Sample records for textile material forms

  1. Recent progress in NASA Langley Research Center textile reinforced composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.

    1992-01-01

    Research was conducted to explore the benefits of textile reinforced composites for transport aircraft primary structures. The objective is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. Some program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. Textile 3-D weaving, 3-D braiding, and knitting and/or stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighted against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural parts are required to establish the potential of textile reinforced composite materials.

  2. Dialogue between Art and Craft: Textile Materials and Techniques in Contemporary Art

    ERIC Educational Resources Information Center

    Pöllänen, Sinikka; Ruotsalainen, Kati

    2017-01-01

    The aim of this study was to investigate the ways in which textile materials and techniques are expressed in contemporary art in Finland. The first phase of data collection was to identify a population of Finnish artists who use textile craft-based forms in their art and who produce their works themselves. After that, six discretionary selected…

  3. Guidelines for Developing and Inserting Material Properties into the Code 65 Composite Material Database

    DTIC Science & Technology

    2011-12-01

    kind of base fiber used Fab-ric uni, stitched, weave, woven roving, textile form, tape, prepreg Laminate Schedu le [0]10 [0]14 [0]36 Manufacturing...roving, textile form, tape, prepreg Laminate Schedule [0]10 [0]14 [0]36 Manufacturing Date 2006 Test Facility/Date 2007 Program of Record AHM&ST...9 Laminate Schedule .......................................................................................................10 Cure

  4. A review-application of physical vapor deposition (PVD) and related methods in the textile industry

    NASA Astrophysics Data System (ADS)

    Shahidi, Sheila; Moazzenchi, Bahareh; Ghoranneviss, Mahmood

    2015-09-01

    Physical vapor deposition (PVD) is a coating process in which thin films are deposited by the condensation of a vaporized form of the desired film material onto the substrate. The PVD process is carried out in a vacuum. PVD processes include different types, such as: cathode arc deposition, electron beam physical vapor deposition, evaporative deposition, sputtering, ion plating and enhanced sputtering. In the PVD method, the solid coating material is evaporated by heat or by bombardment with ions (sputtering). At the same time, a reactive gas is also introduced; it forms a compound with the metal vapor and is deposited on the substrate as a thin film with highly adherent coating. Such coatings are used in a wide range of applications such as aerospace, automotive, surgical, medical, dyes and molds for all manner of material processing, cutting tools, firearms, optics, thin films and textiles. The objective of this work is to give a comprehensive description and review of the science and technology related to physical vapor deposition with particular emphasis on their potential use in the textile industry. Physical vapor deposition has opened up new possibilities in the modification of textile materials and is an exciting prospect for usage in textile design and technical textiles. The basic principle of PVD is explained and the major applications, particularly sputter coatings in the modification and functionalization of textiles, are introduced in this research.

  5. Combining 3D printed forms with textile structures - mechanical and geometrical properties of multi-material systems

    NASA Astrophysics Data System (ADS)

    Sabantina, L.; Kinzel, F.; Ehrmann, A.; Finsterbusch, K.

    2015-07-01

    The 3D printing belongs to the rapidly emerging technologies which have the chance to revolutionize the way products are created. In the textile industry, several designers have already presented creations of shoes, dresses or other garments which could not be produced with common techniques. 3D printing, however, is still far away from being a usual process in textile and clothing production. The main challenge results from the insufficient mechanical properties, especially the low tensile strength, of pure 3D printed products, prohibiting them from replacing common technologies such as weaving or knitting. Thus, one way to the application of 3D printed forms in garments is combining them with textile fabrics, the latter ensuring the necessary tensile strength. This article reports about different approaches to combine 3D printed polymers with different textile materials and fabrics, showing chances and limits of this technique.

  6. Characterising the thermoforming behaviour of glass fibre textile reinforced thermoplastic composite materials

    NASA Astrophysics Data System (ADS)

    Kuhtz, M.; Maron, B.; Hornig, A.; Müller, M.; Langkamp, A.; Gude, M.

    2018-05-01

    Textile reinforced thermoplastic composites are predestined for highly automated medium- and high-volume production processes. The presented work focusses on experimental studies of different types of glass fibre reinforced polypropylene (GF-PP) semi-finished thermoplastic textiles to characterise the forming behaviour. The main deformation modes fabric shear, tension, thought-thickness compression and bending are investigated with special emphasis on the impact of the textile structure, the deformation temperature and rate dependency. The understanding of the fundamental forming behaviour is required to allow FEM based assessment and improvement of thermoforming process chains.

