epoxy laminates were realized by overlapping flat and twill woven basalt fabrics by resin infusion. Rectangular specimens, cut from the panels were impacted at penetration and at increasing energy values, to investigate the damage onset and propagation. A non-destructive technique, Ultrasound testing (UT), was adopted to investigate the internal damage. Despite the difficulties to obtain information by UT method due to the high amount of signal absorbed, the technique, properly calibrated, proved to be very useful in providing information about the presence, the shape and the extent of the delaminations. The results were compared at the aim to investigate the effect of the fiber architecture (textile). The experimental results indicate a similar impact behavior between basalt flat and twill composites but in the case of the twill a minor delaminated area was detected, even if a higher absorbed energy was recorded
Too, Chun Lai; Muhamad, Nor Asiah; Ilar, Anna; Padyukov, Leonid; Alfredsson, Lars; Klareskog, Lars; Murad, Shahnaz; Bengtsson, Camilla
2016-01-01
Objectives Lung exposures including cigarette smoking and silica exposure are associated with the risk of rheumatoid arthritis (RA). We investigated the association between textile dust exposure and the risk of RA in the Malaysian population, with a focus on women who rarely smoke. Methods Data from the Malaysian Epidemiological Investigation of Rheumatoid Arthritis population-based case–control study involving 910 female early RA cases and 910 female age-matched controls were analysed. Self-reported information on ever/never occupationally exposed to textile dust was used to estimate the risk of developing anti-citrullinated protein antibody (ACPA)-positive and ACPA-negative RA. Interaction between textile dust and the human leucocyte antigen DR β-1 (HLA-DRB1) shared epitope (SE) was evaluated by calculating the attributable proportion due to interaction (AP), with 95% CI. Results Occupational exposure to textile dust was significantly associated with an increased risk of developing RA in the Malaysian female population (OR 2.8, 95% CI 1.6 to 5.2). The association between occupational exposure to textile dust and risk of RA was uniformly observed for the ACPA-positive RA (OR 2.5, 95% CI 1.3 to 4.8) and ACPA-negative RA (OR 3.5, 95% CI 1.7 to 7.0) subsets, respectively. We observed a significant interaction between exposure to occupational textile dust and HLA-DRB1 SE alleles regarding the risk of ACPA-positive RA (OR for double exposed: 39.1, 95% CI 5.1 to 297.5; AP: 0.8, 95% CI 0.5 to 1.2). Conclusions This is the first study demonstrating that textile dust exposure is associated with an increased risk for RA. In addition, a gene–environment interaction between HLA-DRB1 SE and textile dust exposure provides a high risk for ACPA-positive RA. PMID:26681695
von Goetz, N; Lorenz, C; Windler, L; Nowack, B; Heuberger, M; Hungerbühler, K
2013-09-03
Engineered nanoparticles (ENP) are increasingly used to functionalize textiles taking advantage, e.g., of the antimicrobial activity of silver (Ag)-ENP or the UV-absorption of titania (TiO2)-ENP. Mobilization and migration of ENPs from the textile into human sweat can result in dermal exposure to these nanoobjects and their aggregates and agglomerates (NOAA). In this study we assessed exposure to NOAA migrating from commercially available textiles to artificial sweat by an experimental setup that simulates wear-and-tear during physical activity. By combining physical stress with incubation in alkaline and acidic artificial sweat solutions we experimentally realized a worst case scenario for wearing functionalized textiles during sports activities. This experimental approach is not limited to NOAA, but can be used for any other textile additive. Out of four investigated textiles, one T-shirt and one pair of trousers with claimed antimicrobial properties were found to release Ag <450 nm in detectable amounts (23-74 μg/g/L). Textiles containing TiO2 for UV protection did not release significant amounts of TiO2 <450 nm, but the antimicrobial T-shirt released both TiO2 and Ag <450 nm. The silver was present in dissolved and particulate form, whereas TiO2 was mainly found as particulate. On the basis of our experimental results we calculated external dermal exposure to Ag and TiO2 for male and female adults per use. For silver, maximal amounts of 17.1 and 8.2 μg/kg body weight were calculated for total and particulate Ag <450 nm, respectively. For TiO2, the exposure levels amount to maximal 11.6 μg/kg body weight for total (mainly particulate) TiO2. In comparison with other human exposure pathways, dermal exposure to NOAA from textiles can be considered comparably minor for TiO2-NOAA, but not for Ag-NOAA.
Conductive Textiles via Vapor-Phase Polymerization of 3,4-Ethylenedioxythiophene.
Ala, Okan; Hu, Bin; Li, Dapeng; Yang, Chen-Lu; Calvert, Paul; Fan, Qinguo
2017-08-30
We fabricated electrically conductive textiles via vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) layers on cotton, cotton/poly(ethylene terephthalate) (PET), cotton/Lycra, and PET fabrics. We then measured the electrical resistivity values of such PEDOT-coated textiles and analyzed the effect of water treatment on the electrical resistivity. Additionally, we tested the change in the electrical resistance of the conductive textiles under cyclic stretching and relaxation. Last, we characterized the uniformity and morphology of the conductive layer formed on the fabrics using scanning electron microscopy and electron-dispersive X-ray spectroscopy.
