Effect of low-purity Fenton reagents on toxicity of textile dyeing effluent to Daphnia magna.
Na, Joorim; Yoo, Jisu; Nam, Gwiwoong; Jung, Jinho
2017-09-20
This study aimed to identify the source of toxicity in textile dyeing effluent collected from February to July 2016, using Daphnia magna as a test organism. Toxicity identification evaluation (TIE) procedures were used to identify the toxicants in textile dyeing effluent, and Jar testing to simulate the Fenton process was conducted to identify the source of toxicants. Textile dyeing effluent was acutely toxic to D. magna [from 1.5 to 9.7 toxic units (TU)] during the study period. TIE results showed that Zn derived from the Fenton process was a key toxicant in textile dyeing effluent. Additionally, Jar testing revealed that low-purity Fenton reagents (FeCl 2 and FeSO 4 ), which contained large amounts of Zn (89 838 and 610 mg L -1 , respectively), were the source of toxicity. Although we were unable to conclusively identify the residual toxicity (approx. 1.4 TU of 9.71 TU) attributable to unknown toxicants in textile dyeing effluent, the findings of this study suggest that careful operation of the Fenton treatment process could contribute to eliminating its unintended toxic effects on aquatic organisms.
Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP).
Ulson de Souza, Selene Maria Arruda Guelli; Forgiarini, Eliane; Ulson de Souza, Antônio Augusto
2007-08-25
The enzyme peroxidase is known for its capacity to remove phenolic compounds and aromatic amines from aqueous solutions and also to decolorize textile effluents. This study evaluates the potential of the enzyme horseradish peroxidase (HRP) in the decolorization of textile dyes and effluents. Some factors such as pH and the amount of H(2)O(2) and the enzyme were evaluated in order to determine the optimum conditions for the enzyme performance. For the dyes tested, the results indicated that the decolorization of the dye Remazol Turquoise Blue G 133% was approximately 59%, and 94% for the Lanaset Blue 2R; for the textile effluent, the decolorization was 52%. The tests for toxicity towards Daphnia magna showed that there was a reduction in toxicity after the enzymatic treatment. However, the toxicity of the textile effluent showed no change towards Artemia salina after the enzyme treatment. This study verifies the viability of the use of the enzyme horseradish peroxidase in the biodegradation of textile dyes.
Effect of textile auxiliaries on the biodegradation of dyehouse effluent in activated sludge.
Arslan Alaton, Idil; Insel, Güçlü; Eremektar, Gülen; Germirli Babuna, Fatos; Orhon, Derin
2006-03-01
The textile industry is confronted with serious environmental problems associated with its immense wastewater discharge, substantial pollution load, extremely high salinity, and alkaline, heavily coloured effluent. Particular sources of recalcitrance and toxicity in dyehouse effluent are two frequently used textile auxiliaries; i.e. dye carriers and biocidal finishing agents. The present experimental work reports the observation of scientific and practical significance related with the effect of two commercially important textile dye carriers and two biocidal finishing agents on biological activated sludge treatment at a textile preparation, dyeing and finishing plant in Istanbul. Respirometric measurements of the dyehouse effluent spiked with the selected textile chemicals were carried out for the assessment of the "readily biodegradable COD fraction" of the wastewater. The respirometric data obtained to visualize the effect of the selected textile auxiliaries on biomass activity was evaluated by an adopted activated sludge model. Results have indicated that the tested biocides did not exert any significant inhibitory effect on the treatment performance of the activated sludge reactor at the concentrations usually encountered in the final, total dyehouse effluent. The situation with the dye carriers was inherently different; one dye carrier appeared to be highly toxic and caused serious inhibition of the microbial respirometric activity, whereas the other dye carrier, also known as the more ecological alternative, i.e. the "Eco-Carrier", appeared to be biodegradable. Finally, the respirometric profile obtained for the Eco-Carrier was described by a simplified respirometric model.
Decolourisation of Red 5 MB dye by microbes isolated from textile dye effluent.
Subashini, P; Hiranmaiyadav, R; Premalatha, M S
2010-07-01
One of the major environmental problems is the presence of dye materials in textile wastewater, which need to be removed before releasing into the environment. Some dyes are toxic and carcinogenic in nature. The discharge of the textile effluent into rivers and lakes leads to higher BOD causing threat to aquatic life. Development of efficient dye degradation requires suitable strain and its use under favorable condition to realize the degradation potential. In this study, three microorganisms were isolated from the Red 5 MB dye containing textile wastewater. They were identified and tested for the dye decolourisation provided with different sugars as carbon source. The percentage of dye decolorized by Bacillus subtilis, Aspergillus flavus and Aspergillus fumigatus were found to be about 40%, 75% and 53.8% respectively.
Robinson, Tim; Nigam, Poonam Singh
2008-12-01
A strict screening strategy for microorganism selection was followed employing a number of white-rot fungi for the bioremediation of textile effluent, which was generated from one Ireland-based American textile industry. Finally, one fungus Bjerkandera adusta has been investigated in depth for its ability to simultaneously degrade and enrich the nutritional quality of highly coloured textile effluent-adsorbed barley husks through solid-state fermentation (SSF). Certain important parameters such as media requirements, moisture content, protein/biomass production and enzyme activities were examined in detail. A previously optimised method of dye desorption was employed to measure the extent of dye remediation through effluent decolorisation achieved as a result of fungal activity in SSF. B. adusta was capable of decolourising a considerable concentration of the synthetic dye effluent (up to 53%) with a moisture content of 80-85%. Protein enrichment of the fermented mass was achieved to the extent of 229 g/kg dry weight initial substrate used. Lignin peroxidase and laccase were found to be the two main enzymes produced during SSF of the dye-adsorbed lignocellulosic waste residue.
Textile dye degradation using nano zero valent iron: A review.
Raman, Chandra Devi; Kanmani, S
2016-07-15
Water soluble unfixed dyes and inorganic salts are the major pollutants in textile dyeing industry wastewater. Existing treatment methods fail to degrade textile dyes and have limitations too. The inadequate treatment of textile dyeing wastewater is a major concern when effluent is directly discharged into the nearby environment. Long term disposal threatens the environment, which needs reclamation. This article reviews the current knowledge of nano zero valent iron (nZVI) technique in the degradation of textile dyes. The application of nZVI on textile dye degradation is receiving great attention in the recent years because nZVI particles are highly reactive towards the pollutant, less toxic, and economical. The nZVI particles aggregate quickly with respect to time and the addition of supports such as resin, nickel, zinc, bentonite, biopolymer, kaolin, rectorite, nickel-montmorillonite, bamboo, cellulose, biochar, graphene, and clinoptilolite enhanced the stability of iron nanoparticles. Inclusion of supports may in turn introduce additional toxic pollutants, hence green supports are recommended. The majority of investigations concluded dye color removal as textile dye compound removal, which is not factual. Very few studies monitored the removal of total organic carbon and observed the products formed. The results revealed that partial mineralization of the textile dye compound was achieved. Instead of stand alone technique, nZVI can be integrated with other suitable technique to achieve complete degradation of textile dye and also to treat multiple pollutants in the real textile dyeing wastewater. It is highly recommended to perform more bench-scale and pilot-scale studies to apply this technique to the textile effluent contaminated sites. Copyright © 2016 Elsevier Ltd. All rights reserved.
Silva Lisboa, Dianny; Santos, Cledir; Barbosa, Renan N; Magalhães, Oliane; Paiva, Laura M; Moreira, Keila A; Lima, Nelson; Souza-Motta, Cristina M
2017-04-01
Water contamination with large amounts of industrial textile coloured effluents is an environmental concern. For the treatment of textile effluents, white-rot fungi have received extensive attention due to their powerful capability to produce oxidative (e.g., ligninolytic) enzymes. In addition, other groups of fungi, such as species of Aspergillus and Trichoderma , have also been used for textile effluents treatment. The main aim of the present study was to requalify a Brazilian Trichoderma culture collection of 51 Trichoderma strains, isolated from different sources in Brazil and preserved in the oldest Latin-American Fungal Service Culture Collection, The Micoteca URM WDCM 804 (Recife, Brazil). Fungal isolates were re-identified through a polyphasic approach including macro- and micro-morphology and molecular biology, and screened for their capability to decolourise real effluents collected directly from storage tanks of a textile manufacture. Trichoderma atroviride URM 4950 presented the best performance on the dye decolourisation in real textile effluent and can be considered in a scale-up process at industrial level. Overall, the potential of Trichoderma strains in decolourising real textile dye present in textile effluent and the production of the oxidative enzymes Lac, LiP and MnP was demonstrated. Fungal strains are available in the collection e-catalogue to be further explored from the biotechnological point of view.
Kadam, Avinash A; Telke, Amar A; Jagtap, Sujit S; Govindwar, Sanjay P
2011-05-15
The objective of this study was to develop consortium using Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 to decolorize adsorbed dyes from textile effluent wastewater under solid state fermentation. Among various agricultural wastes rice bran showed dye adsorption up to 90, 62 and 80% from textile dye reactive navy blue HE2R (RNB HE2R) solution, mixture of textile dyes and textile industry wastewater, respectively. Pseudomonas sp. SUK1 and A. ochraceus NCIM-1146 showed 62 and 38% decolorization of RNB HE2R adsorbed on rice bran in 24h under solid state fermentation. However, the consortium of Pseudomonas sp. SUK1 and A. ochraceus NCIM-1146 (consortium-PA) showed 80% decolorization in 24h. The consortium-PA showed effective ADMI removal ratio of adsorbed dyes from textile industry wastewater (77%), mixture of textile dyes (82%) and chemical precipitate of textile dye effluent (CPTDE) (86%). Secretion of extracellular enzymes such as laccase, azoreductase, tyrosinase and NADH-DCIP reductase and their significant induction in the presence of adsorbed dye suggests their role in the decolorization of RNB HE2R. GCMS and HPLC analysis of product suggests the different fates of biodegradation of RNB HE2R when used Pseudomonas sp. SUK1, A. ochraceus NCIM-1146 and consortium PA. Copyright © 2011 Elsevier B.V. All rights reserved.
The effect of surfactant on pollutant biosorption of Trametes versicolor
NASA Astrophysics Data System (ADS)
Gül, Ülküye Dudu; Silah, Hülya; Akbaş, Halide; Has, Merve
2016-04-01
The major problem concerning industrial wastewater is treatment of dye and heavy metal containing effluents. Industrial effluents are also contained surfactants that are used as levelling, dispersing and wetting agents. The purpose of this study was to investigate the effect of surfactant on textile dye biosorption properties of a white rot fungus named Trametes versicolor. Reactive dyes are commonly used in textile industry because of their advantages such as brightness and excellent color fastness. A recative textile dye, called Everzol Black, was used in this study. The low-cost mollasses medium is used for fungal growth. The usage of mollases, the sugar refinery effluent as a source of energy and nutrients, gained importance because of reducing the cost and also reusing another waste. In biosorption process the effect of surfactant on dye removal properties of T. versicolor was examined as a function of pH, dye consentration and surfactant concentration. The results of this study showed that the surfactant enhanced the dye removal capacity of Trametes versicolor. The dye and surfactant molecules were interacted electrostatically and these electrostatic interactions improved dye removal properties of filamentous fungus T. versicolor. The results of this study recommended the use of surfactants as an inducer in textile wastewater treatment technologies.
Degradation of textile dyes by cyanobacteria.
Dellamatrice, Priscila Maria; Silva-Stenico, Maria Estela; Moraes, Luiz Alberto Beraldo de; Fiore, Marli Fátima; Monteiro, Regina Teresa Rosim
Dyes are recalcitrant compounds that resist conventional biological treatments. The degradation of three textile dyes (Indigo, RBBR and Sulphur Black), and the dye-containing liquid effluent and solid waste from the Municipal Treatment Station, Americana, São Paulo, Brazil, by the cyanobacteria Anabaena flos-aquae UTCC64, Phormidium autumnale UTEX1580 and Synechococcus sp. PCC7942 was evaluated. The dye degradation efficiency of the cyanobacteria was compared with anaerobic and anaerobic-aerobic systems in terms of discolouration and toxicity evaluations. The discoloration was evaluated by absorption spectroscopy. Toxicity was measured using the organisms Hydra attenuata, the alga Selenastrum capricornutum and lettuce seeds. The three cyanobacteria showed the potential to remediate textile effluent by removing the colour and reducing the toxicity. However, the growth of cyanobacteria on sludge was slow and discoloration was not efficient. The cyanobacteria P. autumnale UTEX1580 was the only strain that completely degraded the indigo dye. An evaluation of the mutagenicity potential was performed by use of the micronucleus assay using Allium sp. No mutagenicity was observed after the treatment. Two metabolites were produced during the degradation, anthranilic acid and isatin, but toxicity did not increase after the treatment. The cyanobacteria showed the ability to degrade the dyes present in a textile effluent; therefore, they can be used in a tertiary treatment of effluents with recalcitrant compounds. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Water recycle as a must: decolorization of textile wastewaters by plant-associated fungi.
Tegli, Stefania; Cerboneschi, Matteo; Corsi, Massimo; Bonnanni, Marco; Bianchini, Roberto
2014-02-01
Textile dye effluents are among the most problematic pollutants because of their toxicity on several organisms and ecosystems. Low cost and ecocompatible bioremediation processes offer a promising alternative to the conventional and aspecific physico-chemical procedures adopted so far. Here, microorganisms resident on three real textile dyeing effluent were isolated, characterized, and tested for their decolorizing performances. Although able to survive on these real textile-dyeing wastewaters, they always showed a very low decolorizing activity. On the contrary, several plant-associated fungi (Bjerkandera adusta, Funalia trogii, Irpex lacteus, Pleurotus ostreatus, Trametes hirsuta, Trichoderma viride, and Aspergillus nidulans) were also assayed and demonstrated to be able both to survive and to decolorize to various extents the three effluents, used as such in liquid cultures. The decolorizing potential of these fungi was demonstrated to be influenced by nutrient availability and pH. Best performances were constantly obtained using B. adusta and A. nidulans, relying on two strongly different mechanisms for their decolorizing activities: degradation for B. adusta and biosorption for A. nidulans. Acute toxicity tests using Daphnia magna showed a substantial reduction in toxicity of the three textile dyeing effluents when treated with B. adusta and A. nidulans, as suggested by mass spectrometric analysis as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Parvin, Fahmida; Sultana, Nargis; Habib, S. M. Ahsan; Bhoumik, Nikhil Chandra
2017-11-01
The aim of this study is to find out the facile and effective pretreatment technique to enhance the capacity of jute stick powder (JSP) in adsorbing dye from raw textile effluent. Hence, different pretreatment techniques, i.e., radiation treatment, alkali treatment, ammonia treatment, steam treatment and CaCl2 treatment were applied to JSP and the adsorbing performance were examined for synthetic dye solutions (Blue FCL and Red RL dye). Different gamma radiation doses were applied on JSP and optimum dye removal efficiency was found at 500 krad in removing these two dyes (50 ppm) from solutions. Among the different pretreatment techniques, gamma irradiated JSP (500 Krad) exhibits highest dye uptake capacity for RED RL dye, whereas steam-treated JSP shows highest performance in adsorbing blue FCL dye. Subsequently, we applied the gamma irradiated and steam-treated JSP on real textile effluent (RTE) and these two techniques shows potentiality in adsorbing dye from raw textile effluent and in reducing BOD5, COD load and TOC to some extent as well. Fourier transform infrared spectroscopy (FTIR) analysis also proved that dye has been adsorbed on pretreated JSP.
Silva Lisboa, Dianny; Santos, Cledir; Barbosa, Renan N.; Magalhães, Oliane; Paiva, Laura M.; Moreira, Keila A.; Lima, Nelson; Souza-Motta, Cristina M.
2017-01-01
Water contamination with large amounts of industrial textile coloured effluents is an environmental concern. For the treatment of textile effluents, white-rot fungi have received extensive attention due to their powerful capability to produce oxidative (e.g., ligninolytic) enzymes. In addition, other groups of fungi, such as species of Aspergillus and Trichoderma, have also been used for textile effluents treatment. The main aim of the present study was to requalify a Brazilian Trichoderma culture collection of 51 Trichoderma strains, isolated from different sources in Brazil and preserved in the oldest Latin-American Fungal Service Culture Collection, The Micoteca URM WDCM 804 (Recife, Brazil). Fungal isolates were re-identified through a polyphasic approach including macro- and micro-morphology and molecular biology, and screened for their capability to decolourise real effluents collected directly from storage tanks of a textile manufacture. Trichoderma atroviride URM 4950 presented the best performance on the dye decolourisation in real textile effluent and can be considered in a scale-up process at industrial level. Overall, the potential of Trichoderma strains in decolourising real textile dye present in textile effluent and the production of the oxidative enzymes Lac, LiP and MnP was demonstrated. Fungal strains are available in the collection e-catalogue to be further explored from the biotechnological point of view. PMID:28368305
Estrogenic and anti-estrogenic activity of 23 commercial textile dyes.
Bazin, Ingrid; Ibn Hadj Hassine, Aziza; Haj Hamouda, Yosra; Mnif, Wissem; Bartegi, Ahgleb; Lopez-Ferber, Miguel; De Waard, Michel; Gonzalez, Catherine
2012-11-01
The presence of dyes in wastewater effluent of textile industry is well documented. In contrast, the endocrine disrupting effects of these dyes and wastewater effluent have been poorly investigated. Herein, we studied twenty-three commercial dyes, usually used in the textile industry, and extracts of blue jean textile wastewater samples were evaluated for their agonistic and antagonistic estrogen activity. Total estrogenic and anti-estrogenic activities were measured using the Yeast Estrogen Screen bioassay (YES) that evaluates estrogen receptor binding-dependent transcriptional and translational activities. The estrogenic potencies of the dyes and wastewater samples were evaluated by dose-response curves and compared to the dose-response curve of 17β-estradiol (E2), the reference compound. The dose-dependent anti-estrogenic activities of the dyes and wastewater samples were normalized to the known antagonistic effect of 4-hydroxytamoxifen (4-OHT) on the induction of the lac Z reporter gene by E2. About half azo textile dyes have anti-estrogenic activity with the most active being Blue HFRL. Most azo dyes however have no or weak estrogenic activity. E2/dye or E2/waste water ER competitive binding assays show activity of Blue HFRL, benzopurpurine 4B, Everzol Navy Blue FBN, direct red 89 BNL 200% and waste water samples indicating a mechanism of action common to E2. Our results indicate that several textile dyes are potential endocrine disrupting agents. The presence of some of these dyes in textile industry wastewater may thus impact the aquatic ecosystem. Copyright © 2012 Elsevier Inc. All rights reserved.
Asgher, Muhammad; Noreen, Sadia; Bhatti, Haq Nawaz
2010-04-01
A locally isolated white rot fungus Ganoderma lucidum IBL-05 was used for development of a bioremediation process for original textile industry effluents. Dye-containing effluents of different colors were collected from the Arzoo (maroon), Ayesha (yellow), Ittemad (green), Crescent (navy blue) and Magna (yellowish) textile industries of Faisalabad, Pakistan. G. lucidum IBL-05 was screened for its decolorization potential on all the effluents. Maximum decolorization (49.5 %) was observed in the case of the Arzoo textile industry (ART) effluent (lambda(max) = 515 nm) on the 10th day of incubation. Therefore, the ART effluent was selected for optimization of its decolorization process. Process optimization could improve color removal efficiency of the fungus to 95% within only 2 days, catalyzed by manganese peroxidase (1295 U/mL) as the main enzyme activity at pH 3 and 35 degrees C using 1% starch supplemented Kirk's basal medium. Nitrogen addition inhibited enzyme formation and effluent decolorization. The economics and effectiveness of the process can be improved by further process optimization.
Reuse of Textile Dyeing Effluents Treated with Coupled Nanofiltration and Electrochemical Processes
Buscio, Valentina; García-Jiménez, María; Vilaseca, Mercè; López-Grimau, Victor; Crespi, Martí; Gutiérrez-Bouzán, Carmen
2016-01-01
The reactive dye Cibacron Yellow S-3R was selected to evaluate the feasibility of combining nanofiltration membranes with electrochemical processes to treat textile wastewater. Synthetic dyeing effluents were treated by means of two nanofiltration membranes, Hydracore10 and Hydracore50. Up to 98% of dye removal was achieved. The influence of salt concentration and pH on membrane treatment was studied. The best dye removal yield was achieved at pH 3 in the presence of 60 g/L of NaCl. After the membrane filtration, the concentrate containing high dye concentration was treated by means of an electrochemical process at three different current densities: 33, 83, and 166 mA/cm2. Results showed a lineal relationship between treatment time and applied current density. Both permeates and electrochemically-decoloured effluents were reused in new dyeing processes (100% of permeate and 70% of decoloured concentrates). Dyed fabrics were evaluated with respect to original dyeing. Colour differences were found to be into the acceptance range. PMID:28773614
Li, Wentao; Xu, Zixiao; Wu, Qian; Li, Yan; Shuang, Chendong; Li, Aimin
2015-03-01
This study focused on the characterization of fluorescent-dissolved organic matter and identification of specific fluorophores in textile effluents. Samples from different textile wastewater treatment plants were characterized by high-performance liquid chromatography and size exclusion chromatography as well as fluorescence excitation-emission matrix spectra. Despite the highly heterogeneous textile effluents, the fluorescent components and their physicochemical properties were found relatively invariable, which is beneficial for the combination of biological and physicochemical treatment processes. The humic-like substance with triple-excitation peaks (excitation (Ex) 250, 310, 365/emission (Em) 460 nm) presented as the specific fluorescence indicator in textile effluents. It was also the major contributor to UV absorbance at 254 nm and resulted in the brown color of biologically treated textile effluents. By spectral comparison, the specific fluorophore in textile effluents could be attributed to the intermediate structure of azo dyes 1-amino-2-naphthol, which was transferred into the special humic-like substances during biological treatment.
Textile dye decolorization using cyanobacteria.
Parikh, Amit; Madamwar, Datta
2005-03-01
Cyanobacterial cultures isolated from sites polluted by industrial textile effluents were screened for their ability to decolorize cyclic azo dyes. Gloeocapsa pleurocapsoides and Phormidium ceylanicum decolorized Acid Red 97 and FF Sky Blue dyes by more than 80% after 26 days. Chroococcus minutus was the only culture which decolorized Amido Black 10B (55%). Chlorophyll a synthesis in all cultures was strongly inhibited by the dyes. Visible spectroscopy and TLC confirmed that color removal was due to degradation of the dyes.
Lade, Harshad; Govindwar, Sanjay; Paul, Diby
2015-06-16
A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L-1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L-1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h-l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents.
Lade, Harshad; Govindwar, Sanjay; Paul, Diby
2015-01-01
A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L−1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L−1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h−l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents. PMID:26086710
Decolorization and Degradation of Batik Dye Effluent using Ganoderma lucidum
NASA Astrophysics Data System (ADS)
Pratiwi, Diah; Indrianingsih, A. W.; Darsih, Cici; Hernawan
2017-12-01
Batik is product of traditional Indonesia culture that developed into a large textile industry. Synthetic dyes which widely used in textile industries including batik. Colour can be removed from wastewater effluent by chemical, physical, and biology methods. Bioremediation is one of the methods that used for processing colored effluent. Isolated White-rot fungi Ganoderma lucidum was used for bioremediation process for batik effluent. G. lucidum was developed by G. lucidum cultivation on centers of mushroom farmer Media Agro Merapi Kaliurang, Yogyakarta. The batik effluent was collected from a private small and medium Batik enterprises located at Petir, Rongkop, Gunungkidul Regency. The aim of the study were to optimize decolorization of Naphtol Black (NB) using G. lucidum. The effect of process parameters like incubation time and dye concentration on dye decolorization and COD degradation was studied. G. lucidum were growth at pH 5-6 and temperature 25°C at various Naphtol Black dye with concentration 20 ppm, 50 ppm, and 100 ppm for 30 day incubation time. The result from this study increased decolorization in line with the increasing of COD degradation. Increasing percentage of decolorization and COD degradation gradually increased with incubation time and dye concentration. The maximum decolorization and COD reduction were found to be 60,53% and 81,03%. G. lucidum had potential to decolorized and degraded COD for NB dye effluent on higher concentration.
Sani, R K; Azmi, W; Banerjee, U C
1998-01-01
Decolorization of several dyes (Red HE-8B, Malachite Green, Navy Blue HE-2R, Magenta, Crystal Violet) and an industrial effluent with growing cells of Phanerochaete chrysosporium in shake and static culture was demonstrated. All the dyes and the industrial effluent were decolorized to some extent with varying percentages of decolorization (20-100%). The rate of decolorization was very rapid with Red HE-8B, an industrial dye. Decolorization rates for all the dyes in static condition were found to be less than the shake culture and also dependent on biomass concentration.
Benzina, Ouafa; Daâssi, Dalel; Zouari-Mechichi, Héla; Frikha, Fakher; Woodward, Steve; Belbahri, Lassaad; Rodriguez-Couto, Susana; Mechichi, Tahar
2013-08-01
The aim of this work was to determine the optimal conditions for the decolorization and the detoxification of two effluents from a textile industry-effluent A (the reactive dye bath Bezactive) and effluent B (the direct dye bath Tubantin)-using a laccase mediator system. Response surface methodology (RSM) was applied to optimize textile effluents decolorization. A Box-Behnken design using RSM with the four variables pH, effluent concentration, 1-hydroxybenzotriazole (HBT) concentration, and enzyme (laccase) concentration was used to determine correlations between the effects of these variables on the decolorization of the two effluents. The optimum conditions for pH and concentrations of HBT, effluent and laccase were 5, 1 mM, 50 % and 0.6 U/ml, respectively, for maximum decolorization of effluent A (68 %). For effluent B, optima were 4, 1 mM, 75 %, and 0.6 U/ml, respectively, for maximum decolorization of approximately 88 %. Both effluents were treated at 30 °C for 20 h. A quadratic model was obtained for each decolorization through this design. The experimental and predicted values were in good agreement and both models were highly significant. In addition, the toxicity of the two effluents was determined before and after laccase treatment using Saccharomyces cerevisiae, Bacillus cereus, and germination of tomato seeds.
Moreira-Neto, S L; Mussatto, S I; Machado, K M G; Milagres, A M F
2013-04-01
The discharge of highly coloured synthetic dye effluents into rivers and lakes is harmful to the water bodies, and therefore, intensive researches have been focussed on the decolorization of wastewater by biological, physical or chemical treatments. In the present study, 12 basidiomycetes strains from the genus Pleurotus, Trametes, Lentinus, Peniophora, Pycnoporus, Rigidoporus, Hygrocybe and Psilocybe were evaluated for decolorization of the reactive dyes Cibacron Brilliant Blue H-GR and Cibacron Red FN-2BL, both in solid and liquid media. Among the evaluated fungi, seven showed great ability to decolorize the synthetic textile effluent, both in vivo (74-77%) or in vitro (60-74%), and laccase was the main ligninolytic enzyme involved on dyes decolorization. Pleurotus ostreatus, Trametes villosa and Peniophora cinerea reduced near to 60% of the effluent colour after only 1 h of treatment. The decolorization results were still improved by establishing the nitrogen source and amount to be used during the fungal strains cultivation in synthetic medium previous their action on the textile effluent, with yeast extract being a better nitrogen source than ammonium tartarate. These results contribute for the development of an effective microbiological process for decolorization of dye effluents with reduced time of treatment. © 2013 The Society for Applied Microbiology.
Ottoni, Cristiane; Simões, Marta F; Fernandes, Sara; Santos, Cledir R; Lima, Nelson
2016-08-02
Textile effluents are highly polluting and have variable and complex compositions. They can be extremely complex, with high salt concentrations and alkaline pHs. A fixed-bed bioreactor was used in the present study to simulate a textile effluent treatment, where the white-rot fungus, Trametes versicolor, efficiently decolourised the azo dye Reactive Black 5 over 28 days. This occurred under high alkaline conditions, which is unusual, but advantageous, for successful decolourisation processes. Active dye decolourisation was maintained by operation in continuous culture. Colour was eliminated during the course of operation and maximum laccase (Lcc) activity (80.2 U∙L(-1)) was detected after glycerol addition to the bioreactor. Lcc2 gene expression was evaluated with different carbon sources and pH values based on reverse transcriptase-PCR (polymerase chain reaction). Glycerol was shown to promote the highest lcc2 expression at pH 5.5, followed by sucrose and then glucose. The highest levels of expression occurred between three and four days, which corroborate the maximum Lcc activity observed for sucrose and glycerol on the bioreactor. These results give new insights into the use of T. versicolor in textile dye wastewater treatment with high pHs.
Roy, Uttariya; Sengupta, Shubhalakshmi; Banerjee, Priya; Das, Papita; Bhowal, Avijit; Datta, Siddhartha
2018-06-18
This study focuses on the investigation of removal of textile dye (Reactive Yellow) by a combined approach of sorption integrated with biodegradation using low cost adsorbent fly ash immobilized with Pseudomonas sp. To ensure immobilization of bacterial species on treated fly ash, fly ash with immobilized bacterial cells was characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and fluorescence microscopy. Comparative batch studies were carried out using Pseudomonas sp, fly ash and immobilized Pseudomonas sp on flyash and were observed that immobilized Pseudomonas sp on flyash acted as better decolourizing agent. The optimized pH, temperature, and immobilized adsorbent dosage for highest percentage of dye removal were observed to be pH 6, 303 K, 1.2 g/L in all the cases. At optimum condition, the highest percentage of dye removal was found to be 88.51%, 92.62% and 98.72% for sorption (flyash), biodegradation (Pseudomonas sp) and integral approach (Pseudomonas sp on flyash) respectively. Optimization of operating parameters of textile dye decolourization was done by response surface methodology (RSM) using Design Expert 7 software. Phytotoxicity evaluation with Cicer arietinum revealed that seeds exposed to untreated dye effluents showed considerably lower growth, inhibited biochemical, and enzyme parameters with compared to those exposed to treated textile effluents. Thus this immobilized inexpensive technique could be used for removal of synthetic dyes present in textile wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.
Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen
2014-09-12
Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%-75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl₃ and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.
Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen
2014-01-01
Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%–75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results. PMID:28788199
Koparal, A S; Yavuz, Y; Bakir Ogütveren, U
2002-01-01
The feasibility of the removal of dye stuffs from textile effluents by electroadsorption has been investigated. An activated carbon-perlite mixture with a ratio of 8:1 for bipolarity has been used as the adsorbent. Conventional adsorption experiments have also been conducted for comparison. A bipolar trickle reactor has been used in the electroadsorption experiments. The model wastewater has been prepared by using acilan blau dye. Initial dye concentration, bed height between the electrodes, applied potential, flowrate, and the supporting electrolyte concentration have been examined as the parameters affecting the removal efficiency. A local textile plant effluent has been treated in the optimum values of these parameters obtained from the experimental studies. Adsorption kinetics and the amount of adsorbent required to reach the maximum removal efficiency have also been investigated and mass-transfer coefficients have been calculated for adsorption and electroadsorption. The results showed that a removal efficiency of up to 100% can be achieved with energy consumption values of 1.58 kWh/m3 of wastewater treated. However, energy consumption decreases to 0.09 kWh/m3 if an exit dye concentration of 4.65 mg/L is accepted. It can be concluded from this work that this method combines all of the advantages of the activated-carbon adsorption and electrolytic methods for the removal of dyes from wastewater.
Karunya, A; Rose, C; Valli Nachiyar, C
2014-03-01
The bacterium with dye degrading ability was isolated from effluent disposal sites of textile industries, Tirupur and was identified as Moraxella osloensis based on the biochemical and morphological characterization as well as 16S rRNA sequencing. This organism was found to decolorize 87 % of Mordant Black 17 at 100 mg l⁻¹ under shake culture condition compared to 92 % under stationary culture condition. Maximum degradation of the dye by M. osloensis was achieved when the mineral salt medium was supplemented with 0.5 % glucose and 0.1 % ammonium nitrate at 35 °C. Degradation of dye was found to follow first order kinetics with the k value of 0.06282 h⁻¹ and a R² value of 0.955. Analyses for the identification of intermediate compounds confirmed the presence of naphthalene, naphthol, naphthoquinone, salicylic acid and catechol. Based on this finding a probable pathway for the degradation of Mordant Black 17 by M. osloensis has been proposed.
Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode.
Vidal, Jorge; Villegas, Loreto; Peralta-Hernández, Juan M; Salazar González, Ricardo
2016-01-01
Application of an electrocoagulation process (EC) for the elimination of AB194 textile dye from synthetic and textile wastewater (effluent) contaminated with AB194 dye, was carried out using aluminum anodes at two different initial pH values. Tafel studies in the presence and absence of the dye were performed. The aluminum species formed during the electrolysis were quantified by atomic absorption, and the flocs formed in the process were analyzed by HPLC-MS. Complete removal of AB194 from 1.0 L of solution was achieved applying low densities current at initial pH values of 4.0 and 8.0. The removal of AB194 by EC was possible with a short electrolysis time, removing practically 100% of the total organic carbon content and chemical oxygen demand. The final result was completely discolored water lacking dye and organic matter. An effluent contaminated with 126 mg L(-1) AB194 dye from a Chilean textile industry was also treated by EC under optimized experimental conditions, yielding discolored water and considerably decreasing the presence of organic compounds (dye + dyeing additives), with very low concentrations of dissolved Al(3+). Analysis of flocs showed the presence of the original dye without changes in its chemical structure.
NASA Astrophysics Data System (ADS)
Ali Shah, Syed Farman; Shah, Abdul Karim; Mehdi, Ahmad; Memon, Aziza Aftab; Harijan, Khanji; Ali, Zeenat M.
2012-05-01
Textile dye manufacture processes are known as the most polluting chemical processes of industrial sectors of the world. Colored wastewaters along with many polluting agents are troublesome. They are heavily polluted with dyes, textile auxiliaries and chemicals. Current study applies a coupled technology for wastewater treatment. Combined coagulation-adsorption process was utilized for treatment of complex nature effluents of dyes, binder emulsion, pigments and textile chemicals plants at Clariant Pakistan. Cost effective coagulant and adsorbent was selected by using waste material from a power generation unit of Water and Power Development Authority (WAPDA), Pakistan. The treated effluent could be reused. Alum+ Activated Carbon, Ferrous sulfate+ Activated Carbon, Ferric chloride + Activated Carbon. Almost complete decolourization was achieved along with reduction in COD up to 65%. Pre and post treatment, TDS, COD, Turbidity and suspended solids were improved.
Assessment of the impact of textile effluents on microbial diversity in Tirupur district, Tamil Nadu
NASA Astrophysics Data System (ADS)
Prabha, Shashi; Gogoi, Anindita; Mazumder, Payal; Ramanathan, AL.; Kumar, Manish
2017-09-01
The expedited advent of urbanization and industrialization for economic growth has adversely affected the biological diversity, which is one of the major concerns of the developing countries. Microbes play a crucial role in decontaminating polluted sites and degrades pollution load of textile effluent. The present study was based on identification of microbial diversity along the Noyaal river of Tirupur area. River water samples from industrial and non-industrial sites and effluent samples of before and after treatment were tested and it was found that microbial diversity was higher in the river water at the industrial site (Kasipalayam) as compared to the non-industrial site (Perur). Similarly, the microbial populations were found to be high in the untreated effluent as compared to the treated one by conventional treatment systems. Similar trends were observed for MBR treatment systems as well. Pseudomonas sp ., Achromobacter sp. (bacterial species) and Aspergillus fumigates (fungal species), found exclusively at the industrial site have been reported to possess decolorization potential of dye effluent, thus can be used for treatment of dye effluent. The comparison of different microbial communities from different dye wastewater sources and textile effluents was done, which showed that the microbes degrade dyestuffs, reduce toxicity of wastewaters, etc. From the study, it can be concluded that the microbial community helps to check on the pollutants and minimize their affect. Therefore, there is a need to understand the systematic variation in microbial diversity with the accumulation of pollution load through monitoring.
Ottoni, Cristiane; Simões, Marta F.; Fernandes, Sara; Santos, Cledir R.; Lima, Nelson
2016-01-01
Textile effluents are highly polluting and have variable and complex compositions. They can be extremely complex, with high salt concentrations and alkaline pHs. A fixed-bed bioreactor was used in the present study to simulate a textile effluent treatment, where the white-rot fungus, Trametes versicolor, efficiently decolourised the azo dye Reactive Black 5 over 28 days. This occurred under high alkaline conditions, which is unusual, but advantageous, for successful decolourisation processes. Active dye decolourisation was maintained by operation in continuous culture. Colour was eliminated during the course of operation and maximum laccase (Lcc) activity (80.2 U∙L−1) was detected after glycerol addition to the bioreactor. Lcc2 gene expression was evaluated with different carbon sources and pH values based on reverse transcriptase-PCR (polymerase chain reaction). Glycerol was shown to promote the highest lcc2 expression at pH 5.5, followed by sucrose and then glucose. The highest levels of expression occurred between three and four days, which corroborate the maximum Lcc activity observed for sucrose and glycerol on the bioreactor. These results give new insights into the use of T. versicolor in textile dye wastewater treatment with high pHs. PMID:27490563
Decolorization and Detoxification of Textile Dyes with a Laccase from Trametes hirsuta
Abadulla, Elias; Tzanov, Tzanko; Costa, Silgia; Robra, Karl-Heinz; Cavaco-Paulo, Artur; Gübitz, Georg M.
2000-01-01
Trametes hirsuta and a purified laccase from this organism were able to degrade triarylmethane, indigoid, azo, and anthraquinonic dyes. Initial decolorization velocities depended on the substituents on the phenolic rings of the dyes. Immobilization of the T. hirsuta laccase on alumina enhanced the thermal stabilities of the enzyme and its tolerance against some enzyme inhibitors, such as halides, copper chelators, and dyeing additives. The laccase lost 50% of its activity at 50 mM NaCl while the 50% inhibitory concentration (IC50) of the immobilized enzyme was 85 mM. Treatment of dyes with the immobilized laccase reduced their toxicities (based on the oxygen consumption rate of Pseudomonas putida) by up to 80% (anthraquinonic dyes). Textile effluents decolorized with T. hirsuta or the laccase were used for dyeing. Metabolites and/or enzyme protein strongly interacted with the dyeing process indicated by lower staining levels (K/S) values than obtained with a blank using water. However, when the effluents were decolorized with immobilized laccase, they could be used for dyeing and acceptable color differences (ΔE*) below 1.1 were measured for most dyes. PMID:10919791
Carvallho, Marilda N; da Silva, Karolyne S; Sales, Deivson C S; Freire, Eleonora M P L; Sobrinho, Maurício A M; Ghislandi, Marcos G
2016-01-01
The concept of physical adsorption was applied for the removal of direct and reactive blue textile dyes from industrial effluents. Commercial graphite nanoplatelets were used as substrate, and the quality of the material was characterized by atomic force and transmission electron microscopies. Dye/graphite nanoplatelets water solutions were prepared varying their pH and initial dye concentration. Exceptionally high values (beyond 100 mg/L) for adsorptive capacity of graphite nanoplatelets could be achieved without complicated chemical modifications, and equilibrium and kinetic experiments were performed. Our findings were compared with the state of the art, and compared with theoretical models. Agreement between them was satisfactory, and allowed us to propose novel considerations describing the interactions of the dyes and the graphene planar structure. The work highlights the important role of these interactions, which can govern the mobility of the dye molecules and the amount of layers that can be stacked on the graphite nanoplatelets surface.
Chia, Mathias A; Musa, Rilwan I
2014-03-01
The effect of indigo dye effluent on the freshwater microalga Scenedesmus quadricauda ABU12 was investigated under controlled laboratory conditions. The microalga was exposed to different concentrations of the effluent obtained by diluting the dye effluent from 100 to 175 times in bold basal medium (BBM). The growth rate of the microalga decreased as indigo dye effluent concentration increased (p <0.05). The EC50 was found to be 166 dilution factor of the effluent. Chlorophyll a, cell density and dry weight production as biomarkers were negatively affected by high indigo dye effluent concentration, their levels were higher at low effluent concentrations (p <0.05). Changes in coenobia size significantly correlated with the dye effluent concentration. A shift from large to small coenobia with increasing indigo dye effluent concentration was obtained. We conclude that even at low concentrations; effluents from textile industrial processes that use indigo dye are capable of significantly reducing the growth and biomass production, in addition to altering the morphological characteristics of the freshwater microalga S. quadricauda. The systematic reduction in the number of cells per coenobium observed in this study further confirms that environmental stress affects coenobium structure in the genus Scenedesmus, which means it can be considered an important biomarker for toxicity testing.
Köchling, Thorsten; Ferraz, Antônio Djalma Nunes; Florencio, Lourdinha; Kato, Mario Takayuki; Gavazza, Sávia
2017-03-01
Azo dyes, which are widely used in the textile industry, exhibit significant toxic characteristics for the environment and the human population. Sequential anaerobic-aerobic reactor systems are efficient for the degradation of dyes and the mineralization of intermediate compounds; however, little is known about the composition of the microbial communities responsible for dye degradation in these systems. 454-Pyrosequencing of the 16S rRNA gene was employed to assess the bacterial biodiversity and composition of a two-stage (anaerobic-aerobic) pilot-scale reactor that treats effluent from a denim factory. The anaerobic reactor was inoculated with anaerobic sludge from a domestic sewage treatment plant. Due to the selective composition of the textile wastewater, after 210 days of operation, the anaerobic reactor was dominated by the single genus Clostridium, affiliated with the Firmicutes phylum. The aerobic biofilter harbored a diverse bacterial community. The most abundant phylum in the aerobic biofilter was Proteobacteria, which was primarily represented by the Gamma, Delta and Epsilon classes followed by Firmicutes and other phyla. Several bacterial genera were identified that most likely played an essential role in azo dye degradation in the investigated system.
Sala, Mireia; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen
2014-01-01
In this work, the efficiency of a photo-electrochemical method to remove color in textile dyeing effluents is discussed. The decolorization of a synthetic effluent containing a bi-functional reactive dye was carried out by applying an electrochemical treatment at different intensities (2 A, 5 A and 10 A), followed by ultraviolet irradiation. The combination of both treatments was optimized. The final percentage of effluent decolorization, the reduction of halogenated organic volatile compound and the total organic carbon removal were the determinant factors in the selection of the best treatment conditions. The optimized method was applied to the treatment of nine simulated dyeing effluents prepared with different reactive dyes in order to compare the behavior of mono, bi, and tri-reactive dyes. Finally, the nine treated effluents were reused in new dyeing processes and the color differences (DECMC (2:1)) with respect to a reference were evaluated. The influence of the effluent organic matter removal on the color differences was also studied. The reuse of the treated effluents provides satisfactory dyeing results, and an important reduction in water consumption and salt discharge is achieved. PMID:28788251
Watharkar, Anuprita D; Kadam, Suhas K; Khandare, Rahul V; Kolekar, Parag D; Jeon, Byong-Hun; Jadhav, Jyoti P; Govindwar, Sanjay P
2018-05-30
This study explores the potential of Asparagus densiflorus to treat disperse Rubin GFL (RGFL) dye and a real textile effluent in constructed vertical subsurface flow (VSbF) phytoreactor; its field cultivation for soil remediation offers a real green and economic way of environmental management. A. densiflorus decolorized RGFL (40 gm L -1 ) up to 91% within 48 h. VSbF phytoreactor successfully reduced American dye manufacture institute (ADMI), BOD, COD, Total Dissolved Solids (TDS) and Total Suspended Solids (TSS) of real textile effluent by 65%, 61%, 66%, 48% and 66%, respectively within 6 d. Oxidoreductive enzymes such as laccase (138%), lignin peroxidase (129%), riboflavin reductase (111%) were significantly expressed during RGFL degradation in A. densiflorus roots, while effluent transformation caused noteworthy induction of enzymes like, tyrosinase (205%), laccase (178%), veratryl oxidase (52%). Based on enzyme activities, UV-vis spectroscopy, FTIR and GC-MS results; RGFL was proposed to be transformed to 4-amino-3- methylphenyl (hydroxy) oxoammonium and N, N-diethyl aniline. Anatomical study of the advanced root tissue of A. densiflorus exhibited the progressive dye accumulation and removal during phytoremediation. HepG2 cell line and phytotoxicity study demonstrated reduced toxicity of biotransformed RGFL and treated effluent by A. densiflorus, respectively. On field remediation study revealed a noteworthy removal (67%) from polluted soil within 30 d. Copyright © 2018 Elsevier Inc. All rights reserved.
Raghu, S; Ahmed Basha, C
2007-10-22
This paper examines the use of chemical or electrocoagulation treatment process followed by ion-exchange process of the textile dye effluent. The dye effluent was treated using polymeric coagulant (cationic dye-fixing agent) or electrocoagulation (iron and aluminum electrode) process under various conditions such as various current densities and effect of pH. Efficiencies of COD reduction, colour removal and power consumption were studied for each process. The chemical or electrochemical treatment are indented primarily to remove colour and COD of wastewater while ion exchange is used to further improve the removal efficiency of the colour, COD, Fe concentration, conductivity, alkalinity and total dissolved solids (TDS). From the results chemical coagulation, maximum COD reduction of about 81.3% was obtained at 300 mg/l of coagulant whereas in electrocoagulation process, maximum COD removal of about 92.31% (0.25 A/dm2) was achieved with energy consumption of about 19.29 k Wh/kg of COD and 80% (1A/dm(2)) COD removal was obtained with energy consumption of about 130.095 k Wh/kg of COD at iron and aluminum electrodes, respectively. All the experimental results, throughout the present study, have indicated that chemical or electrocoagulation treatment followed by ion-exchange methods were very effective and were capable of elevating quality of the treated wastewater effluent to the reuse standard of the textile industry.
Wu, Hu; Liu, Zhouzhou; Li, Aimin; Yang, Hu
2017-05-01
China is a major textile manufacturer in the world; as a result, large quantities of dyeing effluents are generated every year in the country. In this study, the performances of two cationic starch-based flocculants with different chain architectures, i.e., starch-graft-poly[(2-methacryloyloxyethyl) trimethyl ammonium chloride] (STC-g-PDMC) and starch-3-chloro-2-hydroxypropyl trimethyl ammonium chloride (STC-CTA), in flocculating dissolved organic matter (DOM) in dyeing secondary effluents were investigated and compared with that of polyaluminum chloride (PAC). In the exploration of the flocculation mechanisms, humic acid (HA) and bovine serum albumin (BSA) were selected as main representatives of DOM in textile dyeing secondary effluents, which were humic/fulvic acid-like and protein-like extracellular matters according to the studied wastewater's characteristics based on its three-dimensional excitation-emission matrix spectrum. According to experimental results of the flocculation of both the real and synthetic wastewaters, STC-g-PDMC with cationic branches had remarkable advantages over STC-CTA and PAC because of the more efficient charge neutralization and bridging flocculation effects of STC-g-PDMC. Another interesting finding in this study was the reaggregation phenomenon after restabilization at an overdose during the flocculation of BSA effluents by STC-g-PDMC at a very narrow pH range under a nearly neutral condition. This phenomenon might be ascribed to the formation of STC-g-PDMC/BSA complexes induced by some local charge interactions between starch-based flocculant and the amino acid fragments of protein due to charge patch effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Miranda, Rita de Cássia M de; Gomes, Edelvio de Barros; Pereira, Nei; Marin-Morales, Maria Aparecida; Machado, Katia Maria Gomes; Gusmão, Norma Buarque de
2013-08-01
Investigations on biodegradation of textile effluent by filamentous fungi strains Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181 were performed in static bioreactors under aerated and non-aerated conditions. Spectrophotometric, HPLC/UV and LC-MS/MS analysis were performed as for to confirm, respectively, decolourisation, biodegradation and identity of compounds in the effluent. Enzymatic assays revealed higher production of enzymes laccase (Lac), lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) by P. chrysosporium URM 6181 in aerated bioreactor (2020; 39 and 392 U/l, respectively). Both strains decolourised completely the effluent after ten days and biodegradation of the most predominant indigo dye was superior in aerated bioreactor (96%). Effluent treated by P. chrysosporium URM 6181 accumulated a mutagenic metabolite derived from indigo. The C. lunata URM 6179 strain, showed to be more successful for assure the environmental quality of treated effluent. These systems were found very effective for efficient fungal treatment of textile effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.
Guendouz, Samira; Khellaf, Nabila; Zerdaoui, Mostefa; Ouchefoun, Moussa
2013-06-01
With the use of cost-effective natural materials, biosorption is considered as an ecological tool that is applied worldwide for the remediation of pollution. In this study, we proposed Lemna gibba biomass (LGB), a lignocellulosic sorbent material, for the removal of two textile dyes, Direct Red 89 (DR-89) and Reactive Green 12 (RG-12). These azo dyes commonly used in dying operations of natural and synthetic fibres are the most important pollutants produced in textile industry effluents. For this purpose, batch biosorption experiments were carried out to assess the efficacy of LGB on dye treatment by evaluating the effect of contact time, biomass dosage, and initial dye concentration. The results indicated that the bioremoval efficiency of 5 mg L(-1) DR-89 and RG-12 reached approximately 100 % after 20 min of the exposure time; however, the maximum biosorption of 50 mg L(-1) DR-89 and 15 mg L(-1) RG-12 was determined to be about 60 and 47 %, respectively. Fourier transform infrared spectroscopy used to explain the sorption mechanism showed that the functional groups of carboxylic acid and hydroxyl played a major role in the retention of these pollutants on the biomass surface. The modelling results using Freundlich, Langmuir, Temkin, Elovich, and Dubini Radushkevich (D-R) isotherms demonstrated that the DR-89 biosorption process was better described with the Langmuir theory (R (2) =0.992) while the RG-12 biosorption process fitted well by the D-R isotherm equation (R (2) =0.988). The maximum biosorption capacity was found to be 20.0 and 115.5 mg g(-1) for DR-89 and RG-12, respectively, showing a higher ability of duckweed biomass for the bioremoval of the green dye. The thermodynamic study showed that the dye biosorption was a spontaneous and endothermic process. The efficacy of using duckweed biomass for the bioremoval of the two dyes was limited to concentrations ≤50 mg L(-1), indicating that L. gibba biomass may be suitable in the refining step of textile effluent treatment.
Jayanthy, V.; Geetha, R.; Rajendran, R.; Prabhavathi, P.; Karthik Sundaram, S.; Dinesh Kumar, S.; Santhanam, P.
2013-01-01
The present study was investigated for soil bioremediation through sababul plant biomass (Leucaena leucocephala). The soil contaminated with textile effluent was collected from Erode (chithode) area. Various physico-chemical characterizations like N, P, and K and electrical conductivity were assessed on both control and dye contaminated soils before and after remediation. Sababul (L. leucocephala) powder used as plant biomass for remediation was a tool for textile dye removal using basic synthetic dyes by column packing and eluting. The concentration of the dye eluted was compared with its original concentration of dye and were analyzed by using UV–vis spectrophotometer. Sababul plant biomass was analyzed for its physico-chemical properties and active compounds were detected by GC–MS, HPTLC and FTIR. Plant growth was assessed with green gram on the textile contaminated soil and sababul had the potential of adsorbing the dye as the contaminated soil and also check the growth of green gram. PMID:25183943
Hashem, Rasha A; Samir, Reham; Essam, Tamer M; Ali, Amal E; Amin, Magdy A
2018-05-21
Azo dyes are complex derivatives of diazene used in food and textile manufacture. They are highly recalcitrant compounds, and account for severe environmental and health problems. Different strains of Pseudomonas species were isolated from textile wastewater effluents. The bioconversion of Remazol black B (a commonly used water soluble dye) by Pseudomonas aeruginosa was observed in static conditions. The bio-decolorization process was optimized by a multi factorial Plackett-Burman experimental design. Decolorization of 200 mg L -1 reached 100% in 32 h. Interestingly, the presence of yeast extract, magnesium and iron in the culture media, highly accelerated the rate of decolorization. Moreover, one of our isolates, P. aeruginosa KY284155, was kept high degradation rates at high pH (pH = 9), which represents the pH of most textile wastewater effluents, and was able to tolerate high concentration of dye up to 500 mg L -1 . In bacteria, azo-dye degradation is often initiated by reductive azo compound cleavage catalyzed by azo-reductases. Three genes encoding azo-reductases, paazoR1, paazoR2 and paazoR3, could be identified in the genome of the isolated P. aeruginosa stain (B1). Bioinformatics analyses of the paazoR1, paazoR2 and paazoR3 genes reveal their prevalence and conservation in other P. aeruginosa strains. Chemical oxygen demand dramatically decreased and phyto-detoxification of the azo dye was accomplished by photocatalytic post treatment of the biodegradation products. We suggest applying combined biological photocatalytic post treatment for azo dyes on large scale, for effective, cheap decolorization and detoxification of azo-dyes, rendering them safe enough to be discharged in the environment.
Bheemaraddi, Mallikarjun C.; Shivannavar, Channappa T.; Gaddad, Subhashchandra M.
2014-01-01
A potential bacterial strain GSM2, capable of degrading an azo dye Reactive Violet 5 as a sole source of carbon, was isolated from textile mill effluent from Solapur, India. The 16S rDNA sequence and phenotypic characteristics indicated an isolated organism as Paracoccus sp. GSM2. This strain exhibited complete decolorization of Reactive Violet 5 (100 mg/L) within 16 h, while maximally it could decolorize 800 mg/L of dye within 38 h with 73% decolorization under static condition. For color removal, the most suitable pH and temperature were pH 6.0–9.0 and 25–40°C, respectively. The isolate was able to decolorize more than 70% of five structurally different azo dyes within 38 h. The isolate is salt tolerant as it can bring out more than 90% decolorization up to a salt concentration of 2% (w/v). UV-Visible absorption spectra before and after decolorization suggested that decolorization was due to biodegradation and was further confirmed by FT-IR spectroscopy. Overall results indicate the effectiveness of the strain GSM2 explored for the treatment of textile industry effluents containing various azo dyes. To our knowledge, this could be the first report on biodegradation of Reactive Violet 5 by Paracoccus sp. GSM2. PMID:24883397
Mnif, Inès; Maktouf, Sameh; Fendri, Raouia; Kriaa, Mouna; Ellouze, Semia; Ghribi, Dhouha
2016-01-01
Aeromonas veronii GRI (KF964486), isolated from acclimated textile effluent after selective enrichment on azo dye, was assessed for methyl orange biodegradation potency. Results suggested the potential of this bacterium for use in effective treatment of azo-dye-contaminated wastewaters under static conditions at neutral and alkaline pH value, characteristic of typical textile effluents. The strain could tolerate higher doses of dyes as it was able to decolorize up to 1000 mg/l. When used as microbial surfactant to enhance methyl orange biodecolorization, Bacillus subtilis SPB1-derived lipopeptide accelerated the decolorization rate and maximized slightly the decolorization efficiency at an optimal concentration of about 0.025%. In order to enhance the process efficiency, a Taguchi design was conducted. Phytotoxicity bioassay using sesame and radish seeds were carried out to assess the biotreatment effectiveness. The bacterium was able to effectively decolorize the azo dye when inoculated with an initial optical density of about 0.5 with 0.25% sucrose, 0.125% yeast extract, 0.01% SPB1 biosurfactant, and when conducting an agitation phase of about 24 h after static incubation. Germination potency showed an increase toward the nonoptimized conditions indicating an improvement of the biotreatment. When comparing with synthetic surfactants, a drastic decrease and an inhibition of orange methyl decolorization were observed in the presence of CTAB and SDS. The nonionic surfactant Tween 80 had a positive effect on methyl orange biodecolorization. Also, studies ensured that methyl orange removal by this strain could be due to endocellular enzymatic activities. To conclude, the addition of SPB1 bioemulsifier reduced energy costs by reducing effective decolorization period, biosurfactant stimulated bacterial decolorization method may provide highly efficient, inexpensive, and time-saving procedure in treatment of textile effluents.
Negueroles, P G; Bou-Belda, E; Santos-Juanes, L; Amat, A M; Arques, A; Vercher, R F; Monllor, P; Vicente, R
2017-05-01
In this paper, the possibility of reusing textile effluents for new dyeing baths has been investigated. For this purpose, different trichromies using Direct Red 80, Direct Blue 106, and Direct Yellow 98 on cotton have been used. Effluents have been treated by means of a photo-Fenton process at pH 5. Addition of humic-like substances isolated form urban wastes is necessary in order to prevent iron deactivation because of the formation of non-active iron hydroxides. Laboratory-scale experiments carried out with synthetic effluents show that comparable results were obtained when using as solvent water treated by photo-Fenton with SBO and fresh deionized water. Experiments were scaled up to pilot plant illuminated under sunlight, using in this case a real textile effluent. Decoloration of the effluent could be achieved after moderate irradiation and cotton dyed with this water presented similar characteristics as when deionized water was used.
A critical review on textile wastewater treatments: Possible approaches.
Holkar, Chandrakant R; Jadhav, Ananda J; Pinjari, Dipak V; Mahamuni, Naresh M; Pandit, Aniruddha B
2016-11-01
Waste water is a major environmental impediment for the growth of the textile industry besides the other minor issues like solid waste and resource waste management. Textile industry uses many kinds of synthetic dyes and discharge large amounts of highly colored wastewater as the uptake of these dyes by fabrics is very poor. This highly colored textile wastewater severely affects photosynthetic function in plant. It also has an impact on aquatic life due to low light penetration and oxygen consumption. It may also be lethal to certain forms of marine life due to the occurrence of component metals and chlorine present in the synthetic dyes. So, this textile wastewater must be treated before their discharge. In this article, different treatment methods to treat the textile wastewater have been presented along with cost per unit volume of treated water. Treatment methods discussed in this paper involve oxidation methods (cavitation, photocatalytic oxidation, ozone, H2O2, fentons process), physical methods (adsorption and filtration), biological methods (fungi, algae, bacteria, microbial fuel cell). This review article will also recommend the possible remedial measures to treat different types of effluent generated from each textile operation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Heavy metals in handloom-dyeing effluents and their biosorption by agricultural byproducts.
Nahar, Kamrun; Chowdhury, Md Abul Khair; Chowdhury, Md Akhter Hossain; Rahman, Afzal; Mohiuddin, K M
2018-03-01
The Madhabdi municipality in the Narsingdi district of Bangladesh is a well-known area for textile, handloom weaving, and dyeing industries. These textile industries produce a considerable amount of effluents, sewage sludge, and solid waste materials every day that they directly discharge into surrounding water bodies and agricultural fields. This disposal poses a serious threat to the overall epidemic and socio-economic pattern of the locality. This research entailed the collection of 34 handloom-dyeing effluent samples from different handloom-dyeing industries of Madhabdi, which were then analyzed to determine the contents of the heavy metals iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), manganese (Mn), lead (Pb), and cadmium (Cd). Average concentrations of Fe, Cr, Cu, Pb, Mn, and Zn were 3.81, 1.35, 1.70, 0.17, 0.75, and 0.73 mg L -1 , respectively, whereas Cd content was below the detectable limit of the atomic adsorption spectrophotometer. The concentrations of Fe, Cr, Cu, Pb, and Mn exceed the industrial effluent discharge standards (IEDS) for inland surface water and irrigation water guideline values. A biosorption experiment of the heavy metals (Fe, Cr, Cu, Mn, and Zn) was conducted without controlling for any experimental parameters (e.g., pH, temperature, or other compounds present in the effluent samples) by using four agricultural wastes or byproducts, namely rice husk, sawdust, lemon peel, and eggshell. Twenty grams of each biosorbent was added to 1 L of effluent samples and stored for 7 days. The biosorption capacity of each biosorbent is ranked as follows: eggshell, sawdust, rice husk, and lemon peel. Furthermore, the biosorption affinity of each metal ion was found in the following order: Cu and Cr (both had similar biosorption affinity), Zn, Fe, Mn. The effluents should not be discharged before treatment, and efficient treatment of effluents is possible with eggshell powder or sawdust at a rate of 20 g of biosorbent per liter of effluents.
In order to verify if dyestuffs within an effluent of a textile industry was contributing to the systematic mutagenicity detected in the Cristais River, within the metropolitan region of Sao Paulo, mutagenic samples of the industrial effluent, crude water, and treated silt of the...
Ning, Xun-An; Wang, Jing-Yu; Li, Rui-Jing; Wen, Wei-Bin; Chen, Chang-Min; Wang, Yu-Jie; Yang, Zuo-Yi; Liu, Jing-Yong
2015-10-01
The occurrence and removal of benzene, toluene, ethylbenzene, xylenes, styrene and isopropylbenzene (BTEXSI) from 6 textile dyeing wastewater treatment plants (TDWTPs) were investigated in this study. The practical capacities of the 6 representative plants, which used the activated sludge process, ranged from 1200 to 26000 m(3) d(-1). The results indicated that BTEXSI were ubiquitous in the raw textile dyeing wastewater, except for isopropylbenzene, and that toluene and xylenes were predominant in raw wastewaters (RWs). TDWTP-E was selected to study the residual BTEXSI at different stages. The total BTEXSI reduction on the aerobic process of TDWTP-E accounted for 82.2% of the entire process. The total BTEXSI concentrations from the final effluents (FEs) were observed to be below 1 μg L(-1), except for TDWTP-F (2.12 μg L(-1)). Volatilization and biodegradation rather than sludge sorption contributed significantly to BTEXSI removal in the treatment system. BTEXSI were not found to be the main contaminants in textile dyeing wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bhattacharya, Priyankari; Ghosh, Sourja; Majumdar, Swachchha; Bandyopadhyay, Sibdas
2013-10-01
Treatment of highly concentrated dyebath effluent and comparatively dilute composite effluent having mixture of various reactive dyes collected from a cotton fabric dyeing unit was undertaken in the present study. Ceramic microfiltration membrane prepared from a cost effective composition of alumina and clay was used. Prior to microfiltration, a chemical pretreatment was carried out with aluminium sulphate in combination with a polymeric retention aid. An optimum dose of 100 mg/L of aluminium sulphate and 1 ml/L of a commercial flocculant Afilan RAMF was found effective for dye removal (> 98%) from the synthetic solutions of reactive dyes with initial concentration of 150 mg/L in both the single component and two component systems. In the microfiltration study, effect of operating pressure in the permeate flux was observed for both the pretreated and untreated effluents and permeate samples were analyzed for dye concentration, COD, turbidity, TSS, etc. during constant pressure filtration. About 98-99% removal of dyes was obtained in the combined process with COD reduction of 54-64%.
Biosorption of simulated dyed effluents by inactivated fungal biomasses.
Prigione, Valeria; Varese, Giovanna Cristina; Casieri, Leonardo; Marchisio, Valeria Filipello
2008-06-01
Treatment of dyed effluents presents several problems mainly due to the toxicity and recalcitrance of dyestuffs. Innovative technologies, such as biosorption, are needed as alternatives to conventional methods to find inexpensive ways of removing dyes from large volumes of effluents. Inactivated biomasses do not require a continuous supply of nutrients and are not sensitive to the toxicity of dyes or toxic wastes. They can also be regenerated and reused in many cycles and are both safe and environment-friendly. The sorption capacities (SC) of autoclaved biomasses of three Mucorales fungi (Cunninghamella elegans, Rhizomucor pusillus and Rhizopus stolonifer), cultured on two different media, were evaluated against simulated effluents containing concentrations of 1000 and 5000 ppm of a single dye and a mix of 10 industrial textile dyes in batch experiments. SC values of up to 532.8 mg of dye g(-1) dry weight of biomass were coupled with high effluent decolourisation percentages (up to 100%). These biomasses may thus prove to be extremely powerful candidates for dye biosorption from industrial wastewaters. Even better results were obtained when a column system with the immobilised and inactivated biomass of one fungus was employed.
Efficiency Improvement of Some Agricultural Residue Modified Materials for Textile Dyes Absorption
NASA Astrophysics Data System (ADS)
Boonsong, P.; Paksamut, J.
2018-03-01
In this work, the adsorption efficiency was investigated of some agricultural residue modified materials as natural bio-adsorbents which were rice straw (Oryza sativa L.) and pineapple leaves (Ananas comosus (L.) Merr.) for the removal of textile dyes. Reactive dyes were used in this research. The improvement procedure of agricultural residue materials properties were alkali-acid modification with sodium hydroxide solution and hydrochloric acid solution. Adsorption performance has been investigated using batch experiments. Investigated adsorption factors consisted of adsorbent dose, contact time, adsorbent materials and pH of solution. The results were found that rice straw had higher adsorption capacity than pineapple leaves. The increasing of adsorption capacity depends on adsorbent dose and contact time. Moreover, the optimum pH for dye adsorption was acidic range because lowering pH increased the positively charges on the adsorbent surface which could be attacked by negatively charge of acid dyes. The agricultural residue modified materials had significant dye removal efficiency which these adsorbents could be used for the treatment of textile effluent in industries.