  7. Atomic layer deposition on polymer fibers and fabrics for multifunctional and electronic textiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brozena, Alexandra H.; Oldham, Christopher J.; Parsons, Gregory N., E-mail: gnp@ncsu.edu

    Textile materials, including woven cotton, polymer knit fabrics, and synthetic nonwoven fiber mats, are being explored as low-cost, flexible, and light-weight platforms for wearable electronic sensing, communication, energy generation, and storage. The natural porosity and high surface area in textiles is also useful for new applications in environmental protection, chemical decontamination, pharmaceutical and chemical manufacturing, catalytic support, tissue regeneration, and others. These applications raise opportunities for new chemistries, chemical processes, biological coupling, and nanodevice systems that can readily combine with textile manufacturing to create new “multifunctional” fabrics. Atomic layer deposition (ALD) has a unique ability to form highly uniform andmore » conformal thin films at low processing temperature on nonuniform high aspect ratio surfaces. Recent research shows how ALD can coat, modify, and otherwise improve polymer fibers and textiles by incorporating new materials for viable electronic and other multifunctional capabilities. This article provides a current overview of the understanding of ALD coating and modification of textiles, including current capabilities and outstanding problems, with the goal of providing a starting point for further research and advances in this field. After a brief introduction to textile materials and current textile treatment methods, the authors discuss unique properties of ALD-coated textiles, followed by a review of recent electronic and multifunctional textiles that use ALD coatings either as direct functional components or as critical nucleation layers for active materials integration. The article concludes with possible future directions for ALD on textiles, including the challenges in materials, manufacturing, and manufacturing integration that must be overcome for ALD to reach its full potential in electronic and other emerging multifunctional textile systems.« less

  8. Recent progress in NASA Langley textile reinforced composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.

    1992-01-01

    The NASA LaRC is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. In addition to in-house research, the program was recently expanded to include major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house focus is as follows: development of a science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of design, fabrication and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3D weaving, 2D and 3D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced composite materials.

  9. Facile preparation of super durable superhydrophobic materials.

    PubMed

    Wu, Lei; Zhang, Junping; Li, Bucheng; Fan, Ling; Li, Lingxiao; Wang, Aiqin

    2014-10-15

    The low stability, complicated and expensive fabrication procedures seriously hinder practical applications of superhydrophobic materials. Here we report an extremely simple method for preparing super durable superhydrophobic materials, e.g., textiles and sponges, by dip coating in fluoropolymers (FPs). The morphology, surface chemical composition, mechanical, chemical and environmental stabilities of the superhydrophobic textiles were investigated. The results show how simple the preparation of super durable superhydrophobic textiles can be! The superhydrophobic textiles outperform their natural counterparts and most of the state-of-the-art synthetic superhydrophobic materials in stability. The intensive mechanical abrasion, long time immersion in various liquids and repeated washing have no obvious influence on the superhydrophobicity. Water drops are spherical in shape on the samples and could easily roll off after these harsh stability tests. In addition, this simple dip coating approach is applicable to various synthetic and natural textiles and can be easily scaled up. Furthermore, the results prove that a two-tier roughness is helpful but not essential with regard to the creation of super durable superhydrophobic textiles. The combination of microscale roughness of textiles and materials with very low surface tension is enough to form super durable superhydrophobic textiles. According to the same procedure, superhydrophobic polyurethane sponges can be prepared, which show high oil absorbency, oil/water separation efficiency and stability. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Potential applications of silk sericin, a natural protein from textile industry by-products.

    PubMed

    Aramwit, Pornanong; Siritientong, Tippawan; Srichana, Teerapol

    2012-03-01

    Silk is composed of two major proteins, fibroin (fibrous protein) and sericin (globular, gumming protein). Fibroin has been used in textile manufacturing and for several biomaterial applications, whereas sericin is considered a waste material in the textile industry. Sericin has recently been found to activate the proliferation of several cell-lines and has also shown various biological activities. Sericin can form a gel by itself; however, after mixing with other polymers and cross-linking it can form a film or a scaffold with good characteristics that can be used in the cosmetic and pharmaceutical industries. Sericin is proven to cause no immunological responses, which has resulted in a more acceptable material for biological applications.