Aqueous Zinc Compounds as Residual Antimicrobial Agents for Textiles.
Holt, Brandon Alexander; Gregory, Shawn Alan; Sulchek, Todd; Yee, Shannon; Losego, Mark D
2018-03-07
Textiles, especially those worn by patients and medical professionals, serve as vectors for proliferating pathogens. Upstream manufacturing techniques and end-user practices, such as transition-metal embedment in textile fibers or alcohol-based disinfectants, can mitigate pathogen growth, but both techniques have their shortcomings. Fiber embedment requires complete replacement of all fabrics in a facility, and the effects of embedded nanoparticles on human health remain unknown. Alcohol-based, end-user disinfectants are short-lived because they quickly volatilize. In this work, common zinc salts are explored as an end-user residual antimicrobial agent. Zinc salts show cost-effective and long-lasting antimicrobial efficacy when solution-deposited on common textiles, such as nylon, polyester, and cotton. Unlike common alcohol-based disinfectants, these zinc salt-treated textiles mitigate microbial growth for more than 30 days and withstand commercial drying. Polyester fabrics treated with ZnO and ZnCl 2 were further explored because of their commercial ubiquity and likelihood for rapid commercialization. ZnCl 2 -treated textiles were found to retain their antimicrobial coating through abrasive testing, whereas ZnO-treated textiles did not. Scanning electron microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry analyses suggest that ZnCl 2 likely hydrolyzes and reacts with portions of the polyester fiber, chemically attaching to the fiber, whereas colloidal ZnO simply sediments and binds with weaker physical interactions.
Dong, Kai; Deng, Jianan; Zi, Yunlong; Wang, Yi-Cheng; Xu, Cheng; Zou, Haiyang; Ding, Wenbo; Dai, Yejing; Gu, Bohong; Sun, Baozhong; Wang, Zhong Lin
2017-10-01
The development of wearable and large-area energy-harvesting textiles has received intensive attention due to their promising applications in next-generation wearable functional electronics. However, the limited power outputs of conventional textiles have largely hindered their development. Here, in combination with the stainless steel/polyester fiber blended yarn, the polydimethylsiloxane-coated energy-harvesting yarn, and nonconductive binding yarn, a high-power-output textile triboelectric nanogenerator (TENG) with 3D orthogonal woven structure is developed for effective biomechanical energy harvesting and active motion signal tracking. Based on the advanced 3D structural design, the maximum peak power density of 3D textile can reach 263.36 mW m -2 under the tapping frequency of 3 Hz, which is several times more than that of conventional 2D textile TENGs. Besides, its collected power is capable of lighting up a warning indicator, sustainably charging a commercial capacitor, and powering a smart watch. The 3D textile TENG can also be used as a self-powered active motion sensor to constantly monitor the movement signals of human body. Furthermore, a smart dancing blanket is designed to simultaneously convert biomechanical energy and perceive body movement. This work provides a new direction for multifunctional self-powered textiles with potential applications in wearable electronics, home security, and personalized healthcare. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Norman, Timothy L.; Anglin, Colin
1995-01-01
The unnotched and notched (open hole) tensile strength and failure mechanisms of two-dimensional (2D) triaxial braided composites were examined. The effect of notch size and notch position were investigated. Damage initiation and propagation in notched and unnotched coupons were also examined. Theory developed to predict the normal stress distribution near an open hole and failure for tape laminated composites was evaluated for its applicability to 2D triaxial braided textile composite materials. Four different fiber architectures were considered; braid angle, yarn and braider size, percentage of longitudinal yarns and braider angle varied. Tape laminates equivalent to textile composites were also constructed for comparison. Unnotched tape equivalents were stronger than braided textiles but exhibited greater notch sensitivity. Notched textiles and tape equivalents have roughly the same strength at large notch sizes. Two common damage mechanisms were found: braider yarn cracking and near notch longitudinal yarn splitting. Cracking was found to initiate in braider yarns in unnotched and notched coupons, and propagate in the direction of the braider yarns until failure. Damage initiation stress decreased with increasing braid angle. No significant differences in prediction of near notch strain between textile and tape equivalents could be detected for small braid angle, but the correlations were weak for textiles with large braid angle. Notch strength could not be predicted using existing anisotropic theory for braided textiles due to their insensitivity to notch.