Textile dyes induce toxicity on zebrafish early life stages.
de Oliveira, Gisele Augusto Rodrigues; de Lapuente, Joaquín; Teixidó, Elisabet; Porredón, Constança; Borràs, Miquel; de Oliveira, Danielle Palma
2016-02-01
Textile manufacturing is one of the most polluting industrial sectors because of the release of potentially toxic compounds, such as synthetic dyes, into the environment. Depending on the class of the dyes, their loss in wastewaters can range from 2% to 50% of the original dye concentration. Consequently, uncontrolled use of such dyes can negatively affect human health and the ecological balance. The present study assessed the toxicity of the textile dyes Direct Black 38 (DB38), Reactive Blue 15 (RB15), Reactive Orange 16 (RO16), and Vat Green 3 (VG3) using zebrafish (Danio rerio) embryos for 144 h postfertilization (hpf). At the tested conditions, none of the dyes caused significant mortality. The highest RO16 dose significantly delayed or inhibited the ability of zebrafish embryos to hatch from the chorion after 96 hpf. From 120 hpf to 144 hpf, all the dyes impaired the gas bladder inflation of zebrafish larvae, DB38 also induced curved tail, and VG3 led to yolk sac edema in zebrafish larvae. Based on these data, DB38, RB15, RO16, and VG3 can induce malformations during embryonic and larval development of zebrafish. Therefore, it is essential to remove these compounds from wastewater or reduce their concentrations to safe levels before discharging textile industry effluents into the aquatic environment. © 2015 SETAC.
The toxicity of textile reactive azo dyes after hydrolysis and decolourisation.
Gottlieb, Anna; Shaw, Chris; Smith, Alan; Wheatley, Andrew; Forsythe, Stephen
2003-02-27
The toxicity of C.I. Reactive Black 5 and three Procion dyes, as found in textile effluents, was determined using the bioluminescent bacterium Vibrio fischeri. Hydrolysed Reactive Black had a slightly greater toxicity than the parent form (EC(50) 11.4+/-3.68 and 27.5+/-4.01 mg l(-1), respectively). A baffled bioreactor with anaerobic and aerobic compartments was used to decolourise hydrolysed Reactive Black 5 in a synthetic effluent. Decolourisation of hydrolysed Reactive Black resulted in an increased toxicity (EC(50) 0.2+/-0.03 mg l(-1)). Toxicity was not detectable when decolourised Reactive Black 5 was metabolised under aerobic conditions. No genotoxicity was detected after the decolourisation of either the parent or the hydrolysed reactive dyes, either in vitro or in the bioreactor. The toxicity and genotoxicity of decolourised C.I. Acid Orange 7 was due to the production of 1-amino-2-naphthol (EC(50) 0.1+/-0.03 mg l(-1)).
Study of decolorisation of binary dye mixture by response surface methodology.
Khamparia, Shraddha; Jaspal, Dipika
2017-10-01
Decolorisation of a complex mixture of two different classes of textile dyes Direct Red 81 (DR81) and Rhodamine B (RHB), simulating one of the most important condition in real textile effluent was investigated onto deoiled Argemone Mexicana seeds (A. Mexicana). The adsorption behaviour of DR81 and RHB dyes was simultaneously analyzed in the mixture using derivative spectrophotometric method. Central composite design (CCD) was employed for designing the experiments for this complex binary mixture where significance of important parameters and possible interactions were analyzed by response surface methodology (RSM). Maximum adsorption of DR81 and RHB by A. Mexicana was obtained at 53 °C after 63.33 min with 0.1 g of adsorbent and 8 × 10 -6 M DR81, 12 × 10 -6 M RHB with composite desirability of 0.99. The predicted values for percentage removal of dyes from the mixture were in good agreement with the experimental values with R 2 > 96% for both the dyes. CCD superimposed RSM confirmed that presence of different dyes in a solution created a competition for the adsorbent sites and hence interaction of dyes was one of the most important factor to be studied to simulate the real effluent. The adsorbent showed remarkable adsorption capacities for both the dyes in the mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Annamalai, Sivasankar; Santhanam, Manikandan; Sundaram, Maruthamuthu; Curras, Marta Pazos
2014-12-01
The discharge from the dyeing industries constitutes unfixed dyes, inorganic salts, heavy metal complexes etc., which spoil the surrounding areas of industrial sites. The present article reports the use of direct current electrokinetic technique for the treatment of textile contaminated soil. Impressed direct current voltage of 20 V facilitates the dye/metal ions movement in the naturally available dye contaminated soil towards the opposite electrode by electromigration. IrO2–RuO2–TiO2/Ti was used as anode and Ti used as cathode. UV–Visible spectrum reveals that higher dye intensity was nearer to the anode. Ni, Cr and Pb migration towards the cathode and migration of Cu, SO42− and Cl− towards anode were noticed. Chemical oxygen demand in soil significantly decreased upon employing electrokinetic. This technology may be exploited for faster and eco-friendly removal of dye in soil environment.
Ozonation of exhausted dark shade reactive dye bath for reuse.
Sundrarajan, M; Vishnu, G; Joseph, Kurian
2006-10-01
Exhausted reactive dye bath of dark shades were collected from cotton knit wear dyeing units in Tirupur. Ozonation was conducted in a column reactor system fed with ozone at the rate of 0.16 g/min to assess its efficiency in reducing the color, chemical oxygen demand and total organic carbon. The potential of the decolorized dye bath for its repeated reuse was also analyzed. The results from the reusability studies indicate that the dyeing quality was not affected by the reuse of decolorized dye bath for two successive cycles. Complete decolorization of the effluent was achieved in 60 minutes contact time at an ozone consumption of 183 mg/L for Red, 175 for Navy Blue and 192 for Green shades respectively. The corresponding COD removal was 60%, 54% and 63% for the three shades while TOC removal efficiency was 59%, 55% and 62% respectively. It is concluded that ozonation is efficient in decolorization of exhausted dye bath effluents containing conventional reactive dyes. However, the corresponding removal of COD from the textile effluent was not significant.
Saratale, Rijuta G; Saratale, Ganesh D; Govindwar, Sanjay P; Kim, Dong S
2015-01-01
Complete decolorization and detoxification of Reactive Orange 4 within 5 h (pH 6.6, at 30°C) by isolated Lysinibacillus sp. RGS was observed. Significant reduction in TOC (93%) and COD (90%) was indicative of conversion of complex dye into simple products, which were identified as naphthalene moieties by various analytical techniques (HPLC, FTIR, and GC-MS). Supplementation of agricultural waste extract considered as better option to make the process cost effective. Oxido-reductive enzymes were found to be involved in the degradation mechanism. Finally Loofa immobilized Lysinibacillus sp. cells in a fixed-bed bioreactor showed significant decolorization with reduction in TOC (51 and 64%) and COD (54 and 66%) for synthetic and textile effluent at 30 and 35 mL h(-1) feeding rate, respectively. The degraded metabolites showed non-toxic nature revealed by phytotoxicity and photosynthetic pigments content study for Sorghum vulgare and Phaseolus mungo. In addition nitrogen fixing and phosphate solubilizing microbes were less affected in treated wastewater and thus the treated effluent can be used for the irrigation purpose. This work could be useful for the development of efficient and ecofriendly technologies to reduce dye content in the wastewater to permissible levels at affordable cost.
Biological treatment of model dyes and textile wastewaters.
Paz, Alicia; Carballo, Julia; Pérez, María José; Domínguez, José Manuel
2017-08-01
Previous works conducted in our laboratory, reveled that Bacillus aryabhattai DC100 produce ligninolytic enzymes such as laccases and/or peroxidases, opening new applications in different bioprocesses, including the treatment of disposal residues such as dyestuffs from textile processing industries. This work described the degradation of three commercial model dyes Coomassie Brilliant Blue G-250 (CBB), Indigo Carmine (IC) and Remazol Brilliant Blue R (RBBR) under different culture media and operational conditions. The process was optimized using a Central Composite Rotatable Design, and the desirability predicted complete decolorization of 150 mg/L CBB at 37 °C, 304.09 rpm and salt concentration of 19.204 g/L. The model was validated with concentrations up to 180 mg/L CBB and IC, not being able to remove high amount of RBBR. The procedure here developed also allowed Chemical Oxygen Demands (COD) reductions in CBB of about 42%, meanwhile tests on real effluents from a local textile industry involved COD reductions of 50% in a liquid wastewater and 14% in semi-liquid sludge. Thus, allow the authorized discharge of wastewater into the corresponding treatment plant. Decolorization efficiencies and COD reductions open on the potential application of B. aryabhattai DC100 on the bioremediation of real effluents from textile industries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium.
Oliveira, Luiz C A; Gonçalves, Maraísa; Oliveira, Diana Q L; Guerreiro, Mário C; Guilherme, Luiz R G; Dallago, Rogério M
2007-03-06
The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80mgg(-1)) and textile dye reactive red (163mgg(-1)), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.
Rajkumar, A Samuel; Nagan, S
2010-10-01
In Tiruppur, 729 textile dyeing units are under operation and these units generate 96.1 MLD of wastewater. The untreated effluent was discharged into the Noyyal River till 1997. After the issuance of directions by Tamil Nadu Pollution Control Board (TNPCB) in 1997, these units have installed 8 common effluent treatment plants (CETP) consisting of physical, chemical and biological treatment units. Some of the units have installed individual ETP (IETP). The treated effluent was finally discharged into the river. The dyeing units use sodium chloride in the dyeing process for efficient fixing of dye in the fabric efficiently. This contributes high total dissolved solids (TDS) and chlorides in the effluent. CETPs and IETPs failed to meet discharge standards of TDS and chlorides and thereby significantly affected the river water quality. TDS level in the river water was in the range of 900 - 6600 mg/L, and chloride was in the range of 230 - 2700 mg/L. Orathupalayam dam is located across Noyyal river at 32 km down stream of Tiruppur. The pollutants carried by the river were accumulated in the dam. TDS in the dam water was in the range of 4250 - 7900 mg/L and chloride was in the range of 1600 - 2700 mg/L. The dam sediments contain heavy metals of chromium, copper, zinc and lead. In 2006, the High Court has directed the dyeing units to install zero liquid discharge (ZLD) plant and to stop discharging of effluent into the river. Accordingly, the industries have installed and commissioned the ZLD plant consisting of RO plant and reject management system in 2010. The effluent after secondary treatment from the CETP is further treated in RO plant. The RO permeate is reused by the member units. The RO reject is concentrated in multiple effect evaporator (MEE)/ mechanical vacuum re-compressor (MVR). The concentrate is crystallized and centrifuged to recover salt. The salt recovered is reused. The liquid separated from the centrifuge is sent to solar evaporation pan. The salt collected in the solar pan is bagged and stored in secure land fill facility. Thus, the discharge into the river is now stopped. However, the damage caused to the groundwater and soil contamination in the river basin is yet to be restored.
Rajamanickam, R; Nagan, S
2010-10-01
Karur is an industrial town located on the bank of river Amaravathi. There are 487 textile processing units in operation and discharge about 14610 kilo litres per day of treated effluent into the river. The groundwater quality in the downstream is deteriorated due to continuous discharge of effluent. In order to assess the present quality of groundwater, 13 open wells were identified in the river basin around Karur and samples were collected during pre-monsoon, post monsoon and summer, and analyzed for physico-chemical parameters. TDS, total alkalinity, total hardness, calcium, chlorides and sulphates exceeded the desirable limit. Amaravathi River water samples were also colleted at the upstream and downstream of Karur and the result shows the river is polluted. During summer season, there is no flow in the river and the river acts as a drainage for the effluent. Hence, there is severe impact on the groundwater quality in the downstream. The best option to protect the groundwater quality in the river basin is that the textile processing units should adopt zero liquid discharge (ZLD) system and completely recycle the treated effluent.
Electrocoagulation for the treatment of textile industry effluent--a review.
Khandegar, V; Saroha, Anil K
2013-10-15
Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical are used for the treatment of industrial effluent. The commonly used conventional biological treatment processes are time consuming, need large operational area and are not effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation has recently attracted attention as a potential technique for treating industrial effluent due to its versatility and environmental compatibility. This technique uses direct current source between metal electrodes immersed in the effluent, which causes the dissolution of electrode plates into the effluent. The metal ions, at an appropriate pH, can form wide range of coagulated species and metal hydroxides that destabilize and aggregate particles or precipitate and adsorb the dissolved contaminants. Therefore, the objective of the present manuscript is to review the potential of electrocoagulation for the treatment of industrial effluents, mainly removal of dyes from textile effluent. © 2013 Elsevier Ltd. All rights reserved.
Textile wastewater treatment: colour and COD removal of reactive black-5 by ozonation
NASA Astrophysics Data System (ADS)
Suryawan, I. W. K.; Helmy, Q.; Notodarmojo, S.
2018-01-01
Textile industries produced a large amount of highly coloured wastewater containing variety of dyes in different concentrations. Due to the high concentration of organics in the effluents and the higher stability of modern synthetic dyes, the conventional biological treatment methods are ineffective for the complete colour removal and degradation of organics and dyes. On the other hand, physical-chemical treatment are not destructive, mainly just concentrate and separate the pollutants phases. This research paper investigates the removal of colour and chemical oxygen demand/COD from textile wastewater using ozone treatment. Varied ozone dosages of 1.16; 3.81; 18.79; and 40.88 mg/minute were used in the experiment. Varied wastewater containing Reactive Black 5 (RB-5) concentrations of 40 mg/L, 100 mg/L were also applied. Research result showed the highest colour removal efficiency of 96.9 % was achieved after 5 hours incubation time, while the highest COD removal efficiency of 77.5% was achieved after 2 hours incubation time.
El-Desoky, Hanaa S; Ghoneim, Mohamed M; El-Sheikh, Ragaa; Zidan, Naglaa M
2010-03-15
The indirect electrochemical removal of pollutants from effluents has become an attractive method in recent years. Removal (decolorization and mineralization) of Levafix Blue CA and Levafix Red CA reactive azo-dyes from aqueous media by electro-generated Fenton's reagent (Fe(2+)/H(2)O(2)) using a reticulated vitreous carbon cathode and a platinum gauze anode was optimized. Progress of oxidation (decolorization and mineralization) of the investigated azo-dyes with time of electro-Fenton's reaction was monitored by UV-visible absorbance measurements, Chemical oxygen demand (COD) removal and HPLC analysis. The results indicated that the electro-Fenton's oxidation system is efficient for treatment of such types of reactive dyes. Oxidation of each of the investigated azo-dyes by electro-generated Fenton's reagent up to complete decolorization and approximately 90-95% mineralization was achieved. Moreover, the optimized electro-Fenton's oxidation was successfully applied for complete decolorization and approximately 85-90% mineralization of both azo-dyes in real industrial wastewater samples collected from textile dyeing house at El-Mahalla El-Kobra, Egypt. (c) 2009 Elsevier B.V. All rights reserved.
Mona, Sharma; Kaushik, Anubha; Kaushik, C P
2011-02-01
Biohydrogen production by Nostoc linckia HA-46, isolated from a textile-industry oxidation-pond was studied by varying light/dark period, pH, temperature and ratio of carbon-dioxide and argon in the gas-mixture. Hydrogen production rates were maximum under 18 h of light and 6 h of darkness, pH 8.0, 31°C, a CO(2):Ar ratio 2:10. Hydrogen production of the strain acclimatized to 20 mg/L of chromium/cobalt and 100 mg/L of Reactive red 198/crystal violet dye studied in N-supplemented/deficient medium was 6-10% higher in the presence of 1.5 g/L of NaNO(3). Rates of hydrogen production in the presence of dyes/metals by the strain (93-105 μmol/h/mg Chlorophyll) were significantly higher than in medium without metals/dyes serving as control (91.3 μmol/h/mg Chlorophyll). About 58-60% of the two metals and 35-73% of dyes were removed by cyanobacterium. Optimal conditions of temperature, pH and metals/dyes concentration for achieving high hydrogen production and wastewater treatment were found practically applicable as similar conditions are found in the effluent of regional textile-mills. Copyright © 2010 Elsevier Ltd. All rights reserved.
Teow, Yeit Haan; Nordin, Nadzirah Ilyiani; Mohammad, Abdul Wahab
2018-05-12
Textile wastewater contains methylene blue (MB), a major coloring agent in textile industry. Activated carbon (AC) is the most widely used adsorbent in removing dyes from industrial wastewater. However, high production cost of AC is the major obstacle for its wide application in dye wastewater treatment. In this study, a sustainable approach in synthesizing graphenic adsorbent from palm oil mill effluent (POME), a potential carbonaceous source, has been explored. This new development in adsorption technique is considered as green synthesis as it does not require any binder during the synthesis process, and at the same time, it helps to solve the bottleneck of palm oil industry as POME is the main cause contributed to Malaysia's water pollution problem. The synthesized GSC was characterized through XRD, FESEM, and EDX. The adsorption performance of the synthesized GSC was evaluated by adsorption of MB. The effect of initial concentration of synthetic MB solution (1-20 mg/L) and weight of GSC (5-20 g) were investigated. A remarkable change in color of synthetic MB solution from blue to crystal clear was observed at the end of adsorption study. High efficiency of the synthesized GSC for dye-contaminated wastewater treatment is concluded.
Han, Gang; Liang, Can-Zeng; Chung, Tai-Shung; Weber, Martin; Staudt, Claudia; Maletzko, Christian
2016-03-15
A novel combination of forward osmosis (FO) process with coagulation/flocculation (CF) (FO-CF) has been experimentally conceived for the treatment and reuse of textile wastewater. FO is employed to spontaneously recover water from the wastewater via osmosis and thus effectively reduces its volume with a dramatically enhanced dye concentration. CF is then applied to precipitate and remove dyes from the FO concentrated stream with much improved efficiency and reduced chemical dosage. The FO-CF hybrid system exhibits unique advantages of high water flux and recovery rate, well controlled membrane fouling, high efficiency, and minimal environmental impact. Using a lab-made thin-film composite (TFC) FO membrane, an initial water flux (Jw) of 36.0 L m(-2) h(-1) with a dye rejection of 99.9% has been demonstrated by using 2 M NaCl as the draw solution and synthetic textile wastewater containing multiple textile dyes, inorganic salts and organic additives as the feed under the FO mode. The Jw could be maintained at a high value of 12.0 L m(-2) h(-1) even when the recovery rate of the wastewater reaches 90%. Remarkable reverse fouling behavior has also been observed where the Jw of the fouled membrane can be almost fully restored to the initial value by physical flushing without using any chemicals. Due to the great dye concentration in the FO concentrated wastewater stream, the CF process could achieve more than 95% dye removal with a small dosage of coagulants and flocculants at 500-1000 ppm. The newly developed FO-CF hybrid process may open up new exploration of alternative technologies for the effective treatment and reuse of textile effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biodecoloration of Reactive Black 5 by the methylotrophic yeast Candida boidinii MM 4035.
Martorell, María M; Pajot, Hipólito F; Ahmed, Pablo M; de Figueroa, Lucía I C
2017-03-01
Azo dyes are extensively used in textile dyeing and other industries. Effluents of dying industries are specially colored and could cause severe damage to the environment. The anaerobic treatment of textile dying effluents is nowadays the preferred option, but it could generate carcinogenic aromatic amines. Recently, yeasts have become a promising alternative, combining unicellular growth with oxidative mechanisms. This work reports the characterization of the first methylotrophic yeast with dye decolorizing ability, Candida boidinii MM 4035 and some insights into its decoloration mechanism. The analysis of two selected media revealed a possible two stages mechanism of Reactive Black 5 decoloration. In glucose poor media, decoloration is incomplete and only the first stage proceeds, leading to the accumulation of a purple compound. In media with higher glucose concentrations, the yeast is able to decolorize totally an initial concentration of 200mg/L. The entire process is co-metabolic, being largely dependent on glucose concentration but being able to proceed with several nitrogen sources. Manganese dependent peroxidase but not laccase activity could be detected during decoloration. Aromatic amines do not accumulate in culture media, supporting an oxidative decoloration mechanism of unknown ecophysiological relevance. Copyright © 2016. Published by Elsevier B.V.
Elimination and ecotoxicity evaluation of phthalic acid esters from textile-dyeing wastewater.
Liang, Jieying; Ning, Xun-An; Kong, Minyi; Liu, Daohua; Wang, Guangwen; Cai, Haili; Sun, Jian; Zhang, Yaping; Lu, Xingwen; Yuan, Yong
2017-12-01
Phthalic acid esters (PAEs), presented in fabrics, surfactants and detergents, were discharged into the ecosystem during textile-dyeing wastewater treatment and might have adverse effects on water ecosystems. In this study, comprehensive investigations of the content and component distributions of 12 PAEs across different units of four textile-dyeing wastewater plants were carried out in Guangdong Province, China. Ecotoxicity assessments were also conducted based on risk quotients (RQs). On average, 93.54% TOC and 80.14% COD Cr were removed following treatment at the four plants. The average concentration of Σ 12 PAEs in effluent was 11.78 μg/L. PAEs with highest concentrations were dimethylphthalate (6.58 μg/L), bis(2-ethylhexyl)phthalate (2.23 μg/L), and dibutylphthalate (1.98 μg/L). The concentrations of the main toxic PAEs were 2.23 μg/L (bis(2-ethylhexyl)phthalate), 0.19 μg/L (diisononylphthalate) and 0.67 μg/L (dinoctylphthalate); corresponding RQs were 1.4, 0.55, and 0.54 for green algae, respectively. The RQs of Σ 12 PAEs in effluent of the four plants were >0.1, indicating that Σ 12 PAEs posed medium or higher ecological risk to fish, Daphnia and green algae. Physicochemical-biochemical system was found to be more effective than biochemical-physicochemical system for TOC and COD Cr removal, because pre-physicochemical treatment helped to remove macromolecular organic substances, and reduced the competition with other pollutants during biochemical treatment. However, biochemical-physicochemical system was more effective than physicochemical-biochemical system for elimination of PAEs and for detoxification, since the biochemical treatment might produce the toxic PAEs that could helpfully be settled by post-physicochemical treatment. Moreover, ecotoxicity evaluation was recommended for current textile-dyeing wastewater treatment plants. Copyright © 2017. Published by Elsevier Ltd.
Although the disinfection of water for human usage is necessary, the formation of toxic disinfection by-products (DBPs) does occur. Recent discovery of a novel class of mutagenic DBPs, PBTA (2-phenylbenzotriazole) derivatives, demonstrates that textile effluents have the potentia...
Kyzas, George Z.
2012-01-01
In this study, the decolorization of industrial textile wastewaters was studied in batch mode using spent “Greek coffee” grounds (COF) as low-cost adsorbents. In this attempt, there is a cost-saving potential given that there was no further modification of COF (just washed with distilled water to remove dirt and color, then dried in an oven). Furthermore, tests were realized both in synthetic and real textile wastewaters for comparative reasons. The optimum pH of adsorption was acidic (pH = 2) for synthetic effluents, while experiments in free pH (non-adjusted) were carried out for real effluents. Equilibrium data were fitted to the Langmuir, Freundlich and Langmuir-Freundlich (L-F) models. The calculated maximum adsorption capacities (Qmax) for total dye (reactive) removal at 25 °C was 241 mg/g (pH = 2) and 179 mg/g (pH = 10). Thermodynamic parameters were also calculated (ΔH0, ΔG0, ΔS0). Kinetic data were fitted to the pseudo-first, -second and -third order model. The optimum pH for desorption was determined, in line with desorption and reuse analysis. Experiments dealing the increase of mass of adsorbent showed a strong increase in total dye removal.
Dogdu, Gamze; Yalcuk, Arda; Postalcioglu, Seda
2017-02-01
There are more than a hundred textile industries in Turkey that discharge large quantities of dye-rich wastewater, resulting in water pollution. Such effluents must be treated to meet discharge limits imposed by the Water Framework Directive in Turkey. Industrial treatment facilities must be required to monitor operations, keep them cost-effective, prevent operational faults, discharge-limit infringements, and water pollution. This paper proposes the treatment of actual textile wastewater by vertical flow constructed wetland (VFCW) systems operation and monitoring effluent wastewater quality using fuzzy logic with a graphical user interface. The treatment performance of VFCW is investigated in terms of chemical oxygen demand and ammonium nitrogen (NH4-N) content, color, and pH parameters during a 75-day period of operation. A computer program was developed with a fuzzy logic system (a decision- making tool) to graphically present (via a status analysis chart) the quality of treated textile effluent in relation to the Turkish Water Pollution Control Regulation. Fuzzy logic is used in the evaluation of data obtained from the VFCW systems and for notification of critical states exceeding the discharge limits. This creates a warning chart that reports any errors encountered in a reactor during the collection of any sample to the concerned party.
Saratale, Rijuta Ganesh; Ghodake, Gajanan S; Shinde, Surendra K; Cho, Si-Kyung; Saratale, Ganesh Dattatraya; Pugazhendhi, Arivalagan; Bharagava, Ram Naresh
2018-05-05
In this study, CuO/Cu(OH) 2 (denoted as CuONs) nanostructures were synthesized relying to a cheap and rapid chemical co-precipitation method using copper sulfate and liquid ammonia as precursors. Results obtained from X-ray diffraction, and field emission scanning electron microscopy analysis revealed the crystalline nature of synthesized CuONs. Fourier transform infrared spectroscopy and energy dispersive spectroscopy studies showed interactions between copper and oxygen atoms. Synthesized CuONs showed the size in the range of 20-30 nm using high resolution transmission electron microscopy analysis. The photocatalytic degradation performance of Reactive Green 19A (RG19A) dye using CuONs was evaluated. The results showed that CuONs exhibited 98% degradation efficiency after 12 h and also complete mineralization in form of reducing chemical oxygen demand (COD) (84%) and total organic carbon (TOC) (80%). The nanocatalyst was recovered from the dye containing solution and its catalytic activity can be reused up to four times efficiently. CuONs was also able to decolorize actual textile effluent (80% in terms of the American Dye Manufacturers' Institute (ADMI) value) with significant reductions in COD (72%) and TOC (69%). Phytotoxicity studies revealed that the degradation products of RG19A and textile effluent were scarcely toxic in nature, thereby increasing the applicability of CuONs for the treatment of textile wastewater. Additionally, the CuONs showed a maximum antibacterial effect against human pathogens which also displayed synergistic antibacterial potential related to commercial antibiotics. Moreover, CuONs displayed strong antioxidant activity in terms of ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (IC 50 : 51 μg/mL) and DPPH (1,1-diphenyl-2-picrylhydrazyl) (IC 50 : 60 μg/mL) radical scavenging. The CuONs exhibited dose dependent response against tumor rat C6 cell line (IC 50 : 60 μg/mL) and may serve as anticancer agents. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sirianuntapiboon, Suntud; Sansak, Jutarat
2008-11-30
The GAC-SBR efficiency was decreased with the increase of dyestuff concentration or the decrease of bio-sludge concentration. The system showed the highest removal efficiency with synthetic textile wastewater (STWW) containing 40 mg/L direct red 23 or direct blue 201 under MLSS of 3,000 mg/L and hydraulic retention time (HRT) of 7.5 days. But, the effluent NO(3)(-) was higher than that of the influent. Direct red 23 was more effective than direct blue 201 to repress the GAC-SBR system efficiency. The dyes removal efficiency of the system with STWW containing direct red 23 was reduced by 30% with the increase of direct red 23 from 40 mg/L to 160 mg/L. The system with raw textile wastewater (TWW) showed quite low BOD(5) TKN and dye removal efficiencies of only 64.7+/-4.9% and 50.2+/-6.9%, respectively. But its' efficiencies could be increased by adding carbon sources (BOD(5)). The dye removal efficiency with TWW was increased by 30% and 20% by adding glucose (TWW+glucose) or Thai rice noodle wastewater (TWW+TRNWW), respectively. SRT of the systems were 28+/-1 days and 31+/-2 days with TWW+glucose and TWW+TRNWW, respectively.
Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris.
Hernández-Zamora, Miriam; Cristiani-Urbina, Eliseo; Martínez-Jerónimo, Fernando; Perales-Vela, Hugo Virgilio; Ponce-Noyola, Teresa; Montes-Horcasitas, María del Carmen; Cañizares-Villanueva, Rosa Olivia
2015-07-01
Discharge of dye-containing wastewater by the textile industry can adversely affect aquatic ecosystems and human health. Bioremoval is an alternative to industrial processes for detoxifying water contaminated with dyes. In this work, active and inactive biomass of the microalga Chlorella vulgaris was assayed for the ability to remove Congo Red (CR) dye from aqueous solutions. Through biosorption and biodegradation processes, Chlorella vulgaris was able to remove 83 and 58 % of dye at concentrations of 5 and 25 mg L(-1), respectively. The maximum adsorption capacity at equilibrium was 200 mg g(-1). The Langmuir model best described the experimental equilibrium data. The acute toxicity test (48 h) with two species of cladocerans indicated that the toxicity of the dye in the effluent was significantly decreased compared to the initial concentrations in the influent. Daphnia magna was the species less sensitive to dye (EC50 = 17.0 mg L(-1)), followed by Ceriodaphnia dubia (EC50 = 3.32 mg L(-1)). These results show that Chlorella vulgaris significantly reduced the dye concentration and toxicity. Therefore, this method may be a viable option for the treatment of this type of effluent.
Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability
Rani, Babita; Kumar, Vivek; Singh, Jagvijay; Bisht, Sandeep; Teotia, Priyanku; Sharma, Shivesh; Kela, Ritu
2014-01-01
Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination. PMID:25477943
Shanmugam, Bhuvanesh Kumar; Mahadevan, Surianarayanan
2015-11-01
Effluents from leather and textile industries are difficult for treatment owing to its recalcitrant nature. Since the volume of effluent generated are high, a robust and active microbial consortia is required for effective treatment. The focus in the present study is the calorimetric traceability of the metabolic behaviors of mixed microbial consortia, while it grows and degrades recalcitrant substance such as an azo dye acid blue 113. The consortium exhibited a syntrophic division of substrate and was effective in degrading dye up to 0.8g/l. Notably, it was able to degrade 93.7% of the azo dye in 12-16h whereas its monocultures required 48-72h to reach 82.1%. The products of biodegradation were analyzed and the chemical pathway substantiated using chemical thermodynamic and energy release patterns. MTT assay confirmed that emanates are eco-friendly. Heat profile pattern and bioenergetics provide fundamental data for a feasible application in commercial level. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aravind, Priyadharshini; Selvaraj, Hosimin; Ferro, Sergio; Sundaram, Maruthamuthu
2016-11-15
A hybrid approach for the remediation of recalcitrant dye wastewater is proposed. The chlorine-mediated electrochemical oxidation of real textile effluents and synthetic samples (using Ti/IrO2-RuO2-TiO2 anodes), lead to discoloration by 92% and 89%, respectively, in 100min, without significant mineralization. The remediation was obtained through biodegradation, after removing the residual bio-toxic active chlorine species via sunlight exposition. Results show that the electrochemical discoloration enhances the effluent biodegradability with about 90% COD removal employing acclimatized naphthalene-degrading bacterial consortia, within 144h. Based on results obtained through FT-IR and GC-MS, it is likely that azo group stripping and oxidative cleavage of dyes occur due to the nucleophilic attack of active chlorine species during electro-oxidation. This leads to generation of aromatic intermediates which are further desulfonated, deaminated or oxidized only at their functional groups. These aromatic intermediates were mineralized into simpler organic acids and aldehydes by bacterial consortia. Phyto-toxicity trials on Vigna radiata confirmed the toxic nature of the untreated dye solutions. An increase in root and shoot development was observed with the electrochemically treated solutions, the same was higher in case of bio-treated solutions. Overall, obtained results confirm the capability of the proposed hybrid oxidation scheme for the remediation of textile wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.
Studies on Nano-Engineered TiO2 Photo Catalyst for Effective Degradation of Dye
NASA Astrophysics Data System (ADS)
Sowmya, S. R.; Madhu, G. M.; Hashir, Mohammed
2018-02-01
All Heterogeneous photo catalysis employing efficient photo-catalyst is the advanced dye degradation technology for the purification of textile effluent. The present work focuses on Congo red dye degradation employing synthesized Ag doped TiO2 nanoparticles as photocatalyst which is characterized using SEM, XRD and FTIR. Studies are conducted to study the effect of various parameters such as initial dye concentration, catalyst loading and pH of solution. Ag Doped TiO2 photocatalyst improve the efficacy of TiO2 by reducing high band gap and electron hole recombination of TiO2. The reaction kinetics is analyzed and the process is found to follow pseudo first order kinetics.
Corso, C R; Almeida, E J R; Santos, G C; Morão, L G; Fabris, G S L; Mitter, E K
2012-01-01
Azo dyes are extensively used for coloring textiles, paper, food, leather, drinks, pharmaceutical products, cosmetics and inks. The textile industry consumes the largest amount of azo dyes, and it is estimated that approximately 10-15% of dyes used for coloring textiles may be lost in waste streams. Almost all azo dyes are synthetic and resist biodegradation, however, they can readily be reduced by a number of chemical and biological reducing systems. Biological treatment has advantages over physical and chemical methods due to lower costs and minimal environmental effect. This research focuses on the utilization of Aspergillus oryzae to remove some types of azo dyes from aqueous solutions. The fungus, physically induced in its paramorphogenic form (called 'pellets'), was used in the dye biosorption studies with both non-autoclaved and autoclaved hyphae, at different pH values. The goals were the removal of dyes by biosorption and the decrease of their toxicity. The dyes used were Direct Red 23 and Direct Violet 51. Their spectral stability (325-700 nm) was analyzed at different pH values (2.50, 4.50 and 6.50). The best biosorptive pH value and the toxicity limit, (which is given by the lethal concentration (LC(100)), were then determined. Each dye showed the same spectrum at different pH values. The best biosorptive pH was 2.50, for both non- autoclaved and autoclaved hyphae of A. oryzae. The toxicity level of the dyes was determined using the Trimmed Spearman-Karber Method, with Daphnia similis in all bioassays. The Direct Violet 51 (LC(100) 400 mg · mL(-1)) was found to be the most toxic dye, followed by the Direct Red 23 (LC(100) 900 mg · mL(-1)). The toxicity bioassays for each dye have shown that it is possible to decrease the toxicity level to zero by adding a small quantity of biomass from A. oryzae in its paramorphogenic form. The autoclaved biomass had a higher biosorptive capacity for the dye than the non-autoclaved biomass. The results show that bioremediation occurs with A. oryzae in its paramorphogenic form, and it can be used as a biosorptive substrate for treatment of industrial waste water containing azo dyes.
Current technologies for biological treatment of textile wastewater--a review.
Sarayu, K; Sandhya, S
2012-06-01
The release of colored wastewater represents a serious environmental problem and public health concern. Color removal from textile wastewater has become a big challenge over the last decades, and up to now, there is no single and economically attractive treatment method that can effectively decolorize the wastewater. Effluents from textile manufacturing, dyeing, and finishing processes contain high concentrations of biologically difficult-to-degrade or even inert auxiliaries, chemicals like acids, waxes, fats, salts, binders, thickeners, urea, surfactants, reducing agents, etc. The various chemicals such as biocides and stain repellents used for brightening, sequestering, anticreasing, sizing, softening, and wetting of the yarn or fabric are also present in wastewater. Therefore, the textile wastewater needs environmental friendly, effective treatment process. This paper provides a critical review on the current technology available for decolorization and degradation of textile wastewater and also suggests effective and economically attractive alternatives.
Treatment of a Textile Effluent from Dyeing with Cochineal Extracts Using Trametes versicolor Fungus
Arroyo-Figueroa, Gabriela; Ruiz-Aguilar, Graciela M. L.; López-Martínez, Leticia; González-Sánchez, Guillermo; Cuevas-Rodríguez, Germán; Rodríguez-Vázquez, Refugio
2011-01-01
Trametes versicolor (Tv) fungus can degrade synthetic dyes that contain azo groups, anthraquinone, triphenylmethane polymers, and heterocyclic groups. However, no references have been found related to the degradation of natural dyes, such as the carminic acid that is contained in the cochineal extract. Experiments to determine the decolorization of the effluent used in the cotton dyeing process with cochineal extract by means of Tv fungus were done. Treatments to determine decolorization in the presence or absence of Kirk's medium, glucose, and fungus, with an addition of 50% (v v-1) of nonsterilized effluent were performed. Physicochemical characterization was performed at the start and end of the treatment. Degradation kinetics were determined. A direct relationship was found between the dry weight of fungi, pH, and the decolorization system, with higher decolorization at lower pH levels (pH ~4.3). High decolorization (81% ± 0.09; 88% ± 0.17; and 99% ± 0.04) for three of the eight treatments (Kirk's medium without glucose, Kirk's medium with glucose, and without medium with glucose, respectively) was found. Toxicity tests determined an increase in the initial effluent toxicity (7.33 TU) compared with the final treatment (47.73 TU) in a period of 11 days. For this system, a degradation sequence of the carminic acid structure present in the effluent by the Tv fungus is suggested, in which it is seen that metabolites still containing aromatic structures are generated. PMID:21552764
Arroyo-Figueroa, Gabriela; Ruiz-Aguilar, Graciela M L; López-Martínez, Leticia; González-Sánchez, Guillermo; Cuevas-Rodríguez, Germán; Rodríguez-Vázquez, Refugio
2011-05-05
Trametes versicolor (Tv) fungus can degrade synthetic dyes that contain azo groups, anthraquinone, triphenylmethane polymers, and heterocyclic groups. However, no references have been found related to the degradation of natural dyes, such as the carminic acid that is contained in the cochineal extract. Experiments to determine the decolorization of the effluent used in the cotton dyeing process with cochineal extract by means of Tv fungus were done. Treatments to determine decolorization in the presence or absence of Kirk's medium, glucose, and fungus, with an addition of 50% (v v-1) of nonsterilized effluent were performed. Physicochemical characterization was performed at the start and end of the treatment. Degradation kinetics were determined. A direct relationship was found between the dry weight of fungi, pH, and the decolorization system, with higher decolorization at lower pH levels (pH ~4.3). High decolorization (81% ± 0.09; 88% ± 0.17; and 99% ± 0.04) for three of the eight treatments (Kirk's medium without glucose, Kirk's medium with glucose, and without medium with glucose, respectively) was found. Toxicity tests determined an increase in the initial effluent toxicity (7.33 TU) compared with the final treatment (47.73 TU) in a period of 11 days. For this system, a degradation sequence of the carminic acid structure present in the effluent by the Tv fungus is suggested, in which it is seen that metabolites still containing aromatic structures are generated.
Abiri, Fardin; Fallah, Narges; Bonakdarpour, Babak
2017-03-01
In the present study the feasibility of the use of a bacterial batch sequential anaerobic-aerobic process, in which activated sludge was used in both parts of the process, for pretreatment of wastewater generated by a textile dyeing factory has been considered. Activated sludge used in the process was obtained from a municipal wastewater treatment plant and adapted to real dyeing wastewater using either an anaerobic-only or an anaerobic-aerobic process over a period of 90 days. The use of activated sludge adapted using the anaerobic-aerobic process resulted in a higher overall decolorization efficiency compared to that achieved with activated sludge adapted using the anaerobic-only cycles. Anaerobic and aerobic periods of around 34 and 22 hours respectively resulted in an effluent with chemical oxygen demand (COD) and color content which met the standards for discharge into the centralized wastewater treatment plant of the industrial estate in which the dyeing factory was situated. Neutralization of the real dyeing wastewater and addition of carbon source to it, both of which results in significant increase in the cost of the bacterial treatment process, was not found to be necessary to achieve the required discharge standards.
Borges, Gabriella Alexandre; Silva, Luciana Pereira; Penido, Jussara Alves; de Lemos, Leandro Rodrigues; Mageste, Aparecida Barbosa; Rodrigues, Guilherme Dias
2016-12-01
This paper reports a green and efficient procedure for extraction of the dyes Malachite Green (MG), Methylene Blue (MB), and Reactive Red 195 (RR) using an aqueous two-phase system (ATPS). An ATPS consists mainly of water, together with polymer and salt, and does not employ any organic solvent. The extraction efficiency was evaluated by means of the partition coefficients (K) and residual percentages (%R) of the dyes, under different experimental conditions, varying the tie-line length (TLL) of the system, the pH, the type of ATPS-forming electrolyte, and the type of ATPS-forming polymer. For MG, the best removal (K = 4.10 × 10(4), %R = 0.0069%) was obtained with the ATPS: PEO 1500 + Na2C4H4O6 (TLL = 50.21% (w/w), pH = 6.00). For MB, the maximum extraction (K = 559.9, %R = 0.258%) was achieved with the ATPS: PEO 400 + Na2SO4 (TLL = 50.31% (w/w), pH = 1.00). Finally for RR, the method that presented the best results (K = 3.75 × 10(4), %R = 0.237%) was the ATPS: PEO 400 + Na2SO4 (TLL = 50.31% (w/w), pH = 6.00). The method was applied to the recovery of these dyes from a textile effluent sample, resulting in values of K of 1.17 × 10(4), 724.1, and 3.98 × 10(4) for MG, MB, and RR, respectively, while the corresponding %R values were 0.0038, 0.154, and 0.023%, respectively. In addition, the ATPS methodology provided a high degree of color removal (96.5-97.95%) from the textile effluent. Copyright © 2016 Elsevier Ltd. All rights reserved.
Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27.
Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy
2015-01-01
Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by LC MS/MS analysis. The method led to very effective (90%) laccase immobilization and also imparted significant stability to the enzyme (more than 70% after 5 months of storage at 4°C). In batch decolorization, 90-95% decolorization was achieved of the simulated dye effluent for up to 10-20 cycles. Continuous decolorization in a packed bed bioreactor led to nearly 90% decolorization for up to 5 days. The immobilized laccase was also effective in decolorization and degradation of Acid Red 27 in the presence of a mediator. Four products of degradation were identified by LC-MS/MS analysis. The immobilized laccase in PVA-nitrate was concluded to be an effective agent in treatment of textile dye effluents.
de Souza, Maísa Tatiane Ferreira; Ambrosio, Elizangela; de Almeida, Cibele Andrade; de Souza Freitas, Thábata Karoliny Formicoli; Santos, Lídia Brizola; de Cinque Almeida, Vitor; Garcia, Juliana Carla
2014-08-01
The goal of this study was to investigate the activity of the coagulant extracted from the cactus Opuntia ficus-indica (OFI) in the process of coagulation/flocculation of textile effluents. Preliminary tests of a kaolinite suspension achieved maximum turbidity removal of 95 % using an NaCl extraction solution. Optimization assays were conducted with actual effluents using the response surface methodology (RSM) based on the Box-Behnken experimental design. The responses of the variables FeCl3, dosage, cactus dosage, and pH in the removal of COD and turbidity from both effluents were investigated. The optimum conditions determined for jeans washing laundry effluent were the following: FeCl3 160 mg L(-1), cactus dosage 2.60 mg L(-1), and pH 5.0. For the fabric dyeing effluent, the optimum conditions were the following: FeCl3 640 mg L(-1), cactus dosage 160 mg L(-1), and pH 6.0. Investigation of the effects of the storage time and temperature of the cactus O. ficus-indica showed that coagulation efficiency was not significantly affected for storage at room temperature for up to 4 days.
Basic dye decomposition kinetics in a photocatalytic slurry reactor.
Wu, Chun-Hsing; Chang, Hung-Wei; Chern, Jia-Ming
2006-09-01
Wastewater effluent from textile plants using various dyes is one of the major water pollutants to the environment. Traditional chemical, physical and biological processes for treating textile dye wastewaters have disadvantages such as high cost, energy waste and generating secondary pollution during the treatment process. The photocatalytic process using TiO2 semiconductor particles under UV light illumination has been shown to be potentially advantageous and applicable in the treatment of wastewater pollutants. In this study, the dye decomposition kinetics by nano-size TiO2 suspension at natural solution pH was experimentally studied by varying the agitation speed (50-200 rpm), TiO2 suspension concentration (0.25-1.71 g/L), initial dye concentration (10-50 ppm), temperature (10-50 degrees C), and UV power intensity (0-96 W). The experimental results show the agitation speed, varying from 50 to 200 rpm, has a slight influence on the dye decomposition rate and the pH history; the dye decomposition rate increases with the TiO2 suspension concentration up to 0.98 g/L, then decrease with increasing TiO2 suspension concentration; the initial dye decomposition rate increases with the initial dye concentration up to a certain value depending upon the temperature, then decreases with increasing initial dye concentration; the dye decomposition rate increases with the UV power intensity up to 64 W to reach a plateau. Kinetic models have been developed to fit the experimental kinetic data well.
Honorio, Jacqueline Ferandin; Veit, Márcia Teresinha; Gonçalves, Gilberto da Cunha; de Campos, Élvio Antonio; Fagundes-Klen, Márcia Regina
2016-01-01
The textile industry is known for the high use of chemicals, such as dyes, and large volumes of effluent that contaminate waters, a fact that has encouraged research and improved treatment techniques. In this study, we used unprocessed soybean hulls for the removal of reactive blue BF-5G dye. The point of zero charge of soybean hulls was 6.76. Regarding the speed of agitation in the adsorption process, the resistance to mass transfer that occurs in the boundary layer was eliminated at 100 rpm. Kinetics showed an experimental amount of dye adsorbed at equilibrium of 57.473 mg g(-1) obtained under the following conditions: dye initial concentration = 400 mg L(-1); diameter of particle = 0.725 mm; dosage = 6 g L(-1); pH 2; 100 rpm; temperature = 30 °C; and duration of 24 hours. The pseudo-second order best showed the dye removal kinetics. The adsorption isotherms performed at different temperatures (20, 30, 40 and 50 °C) showed little variation in the concentration range assessed, being properly adjusted by the Langmuir isotherm model. The maximum capacity of dye adsorption was 72.427 mg g(-1) at 30 °C. Since soybean hull is a low-cost industrial byproduct, it proved to be a potential adsorbent for the removal of the textile dye assessed.
Alkali, thermo and halo tolerant fungal isolate for the removal of textile dyes.
Kaushik, Prachi; Malik, Anushree
2010-11-01
In the present study potential of a fungal isolate Aspergillus lentulusFJ172995, was investigated for the removal of textile dyes. The removal percentages of dyes such as Acid Navy Blue, Orange-HF, Fast Red A, Acid Sulphone Blue and Acid Magenta were determined as 99.43, 98.82, 98.75, 97.67 and 69.98, respectively. None of the dyes inhibited the growth of A. lentulus. Detailed studies on growth kinetics, mechanism of dye removal and effect of different parameters on dye removal were conducted using Acid Navy Blue dye. It was observed that A. lentulus could completely remove Acid Navy Blue even at high initial dye concentrations, up to 900 mg/L. Highest uptake capacity of 212.92 mg/g was observed at an initial dye concentration of 900 mg/L. Dye removing efficiency was not altered with the variation of pH; and biomass production as well as dye removal was favored at higher temperatures. Dye removal was also efficient even at high salt concentration. Through growth kinetics studies it was observed that the initial exponential growth phase coincided with the phase of maximal dye removal. Microscopic studies suggest that bioaccumulation along with biosorption is the principle mechanism involved in dye removal by A. lentulus. Thus, it is concluded that being alkali, thermo and halo tolerant, A. lentulus isolate has a great potential to be utilized for the treatment of dye bearing effluents which are usually alkaline, hot and saline. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Arcanjo, Gemima Santos; Mounteer, Ann H; Bellato, Carlos Roberto; Silva, Laís Miguelina Marçal da; Brant Dias, Santos Henrique; Silva, Priscila Romana da
2018-04-01
The objective of this study was to evaluate ADMI color removal from a biologically treated textile mill effluent by heterogeneous photocatalysis with UV-visible irradiation (UV-vis) using a novel catalyst composed of TiO 2 supported on hydrotalcite and doped with iron oxide (HT/Fe/TiO 2 ). Simulated biological treatment of solutions of the dyes (50 mg/L) used in the greatest amounts at the mill where the textile effluent was collected resulted in no color removal in reactive dye solutions and about 50% color removal in vat dye solutions, after 96 h, indicating that the secondary effluent still contained a large proportion of anionic reactive dyes. Photocatalytic treatments were carried out with TiO 2 and HT/Fe/TiO 2 of Fe:Ti molar ratios of 0.25, 0.5, 0.75 and 1, with varying catalyst doses (0-3 mg/L), initial pH values (4-10) and UV-vis times (0-6 h). The highest ADMI color removal with unmodified TiO 2 was found at a dose of 2 g/L and pH 4, an impractical pH value for industrial application. The most efficient composite was HT/Fe/TiO 2 1 at pH 10, also at a dose of 2 g/L, which provided more complete ADMI color removal, from 303 to 9 ADMI color units (96%), than unmodified TiO 2 , from 303 to 37 ADMI color units (88%), under the same conditions. Hydroxyl radicals were responsible for the color reduction, since when 2-propanol, an OH scavenger, was added color removal was very low. For this reason, the HT/Fe/TiO 2 1 composite performed better at pH 10, because the higher concentration of hydroxide ions present at higher pH favored hydroxyl radical formation. COD reductions were relatively low and similar, approximately 20% for both catalysts after 6 h under UV-vis, because of the low initial COD (78 mg/L). Secondary effluent toxicity to Daphnia similis (EC 50 = 70.7%) was reduced by photocatalysis with TiO 2 (EC 50 = 95.0%) and the HT/Fe/TiO 2 1 composite (EC 50 = 78.6%). HT/Fe/TiO 2 1 was reused five times and still lowered secondary effluent ADMI color below local discharge limits. Benefits of the HT/Fe/TiO 2 1 catalyst compared to TiO 2 include its lower bandgap energy (2.34 eV vs 3.25 eV), higher ADMI color removal and its magnetic nature that facilitated its recovery and would reduce treatment costs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chitosan-edible oil based materials as upgraded adsorbents for textile dyes.
Dos Santos, Clayane Carvalho; Mouta, Rodolpho; Junior, Manoel Carvalho Castro; Santana, Sirlane Aparecida Abreu; Silva, Hildo Antonio Dos Santos; Bezerra, Cícero Wellington Brito
2018-01-15
Biopolymer chitosan is a low cost, abundant, environmentally friendly, very selective and efficient anionic dyes adsorbent, being a promising material for large-scale removal of dyes from wastewater. However, raw chitosan (CS) is an ineffective cationic dyes adsorbent and its performance is pH sensitive, thus, CS modifications that address these issues need to be developed. Here, we report the preparation and characterization of two new CS modifications using edible oils (soybean oil or babassu oil), and their adsorption performance for two dyes, one anionic (remazol red, RR) and one cationic (methylene blue, MB). Both modifications extended the pH range of RR adsorption. The babassu oil modification increased adsorption capacity of the cationic dye MB, whereas the soybean oil modification increased that of RR. Such improvements demonstrate the potential of these two new CS modifications as adsorbent candidates for controlling dyes pollution in effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B
2011-09-15
Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Adebayo Bello, Ibrahim; Kabbashi, Nassereldeen A.; Zahangir Alam, Md; Alkhatib, Ma'an F.; Nabilah Murad, Fatin
2017-07-01
Effluents from dye and textile industries are highly contaminated and toxic to the environment. High concentration of non-biodegradable compounds contributes to increased biochemical oxygen demand (BOD) and chemical oxygen demand (COD) of the wastewater bodies. Dyes found in wastewater from textile industries are carcinogenic, mutagenic or teratogenic. Biological processes involving certain bacteria, fungi and activated carbon have been employed in treating wastewater. These methods are either inefficient or ineffective. These complexities necessitates search for new approaches that will offset all the shortcomings of the present solutions to the challenges faced with textile wastewater management. This study produced a new biosorbent by the immobilization of fungal biomass on carbon nanotubes. The new biosorbent is called “carbon nanotubes immobilized biomass (CNTIB)” which was produced by immobilization technique. A potential fungal strain, Aspergillus niger was selected on the basis of biomass production. It was found out in this studies that fungal biomass were better produced in acidic medium. Aspergillus niger was immobilized on carbon nanotubes. One-factor-at-a time (OFAT) was employed to determine the effect of different factors on the immobilization of fungal biomass on carbon nanotubes and optimum levels at which the three selected parameters (pH, culture time and agitation rate) would perform. Findings from OFAT showed that the optimum conditions for immobilization are a pH of 5, agitation rate of 150rpm and a culture time of 5 days.
Saba, Beenish; Jabeen, Madeeha; Khalid, Azeem; Aziz, Irfan; Christy, Ann D
2015-01-01
Azo dyes are commonly generated as effluent pollutants by dye using industries, causing contamination of surface and ground water. Various strategies are employed to treat such wastewater; however, a multi-faceted treatment strategy could be more effective for complete removal of azo dyes from industrial effluent than any single treatment. In the present study, rice husk material was used as a substratum in two constructed wetlands (CWs) and augmented with microorganisms in the presence of wetland plants to effectively treat dye-polluted water. To evaluate the efficiency of each process the study was divided into three levels, i.e., adsorption of dye onto the substratum, phytoremediation within the CW and then bioremediation along with the previous two processes in the augmented CW. The adsorption process was helpful in removing 50% dye in presence of rice husk while 80% in presence of rice husk biocahr. Augmentation of microorganisms in CW systems has improved dye removal efficiency to 90%. Similarly presence of microorganisms enhanced removal of total nitrogen (68% 0 and Total phosphorus (75%). A significant improvement in plant growth was also observed by measuring plant height, number of leaves and leave area. These findings suggest the use of agricultural waste as part of a CW substratum can provide enhanced removal of textile dyes.
A Critical Comparison of Methods for the Analysis of Indigo in Dyeing Liquors and Effluents
Buscio, Valentina; Crespi, Martí; Gutiérrez-Bouzán, Carmen
2014-01-01
Indigo is one of the most important dyes in the textile industry. The control of the indigo concentration in dyeing liquors and effluents is an important tool to ensure the reproducibility of the dyed fabrics and also to establish the efficiency of the wastewater treatment. In this work, three analytical methods were studied and validated with the aim to select a reliable, fast and automated method for the indigo dye determination. The first method is based on the extraction of the dye, with chloroform, in its oxidized form. The organic solution is measured by Ultraviolet (UV)-visible spectrophotometry at 604 nm. The second method determines the concentration of indigo in its leuco form in aqueous medium by UV-visible spectrophotometry at 407 nm. Finally, in the last method, the concentration of indigo is determined by redox titration with potassium hexacyanoferrate (K3(Fe(CN)6)). The results indicated that the three methods that we studied met the established acceptance criteria regarding accuracy and precision. However, the third method was considered the most adequate for application on an industrial scale due to its wider work range, which provides a significant advantage over the others. PMID:28788185
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.
2011-09-22
This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect themore » best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.« less
NASA Astrophysics Data System (ADS)
Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.
2011-09-01
This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect the best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.
Vats, Arpita; Mishra, Saroj
2017-04-01
In this study, the white-rot fungus Cyathus bulleri was cultivated on low-cost agro-residues, namely wheat bran (WB), wheat straw (WS), and domestic waste orange peel (OP) for production of ligninolytic enzymes. Of the three substrates, WB and OP served as good materials for the production of laccase with no requirement of additional carbon or nitrogen source. Specific laccase activity of 94.4 U mg -1 extracellular protein and 21.01 U mg -1 protein was obtained on WB and OP, respectively. Maximum decolorization rate of 13.6 μmol h -1 U -1 laccase for reactive black 5 and 22.68 μmol h -1 U -1 laccase for reactive orange 16 (RO) was obtained with the WB culture filtrate, and 11.7 μmol h -1 U -1 laccase for reactive violet 5 was observed with OP culture filtrate. Importantly, Kiton blue A (KB), reported not to be amenable to enzymatic degradation, was degraded by culture filtrate borne activities. Products of degradation of KB and RO were identified by mass spectrometry, and a pathway of degradation proposed. WB-grown culture filtrate decolorized and detoxified real and simulated textile effluents by about 40%. The study highlights the use of inexpensive materials for the production of enzymes effective on dyes and effluents.
Colour removal and carbonyl by-production in high dose ozonation for effluent polishing.
Mezzanotte, V; Fornaroli, R; Canobbio, S; Zoia, L; Orlandi, M
2013-04-01
Experimental tests have been conducted to investigate the efficiency and the by-product generation of high dose ozonation (10-60 mg O3 L(-1)) for complete colour removal from a treated effluent with an important component of textile dyeing wastewater. The effluent is discharged into an effluent-dominated stream where no dilution takes place, and, thus, the quality requirement for the effluents is particularly strict. 30, 60 and 90 min contact times were adopted. Colour was measured as absorbance at 426, 558 and 660 nm wavelengths. pH was monitored throughout the experiments. The experimental work showed that at 50 mg L(-1) colour removal was complete and at 60 mg O3 L(-1) the final aldehyde concentration ranged between 0.72 and 1.02 mg L(-1). Glyoxal and methylglyoxal concentrations were directly related to colour removal, whereas formaldehyde, acetaldehyde, acetone and acrolein were not. Thus, the extent of colour removal can be used to predict the increase in glyoxal and methylglyoxal concentrations. As colour removal can be assessed by a simple absorbance measurement, in contrast to the analysis of specific carbonyl compounds, which is much longer and complex, the possibility of using colour removal as an indicator for predicting the toxic potential of ozone by-products for textile effluents is of great value. Copyright © 2013 Elsevier Ltd. All rights reserved.
Choline-based ionic liquids-enhanced biodegradation of azo dyes.
Sekar, Sudharshan; Surianarayanan, Mahadevan; Ranganathan, Vijayaraghavan; MacFarlane, Douglas R; Mandal, Asit Baran
2012-05-01
Industrial wastewaters such as tannery and textile processing effluents are often characterized by a high content of dissolved organic dyes, resulting in large values of chemical and biological oxygen demand (COD and BOD) in the aquatic systems into which they are discharged. Such wastewater streams are of rapidly growing concern as a major environmental issue in developing countries. Hence there is a need to mitigate this challenge by effective approaches to degrade dye-contaminated wastewater. In this study, several choline-based salts originally developed for use as biocompatible hydrated ionic liquids (i.e., choline sacchrinate (CS), choline dihydrogen phosphate (CDP), choline lactate (CL), and choline tartarate (CT)) have been successfully employed as the cosubstrate with S. lentus in the biodegradation of an azo dye in aqueous solution. We also demonstrate that the azo dye has been degraded to less toxic components coupled with low biomass formation. © 2012 American Chemical Society
Recent advancements in bioremediation of dye: Current status and challenges.
Vikrant, Kumar; Giri, Balendu Shekhar; Raza, Nadeem; Roy, Kangkan; Kim, Ki-Hyun; Rai, Birendra Nath; Singh, Ram Sharan
2018-04-01
The rampant industrialization and unchecked growth of modern textile production facilities coupled with the lack of proper treatment facilities have proliferated the discharge of effluents enriched with toxic, baleful, and carcinogenic pollutants including dyes, heavy metals, volatile organic compounds, odorants, and other hazardous materials. Therefore, the development of cost-effective and efficient control measures against such pollution is imperative to safeguard ecosystems and natural resources. In this regard, recent advances in biotechnology and microbiology have propelled bioremediation as a prospective alternative to traditional treatment methods. This review was organized to address bioremediation as a practical option for the treatment of dyes by evaluating its performance and typical attributes. It further highlights the current hurdles and future prospects for the abatement of dyes via biotechnology-based remediation techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.
Salony; Mishra, S; Bisaria, V S
2006-08-01
Many fungi (particularly the white rot) are well suited for treatment of a broad range of textile dye effluents due to the versatility of the lignin-degrading enzymes produced by them. We have investigated decolourization of a number of recalcitrant reactive azo and acid dyes using the culture filtrate and purified laccase from the fungus Cyathus bulleri. For this, the enzyme was purified from the culture filtrate to a high specific activity of 4,022 IU mg(-1) protein, produced under optimized carbon, nitrogen and C/N ratio with induction by 2,6-dimethylaniline. The protein was characterized as a monomer of 58+/-5.0 kDa with carbohydrate content of 16% and was found to contain all three Cu(II) centres. The three internal peptide sequences showed sequence identity (80-92%) with laccases of a number of white rot fungi. Substrate specificity indicated highest catalytic efficiency (k(cat)/K(M)) on guaiacol followed by 2,2'-azino-bis(3-ethylthiazoline-6-sulfonic acid) (ABTS). Decolourization of a number of reactive azo and acid dyes was seen with the culture filtrate of the fungus containing predominantly laccase. In spite of no observable effect of purified laccase on other dyes, the ability to decolourize these was achieved in the presence of the redox mediator ABTS, with 50% decolourization in 0.5-5.4 days.
Vyavahare, Govind D; Gurav, Ranjit G; Jadhav, Pooja P; Patil, Ravishankar R; Aware, Chetan B; Jadhav, Jyoti P
2018-03-01
In the present study, sorption and detoxification of malachite green (MG) dye was executed using biochar resulting after pyrolysis of agro-industrial waste at 400, 600 and 800 °C. Maximum sorption of MG dye (3000 mg/L) was observed on the sugarcane bagasse biochar (SCB) prepared at 800 °C. The interactive effects of different factors like dye concentration, time, pH and temperature on sorption of MG dye were investigated using response surface methodology (RSM). Optimum MG dye concentration, contact time, temperature and pH predicted through Box-Behnken based RSM model were 3000 mg/L MG dye, 51.89 min, 60 °C and 7.5, respectively. ANOVA analysis displayed the non-significant lack of fit value (0.4566), whereas, the predicted correlation coefficient values (R 2 0.8494) were reasonably in agreement with the adjusted value (R 2 0.9363) demonstrating highly significant model for MG dye sorption. The applicability of this model was also checked through F- test (30.39) with lower probability (0.0001) value. Furthermore, the characterization of SCB was performed using fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), Brunauer-Emmett-Teller surfaces (BET), total organic carbon (TOC) and atomic absorption spectroscopy (AAS). Phyto-toxicity and cytogenotoxicity studies showed successful removal of MG dye using SCB. In addition, the batch sorption studies for reutilization of SCB revealed that the SCB was effective in removal of MG for five repeated cycles. This technology would be effective for treating the toxic textile effluent released from the textile industries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impact of industrial effluents on the biochemical composition of fresh water fish Labeo rohita.
Muley, D V; Karanjkar, D M; Maske, S V
2007-04-01
In acute toxicity (96 hr) experiment the fingerlings of freshwater fish Labeo rohita was exposed to tannery, electroplating and textile mill effluents. The LC0 and LC50 concentrations were 15% and 20% for tannery effluents, 3% and 6% for electroplating effluents and 18% and 22% for textile mill effluents respectively. It was found that, electroplating effluent was more toxic than tannery and textile mill wastes. After acute toxicity experiments for different industrial effluents, various tissues viz. gill, liver, muscle and kidney were obtained separately from control, LC0 and LC50 groups. These tissues were used for biochemical estimations. The glycogen content in all the tissues decreased considerably upon acute toxicity of three industrial effluents except muscle in LC50 group of tannery effluent and kidney in LC50 group of textile mill effluent, when compared to control group. The total protein content decreased in all tissues in three effluents except gills in LC50 group of tannery effluent, kidney in LC50 group of electroplating effluent and kidney in LC0 group of textile mill effluent. In general total lipid content decreased in all tissues after acute exposure when compared to control group. The results obtained in the present study showed that, the industrial effluents from tannery, electroplating and textile mills caused marked depletion in biochemical composition in various tissues of the fish Labeo rohita after acute exposure.
Sharma, Praveen; Singh, Lakhvinder; Dilbaghi, Neeraj
2009-05-30
Decolorization of textile azo dye Disperse Yellow 211 (DY 211) was carried out from simulated aqueous solution by bacterial strain Bacillus subtilis. Response surface methodology (RSM), involving Box-Behnken design matrix in three most important operating variables; temperature, pH and initial dye concentration was successfully employed for the study and optimization of decolorization process. The total 17 experiments were conducted in the study towards the construction of a quadratic model. According to analysis of variance (ANOVA) results, the proposed model can be used to navigate the design space. Under optimized conditions the bacterial strain was able to decolorize DY 211 up to 80%. Model indicated that initial dye concentration of 100 mgl(-1), pH 7 and a temperature of 32.5 degrees C were found optimum for maximum % decolorization. Very high regression coefficient between the variables and the response (R(2)=0.9930) indicated excellent evaluation of experimental data by polynomial regression model. The combination of the three variables predicted through RSM was confirmed through confirmatory experiments, hence the bacterial strain holds a great potential for the treatment of colored textile effluents.