  11. Tensile properties of textile composites

    NASA Technical Reports Server (NTRS)

    Avva, V. Sarma; Sadler, Robert L.; Lyon, Malcolm

    1992-01-01

    The importance of textile composite materials in aerospace structural applications has been gaining momentum in recent years. With a view to better understand the suitability of these materials in aerospace applications, an experimental program was undertaken to assess the mechanical properties of these materials. Specifically, the braided textile preforms were infiltrated with suitable polymeric matrices leading to the fabrication of composite test coupons. Evaluation of the tensile properties and the analyses of the results in the form of strength moduli, Poisson's ratio, etc., for the braided composites are presented. Based on our past experience with the textile coupons, the fabrication techniques have been modified (by incorporating glass microballoons in the matrix and/or by stabilizing the braid angle along the length of the specimen with axial fibers) to achieve enhanced mechanical properties of the textile composites. This paper outlines the preliminary experimental results obtained from testing these composites.

  12. Flexible barrier materials for protection against electromagnetic fields and their characterization

    NASA Astrophysics Data System (ADS)

    Jaroszewski, Maciej

    2015-10-01

    Composite materials for electromagnetic shielding can be manufactured as textiles using conductive yarns and textiles with conductivity obtained by various finishing processes on textile surfaces. The EM shielding effectiveness of fabrics are improved by lowering its conductivity using different methods and materials. An alternative is the usage of new light shielding materials in the form of metallized nonwoven fabrics or textiles. Their advantages are: a general availability on the market, a low price, good mechanical properties (strength, elasticity) and resistance to the environmental conditions. The composite anisotropic materials with a sandwich structure constituting of materials with different spatial orientations of fibers allow one to achieve relatively high and constant values of the shielding effectiveness which, together with the materials' mechanical properties, leads to a wide range of applicability in various disciplines of modern technology. This article is devoted to innovative flexible materials shielding electromagnetic field. The results of the PEM shielding effectiveness obtained for the polypropylene (PP) nonwoven fabrics metallized by pulsed magnetron sputtering are presented.

  13. Research Project "Subject Developing Environment of Preschool Education" for Russian Preschool Bilinguals (By the Example of Textile Educational Materials)

    ERIC Educational Resources Information Center

    Latipova, Liliya A.; Krapotkina, Irene E.; Koudrjavtseva, Ekaterina L.

    2016-01-01

    The problem's relevance stated in the article is determined by the following: forming preschool bilinguals' subject developing environment is connected with their active education and development, as well as with flexible preparation for studying at school. The purpose of this article is to develop methodology of textile developing materials' use…

  14. Cosmetic textiles with biological benefits: gelatin microcapsules containing vitamin C.

    PubMed

    Cheng, Shuk Yan; Yuen, Marcus Chun Wah; Kan, Chi Wai; Cheuk, Kevin Ka Leung; Chui, Chung Hin; Lam, Kim Hung

    2009-10-01

    In recent years, textile materials with special applications in the cosmetic field have been developed. A new sector of cosmetic textiles is opened up and several cosmetic textile products are currently available in the market. Microencapsulation technology is an effective technique to control the release properties of active ingredients that prolong the functionality of cosmetic textiles. This study discusses the development of cosmetic textiles and addresses microencapsulation technology with respect to its historical background, significant advantages, microencapsulation methods and recent applications in the textile industry. Gelatin microcapsules containing vitamin C were prepared using emulsion hardening technique. Both the optical microscopy and scanning electron microscopy demonstrated that the newly developed microcapsules were in the form of core-shell spheres with relatively smooth surface. The particle size of microcapsules ranged from 5.0 to 44.1 microm with the average particle size being 24.6 microm. The gelatin microcapsules were proved to be non-cytotoxic based on the research findings of the toxicity studies conducted on human liver and breast cell lines as well as primary bone marrow culture obtained from patient with non-malignant haematological disorder. The gelatin microcapsules were successfully grafted into textile materials for the development of cosmetic textiles.