Mohd Nasir, Norlirubayah; Teo Ming, Ting; Ahmadun, Fakhru'l-Razi; Sobri, Shafreeza
2010-01-01
The research conducted a study on decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process. The purposes of this research are to remove pollutant through decomposition and to enhance the biodegradability of textile wastewater. The wastewater is treated using electron beam irradiation as a pre-treatment before undergo an activated sludge process. As a result, for non-irradiated wastewater, the COD removal was achieved to be between 70% and 79% after activated sludge process. The improvement of COD removal efficiency increased to 94% after irradiation of treated effluent at the dose of 50 kGy. Meanwhile, the BOD(5) removal efficiencies of non-irradiated and irradiated textile wastewater were reported to be between 80 and 87%, and 82 and 99.2%, respectively. The maximum BOD(5) removal efficiency was achieved at day 1 (HRT 5 days) of the process of an irradiated textile wastewater which is 99.2%. The biodegradability ratio of non-irradiated wastewater was reported to be between 0.34 and 0.61, while the value of biodegradability ratio of an irradiated wastewater increased to be between 0.87 and 0.96. The biodegradability enhancement of textile wastewater is increased with increasing the doses. Therefore, an electron beam radiation holds a greatest application of removing pollutants and also on enhancing the biodegradability of textile wastewater.
Inui, Hiroshi; Taketomi, Shuji; Tahara, Keitarou; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae
2017-03-01
Bone cutting errors can cause malalignment of unicompartmental knee arthroplasties (UKA). Although the extent of tibial malalignment due to horizontal cutting errors has been well reported, there is a lack of studies evaluating malalignment as a consequence of keel cutting errors, particularly in the Oxford UKA. The purpose of this study was to examine keel cutting errors during Oxford UKA placement using a navigation system and to clarify whether two different tibial keel cutting techniques would have different error rates. The alignment of the tibial cut surface after a horizontal osteotomy and the surface of the tibial trial component was measured with a navigation system. Cutting error was defined as the angular difference between these measurements. The following two techniques were used: the standard "pushing" technique in 83 patients (group P) and a modified "dolphin" technique in 41 patients (group D). In all 123 patients studied, the mean absolute keel cutting error was 1.7° and 1.4° in the coronal and sagittal planes, respectively. In group P, there were 22 outlier patients (27 %) in the coronal plane and 13 (16 %) in the sagittal plane. Group D had three outlier patients (8 %) in the coronal plane and none (0 %) in the sagittal plane. Significant differences were observed in the outlier ratio of these techniques in both the sagittal (P = 0.014) and coronal (P = 0.008) planes. Our study demonstrated overall keel cutting errors of 1.7° in the coronal plane and 1.4° in the sagittal plane. The "dolphin" technique was found to significantly reduce keel cutting errors on the tibial side. This technique will be useful for accurate component positioning and therefore improve the longevity of Oxford UKAs. Retrospective comparative study, Level III.
USDA-ARS?s Scientific Manuscript database
In this presentation, new approaches for flame retardant textile by using supercritical carbon dioxide (scCO2) and layer-by-layer processing will be discussed. Due to its environmentally benign character, the scCO2 is considered in green chemistry as a substitute for organic solvents in chemical rea...
Locational Factors in the New Textile Industry: Focus on the U.S. South.
ERIC Educational Resources Information Center
Wheeler, James O.
1998-01-01
Chronicles the geographic and historical locational changes of the textile industry of the U.S. South. Economics of scope, flexible production, and quality of output characterize the contemporary textile industry. Provides basic geographic content enabling a teacher to develop a unit by applying geography to interpret the past and present. (CMK)
Textile Science Leader's Guide. 4-H Textile Science.
ERIC Educational Resources Information Center
Scholl, Jan
This instructor's guide provides an overview of 4-H student project modules in the textile sciences area. The guide includes short notes explaining how to use the project modules, a flowchart chart showing how the project areas are sequenced, a synopsis of the design and content of the modules, and some program planning tips. For each of the…
16 CFR 303.30 - Textile fiber products in form for consumer.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Textile fiber products in form for consumer... products in form for consumer. A textile fiber product shall be considered to be in the form intended for sale or delivery to, or for use by, the ultimate consumer when the manufacturing or processing of the...
Burlington Industries: Modernize or Perish
ERIC Educational Resources Information Center
Honeycutt, Earl D., Jr.
2013-01-01
In the 1960s, Burlington Industries was the largest textile firm in the world, and in 1973 the U. S. textile industry employed more than 1 million workers. Dynamic change came to the textile industry beginning in the 1960s, and in 2001 Burlington Industries filed for Chapter 11 bankruptcy. This case traces the dynamics of the market and the…
19 CFR 102.24 - Entry of textile or apparel products.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Entry of textile or apparel products. 102.24 Section 102.24 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY RULES OF ORIGIN Rules of Origin § 102.24 Entry of textile or apparel products. (a...
Program Level Assessment: A Case Study for a University Clothing and Textile Major
ERIC Educational Resources Information Center
Yun, Zee-Sun; Frazier, Barbara J.
2016-01-01
This paper presents a framework for program assessment and a case study in assessment for a university clothing and textile program in family and consumer sciences. Assessment activities and the process implemented by the Textile and Apparel Studies (TAS) major at Western Michigan University are explained. The process adopts the International…
19 CFR 11.12b - Labeling textile fiber products.
Code of Federal Regulations, 2010 CFR
2010-04-01
... pursuant to § 141.113 of this chapter shall demand the immediate return of the involved products to customs... 19 Customs Duties 1 2010-04-01 2010-04-01 false Labeling textile fiber products. 11.12b Section 11... THE TREASURY PACKING AND STAMPING; MARKING Marking § 11.12b Labeling textile fiber products. (a...