Cyanobacterial flora from polluted industrial effluents.
Parikh, Amit; Shah, Vishal; Madamwar, Datta
2006-05-01
Effluents originating from pesticides, agro-chemicals, textile dyes and dyestuffs industries are always associated with high turbidity, colour, nutrient load, and heavy metals, toxic and persistent compounds. But even with such an anthropogenic nature, these effluents contain dynamic cyanobacterial communities. Documentation of cyanobacterial cultures along the water channels of effluents discharged by above mentioned industries along the west coast of India and their relationship with water quality is reported in this study. Intensity of pollution was evaluated by physico-chemical analysis of water. Higher load of solids, carbon and nutrients were found to be persistent throughout the analysis. Sediment and water samples were found to be colored in nature. Cyanobacterial community structure was found to be influenced by the anthropogenic pollution. 40 different cyanobacterial species were recorded from 14 genera of 5 families and an elevated occurrence of Phormidium, Oscillatoria and Chroococcus genera was observed in all the sampling sites.
Supercritical carbon dioxide for textile applications and recent developments
NASA Astrophysics Data System (ADS)
Eren, H. A.; Avinc, O.; Eren, S.
2017-10-01
In textile industry, supercritical carbon dioxide (scCO2), possessing liquid-like densities, mostly find an application on textile dyeing processes such as providing hydrophobic dyes an advantage on dissolving. Their gas-like low viscosities and diffusion properties can result in shorter dyeing periods in comparison with the conventional water dyeing process. Supercritical carbon dioxide dyeing is an anhydrous dyeing and this process comprises the usage of less energy and chemicals when compared to conventional water dyeing processes leading to a potential of up to 50% lower operation costs. The advantages of supercritical carbon dioxide dyeing method especially on synthetic fiber fabrics hearten leading textile companies to alter their dyeing method to this privileged waterless dyeing technology. Supercritical carbon dioxide (scCO2) waterless dyeing is widely known and applied green method for sustainable and eco-friendly textile industry. However, not only the dyeing but also scouring, desizing and different finishing applications take the advantage of supercritical carbon dioxide (scCO2). In this review, not only the principle, advantages and disadvantages of dyeing in supercritical carbon dioxide but also recent developments of scCO2 usage in different textile processing steps such as scouring, desizing and finishing are explained and commercial developments are stated and summed up.
Aravind, Priyadharshini; Subramanyan, Vasudevan; Ferro, Sergio; Gopalakrishnan, Rajagopal
2016-04-15
The present article reports an integrated treatment method viz biodegradation followed by photo-assisted electrooxidation, as a new approach, for the abatement of textile wastewater. In the first stage of the integrated treatment scheme, the chemical oxygen demand (COD) of the real textile effluent was reduced by a biodegradation process using hydrogels of cellulose-degrading Bacillus cereus. The bio-treated effluent was then subjected to the second stage of the integrated scheme viz indirect electrooxidation (InDEO) as well as photo-assisted indirect electro oxidation (P-InDEO) process using Ti/IrO2-RuO2-TiO2 and Ti as electrodes and applying a current density of 20 mA cm(-2). The influence of cellulose in InDEO has been reported here, for the first time. UV-Visible light of 280-800 nm has been irradiated toward the anode/electrolyte interface in P-InDEO. The effectiveness of this combined treatment process in textile effluent degradation has been probed by chemical oxygen demand (COD) measurements and (1)H - nuclear magnetic resonance spectroscopy (NMR). The obtained results indicate that the biological treatment allows obtaining a 93% of cellulose degradation and 47% of COD removal, increasing the efficiency of the subsequent InDEO by a 33%. In silico molecular docking analysis ascertained that cellulose fibers affect the InDEO process by interacting with the dyes that are responsible of the COD. On the other hand, P-InDEO resulted in both 95% of decolorization and 68% of COD removal, as a result of radical mediators. Free radicals generated during P-InDEO were characterized as oxychloride (OCl) by electron paramagnetic resonance spectroscopy (EPR). This form of coupled approach is especially suggested for the treatment of textile wastewater containing cellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bedekar, Priyanka A; Bhalkar, Bhumika N; Patil, Swapnil M; Govindwar, Sanjay P
2016-10-01
Generation of secondary sludge is a major concern of textile dye removal by coagulation process. Combinatorial coagulation-biodegradation treatment system has been found efficient in degradation of coagulated textile dye sludge. Moringa oleifera seed powder (700 mg L -1 ) was able to coagulate textile dyestuff from real textile wastewater with 98 % color removal. Novel consortium-BBA was found to decolorize coagulated dye sludge. Parameters that significantly affect coagulation process were optimized using response surface methodology. The bench-scale stirred tank reactor (50-L capacity) designed with optimized parameters for coagulation process could efficiently remove 98, 89, 78, and 67 % of American Dye Manufacturer's Institute (ADMI) in four repetitive cycles, respectively. Solid-state fermentation composting reactor designed to treat coagulated dye sludge showed 96 % removal of dye within 10 days. Coagulation of dyes from textile wastewater and degradation of coagulated dye sludge were confirmed by Fourier transform infrared spectroscopy (FTIR) analysis. Cell morphology assay, comet assay, and phytotoxicity confirmed the formation of less toxic products after coagulation and degradation mechanism.
Raghunath, Sharista; Anand, K; Gengan, R M; Nayunigari, Mithil Kumar; Maity, Arjun
2016-12-01
In this article, adsorption and kinetic studies were carried out on three textile dyes, namely Reactive Blue 222 (RB 222), Reactive Red 195 (RR 195) and Reactive Yellow 145 (RY 145). The dyes studied in a mixture were adsorbed under various conditions onto PRO-BEN, a bentonite modified with a new cationic proline polymer (l-proline-epichlorohydrin polymer). The proline polymer was characterized by 1 H NMR, Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and TEM. The PRO-BEN composite was characterized by FT-IR, dynamic light scattering (DLS) (zeta potential), TEM imaging, SEM/EDX and X-ray photoelectron spectroscopy (characterize the binding energy). During adsorption studies, factors involving pH, temperature, the initial concentrations of the dyes and the quantity of PRO-BEN used during adsorption were established. The results revealed that the adsorption mechanism was categorized by the Langmuir type 1 isotherm. The adsorption data followed the pseudo-second order kinetic model. The intraparticle diffusion model indicated that adsorption did not only depend on the intraparticle diffusion of the dyes. The thermodynamic parameters verified that the adsorption process was spontaneous and exothermic. The Gibbs free energy values indicated that physisorption had occurred. Successful adsorption of dyes from an industrial effluent was achieved. Desorption studies concluded that PRO-BEN desorbed the dyes better than alumina. This can thereby be viewed as a recyclable remediation material. The PRO-BEN composite could be a cost efficient alternative towards the removal of organic dyes in wastewater treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
He, Yaozhong; Wang, Xiaojun; Xu, Jinling; Yan, Jinli; Ge, Qilong; Gu, Xiaoyang; Jian, Lei
2013-04-01
A combined process including integrated ozone-BAFs (ozone biological aerated filters) and membrane filtration was first applied for recycling textile effluents in a cotton textile mill with capacity of 5000 m(3)/d. Influent COD (chemical oxygen demand) in the range of 82-120 mg/L, BOD5 (5-day biochemical oxygen demand) of 12.6-23.1 mg/L, suspended solids (SSs) of 38-52 mg/L and color of 32-64° were observed during operation. Outflows with COD≤45 mg/L, BOD5≤7.6 mg/L, SS≤15 mg/L, color≤8° were obtained after being decontaminated by ozone-BAF with ozone dosage of 20-25 mg/L. Besides, the average removal rates of PVA (polyvinyl alcohol) and UV254 were 100% and 73.4% respectively. Permeate water produced by RO (reverse osmosis) could be reused in dyeing and finishing processes, while the RO concentrates could be discharged directly under local regulations with COD≤100 mg/L, BOD5≤21 mg/L, SS≤52 mg/L, color≤32°. Results showed that the combined process could guarantee water reuse with high quality, and solve the problem of RO concentrate disposal. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sharma, Pankaj; Kaur, Harleen; Sharma, Monika; Sahore, Vishal
2011-12-01
The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater.
Abdelmalek, F; Gharbi, S; Benstaali, B; Addou, A; Brisset, J L
2004-05-01
A recent non-thermal plasma technique (i.e., a gliding arc discharge which generates reactive species at atmospheric pressure) is tested for pollution abatement of dyes dispersed in synthetic solutions and industrial effluents. Yellow Supranol 4 GL (YS) and Scarlet Red Nylosan F3 GL (SRN) are toxic synthetic dyes widely used in the Algerian textile industry and frequently present in liquid wastes of manufacture plants. Classical removal treatment processes are not efficient enough, so that the presence of dyes in liquid effluents may cause serious environmental problems, in connection with reusing waste waters for irrigation. The degradation processes achieved by the oxidising species formed in the plasma are followed by UV/VIS spectroscopy and by chemical oxygen demand measurements. They are almost complete (i.e., 92.5% for YS and 90% for dilute SRN) and rapidly follow pseudo-first-order laws, with overall estimated rate constants 3 x 10(-4) and 4 x 10(-4)s-1 for YS and SRN, respectively. The degradation rate constant for the industrial mixture (i.e., k = 1.45 x 10(-3)s-1) is a mean value for two consecutive steps (210(-3) and 6 x 10(-5)s-1) measured at the absorption peaks of the major constituent dyes, YS and SRN.
Santhanam, Manikandan; Selvaraj, Rajeswari; Annamalai, Sivasankar; Sundaram, Maruthamuthu
2017-11-01
This study presents a combined electrochemical, sunlight-induced oxidation and biological process for the treatment of textile effluent. In the first step, RuO 2 -TiO 2 /Ti and Titanium were used as the electrodes in EO process and color removal was achieved in 40 min at an applied current density of 20 mA cm -2 . The EO process generated about 250 mg L -1 of active chlorine which hampered the subsequent biological treatment process. Thus, in the second step, sun light-induced photolysis (SLIP) is explored to remove hypochlorite present in the EO treated effluent. In the third step, the SLIP treated effluent was fed to laccase positive bacterial consortium for biological process. To assess the effect of SLIP in the overall process, experiments were carried out with and without SLIP process. In experiments without SLIP, sodium thiosulfate was used to remove active chlorine. HPLC analysis showed that SLIP integrated experiments achieved an overall dye component degradation of 71%, where as only 22% degradation was achieved in the absence of SLIP process. The improvement in degradation with SLIP process is attributed to the presence of ClO radicals which detected by EPR analysis. The oxidation of organic molecules during process was confirmed by FT-IR and GC-MS analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rodríguez, Francisca A; Mateo, María N; Aceves, Juan M; Rivero, Eligio P; González, Ignacio
2013-01-01
This work presents a study on degradation of indigo carmine dye in a filter-press type FM01-LC reactor using Sb2O5-doped Ti/IrO2-SnO2 dimensionally stable anode (DSA) electrodes. Micro- and macroelectrolysis studies were carried out using solutions of 0.8 mM indigo carmine in 0.05 M NaCl, which resemble blue denim laundry industrial wastewater. Microelectrolysis results show the behaviour of DSA electrodes in comparison with the behaviour of boron-doped diamond (BDD) electrodes. In general, dye degradation reactions are carried out indirectly through active chlorine generated on DSA, whereas in the case of BDD electrodes more oxidizing species are formed, mainly OH radicals, on the electrode surface. The well-characterized geometry, flow pattern and mass transport of the FM01-LC reactor used in macroelectrolysis experiments allowed the evaluation of the effect of hydrodynamic conditions on the chlorine-mediated degradation rate. Four values of Reynolds number (Re) (93, 371, 464 and 557) at four current densities (50, 100, 150 and 200 A/m2) were tested. The results show that the degradation rate is independent of Re at low current density (50 A/m2) but becomes dependent on the Re at high current density (200 A/m2). This behaviour shows the central role of mass transport and the reactor parameters and design. The low energy consumption (2.02 and 9.04 kWh/m3 for complete discolouration and chemical oxygen demand elimination at 50 A/m2, respectively) and the low cost of DSA electrodes compared to BDD make DSA electrodes promising for practical application in treating industrial textile effluents. In the present study, chlorinated organic compounds were not detected.
Hemachandra, Chamini K; Pathiratne, Asoka
2016-09-01
Bioassays for cyto-genotoxicity assessments are generally not required in current textile industry effluent discharge management regulations. The present study applied in vivo plant and fish based toxicity tests viz. Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay and nuclear abnormalities tests in combination with physico-chemical analysis for assessing potential cytotoxic/genotoxic impacts of treated textile industry effluents reaching a major river (Kelani River) in Sri Lanka. Of the treated effluents tested from two textile industries, color in the Textile industry 1 effluents occasionally and color, biochemical oxygen demand and chemical oxygen demand in the Textile industry 2 effluents frequently exceeded the specified Sri Lankan tolerance limits for discharge of industrial effluents into inland surface waters. Exposure of A. cepa bulbs to 100% and 12.5% treated effluents from both industries resulted in statistically significant root growth retardation, mito-depression, and induction of chromosomal abnormalities in root meristematic cells in comparison to the dilution water in all cases demonstrating cyto-genotoxicity associated with the treated effluents. Exposure of O. niloticus to the 100% and 12.5% effluents, resulted in erythrocytic genetic damage as shown by elevated total comet scores and induction of nuclear abnormalities confirming the genotoxicity of the treated effluents even with 1:8 dilution. The results provide strong scientific evidence for the crucial necessity of incorporating cyto-genotoxicity impact assessment tools in textile industry effluent management regulations considering human health and ecological health of the receiving water course under chronic exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Peláez-Cid, A. A.; Tlalpa-Galán, M. A.; Herrera-González, A. M.
2013-06-01
This paper presents the adsorption results of acid, basic, direct, vat, and reactive-type dyes on carbonaceous adsorbent materials prepared starting off vegetable residue such as Opuntia ficus indica and Casimiroa edulis fruit wastes. The adsorbents prepared from Opuntia ficus indica waste were designated: TunaAsh, CarTunaT, and CarTunaQ. The materials obtained from Casimiroa edulis waste were named: CenZAP, CarZAPT, and CarZAPQ. TunaAsh and CenZAP consist of ashes obtained at 550 °C CarTunaT and CarZAPT consist of the materials carbonized at 400 °C lastly, CarTunaQ and CarZAPQ consist of chemically activated carbons using H3PO4 at 400 °C. Only the chemically activated materials were washed with distilled water until a neutral pH was obtained after their carbonization. All materials were ground and sieved to obtain a particle size ranging from 0.25 to 0.84 mm. The static adsorption results showed that both ashes and chemically activated carbon are more efficient at dye removal for both vegetable residues. For TunaAsh and CarTunaQ, removal rates of up to 100% in the cases of basic, acid, and direct dyes were achieved. Regarding wastewater containing reactive dyes, the efficiency ranged from 60 to 100%. For vat effluents, it ranged from 42 to 52%. In the case of CenZAP and CarZAPQ, it was possible to treat reactive effluents with rates ranging between 63 and 91%. Regarding vat effluents, it ranged from 57 to 68%. The process of characterization for all materials was done using scanning electron microscopy and infrared spectroscopy.
Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow
NASA Astrophysics Data System (ADS)
Ghaedi, M.; Hekmati Jah, A.; Khodadoust, S.; Sahraei, R.; Daneshfar, A.; Mihandoost, A.; Purkait, M. K.
2012-05-01
Adsorption is a promising technique for decolorization of effluents of textile dyeing industries but its application is limited due to requirement of high amounts of adsorbent required. The objective of this study was to assess the potential of cadmium telluride nanoparticles loaded onto activated carbon (CdTN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdTN-AC dose, and temperature. In order to investigate the efficiency of SY adsorption on CdTN-AC, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. Thermodynamic parameters such as enthalpy, entropy, activation energy, and sticking probability were also calculated. It was found that the sorption of SY onto CdTN-AC was spontaneous and endothermic in nature. The proposed adsorbent is applicable for SY removal from waste of real effluents including pea-shooter, orange drink and jelly banana with efficiency more than 97%.
Resonance Raman and UV-visible spectroscopy of black dyes on textiles.
Abbott, Laurence C; Batchelor, Stephen N; Smith, John R Lindsay; Moore, John N
2010-10-10
Resonance Raman and UV-visible diffuse reflectance spectra were recorded from samples of cotton, viscose, polyester, nylon, and acrylic textile swatches dyed black with one of seven single dyes, a mixture of two dyes, or one of seven mixtures of three dyes. The samples generally gave characteristic Raman spectra of the dyes, demonstrating that the technique is applicable for the forensic analysis of dyed black textiles. Survey studies of the widely used dye Reactive Black 5 show that essentially the same Raman spectrum is obtained on bulk sampling from the dye in solution, on viscose, on cotton at different uptakes, and on microscope sampling from the dye in cotton threads and single fibres. The effects of laser irradiation on the Raman bands and emission backgrounds from textile samples with and without dye are also reported. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
By-product identification and phytotoxicity of biodegraded Direct Yellow 4 dye.
Nouren, Shazia; Bhatti, Haq Nawaz; Iqbal, Munawar; Bibi, Ismat; Kamal, Shagufta; Sadaf, Sana; Sultan, Misbah; Kausar, Abida; Safa, Yusra
2017-02-01
Citrus limon peroxidase mediated decolourization of Direct Yellow 4 (DY4) was investigated. The process variables (pH, temperature, incubation time, enzyme dose, H 2 O 2 amount, dye concentration, co-metal ions and surfactants) were optimized for maximum degradation of dye. Maximum dye decolourization of 89.47% was achieved at pH 5.0, temperature 50 °C, enzyme dose 24 U/mL, H 2 O 2 concentration 0.25 mM and DY4 concentration 18.75 mg/L and incubation time 10 min. The co-metal ions and surfactants did not affect the dye decolourization significantly. Response surface analysis revealed that predicted values were in agreement with experimentally determined responses. The degradation products were identified by UPLC/MS analysis and degradation pathway was proposed. Besides, phytotoxicity assay revealed a considerable detoxification in response of biodegradation of DY4 dye. C. limon showed promising efficiency for DY4 degradation and could possibly be used for the remediation of textile effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Jie; Lin, Qi; Ng, Tzi Bun; Ye, Xiuyun; Lin, Juan
2014-01-01
Laccases (EC 1.10.3.2) are a class of multi-copper oxidases with important industrial values. A basidiomycete strain Cerrena sp. HYB07 with high laccase yield was identified. After cultivation in the shaking flask for 4 days, a maximal activity of 210.8 U mL−1 was attained. A 58.6-kDa laccase (LacA) with 7.2% carbohydrate and a specific activity of 1952.4 U mg−1 was purified. 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) was the optimal substrate, with K m and k cat being 93.4 µM and 2468.0 s−1, respectively. LacA was stable at 60°C, pH 5.0 and above, and in organic solvents. Metal ions Na+, K+, Ca2+, Mg2+, Mn2+, Zn2+ enhanced LacA activity, while Fe2+ and Li+ inhibited LacA activity. LacA decolorized structurally different dyes and a real textile effluent. Its gene and cDNA sequences were obtained. Putative cis-acting transcriptional response elements were identified in the promoter region. The high production yield and activity, robustness and dye decolorizing capacity make LacA and Cerrena sp. HYB07 potentially useful for industrial and environmental applications such as textile finishing and wastewater treatment. PMID:25356987
Martorell, María M; Rosales Soro, María Del M; Pajot, Hipólito F; de Figueroa, Lucía I C
2017-09-16
Trichosporon akiyoshidainum HP2023 is a basidiomycetous yeast isolated from Las Yungas rainforest (Tucumán, Argentina) and selected based on its outstanding textile-dye-decolorizing ability. In this work, the decolorization process was optimized using Reactive Black 5 as dye model. Lactose and urea were chosen as carbon and nitrogen sources through a one-at-time approach. Afterwards, factorial designs were employed for medium optimization, leading to the formulation of a simpler optimized medium which contains in g L -1 : lactose 10, yeast extract 1, urea 0.5, KH 2 PO 4 1 and MgSO 4 1. Temperature and agitation conditions were also optimized. The optimized medium and incubation conditions for dye removal were extrapolated to other dyes individually and a mixture of them. Dye removal process happened through both biosorption and biodegradation mechanisms, depending primarily on the dye structure. A positive relation between initial inoculum and dye removal rate and a negative relation between initial dye concentration and final dye removal percentages were found. Under optimized conditions, T. akiyoshidainum HP2023 was able to completely remove a mixture of dyes up to a concentration of 300 mg L -1 , a concentration much higher than those expected in real effluents.
Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge.
Peng, Xiaowei; Ma, Xiaoqian; Xu, Zhibin
2015-03-01
The synergistic interaction and kinetics of microalgae, textile dyeing sludge and their blends were investigated under combustion condition by thermogravimetric analysis. The textile dyeing sludge was blended with microalgae in the range of 10-90wt.% to investigate their co-combustion behavior. Results showed that the synergistic interaction between microalgae and textile dyeing sludge improved the char catalytic effect and alkali metals melt-induced effect on the decomposition of textile dyeing sludge residue at high temperature of 530-800°C. As the heating rate increasing, the entire combustion process was delayed but the combustion intensity was enhanced. The lowest average activation energy was obtained when the percentage of microalgae was 60%, which was 227.1kJ/mol by OFW and 227.4kJ/mol by KAS, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Beom-Su; Blaghen, Mohamed; Lee, Kang-Min
2017-07-01
Intensive research studies have revealed that fungal decolorization of dye wastewater is a promising replacement for the current process of dye wastewater decolorization. The authors isolated an Aspergillus sp. from the effluent of a textile industry area in Korea and assessed the effects of a variety of operational parameters on the decolorization of methyl red (MR) by this strain of Aspergillus sp. This Aspergillus sp. was then immobilized by entrapment in several polymeric matrices and the effects of operational conditions on MR decolorization were investigated again. The optimal decolorization activity of this Aspergillus sp. was observed in 1% glucose at a temperature of 37 °C and pH of 6.0. Furthermore, stable decolorization efficiency was observed when fungal biomass was immobilized into alginate gel during repeated batch experiment. These results suggest that the Aspergillus sp. isolated in Korea could be used to treat industrial wastewaters containing MR dye.
Analysis of in vivo penetration of textile dyes causing allergic reactions
NASA Astrophysics Data System (ADS)
Lademann, J.; Patzelt, A.; Worm, M.; Richter, H.; Sterry, W.; Meinke, M.
2009-10-01
Contact allergies to textile dyes are common and can cause severe eczema. In the present study, we investigated the penetration of a fluorescent textile dye, dissolved from a black pullover, into the skin of one volunteer during perspiration and nonperspiration. Previously, wearing this pullover had induced a severe contact dermatitis in an 82-year old woman, who was not aware of her sensitization to textile dyes. The investigations were carried out by in vivo laser scanning microscopy. It could be demonstrated that the dye was eluted from the textile material by sweat. Afterwards, the dye penetrated into the stratum corneum and into the hair follicles. Inside the hair follicles, the fluorescent signal was still detectable after 24 h, whereas it was not verifiable anymore in the stratum corneum, Laser scanning microscopy represents an efficient tool for in vivo investigation of the penetration and storage of topically applied substances and allergens into the human skin and reveals useful hints for the development and optimization of protection strategies.
Sugarcane bagasse powder as biosorbent for reactive red 120 removals from aqueous solution
NASA Astrophysics Data System (ADS)
Ahmad, S.; Wong, Y. C.; Veloo, K. V.
2018-04-01
Reactive red 120 is used as a textile dye for fabric coloring. The dye waste is produced during textile finishing process subsequently released directly to water bodies which giving harmful effects to the environment due to the carcinogenic characteristic. Adsorption process becomes an effective treatment to treat textile dye. This research emphasizes the treatment of textile dye namely reactive red 120 (RR120) by using sugarcane bagasse powder. The batch study was carried out under varying parameters such as 60 minutes contact time, pH (1-8), dye concentration (5-25 mg/L), particle size (125-500 μm) and biosorbent dosage (0.01-0.2 g/L). The maximum adsorption percentage of RR120 was 94.62%. The adsorption of dye was increased with the decreasing of pH, initial dye concentration and particle size. Sugarcane bagasse powder as low-cost biosorbent was established using Fourier Transform Infrared (FTIR) and scanning electron microscopy (SEM). This locally agricultural waste could be upgraded into useful material which is biosorbent that promising for decolorization of colored textile wastewater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Da Dalt, S., E-mail: silvana.da.dalt@ufrgs.br; Alves, A.K.; Bergmann, C.P.
2013-05-15
Highlights: ► MWCNTs/TiO{sub 2} composites were obtained to degrade organic dyes in water. ► MWCNT/TiO{sub 2} composites were analyzed by photocatalysis and structural characterization. ► The photocatalytic shows efficient method for the degradation of dyes from aqueous effluents. - Abstract: The textile and dyestuff industries are the primary sources of the release of synthetic dyes into the environment and usually there are major pollutants in dye wastewaters. Because of their toxicity and slow degradation, these dyes are categorized as environmentally hazardous materials. In this context, carbon nanotubes/TiO{sub 2} (CNTs/TiO{sub 2}) composites were prepared using multi-walled CNTs (MWCNTs), titanium (IV) propoxidemore » and commercial TiO{sub 2} (P25{sup ®}) as titanium oxide sources, to degrade the methyl orange dye in solution through photocatalyst activity using UV irradiation. The composites were prepared by solution processing followed by thermal treatment at 400, 500 and 600 °C. The heterojunction between nanotubes and TiO{sub 2} was confirmed by XRD, specific surface area. The coating morphology was observed with SEM and TEM.« less
Ning, Xun-An; Lin, Mei-Qing; Shen, Ling-Zhi; Zhang, Jian-Hao; Wang, Jing-Yu; Wang, Yu-Jie; Yang, Zuo-Yi; Liu, Jing-Yong
2014-07-01
As components of synthetic dyes, polycyclic aromatic hydrocarbons (PAHs) are present as contaminants in textile dyeing sludge due to the recalcitrance in wastewater treatment process, which may pose a threat to environment in the process of sludge disposal. In order to evaluate PAHs in textile dyeing sludge, comprehensive investigation comprising 10 textile dyeing plants was undertaken. Levels, composition profiles and risk assessment of 16 EPA-priority PAHs were analyzed in this study. The total concentrations of 16 PAHs (∑16 PAHs) varied from 1463 ± 177 ng g(-1) to 16,714 ± 1,507 ng g(-1) with a mean value of 6386 ng g(-1). The composition profiles of PAHs were characterized by 3- and 4-ring PAHs, among which phenanthrene, anthracene and fluoranthene were the most dominant components. The mean benzo[a]pyrene equivalent (BaPeq) concentration of ∑16 PAHs in textile dyeing sludge was 423 ng g(-1), which was 2-3 times higher than concentrations reported for urban soil. According to ecological risk assessment, the levels of PAHs in the textile dyeing sludge may cause a significant risk to soil ecosystem after landfill or dumping on soil. Copyright © 2014 Elsevier Inc. All rights reserved.
Nandy, T; Dhodapkar, R S; Pophali, G R; Kaul, S N; Devotta, S
2005-09-01
Environmental concerns associated with textile processing had placed the textile sector in a Southern State of India under serious threat of survival. The textile industries were closed under the orders of the Statutory Board for reason of inadequate compliance to environmental discharge norms of the State for the protection of the drinking water source of the State capital. In compliance with the direction of the Board for zero effluent discharge, advanced treatment process have been implemented for recovery of boiler feed quality water with recourse to effluent recycling/reuse. The paper describes to a case study on the adequacy assessment of the full scale effluent treatment plant comprising chemical, biological and filtration processes in a small scale textile industry. In addition, implementation of measures for discernable improvement in the performance of the existing units through effective operation & maintenance, and application of membrane separation processes leading to zero effluent discharge is also highlighted.
Tahir, Uruj; Sohail, Sana; Khan, Umair Hassan
2017-10-01
Manipulation of bio-technological processes in treatment of dyestuffs has attracted considerable attention, because a large proportion of these synthetic dyes enter into natural environment during synthesis and dyeing operations that contaminates different ecosystems. Moreover, these dyestuffs are toxic and difficult to degrade because of their synthetic origin, durability, and complex aromatic molecular structures. Hence, bio-assisted phytoremediation has recently emerged as an innovative cleanup approach in which microorganisms and plants work together to transform xenobiotic dyestuffs into nontoxic or less harmful products. This manuscript will focus on competence and potential of plant-microbe synergistic systems for treatment of dyestuffs, their mixtures and real textile effluents, and effects of symbiotic relationship on plant performances during remediation process and will highlight their metabolic activities during bio-assisted phytodegradation and detoxification.
Reactive Black 5 dye degradation using filters of smuggled cigarette modified with Fe3.
Glugoski, Letícia Polli; de Jesus Cubas, Paloma; Fujiwara, Sérgio Toshio
2017-03-01
This study presents an attempt to solve two serious environmental problems: the generation of toxic effluents and solid waste disposal. The work proposes recycling cigarette filters with the purpose of degrading reactive dyes, which are used in the textile industry. Filters of smuggled cigarettes were recycled through Fe 3+ immobilization on their surface. The material obtained was characterized through Fourier transform infrared spectroscopy (FTIR), atomic absorption spectroscopy (AAS), scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), and ultraviolet-visible spectroscopy (UV-vis). The factorial design revealed that the most suitable conditions for the degradation of Reactive Black 5 dye were obtained by using 1 g of material at pH 3.0 in a 100 mg L -1 hydrogen peroxide solution. The material showed excellent performance in the Reactive Black 5 dye degradation process; in 60 min, 99.09 % dye was removed. At pH 7.0, the dye degradation was 72.67 %, indicating that the material prepared can be used at pH values greater than 3.0 without the occurrence of hydrated Fe 3+ oxide precipitation. Furthermore, the material showed no loss of catalytic activity after three degradation studies.
Ozone treatment of textile wastewaters for reuse.
Ciardelli, G; Capannelli, G; Bottino, A
2001-01-01
Treatment of textile wastewaters by means of an ozonation pilot plant are described. Wastewaters used were produced by a dyeing and finishing factory and were first treated in an active sludge plant and filtrated through sand. In the appropriate conditions very high colour removal (95-99%) was achieved and the effluent could be reused in production processes requiring water of high quality as dyeing yarns or light colorations. Even if the chemical oxygen demand of treated waters was still in a range (75-120 mg/l, a decrease of up to 60%) that was usually considered to be too high for recycling purposes, recycling experiments were successful. The economical viability of the techniques implementation was also demonstrated and the industrial plant is currently under realisation under an EU financed project. The paper considers also the possible improvement of ozone diffusion by means of membrane contactors realised in a second pilot plant, in order to further reduce operating costs of the technique. With respect to traditional systems, the gas/liquid contact surface is much higher being that of the membrane. Ozone at the interface is therefore immediately solubilized and potentially consumed with no additional resistance to the mass transfer.
The application of textile sludge adsorbents for the removal of Reactive Red 2 dye.
Sonai, Gabriela G; de Souza, Selene M A Guelli U; de Oliveira, Débora; de Souza, Antônio Augusto U
2016-03-01
Sludge from the textile industry was used as a low-cost adsorbent to remove the dye Reactive Red 2 from an aqueous solution. Adsorbents were prepared through the thermal and chemical treatment of sludge originating from physical-chemical (PC) and biological (BIO) effluent treatment processes. The adsorbent characterization was carried out through physical-chemical analysis, X-ray fluorescence (XRF) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, pHPZC determination, Boehm titration method, Brunauer-Emmett-Teller (BET) surface area analysis and scanning electron microscopy (SEM). Batch kinetic experiments and adsorption isotherm modeling were conducted under different pH and temperature conditions. The results for the kinetic studies indicate that the adsorption processes associated with these systems can be described by a pseudo-second-order model and for the equilibrium data the Langmuir model provided the best fit. The adsorption was strongly dependent on the pH but not on the temperature within the ranges studied. The maxima adsorption capacities were 159.3 mg g(-1) for the BIO adsorbent and 213.9 mg g(-1) for PC adsorbent at pH of 2 and 25 °C. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mahlalela, Lwazi C; Ngila, Jane C; Dlamini, Langelihle N
2017-07-03
The use of nanoparticles (NPs) in several consumer products has led to them finding their way into wastewater treatment plants (WWTPs). Some of these NPs have photocatalytic properties, thus providing a possible solution to textile industries to photodegrade dyes from their wastewater. Thus, the interaction of NPs with industrial dye effluents is inevitable. The Organization for Economic Co-operation and development (OECD) guideline for testing of chemical 303A was employed to study the fate and behaviour of TiO 2 NPs in industrial dye-stuff effluent. This was due to the unavailability of NPs' fate and behaviour test protocols. The effect of TiO 2 NPs on the treatment process was ascertained by measuring chemical oxygen demand (COD) and 5-day biological oxygen demand (BOD5). Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to study the fate and behavior of TiO 2 NPs. Acclimatization of bacteria to target pollutants was a crucial factor for the treatment efficiency of activated sludge in a simulated wastewater treatment plant (SWTP). The acclimatization of the activated sludge to the synthetic industrial dye-stuff effluent was successfully achieved. Effect of TiO 2 NPs on the treatment process efficiency was then investigated. Addition of TiO 2 NPs had no effect on the treatment process as chemical oxygen demand (COD) removal remained >80%. Measured total plate count (TPC) affirmed that the addition of TiO 2 NPs had no effect on the treatment process. The removal of total nitrogen (TN) was not efficient as the treatment system was required to have an oxic and anoxic stage for efficient TN removal. Results from X-ray powder diffraction (XRD) confirmed that the anatase phase of the added TiO 2 NPs remained unchanged even after exposure to the treatment plant. Removal of the NPs from the influent was facilitated by biosorption of the NPs on the activated sludge. Nanoparticles received by wastewater treatment plants will therefore reach the environment through sludge waste dumped in landfill. About 90% of TiO 2 was retained in the activated sludge, and 10-11% escaped with the treated effluents. Scanning electron microscope (SEM) mapping micrographs together with an energy dispersive X-ray spectroscopy (EDS) confirmed the presence of Ti in the sludge.
Alizarin red S dye removal from contaminated water on calcined [Mg/Al, Zn/Al and MgZn/Al]-LDH
NASA Astrophysics Data System (ADS)
Aissat, Miloud; Hamouda, Sara; Benhadria, Naceur; Chellali, Rachid; Bettahar, Noureddine
2018-05-01
The waste water rejected by the textile industries is loaded with organic dyes, responsible for the high color present in the effluents. Some dyes and / or their degradation products could be carcinogenic and may have mutagenic properties. The rapid growth of the global economy has caused many environmental problems with a huge pollution problem. The abuse use of chemicals product is an environmental toxicological problem. The consequences can be serious for water resources. In this perspective, our study comes to participate with new means of depollution using new materials with interesting properties in the treatment of pollution. Among these materials, LDHs whose synthesis is easy and inexpensive can be a tool in the treatment of water Polluted [1]. Our contribution consists in using HDL as a means of sorption of dyes which are considered as polluting agents of waters especially for the industry textile. This study considers the removal of the Alizarine Red S (AR) from water on calcined MgAl,ZnAL and MgZnAL-layered double hydroxides. The different LDH was prepared by copreprecipation method. The materials was obtained for molar ratios R =2 for the different LDH. The carbonated layered Calcination of these solids leads to the formation of mixed oxides which have the property of being able to be regenerated by adsorbing new anionic entities. Adsorbents and adsorption products were characterized by physicochemical techniques. The structural characterization of the material was carried out by X-ray diffraction, infrared spectroscopy (FTIR). Dosages of the polluted solutions were monitored by UV-Visible spectrometry.
Functionalization of textiles with silver and zinc oxide nanoparticles
NASA Astrophysics Data System (ADS)
Pulit-Prociak, Jolanta; Chwastowski, Jarosław; Kucharski, Arkadiusz; Banach, Marcin
2016-11-01
The paper presents a method for functionalization of textile materials using fabric dyes modified with silver or zinc oxide nanoparticles. Embedding of these nanoparticles into the structure of other materials makes that the final product is characterized by antimicrobial properties. Indigo and commercially available dye were involved in studies. It is worth to note that silver nanoparticles were obtained in-situ in the reaction of preparing indigo dye and in the process of preparing commercial dye baths. Such a method allows reducing technological steps. The modified dyes were used for dyeing of cotton fibers. The antimicrobial properties of final textile materials were studied. Saccharomyces cerevisiae strain was used in microbiological test. The results confirmed biocidal activity of prepared materials.
He, Xiao-Ling; Song, Chao; Li, Yuan-Yuan; Wang, Ning; Xu, Lei; Han, Xin; Wei, Dong-Sheng
2018-04-15
A fast-growing fungus with remarkable ability to degrade several azo dyes under non-sterile conditions was isolated and identified. This fungus was identified as Trichoderma tomentosum. Textile effluent of ten-fold dilution could be decolorized by 94.9% within 72h before optimization. Acid Red 3R model wastewater with a concentration of 85.5mgL -1 could be decolorized by 99.2% within the same time after optimization. High-level of manganese peroxidase and low-level of lignin peroxidase activities were detected during the process of decolorization from the culture supernatant, indicating the possible involvement of two enzymes in azo dye decolorization. No aromatic amine products were detected from the degradation products of Acid Red 3R by gas chromatography-mass spectrometry (GC/MS) analysis, indicating the possible involvement of a special symmetrical oxidative degradation pathway. Phytotoxicity assay confirmed the lower toxicity toward the test plant seeds of the degradation products when compared to the original dye. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yanto, Dede Heri Yuli; Zahara, Syifa; Laksana, Raden Permana Budi; Anita, Sita Heris; Oktaviani, Maulida; Sari, Fahriya Puspita
2017-01-01
An immobilization technique using polyvinyl alcohol (PVA) crosslinked with sodium alginate as a matrix has been developed for textile dyes decolorization. Textiles use dye as an addition to the aesthetic value of the product. Dyes are generally used is a textile dye where the waste will be released directly into the waters around 2-20%. Therefore, it is important to develop an enzyme immobilization method using PVA-Alginate as a matrix. Based on the results of the study showed that the PVA-Alginate beads produced high decolorization percent compared to beads which contains only Ca-alginate alone and formula matrix is optimum at PVA 6% and alginate 1.5%. Encapsulation with boric acid at 7% showed optimum decolorization and reduction for enzyme leakage during decolorization. This study suggested that immobilization of enzymes into PVA-alginate matrix might be used as a biodecolorating agent.
Saravanan, R; Karthikeyan, N; Gupta, V K; Thirumal, E; Thangadurai, P; Narayanan, V; Stephen, A
2013-05-01
Degradation of model organic dye and industry effluent was studied using different weight percentages of Ag into ZnO as a catalyst. In this study, the catalysts were prepared by thermal decomposition method, which was employed for the first time in the preparation of ZnO/Ag nanocomposite catalysts. The physical and chemical properties of the prepared samples were studied using various techniques. The specific surface area, which plays an important role in the photocatalytic degradation, was studied using BET analysis and 10 wt.% Ag into ZnO showed the best degrading efficiency. The optical absorption (UV-vis) and emission (PL) properties of the samples were studied and results suggest better photocatalytic properties for 10 wt.% Ag sample compared to other samples. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Brüschweiler, Beat J; Küng, Simon; Bürgi, Daniel; Muralt, Lorenz; Nyfeler, Erich
2014-07-01
Azo dyes in textiles may release aromatic amines after enzymatic cleavage by skin bacteria or after dermal absorption and metabolism in the human body. From the 896 azo dyes with known chemical structure in the available textile dyes database, 426 azo dyes (48%) can generate one or more of the 22 regulated aromatic amines in the European Union in Annex XVII of REACH. Another 470 azo dyes (52%) can be cleaved into exclusively non-regulated aromatic amines. In this study, a search for publicly available toxicity data on non-regulated aromatic amines was performed. For a considerable percentage of non-regulated aromatic amines, the toxicity database was found to be insufficient or non-existent. 62 non-regulated aromatic amines with available toxicity data were prioritized by expert judgment with objective criteria according to their potential for carcinogenicity, genotoxicity, and/or skin sensitization. To investigate the occurrence of azo dye cleavage products, 153 random samples of clothing textiles were taken from Swiss retail outlets and analyzed for 22 high priority non-regulated aromatic amines of toxicological concern. Eight of these 22 non-regulated aromatic amines of concern could be detected in 17% of the textile samples. In 9% of the samples, one or more of the aromatic amines of concern could be detected in concentrations >30 mg/kg, in 8% of the samples between 5 and 30 mg/kg. The highest measured concentration was 622 mg/kg textile. There is an obvious need to assess consumer health risks for these non-regulated aromatic amines and to fill this gap in the regulation of clothing textiles. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Eljiedi, Arwa Alseddig Ahmed; Kamari, Azlan
2017-05-01
Textile effluents are considered as potential sources of water pollution because they contain toxic dyes. In the present study, lala clam shell was used as an alternative low-cost adsorbent for the removal of two harmful dyes, namely methyl orange (MO) and methylene blue (MB) from aqueous solution. Batch adsorption studies were carried out by varying experimental parameters such as solution pH, initial concentration and adsorbent dosage. The optimum pH values for MO and MB removal were pH 2.0 and pH 8.0, respectively. At an initial MO and MB concentration of 20 mg/L, the maximum removal percentage of MO and MB were 18.9 % and 81.3 %, respectively. The adsorption equilibrium data were correlated with both Langmuir and Freundlich isotherm models. The biomass adsorbent was characterised using Field Emission Scanning Electron Microscope (FESEM) and Fourier Transform Infrared Spectrometer (FTIR). Results from this study suggest that lala clam shell, a fishery waste, can be beneficial for water treatment.
Kumari, Simpal; Naraian, Ram
2016-09-15
Aim of the present study was to evaluate the efficiency of fungal co-culture for the decolorization of synthetic brilliant green carpet industry dye. For this purpose two lignocellulolytic fungi Pleurotus florida (PF) and Rhizoctonia solani (RS) were employed. The study includes determination of enzyme profiles (laccase and peroxidase), dye decolorization efficiency of co-culture and crude enzyme extracts. Both fungi produced laccase and Mn peroxidase and successfully decolorized solutions of different concentrations (2.0, 4.0, 6.0, & 8.0(w/v) of dye. The co-culture resulted highest 98.54% dye decolorization at 2% (w/v) of dye as compared to monocultures (82.12% with PF and 68.89% with RS) during 12 days of submerged fermentation. The lower levels of dyes were rapidly decolorized, while higher levels in slow order as 87.67% decolorization of 8% dye. The promising achievement of the study was remarkable decolorizing efficiency of co-culture over monocultures. The direct treatment of the mono and co-culture enzyme extracts to dye also influenced remarkable. The highest enzymatic decolorization was through combined (PF and RS) extracts, while lesser by monoculture extracts. Based on the observations and potentiality of co-culture technology; further it can be exploited for the bioremediation of areas contaminated with hazardous environmental pollutants including textile and other industry effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells.
Yun, Min Ju; Cha, Seung I; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y
2016-10-06
Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells-including the preparation of fibre-type solar cells woven into textiles-face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes' surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research.
NASA Astrophysics Data System (ADS)
Sunar, N. M.; Mon, Z. K.; Rahim, N. A.; Leman, A. M.; Airish, N. A. M.; Khalid, A.; Ali, R.; Zaidi, E.; Azhar, A. T. S.
2018-04-01
Wastewater released from the textile industry contains variety substances, mainly dyes that contains a high concentration of color and organic. In this study the potential for bacterial decolorization of coractive blue dye was examined that isolated from textile wastewater. The optimum conditions were determined for pH, temperature and initial concentration of the dye. The bacteria isolated was Pseudomonas spp. The selected bacterium shows high decolorization in static condition at an optimum of pH 7.0. The Pseudomonas spp. could decolorize coractive blue dye by 70% within 24 h under static condition, with the optimum of pH 7.0. Decolorization was confirmed by using UV-VIS spectrophotometer. This present study suggests the potential of Pseudomonas spp. as an approach in sustainable bioremediation that provide an efficient method for decolorizing coractive blue dye.
2012-01-01
Background For millennia, iron-tannate dyes have been used to colour ceremonial and domestic objects shades of black, grey, or brown. Surviving iron-tannate dyed objects are part of our cultural heritage but their existence is threatened by the dye itself which can accelerate oxidation and acid hydrolysis of the substrate. This causes many iron-tannate dyed textiles to discolour and decrease in tensile strength and flexibility at a faster rate than equivalent undyed textiles. The current lack of suitable stabilisation treatments means that many historic iron-tannate dyed objects are rapidly crumbling to dust with the knowledge and value they hold being lost forever. This paper describes the production, characterisation, and validation of model iron-tannate dyed textiles as substitutes for historic iron-tannate dyed textiles in the development of stabilisation treatments. Spectrophotometry, surface pH, tensile testing, SEM-EDX, and XRF have been used to characterise the model textiles. Results On application to textiles, the model dyes imparted mid to dark blue-grey colouration, an immediate tensile strength loss of the textiles and an increase in surface acidity. The dyes introduced significant quantities of iron into the textiles which was distributed in the exterior and interior of the cotton, abaca, and silk fibres but only in the exterior of the wool fibres. As seen with historic iron-tannate dyed objects, the dyed cotton, abaca, and silk textiles lost tensile strength faster and more significantly than undyed equivalents during accelerated thermal ageing and all of the dyed model textiles, most notably the cotton, discoloured more than the undyed equivalents on ageing. Conclusions The abaca, cotton, and silk model textiles are judged to be suitable for use as substitutes for cultural heritage materials in the testing of stabilisation treatments. PMID:22616934
Wilson, Helen; Carr, Chris; Hacke, Marei
2012-05-22
For millennia, iron-tannate dyes have been used to colour ceremonial and domestic objects shades of black, grey, or brown. Surviving iron-tannate dyed objects are part of our cultural heritage but their existence is threatened by the dye itself which can accelerate oxidation and acid hydrolysis of the substrate. This causes many iron-tannate dyed textiles to discolour and decrease in tensile strength and flexibility at a faster rate than equivalent undyed textiles. The current lack of suitable stabilisation treatments means that many historic iron-tannate dyed objects are rapidly crumbling to dust with the knowledge and value they hold being lost forever.This paper describes the production, characterisation, and validation of model iron-tannate dyed textiles as substitutes for historic iron-tannate dyed textiles in the development of stabilisation treatments. Spectrophotometry, surface pH, tensile testing, SEM-EDX, and XRF have been used to characterise the model textiles. On application to textiles, the model dyes imparted mid to dark blue-grey colouration, an immediate tensile strength loss of the textiles and an increase in surface acidity. The dyes introduced significant quantities of iron into the textiles which was distributed in the exterior and interior of the cotton, abaca, and silk fibres but only in the exterior of the wool fibres. As seen with historic iron-tannate dyed objects, the dyed cotton, abaca, and silk textiles lost tensile strength faster and more significantly than undyed equivalents during accelerated thermal ageing and all of the dyed model textiles, most notably the cotton, discoloured more than the undyed equivalents on ageing. The abaca, cotton, and silk model textiles are judged to be suitable for use as substitutes for cultural heritage materials in the testing of stabilisation treatments.
Brookstein, David S
2009-07-01
From as early as 1869, textile dyes and subsequently finishes have been reported to cause various manifestations of contact dermatitis, from mild to severe and debilitating. The European Union, through Directive (2002/61/EC) to restrict the marketing and use of certain dangerous substances and preparations (azo colorants) in textile and leather products, has taken the worldwide lead in restricting some dyes as a result of their carcinogenic nature. Given the recent discovery of the new route to contact dermatitis, it is important to continue to be vigilant for new and unexpected sources of allergens from textile, apparel, and furniture items.
Irazusta, Verónica; Bernal, Anahí Romina; Estévez, María Cristina; de Figueroa, Lucía I C
2018-02-01
Cyberlindnera jadinii M9 and Wickerhamomyces anomalus M10 isolated from textile-dye liquid effluents has shown capacity for chromium detoxification via Cr(VI) biological reduction. The aim of the study was to evaluate the effect of hexavalent chromium on synthesis of novel and/or specific proteins involved in chromium tolerance and reduction in response to chromium overload in two indigenous yeasts. A study was carried out following a proteomic approach with W. anomalus M10 and Cy. jadinii M9 strains. For this, proteins extracts belonging to total cell extracts, membranes and mitochondria were analyzed. When Cr(VI) was added to culture medium there was an over-synthesis of 39 proteins involved in different metabolic pathways. In both strains, chromium supplementation changed protein biosynthesis by upregulating proteins involved in stress response, methionine metabolism, energy production, protein degradation and novel oxide-reductase enzymes. Moreover, we observed that Cy. jadinii M9 and W. anomalus M10 displayed ability to activate superoxide dismutase, catalase and chromate reductase activity. Two enzymes from the total cell extracts, type II nitroreductase (Frm2) and flavoprotein wrbA (Ycp4), were identified as possibly responsible for inducing crude chromate-reductase activity in cytoplasm of W. anomalus M10 under chromium overload. In Cy.jadinii M9, mitochondrial Ferredoxine-NADP reductase (Yah1) and membrane FAD flavoprotein (Lpd1) were identified as probably involved in Cr(VI) reduction. To our knowledge, this is the first study proposing chromate reductase activity of these four enzymes in yeast and reporting a relationship between protein synthesis, enzymatic response and chromium biospeciation in Cy. jadinii and W. anomalus. Copyright © 2017 Elsevier Inc. All rights reserved.
Brüschweiler, Beat J; Merlot, Cédric
2017-08-01
Azo dyes represent the by far most important class of textile dyes. Their biotransformation by various skin bacteria may release aromatic amines (AAs) which might be dermally absorbed to a major extent. Certain AAs are well known to have genotoxic and/or carcinogenic properties. Correspondingly, azo dyes releasing one of the 22 known carcinogenic AAs are banned from clothing textiles in the European Union. In the present study, we investigated the mutagenicity of 397 non-regulated AAs potentially released from the 470 known textile azo dyes. We identified 36 mutagenic AAs via publicly available databases. After predicting their mutagenicity potential using the method by Bentzien, we accordingly allocated them into different priority groups. Ames tests on 18 AAs of high priority showed that 4 substances (22%) (CASRN 84-67-3, 615-47-4, 3282-99-3, 15791-87-4) are mutagenic in the strain TA98 and/or TA100 with and/or without rat S9 mix. Overall, combining the information from the Ames tests and the publicly available data, we identified 40 mutagenic AAs being potential cleavage products of approximately 180 different parent azo dyes comprising 38% of the azo dyes in our database. The outcome of this study indicates that mutagenic AAs in textile azo dyes are of much higher concern than previously expected, which entails implications on the product design and possibly on the regulation of azo dyes in the future. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Treatment of a textile effluent by adsorption with cork granules and titanium dioxide nanomaterial.
Castro, Margarida; Nogueira, Verónica; Lopes, Isabel; Vieira, Maria N; Rocha-Santos, Teresa; Pereira, Ruth
2018-05-12
This study aimed to explore the efficiency of two adsorbents, cork granules with different granulometry and titanium dioxide nanomaterial, in the removal of chemical oxygen demand (COD), colour and toxicity from a textile effluent. The adsorption assays with cork were unsatisfactory in the removal of chemical parameters however they eliminated the acute toxicity of the raw effluent to Daphnia magna. The assay with TiO 2 NM did not prove to be efficient in the removal of colour and COD even after 240 min of contact; nevertheless it also reduced the raw effluent toxicity. The best approach for complete remediation of the textile effluent has not yet been found however promising findings were achieved, which may be an asset in future adsorption assays.
Decoloration and detoxification of effluents by ionizing radiation
NASA Astrophysics Data System (ADS)
Borrely, Sueli I.; Morais, Aline V.; Rosa, Jorge M.; Badaró-Pedroso, Cintia; da Conceição Pereira, Maria; Higa, Marcela C.
2016-07-01
Three distinct textile samples were investigated for color and toxicity (S1-chemical/textile industry; S2-final textile effluent; S3 - standard textile produced effluent-untreated blue). Radiation processing of these samples were carried out at Dynamitron Electron Beam Accelerator and color and toxicity removal were determined: color removal by radiation was 96% (40 kGy, S1); 55% (2.5 kGy, S2) and 90% (2.5 kGy, S3). Concerning toxicity assays, Vibrio fischeri luminescent bacteria demonstrated higher reduction after radiation than the other systems: removal efficiencies were 33% (20 kGy, S1); 55% (2.5 kGy, S2) and 33% (2.5 kGy, S3). Daphnia similis and Brachionus plicatilis fitted well for S3 effluents. Hard toxic volumes into biological treatment plant may be avoided if radiation would be previously applied in a real plant. Results reveled how indispensable is to run toxicity to more than one living-organism.
dos Santos, André B; Cervantes, Francisco J; van Lier, Jules B
2007-09-01
Dyes are natural and xenobiotic compounds that make the world more beautiful through coloured substances. However, the release of coloured wastewaters represents a serious environmental problem and a public health concern. Colour removal, especially from textile wastewaters, has been a big challenge over the last decades, and up to now there is no single and economically attractive treatment that can effectively decolourise dyes. In the passed years, notable achievements were made in the use of biotechnological applications to textile wastewaters not only for colour removal but also for the complete mineralization of dyes. Different microorganisms such as aerobic and anaerobic bacteria, fungi and actinomycetes have been found to catalyse dye decolourisation. Moreover, promising results were obtained in accelerating dye decolourisation by adding mediating compounds and/or changing process conditions to high temperatures. This paper provides a critical review on the current technologies available for decolourisation of textile wastewaters and it suggests effective and economically attractive alternatives.
Vats, Arpita; Mishra, Saroj
2018-02-15
Multiplicity in laccases among lignin degrading fungal species is of interest as it confers the ability to degrade several types of lignocellulosics. The combination of laccases produced on such substrates could be beneficial for treatment of complex aromatics, including dyes. In this study, we report on production of high units (679.6Ug -1 substrate) of laccase on solid wheat bran (WB) by Cyathus bulleri. Laccase, purified from the culture filtrates of WB grown fungus, was effective for oxidation of veratryl alcohol, Reactive blue 21 and textile effluent without assistance of externally added mediators. De novo sequencing of the 'purified' laccase lead to identification of several peptides that originated from different laccase genes. Transcriptome analysis of the fungus, cultivated on WB, confirmed presence of 8 isozymes, that were re-amplified and sequenced from the cDNA prepared from WB grown fungus. The 8 isozymes were grouped into 3 classes, based on their sequence relationship with other basidiomycete laccases. The isoforms produced on WB decolorized (by ∼57%) and degraded textile effluent far more effectively, compared to laccase obtained from Basal salt cultivated fungus. The decolorization and degradation was also accompanied by more than 95% reduction in phytotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.
Okafoagu, Nneka Christina; Oche, Mansur; Awosan, Kehinde Joseph; Abdulmulmuni, Hashim Bala; Gana, Godwin Jiya; Ango, Jessica Timane; Raji, Ismail
2017-06-23
Textile dye workers are subject to occupational hazards on a daily basis due to exposure to precarious conditions in the workplace. This study aimed to assess the knowledge, attitude and safety practices and its determinants among textile dye workers in Sokoto metropolis, Nigeria. This is a descriptive cross-sectional study conducted among 200 textile dye workers and the respondents were selected by multi stage sampling technique. Data was collected using an interviewer administered questionnaire. Data was processed using SPSS IBM version 20 and analyzed using descriptive and inferential statistics. Majority of the respondents (74.0%) had good knowledge of workplace hazards; (81.0%) had positive attitude and only 20% observed all the safety practices. Formal education (P=0.047); working less than 5 days a week (P=0.001) and permanent employment (P=0.013) were found to be determinants of respondents' knowledge and attitude towards workplace hazards. Although the respondents had good knowledge and positive attitude, their lack of observance of safety practices brings to fore the need for direct safety instruction and training and retraining of textile dye workers on workplace hazards and safety practices.
Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants.
Liang, Xin; Ning, Xun-an; Chen, Guoxin; Lin, Meiqing; Liu, Jingyong; Wang, Yujie
2013-12-01
The safe disposal of sludge from textile dyeing industry requires research on bioavailability and concentration of heavy metals. In this study, concentrations and chemical speciation of heavy metals (Cd, Cr, Cu, Ni, Zn, Pb) in sludge from nine different textile dyeing plants were examined. Some physiochemical features of sludge from textile dyeing industry were determined, and a sequential extraction procedure recommended by the Community Bureau of Reference (BCR) was used to study the metal speciation. Cluster analysis (CA) and principal component analysis (PCA) were applied to provide additional information regarding differences in sludge composition. The results showed that Zn and Cu contents were the highest, followed by Ni, Cr, Cd and Pb. The concentration of Cd and Ni in some sludge samples exceeded the standard suggested for acidic soils in China (GB18918-2002). In sludge from textile dyeing plants, Pb, Cd and Cr were principally distributed in the oxidizable and residual fraction, Cu in the oxidizable fraction, Ni in all four fractions and Zn in the acid soluble/exchangeable and reducible fractions. The pH and heat-drying method affected the fractionation of heavy metals in sludge. © 2013 Elsevier Inc. All rights reserved.
Ceretta, María Belén; Durruty, Ignacio; Orozco, Ana Micaela Ferro; González, Jorge Froilán; Wolski, Erika Alejandra
2018-05-01
This work reports on the biodegradation of textile wastewater by three alternative microbial treatments. A bacterial consortium, isolated from a dyeing factory, showed significant efficacy in decolourizing wastewater (77.6 ± 3.0%); the decolourization rate was 5.80 ± 0.31 mg of azo dye·L -1 ·h -1 , without the addition of an ancillary carbon source (W). The degradation was 52% (measured as COD removal) and the products of the treatment showed low biodegradability (COD/BOD 5 = 4.2). When glucose was added to the wastewater, (W + G): the decolourization efficiency increased to 87.24 ± 2.5% and the decolourization rate significantly improved (25.67 ± 3.62 mg·L -1 ·h -1 ), although the COD removal efficiency was only 44%. Finally, the addition of starch (W + S) showed both a similar decolourization rate and efficiency to the W treatment, but a higher COD removal efficiency (72%). In addition, the biodegradability of the treated wastewater was considerably improved (COD/BOD 5 = 1.2) when starch was present. The toxicity of the degradation products was tested on Lactuca sativa seeds. In all treatments, toxicity was reduced with respect to the untreated wastewater. The W + S treatment gave the best performance.
Method of dye removal for the textile industry
Stone, Mark L.
2000-01-01
The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention comprises using an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.
NASA Astrophysics Data System (ADS)
Gunturu, Bhargavi; Rao Palukuri, Nageswara; Sahadevan, Renganathan
2018-03-01
In the present study, the efficiency of a biosorbent derived from seeds of Thespesia populnea was investigated towards the removal of basic textile dye Methylene Blue from an aqueous solution. Adsorption studies were carried out in batch system. Influence of experimental parameters such as adsorbent dosage (0.1g/L-0.3g/L), PH (2-10) and initial dye concentration (50-130mg/L) on adsorption of dye onto biosorbent was investigated. Maximum uptake of dye was observed with 0.1g/L adsorbent dosage at PH 8.0. Equilibrium uptake of methylene blue dye by the adsorbent was analyzed by Langmuir and Freundlich isotherm models. The data fitted best with Freundlich model, suggesting that adsorption of the dye was by multilayer model on the surface of the adsorbent. Experimental results obtained support that the biosorbent used in the present study can be a suitable low cost alternate for the removal of basic textile dyes.
Assessment of the Dyeing Properties of the Pigments Produced by Talaromyces spp.
Oliveira, Jorge; Sousa-Gallagher, Maria; Montañez, Julio Cesar
2017-01-01
The high production yields of pigments by Talaromyces spp. and their high thermal stability have implied that industrial application interests may emerge in the food and textile industries, as they both involve subjecting the colourants to high temperatures. The present study aimed to assess the potential application of the pigments produced by Talaromyces spp. in the textile area by studying their dyeing properties. Dyeing studies were performed on wool. The dyeing process consisted of three stages: scouring, mordanting, and dyeing. Two different mordants (alum, A; ferric chloride, F) were tested at different concentrations on fabric weight (A: 5, 10, 15%; F: 10, 20, 30%). The mordanting process had a significant effect on the final colour of the dyed fabrics obtained. The values of dyeing rate constant (k), half-time of dyeing (t1/2), and sorption kinetics behaviour were evaluated and discussed. The obtained results showed that pigments produced by Talaromyces spp. could serve as a source for the natural dyeing of wool textiles. PMID:29371555
Gupta, Vinod K; Mittal, Alok; Jain, Rajeev; Mathur, Megha; Sikarwar, Shalini
2006-11-01
Textile effluents are major industrial polluters because of high color content, about 15% unfixed dyes and salts. The present paper is aimed to investigate and develop cheap adsorption methods for color removal from wastewater using waste materials activated carbon and activated rice husk-as adsorbents. The method was employed for the removal of Safranin-T and the influence of various factors such as adsorbent dose, adsorbate concentration, particle size, temperature, contact time, and pH was studied. The adsorption of the dye over both the adsorbents was found to follow Langmuir and Freundlich adsorption isotherm models. Based on these models, different useful thermodynamic parameters have been evaluated for both the adsorption processes. The adsorption of Safranin-T over activated carbon and activated rice husks follows first-order kinetics and the rate constants for the adsorption processes decrease with increase in temperature.
A survey of extraction solvents in the forensic analysis of textile dyes.
Groves, Ethan; Palenik, Christopher S; Palenik, Skip
2016-11-01
The characterization and identification of dyes in fibers can be used to provide investigative leads and strengthen associations between known and questioned items of evidence. The isolation of a dye from its matrix (e.g., a textile fiber) permits detailed characterization, comparison and, in some cases, identification using methods such as thin layer chromatography in conjunction with infrared and Raman spectroscopy. A survey of dye extraction publications reveals that pyridine:water (4:3) is among the most commonly cited extraction solvent across a range of fiber and dye chemistries. Here, the efficacy of this solvent system has been evaluated for the extraction of dyes from 172 commercially prevalent North American textile dyes. The evaluated population represents seven dye application classes, 18 chemical classes, and spans nine types of commercial textile fibers. The results of this survey indicate that ∼82% of the dyestuffs studied are extractable using this solvent system. The results presented here summarize the extraction efficacy by class and fiber type and illustrate that this solvent system is applicable to a wider variety of classes and fibers than previously indicated in the literature. While there is no universal solvent for fiber extraction, these results demonstrate that pyridine:water represents an excellent first step for extracting unknown dyes from questioned fibers in forensic casework. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Leme, Daniela Morais; Sehr, Andrea; Grummt, Tamara; Gonçalves, Jenifer Pendiuk; Jacomasso, Thiago; Winnischofer, Sheila Maria Brochado; Potrich, Francine Bittencourt; Oliveira, Carolina Camargo de; Trindade, Edvaldo da Silva; de Oliveira, Danielle Palma
2018-05-01
Several synthetic dyes are used by textile industry for supplying the market of colored clothes. However, these chemicals have been associated with a variety of adverse human health effects, including textile dermatitis. Thus, there is a growing concern to identify textile dyes potentially as skin immunotoxicants. The aim of this in vitro study was to characterize the immunotoxic potential of reactive (Reactive Green 19 [RG19], Reactive Blue 2 [RB2], Reactive Black 5 [RB5]) and disperse (Disperse Red 1 [DR1]) textile dyes using a dermal cell line. For this purpose, a cell-based approach was conducted with immortalized human keratinocytes (KC) (HaCaT) using selected biomarkers of cutaneous inflammation including modulation of matrix metalloproteinases (MMP), oxidative stress such as reactive oxygen species (ROS) generation, and inflammatory cytokine profile. DR1 was the only dye able to trigger an immune response such as release of IL-12 cytokine, a potent co-stimulator of T helper 1 cell, which may be considered as a skin immunotoxicant. The reactive dyes including RB5 that were previously reported as skin sensitizers failed to induce inflammatory reactions under the conditions tested. The reactive dyes studied may pose a risk to human KC by induction of effects related to modulation of MMP-2 (RB5) and -9 (RB5 and RB2) and generation of ROS (RG19 and RB2). Thus, all these dyes need to be used with caution to avoid undesirable effects to consumers who may be exposed dermally.
Effect of treatment in a constructed wetland on toxicity of textile wastewater
Baughman, G.L.; Perkins, W.S.; Lasier, P.J.; Winger, P.V.