  15. Effect of fabric mounting method and backing material on bloodstain patterns of drip stains on textiles.

    PubMed

    Chang, J Y M; Michielsen, S

    2016-05-01

    Textiles may provide valuable bloodstain evidence to help piece together events or activities at violent crime scenes. However, in spite of over 75 years of research, there are still difficulties encountered in many cases in the interpretation and identification of bloodstains on textiles. In this study, we dripped porcine blood onto three types of fabric (plain woven, single jersey knit, and denim) that are supported in four different ways (hard, taut, loose, and semi-hard, i.e., fabric laid on denim). These four mounting methods represent different ways in which a textile may be present when blood from a violent act lands on it. This study investigates how the fabric mounting method and backing material affect the appearance of drip stains on textiles. We found that bloodstain patterns formed on fabric lying flat on a hard surface were very different from when the same fabric was suspended loosely. We also found that bloodstains formed on the technical back of single jersey knit were vastly different from those on the technical face. Interestingly, some drip stains showed blood passing through the textile and leaving a stain behind it that resembled insect stains. By observing, recording, and describing how a blood stained textile is found or presented at the scene, the analyst may be able to better understand bloodstains and bloodstain patterns on textiles, which could be useful to confirm or refute a witness's account of how blood came to be where it was found after a bloodshed event.

  16. An overview of the NASA textile composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson

    1993-01-01

    The NASA Langley Research Center is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structures. In addition to in-house research, the program includes major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house research is focused on science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of innovative design concepts, cost-effective fabrication, and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3-D weaving, 2-D and 3-D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced composite materials. The goals of the NASA Langley-sponsored research program are to demonstrate technology readiness with subscale composite components by 1995 and to verify the performance of full-scale composite primary aircraft structural components by 1997. The status of textile reinforced composite structural elements under development by Boeing, Douglas, Lockheed, and Grumman are presented. Included are braided frames and woven/stitched wing and fuselage panels.

  17. Exploring dynamic lighting, colour and form with smart textiles

    NASA Astrophysics Data System (ADS)

    Cabral, I.; Silva, C.; Worbin, L.; Souto, A. P.

    2017-10-01

    This paper addresses an ongoing research, aiming at the development of smart textiles that transform the incident light that passes through them - light transmittance - to design dynamic light without acting upon the light source. A colour and shape change prototype was developed with the objective of studying textile changes in time; to explore temperature as a dynamic variable through electrical activation of the smart materials and conductive threads integrated in the textile substrate; and to analyse the relation between textile chromic and morphologic behaviour in interaction with light. Based on the experiments conducted, results have highlighted some considerations of the dynamic parameters involved in the behaviour of thermo-responsive textiles and demonstrated design possibilities to create interactive lighting scenarios.

  18. Washable hydrophobic smart textiles and multi-material fibers for wireless communication

    NASA Astrophysics Data System (ADS)

    Gorgutsa, Stepan; Bachus, Kyle; LaRochelle, Sophie; Oleschuk, Richard D.; Messaddeq, Younes

    2016-11-01

    This paper reports on the performance and environmental endurance of the recently presented wirelessly communicating smart textiles with integrated multi-material fiber antennas. Metal-glass-polymer fiber composites were fabricated using sub-1 mm hollow-core silica fibers and liquid state silver deposition technique. These fibers were then integrated into textiles in the form of center-fed dipole and loop antennas during standard weaving procedure. Fiber antennas performance was found to be directly comparable to classic ‘rigid’ solutions in terms of return loss, gain and radiation patterns, which allowed transmitting data through Bluetooth protocol at 2.4 GHz frequency. Applied superhydrophobic coatings (water contact angle = 152°, sliding angle = 6°) allow uninterrupted wireless communication of the textiles under direct water application even after multiple washing cycles.

  19. Development of test methods for textile composites

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Ifju, Peter G.; Fedro, Mark J.

    1993-01-01

    NASA's Advanced Composite Technology (ACT) Program was initiated in 1990 with the purpose of developing less costly composite aircraft structures. A number of innovative materials and processes were evaluated as a part of this effort. Chief among them are composite materials reinforced with textile preforms. These new forms of composite materials bring with them potential testing problems. Methods currently in practice were developed over the years for composite materials made from prepreg tape or simple 2-D woven fabrics. A wide variety of 2-D and 3-D braided, woven, stitched, and knit preforms were suggested for application in the ACT program. The applicability of existing test methods to the wide range of emerging materials bears investigation. The overriding concern is that the values measured are accurate representations of the true material response. The ultimate objective of this work is to establish a set of test methods to evaluate the textile composites developed for the ACT Program.