A Wearable All-Solid Photovoltaic Textile.
Zhang, Nannan; Chen, Jun; Huang, Yi; Guo, Wanwan; Yang, Jin; Du, Jun; Fan, Xing; Tao, Changyuan
2016-01-13
A solution is developed to power portable electronics in a wearable manner by fabricating an all-solid photovoltaic textile. In a similar way to plants absorbing solar energy for photosynthesis, humans can wear the as-fabricated photovoltaic textile to harness solar energy for powering small electronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Impact of Making Textile Handcrafts on Mood Enhancement and Inflammatory Immune Changes
ERIC Educational Resources Information Center
Futterman Collier, Ann D.; Wayment, Heidi A.; Birkett, Melissa
2016-01-01
The authors hypothesized that a textile art-making activity that was high in arousal, engagement, and positive mood and low in rumination and negative affect would be most effective for mood repair and would buffer inflammatory immune reactions. Forty-seven experienced textile handcrafters were asked to recall an upsetting situation before random…
USDA-ARS?s Scientific Manuscript database
Cotton’s exceptional softness, breathability, and absorbency have made it America’s best selling textile fiber; however, cotton textiles are generally more combustible than most synthetic fabrics. In this study, a continuous layer-by-layer self-assembly technique was used to deposit polymer-clay nan...
16 CFR 303.30 - Textile fiber products in form for consumer.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Textile fiber products in form for consumer... products in form for consumer. A textile fiber product shall be considered to be in the form intended for sale or delivery to, or for use by, the ultimate consumer when the manufacturing or processing of the...
ERIC Educational Resources Information Center
Bailey, Thomas
This report on the textile industry focuses on the training and education of production-level textile workers--from unskilled factory hands to first-level supervisors. It is part of a larger study of the educational implications of broad economic changes, particularly the spread of microelectronic technologies, growing national and international…
Small Craft Transportability Design and Certification Process Guidance. Revision B
2010-11-08
49CFR393.104, wherever a tie-down strap is subject to abrasion or cutting, it should be provided with edge protection capable of resisting abrasion , cutting...commercial round connector shown in Figure 8. Tactical vehicles (e.g., MTVR, High Mobility Multi-Wheeled Vehicle (HMMWV), or Mine Resistant Ambush...a heavy-duty construction, using corrosion- and rot- resistant (or coated) materials and components. Trailer components are likely to be submerged
The Productivity and Technical Efficiency of Textile Industry Clusters in India
NASA Astrophysics Data System (ADS)
Bhaskaran, E.
2013-09-01
The Indian textile industry is one the largest and oldest sectors in the country and among the most important in the economy in terms of output, investment and employment (E). The sector employs nearly 35 million people and after agriculture, is the second-highest employer in the country. Its importance is underlined by the fact that it accounts for around 4 % of Gross Domestic Product, 14 % of industrial production, 9 % of excise collections, 18 % of E in the industrial sector, and 16 % of the country's total exports (Ex) earnings. For inclusive growth and sustainable development most of the Textile Manufacturers has adopted the Cluster Development Approach. The objective is to study the physical and financial performance, correlation, regression and Data Envelopment Analysis by measuring technical efficiency (Ø), peer weights (λi), input slacks (S-), output slacks (S+) and return to scale of four textile clusters (TCs) namely IchalKaranji Textile Cluster, Maharashtra; Ludhiana Textile Cluster, Punjab; Tirupur Textile Cluster, Tamilnadu and Panipat Textile Cluster, Haryana in India. The methodology adopted is using Data Envelopment Analysis of Output Oriented Banker Charnes Cooper Model by taking number of units (U) and number of E as inputs and sales (S) and Ex in crores as an outputs. The non-zero λi's represents the weights for efficient clusters. The S > 0 obtained for one TC reveals the excess U (S-) and E (S-) and shortage in sales (S+) and Ex (S+). To conclude, for inclusive growth and sustainable development, the inefficient TC should increase their S/turnover and Ex, as decrease in number of enterprises and E is practically not possible. Moreover for sustainable development, the TC should strengthen infrastructure interrelationships, technology interrelationships, procurement interrelationships, production interrelationships and marketing interrelationships to decrease cost, increase productivity and efficiency to compete in the world market.
Experimental Investigation of Textile Composite Materials Using Moire Interferometry
NASA Technical Reports Server (NTRS)
Ifju, Peter G.