2003-01-01
Constructed wetlands for treating wastewater have proliferated in recent years and their characteristics have been studied extensively. In most cases, constructed wetlands have been used primarily for removal of nutrients and heavy metals. Extensive literature is available concerning construction and use of wetlands for treatment of wastewater. Even so, quantitative descriptions of wetland function and processes are highly empirical and difficult to extrapolate. The processes involved in removal of pollutants by wetlands are poorly understood, especially for waste streams as complex as textile effluents. The few studies conducted on treatment of textile wastewater in constructed wetlands were cited in earlier publications. Results of a two-year study of a full-scale wetland treating textile effluent are presented here. The paper describes the effects of the wetland on aquatic toxicity of the wastewater and draws conclusions about the utility and limitations of constructed wetlands for treatment of textile effluents.
Quality of Life Among Thai Workers in Textile Dyeing Factories
Kittipichai, Wirin; Arsa, Rattanaporn; Jirapongsuwan, Ann; Singhakant, Chatchawal
2015-01-01
The purpose of a cross-sectional study was to investigate factors influencing the quality of life among Thai workers in textile dyeing factories. Samples included 205 Thai workers from five textile dyeing factories located in the suburban area of Bangkok in Thailand. Data were collected with a self-administered questionnaire. Scales of the questionnaire had reliability coefficients ranging from 0.70–0.91. The results revealed that the overall quality of life among workers was most likely between good and moderate levels, and the percentage-mean score was 74.77. The seven factors associated with the overall quality of life were co-worker relationships, safety at work in the dimension of accident prevention, job characteristics, supervisory relationships, welfares, marital status, and physical environment. Furthermore, co-worker relationships, accident prevention, and marital status were three considerable predictors accounted for 23% of the variance in the overall quality of life among workers in textile dyeing factories. PMID:25948458
Anjaneya, O; Souche, S Yogesh; Santoshkumar, M; Karegoudar, T B
2011-06-15
Two different bacterial strains capable of decolorizing a highly water soluble azo dye Metanil Yellow were isolated from dye contaminated soil sample collected from Atul Dyeing Industry, Bellary, India. The individual bacterial strains Bacillus sp. AK1 and Lysinibacillus sp. AK2 decolorized Metanil Yellow (200 mg L(-1)) completely within 27 and 12h respectively. Various parameters like pH, temperature, NaCl and initial dye concentrations were optimized to develop an economically feasible decolorization process. The maximum concentration of Metanil Yellow (1000 mg L(-1)) was decolorized by strains AK2 and AK1 within 78 and 84 h respectively. These strains could decolorize Metanil Yellow over a broad pH range 5.5-9.0; the optimum pH was 7.2. The decolorization of Metanil Yellow was most efficient at 40°C and confirmed by UV-visible spectroscopy, TLC, HPLC and GC/MS analysis. Further, both the strains showed the involvement of azoreductase in the decolorization process. Phytotoxicity studies of catabolic products of Metanil Yellow on the seeds of chick pea and pigeon pea revealed much reduction in the toxicity of metabolites as compared to the parent dye. These results indicating the effectiveness of strains AK1 and AK2 for the treatment of textile effluents containing azo dyes. Copyright © 2011 Elsevier B.V. All rights reserved.
Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process.
Aouni, Anissa; Fersi, Cheïma; Ben Sik Ali, Mourad; Dhahbi, Mahmoud
2009-09-15
Untreated effluents from textile industries are usually highly coloured and contain a considerable amount of contaminants and pollutants. Stringent environmental regulation for the control of textile effluents is enforced in several countries. Previous studies showed that many techniques have been used for the treatment of textile wastewater, such as adsorption, biological treatment, oxidation, coagulation and/or flocculation, among them coagulation is one of the most commonly used techniques. Electrocoagulation is a process consisting in creating metallic hydroxide flocks within the wastewater by the electrodissolution of soluble anodes, usually made of iron or aluminium. This method has been practiced for most of the 20th century with limited success. In recent years, however, it started to regain importance with the progress of the electrochemical processes and the increase in environmental restrictions in effluent wastewater. This paper examines the use of electrocoagulation treatment process followed by nanofiltration process of a textile effluent sample. The electrocoagulation process was studied under several conditions such as various current densities and effect of experimental tense. Efficiencies of COD and turbidity reductions and colour removal were studied for each experiment. The electrochemical treatment was indented primarily to remove colour and COD of wastewater while nanofiltration was used to further improve the removal efficiency of the colour, COD, conductivity, alkalinity and total dissolved solids (TDS). The experimental results, throughout the present study, have indicated that electrocoagulation treatment followed by nanofiltration processes were very effective and were capable of elevating quality of the treated textile wastewater effluent.
Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4.
Neppolian, B; Choi, H C; Sakthivel, S; Arabindoo, B; Murugesan, V
2002-03-01
Aqueous solutions of reactive blue 4 textile dye are totally mineralised when irradiated with TiO2 photocatalyst. A solution containing 4 x 10(-4) M dye was completely degraded in 24 h irradiation time. The intensity of the solar light was measured using Lux meter. The results showed that the dye molecules were completely degraded to CO2, SO4(2-), NO3-, NH4+ and H2O under solar irradiation. The addition of hydrogen peroxide and potassium persulphate influenced the photodegradation efficiency. The rapidity of photodegradation of dye intermediates were observed in the presence of hydrogen peroxide than in its absence. The auxiliary chemicals such as sodium carbonate and sodium chloride substantially affected the photodegradation efficiency. High performance liquid chromatography and chemical oxygen demand were used to study the mineralisation and degradation of the dye respectively. It is concluded that solar light induced degradation of textile dye in wastewater is a viable technique for wastewater treatment.
Biosorption of textile dye reactive blue 221 by capia pepper (Capsicum annuum L.) seeds.
Gürel, Levent
2017-04-01
Peppers are very important foodstuffs in the world for direct and indirect consumption, so they are extensively used. The seeds of these peppers are waste materials that are disposed of from houses and factories. To evaluate the performance of this biomass in the treatment of wastewaters, a study was conducted to remove a textile dye, reactive blue 221, which is commercially used in textile mills. Raw seed materials were used without any pre-treatment. The effects of contact time, initial concentration of dye, pH and dose of biosorbent were studied to determine the optimum conditions for this biomass on color removal from wastewaters. The optimum pH value for dye biosorption was found to be 2.0. At an initial dye concentration of 217 mg L -1 , treatment efficiency and biosorption capacity were 96.7% and 95.35 mg g -1 , respectively. A maximum biosorption capacity of 142.86 mg g -1 was also obtained. Equilibrium biosorption of dye by capia seeds was well described by the Langmuir isotherm with a correlation coefficient above 99%. The biosorption process was also successfully explained with the pseudo-second order kinetic model. This biomass was found to be effective in terms of textile dye removal from aqueous solutions.
This August 2003 document contains a diagram of dates and events for compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Printing, Coating, and Dyeing of Fabrics and Other Textiles.
Study of Influence of Effluent on Ground Water Using Remote Sensing, GIS and Modeling Techniques
NASA Astrophysics Data System (ADS)
Pathak, S.; Bhadra, B. K.; Sharma, J. R.
2012-07-01
The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India). There are four Common Effluent Treatment Plant (CETP) treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi - a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat -1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer - inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer boundaries using specialized software. Establishment of other boundary conditions was based on well data. Calibration and validation of was done using ground water modelling software. Change detection analysis indicated areas of impact on land use/ cover particularly, agriculture activity. Normalised difference vegetation index found to have negative correlation with pollution level. Population dynamics have been studied and it is found to be poorly correlated with land degradation. Water levels do not show significant variations in past twenty years baring normal seasonal fluctuation. Chemical analysis of ground water samples studies in time series. The water quality studied through various parameters shows concentration in mid-reach of the Bandi river. Analysis of litholog data shows three unconfined aquifers. Pump test and resistivity survey was carried out for initial aquifer properties in local water levels. Modelling contaminant migration helped in prediction of the extent of the adversity. Surface flow is checked allowing more water but it is proving to be accumulation point in absence of good rainfall & flow in the river. Hotspots of dumping /active contamination were identified with certain remediation efforts and supply of solid waste to cement industry in addition to bio-filter for heavy metals.
Cochran, Kristin H.; Barry, Jeremy A.; Muddiman, David C.; Hinks, David
2012-01-01
The forensic analysis of textile fibers uses a variety of techniques from microscopy to spectroscopy. One such technique that is often used to identify the dye(s) within the fiber is mass spectrometry (MS). In the traditional MS method, the dye must be extracted from the fabric and the dye components are separated by chromatography prior to mass spectrometric analysis. Direct analysis of the dye from the fabric allows the omission of the lengthy sample preparation involved in extraction, thereby significantly reducing the overall analysis time. Herein, a direct analysis of dyed textile fabric was performed using the infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source for MS. In MALDESI, an IR laser with wavelength tuned to 2.94 μm is used to desorb the dye from the fabric sample with the aid of water as the matrix. The desorbed dye molecules are then post-ionized by electrospray ionization (ESI). A variety of dye classes were analyzed from various fabrics with little to no sample preparation allowing for the identification of the dye mass and in some cases the fiber polymer. Those dyes that were not detected using MALDESI were also not observed by direct infusion ESI of the dye standard. PMID:23237031
Parametric models of reflectance spectra for dyed fabrics
NASA Astrophysics Data System (ADS)
Aiken, Daniel C.; Ramsey, Scott; Mayo, Troy; Lambrakos, Samuel G.; Peak, Joseph
2016-05-01
This study examines parametric modeling of NIR reflectivity spectra for dyed fabrics, which provides for both their inverse and direct modeling. The dye considered for prototype analysis is triarylamine dye. The fabrics considered are camouflage textiles characterized by color variations. The results of this study provide validation of the constructed parametric models, within reasonable error tolerances for practical applications, including NIR spectral characteristics in camouflage textiles, for purposes of simulating NIR spectra corresponding to various dye concentrations in host fabrics, and potentially to mixtures of dyes.
Wanassi, Béchir; Hariz, Ichrak Ben; Ghimbeu, Camélia Matei; Vaulot, Cyril; Hassen, Mohamed Ben; Jeguirim, Mejdi
2017-04-01
Recycling cotton waste derived from the textile industry was used as a low-cost precursor for the elaboration of an activated carbon (AC) through carbonization and zinc chloride chemical activation. The AC morphological, textural, and surface chemistry properties were determined using different analytical techniques including Fourier transform infrared, temperature programmed desorption-mass spectroscopy, nitrogen manometry and scanning electron microscopy. The results show that the AC was with a hollow fiber structure in an apparent diameter of about 6.5 μm. These analyses indicate that the AC is microporous and present a uniform pore size distributed centered around 1 nm. The surface area and micropore volume were 292 m 2 .g -1 and 0.11 cm 3 .g -1 , respectively. Several types of acidic and basic oxygenated surface groups were highlighted. The point of zero charge (pH PZC ) of theca was 6.8. The AC performance was evaluated for the removal of Alizarin Red S (ARS) from aqueous solution. The maximum adsorption capacity was 74 mg.g -1 obtained at 25 °C and pH = 3. Kinetics and equilibrium models were used to determine the interaction nature of the ARS with the AC. Statistical tools were used to select the suitable models. The pseudo-second order was found to be the most appropriate kinetic model. The application of two and three isotherm models shows that Langmuir-Freundlich (n = 0.84, K = 0.0014 L.mg -1 , and q = 250 mg.g -1 ) and Sips (n = 0.84, K = 0.003 L.mg -1 , and q = 232.6 mg.g -1 ) were the suitable models. The results demonstrated that cotton waste can be used in the textile industry as a low-cost precursor for the AC synthesis and the removal of anionic dye from textile wastewater.
Textile industry and occupational cancer.
Singh, Zorawar; Chadha, Pooja
2016-01-01
Thousands of workers are engaged in textile industry worldwide. Textile industry involves the use of different kinds of dyes which are known to possess carcinogenic properties. Solvents used in these industries are also associated with different health related hazards including cancer. In previous studies on textile and iron industries, the authors have reported genotoxicity among them and observed occurrence of cancer deaths among textile industry workers. Thus, an attempt has been made to compile the studies on the prevalence of different types of cancers among textile industry workers. A wide literature search has been done for compiling the present paper. Papers on cancer occurrence among textile industry workers have been taken from 1976 to 2015. A variety of textile dyes and solvents, many of them being carcinogenic, are being used worldwide in the textile industry. The textile industry workers are therefore, in continuous exposure to these dyes, solvents, fibre dusts and various other toxic chemicals. The present study evaluates the potential of different chemicals and physical factors to be carcinogenic agents among occupationally exposed workers by going through various available reports and researches. Papers were collected using different databases and a number of studies report the association of textile industry and different types of cancer including lung, bladder, colorectal and breast cancer. After going through the available reports, it can be concluded that workers under varied job categories in textile industries are at a higher risk of developing cancer as various chemicals used in the textile industry are toxic and can act as potential health risk in inducing cancer among them. Assessing the cancer risk at different job levels in textile industries may be found useful in assessing the overall risk to the workers and formulating the future cancer preventive strategies.
Mathur, Megha; Gola, Deepak; Panja, Rupobrata; Malik, Anushree; Ahammad, Shaikh Ziauddin
2018-01-01
A biological method was adopted to decolourize textile dyes, which is an economic and eco-friendly technology for textile wastewater remediation. Two fungal strains, i.e. Aspergillus lentulus and Aspergillus fumigatus, were used to study the removal of low to high concentrations (25 to 2000 mg L -1 ) of reactive remazol red, reactive blue and reactive yellow dyes by biosorption and bioaccumulation. The biosorption was successful only at the lower concentrations. A. lentulus was capable of removing 67-85% of reactive dyes during bioaccumulation mode of treatment at 500 mg L -1 dye concentration with an increased biomass uptake capacity. To cope up with the high dye concentration of 2000 mg L -1 , a novel combined approach was successful in case of A. lentulus, where almost 76% removal of reactive remazol red dye was observed during bioaccumulation followed by biosorption. The scanning electron microscopy also showed the accumulation of dye on the surface of fungal mycelium. The results signify the application of such robust fungal strains for the removal of high concentration of dyes in the textile wastewaters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A'aisah
2014-09-03
In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev butmore » at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.« less
Gargoubi, Sondes; Tolouei, Ranna; Chevallier, Pascale; Levesque, Lucie; Ladhari, Neji; Boudokhane, Chedly; Mantovani, Diego
2016-08-20
Recently, antimicrobial and decontaminating textiles, such as cotton a natural carbohydrate polymer, are generating more attention. Plant materials used for natural dyes are expected to impart biofunctional properties and high added valued functional textiles. In the current study, surface modification of cotton to maximize the dye amount on the surface has been investigated. Physical modification using nitrogen-hydrogen plasma, chemical modification using chitosan and chemical modification using dopamine as biopolymers imparting amino groups were explored. Furthermore, dye exhaustion of curcumin, as a natural functional dye has been studied. Dye stability tests were also performed after fabric washing using hospital washing protocol to predict the durability of the functionalizations. The results demonstrated that cotton surfaces treated with dopamine exhibit a high level of dye uptake (78%) and a good washing fastness. The use of non-toxic and natural additives during cotton finishing process could give the opportunity of cradle to cradle design for antimicrobial textile industries. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Martins, Angela; Nunes, Nelson
2015-01-01
In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…
In-situ spectroscopic analysis of the traditional dyeing pigment Turkey red inside textile matrix
NASA Astrophysics Data System (ADS)
Meyer, M.; Huthwelker, T.; Borca, C. N.; Meßlinger, K.; Bieber, M.; Fink, R. H.; Späth, A.
2018-03-01
Turkey red is a traditional pigment for textile dyeing and its use has been proven for various cultures within the last three millennia. The pigment is a dye-mordant complex consisting of Al and an extract from R. tinctorum that contains mainly the anthraquinone derivative alizarin. The chemical structure of the complex has been analyzed by various spectroscopic and crystallographic techniques for extractions from textiles or directly in solution. We present an in-situ study of Turkey red by means of μ-XRF mapping and NEXAFS spectroscopy on textile fibres dyed according to a traditional process to gain insight into the coordination chemistry of the pigment in realistic matrix. We find an octahedral coordination of Al that corresponds well to the commonly accepted structure of the Al alizarin complex derived from ex-situ studies.
Šekuljica, Nataša Ž.; Prlainović, Nevena Ž.; Stefanović, Andrea B.; Žuža, Milena G.; Čičkarić, Dragana Z.; Mijin, Dušan Ž.; Knežević-Jugović, Zorica D.
2015-01-01
Two anthraquinonic dyes, C.I. Acid Blue 225 and C.I. Acid Violet 109, were used as models to explore the feasibility of using the horseradish peroxidase enzyme (HRP) in the practical decolorization of anthraquinonic dyes in wastewater. The influence of process parameters such as enzyme concentration, hydrogen peroxide concentration, temperature, dye concentration, and pH was examined. The pH and temperature activity profiles were similar for decolorization of both dyes. Under the optimal conditions, 94.7% of C.I. Acid Violet 109 from aqueous solution was decolorized (treatment time 15 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.4 mM, dye concentration 30 mg/L, pH 4, and temperature 24°C) and 89.36% of C.I. Acid Blue 225 (32 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.04 mM, dye concentration 30 mg/L, pH 5, and temperature 24°C). The mechanism of both reactions has been proven to follow the two substrate ping-pong mechanism with substrate inhibition, revealing the formation of a nonproductive or dead-end complex between dye and HRP or between H2O2 and the oxidized form of the enzyme. Both chemical oxygen demand and total organic carbon values showed that there was a reduction in toxicity after the enzymatic treatment. This study verifies the viability of use of horseradish peroxidase for the wastewaters treatment of similar anthraquinonic dyes. PMID:25685837
Ning, Xun-An; Liang, Jie-Ying; Li, Rui-Jing; Hong, Zhen; Wang, Yu-Jie; Chang, Ken-Lin; Zhang, Ya-Ping; Yang, Zuo-Yi
2015-09-01
Aromatic amines (AAs), which are components of synthetic dyes, are recalcitrant to the wastewater treatment process and can accumulate in sludge produced by textile-dyeing, which may pose a threat to the environment. A comprehensive investigation of 10 textile-dyeing plants was undertaken in Guangdong Province in China. The contents and component distributions of AAs were evaluated in this study, and a risk assessment was performed. The total concentrations of 14 AAs (Σ14 AAs) varied from 11 μg g(-1)dw to 82.5 μg g(-1)dw, with a mean value of 25 μg g(-1)dw. The component distributions of AAs were characterized by monocyclic anilines, of which 2-methoxy-5-methylaniline and 5-nitro-o-toluidine were the most dominant components. The risk quotient (RQ) value was used to numerically evaluate the ecological risk of 14 AAs in the environment. The result showed that the 14 AAs contents in textile-dyeing sludge may pose a high risk to the soil ecosystem after being discarded on soil or in a landfill. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Texas Tech Univ., Lubbock. Home Economics Curriculum Center.
This document contains teacher's materials for a seven-unit secondary education vocational home economics course on textiles and apparel design. The units cover: (1) fiber/fiber characteristics and textile development (including fabrication and dyeing, printing, and finishing); (2) textile and apparel design industries (including their history and…
Decolourization of dye-containing effluent using mineral coagulants produced by electrocoagulation.
Zidane, Fatiha; Drogui, Patrick; Lekhlif, Brahim; Bensaid, Jalila; Blais, Jean-François; Belcadi, Said; El Kacemi, Kacem
2008-06-30
The colour and colour causing-compounds has always been undesirable in water for any use, be it industrial or domestic wastewaters. The discharge of such effluents causes excessive oxygen demand in the receiving water and then a treatment is required before discharge into ecosystems. This study examined the possibility to remove colour causing-compounds from effluent by chemical coagulation, in comparison with direct electrocoagulation. The inorganic coagulants (C1, C2 and C3) in the form of dry powder tested, were respectively produced from electrolysis of S1=[NaOH (7.5 x 10(-3)M)], S2=[NaCl (10(-2)M)], and S3=[NaOH (7.5 x 10(-3)M)+NaCl (10(-2)M)] solutions, using sacrificial aluminium electrodes operated at an electrical potential of 12 V. Reactive textile dye (CI Reactive Red 141) was used as model of colour-causing compound prepared at a concentration of 50 mgl(-1). The best performances of dye removal were obtained with C(2) having a chemical structure comprised of a mixture of polymeric specie (Al45O45(OH)45Cl) and monomeric species (AlCl(OH)2.2H2O and Al(OH)3). The removal efficiency (R(A)) evaluated by measuring the yields of 540 nm-absorbance removal varied from 41 to 96% through 60 min of treatment by imposing a concentration of C2 ranging from 100 to 400 mg l(-1). The effectiveness of the treatment increased and the effluent became more and more transparent while increasing C(2) concentration. The comparison of chemical treatment using C2 coagulant and direct electrocoagulation of CI Reactive Red 141 containing synthetic solution demonstrated the advantage of chemical treatment during the first few minutes of treatment. A yield of 88% of absorbance removal was recorded using C2 coagulant (400 mg l(-1)) over the first 10 min of treatment, compared to 60% measured using direct electrocoagulation while imposing either 10 or 15 V of electrical potential close to the value (12 V) required during C2 production. However, at the end of the treatment (after 60 min of treatment), CI Reactive Red 141 pollutant was completely removed from solution (540 nm-absorbance removal of 100%) using direct electrochemical treatment, compared to 96.4% of absorbance removed while treating dye-containing synthetic solution by means of C2 coagulant.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.83 Effluent limitations guidelines...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.82 Effluent limitations guidelines...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.82 Effluent limitations guidelines representing...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.83 Effluent limitations guidelines...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.82 Effluent limitations guidelines...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.83 Effluent limitations guidelines...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.82 Effluent limitations guidelines...
ERIC Educational Resources Information Center
Talbot, R. S.
1978-01-01
Presents a literature review of wastes from textile industry, covering publications of 1977. This review covers studies such as removing heavy metals in textile wastes, and the biodegradability of six dyes. A list of references is also presented. (HM)
Removal of dyes from textile wastewater by using nanofiltration polyetherimide membrane
NASA Astrophysics Data System (ADS)
Karisma, Doni; Febrianto, Gabriel; Mangindaan, Dave
2017-12-01
Followed by rapid development of the textile industries since 19th century the dyeing technology is thriving ever since. However, its progress is followed by lack of responsibility and knowledge in treating the dye-containing wastewater. There are some emerging technologies in treating such kind of wastewater, where membrane technology is one of those technologies that has uniqueness in the performance of separating dyes from wastewater, accompanied with small amount of energy. The development of membrane technology is one of several eco-engineering developments for sustainability in water resource management. However, there are a lot of rooms for improvement for this membrane technology, especially for the application in treating textile wastewater in Indonesia. Based on the demand in Indonesia for clean water and further treatment of dye-containing wastewater, the purpose of this research is to fabricate nanofiltration (NF) membranes to accommodate those problems. Furthermore, the fabricated NF membrane will be modified by interfacial polymerization to impart a new selective layer on top of NF membrane to improve the performance of the separation of the dyes from dye-containing wastewater. This research was conducted into two phases of experiments. In the first phase the formulation of polymeric dope solution of PEI/Acetone/NMP (N-methyl-pyrollidone), using the variation of 15/65/20, 16/64/20, and 17/63/20. This research show that many areas still can be explored in textile wastewater treatment using membrane in Indonesia.
This page contains the February 2003 and the October 2004 final rule fact sheet that contain information on the NESHAP for Printing, Coating, and Dyeing of Fabrics and Other Textiles. These documents provide a summary of the information for this NESHAP.
Early evidence (late 2nd millennium BCE) of plant-based dyeing of textiles from Timna, Israel
Sukenik, Naama; Iluz, David; Amar, Zohar; Varvak, Alexander; Workman, Vanessa; Shamir, Orit; Ben-Yosef, Erez
2017-01-01
Abstract In this article, we focus on the analysis of dyed textile fragments uncovered at an early Iron Age (11th-10th centuries BCE) copper smelting site during new excavations in the Timna Valley conducted by the Central Timna Valley (CTV) Project, as well as those found by the Arabah Expedition at the Hathor Temple (Site 200), dated to the Late Bronze/early Iron Ages (13th-11th centuries BCE). Analysis by HPLC-DAD identified two organic dyestuffs, Rubia tinctorum L. and indigotin, from a plant source (probably Isatis tinctoria L.). They are among the earliest plants known in the dyeing craft and cultivated primarily for this purpose. This study provides the earliest evidence of textiles dyed utilizing a chemical dyeing process based on an industrial dyeing plant from the Levant. Moreover, our results shed new light on the society operating the copper mines at the time, suggesting the existence of an elite that was interested in these high quality textiles and invested efforts in procuring them by long-distance trade. PMID:28658314
Early evidence (late 2nd millennium BCE) of plant-based dyeing of textiles from Timna, Israel.
Sukenik, Naama; Iluz, David; Amar, Zohar; Varvak, Alexander; Workman, Vanessa; Shamir, Orit; Ben-Yosef, Erez
2017-01-01
In this article, we focus on the analysis of dyed textile fragments uncovered at an early Iron Age (11th-10th centuries BCE) copper smelting site during new excavations in the Timna Valley conducted by the Central Timna Valley (CTV) Project, as well as those found by the Arabah Expedition at the Hathor Temple (Site 200), dated to the Late Bronze/early Iron Ages (13th-11th centuries BCE). Analysis by HPLC-DAD identified two organic dyestuffs, Rubia tinctorum L. and indigotin, from a plant source (probably Isatis tinctoria L.). They are among the earliest plants known in the dyeing craft and cultivated primarily for this purpose. This study provides the earliest evidence of textiles dyed utilizing a chemical dyeing process based on an industrial dyeing plant from the Levant. Moreover, our results shed new light on the society operating the copper mines at the time, suggesting the existence of an elite that was interested in these high quality textiles and invested efforts in procuring them by long-distance trade.
Zhang, Jian-Hao; Zou, Hai-Yuan; Ning, Xun-An; Lin, Mei-Qing; Chen, Chang-Min; An, Tai-Cheng; Sun, Jian
2017-03-22
To develop an effective method to remove the toxic and carcinogenic polycyclic aromatic hydrocarbons (CPAHs) from textile dyeing sludge, five CPAHs were selected to investigate the degradation efficiencies using ultrasound combined with Fenton process (US/Fenton). The results showed that the synergistic effect of the US/Fenton process on the degradation of CPAHs in textile dyeing sludge was significant with the synergy degree of 30.4. During the US/Fenton process, low ultrasonic density showed significant advantage in degrading the CPAHs in textile dyeing sludge. Key reaction parameters on CPAHs degradation were optimized by the central composite design as followed: H 2 O 2 concentration of 152 mmol/L, ultrasonic density of 408 W/L, pH value of 3.7, the molar ratio of H 2 O 2 to Fe 2+ of 1.3 and reaction time of 43 min. Under the optimal conditions of the US/Fenton process, the degradation efficiencies of five CPAHs were obtained as 81.23% (benzo[a]pyrene) to 84.98% (benz[a]anthracene), and the benzo[a]pyrene equivalent (BaP eq ) concentrations of five CPAHs declined by 81.22-85.19%, which indicated the high potency of US/Fenton process for removing toxic CPAHs from textile dyeing sludge.
Adebayo, Matthew A; Prola, Lizie D T; Lima, Eder C; Puchana-Rosero, M J; Cataluña, Renato; Saucier, Caroline; Umpierres, Cibele S; Vaghetti, Julio C P; da Silva, Leandro G; Ruggiero, Reinaldo
2014-03-15
A macromolecule, CML, was obtained by purifying and carboxy-methylating the lignin generated from acid hydrolysis of sugarcane bagasse during bioethanol production from biomass. The CMLs complexed with Al(3+) (CML-Al) and Mn(2+) (CML-Mn) were utilised for the removal of a textile dye, Procion Blue MX-R (PB), from aqueous solutions. CML-Al and CML-Mn were characterised using Fourier transform infrared spectroscopy (FTIR), scanning differential calorimetry (SDC), scanning electron microscopy (SEM) and pHPZC. The established optimum pH and contact time were 2.0 and 5h, respectively. The kinetic and equilibrium data fit into the general order kinetic model and Liu isotherm model, respectively. The CML-Al and CML-Mn have respective values of maximum adsorption capacities of 73.52 and 55.16mgg(-1) at 298K. Four cycles of adsorption/desorption experiments were performed attaining regenerations of up to 98.33% (CML-Al) and 98.08% (CML-Mn) from dye-loaded adsorbents, using 50% acetone+50% of 0.05molL(-1) NaOH. The CML-Al removed ca. 93.97% while CML-Mn removed ca. 75.91% of simulated dye house effluents. Copyright © 2014 Elsevier B.V. All rights reserved.
Olgun, Asim; Atar, Necip
2009-01-15
In this study, the adsorption characteristics of Basic Yellow 28 (BY 28) and Basic Red 46 (BR 46) onto boron waste (BW), a waste produced from boron processing plant were investigated. The equilibrium adsorption isotherms and kinetics were investigated. The adsorption equilibrium data were analyzed by using various adsorption isotherm models and the results have shown that adsorption behavior of two dyes could be described reasonably well by a generalized isotherm. Kinetic studies indicated that the kinetics of the adsorption of BY 28 and BR 46 onto BW follows a pseudo-second-order model. The result showed that the BW exhibited high-adsorption capacity for basic dyes and the capacity slightly decreased with increasing temperature. The maximum adsorption capacities of BY 28 and BR 46 are reported at 75.00 and 74.73mgg(-1), respectively. The dye adsorption depended on the initial pH of the solution with maximum uptake occurring at about pH 9 and electrokinetic behavior of BW. Activation energy of 15.23kJ/mol for BY 28 and 18.15kJ/mol for BR 46 were determined confirming the nature of the physisorption onto BW. These results indicate that BW could be employed as low-cost material for the removal of the textile dyes from effluents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.83 Effluent limitations guidelines representing the degree...
NASA Astrophysics Data System (ADS)
Adeel, Shahid; Gulzar, Tahsin; Azeem, Muhammad; Fazal-ur-Rehman; Saeed, Muhammad; Hanif, Iram; Iqbal, Naeem
2017-01-01
Maintaining colour strength and fastness of the fabrics dyed with natural colourants had been the major constraint of utilizing plant based dyes in modern textile practices. The present study was concerned with the extraction of lutein dye from marigold (Tagetes erecta L.) flowers and role of gamma radiation in improving colour strength and fastness characteristics of the extracted dye. The investigation of dyed fabric in spectraflash showed that gamma ray treatment of 30 kGy was the optimum absorbed dose for surface modification to improve its dye uptake ability. Good colour strength was obtained when irradiated cotton (RC, 30 kGy) was dyed with extract of radiated marigold flower powder (RP) at 70 °C for 85 min, keeping M:L of 1:50 using dye bath of pH 5.0. The results from mordanting experiments revealed that 7% of tannic acid as pre-mordant and 5% of Cu as post-mordant were the best treatments to improve colour strength. It was found that gamma ray induced extraction of lutein from marigold flowers had a potential to be utilized as natural dyes in textile sector to produce yellowish green shades.
Dyes removal from textile wastewater using graphene based nanofiltration
NASA Astrophysics Data System (ADS)
Makertihartha, I. G. B. N.; Rizki, Z.; Zunita, M.; Dharmawijaya, P. T.
2017-05-01
Wastewater produced from textile industry is having more strict regulation. The major pollutant of wastewater from textile industry is Dyes. Dyes have several harsh properties i.e toxic, volatile, complexing easily with mineral ions that are dissolved in water (decreasing the amount of important mineral ions in water), and hard to disintegrate, therefore it must be removed from the waste stream. There are several methods and mechanisms to remove dyes such as chemical and physical sorption, evaporation, biological degradation, and photocatalytic system that can be applied to the waste stream. Membrane-based separation technology has been introduced in dyes removal treatment and is well known for its advantages (flexibility, mild operating condition, insensitive to toxic pollutant). Graphene and its derivatives are novel materials which have special properties due to its ultrathin layer and nanometer-size pores. Thus, the materials are very light yet strong. Moreover, it has low cost and easy to fabricate. Recently, the application of graphene and its derivatives in nanofiltration membrane processes is being widely explored. This review investigates the potentials of graphene based membrane in dyes removal processes. The operating conditions, dyes removal effectiveness, and the drawbacks of the process are the main focus in this paper.
[Reactions to fragrances and textiles].
Hausen, B M
1987-12-01
Allergic reactions to fragrances are caused by perfumes and perfume-containing items of our environment. The most important allergen is cinnamic aldehyde. By means of the mixed perfume test recommended by the International Contact Dermatitis Research Group (ICDRG), however, we are not able to detect more than half of the patients suffering from perfume allergy. Thus we suggest to make use of two new test series comprising most of the relevant fragrance components. Allergic reactions to textiles are mostly due to textile dyes. Special regard must be given to the disperse dyes of the azo group in nylon stockings and tights. The three most important allergens are disperse yellow 3, disperse orange 3, and disperse red 1. According to our experiments, the sensitizing potency of these dyes is comparatively low. In contrast, two recently introduced azo dyes (disperse blue 106 and 124), which are mainly used in blouses and trousers, proved to be strong sensitizers.
Bergsten-Torralba, L.R.; Nishikawa, M.M.; Baptista, D.F.; Magalhães, D.P.; da Silva, M.
2009-01-01
The objective of this study was to investigate the capacity of decolorization and detoxification of the textile dyes Reactive Red 198 (RR198), Reactive Blue 214 (RB214), Reactive Blue 21 (RB21) and the mixture of the three dyes (MXD) by Penicillium simplicissimum INCQS 40211. The dye RB21, a phthalocyanine, was totally decolorized in 2 days, and the others, the monoazo RR198, the diazo RB214 and MXD were decolorized after 7 days by P. simplicissimum. Initially the dye decolorization involved dye adsorption by the biomass followed by degradation. The acute toxicity after fungal treatment was monitored with the microcrustacean Daphnia pulex and measured through Effective Concentration 50% (EC50). P. simplicissimum reduced efficiently the toxicity of RB21 from moderately acutely toxic to minor acutely toxic and it also reduced the toxicity of RB214 and MXD, which remained minor acutely toxic. Nevertheless, the fungus increased the toxicity of RR198 despite of the reduction of MXD toxicity, which included this dye. Thus, P. simplicissimum INCQS 40211 was efficient to decolorize different textile dyes and the mixture of them with a significant reduction of their toxicity. In addition this investigation also demonstrated the need of toxicological assays associated to decolorization experiments. PMID:24031428
Solar/UV-induced photocatalytic degradation of three commercial textile dyes.
Neppolian, B; Choi, H C; Sakthivel, S; Arabindoo, Banumathi; Murugesan, V
2002-01-28
The photocatalytic degradation of three commercial textile dyes with different structure has been investigated using TiO(2) (Degussa P25) photocatalyst in aqueous solution under solar irradiation. Experiments were conducted to optimise various parameters viz. amount of catalyst, concentration of dye, pH and solar light intensity. Degradation of all the dyes were examined by using chemical oxygen demand (COD) method. The degradation efficiency of the three dyes is as follows: Reactive Yellow 17(RY17) > Reactive Red 2(RR2) > Reactive Blue 4 (RB4), respectively. The experimental results indicate that TiO(2) (Degussa P25) is the best catalyst in comparison with other commercial photocatalysts such as, TiO(2) (Merck), ZnO, ZrO(2), WO(3) and CdS. Though the UV irradiation can efficiently degrade the dyes, naturally abundant solar irradiation is also very effective in the mineralisation of dyes. The comparison between thin-film coating and aqueous slurry method reveals that slurry method is more efficient than coating but the problems of leaching and the requirement of separation can be avoided by using coating technique. These observations indicate that all the three dyes could be degraded completely at different time intervals. Hence, it may be a viable technique for the safe disposal of textile wastewater into the water streams.
Emerging Concern from Short-Term Textile Leaching: A Preliminary Ecotoxicological Survey.
Lofrano, G; Libralato, G; Carotenuto, M; Guida, M; Inglese, M; Siciliano, A; Meriç, S
2016-11-01
Textile dyes and their residues gained growing attention worldwide. Textile industry is a strong water consumer potentially releasing xenobiotics from washing and rinsing procedures during finishing processes. On a decentralised basis, also final consumers generate textile waste streams. Thus, a procedure simulating home washing with tap water screened cotton textiles leachates (n = 28) considering physico-chemical (COD, BOD 5 , and UV absorbance) and ecotoxicological data (Daphnia magna, Pseudokirchneriella subcapitata and Lepidium sativum). Results evidenced that: (i) leachates presented low biodegradability levels; (ii) toxicity in more than half leachates presented slight acute or acute effects; (iii) the remaining leachates presented "no effect" suggesting the use of green dyes/additives, and/or well established finishing processes; (iv) no specific correlations were found between traditional physico-chemical and ecotoxicological data. Further investigations will be necessary to identify textile residues, and their potential interactions with simulated human sweat in order to evidence potential adverse effects on human health.
Mnif, Inès; Fendri, Raouia; Ghribi, Dhouha
2015-01-01
Bacillus weihenstephanensis RI12, isolated from hydrocarbon contaminated soil, was assessed for Congo Red bio-treatment potency. Results suggested the potential of this bacterium for use in effective treatment of Congo Red contaminated wastewaters under shaking conditions at acidic and neutral pH value. The strain could tolerate higher doses of dyes as it could decolorize up to 1,000 mg/l of Congo Red. When used as microbial surfactant to enhance Congo Red biodecolorization, Bacillus subtilis SPB1-derived lipopeptide accelerated the decolorization rate and maximized the decolorization efficiency at an optimal concentration of biosurfactant of about 0.075%. Studies ensured that Congo Red removal by this strain could be due to an adsorption phenomena. Germination potencies of tomato seeds using the treated dyes under different conditions showed the efficient biotreatment of the azo dye Congo Red especially with the addition of SPB1 biosurfactant. To conclude, the addition of SPB1 bioemulsifier reduced energy costs by reducing the effective decolorization period; the biosurfactant stimulated bacterial decolorization method may provide a highly efficient, inexpensive and time-saving procedure in the treatment of textile effluents.
Akerdi, Abdollah Gholami; Bahrami, S Hajir; Arami, Mokhtar; Pajootan, Elmira
2016-09-01
Textile industry consumes remarkable amounts of water during various operations. A significant portion of the water discharge to environment is in the form of colored contaminant. The present research reports the photocatalytic degradation of anionic dye effluent using immobilized TiO2 nanoparticle on graphene oxide (GO) fabricated carbon electrodes. Acid Red 14 (AR 14) was used as model compound. Graphene oxide nanosheets were synthesized from graphite powder using modified Hummer's method. The nanosheets were characterized with field emission scanning electron microscope (FESEM) images, X-ray diffraction (XRD) and FTIR spectrum. The GO nanoparticles were deposited on carbon electrode (GO-CE) by electrochemical deposition (ECD) method and used as catalyst bed. TiO2 nanoparticles were fixed on the bed (GO-CE- TiO2) with thermal process. Photocatalytic processes were carried out using a 500 ml solution containing dye in batch mode. Each photocatalytic treatment were carried out for 120 min. Effect of dye concentration (mg/L), pH of solution, time (min) and TiO2 content (g/L) on the photocatalytic decolorization was investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Wen-Tao; Xu, Zi-Xiao; Shuang, Chen-Dong; Zhou, Qing; Li, Hai-Bo; Li, Ai-Min
2016-03-01
The efficiency and mechanism of anion exchange resin Nanda Magnetic Polymer (NDMP) for removal of fluorescent dissolved organic matter in biologically treated textile effluents were studied. The bench-scale experiments showed that as well as activated carbon, anion exchange resin could efficiently remove both aniline-like and humic-like fluorescent components, which can be up to 40 % of dissolved organic matter. The humic-like fluorescent component HS-Em460-Ex3 was more hydrophilic than HS-Em430-Ex2 and contained fewer alkyl chains but more acid groups. As a result, HS-Em460-Ex3 was eliminated more preferentially by NDMP anion exchange. However, compared with adsorption resins, the polarity of fluorescent components had a relatively small effect on the performance of anion exchange resin. The long-term pilot-scale experiments showed that the NDMP anion exchange process could remove approximately 30 % of the chemical oxygen demand and about 90 % of color from the biologically treated textile effluents. Once the issue of waste brine from resin desorption is solved, the NDMP anion exchange process could be a promising alternative for the advanced treatment of textile effluents.
Hernández-Zamora, Miriam; Martínez-Jerónimo, Fernando; Cristiani-Urbina, Eliseo; Cañizares-Villanueva, Rosa Olivia
2016-12-01
Nearly 7 00000 tons of dyes are produced annually throughout the world. Azo dyes are widely used in the textile and paper industries due to their low cost and ease of application. Their extensive use results in large volumes of wastewater being discharged into aquatic ecosystems. Large volume discharges constitute a health risk since many of these dyes, such as Congo Red, are elaborated with benzidine, a known carcinogenic compound. Information regarding dye toxicity in aquatic ecosystems is limited. Therefore, the aim of the present study was to evaluate the effect of Congo Red on survival and reproduction of Ceriodaphnia dubia. We determined the 48 h median lethal concentration (LC 50 ) and evaluated the effects of sublethal concentrations in subchronic exposures by using as food either fresh algae or algae previously exposed to the dye. LC 50 was 13.58 mg L -1 . In subchronic assays, survival was reduced to 80 and 55 %, and fertility to 40 and 70 %, as compared to the control, in C. dubia fed with intoxicated cells or with the mix of intoxicated + fresh algae, respectively, so the quantity and type of food had a significant effect. We determined that Congo Red is highly toxic to C. dubia since it inhibits survival and fertility in concentrations exceeding 3 mg L -1 . Our results show that this dye produces negative effects at very low concentrations. Furthermore, our findings warn of the risk associated with discharging dyes into aquatic environments. Lastly, the results emphasize the need to regulate the discharge of effluents containing azo dyes.
Guadie, Awoke; Gessesse, Amare; Xia, Siqing
2018-04-23
Considering the saline-alkaline nature of textile wastewater and treatment requirements, microbial samples were collected from Ethiopian Rift Valley Soda Lakes. A large number of bacteria (121) were isolated from dye-uncontaminated Lakes Chitu (81.0%), Abijata (15.7%) and Arenguadie (3.3%), of which 95 isolates (78.5%) were found dye decolorizer. Many dye decolorizer from Lake Chitu positively correlated with higher pH (10.3 ± 0.1), salinity (64.6 ± 2.0%), conductivity (6.1 ± 0.3 mS cm -1 ) and Na+ (18.4 ± 0.6 g L -1 ) values observed than Abijata and Arenguadie Lakes. Through subsequent screening mechanism, strain A55 was selected to investigate the effect of nutrient (carbon and nitrogen), dissolved oxygen and dye concentration using Reactive Red 184 (RR 184). Based on morphological, biochemical and 16S rRNA gene sequence analysis, the strain was identified as Halomonas sp. Decolorization efficiencies were significantly enhanced with carbon (≥98%) and organic nitrogen (∼100%) than non-carbon/nitrogen (both<55%) supplements. Complete decolorization efficiencies were also observed under anoxic and anaerobic growth conditions. However, growing the isolate with nitrate (<30%) and aerobic (<10%) condition significantly decreased (p < 0.05) color removal efficiency. Kinetic analysis showed that pseudo-first-order best describes RR 184 decolorization process. Overall, the ability of Halomonas sp. strain A55 decolorized different dyes indicate that alkaline soda lake isolates are the potential candidate for treating color containing effluent. Copyright © 2018 Elsevier Ltd. All rights reserved.
Neoh, Chin Hong; Lam, Chi Yong; Lim, Chi Kim; Yahya, Adibah; Bay, Hui Han; Ibrahim, Zaharah; Noor, Zainura Zainon
2015-08-01
Extensive use of recalcitrant azo dyes in textile and paper industries poses a direct threat to the environment due to the carcinogenicity of their degradation products. The aim of this study was to investigate the efficiency of Curvularia clavata NZ2 in decolorization of azo dyes. The ability of the fungus to decolorize azo dyes can be evaluated as an important outcome as existing effluent treatment is unable to remove the dyes effectively. C. clavata has the ability to decolorize Reactive Black 5 (RB5), Acid Orange 7 (AO7), and Congo Red azo dyes, utilizing these as sole sources of carbon and nitrogen. Ultraviolet-visible (UV-vis) spectroscopy and Fourier infrared spectroscopy (FTIR) analysis of the extracted RB5's metabolites along with desorption tests confirmed that the decolorization process occurred due to degradation and not merely by adsorption. Enzyme activities of extracellular enzymes such as carboxymethylcellulase (CMCase), xylanase, laccase, and manganese peroxidase (MnP) were also detected during the decolorization process. Toxicity expressed as inhibition of germination was reduced significantly in fungal-treated azo dye solution when compared with the control. The cultivation of C. clavata under sequential batch system also recorded a decolorization efficiency of above 90%. The crude enzyme secreted by C. clavata also showed excellent ability to decolorize RB5 solutions with concentrations of 100 ppm (88-92%) and 1000 ppm (70-77%) without redox mediator. This proved that extracellular enzymes produced by C. clavata played a major role in decolorization of RB5.
Andleeb, Saadia; Atiq, Naima; Robson, Geoff D; Ahmed, Safia
2012-06-01
Biodegradation and biodecolorization of Drimarene blue K(2)RL (anthraquinone) dye by a fungal isolate Aspergillus flavus SA2 was studied in lab-scale immobilized fluidized bed bioreactor (FBR) system. Fungus was immobilized on 0.2-mm sand particles. The reactor operation was carried out at room temperature and pH 5.0 in continuous flow mode with increasing concentrations (50, 100, 150, 200, 300, 500 mg l(-1)) of dye in simulated textile effluent on the 1st, 2nd, 5th, 8th, 11th, and 14th days. The reactors were run on fill, react, settle, and draw mode, with hydraulic retention time (HRT) of 24-72 h. Total run time for reactor operation was 17 days. The average overall biological oxygen demand (BOD), chemical oxygen demand (COD), and color removal in the FBR system were up to 85.57%, 84.70%, and 71.3%, respectively, with 50-mg l(-1) initial dye concentration and HRT of 24 h. Reductions in BOD and COD levels along with color removal proved that the mechanism of biodecolorization and biodegradation occurred simultaneously. HPLC and LC-MS analysis identified phthalic acid, benzoic acid, 1, 4-dihydroxyanthraquinone, 2,3-dihydro-9,10-dihydroxy-1,4-anthracenedione, and catechol as degradation products of Drimarene blue K(2)RL dye. Phytotoxicity analysis of bioreactor treatments provided evidence for the production of less toxic metabolites in comparison to the parent dye. The present fluidized bed bioreactor setup with indigenously isolated fungal strain in its immobilized form is efficiently able to convert the parent toxic dye into less toxic by-products.
Enhanced photocatalytic degradation of dyes under sunlight using biocompatible TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
Bharati, B.; Sonkar, A. K.; Singh, N.; Dash, D.; Rath, Chandana
2017-08-01
As TiO2 is one of the most popular photocatalysts, we have studied here the photocatalytic degradation of the most common dyestuffs like rhodamine B (RhB), congo red (CR) and methylene blue (MB), which mainly come from the textile and photographic industries using nanoparticles of TiO2. Nanoparticles of TiO2 synthesized through a simple and cost effective sol-gel technique crystallizes in the anatase phase, showing a band gap less than that of bulk value. Particles consisting of coherently scattered domains of size 33 nm are found to be agglomerated and polycrystalline in nature. While the degradation rates of MB, CR and RhB after irradiating with a renewable source of energy, i.e. sunlight, show 100% degradation, TiO2 irradiated with UV light of 4.8 eV shows a much slower degradation rate. To use the waste water after photocatalysis, we examine further the biocompatibile nature of the TiO2 nanoparticles by platelet interaction activity, hemolysis effect and MTT assay. It is worth mentioning here that TiO2 nanoparticles are found to be highly hemocompatible, show no platelet aggregation, and the level of intracellular ROS in human platelets does not show significant change in ROS level. We conclude that TiO2 nanoparticles constitute an excellent photocatalyst and biocompatible material, and that after photocatalytic degradation of dye effluents obtained from textile industries, purified water can be used in agriculture and domestic sectors.
Physicochemical assessment of industrial textile effluents of Punjab (India)
NASA Astrophysics Data System (ADS)
Bhatia, Deepika; Sharma, Neeta Raj; Kanwar, Ramesh; Singh, Joginder
2018-06-01
Urbanization and industrialization are generating huge quantities of untreated wastewater leading to increased water pollution and human diseases in India. The textile industry is one of the leading polluters of surface water and consumes about 200-270 tons of water to produce 1 ton of textile product. The primary objective of the present study was to investigate the pollution potential of textile industry effluent draining into Buddha Nallah stream located in Ludhiana, Punjab (India), and determine the seasonal variation in physicochemical parameters (pH, water temperature, total dissolved solids, total suspended solids, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) of Buddha Nallah water. During summer months, for Site 1 and Site 2, the value of pH was in the alkaline range of 8.78 ± 0.47 and 8.51 ± 0.41, respectively. The values of pH in the rainy season were found to be in the range of 7.38 ± 0.58 and 7.11 ± 0.59 for Site 1 and Site 2, respectively. In the autumn and winter seasons, the average pH values were found to be in the range of 8.58 ± 1.40 and 8.33 ± 0.970, respectively. The maximum mean temperature in summer was recorded as 41.16 ± 4.99 °C, and lowest mean temperature in winter was recorded as 39.25 ± 2.25 °C at Site 2. The suspended solids were found to be highest (143.5 ± 75.01 and 139.66 ± 71.87 mg/L) in autumn for both the sites and lowest (86.50 + 15.10 mg/L) in the rainy season for Site 1. The values of BOD and COD of the textile effluent of both sites during all the seasons ranged from 121-580 to 240-990 mg/L, respectively, much higher than WHO water quality standard of 30 mg/L for BOD and 250 mg/L for COD. The present study deals with the collection of textile industry effluent and its characterization to find out the physicochemical load being drained by the effluent generated from textile industries, on the natural wastewater streams.
Ford, Lauren; Henderson, Robert L; Rayner, Christopher M; Blackburn, Richard S
2017-03-03
Madder (Rubia tinctorum L.) has been widely used as a red dye throughout history. Acid-sensitive colorants present in madder, such as glycosides (lucidin primeveroside, ruberythric acid, galiosin) and sensitive aglycons (lucidin), are degraded in the textile back extraction process; in previous literature these sensitive molecules are either absent or present in only low concentrations due to the use of acid in typical textile back extraction processes. Anthraquinone aglycons alizarin and purpurin are usually identified in analysis following harsh back extraction methods, such those using solvent mixtures with concentrated hydrochloric acid at high temperatures. Use of softer extraction techniques potentially allows for dye components present in madder to be extracted without degradation, which can potentially provide more information about the original dye profile, which varies significantly between madder varieties, species and dyeing technique. Herein, a softer extraction method involving aqueous glucose solution was developed and compared to other back extraction techniques on wool dyed with root extract from different varieties of Rubia tinctorum. Efficiencies of the extraction methods were analysed by HPLC coupled with diode array detection. Acidic literature methods were evaluated and they generally caused hydrolysis and degradation of the dye components, with alizarin, lucidin, and purpurin being the main compounds extracted. In contrast, extraction in aqueous glucose solution provides a highly effective method for extraction of madder dyed wool and is shown to efficiently extract lucidin primeveroside and ruberythric acid without causing hydrolysis and also extract aglycons that are present due to hydrolysis during processing of the plant material. Glucose solution is a favourable extraction medium due to its ability to form extensive hydrogen bonding with glycosides present in madder, and displace them from the fibre. This new glucose method offers an efficient process that preserves these sensitive molecules and is a step-change in analysis of madder dyed textiles as it can provide further information about historical dye preparation and dyeing processes that current methods cannot. The method also efficiently extracts glycosides in artificially aged samples, making it applicable for museum textile artefacts. Copyright © 2017 Elsevier B.V. All rights reserved.
Photodegradation of an azo dye of the textile industry.
Cisneros, Rosario López; Espinoza, Abel Gutarra; Litter, Marta I
2002-07-01
An advanced oxidation treatment, UV/H2O2, was applied to an azo dye, Hispamin Black CA, widely used in the Peruvian textile industry. Rates of color removal and degradation of the dye have been evaluated. A strongly absorbing solution was completely decolorized after 35 min of treatment, and after 60 min an 82% reduction of the total organic carbon (TOC) was obtained. It has been found that the degradation rate increased until an optimum value, beyond which the reagent exerted an inhibitory effect. The degradation rate was also function of pH.
This Action Plan addresses the use of benzidine-based dyes and benzidine congener-based dyes, both metalized and non-metalized, in products that would result in consumer exposure, such as for use to color textiles.
Peláez-Cid, Alejandra-Alicia; Herrera-González, Ana-María; Salazar-Villanueva, Martín; Bautista-Hernández, Alejandro
2016-10-01
In this study, three mesoporous activated carbons prepared from vegetable residues were used to remove acid, basic, and direct dyes from aqueous solutions, and reactive and vat dyes from textile wastewater. Granular carbons obtained by chemical activation at 673 K with phosphoric acid from prickly pear peels (CarTunaQ), broccoli stems (CarBrocQ), and white sapote seeds (CarZapQ) were highly efficient for the removal of dyes. Adsorption equilibrium studies were carried out in batch systems and treated with Langmuir and Freundlich isotherms. The maximum adsorption capacities calculated from the Langmuir isotherms ranged between 131.6 and 312.5 mg/g for acid dyes, and between 277.8 and 500.0 mg/g for basic dyes at 303 K. Our objective in this paper was to show that vegetable wastes can serve as precursors for activated carbons that can be used for the adsorption of dyes. Specifically CarBrocQ was the best carbon produced for the removal of textile dyes. The color removal of dyes present in textile wastewaters was compared with that of a commercial powdered carbon, and it was found that the carbons produced using waste material reached similar efficiency levels. Carbon samples were characterized by bulk density, point of zero charge, thermogravimetric analysis, elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, methylene blue adsorption isotherms at 303 K, and nitrogen adsorption isotherms at 77 K (SBET). The results show that the activated carbons possess a large specific surface area (1025-1177 m(2)/g) and high total pore volume (1.06-2.16 cm(3)/g) with average pore size diameters between 4.1 and 8.4 nm. Desorption and regeneration tests were made to test the viability of reusing the activated carbons. Copyright © 2016 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-07-01
... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability...
Code of Federal Regulations, 2010 CFR
2010-07-01
... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability; description...
Code of Federal Regulations, 2012 CFR
2012-07-01
... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability...
Code of Federal Regulations, 2013 CFR
2013-07-01
... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability...
Code of Federal Regulations, 2011 CFR
2011-07-01
... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability; description...
Military Compensation: Past, Present and Future. Volume 1. Executive Summary.
1976-01-01
Chapter 3 provides an overview of the current military compen- sation system -- i.e., the military pay and allowances system. The major subsystems to...research efforts produced processes for control of shrinkageof wool fabrics. In the US textile industry, wooliteis are nowtreated by these processes...led to development of .4,4continuous dyeing. Ilodern dyeing facilities of large textile • actories throughout the world trace their basic technology
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Low Water Use Processing... 9.0 at all times. Water Jet Weaving Pollutant or pollutant property BPT limitations Maximum for any...
Bilal, Muhammad; Asgher, Muhammad
2015-12-10
In view of compliance with increasingly stringent environmental legislation, an eco-friendly treatment technology of industrial dyes and effluents is a major environmental challenge in the color industry. In present study, a promising and eco-friendly entrapment approach was adopted to immobilize purified manganese peroxidase (MnP) produced from an indigenous strain of Ganoderma lucidum IBL-05 on Ca-alginate beads. The immobilized MnP was subsequently used for enhanced decolorization and detoxification of textile reactive dyes). MnP isolated from solid-state culture of G. lucidum IBL-05, presented highest immobilization yield (83.9 %) using alginate beads prepared at optimized conditions of 4 % (w/v) sodium alginate, 2 % (w/v) Calcium chloride (CaCl2) and 0.5 mg/ml enzyme concentration. Immobilization of MnP enhanced optimum temperature but caused acidic shift in optimum pH of the enzyme. The immobilized MnP showed optimum activity at pH 4.0 and 60 °C as compared to pH 5.0 and 35 °C for free enzyme. The kinetic parameters K(m) and V(max) of MnP were significantly improved by immobilization. The enhanced catalytic potential of immobilized MnP led to 87.5 %, 82.1 %, 89.4 %, 95.7 % and 83 % decolorization of Sandal-fix Red C4BLN, Sandal-fix Turq Blue GWF, Sandal-fix Foron Blue E2BLN, Sandal-fix Black CKF and Sandal-fix Golden Yellow CRL dyes, respectively. The insolubilized MnP was reusable for 7 repeated cycles in dye color removal. Furthermore, immobilized MnP also caused a significant reduction in biochemical oxygen demand (BOD) (94.61-95.47 %), chemical oxygen demand (COD) (91.18-94.85 %), and total organic carbon (TOC) (89.58-95 %) of aqueous dye solutions. G. lucidum MnP was immobilized in Ca-alginate beads by entrapment method to improve its practical effectiveness. Ca-alginate bound MnP was catalytically more vigorous, thermo-stable, reusable and worked over wider ranges of pH and temperature as compared to its free counterpart. Results of cytotoxicity like hemolytic and brine shrimp lethality tests suggested that Ca-alginate immobilized MnP may effectively be used for detoxification of dyes and industrial effluents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Woven Fabric Finishing... application of the best practicable control technology currently available (BPT). (a) Except as provided in 40...
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Nonwoven Manufacturing... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Felted Fabric Processing... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Carpet Finishing... application of the best practicable control technology currently available (BPT). (a) Except as provided in 40...
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Wool Scouring Subcategory... application of the best practicable control technology currently available (BPT). (a) Except as provided in 40...
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Wool Finishing Subcategory... application of the best practicable control technology currently available (BPT). (a) Except as provided in 40...
Patch testing to a textile dye mix by the international contact dermatitis research group.
Isaksson, Marléne; Ale, Iris; Andersen, Klaus E; Diepgen, Thomas; Goh, Chee-Leok; Goossens R, An; Jerajani, Hemangi; Maibach, Howard I; Sasseville, Denis; Bruze, Magnus
2015-01-01
Disperse dyes are well-known contact sensitizers not included in the majority of commercially available baseline series. To investigate the outcome of patch testing to a textile dye mix (TDM) consisting of 8 disperse dyes. Two thousand four hundred ninety-three consecutive dermatitis patients in 9 dermatology clinics were patch tested with a TDM 6.6%, consisting of Disperse (D) Blue 35, D Yellow 3, D Orange 1 and 3, D Red 1 and 17, all 1.0% each, and D Blue 106 and D Blue 124, each 0.3%. 90 reacted positively to the TDM. About 92.2% of the patients allergic to the TDM were also tested with the 8 separate dyes. Contact allergy to TDM was found in 3.6% (1.3-18.2) Simultaneous reactivity to p-phenylenediamine was found in 61.1% of the TDM-positive patients. Contact allergy to TDM and not to other p-amino-substituted sensitizers was diagnosed in 1.2%. The most frequent dye allergen in the TDM-positive patients was D Orange 3. Over 30% of the TDM allergic patients had been missed if only the international baseline series was tested. Contact allergy to TDM could explain or contribute to dermatitis in over 20% of the patients. Textile dye mix should be considered for inclusion into the international baseline series.
Serrano, Ana; van den Doel, Andre; van Bommel, Maarten; Hallett, Jessica; Joosten, Ineke; van den Berg, Klaas J
2015-10-15
The colorant behaviour of cochineal and kermes insect dyes in 141 experimentally-dyed and 28 artificially-aged samples of silk and wool was investigated using ultra-high performance liquid chromatography coupled to photodiode array detector (UHPLC-PDA), liquid chromatography electrospray ionisation mass spectrometry (LC-ESI-MS) and image scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDX). Partial-least squares discriminant analysis (PLS-DA) was then used to model the acquired UHPLC-PDA data and assess the possibility of discriminating cochineal insect species, as well as their correspondent dyed and aged reference fibres. The resulting models helped to characterize a set of 117 red samples from 95 historical textiles, in which UHPLC-PDA analyses have reported the presence of cochineal and kermes insect dyes. Analytical investigation of the experimentally-dyed and artificially-aged fibres has demonstrated that the ratio of compounds in the insects dye composition can change, depending on the dyeing conditions applied and the type of fibres used. Similarities were observed when comparing the UHPLC-MS and SEM-EDX results from the dyed and aged references with the historical samples. This was verified with PLS-DA models of the chromatographic data, facilitating the classification of the cochineal species present in the historical samples. The majority of these samples were identified to contain American cochineal, which is in agreement with historical and dye identification literature that describe the impact of this dyestuff into European and Asian dyeing practices, after the Iberian Expansion in the 16th century. The analytical results emphasize the importance of using statistical data interpretation for the discrimination of cochineal dyes, besides qualitative and quantitative evaluation of chromatograms. Hence, the combination of UHPLC-PDA with a statistical classification method, such as PLS-DA, has been demonstrated to be an advisable approach in future investigations to assess closely related species of natural dyes in historical textile samples. This is particularly important when aiming to achieve more accurate interpretations about the history of works of art, or the application of natural dyes in old textile production. Copyright © 2015 Elsevier B.V. All rights reserved.
Garcia, J C; Oliveira, J L; Silva, A E C; Oliveira, C C; Nozaki, J; de Souza, N E
2007-08-17
This work investigated the treatability of real textile effluents using several systems involving advanced oxidation processes (AOPs) such as UV/H2O2, UV/TiO2, UV/TiO2/H2O2, and UV/Fe2+/H2O2. The efficiency of each technique was evaluated according to the reduction levels observed in the UV absorbance of the effluents, COD, and organic nitrogen reduction, as well as mineralization as indicated by the formation of ammonium, nitrate, and sulfate ions. The results indicate the association of TiO2 and H2O2 as the most efficient treatment for removing organic pollutants from textile effluents. In spite of their efficiency, Fenton reactions based treatment proved to be slower and exhibited more complicated kinetics than the ones using TiO2, which are pseudo-first-order reactions. Decolorization was fast and effective in all the experiments despite the fact that only H2O2 was used.
Zuriaga-Agustí, E; Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I; Mendoza-Roca, J A
2014-05-01
Ultrafiltration membrane processes have become an established technology in the treatment and reuse of secondary effluents. Nevertheless, membrane fouling arises as a major obstacle in the efficient operation of these systems. In the current study, the performance of tubular ultrafiltration ceramic membranes was evaluated according to the roles exerted by membrane pore size, transmembrane pressure and feed concentration on a binary foulant system simulating textile wastewater. For that purpose, carboxymethyl cellulose sodium salt (CMC) and an azo dye were used as colloidal and organic foulants, respectively. Results showed that a larger pore size enabled more solutes to get adsorbed into the pores, producing a sharp permeate flux decline attributed to the rapid pore blockage. Besides, an increase in CMC concentration enhanced severe fouling in the case of the tighter membrane. Concerning separation efficiency, organic matter was almost completely removed with removal efficiency above 98.5%. Regarding the dye, 93% of rejection was achieved. Comparable removal efficiencies were attributed to the dynamic membrane formed by the cake layer, which governed process performance in terms of rejection and selectivity. As a result, none of the evaluated parameters showed significant influence on separation efficiency, supporting the significant role of cake layer on filtration process. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dutta, Arun Kumar; Ghorai, Uttam Kumar; Chattopadhyay, Kalyan Kumar; Banerjee, Diptonil
2018-05-01
Amorphous carbon nanotubes were synthesized using low temperature solid state reaction. The as synthesized a-CNTs were used to remove two different textile dyes, Methyl Orange and Rhodamine B from water. Two ways of removal were followed; i.e. Adsorption and UV assisted catalysis. Adsorption experiment was carried out under various conditions. Analysis of the adsorption data was performed using Langmuir, Freundlich and Temkin models. It has been shown that the as prepared samples can effectively be used as adsorbent of textile dyes. Exposure of visible or UV light can make no significant additional effect to the removal efficiency. The mechanism of the adsorption has been found to be following a pseudo 1st order mechanism with corresponding correlation factor >0.95. Also it has been shown that presence of impurities can drastically kill the performance of the sample. This detail comparative study has been reported for the first time.