  20. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties.

    PubMed

    Dastjerdi, Roya; Montazer, Majid

    2010-08-01

    Textiles can provide a suitable substrate to grow micro-organisms especially at appropriate humidity and temperature in contact to human body. Recently, increasing public concern about hygiene has been driving many investigations for anti-microbial modification of textiles. However, using many anti-microbial agents has been avoided because of their possible harmful or toxic effects. Application of inorganic nano-particles and their nano-composites would be a good alternative. This review paper has focused on the properties and applications of inorganic nano-structured materials with good anti-microbial activity potential for textile modification. The discussed nano-structured anti-microbial agents include TiO(2) nano-particles, metallic and non-metallic TiO(2) nano-composites, titania nanotubes (TNTs), silver nano-particles, silver-based nano-structured materials, gold nano-particles, zinc oxide nano-particles and nano-rods, copper nano-particles, carbon nanotubes (CNTs), nano-clay and its modified forms, gallium, liposomes loaded nano-particles, metallic and inorganic dendrimers nano-composite, nano-capsules and cyclodextrins containing nano-particles. This review is also concerned with the application methods for the modification of textiles using nano-structured materials. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Particle-Based Geometric and Mechanical Modelling of Woven Technical Textiles and Reinforcements for Composites

    NASA Astrophysics Data System (ADS)

    Samadi, Reza

    Technical textiles are increasingly being engineered and used in challenging applications, in areas such as safety, biomedical devices, architecture and others, where they must meet stringent demands including excellent and predictable load bearing capabilities. They also form the bases for one of the most widespread group of composite materials, fibre reinforced polymer-matrix composites (PMCs), which comprise materials made of stiff and strong fibres generally available in textile form and selected for their structural potential, combined with a polymer matrix that gives parts their shape. Manufacturing processes for PMCs and technical textiles, as well as parts and advanced textile structures must be engineered, ideally through simulation, and therefore diverse properties of the textiles, textile reinforcements and PMC materials must be available for predictive simulation. Knowing the detailed geometry of technical textiles is essential to predicting accurately the processing and performance properties of textiles and PMC parts. In turn, the geometry taken by a textile or a reinforcement textile is linked in an intricate manner to its constitutive behaviour. This thesis proposes, investigates and validates a general numerical tool for the integrated and comprehensive analysis of textile geometry and constitutive behaviour as required toward engineering applications featuring technical textiles and textile reinforcements. The tool shall be general with regards to the textiles modelled and the loading cases applied. Specifically, the work aims at fulfilling the following objectives: 1) developing and implementing dedicated simulation software for modelling textiles subjected to various load cases; 2) providing, through simulation, geometric descriptions for different textiles subjected to different load cases namely compaction, relaxation and shear; 3) predicting the constitutive behaviour of the textiles undergoing said load cases; 4) identifying parameters affecting the textile geometry and constitutive behaviour under evolving loading; 5) validating simulation results with experimental trials; and 6) demonstrating the applicability of the simulation procedure to textile reinforcements featuring large numbers of small fibres as used in PMCs. As a starting point, the effects of reinforcement configuration on the in-plane permeability of textile reinforcements, through-thickness thermal conductivity of PMCs and in-plane stiffness of unidirectional and bidirectional PMCs were quantified systematically and correlated with specific geometric parameters. Variability was quantified for each property at a constant fibre volume fraction. It was observed that variability differed strongly between properties; as such, the simulated behaviour can be related to variability levels seen in experimental measurements. The effects of the geometry of textile reinforcements on the aforementioned processing and performance properties of the textiles and PMCs made from these textiles was demonstrated and validated, but only for simple cases as thorough and credible geometric models were not available at the onset of this work. Outcomes of this work were published in a peer-reviewed journal [101]. Through this thesis it was demonstrated that predicting changes in textile geometry prior and during loading is feasible using the proposed particle-based modelling method. The particle-based modelling method relies on discrete mechanics and offers an alternative to more traditional methods based on continuum mechanics. Specifically it alleviates issues caused by large strains and management of intricate, evolving contact present in finite element simulations. The particle-based modelling method enables credible, intricate modelling of the geometry of textiles at the mesoscopic scale as well as faithful mechanical modelling under load. Changes to textile geometry and configuration due to the normal compaction pressure, stress relaxation, in-plane shear and other types of loads were successfully predicted.