1995-01-01
The viability as an efficient aircraft material of advanced textile composites is currently being addressed in the NASA Advanced Composites Technology (ACT) Program. One of the expected milestones of the program is to develop standard test methods for these complex material systems. Current test methods for laminated composites may not be optimum for textile composites, since the architecture of the textile induces nonuniform deformation characteristics on the scale of the smallest repeating unit of the architecture. The smallest repeating unit, also called the unit cell, is often larger than the strain gages used for testing of tape composites. As a result, extending laminated composite test practices to textiles can often lead to pronounced scatter in material property measurements. It has been speculated that the fiber architectures produce significant surface strain nonuniformities, however, the magnitudes were not well understood. Moire interferometry, characterized by full-field information, high displacement sensitivity, and high spatial resolution, is well suited to document the surface strain on textile composites. Studies at the NASA Langley Research Center on a variety of textile architectures including 2-D braids and 3-D weaves, has evidenced the merits of using moire interferometry to guide in test method development for textile composites. Moire was used to support tensile testing by validating instrumentation practices and documenting damage mechanisms. It was used to validate shear test methods by mapping the full-field deformation of shear specimens. Moire was used to validate open hole tension experiments to determine the strain concentration and compare then to numeric predictions. It was used for through-the-thickness tensile strength test method development, to verify capabilities for testing of both 2-D and 3-D material systems. For all of these examples, moire interferometry provided vision so that test methods could be developed with less speculation and more documentation.
Skin physiology and textiles - consideration of basic interactions.
Wollina, U; Abdel-Naser, M B; Verma, S
2006-01-01
The skin exerts a number of essential protective functions ensuring homeostasis of the whole body. In the present review barrier function of the skin, thermoregulation, antimicrobial defence and the skin-associated immune system are discussed. Barrier function is provided by the dynamic stratum corneum structure composed of lipids and corneocytes. The stratum corneum is a conditio sine qua non for terrestrial life. Impairment of barrier function can be due to injury and inflammatory skin diseases. Textiles, in particular clothing, interact with skin functions in a dynamic pattern. Mechanical properties like roughness of fabric surface are responsible for non-specific skin reactions like wool intolerance or keratosis follicularis. Thermoregulation, which is mediated by local blood flow and evaporation of sweat, is an important subject for textile-skin interactions. There are age-, gender- and activity-related differences in thermoregulation of skin that should be considered for the development of specifically designed fabrics. The skin is an important immune organ with non-specific and specific activities. Antimicrobial textiles may interfere with non-specific defence mechanisms like antimicrobial peptides of skin or the resident microflora. The use of antibacterial compounds like silver, copper or triclosan is a matter of debate despite their use for a very long period. Macromolecules with antimicrobial activity like chitosan that can be incorporated into textiles or inert material like carbon fibres or activated charcoal seem to be promising agents. Interaction of textiles with the specific immune system of skin is a rare event but may lead to allergic contact dermatitis. Electronic textiles and other smart textiles offer new areas of usage in health care and risk management but bear their own risks for allergies.
Liu, Peter X.; Lai, Pinhua; Xu, Shaoping; Zou, Yanni
2018-01-01
In the present work, the majority of implemented virtual surgery simulation systems have been based on either a mesh or meshless strategy with regard to soft tissue modelling. To take full advantage of the mesh and meshless models, a novel coupled soft tissue cutting model is proposed. Specifically, the reconstructed virtual soft tissue consists of two essential components. One is associated with surface mesh that is convenient for surface rendering and the other with internal meshless point elements that is used to calculate the force feedback during cutting. To combine two components in a seamless way, virtual points are introduced. During the simulation of cutting, the Bezier curve is used to characterize smooth and vivid incision on the surface mesh. At the same time, the deformation of internal soft tissue caused by cutting operation can be treated as displacements of the internal point elements. Furthermore, we discussed and proved the stability and convergence of the proposed approach theoretically. The real biomechanical tests verified the validity of the introduced model. And the simulation experiments show that the proposed approach offers high computational efficiency and good visual effect, enabling cutting of soft tissue with high stability. PMID:29850006
Tensile properties of textile composites
NASA Technical Reports Server (NTRS)
Avva, V. Sarma; Sadler, Robert L.; Lyon, Malcolm
1992-01-01
The importance of textile composite materials in aerospace structural applications has been gaining momentum in recent years. With a view to better understand the suitability of these materials in aerospace applications, an experimental program was undertaken to assess the mechanical properties of these materials. Specifically, the braided textile preforms were infiltrated with suitable polymeric matrices leading to the fabrication of composite test coupons. Evaluation of the tensile properties and the analyses of the results in the form of strength moduli, Poisson's ratio, etc., for the braided composites are presented. Based on our past experience with the textile coupons, the fabrication techniques have been modified (by incorporating glass microballoons in the matrix and/or by stabilizing the braid angle along the length of the specimen with axial fibers) to achieve enhanced mechanical properties of the textile composites. This paper outlines the preliminary experimental results obtained from testing these composites.
Method and apparatus for the application of textile treatment compositions to textile materials
Argyle, M.D.; Propp, W.A.