Toxic influence of key organic soil pollutants on the total flavonoid content in wheat leaves
Copaciu, Florina; Opriş, Ocsana; Niinemets, Ülo; Copolovici, Lucian
2018-01-01
Textile dyes and antibiotics are two main classes of environmental pollutants which could be found in soil and water. Those persistent pollutants can have a negative influence on plant growth and development and affect the level of secondary metabolites. In the present work we studied the effect of textile dyes and antibiotics on total leaf flavonoid contents in wheat (Triticum aestivum L.). Contaminant solutions were applied daily using concentrations of 0.5 mg L–1 (lower) and 1.5 mg L–1 (higher dose) for either one or two weeks. We observed that exposure to the higher concentration of textile dyes resulted in a reduction in flavonoid content while antibiotics enhanced flavonoid contents at lower doses of exposure, and reduced at higher doses of exposure. These results suggest that diffuse chronic pollution by artificial organic contaminants can importantly alter antioxidative capacity of plants. PMID:29386693
Toxic influence of key organic soil pollutants on the total flavonoid content in wheat leaves.
Copaciu, Florina; Opriş, Ocsana; Niinemets, Ülo; Copolovici, Lucian
2016-06-01
Textile dyes and antibiotics are two main classes of environmental pollutants which could be found in soil and water. Those persistent pollutants can have a negative influence on plant growth and development and affect the level of secondary metabolites. In the present work we studied the effect of textile dyes and antibiotics on total leaf flavonoid contents in wheat ( Triticum aestivum L.). Contaminant solutions were applied daily using concentrations of 0.5 mg L -1 (lower) and 1.5 mg L -1 (higher dose) for either one or two weeks. We observed that exposure to the higher concentration of textile dyes resulted in a reduction in flavonoid content while antibiotics enhanced flavonoid contents at lower doses of exposure, and reduced at higher doses of exposure. These results suggest that diffuse chronic pollution by artificial organic contaminants can importantly alter antioxidative capacity of plants.
Anodic oxidation of textile wastewaters on boron-doped diamond electrodes.
Abdessamad, NourElHouda; Akrout, Hanene; Bousselmi, Latifa
2015-01-01
The objective of this study is to investigate the potential application of the anodic oxidation (AO) on two electrolytic cells (monopolar (Cell 1) and bipolar (Cell 2)) containing boron-doped diamond electrodes on the treatment of real textile effluents to study the reuse possibility of treated wastewater in the textile industry process. AO is applied in the flocculation coagulation pretreatment of both upstream (BH) and downstream (BS) effluents. The chemical oxygen demand (COD) results show that the final COD removal obtained for the BH effluent in the case of Cell 1 and Cell 2 is 800 and 150 mg O₂L⁻¹ after 5 and 6 h of electrolysis, respectively. The treatments of the BS effluent allow for obtaining a final COD of 76 mg L⁻¹ for Cell 1 and a total mineralization for Cell 2. The obtained results demonstrate that the apparent mineralization kinetics of both effluents when using Cell 2 are about four times faster than the one obtained by Cell 1 and highlight the important contribution of the bipolar cell. Besides, the energy consumption values show that the treatment of the BH effluent by Cell 1 consumes 865 kWh kg COD⁻¹ against 411 kWh kg COD(-1) by Cell 2. Therefore, the use of Cell 2 decreases the energy cost by 2.1-6.65 times when compared to Cell 1 in the case of the BH and BS effluent treatment, respectively.
González, Antonia Sandoval; Martínez, Susana Silva
2008-09-01
The sonophotocatalytic degradation of basic blue 9 industrial textile dye has been studied in the presence of ultrasound (20 kHz) over a TiO(2) slurry employing an UV lamp (15 W, 352 nm). It was observed that the color removal efficiency was influenced by the pH of the solution, initial dye concentration and TiO(2) amount. It was found that the dye degradation followed apparent first order kinetics. The rate constant increased by decreasing dye concentration and was affected by the pH of the solution with the highest degradation obtained at pH 7. The first order rate constants obtained with sonophotocatalysis were twofold and tenfold than those obtained under photocatalysis and sonolysis, respectively. The chemical oxygen demand was abated over 80%.
Chen, Qing; Yang, Ying; Zhou, Mengsi; Liu, Meihong; Yu, Sanchuan; Gao, Congjie
2015-03-02
Raw and biologically treated textile effluents were submerged filtrated using lab-fabricated hollow fiber nanofiltration membrane with a molecular weight cut-off of about 650 g/mol. Permeate flux, chemical oxygen demand (COD) reduction, color removal, membrane fouling, and cleaning were investigated and compared by varying the trans-membrane pressure (TMP) and volume concentrating factor (VCF). It was found that both raw and biologically treated textile effluents could be efficiently treated through submerged nanofiltration. The increase of TMP resulted in a decline in water permeability, COD reduction, color removal, and flux recovery ratio, while the increase of VCF resulted in both increased COD reduction and color removal. Under the TMP of 0.4 bar and VCF of 5.0, fluxes of 1.96 and 2.59 l/m(2)h, COD reductions of 95.7 and 94.2%, color removals of 99.0, and 97.3% and flux recovery ratios of 91.1 and 92.9% could be obtained in filtration of raw and biologically treated effluents, respectively. After filtration, the COD and color contents of the raw effluent declined sharply from 1780 to 325 mg/l and 1.200 to 0.060 Abs/cm, respectively, while for the biologically treated effluent, they decreased from 780 to 180 mg/l and 0.370 to 0.045 Abs/cm, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Stock and Yarn Finishing... application of the best practicable control technology currently available (BPT). (a) Except as provided in 40...
Gurung, Anup; Hassan, Sedky H A; Oh, Sang-Eun
2011-10-01
Bioassays are becoming an important tool for assessing the toxicity of complex mixtures of substances in aquatic environments in which Daphnia magna is routinely used as a test organism. Bioassays outweigh physicochemical analyses and are valuable in the decision-making process pertaining to the final discharge of effluents from wastewater treatment plants as they measure the total effect of the discharge which is ecologically relevant. In this study, the aquatic toxicity of a textile plant effluent and river water downstream from the plant were evaluated with sulfur-oxidizing bacterial biosensors in continuous mode. Collected samples were analysed for different physicochemical parameters and 1,4-dioxane was detected in the effluent. The effluent contained a relatively high chemical oxygen demand of 60 mg L(-1), which exceeded the limit set by the Korean government for industrial effluent discharges. Results showed that both the effluent and river waters were toxic to sulfur-oxidizing bacteria. These results show the importance of incorporating bioassays to detect toxicity in wastewater effluents for the sustainable management of water resources.
Sirianuntapiboon, Suntud; Sadahiro, Ohmomo; Salee, Paneeta
2007-10-01
Resting (living) bio-sludge from a domestic wastewater treatment plant was used as an adsorbent of both direct dyes and organic matter in a sequencing batch reactor (SBR) system. The dye adsorption capacity of the bio-sludge was not increased by acclimatization with direct dyes. The adsorption of Direct Red 23 and Direct Blue 201 onto the bio-sludge was almost the same. The resting bio-sludge showed higher adsorption capacity than the autoclaved bio-sludge. The resting bio-sludge that was acclimatized with synthetic textile wastewater (STWW) without direct dyes showed the highest Direct Blue 201, COD, and BOD(5) removal capacities of 16.1+/-0.4, 453+/-7, and 293+/-9 mg/g of bio-sludge, respectively. After reuse, the dye adsorption ability of deteriorated bio-sludge was recovered by washing with 0.1% sodium dodecyl sulfate (SDS) solution. The direct dyes in the STWW were also easily removed by a GAC-SBR system. The dye removal efficiencies were higher than 80%, even when the system was operated under a high organic loading of 0.36kgBOD(5)/m(3)-d. The GAC-SBR system, however, showed a low direct dye removal efficiency of only 57+/-2.1% with raw textile wastewater (TWW) even though the system was operated with an organic loading of only 0.083kgBOD(5)/m(3)-d. The dyes, COD, BOD(5), and total kjeldalh nitrogen removal efficiencies increased up to 76.0+/-2.8%, 86.2+/-0.5%, 84.2+/-0.7%, and 68.2+/-2.1%, respectively, when 0.89 g/L glucose (organic loading of 0.17kgBOD(5)/m(3)-d) was supplemented into the TWW.
Organic and Inorganic Dyes in Polyelectrolyte Multilayer Films
Ball, Vincent
2012-01-01
Polyelectrolyte multilayer films are a versatile functionalization method of surfaces and rely on the alternated adsorption of oppositely charged species. Among such species, charged dyes can also be alternated with oppositely charged polymers, which is challenging from a fundamental point of view, because polyelectrolytes require a minimal number of charges, whereas even monovalent dyes can be incorporated during the alternated adsorption process. We will not only focus on organic dyes but also on their inorganic counterparts and on metal complexes. Such films offer plenty of possible applications in dye sensitized solar cells. In addition, dyes are massively used in the textile industry and in histology to stain textile fibers or tissues. However, the excess of non bound dyes poses serious environmental problems. It is hence of the highest interest to design materials able to adsorb such dyes in an almost irreversible manner. Polyelectrolyte multilayer films, owing to their ion exchange behavior can be useful for such a task allowing for impressive overconcentration of dyes with respect to the dye in solution. The actual state of knowledge of the interactions between charged dyes and adsorbed polyelectrolytes is the focus of this review article.
Effect of textile industrial effluent on tree plantation and soil chemistry.
Singh, G; Bala, N; Rathod, T R; Singh, B
2001-01-01
A field study was conducted at Arid Forest Research Institute to study the effect of textile industrial effluent on the growth of forest trees and associated soil properties. The effluent has high pH, electrical conductivity (EC), sodium adsorption ratio (SAR) and residual sodium carbonate (RSC) whereas the bivalent cations were in traces. Eight months old seedlings of Acacia nilotica, Acacia tortilis, Albizia lebbeck, Azadirachta indica, Parkinsonia aculeata and Prosopis juliflora were planted in July 1993. Various treatment regimes followed were; irrigation with effluent only (W1), effluent mixed with canal water in 1:1 ratio (W2), irrigation with gypsum treated effluent (W3), gypsum treated soil irrigated with effluent (W4) and wood ash treated soil irrigated with effluent (W5). Treatment regime W5 was found the best where plants attained (mean of six species) 173 cm height, 138 cm crown diameter and 9.2 cm collar girth at the age of 28 months. The poorest growth was observed under treatment regime of W3. The growth of the species varied significantly and the maximum growth was recorded for P. juliflora (188 cm height, 198 cm crown diameter and 10.0 cm collar girth). The minimum growth was recorded for A. lebbeck. Irrigation with effluent resulted in increase in percent organic matter as well as in EC. In most of the cases there were no changes in soil pH except in W5 where it was due to the effect of wood ash. Addition of wood ash influenced plant growth. These results suggest that tree species studied (except A. lebbeck) can be established successfully using textile industrial wastewater in arid region.
Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system
Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.
2010-01-01
During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.
Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system.
Conn, Kathleen E; Siegrist, Robert L; Barber, Larry B; Meyer, Michael T
2010-02-01
During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. Copyright 2009 SETAC.
Ahuja, V; Platzek, T; Fink, H; Sonnenburg, A; Stahlmann, R
2010-09-01
Disperse dyes, which are suitable for dyeing synthetic fibres, are responsible for the great majority of allergic contact dermatitis (ACD) cases to textile dyes. The aim of the present study was to investigate the sensitising potential of various disperse dyes using a biphasic protocol of the local lymph node assay (LLNA). Briefly, mice were shaved over a surface of approximately 2 cm(2) on their backs and treated using a "sensitisation-challenge protocol". The shaved surface was treated once daily on days 1-3 with 50 microl of the test solution. Animals remained untreated on days 4-14. On days 15-17, mice were treated with 25 microl of the test solution on the dorsum of both ears. Mice were killed on day 19 with deep CO(2) anaesthesia, the lymph nodes prepared and various end points, such as ear thickness, ear punch weight, lymph node weight, lymph node cell count and the proportion of various lymphocyte subpopulations, were determined by flow cytometry. The results were compared to control group treated with the vehicle alone. Our results showed that almost all of the tested textile dyes caused a significant increase in lymph node cell count and lymph node weight. We also observed an increase in ear thickness and ear punch weight in most of the concentrations tested for various textile dyes. We observed a decrease in CD4+ and CD8+ cells and an increase in CD19+, CD45+ and CD45+/1A+ cells in most of the cases, which is characteristic for allergens. The CD4+/CD69+ cells increased in only few experiments mainly with Disperse Blue 124 and Disperse Blue 106. Based on our results, the disperse dyes could be arranged in four groups on the basis of their sensitising potency in the following decreasing order (in parenthesis: lowest concentration causing a significant increase in lymph node cell number): group 1, strong: Disperse Blue 124 and Disperse Blue 106 (0.003%); group 2, moderate: Disperse Red 1 and Disperse Blue 1 (3%); group 3, weak: Disperse Orange 37 and Disperse Blue 35 (10%); and group 4, very weak: Disperse yellow 3 and Disperse Orange 3 (increase at 30% or no increase at 30%). In conclusion, our study shows that the biphasic LLNA protocol was proficient enough to study the sensitisation potential of tested textile dyes and provides data allowing to discriminate them according to their potency.
Fontana, Klaiani B; Chaves, Eduardo S; Sanchez, Jefferson D S; Watanabe, Erica R L R; Pietrobelli, Juliana M T A; Lenzi, Giane G
2016-02-01
The biosorption of orange solimax TGL 182% (OS-TGL) textile dye onto new and low cost biossorbent (malt bagasse) in aqueous solutions was investigated. The malt bagasse was characterized by Fourier transform infrared spectroscopy and specific surface area (BET method).Batch biosorption experiments were conducted in order to determine the following parameters: particles size, pH, agitation speed, temperature, contact time, biomass dosage, influence of the ionic strength and, finally, the influence of other textile dye on the OS-TGL biosorption. The optimum conditions for OS-TGL removal were obtained at pH 1.5, agitation speed of 150rpm, contact time of 180min and biomass dosage 2, 8gL(-1). The results show that the kinetics of biosorption followed a pseudo-second-order model and by increasing the temperature from 293 up to 313K, the biosorption capacity was improved. The Langmuir model showed better fit and the estimated biosorption capacity was 23.2mgg(-1). The negative values of Gibbs free energy, ΔG°, and positive value of enthalpy, ΔH°, confirm the spontaneous nature and endothermic character of the biosorption process. The results of the ionic strength effect indicated that the biosorption process under study had a strong tolerance in high salt concentrations. The removal capacity (>95%) was not affected with the presence of other textile dyes. Copyright © 2015 Elsevier Inc. All rights reserved.
Treatment of synthetic textile wastewater containing dye mixtures with microcosms.
Yaseen, Dina A; Scholz, Miklas
2018-01-01
The aim was to assess the ability of microcosms (laboratory-scale shallow ponds) as a post polishing stage for the remediation of artificial textile wastewater comprising two commercial dyes (basic red 46 (BR46) and reactive blue 198 (RB198)) as a mixture. The objectives were to evaluate the impact of Lemna minor L. (common duckweed) on the water quality outflows; the elimination of dye mixtures, organic matter, and nutrients; and the impact of synthetic textile wastewater comprising dye mixtures on the L. minor plant growth. Three mixtures were prepared providing a total dye concentration of 10 mg/l. Findings showed that the planted simulated ponds possess a significant (p < 0.05) potential for improving the outflow characteristics and eliminate dyes, ammonium-nitrogen (NH 4 -N), and nitrate-nitrogen (NO 3 -N) in all mixtures compared with the corresponding unplanted ponds. The removal of mixed dyes in planted ponds was mainly due to phyto-transformation and adsorption of BR46 with complete aromatic amine mineralisation. For ponds containing 2 mg/l of RB198 and 8 mg/l of BR46, removals were around 53%, which was significantly higher than those for other mixtures: 5 mg/l of RB198 and 5 mg/l of BR46 and 8 mg/l of RB198 and 2 mg/l of BR46 achieved only 41 and 26% removals, respectively. Dye mixtures stopped the growth of L. minor, and the presence of artificial wastewater reduced their development.
Fernandes, Neemias Cintra; Brito, Lara Barroso; Costa, Gessyca Gonçalves; Taveira, Stephânia Fleury; Cunha-Filho, Marcílio Sérgio Soares; Oliveira, Gisele Augusto Rodrigues; Marreto, Ricardo Neves
2018-06-06
The conventional treatment of textile effluents is usually inefficient in removing azo dyes and can even generate more toxic products than the original dyes. The aim of the present study was to optimize the process factors in the degradation of Disperse Red 343 by Fenton and Fenton-like processes, as well as to investigate the ecotoxicity of the samples treated under optimized conditions. A Box-Behnken design integrated with the desirability function was used to optimize dye degradation, the amount of residual H 2 O 2 [H 2 O 2residual ], and the ecotoxicity of the treated samples (lettuce seed, Artemia salina, and zebrafish in their early-life stages). Dye degradation was affected only by catalyst concentration [Fe] in both the Fenton and Fenton-like processes. In the Fenton reaction, [H 2 O 2residual ] was significantly affected by initial [H 2 O 2 ] and its interaction with [Fe]; however, in the Fenton-like reaction, it was affected by initial [H 2 O 2 ] only. A. salina mortality was affected by different process factors in both processes, which suggests the formation of different toxic products in each process. The desirability function was applied to determine the best process parameters and predict the responses, which were confirmed experimentally. Optimal conditions facilitated the complete degradation of the dye without [H 2 O 2residual ] or toxicity for samples treated with the Fenton-like process, whereas the Fenton process induced significant mortality for A. salina. Results indicate that the Fenton-like process is superior to the Fenton reaction to degrade Disperse Red 343. Copyright © 2018 Elsevier B.V. All rights reserved.
Surface-enhanced Raman scattering in art and archaeology
NASA Astrophysics Data System (ADS)
Leona, Marco
2005-11-01
The identification of natural dyes found in archaeological objects and in works of art as textile dyes and lake pigments is a demanding analytical task. To address the problems raised by the very low dye content of dyed fibers and lake pigments, and by the requirement to remove only microscopic samples, surface enhanced Raman scattering techniques were investigated for application to museum objects. SERS gives excellent results with the majority of natural dyes, including: alizarin, purpurin, laccaic acid, carminic acid, kermesic acid, shikonin, juglone, lawsone, brazilin and brazilein, haematoxylin and haematein, fisetin, quercitrin, quercetin, rutin, and morin. In this study, limits of detection were determined for representative dyes and different SERS supports such as citrate reduced Ag colloid and silver nanoisland films. SERS was successfully used to identify natural madder in a microscopic fragment from a severely degraded 11th Century Byzantine textile recently excavated in Amorium, Turkey.
Guerra, Denis L; Silva, Weber L L; Oliveira, Helen C P; Viana, Rúbia R; Airoldi, Claudio
2011-02-15
The objective of this study is to examine the adsorption behavior of Sumifix Brilliant Orange 3R textile dye from aqueous solution on smectite sample, an abundant Amazon clay. The original smectite clay mineral has been collected from Amazon region, Brazil. The compound 2-aminomethylpyridine was anchored onto smectite surface by heterogeneous route. The ability of these materials to remove the Sumifix Brilliant Orange 3R textile dye from aqueous solution was followed by a series of adsorption isotherms, using a batchwise process. The maximum number of moles adsorbed was determined to be 1.26 and 2.07 mmol g(-1) for natural and modified clay samples, respectively. The energetic effects caused by dye cations adsorption were determined through calorimetric titrations. Thermodynamics indicated the existence of favorable conditions for such dye-nitrogen interactions. Copyright © 2010. Published by Elsevier B.V.
Hussein, Amjad; Scholz, Miklas
2018-03-01
The release of untreated dye textile wastewater into receiving streams is unacceptable not only for aesthetic reasons and its negative impacts on aquatic life but also because numerous dyes are toxic and carcinogenic to humans. Strategies, as of now, used for treating textile wastewaters have technical and economical restrictions. The greater part of the physico-chemical methods, which are used to treat this kind of wastewater, are costly, produce large amounts of sludge and are wasteful concerning some soluble dyes. In contrast, biological treatments such as constructed wetlands are cheaper than the traditional methods, environmental friendly and do not produce large amounts of sludge. Synthetic wastewater containing Acid Blue 113 (AB113) and Basic Red 46 (BR46) has been added to laboratory-scale vertical-flow construction wetland systems, which have been planted with Phragmites australis (Cav.) Trin. ex Steud. (common reed). The concentrations 7 and 208 mg/l were applied for each dye at the hydraulic contact times of 48 and 96 h. Concerning the low concentrations of BR46 and AB113, the unplanted wetlands are associated with significant (ρ < 0.05) reduction performances, if compared with planted wetlands concerning the removal of dyes. For the high concentrations of AB113, BR46 and a mixture of both of them, wetlands with long contact times were significantly (ρ < 0.05) better than wetlands that had short contact times in terms of dye, colour and chemical oxygen demand reductions. Regarding nitrate nitrogen (NO 3 -N), the reduction percentage rates of AB113, BR46 and a mixture dye of both of them were between 85 and 100%. For low and high inflow dye concentrations, best removals were generally recorded for spring and summer, respectively.
Mouri, Chika; Laursen, Richard
2011-10-14
Flavonoids in the grasses (Poaceae family), Arthraxon hispidus (Thunb.) Makino and Miscanthus tinctorius (Steudel) Hackel have long histories of use for producing yellow dyes in Japan and China, but up to now there have been no analytical procedures for characterizing the dye components in textiles dyed with these materials. LC-MS analysis of plant material and of silk dyed with extracts of these plants shows the presence, primarily, of flavonoid C-glycosides, three of which have been tentatively identified as luteolin 8-C-rhamnoside, apigenin 8-C-rhamnoside and luteolin 8-C-(4-ketorhamnoside). Two of these compounds, luteolin 8-C-rhamnoside (M=432), apigenin 8-C-rhamnoside (M=416), along with the previously known tricin (M=330) and several other flavonoids that appear in varying amounts, serve as unique markers for identifying A. hispidus and M. tinctorius as the source of yellow dyes in textiles. Using this information, we have been able to identify grass-derived dyes in Japanese textiles dated to the Nara and Heian periods. However, due to the high variability in the amounts of various flavonoid components, our goal of distinguishing between the two plant sources remains elusive. Copyright © 2011 Elsevier B.V. All rights reserved.
Decolorization of acid, disperse and reactive dyes by Trametes versicolor CBR43.
Yang, Seung-Ok; Sodaneath, Hong; Lee, Jung-In; Jung, Hyekyeng; Choi, Jin-Hee; Ryu, Hee Wook; Cho, Kyung-Suk
2017-07-29
The mycoremediation has been considered as a promising method for decolorizing dye wastewater. To explore new bioresource for mycoremediation, a new white-rot fungus that could decolorize various dyes commonly used in textile industries was isolated, and its ligninolytic enzyme activity and decolorization capacity were characterized. The isolated CBR43 was identified as Trametes versicolor based on the morphological properties of its fruit body and spores, as well as through partial 18S rDNA gene sequences. Isolated CBR43 displayed high activities of laccase and Mn-dependent peroxidase, whereas its lignin peroxidase activity was relatively low. These ligninolytic enzyme activities in potato dextrose broth (PDB) medium were enhanced by the addition of yeast extract (1-10 g L -1 ). In particular, lignin peroxidase activity was increased more than 5 times in the PDB medium amended with 10 g L -1 of yeast extract. The CBR43 decolorized more than 90% of 200 mg L -1 acid dyes (red 114, blue 62 and black 172) and reactive dyes (red 120, blue 4, orange 16 and black 5) within 6 days in the PDB medium. CBR43 decolorized 67% of 200 mg L -1 acid orange 7 within 9 days. The decolorization efficiencies for disperse dyes (red 1, orange 3 and black 1) were 51-80% within 9 days. The CBR43 could effectively decolorize high concentrations of acid blue 62 and acid black 172 (500-700 mg L -1 ). The maximum dye decolorization rate was obtained at 28°C, pH 5, and 150 rpm in the PDB medium. T. versicolor CBR43 had high laccase and Mn-dependent peroxidase activities, and could decolorize a wide variety of dyes such as acid, disperse and reactive textile dyes. This fungus had decolorizing activities of azo-type dyes as well as anthraquinone-type dyes. T. versicolor CBR43 is one of promising bioresources for the decolorization of textile wastewater including various dyes.
Machine-Washable PEDOT:PSS Dyed Silk Yarns for Electronic Textiles.
Ryan, Jason D; Mengistie, Desalegn Alemu; Gabrielsson, Roger; Lund, Anja; Müller, Christian
2017-03-15
Durable, electrically conducting yarns are a critical component of electronic textiles (e-textiles). Here, such yarns with exceptional wear and wash resistance are realized through dyeing silk from the silkworm Bombyx mori with the conjugated polymer:polyelectrolyte complex PEDOT:PSS. A high Young's modulus of approximately 2 GPa combined with a robust and scalable dyeing process results in up to 40 m long yarns that maintain their bulk electrical conductivity of approximately 14 S cm -1 when experiencing repeated bending stress as well as mechanical wear during sewing. Moreover, a high degree of ambient stability is paired with the ability to withstand both machine washing and dry cleaning. For the potential use for e-textile applications to be illustrated, an in-plane thermoelectric module that comprises 26 p-type legs is demonstrated by embroidery of dyed silk yarns onto a piece of felted wool fabric.
Machine-Washable PEDOT:PSS Dyed Silk Yarns for Electronic Textiles
2017-01-01
Durable, electrically conducting yarns are a critical component of electronic textiles (e-textiles). Here, such yarns with exceptional wear and wash resistance are realized through dyeing silk from the silkworm Bombyx mori with the conjugated polymer:polyelectrolyte complex PEDOT:PSS. A high Young’s modulus of approximately 2 GPa combined with a robust and scalable dyeing process results in up to 40 m long yarns that maintain their bulk electrical conductivity of approximately 14 S cm–1 when experiencing repeated bending stress as well as mechanical wear during sewing. Moreover, a high degree of ambient stability is paired with the ability to withstand both machine washing and dry cleaning. For the potential use for e-textile applications to be illustrated, an in-plane thermoelectric module that comprises 26 p-type legs is demonstrated by embroidery of dyed silk yarns onto a piece of felted wool fabric. PMID:28245105
Khalaf, Mahmoud A
2008-09-01
The potential of Aspergillus niger fungus and Spirogyra sp., a fresh water green algae, was investigated as a biosorbents for removal of reactive dye (Synazol) from its multi component textile wastewater. The results showed that pre-treatment of fungal and algal biomasses with autoclaving increased the removal of dye than pre-treatment with gamma-irradiation. The effects of operational parameters (pH, temperature, biomass concentration and time) on dye removal were examined. The results obtained revealed that dried autoclaved biomass of A. niger and Spirogyra sp. exhibited maximum dye removal (88% and 85%, respectively) at pH3, temperature 30 degrees C and 8 gl(-1)(w/v) biomass conc. after 18h contact time. The stability and efficiency of both organisms in the long-term repetitive operation were also investigated. The results showed that the non-viable biomasses possessed high stability and efficiency of dye removal over 3 repeated batches.
Soares, Petrick A; Batalha, Mauro; Souza, Selene M A Guelli U; Boaventura, Rui A R; Vilar, Vítor J P
2015-04-01
Literature describes a kinetic mineralization profile for most of acrylic-textile dyeing wastewaters using a photo-Fenton reaction characterized by a slow degradation process and high reactants consumption. This work tries to elucidate that the slow decay on DOC concentration is associated with the formation of stable complexes between Fe(3+) and textile auxiliary products, limiting the photoreduction of Fe(3+). This work also evaluates the enhancement of a solar photo-Fenton reaction through the use of different ferric-organic ligands applied to the treatment of a simulated acrylic-textile dyeing wastewater, as a pre-oxidation step to enhance its biodegradability. The photo-Fenton reaction was negatively affected by two dyeing auxiliary products: i) Sera(®) Tard A-AS, a surfactant mainly composed of alkyl dimethyl benzyl ammonium chloride and ii) Sera(®) Sperse M-IW, a dispersing agent composed of polyglycol solvents. The catalytic activity of the organic ligands toward the ferrous-catalysed system followed this order: Fe(III)-Oxalate > Fe(III)-Citrate > Fe(III)-EDDS, and all were better than the traditional photo-Fenton reaction. Different design parameters such as iron concentration, pH, temperature, flow conditions, UV irradiance and H2O2 addition strategy and dose were evaluated. The ferrioxalate induced photo-Fenton process presented the best results, achieving 87% mineralization after 9.3 kJUV L(-1) and allowing to work until near neutral pH values. As expected, the biodegradability of the textile wastewater was significantly enhanced during the photo-Fenton treatment, achieving a value of 73%, consuming 32.4 mM of H2O2 and 5.7 kJUV L(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing... attributable to the finishing of knit fabrics through simple manufacturing operations employing a natural and..., controlled by this section and attributable to the finishing of knit fabrics through complex manufacturing...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing... attributable to the finishing of knit fabrics through simple manufacturing operations employing a natural and..., controlled by this section and attributable to the finishing of knit fabrics through complex manufacturing...
CLOSED-CYCLE TEXTILE DYEING: FULL-SCALE HYPERFILTRATION DEMONSTRATION
The report gives results of a project of joining a full-scale dynamic-membrane hyperfiltration (HF) system with an operating dye range. (HF is a membrane separation technique that has been used successfully to desalinate natural water. The dye range is a multi-purpose unit with a...
75 FR 10739 - Combustible Dust
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-09
...; telephone: (202) 693- 1999. General and technical information. Contact Mat Chibbaro, P.E., Fire Protection..., fertilizer, tobacco, paper, soap, rubber, drugs, dried blood, dyes, certain textiles, and metals (such as... manufacturing, textile manufacturing, furniture manufacturing, metal processing, fabricated metal products and...
Electrochemical Treatment of Textile Dye Wastewater by Mild Steel Anode.
Bhavya, J G; Rekha, H B; Murthy, Usha N
2014-04-01
This paper presents the results of the treatment of textile dye wastewater generated from a textile processing industry by electrochemical method. Experiments were conducted at current densities of 12, 24 and 48 A/m2 using mild steel as anode and cathode. During the various stages of electrolysis, parameters such as COD, color and BOD5 were determined in order to know the feasibility of electrochemical treatment. It was observed that increasing the electrolysis time and increased current density bring down the concentration of pollutants. Also COD removal rate and energy consumption during the electrolysis were calculated and presented in this paper. The present study proves the effectiveness of electrochemical treatment using MS as anode for TDW oxidation.
Niu, Zengyuan; Luo, Xin; Ye, Xiwen; Xiu, Xiaoli; Zhang, Li; Wang, Xin; Chen, Jing
2015-10-01
A rapid screening method based on high performance liquid chromatography-linear ion trap/orbitrap high-resolution mass spectrometry (HPLC-LTQ/Orbitrap MS) for 22 disperse dyes in ecological textiles has been established. The target compounds were extracted by pyridine/water (1:1, v/v) by shaking extraction in 90 degrees C water bath. The extracts were then separated by a CAPCELL PAK C18 column (100 mm x 2.0 mm, 5 μm) using gradient elution with acetonitrile-5 mmol/L ammonium acetate containing 0.01% (v/v) formic acid as mobile phases, and finally analyzed by HPLC-LTQ/Orbitrap in positive and negative ESI modes. The retention time and accurate mass of parent ion were used for fast screening of 22 disperse dyes, while the confirmatory analysis was obtained by fragments generated by collision-induced dissociation (CID) MS/MS. Target analysis exhibited high mass accuracy (< 5 x 10(-6)). Each target showed a good linearity in its own concentration range and the correlation coefficient was higher than 0.99. The LOQs were 0.125-2.5 mg/kg. Except for Disperse Yellow 49, the average recoveries of most disperse dyes at three spiked levels were 65%-120%, and the relative standard deviations (n = 6) were less than 15%. The method was applied for screening 40 different kinds of textiles, and Disperse Orange 37/76 was detected in one of them. With high selectivity and strong anti-jamming ability, this method is simple, rapid, accurate, and it can be used for the inspection of disperse dyes in textiles.
Mineralization of the textile dye acid yellow 42 by solar photoelectro-Fenton in a lab-pilot plant.
Espinoza, Carolina; Romero, Julio; Villegas, Loreto; Cornejo-Ponce, Lorena; Salazar, Ricardo
2016-12-05
A complete mineralization of a textile dye widely used in the Chilean textile industry, acid yellow 42 (AY42), was studied. Degradation was carried out in an aqueous solution containing 100mgL(-1) of total organic carbon (TOC) of dye using the advanced solar photoelectro-Fenton (SPEF) process in a lab-scale pilot plant consisting of a filter press cell, which contains a boron doped diamond electrode and an air diffusion cathode (BDD/air-diffusion cell), coupled with a solar photoreactor for treat 8L of wastewater during 270min of electrolysis. The main results obtained during the degradation of the textile dye were that a complete transformation to CO2 depends directly on the applied current density, the concentration of Fe(2+) used as catalyst, and the solar radiation intensity. The elimination of AY42 and its organic intermediates was due to hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton's reaction between electrogenerated H2O2 and added Fe(2+). The application of solar radiation in the process (SPEF) yield higher current efficiencies and lower energy consumptions than electro-Fenton (EF) and electro-oxidation with electrogenerated H2O2 (E OH2O2) by the additional production of hydroxyl radicals from the photolysis of Fe(III) hydrated species and the photodecomposition of Fe(III) complexes with organic intermediates. Moreover, some products and intermediates formed during mineralization of dye, such as inorganic ions, carboxylic acids and aromatic compounds were determined by photometric and chromatographic methods. An oxidation pathway is proposed for the complete conversion to CO2. Copyright © 2016 Elsevier B.V. All rights reserved.
Pecly, José Otavio Goulart
2018-01-01
The alternative use of effluent turbidity to determine the dilution field of a domestic marine outfall located off the city of Rio de Janeiro was evaluated through field work comprising fluorescent dye tracer injection and tracking with simultaneous monitoring of sea water turbidity. A preliminary laboratory assessment was carried out with a sample of the outfall effluent whose turbidity was measured by the nephelometric method before and during a serial dilution process. During the field campaign, the dye tracer was monitored with field fluorometers and the turbidity was observed with an optical backscattering sensor interfaced to an OEM data acquisition system. About 4,000 samples were gathered, covering an area of 3 km × 3 km near the outfall diffusers. At the far field - where a drift towards the coastline was observed - the effluent plume was adequately labeled by the dye tracer. The turbidity plume was biased due to the high and variable background turbidity of sea water. After processing the turbidity dataset with a baseline detrending method, the plume presented high correlation with the dye tracer plume drawn on the near dilution field. However, dye tracer remains more robust than effluent turbidity.
ERIC Educational Resources Information Center
Mansfield, Patricia; Sanford, Barbara
1979-01-01
Describes the process of "canning"--applying textile pigment or dye to cloth by moving a pigment-filled can across the fabric to create a linear design. This printing process is described as low-cost, easy, and suitable for all age and artistic levels. (Author/SJL)
Sponza, Delia Teresa
2002-01-01
Toxicity of some organic and inorganic chemicals to microorganisms is an important consideration in assessing their environmental impact against their economic benefits. Microorganisms play an important role in several environmental processes, both natural and engineered. Some organic and inorganics at toxic levels have been detected in industrial discharges resulting in plant upsets and discharge permit violations. In addition to this, even though in some cases the effluent wastewater does not exceed the discharge limits, the results of toxicity tests show potential toxicity. Toxicity knowledge of effluents can benefit treatment plant operators in optimising plant operation, setting pre-treatment standards, and protecting receiving water quality and in establishing sewer discharge permits to safeguard the plant. In the Turkish regulations only toxicity dilution factor (TDF) with fish is part of the toxicity monitoring program of permissible wastewater discharge. In various countries, laboratory studies involving the use of different organisms and protocol for toxicity assessment was conducted involving a number of discharges. In this study, it was aimed to investigate the acute toxicity of textile and metal industry wastewaters by traditional and enrichment toxicity tests and emphasize the importance of toxicity tests in wastewater discharge regulations. The enrichment toxicity tests are novel applications and give an idea whether there is potential toxicity or growth limiting and stimulation conditions. Different organisms were used such as bacteria (Floc and Coliform bacteria) algae (Chlorella sp.). fish (Lepistes sp.) and protozoan (Vorticella sp.) to represent four tropic levels. The textile industry results showed acute toxicity for at least one organism in 8 out of 23 effluent samples. Acute toxicity for at least two organisms in 7 out of 23 effluent sampling was observed for the metal industry. The toxicity test results were assessed with chemical analyses such as COD, BOD, color and heavy metals. It was observed that the toxicity of the effluents could not be explained by using physicochemical analyses in 5 cases for metal and 4 cases for the textile industries. The results clearly showed that the use of bioassay tests produce additional information about the toxicity potential of industrial discharges and effluents.
Khaled, Azza; El Nemr, Ahmed; El-Sikaily, Amany; Abdelwahab, Ola
2009-06-15
The purpose of this study is to suggest an efficient process, which does not require a huge investment for the removal of direct dye from wastewater. Activated carbon developed from agricultural waste material was characterized and utilized for the removal of Direct Navy Blue 106 (DNB-106) from wastewater. Systematic studies on DNB-106 adsorption equilibrium and kinetics by low-cost activated carbons were carried out. Adsorption studies were carried out at different initial concentrations of DNB-106 (50, 75, 100, 125 and 150 mg l(-1)), contact time (5-180 min), pH (2.0, 3.0, 4.7, 6.3, 7.2, 8.0, 10.3 and 12.7) and sorbent doses (2.0, 4.0 and 6.0 g l(-1)). Both Langmuir and Freundlich models fitted the adsorption data quite reasonably (R(2)>97). The maximum adsorption capacity was 107.53 mg g(-1) for 150 mg l(-1) of DNB-106 concentration and 2 g l(-1) carbon concentration. Various mechanisms were established for DNB-106 adsorption on developed adsorbents. The kinetic studies were conducted to delineate the effect of initial dye concentration, contact time and solid to liquid concentration. The developed carbon might be successfully used for the removal of DNB-106 from liquid industrial wastes.
Gomes, Arlindo C; Nunes, José C; Simões, Rogério M S
2010-06-15
To study the fast kinetic decolourisation of textile dyes by ozone a continuous quench-flow system was used. This system has not been used before for these purposes. Reaction times in the range of 7-3000 ms were explored. The reaction was quenched with potassium iodide, which proved to be very effective, and the indigo method was used to follow the ozone concentration. Dyes from the most representative chemical classes currently used in the textile industry, i.e. azo and anthraquinone, were selected. Using the initial slope method, the effect of dye and ozone concentrations was researched and the kinetic equations thus established. Using tert-butyl alcohol, as radical scavenger, and pH close to 2.5, the second-order rate constant of the reactant dyes at 280 K varies in the range of 1.20x10(4)-7.09x10(5)M(-1)s(-1); the Acid Orange 7 exhibiting thus its lowest value, the Acid Blue 45 its highest value and the Acid Green 25 and 27 and Direct Yellow 4 intermediate values (approximately 1.6x10(5)M(-1)s(-1)). Without radical scavenger and the pH close to 4, the reaction rate increases one order of magnitude, but, on the reverse, the efficiency of ozone to decolourisation decreases. Copyright 2010 Elsevier B.V. All rights reserved.
Impact of dyeing industry effluent on germination and growth of pea (Pisum sativum).
Malaviya, Piyush; Hali, Rajesh; Sharma, Neeru
2012-11-01
Dye industry effluent was analyzed for physico-chemical characteristics and its impact on germination and growth behaviour of Pea (Pisum sativum). The 100% effluent showed high pH (10.3) and TDS (1088 mg l(-1)). The germination parameters included percent germination, delay index, speed of germination, peak value and germination period while growth parameters comprised of root and shoot length, root and shootweight, root-shoot ratio and number of stipules. The study showed the maximum values of positive germination parameters viz. speed of germination (7.85), peak value (3.28), germination index (123.87) and all growth parameters at 20% effluent concentration while the values of negative germination parameters viz. delay index (-0.14) and percent inhibition (-8.34) were found to be minimum at 20% effluent concentration. The study demonstrated that at lower concentrations the dyeing industry effluent caused a positive impact on germination and growth of Pisum sativum.
Chavaco, L C; Arcos, C A; Prato-Garcia, D
2017-08-01
In the past three decades, Fenton and photo-Fenton processes have been the subject of a large number of research studies aimed at developing a low-cost and robust alternative to treat complex wastewater. Aspects such as installation and operating costs and technical complexity of reactors have limited the commercial applications of Fenton processes. In this study, we evaluated the potential of solar pond reactors to carry out degradation of the dye reactive orange 16 (RO16). Decolorization (D = 99 ± 0.6%), chemical oxygen demand reduction (COD = 55 ± 2%), total organic carbon removal (TOC = 28 ± 0.5%), and biocompatibilization can be accomplished using 15% peroxide (0.6 mg H 2 O 2 /mg RO16), which is theoretically required to mineralize the dye. Under dark conditions, decolorization and aromatic removal were scarcely affected (2%), whereas COD and TOC removal were reduced to 37% and 16%, respectively. The application of multivariable analysis and the use of low-cost reactors may lead to a reduction in annual treatment costs of colored effluents to 0.76 (US/m 3 ). Furthermore, the treatment capacity can be increased from 0.6 m 3 wastewater/m 2 reactor surface to 1.7 m 3 wastewater/m 2 reactor surface without compromising process efficiency or the biodegradability (BOD 5 /COD ratio) of the effluent. Dyeing auxiliaries, mainly NaCl, appreciably reduced the decolorization performance in Fenton (13 ± 0.4%) and photo-Fenton (83 ± 0.5%) processes due to the formation of iron-chloride complexes and less powerful oxidants. To reduce the impact of auxiliary agents on process performance and treatment capacity, the Fe 2+ concentration should be increased from 5 mg/L to 15 mg/L. The results seem promising; however, additional studies at pilot and semi-industrial scales should be conducted to demonstrate the potential of low-cost reactors to carry out colored wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Akbari, Ahmad; Sheshdeh, Farhad Jokari; Jabbari, Vahid
2012-01-01
Novel nanofibrous membrane was fabricated by using electrospinning of wastage fuzzes of mechanized carpet which was used to remove the dye of the textile wastewater. SEM images showed that nanofibers with average diameters of 200 nm were successfully fabricated by electrospinning technique. The physicochemical properties of electrospun nanofiberous membranes were studied by differential scanning calorimetry (DSC), energy-dispersive X-ray (EDX), and Fourier transform infrared (FTIR) spectroscopy. FTIR confirmed the presence of C≡N, C=N, and C‒N groups in the electrospun nanofibers which are the main functional groups of polyacrilonitrile (PAN). The resulting membrane showed dye retention of 96% of carpet dyeing wastewater, demonstrating the high separation potential of such membrane for wastewater treatment. We believe that simple approaches such as the present one would open up enormous possibilities in effective uses of wastage fuzzes of textile industry, considering the fact that electrospinning is a cost-effective method for the mass scale production of nanofibers.
Olmez, T; Kabdaşli, I; Tünay, O
2007-01-01
In this study, the effects of the phosphonic acid based sequestering agent EDTMPA used in the textile dye baths on colour and organic matter removal by ozone oxidation was experimentally investigated. Procion Navy HEXL dyestuff that has been commonly used for the reactive dyeing of cellulose fibers was selected as the model component. The organic matter oxidation by ozone was determined to obey the pseudo-first order kinetics as they are treated singly or in combination. COD removal rates obtained from pseudo-first order reaction kinetics showed that oxidation of Navy HEXL alone (0.0947 L/min) was faster than that of EDTMPA (0.0171 L/min) and EDTMPA with dye (0.0155 L/min) at pH 3.0. It was also found that reaction rates of single EDTMPA removal and EDTMPA and dye mixture removal increased as the reaction pH was increased from 3.0 to 10.5.
Sultana, Nadia; Gunning, Sean; Furst, Stephen J; Garrard, Kenneth P; Dow, Thomas A; Vinueza, Nelson R
2018-05-19
Textile fiber is a common form of transferable trace evidence at the crime scene. Different techniques such as microscopy or spectroscopy are currently being used for trace fiber analysis. Dye characterization in trace fiber adds an important molecular specificity during the analysis. In this study, we performed a direct trace fiber analysis method via dye characterization by a novel automated microfluidics device (MFD) dye extraction system coupled with a quadrupole-time-of-flight (Q-TOF) mass spectrometer (MS). The MFD system used an in-house made automated procedure which requires only 10μL of organic solvent for the extraction. The total extraction and identification time by the system is under 12min. A variety of sulfonated azo and anthraquinone dyes were analyzed from ∼1mm length nylon fiber samples. This methodology successfully characterized multiple dyes (≥3 dyes) from a single fiber thread. Additionally, it was possible to do dye characterization from single fibers with a diameter of ∼10μm. The MFD-MS system was used for elemental composition and isotopic distribution analysis where MFD-MS/MS was used for structural characterization of dyes on fibers. Copyright © 2018 Elsevier B.V. All rights reserved.
Baêta, B E L; Ramos, R L; Lima, D R S; Aquino, S F
2012-01-01
This work investigated the use of submerged anaerobic membrane bioreactors (SAMBRs) in the presence and absence of powdered activated carbon (PAC) for the treatment of genuine textile wastewater. The reactors were operated at 35 °C with an HRT of 24 h and the textile effluent was diluted (1:10) with nutrient solution containing yeast extract as the source of the redox mediation riboflavin. The results showed that although both SAMBRs exhibited an excellent performance, the presence of PAC inside SAMBR-1 enhanced reactor stability and removal efficiency of chemical oxygen demand (COD), volatile fatty acids (VFA), turbidity and color. The median removal efficiencies of COD and color in SAMBR-1 were, 90 and 94% respectively; whereas for SAMBR-2 (without PAC) these values were 79 and 86%, In addition, the median values of turbidity and VFA were 8 NTU and 8 mg/L for SAMBR-1 and 14 NTU and 26 mg/L for SAMBR-2, indicating that the presence of PAC inside SAMBR-1 led to the production of an anaerobic effluent of high quality regarding such parameters.
NASA Astrophysics Data System (ADS)
Qadariyah, Lailatul; Gala, Selfina; Widoretno, Dhaniar Rulandri; Kunhermanti, Delita; Bhuana, Donny S.; Sumarno, Mahfud, Mahfud
2017-05-01
The development of technology causes most of textile industries in Indonesia prefer to use synthetic dyes in the fabric dyeing process. In fact, synthetic dyes is able to have negative effect since it is is toxic to the health of workers and environment. To resolve this issues, one way to do is to use natural dyes. One of untapped potential in Indonesia is wood waste of jackfruit from furniture industry. Jackfruit wood itself containing dyestuffs which gives yellow color pigment so that it can be used as an alternative source of natural dyes. The purpose of this research is to study the effect of extraction time, mass to solvent volume ratio, and microwave power to yield of dyes. The extract of dye analyzed by UV-Visible Spectrophotometer and GC-MS, along the coloring and endurance tests of natural dyes on fabric and compare it with synthetic dyes. In this research, material is going to be extracted is the wood of jackfruit (Artocarpus heterophyllus lamk) with material size between 35 mesh - 60 mesh. The extraction process is done by using ethanol 96%. Extraction using MAE is carried out at the ratio of materials to solvent of 0,02-0,1 g/mL, the microwave power of 100-800 Watt, and the extraction time of 10-90 minutes. The conclusion is at microwave power of 400 Watt, material to solvent ratio of the 0,02 g/mL, the yield is 3,39% while at microwave power of 600 Watt, material to solvent ratio of the 0,02 g/mL, the yield is 3,67% with extraction time of 30 minutes. The highest recovery from ethanol 96% solvent is 60,41%. The result of UV-Vis Spectrophotometry and GC-MS test show that there is a chromophore compound in the extract of natural dye. The test results show the natural dyes of jackfruit wood can be used to coloring on the textile because it can gives staining result permanently.
Franca, R D G; Ortigueira, J; Pinheiro, H M; Lourenço, N D
2017-09-01
Treatment of the highly polluting and variable textile industry wastewater using aerobic granular sludge (AGS) sequencing batch reactors (SBRs) has been recently suggested. Aiming to develop this technology application, two feeding strategies were compared regarding the capacity of anaerobic-aerobic SBRs to deal with disturbances in the composition of the simulated textile wastewater feed. Both a statically fed, anaerobic-aerobic SBR and an anaerobic plug-flow fed, anaerobic-aerobic SBR could cope with shocks of high azo dye concentration and organic load, the overall chemical oxygen demand and color removal yields being rapidly restored to 80%. Yet, subsequent azo dye metabolite bioconversion was not observed, along the 315-day run. Moreover, switching from a starch-based substrate to acetate in the feed composition deteriorated AGS stability. Overall, the plug-flow fed SBR recovered more rapidly from the imposed disturbances. Further research is needed towards guaranteeing long-term AGS stability during the treatment of textile wastewater.
Decolorization of textile dyes in an air-lift bioreactor inoculated with Bjerkandera adusta OBR105.
Sodaneath, Hong; Lee, Jung-In; Yang, Seung-Ok; Jung, Hyekyeng; Ryu, Hee Wook; Cho, Kyung-Suk
2017-09-19
A new decolorizing white-rot fungus, OBR105, was isolated from Mount Odae in South Korea and identified by the morphological characterization of its fruit body and spores and partial 18s rDNA sequences. The ligninolytic enzyme activity of OBR105 was studied to characterize their decolorizing mechanism using a spectrophotometric enzyme assay. For the evaluation of the decolorization capacity of OBR105, the isolate was incubated in an erlenmeyer flask and in an airlifte bioreator with potato dextrose broth (PDB) medium supplemented with each dye. In addition, the decolorization efficiency of real textile wastewater was evaluated in an airlift bioreactor inoculated with the isolate. The isolate was identified as Bjerkandera adusta and had ligninolytic enzymes such as laccase, lignin peroxidase (LiP), and Mn-dependent peroxidase (MnP). Its LiP activity was higher than its MnP and laccase activities. B. adusta OBR105 successfully decolorized reactive dyes (red 120, blue 4, orange 16, and black 5) and acid dyes (red 114, blue 62, orange 7, and black 172). B. adusta OBR105 decolorized 91-99% of 200 mg L -1 of each dye (except acid orange 7) within 3 days in a PDB medium at 28°C, pH 5, and 150 rpm. This fungus decolorized only 45% of 200 mg L -1 acid orange 7 (single azo-type dye) within 3 days, and the decolorization efficiency did not increase by prolonging the cultivation time. In the air-lift bioreactor, B. adusta OBR105 displayed a high decolorization capacity, greater than 90%, for 3 acid dyes (red 114, blue 62, and black 172) and 1 reactive dye (blue 4) within 10-15 h of treatment. B. adusta OBR105 could decolorize real textile wastewater in the air-lift bioreactor. This result suggests that an air-lift reactor employing B. adusta OBR105 is a promising bioreactor for the treatment of dye wastewater.
Clementi, Catia; Nowik, Witold; Romani, Aldo; Cardon, Dominique; Trojanowicz, Marek; Davantès, Athénaïs; Chaminade, Pierre
2016-07-05
In this paper, partial least square (PLS) regression is innovatively applied for a semi-quantitative non invasive study of the most precious dye of Antiquity: Tyrian purple. This original approach for the study of organic dyes in the cultural heritage field, is based on the correlation of spectrophotometric (UV-Visible) and chromatographic (Fast-HT-HPLC-PDA) data from an extensive set of textiles prepared with different snail species according to historical recipes. A cross-validated PLS model, based on the quantity of 6,6'-dibromoindigotin, displays an excellent correlation factor (R(2)Y = 0.987) between values determined by chromatography and those predicted from reflectance spectra. This indicates that the spectral features of Tyrian purple on textile fibre is strictly related to the amount of this indigoid component whose content may be non invasively predicted from reflectance spectrum. The studied correlation also highlights that, independently of the dyeing method and nature of the textile fibre used, the relative content of 6,6'-dibromindigotin may be used as a parameter to distinguish samples prepared with Hexaplex trunculus L. snails from those prepared with further mollusc species. To validate this model, archaeological textile fragments dating from the Roman period were successfully examined. The results achieved open an absolutely new way in Tyrian purple analysis in cultural heritage by non invasive spectroscopic techniques attesting their convergence with HPLC and giving them a semi-quantitative value. Copyright © 2016 Elsevier B.V. All rights reserved.
Han, Jing; Wanrooij, Jantien; van Bommel, Maarten; Quye, Anita
2017-01-06
This research makes the first attempt to apply Ultra High Performance Liquid Chromatography (UHPLC) coupled to both Photodiode Array detection (PDA) and Electrospray Ionisation Mass Spectrometer (ESI-MS) to the chemical characterisation of common textile dyes in ancient China. Three different extraction methods, respectively involving dimethyl sulfoxide (DMSO)-oxalic acid, DMSO and hydrochloric acid, are unprecedentedly applied together to achieve an in-depth understanding of the chemical composition of these dyes. The first LC-PDA-MS database of the chemical composition of common dyes in ancient China has been established. The phenomena of esterification and isomerisation of the dye constituents of gallnut, gardenia and saffron, and the dye composition of acorn cup dyed silk are clarified for the first time. 6-Hydroxyrubiadin and its glycosides are first reported on a dyed sample with Rubia cordifolia from China. UHPLC-PDA-ESI-MS with a C18 BEH shield column shows significant advantages in the separation and identification of similar dye constituents, particularly in the cases of analysing pagoda bud and turmeric dyed sample extracts. Copyright © 2016 Elsevier B.V. All rights reserved.
Identification of natural red and purple dyes on textiles by Fiber-optics Reflectance Spectroscopy
NASA Astrophysics Data System (ADS)
Maynez-Rojas, M. A.; Casanova-González, E.; Ruvalcaba-Sil, J. L.
2017-05-01
Understanding dye chemistry and dye processes is an important issue for studies of cultural heritage collections and science conservation. Fiber Optics Reflectance Spectroscopy (FORS) is a powerful technique, which allows preliminary dye identification, causing no damage or mechanical stress on the artworks subjected to analysis. Some information related to specific light scattering and absorption can be obtained in the UV-visible and infrared range (300-1400 nm) and it is possible to discriminate the kind of support fiber in the near infrared region (1000-2500 nm). The main spectral features of natural dye fibers samples, such as reflection maxima, inflection points and reflection minima, can be used in the differentiation of various red natural dyes. In this work, a set of dyed references were manufactured following Mexican recipes with red dyes (cochineal and brazilwood) in order to determine the characteristic FORS spectral features of fresh and aged dyed fibers for their identification in historical pieces. Based on these results, twenty-nine indigenous textiles belonging to the National Commission for the Development of Indigenous People of Mexico were studied. Cochineal and brazilwood were successfully identified by FORS in several pieces, as well as the mixture of cochineal and indigo for purple color.
Sukriti; Sharma, Jitender; Chadha, Amritpal Singh; Pruthi, Vaishali; Anand, Prerna; Bhatia, Jaspreet; Kaith, B S
2017-04-01
Present work reports the synthesis of semi-Interpenetrating Network Polymer (semi-IPN) using Gelatin-Gum xanthan hybrid backbone and polyvinyl alcohol in presence of l-tartaric acid and ammonium persulphate as the crosslinker-initiator system. Reaction parameters were optimized with Response Surface Methodology (RSM) in order to maximize the percent gel fraction of the synthesized sample. Polyvinyl alcohol, l-Tartaric acid, ammonium persulphate, reaction temperature, time and pH of the reaction medium were found to make an impact on the percentage gel fraction obtained. Incorporation of polyvinyl alcohol chains onto hybrid backbone and crosslinking between the different polymer chains were confirmed through techniques like FTIR, SEM-EDX and XRD. Semi-IPN was found to be very efficient in the removal of cationic dyes rhodamine-B (70%) and auramine-O (63%) from a mixture with an adsorbent dose of 700 mg, initial concentration of rhodamine-B 6 mgL -1 and auramine-O 26 mgL -1 , at an time interval of 22-25 h and 30 °C temp. Further to determine the nature of adsorption Langmuir and Freundlich adsorption isotherm models were studied and it was found that Langmuir adsorption isotherm was the best fit model for the removal of mixture of dyes. Kinetic studies for the sorption of dyes favored the reaction mechanism to occur via a pseudo second order pathway with R 2 value about 0.99. Copyright © 2017 Elsevier Ltd. All rights reserved.
Decolourization of remazol black-5 textile dyes using moving bed bio-film reactor
NASA Astrophysics Data System (ADS)
Pratiwi, R.; Notodarmojo, S.; Helmy, Q.
2018-01-01
The desizing and dyeing processes in the textile industries produces wastewaster containing high concentration of organic matter and colour, so it needs treatment before released to environment. In this research, removal of azo dye (Remazol Black 5/RB 5) and organic as COD was performed using Moving Bed Biofilm Reactor (MBBR). MBBR is biological treatment process with attached growth media system that can increase removal of organic matter in textile wastewater. The effectiveness of ozonation as pre-treatment process to increase the removal efficiency in MBBR was studied. The results showed that in MBBR batch system with detention time of 1 hour, pre-treatment with ozonation prior to MBBR process able to increase the colour removal efficiency of up to 86.74%. While on the reactor without ozone pre-treatment, the colour removal efficiency of up to 68.6% was achieved. From the continuous reactor experiments found that both colour and COD removal efficiency depends on time detention of RB-5 dyes in the system. The higher of detention time, the higher of colour and COD removal efficiency. It was found that optimum removal of colour and COD was achieved in 24 hour detention time with its efficiency of 96.9% and 89.13%, respectively.
Balapure, Kshama; Bhatt, Nikhil; Madamwar, Datta
2015-01-01
The present research emphasizes on degradation of azo dyes from simulated textile wastewater using down flow microaerophilic fixed film reactor. Degradation of simulated textile wastewater (COD 7200mg/L and dye concentration 300mg/L) was studied in a microaerophilic fixed film reactor using pumice stone as a support material under varying hydraulic retention time (HRT) and organic loading rate (OLR). The intense metabolic activity of the inoculated bacterial consortium in the reactor led to 97.5% COD reduction and 99.5% decolorization of simulated wastewater operated under OLR of 7.2kgCODm(3)/d and 24h of HRT. FTIR, (1)H NMR and GC-MS studies revealed the formation of lower molecular weight aliphatic compounds under 24h of HRT, leading to complete mineralization of simulated wastewater. The detection of oxido-reductive enzyme activities suggested the enzymatic reduction of azo bonds prior to mineralization. Toxicity studies indicated that microbial treatment favors detoxification of simulated wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.
Learn more about the NESHAP for the surface coating of textiles and apparel. On this page you can read the rule summary and history, as well as find supporting documents, including a fact sheet and a compliance timeline.
Makene, Vedastus W; Tijani, Jimoh O; Petrik, Leslie F; Pool, Edmund J
2016-08-01
Effective treatment of textile effluent prior to discharge is necessary in order to avert the associated adverse health impacts on human and aquatic life. In the present investigation, coagulation/flocculation processes were evaluated for the effectiveness of the individual treatment. Effectiveness of the treatment was evaluated based on the physicochemical characteristics. The quality of the pre-treated and post-flocculation treated effluent was further evaluated by determination of cytotoxicity and inflammatory activity using RAW264.7 cell cultures. Cytotoxicity was determined using WST-1 assay. Nitric oxide (NO) and interleukin 6 (IL-6) were used as biomarkers of inflammation. NO was determined in cell culture supernatant using the Griess reaction assay. The IL-6 secretion was determined using double antibody sandwich enzyme linked immunoassay (DAS ELISA). Cytotoxicity results show that raw effluent reduced the cell viability significantly (P < 0.001) compared to the negative control. All effluent samples treated by coagulation/flocculation processes at 1 in 100 dilutions had no cytotoxic effects on RAW264.7 cells. The results on inflammatory activities show that the raw effluent and effluent treated with 1.6 g/L of Fe-Mn oxide induced significantly (P < 0.001) higher NO production than the negative control. The inflammatory results further show that the raw effluent induced significantly (P < 0.001) higher production of IL-6 than the negative control. Among the coagulants/flocculants evaluated Al2(SO4)3.14H2O at a dosage of 1.6 g/L was the most effective to remove both toxic and inflammatory pollutants. In conclusion, the inflammatory responses in RAW264.7 cells can be used as sensitive biomarkers for monitoring the effectiveness of coagulation/flocculation processes used for textile effluent treatment.
Cancer incidence among women flax textile manufacturing workers in Lithuania.
Kuzmickiene, Irena; Stukonis, Mecys
2010-07-01
To determine site-specific cancer incidence among women spinning-weaving and dyeing-finishing workers in the largest flax textile factory in Lithuania. The cancer incidence of a cohort of 3447 women workers from a flax textile factory was investigated for the period 1978-2002. All subjects were employed at the plant in the period 1957-2000 for a minimum of 12 months. Standardised incidence ratios (SIRs) were estimated by use of the corresponding national rates. SIRs were calculated for the spinning-weaving and dyeing-finishing work categories, and for two durations of employment categories (<10 years, > or =10 years). The cancer SIRs among spinning-weaving and dyeing-finishing workers were 0.84 (95% CI 0.69 to 1.00) and 0.90 (95% CI 0.52 to 1.44). An incidence deficit for non-melanoma skin cancer was found for the spinning-weaving unit (SIR 0.45, 95% CI 0.18 to 0.92). The risk of oral cavity and pharynx cancer was significantly increased in spinning-weaving unit workers with <10 years of employment (SIR 5.71, 95% CI 1.56 to 14.60). A significant excess of thyroid cancer and nervous system cancer was found among dyeing-finishing workers. The overall cancer and non-melanoma skin cancer incidence rate among flax spinning-weaving workers was lower compared with the Lithuanian population. The present findings lend some support to an excess of thyroid and nervous system cancers among dyeing-finishing workers and of oral cavity and pharynx cancer in spinning-weaving workers.
NASA Astrophysics Data System (ADS)
Kusmiyati, L., Puspita Adi; Deni, V.; Robi Indra, S.; Islamica, Dlia; Fuadi, M.
2016-04-01
Removal of vertigo blue dye from batik textile wastewater was studied by adsorptionprocess onto activated carbon (AC) and coal bottom ash (CBA).The influence of experimental conditions (pH solution, dye concentration, and contact time) were studied on the both adsorbents. At equilibrium conditions, the data were fitted to Langmuir and Freundlich adsorption models. The maximum adsorption capacity calculated from the Langmuir model for carbon active was 6.29mg/g at pH that found to be considerably higher than that obtained for coal bottom ash 3.72mg/g pH 9. From Freundlich model, the maximum adsorption capacity is less for coal bottom ash (pH 9) than that for carbon active (pH4).
Promising flame retardant textile in supercritical carbon dioxide
USDA-ARS?s Scientific Manuscript database
Since carbon dioxide is non-toxic, non-flammable and cost-effective, supercritical carbon dioxide (scCO2) is widely used in textile dyeing applications. Due to its environmentally benign character, scCO2 is considered in green chemistry as a substitute for organic solvents in chemical reactions. O...
Safety Precautions in Fiber Arts.
ERIC Educational Resources Information Center
Hamilton, Marcia
1979-01-01
The author discusses the potential hazards of working with fibers, dyes, and wax in textile art projects: bacteria, dust, poisons, allergies, and fumes. Safety precautions for working with dyes are listed. This article is one of seven in this issue on fiber arts. (SJL)
Dadi, Diriba; Stellmacher, Till; Senbeta, Feyera; Van Passel, Steven; Azadi, Hossein
2017-01-01
This study focuses on four textile industries (DH-GEDA, NOYA, ALMHADI, and ALSAR) established between 2005 and 2008 in the peri-urban areas of Dukem and Gelan. The objectives of the study were to generate baseline information regarding the concentration levels of selected pollutants and to analyze their effects on biophysical environments. This study also attempts to explore the level of exposure that humans and livestock have to polluted effluents and the effects thereof. The findings of this study are based on data empirically collected from two sources: laboratory analysis of sample effluents from the four selected textile plants and quantitative as well as qualitative socioeconomic data collection. As part of the latter, a household survey and focus group discussions (FGDs) with elderly and other focal persons were employed in the towns of Dukem and Gelan. The results of the study show that large concentrations of biological oxygen demand (BOD 5 ), chemical oxygen demand (COD), total suspended solids (TSS), and pH were found in all the observed textile industries, at levels beyond the permissible discharge limit set by the national Environmental Protection Authority (EPA). Furthermore, sulfide (S 2) , R-phosphate (R-PO 4 3 ), and Zn were found in large concentrations in DH-GEDA and ALMHADI, while high concentrations were also identified in samples taken from ALSAR and ALMHADI. In spite of the clear-cut legal tools, this study shows that the local environment, people, and their livestock are exposed to highly contaminated effluents. We therefore recommend that the respective federal and regional government bodies should reexamine the compliance to and actual implementation of the existing legal procedures and regulations and respond appropriately.
Reuse of textile effluent treatment plant sludge in building materials.
Balasubramanian, J; Sabumon, P C; Lazar, John U; Ilangovan, R
2006-01-01
This study examines the potential reuse of textile effluent treatment plant (ETP) sludge in building materials. The physico-chemical and engineering properties of a composite textile sludge sample from the southern part of India have been studied. The tests were conducted as per Bureau of Indian Standards (BIS) specification codes to evaluate the suitability of the sludge for structural and non-structural application by partial replacement of up to 30% of cement. The cement-sludge samples failed to meet the required strength for structural applications. The strength and other properties met the Bureau of Indian Standards for non-structural materials such as flooring tiles, solid and pavement blocks, and bricks. Results generally meet most ASTM standards for non-structural materials, except that the sludge-amended bricks do not meet the Grade NW brick standard. It is concluded that the substitution of textile ETP sludge for cement, up to a maximum of 30%, may be possible in the manufacturing of non-structural building materials. Detailed leachability and economic feasibility studies need to be carried out as the next step of research.
Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.
Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni
2014-05-01
Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.
High-throughput screening of dye-ligands for chromatography.
Kumar, Sunil; Punekar, Narayan S
2014-01-01
Dye-ligand-based chromatography has become popular after Cibacron Blue, the first reactive textile dye, found application for protein purification. Many other textile dyes have since been successfully used to purify a number of proteins and enzymes. While the exact nature of their interaction with target proteins is often unclear, dye-ligands are thought to mimic the structural features of their corresponding substrates, cofactors, etc. The dye-ligand affinity matrices are therefore considered pseudo-affinity matrices. In addition, dye-ligands may simply bind with proteins due to electrostatic, hydrophobic, and hydrogen-bonding interactions. Because of their low cost, ready availability, and structural stability, dye-ligand affinity matrices have gained much popularity. Choice of a large number of dye structures offers a range of matrices to be prepared and tested. When presented in the high-throughput screening mode, these dye-ligand matrices provide a formidable tool for protein purification. One could pick from the list of dye-ligands already available or build a systematic library of such structures for use. A high-throughput screen may be set up to choose best dye-ligand matrix as well as ideal conditions for binding and elution, for a given protein. The mode of operation could be either manual or automated. The technology is available to test the performance of dye-ligand matrices in small volumes in an automated liquid-handling workstation. Screening a systematic library of dye-ligand structures can help establish a structure-activity relationship. While the origins of dye-ligand chromatography lay in exploiting pseudo-affinity, it is now possible to design very specific biomimetic dye structures. High-throughput screening will be of value in this endeavor as well.
Liew, Rock Keey; Azwar, Elfina; Yek, Peter Nai Yuh; Lim, Xin Yi; Cheng, Chin Kui; Ng, Jo-Han; Jusoh, Ahmad; Lam, Wei Haur; Ibrahim, Mohd Danial; Ma, Nyuk Ling; Lam, Su Shiung
2018-06-19
A micro-mesoporous activated carbon (AC) was produced via an innovative approach combining microwave pyrolysis and chemical activation using NaOH/KOH mixture. The pyrolysis was examined over different chemical impregnation ratio, microwave power, microwave irradiation time and types of activating agents for the yield, chemical composition, and porous characteristic of the AC obtained. The AC was then tested for its feasibility as textile dye adsorbent. About 29 wt% yield of AC was obtained from the banana peel with low ash and moisture (<5 wt%), and showed a micro-mesoporous structure with high BET surface area (≤1038 m 2 /g) and pore volume (≤0.80 cm 3 /g), indicating that it can be utilized as adsorbent to remove dye. Up to 90% adsorption of malachite green dye was achieved by the AC. Our results indicate that the microwave-activation approach represents a promising attempt to produce good quality AC for dye adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.
Directory of Soviet Officials: Science and Education: A Reference Aid
1989-05-01
Sergey Yevstratovich id 1971 Organic Semifinished Products and Dyes SRI imeni K. Ye. Voroshllov, Moscow (Nil organicheskikh poluproduktov i... products and also produces dyes for use in the textile industry.) Director Physical Chemistry SRI imeni L Ya, Karppv, Moscow (Nauchno...103 Organic Semifinished Products and Dyes SRI imeni K.Yc. Voroshilov. Moscow 197 Organic Synthesis Institute. Riga 157 Oriental Studies Institute
Libra, Judy A; Borchert, Maren; Banit, Salima
2003-06-20
A variety of white-rot fungi can oxidize textile dyes under sterile conditions; however, an important consideration for their use in treating wastewater containing textile dyes is whether similar degrees of treatment can be achieved under non-sterile conditions. Four strategies were investigated for their potential in optimizing the use of the fungus Trametes versicolor in non-sterile culture for treating wastewater containing the diazo textile dye C.I. Reactive Black 5 (RB5). Three strategies with suspended culture were designed to increase the decolorization activity in suspended culture from a given amount of T. versicolor inoculum based on its tolerance of low pH (pH reduction in medium), production of extracellular enzymes (use of suspended enzymes alone), and its ability to produce enzymes independent of growth (nitrogen limitation in medium). The results showed that reduction of the medium pH to 3 did not suppress bacterial growth, while enzyme production by T. versicolor ceased. The use of the extracellular enzymes alone would allow the decoupling of the process of fungal growth from wastewater treatment; however, the enzyme activity of an enzyme suspension decreased rapidly under non-sterile conditions. The strategy of limiting nitrogen in the medium to suppress bacterial growth has potential together with the fourth strategy, the cultivation of fungi on organic solids to produce inocula for a decolorization process under non-sterile conditions. A high degree of decolorization of RB5 under non-sterile conditions was achieved with T. versicolor grown on grains as sole substrate. The rate of decolorization was dependent on the amount of fungal inoculum used. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 82: 736-744, 2003.
Determination of labile copper, cobalt, and chromium in textile mill wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crain, J.S.; Essling, A.M.; Kiely, J.T.
1997-01-01
Copper, chromium, and cobalt species present in filtered wastewater effluent were separated by cation exchange and reverse phase chromatography. Three sample fractions were obtained: one containing metal cations (i.e., trivalent Cr, divalent Cu, and divalent Co), one containing organic species (including metallized dyes), and one containing other unretained species. The metal content of each fraction was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The sum of the corrected data was compared to the metal content of a filtered effluent aliquot digested totally with fuming sulfuric acid. Other aliquots of the filtered effluent were spiked with the metals ofmore » interest and digested to confirm chemical yield and accuracy. Method detection limits were consistently below 20 {mu}g L{sup -1} for Cu, 30 {mu}g L{sup -1} for Co, and 10 {mu}g L{sup -1} for Cr. Spike recoveries for undifferentiated Cu and Cr were statistically indistinguishable from unity; although Co spike recoveries were slightly low ({approximately}95%), its chemical yield was 98%. Copper retention on the sodium sulfonate cation exchange resin was closely correlated with the [EDTA]/[Cu] ratio, suggesting that metals retained upon the cation exchange column were assignable to labile metal species; however, mass balances for all three elements, though reasonable ({approximately}90%), were significantly different from unity. Mechanical factors may have contributed to the material loss, but other data suggest that some metal species reacted irreversibly with the reverse phase column. 3 refs., 2 figs., 4 tabs.« less
NASA Astrophysics Data System (ADS)
Seipel, S.; Yu, J.; Periyasamy, A. P.; Viková, M.; Vik, M.; Nierstrasz, V. A.
2017-10-01
For the development of niche products like smart textiles and other functional high-end products, resource-saving production processes are needed. Niche products only require small batches, which makes their production with traditional textile production techniques time-consuming and costly. To achieve a profitable production, as well as to further foster innovation, flexible and integrated production techniques are a requirement. Both digital inkjet printing and UV-light curing contribute to a flexible, resource-efficient, energy-saving and therewith economic production of smart textiles. In this article, a smart textile UV-sensor is printed using a piezoelectric drop-on-demand printhead and cured with a UV-LED lamp. The UVcurable ink system is based on free radical polymerization and the integrated UVsensing material is a photochromic dye, Reversacol Ruby Red. The combination of two photoactive compounds, for which UV-light is both the curer and the activator, challenges two processes: polymer crosslinking of the resin and color performance of the photochromic dye. Differential scanning calorimetry (DSC) is used to characterize the curing efficiency of the prints. Color measurements are made to determine the influence of degree of polymer crosslinking on the developed color intensities, as well as coloration and decoloration rates of the photochromic prints. Optimized functionality of the textile UV-sensor is found using different belt speeds and lamp intensities during the curing process.
Decoloration of a carpet dye effluent using Trametes versicolor.
Ramsay, Juliana A; Goode, Chris
2004-02-01
Although a non-sterile, undiluted carpet dye effluent (containing two anthraquinone dyes) did not support growth of Trametes versicolor, the pre-grown fungus removed 95% of its color in shake-flasks after 10 h of incubation. After decoloration, the COD of the cell-free supernatant increased and the toxicity was unchanged as determined by the Microtox assay using Vibrio fischeri. Decoloration rates decreased when either glucose alone or Mn2+ and glucose were added. T. versicolor, immobilized on jute twine in a rotating biological contacting reactor, also decolorized four successive batches of the effluent. There was no decoloration in any of the uninoculated, non-sterile controls.
Identification of natural red and purple dyes on textiles by Fiber-optics Reflectance Spectroscopy.
Maynez-Rojas, M A; Casanova-González, E; Ruvalcaba-Sil, J L
2017-05-05
Understanding dye chemistry and dye processes is an important issue for studies of cultural heritage collections and science conservation. Fiber Optics Reflectance Spectroscopy (FORS) is a powerful technique, which allows preliminary dye identification, causing no damage or mechanical stress on the artworks subjected to analysis. Some information related to specific light scattering and absorption can be obtained in the UV-visible and infrared range (300-1400nm) and it is possible to discriminate the kind of support fiber in the near infrared region (1000-2500nm). The main spectral features of natural dye fibers samples, such as reflection maxima, inflection points and reflection minima, can be used in the differentiation of various red natural dyes. In this work, a set of dyed references were manufactured following Mexican recipes with red dyes (cochineal and brazilwood) in order to determine the characteristic FORS spectral features of fresh and aged dyed fibers for their identification in historical pieces. Based on these results, twenty-nine indigenous textiles belonging to the National Commission for the Development of Indigenous People of Mexico were studied. Cochineal and brazilwood were successfully identified by FORS in several pieces, as well as the mixture of cochineal and indigo for purple color. Copyright © 2017 Elsevier B.V. All rights reserved.
Maruthamuthu, Murali Kannan; Nadarajan, Saravanan Prabhu; Ganesh, Irisappan; Ravikumar, Sambandam; Yun, Hyungdon; Yoo, Ik-Keun; Hong, Soon Ho
2015-11-01
For the construction of an efficient copper waste treatment system, a cell surface display strategy was employed. The copper adsorption ability of recombinant bacterial strains displaying three different copper binding peptides were evaluated in LB Luria-Bertani medium (LB), artificial wastewater, and copper phthalocyanine containing textile dye industry wastewater samples. Structural characteristics of the three peptides were also analyzed by similarity-based structure modeling. The best binding peptide was chosen for the construction of a dimeric peptide display and the adsorption ability of the monomeric and dimeric peptide displayed strains were compared. The dimeric peptide displayed strain showed superior copper adsorption in all three tested conditions (LB, artificial wastewater, and textile dye industry wastewater). When the strains were exposed to copper phthalocyanine dye polluted wastewater, the dimeric peptide display [543.27 µmol/g DCW dry cell weight (DCW)] showed higher adsorption of copper when compared with the monomeric strains (243.53 µmol/g DCW).
Balcik-Canbolat, Cigdem; Sengezer, Cisel; Sakar, Hacer; Karagunduz, Ahmet; Keskinler, Bulent
2017-11-01
It has been recognized by the whole world that textile industry which produce large amounts of wastewater with strong color and toxic organic compounds is a major problematical industry requiring effective treatment solutions. In this study, reverse osmosis (RO) membranes were tested on biologically treated real dye bath wastewater with and without pretreatment by nanofiltration (NF) membrane to recovery. Also membrane fouling and reuse potential of membranes were investigated by multiple filtrations. Obtained results showed that only NF is not suitable to produce enough quality to reuse the wastewater in a textile industry as process water while RO provide successfully enough permeate quality. The results recommend that integrated NF/RO membrane process is able to reduce membrane fouling and allow long-term operation for real dye bath wastewater.
Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, T R
2008-12-01
Laccase from basidiomycete fungus Cyathus bulleri was evaluated for its ability to decolorize a number of reactive and acidic dyes in the presence of natural and synthetic mediators. The extent of decolorization was monitored at different mediator/dye concentrations and incubation time. Among the synthetic mediators, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was effective at low mediator/dye ratios and resulted in 80-95% decolorization at rates that varied from 226 +/- 4 nmol min(-1) mg(-1) for Reactive Orange 1 to 1,333 +/- 15 nmol min(-1) mg(-1) for Reactive Red 198. Other synthetic mediators like 1-hydroxybenzotriazole and violuric acid showed both concentration- and time-dependent increases in percent decolorization. Natural mediators like vanillin, on the other hand, were found to be less effective on all the dyes except Reactive Orange 1. Computed rates of decolorization were about twofold lower than that with ABTS. The laccase-ABTS system also led to nearly 80% decolorization for the simulated dye mixture. No clear correlation between laccase activity on the mediator and its ability to decolorize dyes was found, but pH had a significant effect: Optimum pH for decolorization coincided with the optimum pH for mediator oxidation. The treated samples were also evaluated for toxicity in model microbial systems. The laccase-mediator system appears promising for treatment of textile wastewaters.
Polysulfone thin film composite nanofiltration membranes for removal of textile dyes wastewater
NASA Astrophysics Data System (ADS)
Sutedja, Andrew; Aileen Josephine, Claresta; Mangindaan, Dave
2017-12-01
This research was conducted to produce nanofiltration (NF) membranes, which have good performance in terms of removal of textile dye (Reactive Red 120, RR120) from simulated wastewater as one of several eco-engineering developments for sustainable water resource management. Phase inversion technique was utilized to fabricate the membrane with polysulfone (PSF) support, dissolved in N-methyl-2 pyrollidone (NMP) solvent, and diethylene glycol (DEG) as non-solvent additive. The fabricated membrane then modified with the additional of dopamine coating and further modified by interfacial polymerization (IP) to form a thin film composite (TFC)-NF membrane with PSF substrate. TFC was formed from interaction between amine monomer (2 %-weight of m-phenylenediamine (MPD) in deionized water) and acyl chloride (0.2 %-weight of trimesoyl chloride (TMC) in hexane). From this study, the fabricated PSF-TFC membrane could remove dyestuff from RR120 wastewater by 88% rejection at 120 psi. The result of this study is promising to be applied in Indonesia where researches on removal of dyes from textile wastewater by using membranes are still quite rare. Therefore, this paper may open new avenues for development of eco-engineering development in Indonesia.
Examination of the sintering process-dependent properties of TiO2 on glass and textile substrates
NASA Astrophysics Data System (ADS)
Junger, Irén Juhász; Homburg, Sarah Vanessa; Grethe, Thomas; Herrmann, Andreas; Fiedler, Johannes; Schwarz-Pfeiffer, Anne; Blachowicz, Tomasz; Ehrmann, Andrea
2017-01-01
In recent years, the development of smart textiles has attracted great attention. Such textiles can contain small electrical devices, which need a power supply. Dye-sensitized solar cells, which can be produced from nontoxic, cheap, low-purity materials, could fill this purpose. However, to reach reasonable cell properties, sintering the TiO2 layer on the substrate is necessary. Unfortunately, only a few textile materials can withstand a sintering process at high temperatures. Therefore, it is important to find an optimal temperature leading to a reasonable improvement of the cell characteristics without damaging the textile substrate. The influence of the sintering temperature on different properties is investigated. For this, the surface properties of the TiO2 coating, such as adhesion to the substrate, dye adsorption characteristic, and film stability, are investigated on different substrates, i.e., a glass plate, a stainless steel nonwoven fabric, and a carbon woven fabric. Two commercially available TiO2 sources are used: a TiO2 dispersion obtained from Man Solar and a water-based solution of TiO2 particles purchased from Kronos. The influence of the sintering temperature on short-circuit current and open-circuit voltage of solar cells on the aforementioned substrates is also examined.
Joseph, John; Nair, Shantikumar V; Menon, Deepthy
2015-08-12
The present study describes a unique way of integrating substrateless electrospinning process with textile technology. We developed a new collector design that provided a pressure-driven, localized cotton-wool structure in free space from which continuous high strength yarns were drawn. An advantage of this integration was that the textile could be drug/dye loaded and be developed into a core-sheath architecture with greater functionality. This method could produce potential nanotextiles for various biomedical applications.
Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay
2015-01-01
Release of textile azo dyes to the environment is an issue of health concern while the use of microorganisms has proved to be the best option for remediation. Thus, in the present study, a bacterial consortium consisting of Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 has been investigated for degradation and detoxification of structurally different azo dyes. The consortium showed 98-99 % decolorization of all the selected azo dyes viz. Reactive Black 5 (RB 5), Reactive Orange 16 (RO 16), Disperse Red 78 (DR 78) and Direct Red 81 (DR 81) within 12 to 30 h at 100 mg L-1 concentration at 30 ± 0.2 °C under microaerophilic, sequential aerobic/microaerophilic and microaerophilic/aerobic processes. However, decolorization under microaerophilic conditions viz. RB 5 (0.26 mM), RO 16 (0.18 mM), DR 78 (0.20 mM) and DR 81 (0.23 mM) and sequential aerobic/microaerophilic processes viz. RB 5 (0.08 mM), RO 16 (0.06 mM), DR 78 (0.07 mM) and DR 81 (0.09 mM) resulted into the formation of aromatic amines. In distinction, sequential microaerophilic/ aerobic process doesn’t show the formation of amines. Additionally, 62-72 % reduction in total organic carbon content was observed in all the dyes decolorized broths under sequential microaerophilic/aerobic processes suggesting the efficacy of method in mineralization of dyes. Notable induction within the levels of azoreductase and NADH-DCIP reductase (97 and 229 % for RB 5, 55 and 160 % for RO 16, 63 and 196 % for DR 78, 108 and 258 % for DR 81) observed under sequential microaerophilic/aerobic processes suggested their critical involvements in the initial breakdown of azo bonds, whereas, a slight increase in the levels of laccase and veratryl alcohol oxidase confirmed subsequent oxidation of formed amines. Also, the acute toxicity assay with Daphnia magna revealed the nontoxic nature of the dye-degraded metabolites under sequential microaerophilic/aerobic processes. As biodegradation under sequential microaerophilic/aerobic process completely detoxified all the selected textile azo dyes, further efforts should be made to implement such methods for large scale dye wastewater treatment technologies. PMID:26417357
Evaluation of respiratory system in textile-dyeing workers.
Salmani Nodoushan, Mojahede; Mehrparvar, Amir Houshang; Loukzadeh, Ziba; Rahimian, Masoud; Ghove Nodoushan, Mohamad Ali; Jafari Nodoushan, Reza
2014-01-01
Despite the presence of many textile and dyeing plants in Iran, we couldn't find similar studies in this country. Forthermore, considering progress in the dyeing process and engineering controls, assessment of respiratory system is important for these workers. The present study was performed to evaluate the respiratory system in dyeing workers. In a cross-sectional study, 101 dyeing workers (all dyeing workers in yazd) and 90 workers without respiratory exposures (control group), were evaluated. A questionnaire was filled for each participant included Venables questionnaire and some other questions about age, work experience, personal or familial history of asthma or atopy, acute and chronic respiratory symptoms; Then spirometry was performed before and after the shift work Results: The frequency of acute and chronic respiratory symptoms was significantly higher among dyeing workers than controls. According to the Venables questionnaire, 11.9% of the dyeing workers suffered from asthma. Means of FVC and FEV1 of pre-shift spirometry were lower than control (p< 0.001). Across-shift spirometry showed significant reduction of FVC (p< 0.001), FEV1 (p< 0.001), FEF25-75% (p= 0.05) and FEF25% (p= 0.007) in dyeing workers compared to the control group. Evaluation of dyeing workers' respiratory system in this study showed that despite development in dyeing processes and engineering controls, workers in this job show more prevalent acute and chronic symptoms, and across-shift changes in spirometric parameters were significantly higher in this work group than the control group. Therefore it is necessary to pay attention to the control of respiratory exposures in this job.
Visible Light-Induced Carbonylation Reactions with Organic Dyes as the Photosensitizers.
Peng, Jin-Bao; Qi, Xinxin; Wu, Xiao-Feng
2016-09-08
Dyes can CO do it: Organic dyes and pigments are usually applied in textile dyeing, which can be dated back to the Neolithic period. Interestingly, the possibility to use organic dyes as photoredox catalysts has also been noticed by organic chemists and applied in organic synthesis. Carbonylation reactions as a powerful procedure in carbonyl-containing compound preparation have also been studied. In this manuscript, the recent achievements in using organic dyes as visible-light sensitizers in carbonylation chemistry are summarized and discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wet air oxidation and catalytic wet air oxidation for dyes degradation.
Ovejero, Gabriel; Sotelo, José Luis; Rodríguez, Araceli; Vallet, Ana; García, Juan
2011-11-01
Textile industry produces wastewater which contributes to water pollution since it utilizes a lot of chemicals. Preliminary studies show that the wastewater from textile industries contains grease, wax, surfactant, and dyes. The objective of this study was to determine the treatment efficiency of the nickel catalysts supported on hydrotalcites in three-dye model compounds and two types of wastewater. Hydrotalcites were employed to prepare supported nickel catalysts by wetness impregnation technique. Metal loadings from 1 to 10 wt% were tested. Catalysts were characterized by several techniques. They were tested in a catalytic wet air oxidation of three dyes and two wastewaters with different origins. It could be observed that the higher the metal content, the lower the BET area, possibly due to sintering of Ni and the consequent blocking of the pores by the metal. In addition, metallic dispersion was also higher when the metal content was lower. Dye conversion was more than 95% for every catalyst showing no differences with the nickel content. A high degree of dye conversion was achieved. Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) processes have been proved to be extremely efficient in TOC removal for wastewaters. The CWAO process can be used to remove dyes from wastewater. Three different dyes were tested showing satisfactory results in all of them. TOC degradation and dye removal in the presence of the catalyst were effective. Also, the HTNi catalyst is very active for organic matter and toxicity removal in wastewaters.
Dalvand, Arash; Gholibegloo, Elham; Ganjali, Mohammad Reza; Golchinpoor, Najmeh; Khazaei, Mohammad; Kamani, Hossein; Hosseini, Sara Sadat; Mahvi, Amir Hossein
2016-08-01
In this study, the efficiency of Moringa stenopetala seed extract was compared with alum and M. stenopetala-alum hybrid coagulant to remove Direct Red 23 azo dye from textile wastewater. The effects of parameters such as pH, coagulant dose, type of salt used for the extraction of coagulant and initial dye concentration on dye removal efficiency were investigated. Moreover, the existing functional groups on the structure of M. stenopetala coagulant (MSC) were determined by Fourier transform infrared spectroscopy, and the morphology of sludge produced by MSC, alum, and hybrid coagulant was characterized by scanning electron microscopy. Ninhydrin test was also used to determine the quantity of primary amines in the MSC and Moringa oleifera coagulant (MOC). According to the results, with increasing the coagulant dose and decreasing the initial dye concentration, dye removal efficiency has increased. The maximum dye removal of 98.5, 98.2, and 98.3 % were obtained by using 240, 120, and 80 mg/L MSC, alum and hybrid coagulant at pH 7, respectively. The results also showed MSC was much more effective than MOC for dye removal. The volume of sludge produced by MSC was one fourth and half of those produced by alum and hybrid coagulant, respectively. Based on the results, hybrid coagulant was the most efficient coagulant for direct dye removal from colored wastewater.
Manenti, Diego R; Soares, Petrick A; Silva, Tânia F C V; Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Bergamasco, Rosângela; Boaventura, Rui A R; Vilar, Vítor J P
2015-01-01
The performance of different solar-driven advanced oxidation processes (AOPs), such as TiO2/UV, TiO2/H2O2/UV, and Fe(2+)/H2O2/UV-visible in the treatment of a real textile effluent using a pilot plant with compound parabolic collectors (CPCs), was investigated. The influence of the main photo-Fenton reaction variables such as iron concentration (20-100 mg Fe(2+) L(-1)), pH (2.4-4.5), temperature (10-50 °C), and irradiance (22-68 WUV m(-2)) was evaluated in a lab-scale prototype using artificial solar radiation. The real textile wastewater presented a beige color, with a maximum absorbance peak at 641 nm, alkaline pH (8.1), moderate organic content (dissolved organic carbon (DOC) = 129 mg C L(-1) and chemical oxygen demand (COD) = 496 mg O2 L(-1)), and high conductivity mainly associated to the high concentration of chloride (1.1 g Cl(-) L(-1)), sulfate (0.4 g SO 4 (2 -) L(- 1)), and sodium (1.2 g Na(+) L(-1)) ions. Although all the processes tested contributed to complete decolorization and effective mineralization, the most efficient process was the solar photo-Fenton with an optimum catalyst concentration of 60 mg Fe(2+) L(-1), leading to 70 % mineralization (DOCfinal = 41 mg C L(-1); CODfinal < 150 mg O2 L(-1)) at pH 3.6, requiring a UV energy dose of 3.5 kJUV L(-1) (t 30 W = 22.4 min; [Formula: see text]; [Formula: see text]) and consuming 18.5 mM of H2O2.
40 CFR Appendix B to Part 414 - Complexed Metal-Bearing Waste Streams
Code of Federal Regulations, 2012 CFR
2012-07-01
...) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS Pt. 414, App. B... dyes, Azo (including metallized) Organic pigments, miscellaneous lakes and toners Copper Disperse dyes...-acetamidoanisole Azo dyes, metallized/Azo dye + metal acetate Direct dyes, Azo Disperse dyes, Azo and Vat Organic...
Textile dyes can enter the water ecosystem through wastewater discharges potentially exposing humans through the consumption of water and food. The commercial disperse dye product C.I. Disperse Blue 291 containing the aminoazobenzene 2-[(2-bromo-4,6-dinitrophenyl)azo]-5(diethylam...
Quirks of dye nomenclature. 5. Rhodamines.
Cooksey, C J
2016-01-01
Rhodamines were first produced in the late 19(th) century, when they constituted a new class of synthetic dyes. These compounds since have been used to color many things including cosmetics, inks, textiles, and in some countries, food products. Certain rhodamine dyes also have been used to stain biological specimens and currently are widely used as fluorescent probes for mitochondria in living cells. The early history and current biological applications are sketched briefly and an account of the ambiguities, complications and confusions concerning dye identification and nomenclature are discussed.
2012-01-01
Background Microbial laccases are highly useful in textile effluent dye biodegradation. However, the bioavailability of cellularly expressed or purified laccases in continuous operations is usually limited by mass transfer impediment or enzyme regeneration difficulty. Therefore, this study develops a regenerable bacterial surface-displaying system for industrial synthetic dye decolorization, and evaluates its effects on independent and continuous operations. Results A bacterial laccase (WlacD) was engineered onto the cell surface of the solvent-tolerant bacterium Pseudomonas putida to construct a whole-cell biocatalyst. Ice nucleation protein (InaQ) anchor was employed, and the ability of 1 to 3 tandemly aligned N-terminal repeats to direct WlacD display were compared. Immobilized WlacD was determined to be surface-displayed in functional form using Western blot analysis, immunofluorescence microscopy, flow cytometry, and whole-cell enzymatic activity assay. Engineered P. putida cells were then applied to decolorize the anthraquinone dye Acid Green (AG) 25 and diazo-dye Acid Red (AR) 18. The results showed that decolorization of both dyes is Cu2+- and mediator-independent, with an optimum temperature of 35°C and pH of 3.0, and can be stably performed across a temperature range of 15°C to 45°C. A high activity toward AG25 (1 g/l) with relative decolorization values of 91.2% (3 h) and 97.1% (18 h), as well as high activity to AR18 (1 g/l) by 80.5% (3 h) and 89.0% (18 h), was recorded. The engineered system exhibited a comparably high activity compared with those of separate dyes in a continuous three-round shake-flask decolorization of AG25/AR18 mixed dye (each 1 g/l). No significant decline in decolorization efficacy was noted during first two-rounds but reaction equilibriums were elongated, and the residual laccase activity eventually decreased to low levels. However, the decolorizing capacity of the system was easily retrieved via a subsequent 4-h cell culturing. Conclusions This study demonstrates, for the first time, the methodology by which the engineered P. putida with surface-immobilized laccase was successfully used as regenerable biocatalyst for biodegrading synthetic dyes, thereby opening new perspectives in the use of biocatalysis in industrial dye biotreatment. PMID:22686507
Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal
2013-09-01
The aim of present study was for the vermiremediation of dyeing sludge from textile mill into nutrient-rich vermicompost using earthworm Eisenia fetida. The dyeing sludge was mixed with cattle dung in different ratios, i.e., 0:100 (D0), 25:75 (D25), 50:50 (D50), 75:25 (D75), and 100:0 (D100) with earthworms, and 0:100 (S0), 25:75 (S25), 50:50 (S50), 75:25 (S75), and 100:0 (S100) without earthworms. Minimum mortality and maximum population build-up were observed in a 25:75 mixture. Nitrogen, phosphorus, sodium, and pH increased from the initial to the final products with earthworms, while electrical conductivity, C/N ratio, organic carbon, and potassium declined in all the feed mixtures. Vermicomposting with E. fetida was better for composting to change this sludge into nutrient-rich manure.
Monteiro, Mônica S; de Farias, Robson F; Chaves, José Alberto Pestana; Santana, Sirlane A; Silva, Hildo A S; Bezerra, Cícero W B
2017-12-15
In this work the efficiency of two lignocellulosic waste materials, wood residues and coconut mesocarp, were investigated as adsorbents towards two representative textile dyes (Remazol Red, RR and Remazol Brilliant Violet, RBV). The moisture, carbohydrate, protein, lipid, ash and fiber contents of both natural matrices were characterized. The materials were also characterized by infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, specific surface area analysis and thermogravimetry. The adsorption of dyes was monitored by using UV-Vis spectrophotometry. It was verified that both, coconut mesocarp (CM) and wood residues can act as effective adsorbents towards the investigated dyes. It is verified that the maximum adsorption capacity Γ M (mg g -1 ) for RBV and RR are 7.28 and 3.97 towards CM and 0.64 and 0.71 towrads SD. Furthermore, it was verified that the adsorption is strongly pH dependent and, as a general behavior, an increase in the pH value is associated with a decrease of the total amount of adsorbed dye. The adsorption of violet dye onto coconut mesocarp is well described by the Langmuir model, while all the remazol red fitted better with the Freundlich equation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Groves, Ethan; Palenik, Skip; Palenik, Christopher S
2018-04-18
While color is arguably the most important optical property of evidential fibers, the actual dyestuffs responsible for its expression in them are, in forensic trace evidence examinations, rarely analyzed and still less often identified. This is due, primarily, to the exceedingly small quantities of dye present in a single fiber as well as to the fact that dye identification is a challenging analytical problem, even when large quantities are available for analysis. Among the practical reasons for this are the wide range of dyestuffs available (and the even larger number of trade names), the low total concentration of dyes in the finished product, the limited amount of sample typically available for analysis in forensic cases, and the complexity of the dye mixtures that may exist within a single fiber. Literature on the topic of dye analysis is often limited to a specific method, subset of dyestuffs, or an approach that is not applicable given the constraints of a forensic analysis. Here, we present a generalized approach to dye identification that ( 1 ) combines several robust analytical methods, ( 2 ) is broadly applicable to a wide range of dye chemistries, application classes, and fiber types, and ( 3 ) can be scaled down to forensic casework-sized samples. The approach is based on the development of a reference collection of 300 commercially relevant textile dyes that have been characterized by a variety of microanalytical methods (HPTLC, Raman microspectroscopy, infrared microspectroscopy, UV-Vis spectroscopy, and visible microspectrophotometry). Although there is no single approach that is applicable to all dyes on every type of fiber, a combination of these analytical methods has been applied using a reproducible approach that permits the use of reference libraries to constrain the identity of and, in many cases, identify the dye (or dyes) present in a textile fiber sample.
Oliveira, Gisele Augusto Rodrigues; Ducas, Rafael do Nascimento; Teixeira, Gabriel Campos; Batista, Aline Carvalho; Oliveira, Danielle Palma; Valadares, Marize Campos
2015-09-01
Eye irritation evaluation is mandatory for predicting health risks in consumers exposed to textile dyes. The two dyes, Reactive Orange 16 (RO16) and Reactive Green 19 (RG19) are classified as Category 2A (irritating to eyes) based on the UN Globally Harmonized System for classification (UN GHS), according to the Draize test. On the other hand, animal welfare considerations and the enforcement of a new regulation in the EU are drawing much attention in reducing or replacing animal experiments with alternative methods. This study evaluated the eye irritation of the two dyes RO16 and RG19 by combining the Short Time Exposure (STE) and the Bovine Corneal Opacity and Permeability (BCOP) assays and then comparing them with in vivo data from the GHS classification. The STE test (first level screening) categorized both dyes as GHS Category 1 (severe irritant). In the BCOP, dye RG19 was also classified as GHS Category 1 while dye RO16 was classified as GHS no prediction can be made. Both dyes caused damage to the corneal tissue as confirmed by histopathological analysis. Our findings demonstrated that the STE test did not contribute to arriving at a better conclusion about the eye irritation potential of the dyes when used in conjunction with the BCOP test. Adding the histopathology to the BCOP test could be an appropriate tool for a more meaningful prediction of the eye irritation potential of dyes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Peláez-Cid, A A; Velázquez-Ugalde, I; Herrera-González, A M; García-Serrano, J
2013-11-30
For this research, three different adsorbents, one untreated and two chemically activated, were prepared from Opuntia ficus-indica fruit waste. By the construction of adsorption isotherms, its adsorption capabilities and the viability of its use in the removal of textile basic and direct type dyes were determined. It was found that the adsorbent with the most adsorption capacity for basic dyes was the one activated with NaClO, and, for direct dyes, it was the one activated with NaOH. Langmuir and Freundlich equations isotherms were applied for the analysis of the experimental data. It was found that the Freundlich model best described the adsorption behavior. The adsorption capacity was improved when the pH of the dye solution had an acid value. The specific surface area of the adsorbents was calculated by means of methylene blue adsorption at 298 K to stay within a range between 348 and 643 m(2) g(-1). The FTIR spectroscopic characterization technique, the SEM, the point of zero charge, and the elemental analysis show the chemical and physical characteristics of the studied adsorbents, which confirm the adsorption results obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.
Organics and nitrogen removal from textile auxiliaries wastewater with A2O-MBR in a pilot-scale.
Sun, Faqian; Sun, Bin; Hu, Jian; He, Yangyang; Wu, Weixiang
2015-04-09
The removal of organic compounds and nitrogen in an anaerobic-anoxic-aerobic membrane bioreactor process (A(2)O-MBR) for treatment of textile auxiliaries (TA) wastewater was investigated. The results show that the average effluent concentrations of chemical oxygen demand (COD), ammonium nitrogen (NH4(+)-N) and total nitrogen (TN) were about 119, 3 and 48 mg/L under an internal recycle ratio of 1.5. The average removal efficiency of COD, NH4(+)-N and TN were 87%, 96% and 55%, respectively. Gas chromatograph-mass spectrometer analysis indicated that, although as much as 121 different types of organic compounds were present in the TA wastewater, only 20 kinds of refractory organic compounds were found in the MBR effluent, which could be used as indicators of effluents from this kind of industrial wastewater. Scanning electron microscopy analysis revealed that bacterial foulants were significant contributors to membrane fouling. An examination of foulants components by wavelength dispersive X-ray fluorescence showed that the combination of organic foulants and inorganic compounds enhanced the formation of gel layer and thus caused membrane fouling. The results will provide valuable information for optimizing the design and operation of wastewater treatment system in the textile industry. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aston, John E.; Apel, William A.; Lee, Brady D.
Manuscript outlining degradation of phenolic compounds by Alicyclobacillus acidocaldarius. Work relates to degradation of lignocellulosic biomass, but has application to degradation of textile dyes and other environmental contamination.
Giorgetti, Lucia; Talouizte, Hakima; Merzouki, Mohammed; Caltavuturo, Leonardo; Geri, Chiara; Frassinetti, Stefania
2011-11-01
In order to investigate the biological hazard of effluents from textile industries of Fez-Boulmane region in Morocco, mutagenicity and phytotoxicity tests were performed on different biological systems. Moreover, the efficiency of a Sequencing Batch Reactor (SBR) system, working by activated sludge on a laboratory scale, was estimated by comparing the ecotoxicity results observed before and after wastewater treatment. Evaluation of the genotoxic potential was investigated by means of classic mutagenicity tests on D7 strain of Saccharomyces cerevisiae and by phytotoxicity tests on Allium sativum L., Vicia faba L. and Lactuca sativa L., estimating micronuclei presence, mitotic index and cytogenetic anomalies. The results obtained by testing untreated wastewater demonstrated major genotoxicity effects in S. cerevisiae and various levels of phytotoxicity in the three plant systems, while after SBR treatment no more ecotoxicological consequences were observed. These data confirm the effectiveness of the SBR system in removing toxic substances from textile wastewaters in Fez-Boulmane region. Copyright © 2011 Elsevier Inc. All rights reserved.
Textile Arts of India, Curriculum Project. Fulbright Hays Summer Seminar Abroad 1995 (India).
ERIC Educational Resources Information Center
Myers, Barbara
This interdisciplinary unit focuses on five techniques found in the textile arts of India: tie-dye, embroidery, applique, block printing, and weaving. The unit is designed for students in third through sixth grades but could be adapted to other levels. This unit could be incorporated with a study of India's land, history, and geography. The…
Patil, Asmita V; Lokhande, Vinayak H; Suprasanna, Penna; Bapat, Vishwas A; Jadhav, Jyoti P
2012-05-01
Sesuvium portulacastrum is a common halophyte growing well in adverse surroundings and is exploited mainly for the environmental protection including phytoremediation, desalination and stabilization of contaminated soil. In the present investigation, attempts have been made on the decolorization of a toxic textile dye Green HE4B (GHE4B) using in vitro grown Sesuvium plantlets. The plantlets exhibited significant (70%) decolorization of GHE4B (50 mg l(-1)) that sustain 200 mM sodium chloride (NaCl) within 5 days of incubation. The enzymatic analysis performed on the root and shoot tissues of the in vitro plantlets subjected to GHE4B decolorization in the presence of 200 mM NaCl showed a noteworthy induction of tyrosinase, lignin peroxidase and NADH-DCIP reductase activities, indicating the involvement of these enzymes in the metabolism of the dye GHE4B. The UV-visible spectrophotometer, HPLC and Fourier Transform Infrared Spectroscopy (FTIR) analyses of the samples before and after decolorization of the dye confirmed the efficient phytotransformation of GHE4B in the presence of 200 mM NaCl. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis of the products revealed the formation of three metabolites such as p -amino benzene, p -amino toluene and 1, 2, 7-amino naphthalene after phytotransformation of GHE4B. Based on the FTIR and GC-MS results, the possible pathway for the biodegradation of GHE4B in the presence of 200 mM NaCl has been proposed. The phytotoxicity experiments confirmed the non-toxicity of the degraded products. The present study demonstrates for the first time the potential of Sesuvium for the efficient degradation of textile dyes and its efficacy on saline soils contaminated with toxic compounds.
Yu, Ming; Li, Wanxin; Wang, Ziqiang; Zhang, Bowu; Ma, Hongjuan; Li, Linfan; Li, Jingye
2016-01-01
The prevention of refractory organic pollution caused by conventional dyeing and the development of new fabrics with various functions are two issues to be solved urgently in the field of textile fabrication. Here, we report a new environmentally friendly route for the simultaneous coloration and functionalization of textiles by the covalent immobilization of a metal–organic framework, Cr-based MIL-101(Cr), onto the surfaces of nylon fabrics by co-graft polymerization with 2-hydroxyethyl acrylate initiated by γ-ray irradiation. The Cr(III) clusters color the nylon fabric, and the color intensity varies with the MIL-101 content, providing a “green” textile coloration method that is different from conventional dyeing processes. An X-ray diffraction (XRD) analysis shows that the nanoporous structure of the original MIL-101 particles is retained during radiation-induced graft polymerization. Numerous nanopores are introduced onto the surface of the nylon fabric, which demonstrated better sustained-release-of-aroma performance versus pristine nylon fabric in tests. The modified fabrics exhibit laundering durability, with MIL-101 nanoparticles intact on the nylon surface after 30 h of dry cleaning. PMID:26948405
Kacan, Erdal
2016-01-15
The purpose of this experimental study is to determine optimum preparation conditions for activated carbons obtained from textile sewage sludge (TSS) for removal of dyes from aqueous solutions. The textile sewage sludge activated carbon (TSSAC) was prepared by chemical activation with potassium hydroxide using Response Surface Methodology (RSM). The most influential factor on each experimental design responses was identified via ANNOVA analysis. Based on the central composite design (CCD), quadratic model was developed to correlate the preparation variables for one response which is the Brunauer-Emmelt-Teller (BET) surface area. RSM based on a three-variable CCD was used to determine the effect of pyrolyzed temperature (400-700 °C), carbonization time (45-180 min) and KOH: weight of TSS (wt%) impregnation ratio (0.5:1-1.5:1) on BET surface area. According to the results, pyrolyzed temperature and impregnation ratio were found as the significant factors for maximizing the BET surface area. The major effect which influences the BET surface area was found as pyrolyzed temperature. Both carbonization time and impregnation ratio of KOH had no significant effect. The optimum conditions for preparing TSSAC, based on response surface and contour plots, were found as follows: pyrolyzed temperature 700 °C, carbonization time of 45 min and chemical impregnation ratio of 0.5. The maximum and optimum BET surface area of TSSAC were found as 336 m(2)/g and 310.62 m(2)/g, respectively. Synozol Blue reactive (RSB) and Setapers Yellow-Brown (P2RFL) industrial textile dyes adsorption capacities were investigated. As expected the TSSAC which has the biggest BET surface area (336 m(2)/g) adsorbed dye best. The maximum (RSB) and (P2RFL) uptake capacities were found as 8.5383 mg/g and 5.4 mg/g, respectively. The results of this study indicated the applicability of TSSAC for removing industrial dyes from aqueous solution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Umpierres, Cibele S; Prola, Lizie D T; Adebayo, Matthew A; Lima, Eder C; Dos Reis, Glaydson S; Kunzler, Diego D F; Dotto, G L; Arenas, Leliz T; Benvenutti, Edilson V
2017-03-01
In this work, SiO 2 /Nb 2 O 5 (SiNb) material was prepared using sol-gel method and employed as adsorbent for removal of crystal violet dye (CV). The material was characterized using nitrogen adsorption-desorption isotherms, FTIR spectroscopy, pH pzc , and SEM-EDS. The analysis of N 2 isotherms revealed the presence of micro- and mesopores in the SiNb sample with specific surface area as high as 747 m 2 g -1 . For the CV adsorption process, variations of several parameters such as of pH, temperature, contact time, and concentration of dye of the process were evaluated. The optimum initial pH of the CV dye solution was 7.0. The adsorption kinetic and equilibrium data for CV adsorption were suitably represented by the general-order and Liu models, respectively. The maximum adsorption capacity of the CV dye by SiNb was achieved at 303 K, which attained 116 mg g -1 at this temperaure. Dye effluents were simulated and used to check the applicability of the SiNb material for treatment of effluents - the material showed very good efficiency for decolorization of dye effluents.
40 CFR 63.4292 - What operating limits must I meet?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Other Textiles Emission Limitations § 63.4292 What operating limits must I meet? (a) For any web coating... material option; web coating/printing operation or dyeing/finishing operation on which you use the emission... controlled web coating/printing operation or dyeing/finishing operation on which you use the emission rate...
40 CFR 63.4292 - What operating limits must I meet?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Other Textiles Emission Limitations § 63.4292 What operating limits must I meet? (a) For any web coating... material option; web coating/printing operation or dyeing/finishing operation on which you use the emission... controlled web coating/printing operation or dyeing/finishing operation on which you use the emission rate...
40 CFR 63.4292 - What operating limits must I meet?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Other Textiles Emission Limitations § 63.4292 What operating limits must I meet? (a) For any web coating... material option; web coating/printing operation or dyeing/finishing operation on which you use the emission... controlled web coating/printing operation or dyeing/finishing operation on which you use the emission rate...
Cristóvão, Raquel O; Silvério, Sara C; Tavares, Ana P M; Brígida, Ana Iraidy S; Loureiro, José M; Boaventura, Rui A R; Macedo, Eugénia A; Coelho, Maria Alice Z
2012-09-01
Commercial laccase formulation was immobilized on modified green coconut fiber silanized with 3-glycidoxypropyltrimethoxysilane, aiming to achieve a cheap and effective biocatalyst. Two different strategies were followed: one point (pH 7.0) and multipoint (pH 10.0) covalent attachment. The influence of immobilization time on enzymatic activity and the final reduction with sodium borohydride were evaluated. The highest activities were achieved after 2 h of contact time in all situations. Commercial laccase immobilized at pH 7.0 was found to have higher activity and higher affinity to the substrate. However, the immobilization by multipoint covalent attachment improved the biocatalyst thermal stability at 50 °C, when compared to soluble enzyme and to the immobilized enzyme at pH 7.0. The Schiff's bases reduction by sodium borohydride, in spite of causing a decrease in enzyme activity, showed to contribute to the increase of operational stability through bonds stabilization. Finally, these immobilized enzymes showed high efficiency in the continuous decolourization of reactive textile dyes. In the first cycle, the decolourization is mainly due to dyes adsorption on the support. However, when working in successive cycles, the adsorption capacity of the support decreases (saturation) and the enzymatic action increases, indicating the applicability of this biocatalyst for textile wastewater treatment.
Phytoremediation in education: textile dye teaching experiments.
Ibbini, Jwan H; Davis, Lawrence C; Erickson, Larry E
2009-07-01
Phytoremediation, the use of plants to clean up contaminated soil and water, has a wide range of applications and advantages, and can be extended to scientific education. Phytoremediation of textile dyes can be used as a scientific experiment or demonstration in teaching laboratories of middle school, high school and college students. In the experiments that we developed, students were involved in a hands-on activity where they were able to learn about phytoremediation concepts. Experiments were set up with 20-40 mg L(-1) dye solutions of different colors. Students can be involved in the set up process and may be involved in the experimental design. In its simplest forms, they use two-week-old sunflower seedlings and place them into a test tube of known volume of dye solution. Color change and/or dye disappearance can be monitored by visual comparison or with a spectrophotometer. Intensity and extent of the lab work depends on student's educational level, and time constraints. Among the many dyes tested, Evan's Blue proved to be the most readily decolorized azo dye. Results could be observed within 1-2 hours. From our experience, dye phytoremediation experiments are suitable and easy to understand by both college and middle school students. These experiments help visual learners, as students compare the color of the dye solution before and after the plant application. In general, simple phytoremediation experiments of this kind can be introduced in many classes including biology, biochemistry and ecological engineering. This paper presents success stories of teaching phytoremediation to middle school and college students.
Pasukphun, N; Vinitnantharat, S; Gheewala, S
2010-04-01
The aim of this study is to investigate the decolorization in anaerobic/aerobic biological activated carbon (A/A BAC) system. The experiment was divided into 2 stages; stage I is batch test for preliminary study of dye removal equilibrium time. The preliminary experiment (stage I) provided the optimal data for experimental design of A/A BAC system in SBR (stage II). Stage II is A/A BAC system imitated Sequencing Batch Reactor (SBR) which consist of 5 main periods; fill, react, settle, draw and idle. React period include anaerobic phase followed by aerobic phase. The BAC main media; Granular Activated Carbon (GAC), Mixed Cultures (MC) and Biological Activated Carbon (BAC) were used for dye and organic substances removal in three different solutions; Desizing Agent Solution (DAS), dye Solution (DS) and Synthetic Textile Wastewater (STW). Results indicate that GAC adsorption plays role in dye removal followed by BAC and MC activities, respectively. In the presence desizing agent, decolorization by MC was improved because desizing agent acts as co-substrates for microorganisms. It was found that 50% of dye removal efficiency was achieved in Fill period by MC. GC/MS analysis was used to identify dye intermediate from decolorization. Dye intermediate containing amine group was found in the solution and on BAC surfaces. The results demonstrated that combination of MC and BAC in the system promotes decolorization and dye intermediate removal. In order to improve dye removal efficiency in an A/A BAC system, replacement of virgin GAC, sufficient co-substrates supply and the appropriate anaerobic: aerobic period should be considered.
Ultrasonic dyeing of cellulose nanofibers.
Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo
2016-07-01
Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. Copyright © 2016 Elsevier B.V. All rights reserved.
Biodecolorization of Reactive Yellow-2 by Serratia sp. RN34 Isolated from Textile Wastewater.
Najme, Rabia; Hussain, Sabir; Maqbool, Zahid; Imran, Muhammad; Mahmood, Faisal; Manzoor, Hamid; Yasmeen, Tahira; Shehzad, Tanvir
2015-12-01
Remediation of colored textile wastewaters is a matter of interest. In this study, 49 bacteria were isolated from the textile wastewater and tested for their ability to decolorize reactive yellow-2 (RY2) dye. The most efficient isolate, RN34, was identified through amplification, sequencing, and phylogenetic analysis of its 16S rDNA and was designated as Serratia sp. RN34. This bacterium was also found capable of decolorizing other related reactive azo-dyes, including reactive black-5, reactive red-120, and reactive orange-16 but at varying rates. The optimum pH for decolorization of RY2 by the strain RN34 was 7.5 using yeast extract as cosubstrate under static incubation at 30 °C. The strain RN34 also showed potential to decolorize RY2 in the presence of considerable amounts of hexavalent chromium and sodium chloride. A phytotoxicity study demonstrated relatively reduced toxicity of RY2 decolorized products on Vigna radiata plant as compared to the uninoculated RY2 solution.
Non-destructive NIR-FT-Raman analyses in practice. Part I. Analyses of plants and historic textiles.
Andreev, G N; Schrader, B; Schulz, H; Fuchs, R; Popov, S; Handjieva, N
2001-12-01
Non-destructive analysis of natural substances in plants as well as of old dyed textiles by Raman spectroscopy has not been possible using conventional techniques. Exciting lines from the visible part of the spectrum produced photochemical and thermal decomposition of the objects as well as strong fluorescence. Using Nd:YAG laser excitation at 1,064 nm together with a special sample arrangement and interferometric recording, various polyacetylenes in Aethusa cynapium and in chamomile (Chamomilla recutita) and the main valuable substances in gentian species (Gentiana lutea and G. punctata), curcuma roots (Curcuma longa), cinnamon (Cinnamomum zeylanicum), fennel (Foeniculum vulgare), clove (Caryophyllus aromaticus), and ginger (Zingiber officinale) were analyzed non-destructively and discussed in comparison with the corresponding pure standard compounds. We further analyzed non-destructively the FT Raman spectra of collections of historical textiles and lakes used for dyeing. It is possible to distinguish the main dye component non-destructively by using Raman bands.
Baaka, Noureddine; El Ksibi, Imen; Mhenni, Mohamed Farouk
2017-01-01
The present study has been focused on the extraction of natural pigments from tomato industry waste. At first, different solvents and solvents mixture were compared to determine which one is the best for extracting carotenoids compounds from tomato by-products. A mixture of hexane and acetone gave the highest carotenoids extraction yield among the others examined. The extraction conditions were optimised using a five-level-five-factor central composite design. Under optimal conditions, solvent solid ratio 90, hexane percentage in the solvent mixture 60, extraction duration 50, number of extractions 4 and extraction temperature 35 °C, the yield of carotenoids was 80.7 μg/g. The coloured extract of tomato by-products was applied on textile fabrics to investigate the dyeing characteristics and antioxidant activities. The results indicate that extract can be applied on textile fabrics (wool, silk and polyamide) to produce coloured clothing with acceptable antioxidant properties.
Sabna, V; Thampi, Santosh G; Chandrakaran, S
2016-12-01
Synthetic dyes present in effluent from textile, paper and paint industries contain crystal violet (CV), a known carcinogenic agent. This study investigates the modification of multiwalled carbon nanotubes by acid reflux method and equilibrium and kinetic behaviour of adsorption of CV onto functionalized multi-walled carbon nanotubes (fMWNTs) in batch system. High stability of the fMWNTs suspension in water indicates the hydrophilicity of fMWNTs induced due to the formation of functional groups that make hydrogen bonds with water molecules. fMWNTs were characterized by Fourier Transform Infra Red (FTIR) spectroscopy and the functional groups present on the fMWNTs were confirmed. Characteristic variation was observed in the FTIR spectra of fMWNTs after adsorption of crystal violet onto it. Adsorption characteristics were evaluated as a function of system variables such as contact time, dosage of fMWNTs and initial concentration and pH of the crystal violet solution. Adsorption capacity of fMWNTs and percentage removal of the dye increased with increase in contact time, adsorbent dosage and pH but declined with increase in initial concentration of the dye. fMWNTs showed higher adsorption capacity compared to that of pristine MWNTs. Data showed good fit with the Langmuir and Freundlich isotherm models and the pseudo-second order kinetic model; the maximum adsorption capacity was 90.52mg/g. Kinetic parameters such as rate constants, equilibrium adsorption capacities and regression coefficients were estimated. Results indicate that fMWNTs are an effective adsorbent for the removal of crystal violet from aqueous solution. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zahoor, Mehvish; Arshad, Amara; Khan, Yaqoob; Iqbal, Mazhar; Bajwa, Sadia Zafar; Soomro, Razium Ali; Ahmad, Ishaq; Butt, Faheem K.; Iqbal, M. Zubair; Wu, Aiguo; Khan, Waheed S.
2018-03-01
This study presents the synthesis of CeO2-TiO2 nanocomposite and its potential application for the visible light-driven photocatalytic degradation of model crystal violet dye as well as real industrial waste water. The ceria-titania (CeO2-TiO2) nanocomposite material was synthesised using facile hydrothermal route without the assistance of any template molecule. As-prepared composite was characterised by SEM, TEM, HRTEM, XRD, XPS for surface features, morphological and crystalline characters. The formed nanostructures were determined to possess crystal-like geometrical shape and average size less than 100 nm. The as-synthesised nanocomposite was further investigated for their heterogeneous photocatalytic potential against the oxidative degradation of CV dye taken as model pollutant. The photo-catalytic performance of the as-synthesised material was evaluated both under ultra-violet as well as visible light. Best photocatalytic performance was achieved under visible light with complete degradation (100%) exhibited within 60 min of irradiation time. The kinetics of the photocatalytic process were also considered and the reaction rate constant for CeO2-TiO2 nanocomposite was determined to be 0.0125 and 0.0662 min-1 for ultra-violet and visible region, respectively. In addition, the as-synthesised nanocomposite demonstrated promising results when considered for the photo-catalytic degradation of coloured industrial waste water collected from local textile industry situated in Faisalabad region of Pakistan. Enhanced photo-catalytic performance of CeO2-TiO2 nanocomposite was proposed owing to heterostructure formation leading to reduced electron-hole recombination.
Production of sludge-incorporated paver blocks for efficient waste management.
Velumani, P; Senthilkumar, S
2018-06-01
Waste management plays a vital role in the reuse of industry wastes in to useful conversions. The treatment of effluents from the combined textile effluent treatment plant and hypo sludge from the paper industry results in sludge generation, which poses a huge challenge for its disposal. Therefore, an eco-friendly attempt is made to utilize them in the production of paver blocks. Paver blocks are construction units that have vast applications in street roads, walking paths, fuel stations, and so on. In this study, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge, to utilize them in suitable proportions. The effect of adding silica fume and polypropylene fibre in paver blocks has also been studied. Paver blocks containing sludge with different proportions were cast based on the recommendations in Indian Standards (IS) 15658, and the test results were compared with the nominal M20 grade and M30 grade paver blocks. The outcomes of the paver block combinations were studied and found to be an effective utilization of sludge with substantial cement replacement of up to 35%, resulting in effective waste management for specific industries. Presently, paver blocks are construction units that have vast application in street roads and other constructions like walking paths, fuel stations, and so on. Also, paver blocks possess easy maintenance during breakages. Based on this application, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge to utilize them in suitable proportions.
NASA Astrophysics Data System (ADS)
Bakar, Khomsaton Abu; Selambakkannu, Sarala; Ting, Teo Ming; Shariff, Jamaliah
2012-09-01
The combination of irradiation and biological technique was used to study COD, BOD5 and colour removal of textiles effluent in the presence of food industry wastewater at two different ratios. Two biological treatment system, the first consisting a mix of unirradiated textile and food industry wastewater and the second a mix of irradiated textile wastewater and food industry wastewater were operated in parallel. The experiment was conducted by batch. For the first batch the ratio was use for textile wastewater and food industry wastewater in biological treatment was 1:1. Meanwhile, for the second batch the ratio used for textile wastewater and food industry wastewater in biological treatment was 1:2. The results obtained for the first and second batch varies from each other. After irradiation, COD reduce in textile wastewater for the both batches are roughly 29% - 33% from the unirradiated wastewater. But after undergoing the biological treatment the percentage of COD reduction for first batch and second batch was 62.1% and 80.7% respectively. After irradiation the BOD5 of textile wastewater reduced by 22.2% for the first batch and 55.1% for the second batch. But after biological treatment, the BOD5 value for the first batch was same as its initial, 36mg/l and 40.4mg/l for the second batch. Colour had decreased from 899.5 ADMI to 379.3 ADMI after irradiation and decrease to 109.3 after undergoes biological treatment for the first batch. Meantime for the batch two, colour had decreased from 1000.44 ADMI to 363.40 ADMI after irradiation and dropped to 79.20 ADMI after biological treatment. The experiment show that 1:2 ratio show better reduction on COD, BOD5 and colour, compared to the ratio of 1:1.
Singh, Rajender; Ahlawat, O P; Rajor, Anita
2012-12-01
The study presents variation in microbial population of Agaricus bisporus, Pleurotus sajor-caju and Volvariella volvacea spent substrates (SMS) along with ligninolytic enzymes activity and textile effluent decolorization potential of microorganisms isolated from these. The effect of temperature, pH, carbon sources and immobilizing agents on effluent decolorization using different combinations of these microorganisms has also been studied. SMS of P. sajor-caju harbored highest population and diversity of bacteria and fungi compared to other SMSs. Schizophyllum commune and Pezizomycotina sp. from P. sajor-caju SMS, exhibited highest activities of laccase (11.8 and 8.32U mL(-1)) and lignin peroxidase (339 and 318 UL(-1)), while Pseudomonas fluorescens of Manganese peroxidase. Highest decolorization was in presence of glucose and sucrose at 30°C, and microbial consortium comprised of the immobilized forms of S. commune and Pezizomycotina sp. on wheat straw and broth cultures of P. fluorescens, Bacillus licheniformis and Bacillus pumilus. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kamaruddin, Amirah Farhan; Sanagi, Mohd Marsin; Wan Ibrahim, Wan Aini; Md Shukri, Dyia S; Abdul Keyon, Aemi S
2017-11-01
Polypyrrole-magnetite dispersive micro-solid-phase extraction method combined with ultraviolet-visible spectrophotometry was developed for the determination of selected cationic dyes in textile wastewater. Polypyrrole-magnetite was used as adsorbent due to its thermal stability, magnetic properties, and ability to adsorb Rhodamine 6G and crystal violet. Dispersive micro-solid-phase extraction parameters were optimized, including sample pH, adsorbent amount, extraction time, and desorption solvent. The optimum polypyrrole-magnetite dispersive micro-solid phase-extraction conditions were sample pH 8, 60 mg polypyrrole-magnetite adsorbent, 5 min of extraction time, and acetonitrile as the desorption solvent. Under the optimized conditions, the polypyrrole-magnetite dispersive micro-solid-phase extraction with ultraviolet-visible method showed good linearity in the range of 0.05-7 mg/L (R 2 > 0.9980). The method also showed a good limit of detection for the dyes (0.05 mg/L) and good analyte recoveries (97.4-111.3%) with relative standard deviations < 10%. The method was successfully applied to the analysis of dyes in textile wastewater samples where the concentration found was 1.03 mg (RSD ±7.9%) and 1.13 mg/L (RSD ± 4.6%) for Rhodamine 6G and crystal violet, respectively. It can be concluded that this method can be adopted for the rapid extraction and determination of dyes at trace concentration levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Physical-chemical characterization of the textile dye Azo Ab52 degradation by corona plasma
NASA Astrophysics Data System (ADS)
Gómez, A.; Torres-Arenas, A. J.; Vergara-Sánchez, J.; Torres, C.; Reyes, P. G.; Martínez, H.; Saldarriaga-Noreña, Hugo
2017-10-01
This work characterizes the degradation of the textile dye azo Acid Black 52 by measuring several physical and chemical parameters. A corona plasma was created at atmospheric pressure and applied on the liquid-air interface of water samples containing the dye. 1.0 mM of ferrous sulfate (FeSO4) was added to 1.0 mM dye solution, for a total volume of 250 mL. For each treatment, a number of parameters were quantified. These were voltage, current, temperature, loss of volume, pH, electrical conductivity, concentration, optical mission spectra, chemical oxygen demand (COD), total organic carbon (TOC), and the removal ratio. Because of the increase in the sample temperature, the volume lost by evaporation was explored. The results show that the efficiency of the dye degradation by plasma is a function of treatment time. Moreover, the reactive concentration of FeSO4 and the exposition time of the plasma were varied at a constant volume, leading to the determination of the concentrations and optimal times. Considering the degradation and removal parameters, at the maximum treated time of 80 min, it found that COD was of 96.36%, TOC of 93.93%, and the removal ratio of 97.47%.
Highly Flexible Dye-sensitized Solar Cells Produced by Sewing Textile Electrodes on Cloth
Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; Lee, Dong Y.
2014-01-01
Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices. PMID:24957920
Highly flexible dye-sensitized solar cells produced by sewing textile electrodes on cloth.
Yun, Min Ju; Cha, Seung I; Seo, Seon Hee; Lee, Dong Y
2014-06-24
Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices.
Application of H2O and UV/H2O2 processes for enhancing the biodegradability of reactive black 5 dye.
Kalpana, S Divya; Kalyanaraman, Chitra; Gandhi, N Nagendra
2011-07-01
Leather processing is a traditional activity in India during which many organic and inorganic chemicals are added while part of it is absorbed by the leather, the remaining chemicals are discharged along with the effluent. The effluent contains both easily biodegradable and not easily biodegradable synthetic organics like dyes, syntans. Easily biodegradable organics are removed in the existing biological treatment units whereas synthetic organics present in the wastewater are mostly adsorbed over the microbes. As the tannery effluent contains complex chemicals, it is difficult to ascertain the degradation of specific pollutants. To determine the increase in the biodegradability, one of the complex and synthetic organic chemical like dye used in the tanning operation was selected for Advanced Oxidation Process (AOPs) treatment for cleaving complex organics and its subsequent treatment in aerobic process. In the present study, Reactive Black 5 Dye used in the tanning operation was selected for Hydrogen Peroxide (H2O2) and UV/H2O2 pre-treatment for different operating conditions like pH, contact time and different volume of H2O2. A comparison was made between the untreated, Hydrogen Peroxide (H2O2) and UV/H2O2 treated effluent in order to ascertain the influence of AOP on the improvement of biodegradability of effluent. An increase in the BOD5/COD ratio from 0.21 to 0.435 was achieved in the UV/H2O2 pre-treatment process. This pre-treated effluent was further subjected to aerobic process. Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) removal efficiency of the UV/H2O2 pre-treated dye solution in the aerobic process was found to be 86.39% and 77.82% when compared to 52.43% of BOD5 and 51.55% of COD removal efficiency without any pre-treatment. Hence from these results, to increase the biodegradability of Reactive Black 5 dye pre-treatment methods like H2O2 and UV/H2O2 can be used prior to biological treatment process.