1998-01-20
A system is described for applying textile treatment compositions to textile materials. A conduit member is provided which includes a passageway having a first end, a second end, and a medial portion with a constricted (narrowed) region. The passageway may include at least one baffle having an opening there through. A yarn strand is then moved through the passageway. A textile treatment composition (a sizing agent or dye) dissolved in a carrier medium (a supercritical fluid or liquefied gas) is thereafter introduced into the constricted region, preferably at an acute angle relative to the passageway. The carrier medium expands inside the passageway which causes delivery of the treatment composition to the yarn. The treated yarn then passes through the baffle (if used) which facilitates drying of the yarn. During this process, a carrier gas can be introduced into the passageway to ensure the production of a smooth, dry product. 1 fig.
Anomalous Stretchable Conductivity Using an Engineered Tricot Weave.
Lee, Yong-Hee; Kim, Yoonseob; Lee, Tae-Ik; Lee, Inhwa; Shin, Jaeho; Lee, Hyun Soo; Kim, Taek-Soo; Choi, Jang Wook
2015-12-22
Robust electric conduction under stretching motions is a key element in upcoming wearable electronic devices but is fundamentally very difficult to achieve because percolation pathways in conductive media are subject to collapse upon stretching. Here, we report that this fundamental challenge can be overcome by using a parameter uniquely available in textiles, namely a weaving structure. A textile structure alternately interwoven with inelastic and elastic yarns, achieved via a tricot weave, possesses excellent elasticity (strain up to 200%) in diagonal directions. When this textile is coated with conductive nanomaterials, proper textile engineering allows the textile to obtain an unprecedented 7-fold conductivity increase, with conductivity reaching 33,000 S cm(-1), even at 130% strain, due to enhanced interyarn contacts. The observed stretching conductivity can be described well using a modified 3D percolation theory that reflects the weaving effect and is also utilized for stretchable electronic interconnects and supercapacitors with high performance.
[Fermentation production of microbial catalase and its application in textile industry].
Zhang, Dongxu; Du, Guocheng; Chen, Jian
2010-11-01
Microbial catalase is an important industrial enzyme that catalyzes the decomposition of hydrogen peroxide to water and oxygen. This enzyme has great potential of application in food, textile and pharmaceutical industries. The production of microbial catalase has been significantly improved thanks to advances in bioprocess engineering and genetic engineering. In this paper, we review the progresses in fermentation production of microbial catalase and its application in textile industry. Among these progresses, we will highlight strain isolation, substrate and environment optimization, enzyme induction, construction of engineering strains and application process optimization. Meanwhile, we also address future research trends for microbial catalase production and its application in textile industry. Molecular modification (site-directed mutagenesis and directed revolution) will endue catalase with high pH and temperature stabilities. Improvement of catalase production, based on the understanding of induction mechanism and the process control of recombinant stain fermentation, will further accelerate the application of catalase in textile industry.
Development of a luminous textile for reflective pulse oximetry measurements
Krehel, Marek; Wolf, Martin; Boesel, Luciano F.; Rossi, René M.; Bona, Gian-Luca; Scherer, Lukas J.
2014-01-01
In this paper, a textile-based sensing principle for long term photopletysmography (PPG) monitoring is presented. Optical fibers were embroidered into textiles such that out-coupling and in-coupling of light was possible. The “light-in light-out” properties of the textile enabled the spectroscopic characterization of human tissue. For the optimization of the textile sensor, three different carrier fabrics and different fiber modifications were compared. The sample with best light coupling efficiency was successfully used to measure heart rate and SpO2 values of a subject. The latter was determined by using a modified Beer-Lambert law and measuring the light attenuation at two different wavelengths (632 nm and 894 nm). Moreover, the system was adapted to work in reflection mode which makes the sensor more versatile. The measurements were additionally compared with commercially available system and showed good correlation. PMID:25136484
Method and apparatus for the application of textile treatment compositions to textile materials
Argyle, Mark D.; Propp, William Alan
1998-01-01
A system for applying textile treatment compositions to textile materials. A conduit member is provided which includes a passageway having a first end, a second end, and a medial portion with a constricted (narrowed) region. The passageway may include at least one baffle having an opening therethrough. A yarn strand is then moved through the passageway. A textile treatment composition (a sizing agent or dye) dissolved in a carrier medium (a supercritical fluid or liquified gas) is thereafter introduced into the constricted region, preferably at an acute angle relative to the passageway. The carrier medium expands inside the passageway which causes delivery of the treatment composition to the yarn. The treated yarn then passes through the baffle (if used) which facilitates drying of the yarn. During this process, a carrier gas can be introduced into the passageway to ensure the production of a smooth, dry product.
NASA Astrophysics Data System (ADS)
Sabantina, L.; Kinzel, F.; Ehrmann, A.; Finsterbusch, K.
2015-07-01
The 3D printing belongs to the rapidly emerging technologies which have the chance to revolutionize the way products are created. In the textile industry, several designers have already presented creations of shoes, dresses or other garments which could not be produced with common techniques. 3D printing, however, is still far away from being a usual process in textile and clothing production. The main challenge results from the insufficient mechanical properties, especially the low tensile strength, of pure 3D printed products, prohibiting them from replacing common technologies such as weaving or knitting. Thus, one way to the application of 3D printed forms in garments is combining them with textile fabrics, the latter ensuring the necessary tensile strength. This article reports about different approaches to combine 3D printed polymers with different textile materials and fabrics, showing chances and limits of this technique.