NASA Astrophysics Data System (ADS)
Farooqi, Izharul H.; Basheer, Farrukh; Tiwari, Pradeepika
2017-12-01
Laboratory scale experiments were carried out to access the feasibility of sequential anaerobic/aerobic biological treatment for the biodegradation of Methylene Blue (MB) dye. Anaerobic studies were performed using anaerobic hybrid reactor (consisting of UASB and Anaerobic filter) whereas submerged aerobic fixed film reactor was used as aerobic reactor. Degradation of MB dye was attempted using neutralized acetic acid (1000 mg/L) as co-substrate. MB dye concentration was stepwise increased from 10 to 70 mg/L after reaching steady state in each dye concentration. Such a gradual increase in the dye concentration helps in the proper acclimatization of the sludge to dyes thereby avoiding the possible inhibitory effects to biological activities at high dye concentrations. The overall treatment efficiency of MB through sequential anaerobic-aerobic reactor operation was 90% at maximum attempted dye concentration of 70 mg/L. The effluent from anaerobic reactor was analysed for intermediate biodegradation products through HPLC. It was observed that catechol, quinone, amino pyrine, 1,4 diamino benzene were present. However they were absent in final effluent.
Kaushik, Pallavi; Rawat, Neha; Mathur, Megha; Raghuvanshi, Priyanka; Bhatnagar, Pradeep; Swarnkar, Harimohan; Flora, Swaran
2012-01-01
Arsenic-contaminated areas of Sanganer, Jaipur, Rajasthan, India were surveyed for the presence of metal resistant bacteria contaminated with textile effluent. Samples were collected from soil receiving regular effluent from the textile industries located at Sanganer area. The properties like pH, electrical conductivity, organic carbon, organic matter, exchangeable calcium, water holding capacity and metals like arsenic, iron, magnesium, lead and zinc were estimated in the contaminated soil. In total, nine bacterial strains were isolated which exhibited minimum inhibitory concentration (MIC) of arsenic ranging between 23.09 and 69.2mM. Four out of nine arsenic contaminated soil samples exhibited the presence of arsenite hyper-tolerant bacteria. Four high arsenite tolerant bacteria were characterized by 16S rDNA gene sequencing which revealed their similarity to Microbacterium paraoxydans strain 3109, Microbacterium paraoxydans strain CF36, Microbacterium sp. CQ0110Y, Microbacterium sp. GE1017. The above results were confirmed as per Bergey's Manual of Determinative Bacteriology. All the four Microbacterium strains were found to be resistant to 100μg/ml concentration of cobalt, nickel, zinc, chromium selenium and stannous and also exhibited variable sensitivity to mercury, cadmium, lead and antimony. These results indicate that the arsenic polluted soil harbors arsenite hyper-tolerant bacteria like Microbacterium which might play a role in bioremediation of the soil. PMID:22778519
Multiple use of water in industry--the textile industry case.
Rott, Ulrich
2003-08-01
The main aim of this article is to give a review on the state of the art of available processes for the advanced treatment of wastewater from Textile Processing Industry (TPI). After an introduction to the specific wastewater situation of the TPI the article reviews the options of process and production integrated measures. The available unit processes and examples of applied combinations of unit processes are described. A special place is given to the in-plant treatment, the reuse of the treated split flow or mixed wastewater and the recovery of textile auxiliaries and dyes.
Jaryal, Neeraj; Kaur, Harpreet
2017-11-01
In the present work, silver nanoparticles have been biosynthesized by utilizing the alcoholic extract of Plumbago auriculata. The optimization of reaction conditions was carried out by monitoring the reactions with the help of UV-Visible absorption spectroscopy. The characterization of AgNP was carried out by infrared spectroscopy, transmission electron microscopy and X-Ray diffraction (XRD) studies. The biogenic AgNPs were tested against Mycobacterium tuberculosis using Microplate Almar Blue assay (MABA) and their antioxidant activity was also evaluated. The silver nanoparticles were also assessed for their reducing activity against organic dyes. The AgNPs were spherical in shape with size ranging from 15 to 45 nm with face centered cubic geometry as revealed by XRD analysis. The AgNPs possessed good antitubercular activity with MIC value of 1.6 μg/ml and these also exhibited promising antioxidant activity with IC 50 value of 28.2. Furthermore, AgNPs also reduced congo red within 2 h and malachite green was degraded within 40 min. The present work demonstrated the utilization of P. auriculata for biosynthesis of AgNP which could be a potential candidate for antitubercular drug development and it could also be used as an antioxidant agent. The application of AgNP in reducing agent can be further extended and evaluated for purification of effluent water from textile industries.
Restivo, Annalaura; Degano, Ilaria; Ribechini, Erika; Pérez-Arantegui, Josefina; Colombini, Maria Perla
2014-10-01
An innovative approach, combining field-emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDX) analysis, is presented to investigate the degradation mechanisms affecting tannin-dyed wool. In fact, tannin-dyed textiles are more sensitive to degradation then those dyed with other dyestuffs, even in the same conservation conditions. FESEM-EDX was first used to study a set of 48 wool specimens (artificially aged) dyed with several raw materials and mordants, and prepared according to historical dyeing recipes. EDX analysis was performed on the surface of wool threads and on their cross-sections. In addition, in order to validate the model formulated by the analysis of reference materials, several samples collected from historical and archaeological textiles were subjected to FESEM-EDX analysis. FESEM-EDX investigations enabled us to reveal the correlation between elemental composition and morphological changes. In addition, aging processes were clarified by studying changes in the elemental composition of wool from the protective cuticle to the fiber core in cross-sections. Morphological and elemental analysis of wool specimens and of archaeological and historical textiles showed that the presence of tannins increases wool damage, primarily by causing a sulfur decrease and fiber oxidation.
NASA Astrophysics Data System (ADS)
El-Gaoudy, H.; Kourkoumelis, N.; Varella, E.; Kovala-Demertzi, D.
2011-11-01
Archaeologists in Egypt discovered ancient colored textiles in great quantities in comparison with the analogous uncolored ones. Furthermore, the latter are far more deteriorated. Most research investigations into archaeological linen have been concerned with manufacture, restoration, and conservation but little information is available about the properties of the fibers, and particularly their chemical and physical properties after dyeing with natural dyes or painted with pigments. The aim of this study is to evaluate the physicochemical properties of Egyptian linen textiles coloring with a variety of pigments used in painting in ancient times after thermally aged to get linen samples which are similar as possible to the ancient linen textiles. The evaluations were based on Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction and tensile strength, and elongation measurements. Results showed that beyond cosmetic reasons, colored textiles did indeed play a role as protecting agents affecting strength and reducing thermal deterioration. Specifically, in the molecular level, pigments under study seem to interact to cellulose and lignin compounds of the aged linen while in the macroscopic level tensile and elongation parameters are altered. Electron microscopy confirms that pigment particles are deposited on and between the fibers' surfaces.
Barredo-Damas, S; Alcaina-Miranda, M I; Gemma, M; Iborra-Clar, M I; Mendoza-Roca, J A
2011-01-01
This work studies the performance of three commercial ceramic ultrafiltration membranes (ZrO(2)-TiO(2)) treating raw effluent from a textile industry. The effect of crossflow velocity at 3, 4 and 5 m s(-1) as well as membrane characteristics, such as molecular weight cut-off (30, 50 and 150 kDa), on process performance were studied. Experiments were carried out in concentration mode in order to observe the effect of volume reduction factor simultaneously. Results showed a combined influence of both crossflow velocity and molecular weight cut-off on flux performance. TOC and COD removals up to 70% and 84% respectively were reached. On the other hand, almost complete color (>97%) and turbidity (>99%) removals were achieved for all the membranes and operating conditions.
Salinas, Tobías; Durruty, Ignacio; Arciniegas, Lorena; Pasquevich, Gustavo; Lanfranconi, Matías; Orsi, Isabela; Alvarez, Vera; Bonanni, Sebastian
2018-07-15
Iron nanoparticles can be incorporated on the structure of natural clays to obtain magnetic clays, an adsorbent that be easily removed from a wastewater by magnetic means. Magnetic clays have high adsorption capacities of different contaminants such as heavy metals, fungicides, aromatic compounds and colorants and show rapid adsorption kinetics, but crucial data for achieving its full or pilot scale application is still lacking. In this work, magnetic bentonites with different amounts of magnetite (iron fractions on the clay of 0.55, 0.6 and 0.6) were used to remove color from a real textile wastewater. On a first stage the optimal conditions for the adsorption of the dye, including pH, temperature and clay dosage were determined. Also design parameters for the separation process such as residence time, distance from magnet to magnetic clay and magnet strength were obtained. Finally a pilot scale magnetic drum separator was constructed and tested. A removal of 60% of the dye from a wastewater that contained more than 250 ppm of azo dye was achieved with only 10 min of residence time inside the separator. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chaari, Islem; Feki, Mongi; Medhioub, Mounir; Bouzid, Jalel; Fakhfakh, Emna; Jamoussi, Fakher
2009-12-30
The adsorption of a textile dye, namely, Indanthrene Blue RS (C.I. Vat Blue 4) onto smectite-rich clayey rock (AYD) and its sulphuric acid-activated products (AYDS) in aqueous solution was studied in a batch system with respect to contact time, pH, and temperature. The adsorbents employed were characterized by X-ray diffraction, infrared spectroscopy and specific surface area, cation exchange capacity and point of zero charge were also estimated. The effect of contact time on dye adsorption showed that the equilibrium was reached after a contact time of 40 min for the both adsorbents. The optimum pH for dye retention was found 6.0 for AYDS and 7.3 for AYD. The equilibrium adsorption data were analysed using the Langmuir and Freundlich isotherms. The adsorption capacities (Q(m)) for AYD and AYDS were found 13.92 mg/g and 17.85 mg/g, respectively. The effect of temperature on the adsorption was also investigated; adsorption of Indanthrene Blue RS is an endothermic process. This study demonstrates that all the considered adsorbents can be used as an alternative emerging technology for water treatment.
40 CFR 410.51 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing Subcategory § 410.51 Specialized... the knit fabric finishing subcategory for facilities that are engaged primarily in dyeing or finishing...
40 CFR 410.51 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing Subcategory § 410.51 Specialized... the knit fabric finishing subcategory for facilities that are engaged primarily in dyeing or finishing...
Electrospun nanofiber membranes for adsorption of dye molecules from textile wastewater
NASA Astrophysics Data System (ADS)
Akduman, C.; Akçakoca Kumbasar, E. P.; Morsunbul, S.
2017-10-01
The nanofiber membranes prepared by the electrospinning method have unique properties such as high specific surface area and high porosity with fine pores. These properties led electrospun nanofiber membranes to use for the removal of dye molecules from textile wastewater. In this study, a hydrophobic Thermoplastic Polyurethane (TPU) and a hydrophilic Poly (vinyl alcohol) (PVA) were selected for producing electrospun nanofibers and their sorption capacities were investigated. The largest sorption capacity reached to maximum 88.31 mg/g, belong to BTCA cross-linked PVA membranes due to hydrophilic character of PVA. Contrary to expectation, hydrophobic character of TPU was dominant and incorporation of CD to the TPU nanofibers did not affect the sorption of the TPU membranes, and showed very low adsorption capacity (14.48 mg/g).
Emulsion liquid membrane for textile dye removal: Stability study
NASA Astrophysics Data System (ADS)
Kusumastuti, Adhi; Syamwil, Rodia; Anis, Samsudin
2017-03-01
Although textile dyes is basically available in very low concentration; it should be removed due to the toxicity to human body and environment. Among the existing methods, emulsion liquid membrane (ELM) is a promising method by providing high interfacial area and the ability to remove a very low concentration of the solute. The optimal emulsions were produced using commercially supplied homogeniser. The drop size was measured by the aid of microscope and image J software. Initially, methylene blue in simulated wastewater was extracted using a stirrer. Methylene blue concentration was determined using spectrophotometer. The research obtained optimal emulsion at surfactant concentration of 4 wt. %, kerosene as diluent, emulsification time of 30 min, emulsification speed of 2000 rpm. The lowest membrane breakage and the longest stability time were about 0.11% and 150 min, respectively.
Method and apparatus for the application of textile treatment compositions to textile materials
Argyle, M.D.; Propp, W.A.
1998-01-20
A system is described for applying textile treatment compositions to textile materials. A conduit member is provided which includes a passageway having a first end, a second end, and a medial portion with a constricted (narrowed) region. The passageway may include at least one baffle having an opening there through. A yarn strand is then moved through the passageway. A textile treatment composition (a sizing agent or dye) dissolved in a carrier medium (a supercritical fluid or liquefied gas) is thereafter introduced into the constricted region, preferably at an acute angle relative to the passageway. The carrier medium expands inside the passageway which causes delivery of the treatment composition to the yarn. The treated yarn then passes through the baffle (if used) which facilitates drying of the yarn. During this process, a carrier gas can be introduced into the passageway to ensure the production of a smooth, dry product. 1 fig.
Method and apparatus for the application of textile treatment compositions to textile materials
Argyle, Mark D.; Propp, William Alan
1998-01-01
A system for applying textile treatment compositions to textile materials. A conduit member is provided which includes a passageway having a first end, a second end, and a medial portion with a constricted (narrowed) region. The passageway may include at least one baffle having an opening therethrough. A yarn strand is then moved through the passageway. A textile treatment composition (a sizing agent or dye) dissolved in a carrier medium (a supercritical fluid or liquified gas) is thereafter introduced into the constricted region, preferably at an acute angle relative to the passageway. The carrier medium expands inside the passageway which causes delivery of the treatment composition to the yarn. The treated yarn then passes through the baffle (if used) which facilitates drying of the yarn. During this process, a carrier gas can be introduced into the passageway to ensure the production of a smooth, dry product.
Bustos, Yaneth A; Rangel-Peraza, Jesús Gabriel; Rojas-Valencia, Ma Neftalí; Bandala, Erick R; Álvarez-Gallegos, Alberto; Vargas-Estrada, Laura
2016-01-01
Electrochemical techniques have been used for the discolouration of synthetic textile industrial wastewater by Fenton's process using a parallel plate reactor with a reticulated vitreous carbon (RVC) cathode. It has been shown that RVC is capable of electro-generating and activating H2O2 in the presence of Fe(2+) added as catalyst and using a stainless steel mesh as anode material. A catholyte comprising 0.05 M Na2SO4, 0.001 M FeSO4.7H2O, 0.01 M H2SO4 and fed with oxygen was used to activate H2O2.The anolyte contained only 0.8 M H2SO4. The operating experimental conditions were 170 mA (2.0 V < ΔECell < 3.0 V) to generate 5.3 mM H2O2. Synthetic effluents containing various concentrations (millimolar - mM) of three different dyes, Blue Basic 9 (BB9), Reactive Black 5 (RB5) and Acid Orange 7 (AO7), were evaluated for discolouration using the electro-assisted Fenton reaction. Water discolouration was measured by UV-VIS absorbance reduction. Dye removal by electrolysis was a function of time: 90% discolouration of 0.08, 0.04 and 0.02 mM BB9 was obtained at 14, 10 and 6 min, respectively. In the same way, 90% discolouration of 0.063, 0.031 and 0.016 mM RB5 was achieved at 90, 60 and 30 min, respectively. Finally, 90% discolouration of 0.14, 0.07 and 0.035 mM AO7 was achieved at 70, 40 and 20 min, respectively. The experimental results confirmed the effectiveness of electro-assisted Fenton reaction as a strong oxidizing process in water discolouration and the ability of RVC cathode to electro-generate and activate H2O2 in situ.
40 CFR 427.85 - Standards of performance for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.85 Standards of performance for new sources. The following...
40 CFR 427.85 - Standards of performance for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.85 Standards of performance for new sources. The following...
40 CFR 427.85 - Standards of performance for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.85 Standards of performance for new sources. The following...
Application of LC-MS to the analysis of dyes in objects of historical interest
NASA Astrophysics Data System (ADS)
Zhang, Xian; Laursen, Richard
2009-07-01
High-performance liquid chromatography (HPLC) with photodiode array and mass spectrometric detection permits dyes extracted from objects of historical interest or from natural plant or animal dyestuffs to be characterized on the basis of three orthogonal properties: HPLC retention time, UV-visible spectrum and molecular mass. In the present study, we have focused primarily on yellow dyes, the bulk of which are flavonoid glycosides that would be almost impossible to characterize without mass spectrometric detection. Also critical for this analysis is a method for mild extraction of the dyes from objects (e.g., textiles) without hydrolyzing the glycosidic linkages. This was accomplished using 5% formic acid in methanol, rather than the more traditional 6 M HCl. Mass spectroscopy, besides providing the molecular mass of the dye molecule, sometimes yields additional structural data based on fragmentation patterns. In addition, coeluting compounds can often be detected using extracted ion chromatography. The utility of mass spectrometry is illustrated by the analysis of historical specimens of silk that had been dyed yellow with flavonoid glycosides from Sophora japonica (pagoda tree) and curcumins from Curcuma longa (turmeric). In addition, we have used these techniques to identify the dye type, and sometimes the specific dyestuff, in a variety of objects, including a yellow varnish from a 19th century Tibetan altar and a 3000-year-old wool mortuary textiles, from Xinjiang, China. We are using HPLC with diode array and mass spectrometric detection to create a library of analyzed dyestuffs (>200 so far; mostly plants) to serve as references for identification of dyes in objects of historical interest.
Effects of ultrasonic energy on dyeing of polyamide (microfibre)/Lycra blends.
Merdan, Nigar; Akalin, Mehmet; Kocak, Dilara; Usta, Ismail
2004-04-01
Although ultrasonic energy is widely used cleaning and degreasing of parts and assemblies in automotive and other industries, the use of ultrasonic energy in an industrial scale for textile washing is very new. This is due to the complexity of controlling the combination of chemical and mechanical effects, whereas with degreasing of machine parts only the mechanical effects is applied. The use of ultrasonic energy in dyeing PA/Lycra fabrics with reactive dyes has been studied spectrophotometrically in this work. PA/Lycra (85/15) blends have been dyed using conventional and ultrasonic dyeing techniques with three reactive dyes containing different chromophore and reactive groups. The dyeing carried out conventionally and by the use of ultrasonic techniques. The results were compared in terms of percentage exhaustion; total dye transferred to the washing bath after dyeing and the fastness properties.
FTIR Spectroscopy Applied in Remazol Blue Dye Oxidation by Laccases
NASA Astrophysics Data System (ADS)
Juárez-Hernández, J.; Zavala-Soto, M. E.; Bibbins-Martínez, M.; Delgado-Macuil, R.; Díaz-Godinez, G.; Rojas-López, M.
2008-04-01
We have used FTIR with attenuated total reflectance (ATR) technique to analyze the decolourization process of Remazol Blue dye (RB19) caused by the oxidative activity of laccase enzyme. It is known that laccases catalyze the oxidation of a large range of phenolic compounds and aromatic amines carrying out one-electron oxidations, although also radicals could be formed which undergo subsequent nonenzymatic reactions. The enzyme laccase is a copper-containing polyphenol oxidase (EC 1.10.3.2) which has been tested as a potential alternative in detoxification of environmental pollutants such as dyes present in wastewaters generated for the textile industry. In order to ensure degradation or avoid formation of toxic compounds it is important to establish the mechanism by which laccase oxidizes dyes. In this research individual ATR-FTIR spectra have been recorded for several reaction times between 0 to 236 hours, and the temporal dependence of the reaction was analyzed through the relative diminution of the intensity of the infrared band at 1127 cm-1 (associated to C-N vibration), with respect to the intensity of the band at 1104 cm-1 (associated to S = O) from sulphoxide group. Decolourization process of this dye by laccase could be attributed to its accessibility on the secondary amino group, which is a potential point of attack of laccases, abstracting the hydrogen atom. This decolourization process of remazol blue dye by laccase enzyme might in a future replace the traditionally high chemical, energy and water consuming textile operations.
Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage.
Chai, Zhisheng; Zhang, Nannan; Sun, Peng; Huang, Yi; Zhao, Chuanxi; Fan, Hong Jin; Fan, Xing; Mai, Wenjie
2016-10-05
The pursuit of harmonic combination of technology and fashion intrinsically points to the development of smart garments. Herein, we present an all-solid tailorable energy textile possessing integrated function of simultaneous solar energy harvesting and storage, and we call it tailorable textile device. Our technique makes it possible to tailor the multifunctional textile into any designed shape without impairing its performance and produce stylish smart energy garments for wearable self-powering system with enhanced user experience and more room for fashion design. The "threads" (fiber electrodes) featuring tailorability and knittability can be large-scale fabricated and then woven into energy textiles. The fiber supercapacitor with merits of tailorability, ultrafast charging capability, and ultrahigh bending-resistance is used as the energy storage module, while an all-solid dye-sensitized solar cell textile is used as the solar energy harvesting module. Our textile sample can be fully charged to 1.2 V in 17 s by self-harvesting solar energy and fully discharged in 78 s at a discharge current density of 0.1 mA.
Dapson, R W; Bain, C L
2015-01-01
Brazilin is a nearly colorless dye precursor obtained from the heartwood of several species of trees including brazilwood from Brazil, sappanwood from Asia and the Pacific islands, and to a minor extent from two other species in Central America, northern South America and the Caribbean islands. Its use as a dyeing agent and medicinal in Asia was recorded in the 2(nd) century BC, but was little known in Europe until the 12(th) century AD. Asian supplies were replaced in the 16(th) century AD after the Portuguese discovered vast quantities of trees in what is now Brazil. Overexploitation decimated the brazilwood population to the extent that it never fully recovered. Extensive environmental efforts currently are underway to re-create a viable, sustainable population. Brazilin is structurally similar to the better known hematoxylin, thus is readily oxidized to a colored dye, brazilein, which behaves like hematein. Attachment of the dye to fabric is by hydrogen bonding or in conjunction with certain metallic mordants by coordinative bonding. For histology, most staining procedures involve aluminum (brazalum) for staining nuclei. In addition to textile dyeing and histological staining, brazilin and brazilein have been and still are used extensively in Asian folk medicine to treat a wide variety of disorders. Recent pharmacological studies for the most part have established a scientific basis for these uses and in many cases have elucidated the biochemical pathways involved. The principal use of brazilwood today is for the manufacture of bows for violins and other stringed musical instruments. The dye and other physical properties of the wood combine to produce bows of unsurpassed tonal quality.
40 CFR 427.85 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.85 Standards of performance for new sources. The following standards of...
Treatment of complex Remazol dye effluent using sawdust- and coal-based activated carbons.
Vijayaraghavan, K; Won, Sung Wook; Yun, Yeoung-Sang
2009-08-15
A complex Remazol dye effluent, comprised of four reactive dyes and auxiliary chemicals, was decolorized using SPS-200 (sawdust-based) and SPC-100 (coal-based) activated carbons. A detailed characterization revealed that the pore diameter of the activated carbon played an important role in dye adsorption. The solution pH had no significant effect on the adsorption capacity in the pH range of 2-10.7. According to the Langmuir model, the maximum uptakes of SPS-200 were 415.4, 510.3, 368.5 and 453.0 mg g(-1) for Reactive Black 5 (RB5), Reactive Orange 16 (RO16), Remazol Brilliant Blue R (RBBR) and Remazol Brilliant Violet 5R (RBV), respectively. Conversely, those of SPC-100 were slightly lower, at 150.8, 197.4, 178.3 and 201.1 mg g(-1) for RB5, RO16, RBBR and RBV, respectively. In the case of Remazol effluent, SPS-200 exhibited a decolorization efficiency of 100% under unadjusted pH conditions at 10.7, compared to that of 52% for SPC-100.
Mapping of cavitational activity in a pilot plant dyeing equipment.
Actis Grande, G; Giansetti, M; Pezzin, A; Rovero, G; Sicardi, S
2015-11-01
A large number of papers of the literature quote dyeing intensification based on the application of ultrasound (US) in the dyeing liquor. Mass transfer mechanisms are described and quantified, nevertheless these experimental results in general refer to small laboratory apparatuses with a capacity of a few hundred millilitres and extremely high volumetric energy intensity. With the strategy of overcoming the scale-up inaccuracy consequent to the technological application of ultrasounds, a dyeing pilot-plant prototype of suitable liquor capacity (about 40 L) and properly simulating several liquor to textile hydraulic relationships was designed by including US transducers with different geometries. Optimal dyeing may be obtained by optimising the distance between transducer and textile material, the liquid height being a non-negligible operating parameter. Hence, mapping the cavitation energy in the machinery is expected to provide basic data on the intensity and distribution of the ultrasonic field in the aqueous liquor. A flat ultrasonic transducer (absorbed electrical power of 600 W), equipped with eight devices emitting at 25 kHz, was mounted horizontally at the equipment bottom. Considering industrial scale dyeing, liquor and textile substrate are reciprocally displaced to achieve a uniform colouration. In this technology a non uniform US field could affect the dyeing evenness to a large extent; hence, mapping the cavitation energy distribution in the machinery is expected to provide fundamental data and define optimal operating conditions. Local values of the cavitation intensity were recorded by using a carefully calibrated Ultrasonic Energy Meter, which is able to measure the power per unit surface generated by the cavitation implosion of bubbles. More than 200 measurements were recorded to define the map at each horizontal plane positioned at a different distance from the US transducer; tap water was heated at the same temperature used for dyeing tests (60°C). Different liquid flow rates were tested to investigate the effect of the hydrodynamics characterising the equipment. The mapping of the cavitation intensity in the pilot-plant machinery was performed to achieve with the following goals: (a) to evaluate the influence of turbulence on the cavitation intensity, and (b) to determine the optimal distance from the ultrasound device at which a fabric should be positioned, this parameter being a compromise between the cavitation intensity (higher next to the transducer) and the US field uniformity (achieved at some distance from this device). By carrying out dyeing tests of wool fabrics in the prototype unit, consistent results were confirmed by comparison with the mapping of cavitation intensity. Copyright © 2015 Elsevier B.V. All rights reserved.
Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong
2017-12-01
Herein, we report the immobilization of in-house isolated horseradish peroxidase (HRP) from Armoracia rusticana with novel characteristics. The HRP was immobilized onto the self-fabricated polyvinyl alcohol-alginate (PVA-alginate) beads using sodium nitrate as a cross-linker. The PVA-alginate beads (2.0mm size) developed using 10% PVA and 1.5% sodium alginate showed maximal immobilization yield. The surface morphologies of the PVA-alginate (control) and immobilized-HRP were characterized by scanning electron microscopy (SEM). The immobilized-HRP retained 64.14% of its initial activity after 10 consecutive substrate-oxidation cycles as compared to the free counterpart. Simultaneously, the thermal stability of the immobilized-HRP was significantly enhanced as compared to the free HRP. The enzyme leakage (E L ) assay was performed by storing the immobilized-HRP in phosphate buffer solution for 30days. Evidently, the leakage of immobilized-HRP was recorded to be 6.98% and 14.82% after 15 and 30days of incubation, respectively. Finally, the immobilized-HRP was used for methyl orange (MO) dye degradation in a batch mode. A noticeable decline in spectral shift accompanied by no appearance of a new peak demonstrated the complete degradation of MO. The degraded fragments of MO were scrutinized by ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). A plausible degradation pathway for MO was proposed based on the identified intermediates. In conclusion, the study portrays the PVA-alginate-immobilized-HRP as a cost-effective and industrially desirable green catalyst, for biotechnological at large and industrial in particular, especially for the treatment of textile dyes or dye-containing industrial waste effluents. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Maiping; Xu, Helan; Hou, Xiuliang; Zhang, Jie; Yang, Yiqi
2017-03-01
Fully biodegradable textile sizes with satisfactory performance properties were developed from soy protein with controlled hydrolysis and dis-entanglement to tackle the intractable environmental issues associated with the non-biodegradable polyvinyl alcohol (PVA) in textile effluents. PVA derived from petroleum is the primary sizing agent due to its excellent sizing performance on polyester-containing yarns, especially in increasingly prevailing high-speed weaving. However, due to the poor biodegradability, PVA causes serious environmental pollution, and thus, should be substituted with more environmentally friendly polymers. Soy protein treated with high amount of triethanolamine was found with acceptable sizing properties. However, triethanolamine is also non-biodegradable and originated from petroleum, therefore, is not an ideal additive. In this research, soy sizes were developed from soy protein treated with glycerol, the biodegradable triol that could also be obtained from soy. The soy sizes had good film properties, adhesion to polyester and abrasion resistance close to PVA, rendering them qualified for sizing applications. Regarding desizing, consumption of water and energy for removal of soy size could be remarkably decreased, comparing to removal of PVA. Moreover, with satisfactory degradability, the wastewater containing soy sizes was readily dischargeable after treated in activated sludge for two days. In summary, the fully biodegradable soy sizes had potential to substitute PVA for sustainable textile processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electrodegradation of the Acid Green 28 dye using Ti/β-PbO2 and Ti-Pt/β-PbO2 anodes.
Irikura, Kallyni; Bocchi, Nerilso; Rocha-Filho, Romeu C; Biaggio, Sonia R; Iniesta, Jesús; Montiel, Vicente
2016-12-01
The statistical Response Surface Methodology (RSM) is applied to investigate the effect of different parameters (current density, j, NaCl concentration, [NaCl], pH, and temperature, θ) and their interactions on the electrochemical degradation of the Acid Green (AG) 28 dye using a Ti/β-PbO2 or Ti-Pt/β-PbO2 anode in a filter-press reactor. LC/MS is employed to identify intermediate compounds. For both anodes, the best experimental conditions are j = 50 mA cm(-2), [NaCl] = 1.5 g L(-1), pH = 5, and θ = 25 °C. After 3 h of electrolysis, a dye solution treated under these conditions presents the following parameters: electric charge per unit volume of the electrolyzed solution required for 90% decolorization (Q(90)) of 0.34-0.37 A h L(-1), %COD removal of ∼100%, specific energy consumption of 18-20 kW h m(-3), and %TOC removal of 32-33%. No loss of the β-PbO2 film is observed during all the experiments. The β-PbO2 films present excellent stability for solutions with pH ≥ 5 ([Pb(2+)] < 0.5 mg L(-1)). Chloroform is the only volatile organic halo compound present in the treated solution under those optimized conditions. Hydroxylated anthraquinone derivatives, aromatic chloramines, and naphthoquinones are formed during the electrolyses. The Ti/β-PbO2 and Ti-Pt/β-PbO2 anodes show significantly better performance than a commercial DSA anode for the electrochemical degradation of the AG 28 dye. The Ti/β-PbO2 anode, prepared as described in this work, is an excellent option for the treatment of textile effluents because of its low cost of fabrication and good performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Georgin, Jordana; da Silva Marques, Bianca; da Silveira Salla, Julia; Foletto, Edson Luiz; Allasia, Daniel; Dotto, Guilherme Luiz
2018-03-01
The treatment of colored effluents containing Procion Red dye (PR) was investigated using H 2 SO 4 and HNO 3 modified avocado shells (Persea americana) as adsorbents. The adsorbent materials (AS-H 2 SO 4 and AS-HNO 3 ) were properly characterized. The adsorption study was carried out considering the effects of adsorbent dosage and pH. Kinetic, equilibrium, and thermodynamic aspects were also evaluated. Finally, the adsorbents were tested to treat simulated dye house effluents. For both materials, the adsorption was favored using 0.300 g L -1 of adsorbent at pH 6.5, where, more than 90% of PR was removed from the solution. General order model was able to explain the adsorption kinetics for both adsorbents. The Sips model was adequate to represent the isotherm data, being the maximum adsorption capacities of 167.0 and 212.6 mg g -1 for AS-H 2 SO 4 and AS-HNO 3 , respectively. The adsorption processes were thermodynamically spontaneous, favorable (- 17.0 < ΔG 0 < - 13.2 kJ mol -1 ), and exothermic (ΔH 0 values of - 29 and - 55 kJ mol -1 ). AS-H 2 SO 4 and AS-HNO 3 were adequate to treat dye house effluents, attaining color removal percentages of 82 and 75%. Avocado shells, after a simple acid treatment, can be a low-cost option to treat colored effluents.
Batchwise dyeing of bamboo cellulose fabric with reactive dye using ultrasonic energy.
Larik, Safdar Ali; Khatri, Awais; Ali, Shamshad; Kim, Seong Hun
2015-05-01
Bamboo is a regenerated cellulose fiber usually dyed with reactive dyes. This paper presents results of the batchwise dyeing of bamboo fabric with reactive dyes by ultrasonic (US) and conventional (CN) dyeing methods. The study was focused at comparing the two methods for dyeing results, chemicals, temperature and time, and effluent quality. Two widely used dyes, CI Reactive Black 5 (bis-sulphatoethylsulphone) and CI Reactive Red 147 (difluorochloropyrimidine) were used in the study. The US dyeing method produced around 5-6% higher color yield (K/S) in comparison to the CN dyeing method. A significant savings in terms of fixation temperature (10°C) and time (15 min), and amounts of salt (10 g/L) and alkali (0.5-1% on mass of fiber) was realized. Moreover, the dyeing effluent showed considerable reductions in the total dissolved solids content (minimum around 29%) and in the chemical oxygen demand (minimum around 13%) for the US dyebath in comparison to the CN dyebath. The analysis of colorfastness tests demonstrated similar results by US and CN dyeing methods. A microscopic examination on the field emission scanning electron microscope revealed that the US energy did not alter the surface morphology of the bamboo fibers. It was concluded that the US dyeing of bamboo fabric produces better dyeing results and is a more economical and environmentally sustainable method as compared to CN dyeing method. Copyright © 2014 Elsevier B.V. All rights reserved.
Celebi, Mithat; Ozdemir, Zafer Omer; Eroglu, Emre; Altikatoglu, Melda; Guney, Ibrahim
2015-02-01
Synthetic dyes are very important for textile dyeing, paper printing, color photography and petroleum products. Traditional methods of dye removal include biodegradation, precipitation, adsorption, chemical degradation, photo degradation, and chemical coagulation. Dye decolorization with enzymatic reaction is an important issue for several research field (chemistry, environment) In this study, minimum decolorization time of Remazol Brilliant Blue R dye with Horseradish peroxidase enzyme was calculated using with mathematical equation depending on experimental data. Dye decolorization was determined by monitoring the absorbance decrease at the specific maximum wavelength for dye. All experiments were carried out with different initial dye concentrations of Remazol Brilliant Blue R at 25 degrees C constant temperature for 30 minutes. The development of the least squares estimators for a nonlinear model brings about complications not encountered in the case of the linear model. Decolorization times for completely removal of dye were calculated according to equation. It was shown that mathematical equation was conformed exponential curve for dye degradation.
NASA Astrophysics Data System (ADS)
Sahare, Padmavati; Ayala, Marcela; Vazquez-Duhalt, Rafael; Agrawal, Vivechana
2014-08-01
In this work, a commercial peroxidase was immobilized onto porous silicon (PS) support functionalized with 3-aminopropyldiethoxysilane (APDES) and the performance of the obtained catalytic microreactor was studied. The immobilization steps were monitored and the activity of the immobilized enzyme in the PS pores was spectrophotometrically determined. The enzyme immobilization in porous silicon has demonstrated its potential as highly efficient enzymatic reactor. The effect of a polar organic solvent (acetonitrile) and the temperature (up to 50°C) on the activity and stability of the biocatalytic microreactor were studied. After 2-h incubation in organic solvent, the microreactor retained 80% of its initial activity in contrast to the system with free soluble peroxidase that lost 95% of its activity in the same period of time. Peroxidase immobilized into the spaces of the porous silicon support would be perspective for applications in treatments for environmental security such as removal of leached dye in textile industry or in treatment of different industrial effluents. The system can be also applied in the field of biomedicine.
Effect of chemical treatment on the acute toxicity of two commercial textile dye carriers.
Arsian-Alaton, I; Iskender, G; Ozerkan, B; Germirli Babuna, F; Okay, O
2007-01-01
In the present experimental study, the effect of chemical treatment (coagulation-flocculation) on the acute toxicity exerted by two commercial dye carriers (called Carrier A and B herein) often used in the textile industry was investigated. Two different test organisms were selected to elucidate the situations in activated sludge treatment systems (activated sludge microorganisms) as well as in receiving water bodies (ultimate marine discharge). According to the results of a comprehensive analysis covering COD removal efficiencies, sludge settling characteristics and operating costs involved in coagulation-flocculation, the optimum treatment conditions were defined as follows; application of 750 mg/L ferrous sulphate at a pH of 9.0 for Carrier A; and application of 550 mg/L ferrous sulphate at a pH of 9.0 for Carrier B. The acute toxicities of both dye carriers towards marine microalgea Phaeodactylum tricornutum could be reduced significantly after being subjected to coagulation-flocculation. Fair toxicity removals (towards heterotrophic mixed bacterial culture accommodated in activated sludge treatment) were obtained with coagulation-flocculation for both of the carriers under investigation.
NASA Astrophysics Data System (ADS)
Butler, Erick B.; Hung, Yung-Tse; Mulamba, Oliver
2017-09-01
This study assessed the efficiency of electrocoagulation (ECF) coupled with an addition of chemical coagulant to decolorize textile dye. Tests were conducted using Box Behnken methodology to vary six parameters: dye type, weight, coagulant type, dose, initial pH and current density. The combination of electrocoagulation and chemical coagulation was able to decolorize dye up to 99.42 % in 30 min of treatment time which is remarkably shorter in comparison with using conventional chemical coagulation. High color removal was found to be contingent upon the dye type and current density, along with the interactions between the current density and the coagulant dose. The addition of chemical coagulants did enhanced treatment efficiency.
Allison, Linden; Hoxie, Steven; Andrew, Trisha L
2017-06-29
Traditional textile materials can be transformed into functional electronic components upon being dyed or coated with films of intrinsically conducting polymers, such as poly(aniline), poly(pyrrole) and poly(3,4-ethylenedioxythiophene). A variety of textile electronic devices are built from the conductive fibers and fabrics thus obtained, including: physiochemical sensors, thermoelectric fibers/fabrics, heated garments, artificial muscles and textile supercapacitors. In all these cases, electrical performance and device ruggedness is determined by the morphology of the conducting polymer active layer on the fiber or fabric substrate. Tremendous variation in active layer morphology can be observed with different coating or dyeing conditions. Here, we summarize various methods used to create fiber- and fabric-based devices and highlight the influence of the coating method on active layer morphology and device stability.
Lee, H H; Chen, G; Yue, P L
2001-01-01
Theoretical and experimental studies have established that integrated treatment systems (mostly chemical and biological) for various industrial wastewaters can achieve better quality of treatment and can be cost-effective. In the present study, the objective is to minimize the use of process water in the textile industry by an economical recycle and reuse scheme. The textile wastewater was first characterized in terms of COD, BOD5, salinity and color. In order to recycle such wastewater, the contaminants should be mineralized and/or removed according to the reusable textile water quality standards. Typical results show that this is achievable. An economic analysis has been conducted on the proposed integrated system. The economic analysis shows that the integrated system is economically more attractive than any of the single treatment technologies for achieving the same target of treatment. The information presented in this paper provides a feasible option for the reduction of effluent discharges in the textile industry.
Dhal, B; Thatoi, H N; Das, N N; Pandey, B D
2013-04-15
Chromium is a highly toxic non-essential metal for microorganisms and plants, and its occurrence is rare in nature. Lower to higher chromium containing effluents and solid wastes released by activities such as mining, metal plating, wood preservation, ink manufacture, dyes, pigments, glass and ceramics, tanning and textile industries, and corrosion inhibitors in cooling water, induce pollution and may cause major health hazards. Besides, natural processes (weathering and biochemical) also contribute to the mobility of chromium which enters in to the soil affecting the plant growth and metabolic functions of the living species. Generally, chemical processes are used for Cr- remediation. However, with the inference derived from the diverse Cr-resistance mechanism displayed by microorganisms and the plants including biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux, bioremediation is emerging as a potential tool to address the problem of Cr(VI) pollution. This review focuses on the chemistry of chromium, its use, and toxicity and mobility in soil, while assessing its concentration in effluents/wastes which becomes the source of pollution. In order to conserve the environment and resources, the chemical/biological remediation processes for Cr(VI) and their efficiency have been summarised in some detail. The interaction of chromium with various microbial/bacterial strains isolated and their reduction capacity towards Cr(VI) are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Lindh, Markus V.; Pinhassi, Jarone; Welander, Ulrika
2017-01-01
Textile dying processes often pollute wastewater with recalcitrant azo and anthraquinone dyes. Yet, there is little development of effective and affordable degradation systems for textile wastewater applicable in countries where water technologies remain poor. We determined biodegradation of actual textile wastewater in biofilters containing rice husks by spectrophotometry and liquid chromatography mass spectrometry. The indigenous microflora from the rice husks consistently performed >90% decolorization at a hydraulic retention time of 67 h. Analysis of microbial community composition of bacterial 16S rRNA genes and fungal internal transcribed spacer (ITS) gene fragments in the biofilters revealed a bacterial consortium known to carry azoreductase genes, such as Dysgonomonas, and Pseudomonas and the presence of fungal phylotypes such as Gibberella and Fusarium. Our findings emphasize that rice husk biofilters support a microbial community of both bacteria and fungi with key features for biodegradation of actual textile wastewater. These results suggest that microbial processes can substantially contribute to efficient and reliable degradation of actual textile wastewater. Thus, development of biodegradation systems holds promise for application of affordable wastewater treatment in polluted environments. PMID:28114377
Zou, Xiao-Ling
2015-06-01
Laboratorial scale experiments were performed to investigate and evaluate the performance and removal characteristics of organics, color, and genotoxicity by an integrated process including ozonation, activated carbon (AC), and biological aerated filter (BAF) for recycling biotreated dyeing wastewater (BTDW) collected from a cotton textile factory. Influent chemical oxygen demand (COD) in the range of 156 - 252 mg/L, 5-day biochemical oxygen demand (BOD5) of 13.5 - 21.7 mg/L, and color of 58 - 76° were observed during the 20-day continuous operation. Outflows with average COD of 43 mg/L, BOD5 of 6.6 mg/L, and color of 5.6° were obtained after being decontaminated by the hybrid system with ozone dosage of 0.25 mg O3applied/mg COD0, 40 min ozonation contact time, 30 min hydraulic retention time (HRT) for AC treatment, and 2.5 h HRT for BAF treatment. More than 82 % of the genotoxicity of BTDW was eliminated in the ozonation unit. The genotoxicity of the BAF effluent was less than 1.33 μg 4-nitroquinoline-N-oxide/L. Ozonation could change the organics molecular structures, destroy chromophores, increase the biodegradability, and obviously reduce the genotoxicity of BTDW. Results showed that the combined process could guarantee water reuse with high quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
...; organic chemicals; plastics and resins manufacturing; pulp and paper industry; rubber and miscellaneous plastic products; stone, glass, clay, and concrete products; textile manufacturing; transportation..., water supply treatment plant, or air pollution control facility, exclusive of the treated effluent from...
Kannan, V; Ramesh, R; Sasikumar, C
2005-04-01
A study was made on the physico-chemical characteristics of water samples mixed with effluent discharged from textile industries at Chellandipalayam (Site--I), Senaparatti (Site--II) and Pasupathipalayam (Sites--III and IV) revealed the elevated levels of Ca, Mg, Na, Cr, K, Ni, Cu, Zn, CO3, SO4, NO3 and Cl- . The concentrations of these ions exceeded the limit prescribed by ISI. The increase in the concentrations of ions was revealed by higher values of electrical conductivity (EC). Water at these sites was found to be hard, brackish and unsuitable for drinking purpose. In all these sites, the seed germination of rice alone was significantly affected among the other crops tested. Irrigation of crops with ground water notably lowered the quantity of reserve food in rice, wheat (starch), and sugarcane (sugar), indicating the interference of their metabolic pathway by polluted ground water.
NASA Astrophysics Data System (ADS)
Yan, Xu; You, Ming-Hao; Lou, Tao; Yu, Miao; Zhang, Jun-Cheng; Gong, Mao-Gang; Lv, Fu-Yan; Huang, Yuan-Yuan; Long, Yun-Ze
2016-12-01
Colorful nanofibrous membranes have attracted much attention for their visual varieties and various functionalities. In this article, a colored solution electrospinning process was used to fabricate colorful hydrophobic poly(vinyl butyral) (PVB)/cationic dye nanofibrous membranes (NFMs) successfully. The color and morphology of these as-spun nanofibrous membranes have been analyzed by colorimetry, spectroscopy, and scanning electron microscopy (SEM). It is shown that the as-spun colorful PVB-based membranes exhibit excellent level-dyeing property and color stability. Furthermore, the doping of cationic dye and the increase of dye concentration can decrease the diameter of the as-spun colored fibers, which results in better level-dyeing property and higher water contact angle more than 140°. The stained PVB fibrous membranes with excellent level-dyeing property and hydrophobicity are promising in some applications such as textiles, wallpapers, and anticorrosive coating/painting.
Mohana, Sarayu; Shrivastava, Shalini; Divecha, Jyoti; Madamwar, Datta
2008-02-01
Decolorization and degradation of polyazo dye Direct Black 22 was carried out by distillery spent wash degrading mixed bacterial consortium, DMC. Response surface methodology (RSM) involving a central composite design (CCD) in four factors was successfully employed for the study and optimization of decolorization process. The hyper activities and interactions between glucose concentration, yeast extract concentration, dye concentration and inoculum size on dye decolorization were investigated and modeled. Under optimized conditions the bacterial consortium was able to decolorize the dye almost completely (>91%) within 12h. Bacterial consortium was able to decolorize 10 different azo dyes. The optimum combination of the four variables predicted through RSM was confirmed through confirmatory experiments and hence this bacterial consortium holds potential for the treatment of industrial waste water. Dye degradation products obtained during the course of decolorization were analyzed by HPTLC.
The role of intestinal microflora in the activation of benzidine and benzidine congener based dyes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerniglia, C.E.; Franklin, W.; Campbell, W.L.
1988-09-01
Benzidine-based dyes are widely used in the dye manufacturing, textile dyeing, color paper printing and leather industries. Some benzidine based dyes have been shown to be carcinogenic due to their biotransformation in the liver or in the gastrointestinal tract to benzidine, a long recognized human urinary bladder carcinogen. Occupational exposure to workers can be through skin absorption, inhalation and ingestion of the benzidine based dyes. Previous studies of benzidine based dye metabolism have shown that enzymatic reduction of the azo group, yielding benzidine is an essential step in the activation of these compounds to genotoxic species. Azo reduction activity ismore » present in both the liver and gastrointestinal tract and little is known whether the first step in the toxification process of benzidine based dyes occurs at either site. They are investigating the capacity of intestinal microflora to metabolize benzidine-based dyes and determine their overall importance in the activation of this class of industrially important chemicals.« less
ENVIRONMENTAL MASS SPECTROMETRY
In many ways, environmental chemistry would appear to be a mature field, in that many of the same types of chemicals and pollutants continue to be of interest. Those most commonly measured include pesticides, surfactants, textile dyes, chlorinated alkanes, polychlorinated bipheny...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-25
..., rubber, drugs, dried blood, dyes, certain textiles, and metals (such as aluminum and magnesium..., furniture manufacturing, metal processing, fabricated metal products and machinery manufacturing, pesticide... standard that will comprehensively address the fire and explosion hazards of combustible dust. The Agency...
Power ultrasound-assisted cleaner leather dyeing technique: influence of process parameters.
Sivakumar, Venkatasubramanian; Rao, Paruchuri Gangadhar
2004-03-01
The application of power ultrasound to leather processing has a significant role in the concept of "clean technology" for leather production. The effect of power ultrasound in leather dyeing has been compared with dyeing in the absence of ultrasound and conventional drumming. The power ultrasound source used in these experiments was ultrasonic cleaner (150 W and 33 kHz). The effect of various process parameters such as amount of dye offer, temperature, and type of dye has been experimentally found out. The effect of presonication of dye solution as well as leather has been studied. Experiments at ultrasonic bath temperature were carried out to find out the combined thermal as well as stirring effects of ultrasound. Dyeing in the presence of ultrasound affords about 37.5 (1.8 times) difference as increase in % dye exhaustion or about 50% decrease in the time required for dyeing compared to dyeing in the absence of ultrasound for 4% acid red dye. About 29 (1.55 times) increase in % dye exhaustion or 30% reduction in time required for dyeing was observed using ultrasound at stationary condition compared with conventional dynamic drumming conditions. The effect of ultrasound at constant temperature conditions with a control experiment has also been studied. The dye exhaustion increases as the temperature increases (30-60 degrees C) and better results are observed at higher temperature due to the use of ultrasound. Presonication of dye solution or crust leather prior to the dyeing process has no significant improvement in dye exhaustion, suggesting ultrasound effect is realized when it is applied during the dyeing process. The results indicate that 1697 and 1416 ppm of dye can be reduced in the spent liquor due to the use of ultrasound for acid red (for 100 min) and acid black (for 3 h) dyes, respectively, thereby reducing the pollution load in the effluent stream. The color yield of the leather as inferred from the reflectance measurement indicates that dye offer can be halved when ultrasound is employed to promote dyeing. Scanning electron microscopy analysis of the cross section of the dyed leather indicates that fiber structure is not affected due to the use of ultrasound under the given process conditions. The present study clearly demonstrates that ultrasound can be used as a tool to improve the rate of exhaustion of dye, reduce pollution load in the spent effluent liquor, and improve the quality of leather produced. The study also offered provision to employ optimum levels of chemicals and increases percentage exhaustion for a given time, thereby limiting the pollution load in the tannery effluent, which is of great social concern.
Saravanan, R; Karthikeyan, S; Gupta, V K; Sekaran, G; Narayanan, V; Stephen, A
2013-01-01
The photocatalytic degradation of organic dyes such as methylene blue and methyl orange in the presence of various percentages of composite catalyst under visible light irradiation was carried out. The catalyst ZnO nanorods and ZnO/CuO nanocomposites of different weight ratios were prepared by new thermal decomposition method, which is simple and cost effective. The prepared catalysts were characterized by different techniques such as X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and UV-visible absorption spectroscopy. Further, the most photocatalytically active composite material was used for degradation of real textile waste water under visible light illumination. The irradiated samples were analysed by total organic carbon and chemical oxygen demand. The efficiency of the catalyst and their photocatalytic mechanism has been discussed in detail. Copyright © 2012 Elsevier B.V. All rights reserved.
40 CFR 427.81 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Specialized definitions. 427.81 Section 427.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false [Reserved] 427.84 Section 427.84 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false [Reserved] 427.84 Section 427.84 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false [Reserved] 427.84 Section 427.84 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles...
Wen, Zhen; Yeh, Min-Hsin; Guo, Hengyu; Wang, Jie; Zi, Yunlong; Xu, Weidong; Deng, Jianan; Zhu, Lei; Wang, Xin; Hu, Chenguo; Zhu, Liping; Sun, Xuhui; Wang, Zhong Lin
2016-10-01
Wearable electronics fabricated on lightweight and flexible substrate are believed to have great potential for portable devices, but their applications are limited by the life span of their batteries. We propose a hybridized self-charging power textile system with the aim of simultaneously collecting outdoor sunshine and random body motion energies and then storing them in an energy storage unit. Both of the harvested energies can be easily converted into electricity by using fiber-shaped dye-sensitized solar cells (for solar energy) and fiber-shaped triboelectric nanogenerators (for random body motion energy) and then further stored as chemical energy in fiber-shaped supercapacitors. Because of the all-fiber-shaped structure of the entire system, our proposed hybridized self-charging textile system can be easily woven into electronic textiles to fabricate smart clothes to sustainably operate mobile or wearable electronics.
Effect of Reactive Black 5 azo dye on soil processes related to C and N cycling
Rehman, Khadeeja; Sahar, Amna; Hussain, Sabir; Mahmood, Faisal; Siddique, Muhammad H.; Siddique, Muhammad A.; Rashid, Muhammad I.
2018-01-01
Azo dyes are one of the largest classes of synthetic dyes being used in textile industries. It has been reported that 15–50% of these dyes find their way into wastewater that is often used for irrigation purpose in developing countries. The effect of azo dyes contamination on soil nitrogen (N) has been studied previously. However, how does the azo dye contamination affect soil carbon (C) cycling is unknown. Therefore, we assessed the effect of azo dye contamination (Reactive Black 5, 30 mg kg−1 dry soil), bacteria that decolorize this dye and dye + bacteria in the presence or absence of maize leaf litter on soil respiration, soil inorganic N and microbial biomass. We found that dye contamination did not induce any change in soil respiration, soil microbial biomass or soil inorganic N availability (P > 0.05). Litter evidently increased soil respiration. Our study concludes that the Reactive Black 5 azo dye (applied in low amount, i.e., 30 mg kg−1 dry soil) contamination did not modify organic matter decomposition, N mineralization and microbial biomass in a silty loam soil.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false [Reserved] 427.84 Section 427.84 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.84...
Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes
NASA Astrophysics Data System (ADS)
Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.
2013-11-01
This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.
Kinetics of zero-valent iron reductive transformation of the anthraquinone dye Reactive Blue 4.
Epolito, William J; Yang, Hanbae; Bottomley, Lawrence A; Pavlostathis, Spyros G
2008-12-30
The effect of operational conditions and initial dye concentration on the reductive transformation (decolorization) of the textile dye Reactive Blue 4 (RB4) using zero-valent iron (ZVI) filings was evaluated in batch assays. The decolorization rate increased with decreasing pH and increasing temperature, mixing intensity, and addition of salt (100gL(-1) NaCl) and base (3gL(-1) Na2CO3 and 1gL(-1) NaOH), conditions typical of textile reactive dyebaths. ZVI RB4 decolorization kinetics at a single initial dye concentration were evaluated using a pseudo first-order model. Under dyebath conditions and at an initial RB4 concentration of 1000mgL(-1), the pseudo first-order rate constant (kobs) was 0.029+/-0.006h(-1), corresponding to a half-life of 24.2h and a ZVI surface area-normalized rate constant (kSA) of 2.9x10(-4)Lm(-2)h(-1). However, as the initial dye concentration increased, the kobs decreased, suggesting saturation of ZVI surface reactive sites. Non-linear regression of initial decolorization rate values as a function of initial dye concentration, based on a reactive sites saturation model, resulted in a maximum decolorization rate (Vm) of 720+/-88mgL(-1)h(-1) and a half-saturation constant (K) of 1299+/-273mgL(-1). Decolorization of RB4 via a reductive transformation, which was essentially irreversible (2-5% re-oxidation), is believed to be the dominant decolorization mechanism. However, some degree of RB4 irreversible sorption cannot be completely discounted. The results of this study show that ZVI treatment is a promising technology for the decolorization of commercial, anthraquinone-bearing, spent reactive dyebaths.
Velmurugan, Palanivel; Kim, Jae-In; Kim, Kangmin; Park, Jung-Hee; Lee, Kui-Jae; Chang, Woo-Suk; Park, Yool-Jin; Cho, Min; Oh, Byung-Taek
2017-08-01
The main objective of this study was to extract natural colorant from purple sweet potato powder (PSPP) via a water bath and ultrasound water bath using acidified ethanol (A. EtOH) as the extraction solvent. When optimizing the colorant extraction conditions of the solvents, acidified ethanol with ultrasound yielded a high extraction capacity and color intensity at pH2, temperature of 80°C, 20mL of A. EtOH, 1.5g of PSPP, time of 45min, and ultrasonic output power of 75W. Subsequently, the colorant was extracted using the optimized conditions for dyeing of textiles (leather, silk, and cotton). This natural colorant extraction technique can avoid serious environmental pollution during the extraction and is an alternative to synthetic dyes, using less solvent and simplified abstraction procedures. The extracted purple sweet potato natural colorant (PSPC) was used to dye leather, silk, and cotton fabrics in an eco-friendly approach with augmented antibacterial activity by in situ synthesis of silver nanoparticles (AgNPs) and dyeing. The optimal dyeing conditions for higher color strength (K/S) values were pH2 and 70°C for 45min. The colorimetric parameters L ∗ , a ∗ , b ∗ , C, and H were measured to determine the depth of the color. The Fourier transform infrared spectroscopy (FTIR) spectra of undyed control, dyed with PSPC and dyed with blend of PSPC and AgNPs treated leather, silk and cotton fabric were investigated to study the interaction among fiber type, nanoparticles, and dye. The structural morphology of leather and silk and cotton fabrics and the anchoring of AgNPs with elemental compositions were investigated by scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS). The dry and wet rubbing fastness for dye alone and dye with nanoparticles were grade 4-5 and 4, respectively. Thus, the results of the present study clearly suggest that in situ synthesis of AgNPs along with dyeing should be considered in the development of antimicrobial textile finishes. Copyright © 2017. Published by Elsevier B.V.
Da Silva, M; Passarini, M R Z; Bonugli, R C; Sette, L D
2008-12-01
Marine-derived fungi represent a valuable source of structurally novel and biologically active metabolites of industrial interest. They also have drawn attention for their capacity to degrade several pollutants, including textile dyes, organochlorides and polycyclic aromatic hydrocarbons (PAHs), among others. The fungal tolerance to higher concentrations of salt might be considered an advantage for bioremediation processes in the marine environment. Therefore, filamentous fungi were isolated from cnidarians (scleractinian coral and zoanthids) collected from the north coast of São Paulo State, Brazil. A total of 144 filamentous fungi were morphologically and molecularly characterised. Among them there were several species of Penicillium and Aspergillus, in addition to Cladosporium spp., Eutypella sp., Fusarium spp., Khuskia sp., Mucor sp., Peacilomyces sp., Phoma sp. and Trichoderma spp. These fungi were tested regarding their decolourisation activity for Remazol Brilliant Blue R (RBBR), a textile dye used as an initial screening for PAH-degrading fungi. The most efficient fungi for RBBR decolourisation after 12 days were Penicillium citrinum CBMAI 853 (100%), Aspergillus sulphureus CBMAI 849 (95%), Cladosporium cladosporioides CBMAI 857 (93%) and Trichoderma sp. CBMAI 852 (89%). Besides its efficiency for dye decolourisation within liquid media, C. cladosporioides CBMAI 857 also decolourised dye on solid media, forming a decolourisation halo. Further research on the biotechnological potential, including studies on PAH metabolism, of these selected fungi are in progress.
Removal of dissolved textile dyes from wastewater by a compost sorbent
Tsui, L.S.; Roy, W.R.; Cole, M.A.
2003-01-01
The objective of this study was to evaluate the potential for treating dye-contaminated waste streams by sorption using compost as a low-cost sorbent. A mature, thermophilic compost sample was used to sorb CI Acid Black 24, CI Acid Orange 74, CI Basic Blue 9, CI Basic Green 4, CI Direct Blue 71, CI Direct Orange 39, CI Reactive Orange 16 and CI Reactive Red 2 from solution using a batch-sorption method. With the exception of the two reactive dyes, the sorption kinetics were favourable for a continuous-flow treatment process with the compost-dye mixtures reaching a steady state within 3-5 h. Based on limited comparisons, the affinity of the compost for each dye appeared to be competitive with other non-activated carbon sorbents. The results suggest that additional research on using compost as a sorbent for dye-contaminated solutions is warranted.
Usage of FTIR-ATR as Non-Destructive Analysis of Selected Toxic Dyes
NASA Astrophysics Data System (ADS)
Bartošová, Alica; Blinová, Lenka; Sirotiak, Maroš; Michalíková, Anna
2017-06-01
The degradation of the environment which is due to the discharge of polluting wastewater from industrial sources poses a real problem in several countries. Textile industries use large volumes of water in their operations, discharging thus large volume of wastewater into the environment, most of which is untreated. The wastewater contains a variety of chemicals from various stages of process operations, including desizing, scouring, bleaching and dyeing. The main purpose of this paper is to introduce Infrared Spectrometry with Fourier transformation as a non-destructive method for study, identifation and rapid determination of selected representatives of cationic (Methylene Blue), azo (Congo Red, Eriochrome Black T) and nitroso (Naphthol Green B) dyes. In conjunction with the ATR technique, FTIR offers a reliable detection method of dyes without extraction by other dangerous substances. Spectral interpretation of dye spectra revealed valuable information about the identification and characterization of each group of dyes.
Evaluation of Aluminium Dross as Adsorbent for Removal of Carcinogenic Congo Red Dye in Wastewater
NASA Astrophysics Data System (ADS)
Zakaria, Mohamad Zulfika Hazielim b.; Zauzi, Nur Syuhada Ahmad; Baini, Rubiyah; Sutan, Norsuzailina Mohamed; Rezaur Rahman, Md
2017-06-01
In this study, aluminium dross waste generated from aluminium smelting industries was employed as adsorbent in removing of congo red dye in aqueous solution. The raw aluminium dross as adsorbent was characterized using Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller (BET) for surface area and X-Ray Fluorescence (XRF) Spectroscopy. Adsorption experiments were carried out by batch system at different adsorbent mass, pH, and initial dye concentration. The results showed that the per cent removal of dye increased as adsorbent mass increased. It was found that 0.4 gram of adsorbent can remove approximately 100 % of dye at pH 9 for dye concentration 20 and 40 ppm. Therefore, it can be concluded that raw aluminium dross without undergone any treatment can be effectively used for the adsorption of congo red in textile wastewater related industries.
Nojavan, Saeed; Tahmasebi, Zeinab; Bidarmanesh, Tina; Behdad, Hamideh; Nasiri-Aghdam, Mahnaz; Mansori, Sozan; Pourahadi, Ahmad
2013-10-01
An electromembrane extraction procedure coupled with HPLC and visible detection was applied for the extraction of three textile azo dyes as organic salts. The extraction parameters such as extraction time, applied voltage, pH range, and concentration of salt added were optimized. A driving force of 60 V was applied to extract the analytes through 2-nitrophenyl octyl ether, used as the supported liquid membrane, into a neutral aqueous solution. This method required 20 min extraction time from a neutral sample solution. The proposed microextraction technique provided good linearity with correlation coefficients from 0.996 to 0.998 over a concentration range of 1.0-1000.0 ng/mL. The LODs of dyes were 0.30-0.75 ng/mL, while the reproducibility ranged from 6.7 to 12.9% (n = 6). Also, enrichment factors of 96-162 that corresponded to the recoveries ranging from 48 to 81% were achieved. Finally, the application of this new method was demonstrated on wastewater samples and some plants grown in contaminated environments. Excellent selectivity was obtained as no interfering peaks were detected. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shivaraju, H. P.; Midhun, G.; Anil Kumar, K. M.; Pallavi, S.; Pallavi, N.; Behzad, Shahmoradi
2017-11-01
Designing photocatalytic materials with modified functionalities for the utilization of renewable energy sources as an alternative driving energy has attracted much attention in the area of sustainable wastewater treatment applications. Catalyst-assisted advanced oxidation process is an emerging treatment technology for organic pollutants and toxicants in industrial wastewater. Preparation of visible-light-responsive photocatalyst such as Mg-doped TiO2 polyscales was carried out under mild sol-gel technique. Mg-doped TiO2 polyscales were characterized by powder XRD, SEM, FTIR, and optical and photocatalytic activity techniques. The Mg-doped TiO2 showed a mixed phase of anatase and rutile with an excellent crystallinity, structural elucidations, polyscales morphology, consequent shifting of bandgap energy and adequate photocatalytic activities under visible range of light. Mg-doped TiO2 polyscales were investigated for their efficiencies in the degradation of most commonly used industrial dyes in the real-time textile wastewater. Mg-doped TiO2 polyscales showed excellent photocatalytic degradation efficiency in both model industrial dyes (65-95%) and textile wastewater (92%) under natural sunlight as an alternative and renewable driving energy.
Polyester Fabric's Fluorescent Dyeing in Supercritical Carbon Dioxide and its Fluorescence Imaging.
Xiong, Xiaoqing; Xu, Yanyan; Zheng, Laijiu; Yan, Jun; Zhao, Hongjuan; Zhang, Juan; Sun, Yanfeng
2017-03-01
As one of the most important coumarin-like dyes, disperse fluorescent Yellow 82 exhibits exceptionally large two-photon effects. Here, it was firstly introduced into the supercritical CO 2 dyeing polyester fabrics in this work. Results of the present work showed that the dyeing parameters such as the dyeing time, pressure and temperature had remarkable influences on the color strength of fabrics. The optimized dyeing condition in supercritical CO 2 dyeing has been proposed that the dyeing time was 60 min; the pressure was 25 MPa and the temperature was 120 °C. As a result, acceptable products were obtained with the wash and rub fastness rating at 5 or 4-5. The polyester fabrics dyed with fluorescent dyes can be satisfied for the requirement of manufacturing warning clothing. Importantly, the confocal microscopy imaging technology was successfully introduced into textile fields to observe the distribution and fluorescence intensity of disperse fluorescent Yellow 82 on polyester fabrics. As far as we know, this is the first report about supercritical CO 2 dyeing polyester fabrics based on disperse fluorescent dyes. It will be very helpful for the further design of new fluorescent functional dyes suitable for supercritical CO 2 dyeing technique.
NASA Astrophysics Data System (ADS)
Velpula, Priyadarshini; Ghuge, Santosh; Saroha, Anil K.
2018-04-01
Ozonation is a chemical treatment process in which ozone reacts with the pollutants present in the effluent by infusion of ozone into the effluent. This study includes the effect of various parameters such as inlet ozone dose, pH of solution and initial concentration of dye on decolorization of dye in terms CRE. The maximum CRE of 98.62% with the reaction rate constant of 0.26 min-1 is achieved in 18 minutes of reaction time at inlet ozone dose of 11.5 g/m3, solution pH of 11 and 30 mg/L of initial concentration of dye. The presence of radical scavenger (Tertiary Butyl Alcohol) suppressed the CRE from 98.62% to 95.4% at high pH values indicates that the indirect mechanism dominates due to the presence of hydroxyl radicals which are formed by the decomposition of ozone. The diffusive and convective mass transfer coefficients of ozone are calculated as 1.78 × 10-5 cm2/sec and 0.075 min-1. It is observed that the fraction of resistance offered by liquid is very much high compared to gas phase indicates that the ozonation is a liquid phase mass transfer controlled operation.
Stahlmann, Ralf; Wegner, Matthias; Riecke, Kai; Kruse, Matthias; Platzek, Thomas
2006-02-15
We studied the sensitising and allergenic potentials of the textile dyes disperse yellow 3, disperse orange 30, disperse red 82, disperse yellow 211 and two metabolites of disperse yellow 3, 4-aminoacetanilide and 2-amino-p-cresol, using modified protocols of the murine "local lymph node assay" (LLNA). Test substances were applied either to the dorsum of the mice ears (sensitisation protocol) or they were first applied to the skin of their backs and 2 weeks later to their ears (sensitisation-challenge protocol). In addition to the endpoints weight and cell number of the draining ear lymph nodes we analysed lymphocyte subpopulations by flow cytometry. In the sensitisation protocol, disperse yellow 3 and its metabolite 4-aminoacetanilide did not induce significant effects, whereas in the sensitisation-challenge protocol cell number and lymph node weight increased significantly indicating a sensitising potential in NMRI mice. Hence, two-phase treatment (skin of the back, ear) increased the sensitivity of this assay. The second metabolite of disperse yellow 3, 2-amino-p-cresol, showed distinct effects in both treatment protocols; this applied mainly to the parameters cell number and lymph node weight. The dye disperse red 82 caused ambiguous increases in lymph node weight and cell number in the sensitisation protocol which were not reproduced in the sensitisation-challenge protocol, ruling out a relevant sensitising potential for this dye in NMRI mice. Disperse yellow 211 and disperse orange 30 did not induce relevant changes under our experimental conditions. Phenotyping of lymphocytes did not influence the assessment of these dyes.
Application of enhanced membrane bioreactor (eMBR) to treat dye wastewater.
Rondon, Hector; El-Cheikh, William; Boluarte, Ida Alicia Rodriguez; Chang, Chia-Yuan; Bagshaw, Steve; Farago, Leanne; Jegatheesan, Veeriah; Shu, Li
2015-05-01
An enhanced membrane bioreactor (eMBR) consisting of two anoxic bioreactors (ARs) followed by an aerated membrane bioreactor (AMBR), UV-unit and a granular activated carbon (GAC) filter was employed to treat 50-100 mg/L of remazol blue BR dye. The COD of the feed was 2334 mg/L and COD:TN:TP in the feed was 119:1.87:1. A feed flow rate of 5 L/d was maintained when the dye concentration was 50 mg/L; 10 L/d of return activated sludge was recirculated to each AR from the AMBR. Once the biological system is acclimatised, 95% of dye, 99% of COD, 97% of nitrogen and 73% of phosphorus were removed at a retention time of 74.4 h. When the effluent from the AMBR was drawn at a flux rate of 6.5 L/m(2)h, the trans-membrane pressure reached 40 kPa in every 10 days. AMBR effluent was passed through the UV-unit and GAC filter to remove the dye completely. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Phanyawong, Suphitcha; Siengchin, Suchart; Parameswaranpillai, Jyotishkumar; Asawapirom, Udom; Polpanich, Duangporn
2018-01-01
Sappan dye, a natural dye extracted from sappan wood is widely used in cosmetics, textile dyeing and as food additives. However, it was recognized that natural dyes cannot withstand high temperature. In this study, a protective coating of melamine-formaldehyde shell material was applied over the sappan dye to improve its thermal stability. The percentage of sappan dye used in the microencapsulation was 30, 40, 50, 60 and 70 wt%. The color, shape, size, and thermal stability of sappan dye microcapsules were investigated. It was found that increasing amount of sappan dye content in the microcapsules decreased the particle size. Thermal analysis reveals that the melamine-formaldehyde resin served as an efficient protective shell for sappan dye. Besides, 30 wt% sappan dye microcapsules with different weight percent (1, 3 and 5 wt%) of sappan dye was used as modifier for polypropylene (PP). All the prepared composites are red in color which supports the thermal stability of the microcapsules. The changes in crystallinity and melting behavior of PP by the addition of microcapsules were studied in detail by differential scanning calorimetry. Thermogravimetric studies showed that the thermal stability of PP composites increased by the addition of microcapsules.
Cobas, M; Sanromán, M A; Pazos, M
2014-05-01
This study focused on leather industrial effluents treatment by biosorption using Fucus vesiculosus as low-cost adsorbent. These effluents are yellowish-brown color and high concentration of Cr (VI). Therefore, biosorption process was optimized using response surface methodology based on Box-Behnken design operating with a simulated leather effluent obtained by mixture of Cr (VI) solution and four leather dyes. The key variables selected were initial solution pH, biomass dosage and CaCl2 concentration in the pretreatment stage. The statistical analysis shows that pH has a negligible effect, being the biomass dosage and CaCl2 concentration the most significant variables. At optimal conditions, 98% of Cr (VI) and 88% of dyes removal can be achieved. Freundlich fitted better to the obtained equilibrium data for all studied systems than Temkin, Langmuir or D-R models. In addition, the use of the final biosorbent as support-substrate to grown of enzyme producer fungi, Pleurotus ostreatus, was also demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kamaljeet; Bansal, Saurabh; SenGupta, Uttara
2016-12-01
Synthetic dyes are a very efficient class of dyes that are ingested or come into contact with the skin from numerous sources (cosmetics, textiles, leather, paper, drugs). An important component of their safety profile is the interactions that they form after they enter the body. Hemoglobin is a functionally important protein that can form multiple interactions with soluble compounds present in the blood, and hence forms an important aspect of the toxicological or safety profile of the dyes. Here we study the interaction between bovine haemoglobin and organic dyes using UV-Vis absorbance and fluorescence spectroscopy. Molecular modelling was used to visualise the binding site and partners of the dye molecules, within the hemoglobin molecule. We find that all four dyes studied form sufficiently strong interactions with haemoglobin to allow for the formation of potentially toxic interactions. Molecular modelling showed that all 4 dyes bound within the central cavity of the haemoglobin molecule. However, binding partners could not be identified as multiple binding conformations with very similar energies were possible for each dye.
Kamaljeet; Bansal, Saurabh; SenGupta, Uttara
2016-01-01
Synthetic dyes are a very efficient class of dyes that are ingested or come into contact with the skin from numerous sources (cosmetics, textiles, leather, paper, and drugs). An important component of their safety profile is the interactions that they form after they enter the body. Hemoglobin is a functionally important protein that can form multiple interactions with soluble compounds present in the blood, and hence forms an important aspect of the toxicological or safety profile of the dyes. Here we study the interaction between bovine hemoglobin and organic dyes using UV-Vis absorbance and fluorescence spectroscopy. Molecular modeling was used to visualize the binding site and partners of the dye molecules, within the hemoglobin molecule. We find that all four dyes studied form sufficiently strong interactions with hemoglobin to allow for the formation of potentially toxic interactions. Molecular modeling showed that all four dyes bind within the central cavity of the hemoglobin molecule. However, binding partners could not be identified as multiple binding conformations with very similar energies were possible for each dye.
Discovery and structural elucidation of the illegal azo dye Basic Red 46 in sumac spice.
Ruf, J; Walter, P; Kandler, H; Kaufmann, A
2012-01-01
An unknown red dye was discovered in a sumac spice sample during routine analysis for Sudan dyes. LC-DAD and LC-MS/MS did not reveal the identity of the red substance. Nevertheless, using LC-high-resolution MS and isotope ratio comparisons the structure was identified as Basic Red 46. The identity of the dye was further confirmed by comparison with a commercial hair-staining product and two textile dye formulations containing Basic Red 46. Analogous to the Sudan dyes, Basic Red 46 is an azo dye. However, some of the sample clean-up methodology utilised for the analysis of Sudan dyes in food prevents its successful detection. In contrast to the Sudan dyes, Basic Red 46 is a cation. Its cationic properties make it bind strongly to gel permeation columns and silica solid-phase extraction cartridges and prevent elution with standard eluents. This is the first report of Basic Red 46 in food. The structure elucidation of this compound as well as the disadvantages of analytical methods focusing on a narrow group of targeted analytes are discussed.
Kaushik, Prachi; Malik, Anushree
2013-05-01
Dyes used in various industries are discharged into the environment and pose major environmental concern. In the present study, fungal isolate Aspergillus lentulus was utilized for the treatment of various dyes, dye mixtures and dye containing effluent in dual modes, bioaccumulation (employing growing biomass) and biosorption (employing pre-cultivated biomass). The effect of dye toxicity on the growth of the fungal isolate was studied through phase contrast and scanning electron microscopy. Dye biosorption was studied using first and second-order kinetic models. Effects of factors influencing adsorption and isotherm studies were also conducted. During bioaccumulation, good removal was obtained for anionic dyes (100 mg/l), viz. Acid Navy Blue, Fast Red A and Orange-HF dye (99.4 %, 98.8 % and 98.7 %, respectively) in 48 h. Cationic dyes (10 mg/l), viz. Rhodamine B and Methylene Blue, had low removal efficiency (80.3 % [48 h] and 92.7 % [144 h], respectively) as compared to anionic dyes. In addition to this, fungal isolate showed toxicity response towards Methylene Blue by producing larger aggregates of fungal pellets. To overcome the limitations of bioaccumulation, dye removal in biosorption mode was studied. In this mode, significant removal was observed for anionic (96.7-94.3 %) and cationic (35.4-90.9 %) dyes in 24 h. The removal of three anionic dyes and Rhodamine B followed first-order kinetic model whereas removal of Methylene Blue followed second-order kinetic model. Overall, fungal isolate could remove more than 90 % dye from different dye mixtures in bioaccumulation mode and more than 70 % dye in biosorption mode. Moreover, significant color removal from handmade paper unit effluent in bioaccumulation mode (86.4 %) as well as in biosorption mode (77.1 %) was obtained within 24 h. This study validates the potential of fungal isolate, A. lentulus, to be used as the primary organism for treating dye containing wastewater.
Castro, Francine D; Bassin, João Paulo; Dezotti, Márcia
2017-03-01
In this study, an aqueous solution containing the azo dye Reactive Orange 16 (RO16) was subjected to two sequential treatment processes, namely: ozonation and biological treatment in a moving-bed biofilm reactor (MBBR). The most appropriate ozonation pretreatment conditions for the biological process and the toxicity of the by-products resulting from RO16 ozone oxidation were evaluated. The results showed that more than 97 % of color removal from the dye solutions with RO16 concentrations ranging from 25 to 100 mg/L was observed in 5 min of ozone exposure. However, the maximum total organic carbon removal achieved by ozonation was only 48 %, indicating partial mineralization of the dye. Eleven intermediate organic compounds resulting from ozone treatment of RO16 solution were identified by LC/MS analyses at different contact times. The toxicity of the dye-containing solution decreased after 2 min of ozonation, but increased at longer contact times. The results further demonstrated that the ozonolysis products did not affect the performance of the subsequent MBBR, which achieved an average chemical oxygen demand (COD) and ammonium removal of 93 ± 1 and 97 ± 2 %, respectively. A second MBBR system fed with non-ozonated dye-containing wastewater was run in parallel for comparison purposes. This reactor also showed an appreciable COD (90 ± 1 %) and ammonium removal (97 ± 2 %), but was not effective in removing color, which remained practically invariable over the system. The use of short ozonation times (5 min) and a compact MBBR has shown to be effective for the treatment of the simulated textile wastewater containing the RO16 azo dye.
Hazardous Waste Cleanup: Clariant Corporation in Fair Lawn, New Jersey
Clariant Corporation is located on a 13.55-acre on Fairlawn Avenue and Third Street, in the Borough of Fair Lawn, New Jersey, since 1945. It manufactures several products used by the textile and paper industries, including softeners, brighteners and dyes.
78 FR 32469 - Investigations Regarding Eligibility To Apply for Worker Adjustment Assistance
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-30
... 05/14/13 One-Stop). 82742 Flying Food Fare Midway LLC Chicago, IL 05/15/13 05/14/13 (State/One-Stop... Inc. (Company). 82747 Textile Piece Dyeing Co., Lincolnton, NC........ 05/16/13 05/15/13 Inc. (Company...
Bilal, Muhammad; Asgher, Muhammad; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong
2017-09-01
In this study, the matrix-entrapment technique was adopted to immobilize a novel manganese peroxidase (MnP). Agarose beads developed from 3.0% agarose concentration furnished the preeminent immobilization yield (92.76%). The immobilized MnP exhibited better resistance to changes in the pH and temperature as compared to the free counterpart, with optimal conditions being pH 6.0 and 45°C. Thermal and storage stability characteristics were significantly improved after immobilization, and the immobilized-MnP displayed higher tolerance against different temperatures than free MnP state. After 72h, the insolubilized MnP retained its activity up to 41.2±1.7% and 33.6±1.4% at 55°C and 60°C, respectively, and 34.3±1.9% and 22.0±1.1% activities at 65°C and 70°C, respectively, after 48h of the incubation period. A considerable reusability profile was recorded with ten consecutive cycles. Moreover, to explore the industrial applicability, the agarose-immobilized-MnP was tested for bioremediation of textile industry effluent purposes. After six consecutive cycles, the tested effluents were decolorized to different extents (with a maximum of 98.4% decolorization). In conclusion, the remarkable bioremediation potential along with catalytic, thermo-stability, reusability, as well as storage stability features of the agarose-immobilized-MnP reflect its prospects as a biocatalyst for bioremediation and other industrial applications. Copyright © 2017 Elsevier B.V. All rights reserved.
40 CFR 410.54 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Pretreatment standards for existing sources (PSES). 410.54 Section 410.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing Subcategory...
40 CFR 410.56 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Pretreatment standards for new sources (PSNS). 410.56 Section 410.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing Subcategory...
40 CFR 410.54 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources (PSES). 410.54 Section 410.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing Subcategory...
40 CFR 410.56 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources (PSNS). 410.56 Section 410.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing Subcategory...
Renewable hybrid nanocatalyst from magnetite and cellulose fortreatment of textile effluents
USDA-ARS?s Scientific Manuscript database
A hybrid catalyst was prepared using cellulose nanofibrils and magnetite to degrade organic compounds. Cellulose nanofibrils were isolated by mechanical defibrillation producing a suspension used as a matrixfor magnetite particles. The solution of nanofibrils and magnetite was dried and milled resul...
Feitkenhauer, H; Meyer, U
2001-08-23
Increasing costs for water, wastewater and energy put pressure on textile finishing plants to increase the efficiency of wet processing. An improved water management can decrease the use of these resources and is a prerequisite for the integration of an efficient, anaerobic on-site pretreatment of effluents that will further cut wastewater costs. A two-phase anaerobic treatment is proposed, and successful laboratory experiments with model effluents from the cotton finishing industry are reported. The chemical oxygen demand of this wastewater was reduced by over 88% at retention times of 1 day or longer. The next step to boost the efficiency is to combine the production and wastewater treatment. The example of cotton fabric desizing (removing size from the fabric) illustrates how this final step of integration uses the acidic phase bioreactor as a part of the production and allows to close the water cycle of the system.
Goblick, Gregory N; Ao, Yaping; Anbarchian, Julie M; Calci, Kevin R
2017-02-15
Since 1925, dilution analysis has been used to minimize pathogenic impacts to bivalve molluscan shellfish growing areas from treated wastewater effluent in the National Shellfish Sanitation Program (NSSP). For over twenty five years, the U.S. Food and Drug Administration (FDA) has recommended a minimum of 1000:1 dilution of effluent within prohibited closure zones established around wastewater treatment plant (WWTP) discharges. During May 2010, using recent technologies, a hydrographic dye study was conducted in conjunction with a pathogen bioaccumulation study in shellfish adjacent to a WWTP discharge in Yarmouth, ME. For the first time an improved method of the super-position principle was used to determine the buildup of dye tagged sewage effluent and steady state dilution in tidal waters. Results of the improved method of dilution analysis illustrate an economical, reliable and more accurate and manageable approach for estimating the buildup and steady state pollutant conditions in coastal and estuarine waters. Published by Elsevier Ltd.
Kim, Han-Lae; Cho, Jong-Bok; Park, Yong-Jin; Cho, Il-Hyoung
2016-07-02
A pilot-scale study was conducted using the electrocoagulation-electroflotation (EC-EF) process to treat textile dyeing raw wastewater to evaluate treatment performance. The effects of some key factors, such as current density, hydraulic retention time (HRT), and removal of conductivity, total suspended solids (TSS), chemical oxygen demand (COD), and color were investigated. The operating variables were current density of 0-300 A m(-2), HRT of 0-30 min, and a coagulant (anionic polyacrylamide (A-PAM)) dosage of 0-30 mg L(-1). Daphnia magna was used to test acute toxicity in raw and treated wastewater. Under the operating conditions without added coagulant, maxima of 51%, 88%, 84%, and 99% of conductivity, TSS, COD, and color were removed, respectively, with a HRT of 30 min. The coagulant enhanced removal of all wastewater parameters. Removal maxima of 59%, 92%, 94%, and 98% for conductivity, TSS, COD, and color were observed, respectively, with an optimal dosage of 30 mg L(-1) and a shortened HRT of 20 min. The 48 h-LC50 D. magna test showed that the raw wastewater was highly toxic. However, the EC-EF process decreased toxicity of the treated samples significantly, and >70% toxicity reduction was achieved by the EC-EF process with the addition of 15-30 mg L(-1) coagulant, HRT of 20 min, and current density of 150-300 A m(-2). The pilot scale test (0.3 m(3 )h(-1)) shows that the EC-EF process with added coagulant effectively treated textile dyeing wastewater.
Mohd Nasir, Norlirubayah; Teo Ming, Ting; Ahmadun, Fakhru'l-Razi; Sobri, Shafreeza
2010-01-01
The research conducted a study on decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process. The purposes of this research are to remove pollutant through decomposition and to enhance the biodegradability of textile wastewater. The wastewater is treated using electron beam irradiation as a pre-treatment before undergo an activated sludge process. As a result, for non-irradiated wastewater, the COD removal was achieved to be between 70% and 79% after activated sludge process. The improvement of COD removal efficiency increased to 94% after irradiation of treated effluent at the dose of 50 kGy. Meanwhile, the BOD(5) removal efficiencies of non-irradiated and irradiated textile wastewater were reported to be between 80 and 87%, and 82 and 99.2%, respectively. The maximum BOD(5) removal efficiency was achieved at day 1 (HRT 5 days) of the process of an irradiated textile wastewater which is 99.2%. The biodegradability ratio of non-irradiated wastewater was reported to be between 0.34 and 0.61, while the value of biodegradability ratio of an irradiated wastewater increased to be between 0.87 and 0.96. The biodegradability enhancement of textile wastewater is increased with increasing the doses. Therefore, an electron beam radiation holds a greatest application of removing pollutants and also on enhancing the biodegradability of textile wastewater.
In-plant control applications and their effect on treatability of a textile mill wastewater.
Dulkadiroglu, H; Eremektar, G; Dogruel, S; Uner, H; Germirli-Babuna, F; Orhon, D
2002-01-01
Water minimization and exploration of the potential for wastewater recovery and reuse are priority issues of industrial wastewater management. They are extremely significant for the textile industry commonly characterized with a high water demand. The study presents a detailed in-plant control survey for a wool finishing plant. A comprehensive process profile and wastewater characterization indicate that process water consumption can be reduced by 34%, and 23% of the wastewater volume can be recovered for reuse. Treatability of reusable wastewater fraction and the effect of in-plant control applications on effluent treatability were also investigated.
Jayaweera, M W; Gomes, P I A; Wijeyekoon, S L J
2007-01-01
A laboratory scale study on Fe and Mn removal in upflow anaerobic bioreactor of a working volume of 20 L with coir fibre as the filter medium was investigated for a period of 312 days. The maximum Fe and Mn levels considered were 10 and 5 mg/L respectively, which are the typical average values of textile effluents subsequent to the primary and secondary treatments. Ten sub-experimental runs were conducted with varying HRTs (5 days to 1 day), ratios of COD:SO42- (20 to 3.5), Fe levels (0.005 to 10 mg/L) and Mn levels (0 to 5 mg/L). COD:SO2 of 3.5 was identified as the optimum point at which sulphate reducing bacteria (SRBs) out competed methane producing bacteria (MPBs) and further reduction of this ratio caused total and/or significant inhibition of MPBs, thus building sulphate reducing conditions. The effluent contained Fe and Mn below the permissible levels (1.6 and 1.1 mg/L for Fe and Mn, respectively) stipulated by US National Pollution Discharge Elimination System (NPDES) for inland surface waters at HRTs higher than 3 days. Results of the mass balance showed more Fe accumulation (60%) in sediments whereas 27% in the filter media. An opposite observation was noticed for Mn.
40 CFR 63.4312 - What records must I keep?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Printing, Coating, and Dyeing of Fabrics and Other Textiles... deviation from the applicable standard. (a) A copy of each notification and report that you submitted to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, John; McCreight, Dan J.
This project was undertaken to develop and demonstrate on a pilot scale the use of electro-osmotic transport to increase the efficiency of textiles wet processing operations. In particular, we sought to develop a means of rinsing textiles to remove material entrapped between the individual fibers that constitute a yarn. Material trapped within the yarn is slow to exchange with rinse water flowing primarily in the open weave are abetween the yarns. The application of an external field (strength, 5-50 kV /m) requires only a few volts for most fabric thicknesses. This field is sufficient to promote a rapid exchange ofmore » material to enhance rinsing and reduce the water required for rinsing from about 20 kg/kg-fabric to 3-6 kg/kg-fabric. We successfully developed technical and economic models of application of the process to the rinsing of many materials of industrial importance, including dyes, tints, chemicals, detergents and dye electrolytes. We demonstrated the process on a pilot plant scale using a translator designed in cooperation with Milliken and Company (Spartanburg, SC).« less
Antibody labeling with Remazol Brilliant Violet 5R, a vinylsulphonic reactive dye.
Ferrari, Alejandro; Friedrich, Adrián; Weill, Federico; Wolman, Federico; Leoni, Juliana
2013-01-01
Colloidal gold is the first choice for labeling antibodies to be used in Point Of Care Testing. However, there are some recent reports on a family of textile dyes-named "reactive dyes"-being suitable for protein labeling. In the present article, protein labeling conditions were optimized for Remazol Brilliant Violet 5R, and the sensitivity of the labeled antibodies was assessed and compared with that of colloidal-gold labeled antibodies. Also, the accelerated stability was explored. Optimal conditions were pH 10.95, dye:Ab molar ratio of 264 and an incubation time of 132 min. Labeled antibodies were stable, and could be successfully used in a slot blot assay, detecting as low as 400 ng/mL. Therefore, the present work demonstrates that vinylsulphonic reactive dyes can be successfully used to label antibodies, and are excellent candidates for the construction of a new generation of Point of Care Testing kits.
40 CFR 410.55 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true New source performance standards (NSPS). 410.55 Section 410.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing Subcategory § 410.55 New...
40 CFR 410.55 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true New source performance standards (NSPS). 410.55 Section 410.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing Subcategory § 410.55 New...
40 CFR 410.30 - Applicability; description of the low water use processing subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... water use processing subcategory. 410.30 Section 410.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Low Water Use Processing Subcategory § 410.30 Applicability; description of the low water use processing...
40 CFR 410.34 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Pretreatment standards for existing sources (PSES). 410.34 Section 410.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Low Water Use Processing Subcategory...
40 CFR 410.34 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources (PSES). 410.34 Section 410.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Low Water Use Processing Subcategory...
40 CFR 410.36 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources (PSNS). 410.36 Section 410.36 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Low Water Use Processing Subcategory...
40 CFR 410.36 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Pretreatment standards for new sources (PSNS). 410.36 Section 410.36 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Low Water Use Processing Subcategory...
Srikantan, Chitra; Suraishkumar, G K; Srivastava, Smita
2018-06-01
The study demonstrates for the first time that light influences the adsorption equilibrium and kinetics of a dye by root culture system. The azo dye (Reactive Red 120) adsorption by the hairy roots of H. annuus followed a pseudo first-order kinetic model and the adsorption equilibrium parameters were best estimated using Langmuir isotherm. The maximum dye adsorption capacity of the roots increased 6-fold, from 0.26 mg g -1 under complete dark conditions to 1.51 mg g -1 under 16/8 h light/dark photoperiod. Similarly, adsorption rate of the dye and removal (%) also increased in the presence of light, irrespective of the initial concentration of the dye (20-110 mg L -1 ). The degradation of the azo dye upon adsorption by the hairy roots of H. annuus was also confirmed. In addition, a strategy for simultaneous dye removal and increased alpha-tocopherol (industrially relevant) production by H. annuus hairy root cultures has been proposed and demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.
A review-application of physical vapor deposition (PVD) and related methods in the textile industry
NASA Astrophysics Data System (ADS)
Shahidi, Sheila; Moazzenchi, Bahareh; Ghoranneviss, Mahmood
2015-09-01
Physical vapor deposition (PVD) is a coating process in which thin films are deposited by the condensation of a vaporized form of the desired film material onto the substrate. The PVD process is carried out in a vacuum. PVD processes include different types, such as: cathode arc deposition, electron beam physical vapor deposition, evaporative deposition, sputtering, ion plating and enhanced sputtering. In the PVD method, the solid coating material is evaporated by heat or by bombardment with ions (sputtering). At the same time, a reactive gas is also introduced; it forms a compound with the metal vapor and is deposited on the substrate as a thin film with highly adherent coating. Such coatings are used in a wide range of applications such as aerospace, automotive, surgical, medical, dyes and molds for all manner of material processing, cutting tools, firearms, optics, thin films and textiles. The objective of this work is to give a comprehensive description and review of the science and technology related to physical vapor deposition with particular emphasis on their potential use in the textile industry. Physical vapor deposition has opened up new possibilities in the modification of textile materials and is an exciting prospect for usage in textile design and technical textiles. The basic principle of PVD is explained and the major applications, particularly sputter coatings in the modification and functionalization of textiles, are introduced in this research.
Mani, Sujata; Bharagava, Ram Naresh
2016-01-01
Crystal Violet (CV), a triphenylmethane dye, has been extensively used in human and veterinary medicine as a biological stain, as a textile dye in textile processing industries and also used to provide a deep violet color to paints and printing ink. CV is also used as a mutagenic and bacteriostatic agent in medical solutions and antimicrobial agent to prevent the fungal growth in poultry feed. Inspite of its many uses, CV has been reported as a recalcitrant dye molecule that persists in environment for a long period and pose toxic effects in environment. It acts as a mitotic poison, potent carcinogen and a potent clastogene promoting tumor growth in some species of fish. Thus, CV is regarded as a biohazard substance. Although, there are several physico-chemical methods such as adsorption, coagulation and ion-pair extraction reported for the removal of CV, but these methods are insufficient for the complete removal of CV from industrial wastewaters and also produce large quantity of sludge containing secondary pollutants. However, biological methods are regarded as cost-effective and eco-friendly for the treatment of industrial wastewaters, but these methods also have certain limitations. Therefore, there is an urgent need to develop such eco-friendly and cost-effective biological treatment methods, which can effectively remove the dye from industrial wastewaters for the safety of environment, as well as human and animal health.
NASA Astrophysics Data System (ADS)
Li, Zhi'ang; Wang, Jianlin; Liu, Min; Chen, Tong; Chen, Jifang; Ge, Wen; Fu, Zhengping; Peng, Ranran; Zhai, Xiaofang; Lu, Yalin
2018-04-01
Residues of organic dye in industrial effluents cause severe water system pollution. Although several methods, such as biodegradation and activated carbon adsorption, are available for treating these effluents before their discharge into waterbodies, secondary pollution by adsorbents and degrading products remains an issue. Therefore, new materials should be identified to solve this problem. In this work, CoFe2O4-SiO2 core-shell structures were synthesized using an improved Stöber method by coating mesoporous silica onto CoFe2O4 nanoparticles. The specific surface areas of the synthesized particles range from 30 m2/g to 150 m2/g and vary according to the dosage amount of tetraethoxysilane. Such core-shelled nanoparticles have the following advantages for treating industrial effluents mixed with dye: good adsorption capability, above-room-temperature magnetic recycling capability, and heat-enduring stability. Through adsorption of methylene blue, a typical dyeing material, the core-shell-structured particles show a good adsorption capability of approximately 33 mg/L. The particles are easily and completely collected by magnets, which is possible due to the magnetic property of core CoFe2O4. Heat treatment can burn out the adsorbed dyes and good adsorption performance is sustained even after several heat-treating loops. This property overcomes the common problem of particles with Fe3O4 as a core, by which Fe3O4 is oxidized to nonmagnetic α-Fe2O3 at the burning temperature. We also designed a miniature of effluent-treating pipeline, which demonstrates the potential of the application.
Jurinovich, Sandro; Degano, Ilaria; Mennucci, Benedetta
2012-11-15
Historical textiles dyed with tannins usually show more extended degradation than fabrics dyed with other coloring materials. In order to shed light on this phenomenon we investigated the molecular interactions between tannin dyes and protein-based textiles using quantum-mechanical tools. In particular, we focused on the iron-gall complex with a fragment of α-helix wool keratin. We developed a step by step protocol which moves from the simplest ternary complexes with free amino acids (all treated quantum mechanically) to the more realistic system of the polypeptide fragment (treated at QM/MM level), passing through an intermediate model of interacting sites to evaluate the local environmental effects. The analysis of the interactions between the iron-gall complexes and free amino acids allowed us to identify possible coordination modes as well as determining their relative geometries. However, we also showed that only with the addition of the proteic environment a detailed picture of the interaction sites and binding modes can be achieved. An important role is in fact played by the microenvironment which can favor specific coordinations with respect to others due to both structural and electronic changes in the possible interaction sites.
Qian, Feiyue; Sun, Xianbo; Liu, Yongdi; Xu, Hongyong
2013-01-01
GAC/O3 (ozonation in the presence of granular activated carbon) combined with enhanced coagulation was employed to process biotreated textile wastewater for possible reuse. The doses of ozone, GAC and coagulant were the variables studied for optimization. The effects of different treatment processes on effluent organic matter (EfOM) characteristics, including biodegradability, hydrophobic and hydrophilic nature, and apparent molecular weight (AMW) distribution were also investigated. Compared with ozonation, GAC/O3 not only presented a higher pre-oxidation efficiency, but also improved the treatability of hydrophobic and high molecular weight compounds by enhanced coagulation. After treatment by GAC/O3 pre-oxidation (0.6 mg O3 x mg(-1) COD and 20 g x L(-1) GAC) and enhanced coagulation (25 mg x L(-1) Al3+ at pH 5.5), the removal efficiencies of chemical oxygen demand (COD), dissolved organic carbon (DOC) and colour were higher than those for coagulation alone by 17.3%, 12.0% and 25.6%, respectively. Residual organic matter consisted mainly of hydrophobic acids and hydrophilic compounds of AMW < 1 kDa, which were colourless and of limited biological availability. The combination of GAC/O3 and enhanced coagulation was proved to be a simple and effective treatment strategy for removing EfOM from biotreated textile wastewater.
Textile Dye Removal from Aqueous Solution using Modified Graphite Waste/Lanthanum/Chitosan Composite
NASA Astrophysics Data System (ADS)
Kusrini, E.; Wicaksono, B.; Yulizar, Y.; Prasetyanto, EA; Gunawan, C.
2018-03-01
We investigated various pre-treatment processes of graphite waste using thermal, mechanical and chemical methods. The aim of this work is to study the performance of modified graphite waste/lanthanum/chitosan composite (MG) as adsorbent for textile dye removal from aqueous solution. Effect of graphite waste resources, adsorbent size and lanthanum concentration on the dye removal were studied in batch experiments. Selectivity of MG was also investigated. Pre-heated graphite waste (NMG) was conducted at 80°C for 1 h, followed by mechanical crushing of the resultant graphite to 75 μm particle size, giving adsorption performance of ˜58%, ˜67%, ˜93% and ˜98% of the model dye rhodamine B (concentration determined by UV-vis spectroscopy at 554 nm), methyl orange (464 nm), methylene blue (664 nm) and methyl violet (580 nm), respectively from aqueous solution. For this process, the system required less than ˜5 min for adsorbent material to be completely saturated with the adsorbate. Further chemical modification of the pre-treated graphite waste (MG) with lanthanum (0.01 – V 0.03 M) and chitosan (0.5% w/w) did not improve the performance of dye adsorption. Under comparable experimental conditions, as those of the ‘thermal-mechanical-pre-treated-only’ (NMG), modification of graphite waste (MG) with 0.03 M lanthanum and 0.5% w/w chitosan resulted in ˜14%, ˜47%, ˜72% and ˜85% adsorption of rhodamine B, methyl orange, methylene blue and methyl violet, respectively. Selective adsorption of methylene blue at most to ˜79%, followed by methyl orange, methyl violet and rhodamine B with adsorption efficiency ˜67, ˜38, and ˜9% sequentially using MG with 0.03 M lanthanum and 0.5% w/w chitosan.
Hussaan, Muhammad; Iqbal, Naeem; Adeel, Shahid; Azeem, Muhammad; Tariq Javed, M; Raza, Ali
2017-02-01
Application of natural colorants to textile fabrics has gained worldwide public acceptance due to the hazardous nature of synthetic dyes. Present study investigated the microwave's mediated extraction of natural colorants from leaves of milkweed (Calotropis procera L.) as well as their application to cotton fabrics assisted with biochemical mordants. Dye extraction from C. procera leaves was carried out in various mediums (alkali and aqueous), and the extracted dye as well as cotton fabrics was irradiated with microwaves for 2, 4, 6, 8, or 10 min. Effect of various temperature regimes and sodium chloride (NaCl) concentrations was also evaluated on the color strength of dyed cotton fabrics. The results revealed that extraction of natural colorants was enhanced when microwave radiations were applied for 4 min by using alkali as an extraction medium as compared to aqueous one. Optimum dyeing of cotton fabrics was achieved by using NaCl at a temperature of 55 °C. Among the chemical mordants, iron was effective for better color strength when used as pre- and post-mordant. Among the studied bio-mordants, extract of Acacia nilotica bark significantly improved the color strength and fastness properties as pre-mordant and Curcuma longa tuber as post-mordant. It was concluded that extract of C. procera leaves was a potential source of natural colorants and a high level of dye was obtained upon irradiation of alkali-solubilized extract for 4 min. Application of NaCl at concentration of 3 g/100 mL and temperature treatment of 55 °C significantly improved the color strength of dyed cotton fabrics.
Occurrence and risk assessment of an azo dye - The case of Disperse Red 1.
Vacchi, Francine Inforçato; Von der Ohe, Peter Carsten; Albuquerque, Anjaína Fernandes de; Vendemiatti, Josiane Aparecida de Souza; Azevedo, Carina Cristina Jesus; Honório, Jaqueline Gonçalves; Silva, Bianca Ferreira da; Zanoni, Maria Valnice Boldrin; Henry, Theodore B; Nogueira, Antonio J; Umbuzeiro, Gisela de Aragão
2016-08-01
Water quality criteria to protect aquatic life are not available for most disperse dyes which are often used as commercial mixtures in textile coloration. In this study, the acute and chronic toxicity of the commercial dye Disperse Red 1 (DR1) to eight aquatic organisms from four trophic levels was evaluated. A safety threshold, i.e. Predicted No-Effect Concentration (PNEC), was derived based on the toxicity information of the commercial product and the purified dye. This approach was possible because the toxicity of DR1 was accounting for most of the toxicity of the commercial mixture. A long-term PNEC of 60 ng L(-1) was proposed, based on the most sensitive chronic endpoint for Daphnia similis. A short-term PNEC of 1800 ng L(-1) was proposed based on the most sensitive acute endpoint also for Daphnia similis. Both key studies have been evaluated with the new "Criteria for Reporting and Evaluating ecotoxicity Data" (CRED) methodology, applying more objective criteria to assess the quality of toxicity tests, resulting in two reliable and relevant endpoints with only minor restrictions. HPLC-MS/MS was used to quantify the occurrence of DR1 in river waters of three sites, influenced by textile industry discharges, resulting in a concentration range of 50-500 ng L(-1). The risk quotients for DR1 obtained in this work suggest that this dye can pose a potential risk to freshwater biota. To reduce uncertainty of the derived PNEC, a fish partial or full lifecycle study should be performed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Photocatalytic degradation of textile dye using TiO2-activated carbon nanocomposite
NASA Astrophysics Data System (ADS)
Ghosh, Gourab; Basu, Sankhadeep; Saha, Sudeshna
2018-05-01
Rapid industrialisation has extended the use of dyes in various industrial applications in order to meet the escalating demands on consumer products. The toxicity level of a particular dye is very important due to its diverse effects on the environment and living organisms. Among all the techniques for dye removal, adsorption and photocatalysis are two important processes which are gaining much attention in recent years. In the present study activated carbon (adsorbent), TiO2 nanoparticles (photocatalyst) and their composite were used for dye removal. Prepared samples were characterized using standard characterization techniques such as XRD and SEM. Activated carbon was prepared from waste shells of Sterculia foetida. Mixture of activated carbon (activation temperature 600°C) and titania (calcined at 500°C) in the ratio 1:1 displayed greater dye removal efficiency than its individual components. Reusability study indicated that the mixture could effectively be used without further regeneration as very little loss in efficiency was observed after single cycle use.
Parameters affecting the photocatalytic degradation of dyes using TiO2: a review
NASA Astrophysics Data System (ADS)
Reza, Khan Mamun; Kurny, ASW; Gulshan, Fahmida
2017-07-01
Traditional chemical, physical and biological processes for treating wastewater containing textile dye have such disadvantages as high cost, high energy requirement and generation of secondary pollution during treatment process. The advanced oxidation processes technology has been attracting growing attention for the decomposition of organic dyes. Such processes are based on the light-enhanced generation of highly reactive hydroxyl radicals, which oxidize the organic matter in solution and convert it completely into water, CO2 and inorganic compounds. In this presentation, the photocatalytic degradation of dyes in aqueous solution using TiO2 as photocatalyst under solar and UV irradiation has been reviewed. It is observed that the degradation of dyes depends on several parameters such as pH, catalyst concentration, substrate concentration and the presence of oxidants. Reaction temperature and the intensity of light also affect the degradation of dyes. Particle size, BET-surface area and different mineral forms of TiO2 also have influence on the degradation rate.
Dudhagara, Pravin; Tank, Shantilal
2018-01-01
The thermophilic bacterium, Bacillus licheniformis U1 is used for the optimization of bacterial growth (R1), laccase production (R2) and synthetic disperse blue DBR textile dye decolorization (R3) in the present study. Preliminary optimization has been performed by one variable at time (OVAT) approach using four media components viz., dye concentration, copper sulphate concentration, pH, and inoculum size. Based on OVAT result further statistical optimization of R1, R2 and R3 performed by Box–Behnken design (BBD) using response surface methodology (RSM) in R software with R Commander package. The total 29 experimental runs conducted in the experimental design study towards the construction of a quadratic model. The model indicated that dye concentration 110 ppm, copper sulphate 0.2 mM, pH 7.5 and inoculum size 6% v/v were found to be optimum to maximize the laccase production and bacterial growth. Whereas, maximum dye decolorization achieved in media containing dye concentration 110 ppm, copper sulphate 0.6 mM, pH 6 and inoculum size 6% v/v. R package predicted R2 of R1, R2 and R3 were 0.9917, 0.9831 and 0.9703 respectively; likened to Design-Expert (Stat-Ease) (DOE) predicted R2 of R1, R2, and R3 were 0.9893, 0.9822 and 0.8442 respectively. The values obtained by R software were more precise, reliable and reproducible, compared to the DOE model. The laccase production was 1.80 fold increased, and 2.24 fold enhancement in dye decolorization was achieved using optimized medium than initial experiments. Moreover, the laccase-treated sample demonstrated the less cytotoxic effect on L132 and MCF-7 cell lines compared to untreated sample using MTT assay. Higher cell viability and lower cytotoxicity observed in a laccase-treated sample suggest the impending application of bacterial laccase in the reduction of toxicity of dye to design rapid biodegradation process. PMID:29718934
Forming "dynamic" membranes on stainless steel
NASA Technical Reports Server (NTRS)
Brandon, C. A.; Gaddis, J. L.
1979-01-01
"Dynamic" zirconium polyacrylic membrane is formed directly on stainless steel substrate without excessive corrosion of steel. Membrane is potentially useful in removal of contaminated chemicals from solution through reversed osmosis. Application includes use in filtration and desalination equipment, and in textile industry for separation of dyes from aqueous solvents.
THE CONTRIBUTION OF AZO DYES TO THE MUTAGENIC ACTIVITY OF THE CRISTAIS RIVER
To verify if compounds within the discharge of a dye processing plant were contributing to the mutagenicity repeatedly found in the Cristais River, Sao Paulo, Brazil, we chemically characterized the treated industrial effluent, raw and treated water, and the sludge produced by a ...
AZO DYES ARE MAJOR CONTRIBUTORS TO THE MUTAGENIC ACTIVITY DETECTED IN THE CRISTAIS RIVER WATERS
To determine if compounds from a dye processing plant were contributing to the mutagenicity repeatedly found in the Cristais River, Sao Paulo, Brazil, we chemically characterized the treated industrial effluent, raw and treated water, and the sludge produced by a Drinking Water T...
Denizli, A; Pişkin, E
2001-10-30
Dye-ligands have been considered as one of the important alternatives to natural counterparts for specific affinity chromatography. Dye-ligands are able to bind most types of proteins, in some cases in a remarkably specific manner. They are commercially available, inexpensive, and can easily be immobilized, especially on matrices bearing hydroxyl groups. Although dyes are all synthetic in nature, they are still classified as affinity ligands because they interact with the active sites of many proteins mimicking the structure of the substrates, cofactors, or binding agents for those proteins. A number of textile dyes, known as reactive dyes, have been used for protein purification. Most of these reactive dyes consist of a chromophore (either azo dyes, anthraquinone, or phathalocyanine), linked to a reactive group (often a mono- or dichlorotriazine ring). The interaction between the dye ligand and proteins can be by complex combination of electrostatic, hydrophobic, hydrogen bonding. Selection of the supporting matrix is the first important consideration in dye-affinity systems. There are several methods for immobilization of dye molecules onto the support matrix, in which usually several intermediate steps are followed. Both the adsorption and elution steps should carefully be optimized/designed for a successful separation. Dye-affinity systems in the form of spherical sorbents or as affinity membranes have been used in protein separation.
40 CFR 410.50 - Applicability; description of the knit fabric finishing subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the knit... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing Subcategory § 410.50 Applicability; description of the knit fabric finishing subcategory. The...
40 CFR 410.30 - Applicability; description of the low water use processing subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the low... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Low Water Use Processing Subcategory § 410.30 Applicability; description of the low water use processing...
Peterman, Paul H.; Delfino, Joseph J.
1990-01-01
Five polychlorinated biphenyl replacement dye solvents and a diluent present in carbonless copy paper were identified by gas chromatography/mass spectrometry in the following matrices: effluents from a de-inking–recycling paper mill and a municipal wastewater treatment plant receiving wastewaters from a carbonless copy paper manufacturing plant; sediments; and fish collected near both discharges in the Fox River System, Wisconsin. An isopropylbiphenyl dye solvent mixture included mono-, di- and triisopropylbiphenyls. Also identified were two dye solvent mixtures marketed under the trade name Santosol. Santosol 100 comprised ethyl-diphenylmethanes (DPMs), benzyl-ethyl-DPMs, and dibenzyl-ethyl-DPMs. Similarly, Santosol 150 comprised dimethyl-DPMs, benzyl-dimethyl-DPMs, and dibenzyl-dimethyl-DPMs. Diisopropylnaphthalenes, widely used as a dye solvent in Japan, were identified for the first time in the US environment. sec-Butylbiphenyls and di-sec-butylbiphenyls, likely constituents of a sec-butylbiphenyl dye solvent mixture, were tentatively identified. Linear alkyl benzenes (C10 to C13-LABs) constituted the Alkylate 215 diluent mixture. Although known to occur as minor constituents in linear alkyl sulfonate detergents, LAB residues have not been previously attributed to commercial use of LABs.
Treatment of textile wastewaters using Eutectic Freeze Crystallization.
Randall, D G; Zinn, C; Lewis, A E
2014-01-01
A water treatment process needs to recover both water and other useful products if the process is to be viewed as being financially and environmentally sustainable. Eutectic Freeze Crystallization (EFC) is one such sustainable water treatment process that is able to produce both pure ice (water) and pure salt(s) by operating at a specific temperature. The use of EFC for the treatment of water is particularly useful in the textile industry because ice crystallization excludes all impurities from the recovered water, including dyes. Also, EFC can produce various salts with the intention of reusing these salts in the process. This study investigated the feasibility of EFC as a treatment method for textile industry wastewaters. The results showed that EFC can be used to convert 95% of the wastewater stream to pure ice (98% purity) and sodium sulfate.
Modern industrial and pharmacological applications of indigo dye and its derivatives--a review.
Stasiak, Natalia; Kukuła-Koch, Wirginia; Głowniak, Kazimierz
2014-01-01
Plant sources, chemical properties, bioactivities, as well as the synthesis of indigo dye and its derivatives, are reviewed in this paper. These compounds were chosen because of their significant benefits and scope of application as both coloring agents in the textile industry and as pharmacologically active natural products. Their use in traditional chinese medicine (TCM) has directed the attention of European researchers and medical doctors alike. The preparation of indigoferous plants--Indigo naturalis is currently about to be introduced into the European Pharmacopoeia.
Xenobiotics enhance laccase activity in alkali-tolerant γ-proteobacterium JB.
Singh, Gursharan; Batish, Mona; Sharma, Prince; Capalash, Neena
2009-01-01
Various genotoxic textile dyes, xenobiotics, substrates (10 µM) and agrochemicals (100 µg/ml) were tested for enhancement of alkalophilic laccase activity in γ-proteobacterium JB. Neutral Red, Indigo Carmine, Naphthol Base Bordears and Sulphast Ruby dyes increased the activity by 3.7, 2.7, 2.6 and 2.3 fold respectively. Xenobiotics/substrates like p-toluidine, 8-hydroxyquinoline and anthracine increased it by 3.4, 2.8 and 2.3 fold respectively. Atrazine and trycyclozole pesticides enhanced the activity by 1.95 and 1.5 fold respectively.
Xenobiotics enhance laccase activity in alkali-tolerant γ-proteobacterium JB
Singh, Gursharan; Batish, Mona; Sharma, Prince; Capalash, Neena
2009-01-01
Various genotoxic textile dyes, xenobiotics, substrates (10 µM) and agrochemicals (100 µg/ml) were tested for enhancement of alkalophilic laccase activity in γ-proteobacterium JB. Neutral Red, Indigo Carmine, Naphthol Base Bordears and Sulphast Ruby dyes increased the activity by 3.7, 2.7, 2.6 and 2.3 fold respectively. Xenobiotics/substrates like p-toluidine, 8-hydroxyquinoline and anthracine increased it by 3.4, 2.8 and 2.3 fold respectively. Atrazine and trycyclozole pesticides enhanced the activity by 1.95 and 1.5 fold respectively. PMID:24031313
NASA Astrophysics Data System (ADS)
Gerçel, Özgül; Özcan, Adnan; Özcan, A. Safa; Gerçel, H. Ferdi
2007-03-01
The use of activated carbon obtained from Euphorbia rigida for the removal of a basic textile dye, which is methylene blue, from aqueous solutions at various contact times, pHs and temperatures was investigated. The plant material was chemically modified with H 2SO 4. The surface area of chemically modified activated carbon was 741.2 m 2 g -1. The surface characterization of both plant- and activated carbon was undertaken using FTIR spectroscopic technique. The adsorption process attains equilibrium within 60 min. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity of activated carbon was 114.45 mg g -1 at 40° C. The adsorption kinetics of methylene blue obeys the pseudo-second-order kinetic model and also followed by the intraparticle diffusion model up to 60 min. The thermodynamic parameters such as Δ G°, Δ H° and Δ S° were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 55.51 kJ mol -1. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal textile dyes from textile wastewater processes.
Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Jeong, Sung Hoon
2015-05-21
Textile wearable electronics offers the combined advantages of both electronics and textile characteristics. The essential properties of these flexible electronics such as lightweight, stretchable, and wearable power sources are in strong demand. Here, we have developed a facile route to fabricate multi walled carbon nanotube (MWCNT) coated polyester fabric as a flexible counter electrode (CE) for dye sensitized solar cells (DSSCs). A variety of MWCNT and enzymes with different structures were used to generate individual enzyme-dispersed MWCNT (E-MWCNT) suspensions by non-covalent functionalization. A highly concentrated colloidal suspension of E-MWCNT was deposited on polyester fabric via a simple tape casting method using an air drying technique. In view of the E-MWCNT coating, the surface structure is represented by topologically randomly assembled tubular graphene units. This surface morphology has a high density of colloidal edge states and oxygen-containing surface groups which execute multiple catalytic sites for iodide reduction. A highly conductive E-MWCNT coated fabric electrode with a surface resistance of 15 Ω sq(-1) demonstrated 5.69% power conversion efficiency (PCE) when used as a flexible CE for DSSCs. High photo voltaic performance of our suggested system of E-MWCNT fabric-based DSSCs is associated with high sheet conductivity, low charge transfer resistance (RCT), and excellent electro catalytic activity (ECA). Such a conductive fabric demonstrated stable conductivity against bending cycles and strong mechanical adhesion of E-MWCNT on polyester fabric. Moreover, the polyester fabric is hydrophobic and, therefore, has good sealing capacity and retains the polymer gel electrolyte without seepage. This facile E-MWCNT fabric CE configuration provides a concrete fundamental background towards the development of textile-integrated solar cells.
Marques, Rita; Sousa, Micaela M; Oliveira, Maria C; Melo, Maria J
2009-02-27
The natural dyes, and dye sources, in two seventeenth century Arraiolos carpets from the National Museum of Machado de Castro were analysed by high-performance liquid chromatography with UV-vis diode array detection (HPLC-DAD) and HPLC-mass spectrometry (LC-MS). Weld (Reseda luteola L.), indigo and spurge flax (Daphne gnidium L.) were found to be the dye sources, in agreement with original dyeing recipes collected during the nineteenth century. In order to fully characterize the plant sources, LC-MS conditions were optimized with plant extracts and the chromatographic separation and mass detection were enhanced. Extraction of the dyes, in the Arraiolos carpet samples, was performed using mild conditions that avoid glycoside decomposition. For the blues a dimethylformamide solution proved to be efficient for indigotin recovery. For all the other colours, an improved mild extraction method (with oxalic acid, methanol, acetone and water) was used, enabling to obtain the full dye source fingerprint, namely the flavonoid glycosides in the yellow dyes.
Prabakar, Desika; Suvetha K, Subha; Manimudi, Varshini T; Mathimani, Thangavel; Kumar, Gopalakrishnan; Rene, Eldon R; Pugazhendhi, Arivalagan
2018-07-15
The implementation of different pretreatment techniques and technologies prior to effluent discharge is a direct result of the inefficiency of several existing wastewater treatment methods. A majority of the industrial sectors have known to cause severe negative effects on the environment. The five major polluting industries are the paper and pulp mills, coal manufacturing facilities, petrochemical, textile and the pharmaceutical sectors. Pretreatment methods have been widely used in order to lower the toxicity levels of effluents and comply with environmental standards. In this review, the possible environmental benefits and concerns of adopting different pretreatment technologies for renewable energy production and product/resource recovery has been reviewed and discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Asthma, rhinitis, and dermatitis in workers exposed to reactive dyes.
Nilsson, R; Nordlinder, R; Wass, U; Meding, B; Belin, L
1993-01-01
A survey was conducted at 15 textile plants with dyehouses in western Sweden. Employees with a history of work related rhinitis, asthma, or skin symptoms were offered a clinical and immunological investigation including skin prick tests, skin patch tests, and radioallergosorbent tests (RASTs) to detect specific allergy to reactive dyes. Among the 1142 employees, 162 were exposed to reactive dyes and 10 of these (6%) reported work related respiratory or nasal symptoms. An allergy to reactive dyes could be confirmed in five (3%, 95% confidence interval 1-7%). All but one had been exposed to reactive dyes for one year or less before the onset of symptoms. Positive RASTs could be detected in four of the five patients. All of the RAST positive patients were positive to remazol black B, but six out of eight additional remazol dyes also elicited positive results. RAST and RAST inhibition showed a cross reactivity between some of the dyes. Seven persons with work related dermatitis and three with urticaria or Quincke oedema were found. In one patient contact dermatitis to a monoazo dye was shown, but no positive patch test reactions to reactive dyes. IgE-mediated allergy to reactive dyes seems to be an important cause of respiratory and nasal symptoms among dyehouse employees exposed to dust from reactive dyes. PMID:8431393
USDA-ARS?s Scientific Manuscript database
Micronaire is a key cotton fiber classing and quality assessment property, and changes in fiber micronaire can impact downstream fiber processing and dye consistency in the textile manufacturing industry. Micronaire is a function of two fiber components—fiber maturity and fineness. Historically, m...
Electrochemical mercerization, souring, and bleaching of textiles
Cooper, J.F.
1995-10-10
Economical, pollution-free treatment of textiles occurs in a low voltage electrochemical cell that mercerizes (or scours), sours, and optionally bleaches without effluents and without the purchase of bulk caustic, neutralizing acids, or bleaches. The cell produces base in the cathodic chamber for mercerization and an equivalent amount of acid in the anodic chamber for neutralizing the fabric. Gas diffusion electrodes are used for one or both electrodes and may simultaneously generate hydrogen peroxide for bleaching. The preferred configuration is a stack of bipolar electrodes, in which one or both of the anode and cathode are gas diffusion electrodes, and where no hydrogen gas is evolved at the cathode. 5 figs.
Electrochemical mercerization, souring, and bleaching of textiles
Cooper, John F.
1995-01-01
Economical, pollution-free treatment of textiles occurs in a low voltage electrochemical cell that mercerizes (or scours), sours, and optionally bleaches without effluents and without the purchase of bulk caustic, neutralizing acids, or bleaches. The cell produces base in the cathodic chamber for mercerization and an equivalent amount of acid in the anodic chamber for neutralizing the fabric. Gas diffusion electrodes are used for one or both electrodes and may simultaneously generate hydrogen peroxide for bleaching. The preferred configuration is a stack of bipolar electrodes, in which one or both of the anode and cathode are gas diffusion electrodes, and where no hydrogen gas is evolved at the cathode.
Application of solar photo-Fenton toward toxicity removal and textile wastewater reuse.
Starling, Maria Clara V M; Dos Santos, Paulo Henrique Rodrigues; de Souza, Felipe Antônio Ribeiro; Oliveira, Sílvia Corrêa; Leão, Mônica M D; Amorim, Camila C
2017-05-01
Solar photo-Fenton represents an innovative and low-cost option for the treatment of recalcitrant industrial wastewater, such as the textile wastewater. Textile wastewater usually shows high acute toxic and variability and may be composed of many different chemical compounds. This study aimed at optimizing and validating solar photo-Fenton treatment of textile wastewater in a semi-pilot compound parabolic collector (CPC) for toxicity removal and wastewater reclamation. In addition, treated wastewater reuse feasibility was investigated through pilot tests. Experimental design performed in this study indicated optimum condition for solar photo-Fenton reaction (20 mg L -1 of Fe 2+ and 500 mg L -1 of H 2 O 2 ; pH 2.8), which achieved 96 % removal of dissolved organic carbon (DOC) and 99 % absorbance removal. A toxicity peak was detected during treatment, suggesting that highly toxic transformation products were formed during reaction. Toxic intermediates were properly removed during solar photo-Fenton (SPF) treatment along with the generation of oxalic acid as an ultimate product of degradation and COS increase. Different samples of real textile wastewater were treated in order to validate optimized treatment condition with regard to wastewater variability. Results showed median organic carbon removal near 90 %. Finally, reuse of treated textile wastewater in both dyeing and washing stages of production was successful. These results confirm that solar photo-Fenton, as a single treatment, enables wastewater reclamation in the textile industry. Graphical abstract Solar photo-Fenton as a revolutionary treatment technology for "closing-the-loop" in the textile industry.
Kalathil, Shafeer; Lee, Jintae; Cho, Moo Hwan
2011-12-15
Decolorization of dye wastewater before discharge is pivotal because of its immense color and toxicities. In this study, a granular activated carbon based microbial fuel cell (GACB-MFC) was used without using any expensive materials like Nafion membrane and platinum catalyst for simultaneous decolorization of real dye wastewater and bioelectricity generation. After 48 hours of GACB-MFC operation, 73% color was removed at anode and 77% color was removed at cathode. COD removal was 71% at the anode and 76% at the cathode after 48 hours. Toxicity measurements showed that cathode effluent was almost nontoxic after 24 hours. The anode effluent was threefold less toxic compared to original dye wastewater after 48 hours. The GACB-MFC produced a power density of 1.7 W/m(3) with an open circuit voltage 0.45 V. One of the advantages of the GACB-MFC system is that pH was automatically adjusted from 12.4 to 7.2 and 8.0 at the anode and cathode during 48 hours operation. Copyright © 2011 Elsevier B.V. All rights reserved.
Pillai, Indu M Sasidharan; Gupta, Ashok K
2017-05-15
A continuous flow electrochemical reactor was developed, and its application was tested for the treatment of textile wastewater. A parallel plate configuration with serpentine flow was chosen for the continuous flow reactor. Uniparameter optimization was carried out for electrochemical oxidation of synthetic and real textile wastewater (collected from the inlet of the effluent treatment plant). Chemical Oxygen Demand (COD) removal efficiency of 90% was achieved for synthetic textile wastewater (initial COD - 780 mg L -1 ) at a flow rate of 500 mL h -1 (retention time of 6 h) and a current density of 1.15 mA cm -2 and the energy consumption for the degradation was 9.2 kWh (kg COD) -1 . The complete degradation of real textile wastewater (initial COD of 368 mg L -1 ) was obtained at a current density of 1.15 mA cm -2 , NaCl concentration of 1 g L -1 and retention time of 6 h. Energy consumption and mass transfer coefficient of the reactions were calculated. The continuous flow reactor performed better than batch reactor with reference to energy consumption and economy. The overall treatment cost for complete COD removal of real textile wastewater was 5.83 USD m -3 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Antunes, Rafael Souza; Ferraz, Denes; Garcia, Luane Ferreira; Thomaz, Douglas Vieira; Luque, Rafael; Lobón, Germán Sanz; Gil, Eric de Souza; Lopes, Flávio Marques
2018-05-15
In this work, an innovative polyphenol oxidase biosensor was developed from Jenipapo ( Genipa americana L.) fruit and used to assess phenolic compounds in industrial effluent samples obtained from a textile industry located in Jaraguá-GO, Brasil. The biosensor was prepared and optimized according to: the proportion of crude vegetal extract, pH and overall voltammetric parameters for differential pulse voltammetry. The calibration curve presented a linear interval from 10 to 310 µM (r² = 0.9982) and a limit of detection of 7 µM. Biosensor stability was evaluated throughout 15 days, and it exhibited 88.22% of the initial response. The amount of catechol standard recovered post analysis varied between 87.50% and 96.00%. Moreover, the biosensor was able to detect phenolic compounds in a real sample, and the results were in accordance with standard spectrophotometric assays. Therefore, the innovatively-designed biosensor hereby proposed is a promising tool for phenolic compound detection and quantification when environmental contaminants are concerned.
Saravanan, R; Mansoob Khan, M; Gupta, Vinod Kumar; Mosquera, E; Gracia, F; Narayanan, V; Stephen, A
2015-08-15
A ternary ZnO/Ag/CdO nanocomposite was synthesized using thermal decomposition method. The resulting nanocomposite was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, UV-Vis spectroscopy, and X-ray photoelectron spectroscopy. The ZnO/Ag/CdO nanocomposite exhibited enhanced photocatalytic activity under visible light irradiation for the degradation of methyl orange and methylene blue compared with binary ZnO/Ag and ZnO/CdO nanocomposites. The ZnO/Ag/CdO nanocomposite was also used for the degradation of the industrial textile effluent (real sample analysis) and degraded more than 90% in 210 min under visible light irradiation. The small size, high surface area and synergistic effect in the ZnO/Ag/CdO nanocomposite is responsible for high photocatalytic activity. These results also showed that the Ag nanoparticles induced visible light activity and facilitated efficient charge separation in the ZnO/Ag/CdO nanocomposite, thereby improving the photocatalytic performance. Copyright © 2015 Elsevier Inc. All rights reserved.
Pathiratne, Asoka; Hemachandra, Chamini K; De Silva, Nimal
2015-12-01
Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of treated effluents originated from four types of industrial activities (two textile industries, three rubber based industries, two common treatment plants of industrial zones, and two water treatment plants) was assessed. Physico-chemical parameters including the heavy metal/metalloid levels of the effluents varied depending on the industry profile, but most of the measured parameters in the effluents were within the specified tolerance limits of Sri Lankan environmental regulations for discharge of industrial effluents into inland surface waters. In the A. cepa test system, the undiluted effluents induced statistically significant root growth retardation, mitosis depression, and chromosomal aberrations in root meristematic cells in most cases in comparison to the dilution water and upstream water signifying effluent induced cytotoxicity and genotoxicity. Ethyl methane sulphonate (a mutagen, positive control) and all the effluents under 1:8 dilution significantly induced total chromosomal aberrations in root meristematic cells in comparison to the dilution water and upstream water indicating inadequacy of expected 1:8 dilutions in the receiving waters for curtailing genotoxic impacts. The results support the use of a practically feasible A. cepa test system for rapid screening of cytotoxicity and genotoxicity of diverse industrial effluents discharging into inland surface waters.
Abbasian, Mojtaba; Jaymand, Mehdi; Niroomand, Pouneh; Farnoudian-Habibi, Amir; Karaj-Abad, Saber Ghasemi
2017-02-01
A series of chitosan-grafted polyaniline derivatives {chitosan-g-polyaniline (CS-g-PANI), chitosan-g-poly(N-methylaniline) (CS-g-PNMANI), and chitosan-g-poly(N-ethylaniline) (CS-g-PNEANI)} were synthesized by in situ chemical oxidation polymerization method. The synthesized copolymers were analyzed by means of Fourier transform infrared (FTIR), and ultraviolet-visible (UV-vis) spectroscopies, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FE-SEM). These copolymers were applied as adsorbent for removal of acid red 4 (AR4) and direct red 23 (DR23) from aqueous solutions. The adsorption processes were optimized in terms of pH, adsorbent amount, and dyes concentrations. The maximum adsorption capacities (Q m ) for the synthesized copolymers were calculated, and among them the CS-g-PNEANI sample showed highest Q m for both AR4 (98mgg -1 ) and DR23 (112mgg -1 ) dyes. The adsorption kinetics of AR4 and DR23 dyes follow the pseudo-second order kinetic model. The regeneration and reusability tests revealed that the synthesized adsorbents had the relatively good reusability after five repetitions of the adsorption-desorption cycles. As the results, it is expected that the CS-g-PANIs find application for removal of reactive dyes (especially anionic dyes) from industrial effluents mainly due to their low production costs and high adsorption effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.