Current technologies for biological treatment of textile wastewater--a review.
Sarayu, K; Sandhya, S
2012-06-01
The release of colored wastewater represents a serious environmental problem and public health concern. Color removal from textile wastewater has become a big challenge over the last decades, and up to now, there is no single and economically attractive treatment method that can effectively decolorize the wastewater. Effluents from textile manufacturing, dyeing, and finishing processes contain high concentrations of biologically difficult-to-degrade or even inert auxiliaries, chemicals like acids, waxes, fats, salts, binders, thickeners, urea, surfactants, reducing agents, etc. The various chemicals such as biocides and stain repellents used for brightening, sequestering, anticreasing, sizing, softening, and wetting of the yarn or fabric are also present in wastewater. Therefore, the textile wastewater needs environmental friendly, effective treatment process. This paper provides a critical review on the current technology available for decolorization and degradation of textile wastewater and also suggests effective and economically attractive alternatives.
Yetisen, Ali K; Qu, Hang; Manbachi, Amir; Butt, Haider; Dokmeci, Mehmet R; Hinestroza, Juan P; Skorobogatiy, Maksim; Khademhosseini, Ali; Yun, Seok Hyun
2016-03-22
Increasing customer demand for durable and functional apparel manufactured in a sustainable manner has created an opportunity for nanomaterials to be integrated into textile substrates. Nanomoieties can induce stain repellence, wrinkle-freeness, static elimination, and electrical conductivity to fibers without compromising their comfort and flexibility. Nanomaterials also offer a wider application potential to create connected garments that can sense and respond to external stimuli via electrical, color, or physiological signals. This review discusses electronic and photonic nanotechnologies that are integrated with textiles and shows their applications in displays, sensing, and drug release within the context of performance, durability, and connectivity. Risk factors including nanotoxicity, nanomaterial release during washing, and environmental impact of nanotextiles based on life cycle assessments have been evaluated. This review also provides an analysis of nanotechnology consolidation in the textiles market to evaluate global trends and patent coverage, supplemented by case studies of commercial products. Perceived limitations of nanotechnology in the textile industry and future directions are identified.
Development of a luminous textile for reflective pulse oximetry measurements.
Krehel, Marek; Wolf, Martin; Boesel, Luciano F; Rossi, René M; Bona, Gian-Luca; Scherer, Lukas J
2014-08-01
In this paper, a textile-based sensing principle for long term photopletysmography (PPG) monitoring is presented. Optical fibers were embroidered into textiles such that out-coupling and in-coupling of light was possible. The "light-in light-out" properties of the textile enabled the spectroscopic characterization of human tissue. For the optimization of the textile sensor, three different carrier fabrics and different fiber modifications were compared. The sample with best light coupling efficiency was successfully used to measure heart rate and SpO2 values of a subject. The latter was determined by using a modified Beer-Lambert law and measuring the light attenuation at two different wavelengths (632 nm and 894 nm). Moreover, the system was adapted to work in reflection mode which makes the sensor more versatile. The measurements were additionally compared with commercially available system and showed good correlation.
Effect of treatment in a constructed wetland on toxicity of textile wastewater
Baughman, G.L.; Perkins, W.S.; Lasier, P.J.; Winger, P.V.
2003-01-01
Constructed wetlands for treating wastewater have proliferated in recent years and their characteristics have been studied extensively. In most cases, constructed wetlands have been used primarily for removal of nutrients and heavy metals. Extensive literature is available concerning construction and use of wetlands for treatment of wastewater. Even so, quantitative descriptions of wetland function and processes are highly empirical and difficult to extrapolate. The processes involved in removal of pollutants by wetlands are poorly understood, especially for waste streams as complex as textile effluents. The few studies conducted on treatment of textile wastewater in constructed wetlands were cited in earlier publications. Results of a two-year study of a full-scale wetland treating textile effluent are presented here. The paper describes the effects of the wetland on aquatic toxicity of the wastewater and draws conclusions about the utility and limitations of constructed wetlands for treatment of textile effluents.
Influence of thermofixation on artificial ACL ligament dimensional and mechanical properties
NASA Astrophysics Data System (ADS)
Ben Abdessalem, S.; Jedda, H.; Skhiri, S.; Karray, S.; Dahmen, J.; Boughamoura, H.
2005-11-01
The anterior cruciate ligament (ACL) is the major articular ligamentous structure of the knee, it functions as a joint stabilizer. When ruptured, the natural ACL ligament can be replaced by a textile synthetic ligament such as a braid, knitted cord, or woven cord. Theses structures are composed of biocompatible materials such as polyester or Gore-Tex filaments. The success of an ACL replacement is widely linked to its mechanical and dimensional properties such as tensile strength, dimensional stability and resistance to abrasion. We introduced an additional treatment in the manufacturing of textile ACL ligaments based on the thermofixation of the textile structure by using textile industry stabilization techniques. Boiling water, saturated vapor and dry heat have been tested to stabilize a braided ligament made of Dacron polyester. The application of these three techniques led to shrinkage and an increase of breaking strength of the textile structure.
Self-Healing Textile: Enzyme Encapsulated Layer-by-Layer Structural Proteins.
Gaddes, David; Jung, Huihun; Pena-Francesch, Abdon; Dion, Genevieve; Tadigadapa, Srinivas; Dressick, Walter J; Demirel, Melik C
2016-08-10
Self-healing materials, which enable an autonomous repair response to damage, are highly desirable for the long-term reliability of woven or nonwoven textiles. Polyelectrolyte layer-by-layer (LbL) films are of considerable interest as self-healing coatings due to the mobility of the components comprising the film. In this work mechanically stable self-healing films were fabricated through construction of a polyelectrolyte LbL film containing squid ring teeth (SRT) proteins. SRTs are structural proteins with unique self-healing properties and high elastic modulus in both dry and wet conditions (>2 GPa) due to their semicrystalline architecture. We demonstrate LbL construction of multilayers containing native and recombinant SRT proteins capable of self-healing defects. Additionally, we show these films are capable of utilizing functional biomolecules by incorporating an enzyme into the SRT multilayer. Urease was chosen as a model enzyme of interest to test its activity via fluorescence assay. Successful construction of the SRT films demonstrates the use of mechanically stable self-healing coatings, which can incorporate biomolecules for more complex protective functionalities for advanced functional fabrics.
Scattering amplitudes from multivariate polynomial division
NASA Astrophysics Data System (ADS)
Mastrolia, Pierpaolo; Mirabella, Edoardo; Ossola, Giovanni; Peraro, Tiziano
2012-11-01
We show that the evaluation of scattering amplitudes can be formulated as a problem of multivariate polynomial division, with the components of the integration-momenta as indeterminates. We present a recurrence relation which, independently of the number of loops, leads to the multi-particle pole decomposition of the integrands of the scattering amplitudes. The recursive algorithm is based on the weak Nullstellensatz theorem and on the division modulo the Gröbner basis associated to all possible multi-particle cuts. We apply it to dimensionally regulated one-loop amplitudes, recovering the well-known integrand-decomposition formula. Finally, we focus on the maximum-cut, defined as a system of on-shell conditions constraining the components of all the integration-momenta. By means of the Finiteness Theorem and of the Shape Lemma, we prove that the residue at the maximum-cut is parametrized by a number of coefficients equal to the number of solutions of the cut itself.
Novel cost controlled materials and processing for primary structures
NASA Technical Reports Server (NTRS)
Dastin, S. J.
1993-01-01
Textile laminates, developed a number of years ago, have recently been shown to be applicable to primary aircraft structures for both small and large components. Such structures have the potential to reduce acquisition costs but require advanced automated processing to keep costs controlled while verifying product reliability and assuring structural integrity, durability and affordable life-cycle costs. Recently, resin systems and graphite-reinforced woven shapes have been developed that have the potential for improved RTM processes for aircraft structures. Ciba-Geigy, Brochier Division has registered an RTM prepreg reinforcement called 'Injectex' that has shown effectivity for aircraft components. Other novel approaches discussed are thermotropic resins producing components by injection molding and ceramic polymers for long-duration hot structures. The potential of such materials and processing will be reviewed along with initial information/data available to date.
An, Qinglong; Ming, Weiwei; Chen, Ming
2015-01-01
Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments. The same cutting speed of 300 mm/min was used in the experiments with single-crystal diamond tool. CUCT was determined according to the mentioned cutting characteristics. The results revealed that 320 nm was found as the CUCT in BK7 cutting and 50 nm was determined as the size effect of undeformed chip thickness. A high-quality machined surface could be obtained with the undeformed chip thickness between 50 and 320 nm at ductile cutting stage. Moreover, no CUCT was identified in fused silica cutting with the current cutting conditions, and brittle-fracture mechanism was confirmed as the predominant chip-separation mode throughout the nanometric cutting operation. PMID:28788010
An, Qinglong; Ming, Weiwei; Chen, Ming
2015-03-27
Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of BK7 and fused silica glasses, including machined surface morphology, surface roughness, cutting force and specific cutting energy, were investigated with nanometric plunge-cutting experiments. The same cutting speed of 300 mm/min was used in the experiments with single-crystal diamond tool. CUCT was determined according to the mentioned cutting characteristics. The results revealed that 320 nm was found as the CUCT in BK7 cutting and 50 nm was determined as the size effect of undeformed chip thickness. A high-quality machined surface could be obtained with the undeformed chip thickness between 50 and 320 nm at ductile cutting stage. Moreover, no CUCT was identified in fused silica cutting with the current cutting conditions, and brittle-fracture mechanism was confirmed as the predominant chip-separation mode throughout the nanometric cutting operation.