  2. The structural coloration of textile materials using self-assembled silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Gao, Weihong; Rigout, Muriel; Owens, Huw

    2017-09-01

    The work presented investigates how to produce structural colours on textile materials by applying a surface coating of silica nanoparticles (SNPs). Uniform SNPs with particle diameters in a controlled micron size range (207-350 nm) were synthesized using a Stöber-based solvent varying (SV) method which has been reported previously. Photonic crystals (PCs) were formed on the surface of a piece of textile fabric through a process of natural sedimentation self-assembly of the colloidal suspension containing uniform SNPs. Due to the uniformity and a particular diameter range of the prepared SNPs, structural colours were observed from the fabric surface due to the Bragg diffraction of white light with the ordered structure of the silica PCs. By varying the mean particle diameter, a wide range of spectral colours from red to blue were obtained. The comparison of structural colours on fabrics and on glasses suggests that a smooth substrate is critical when producing materials with high colour intensity and spatial uniformity. This work suggested a promising approach to colour textile materials without the need for traditional dyes and/or pigments. [Figure not available: see fulltext.

  3. The structural coloration of textile materials using self-assembled silica nanoparticles.

    PubMed

    Gao, Weihong; Rigout, Muriel; Owens, Huw

    2017-01-01

    The work presented investigates how to produce structural colours on textile materials by applying a surface coating of silica nanoparticles (SNPs). Uniform SNPs with particle diameters in a controlled micron size range (207-350 nm) were synthesized using a Stöber-based solvent varying (SV) method which has been reported previously. Photonic crystals (PCs) were formed on the surface of a piece of textile fabric through a process of natural sedimentation self-assembly of the colloidal suspension containing uniform SNPs. Due to the uniformity and a particular diameter range of the prepared SNPs, structural colours were observed from the fabric surface due to the Bragg diffraction of white light with the ordered structure of the silica PCs. By varying the mean particle diameter, a wide range of spectral colours from red to blue were obtained. The comparison of structural colours on fabrics and on glasses suggests that a smooth substrate is critical when producing materials with high colour intensity and spatial uniformity. This work suggested a promising approach to colour textile materials without the need for traditional dyes and/or pigments. Graphical abstract.

  4. Resin transfer molding of textile preforms for aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Hasko, Gregory H.; Dexter, H. Benson; Weideman, Mark H.

    1992-01-01

    The NASA LaRC is conducting and supporting research to develop cost-effective fabrication methods that are applicable to primary composite aircraft structures. One of the most promising fabrication methods that has evolved is resin transfer molding (RTM) of dry textile material forms. RTM has been used for many years for secondary structures, but has received increased emphasis because it is an excellent method for applying resin to damage-tolerant textile preforms at low cost. Textile preforms based on processes such as weaving, braiding, knitting, stitching, and combinations of these have been shown to offer significant improvements in damage tolerance compared to laminated tape composites. The use of low-cost resins combined with textile preforms could provide a major breakthrough in achieving cost-effective composite aircraft structures. RTM uses resin in its lowest cost form, and storage and spoilage costs are minimal. Near net shape textile preforms are expected to be cost-effective because automated machines can be used to produce the preforms, post-cure operations such as machining and fastening are minimized, and material scrap rate may be reduced in comparison with traditional prepreg molding. The purpose of this paper is to discuss experimental and analytical techniques that are under development at NASA Langley to aid the engineer in developing RTM processes for airframe structural elements. Included are experimental techniques to characterize preform and resin behavior and analytical methods that were developed to predict resin flow and cure kinetics.

  5. Combustion of textile residues in a packed bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Changkook; Phan, Anh N.; Sharifi, Vida N.

    2007-08-15

    Textile is one of the main components in the municipal waste which is to be diverted from landfill for material and energy recovery. As an initial investigation for energy recovery from textile residues, the combustion of cotton fabrics with a minor fraction of polyester was investigated in a packed bed combustor for air flow rates ranging from 117 to 1638 kg/m{sup 2} h (0.027-0.371 m/s). Tests were also carried out in order to evaluate the co-combustion of textile residues with two segregated waste materials: waste wood and cardboard. Textile residues showed different combustion characteristics when compared to typical waste materialsmore » at low air flow rates below 819 kg/m{sup 2} h (0.186 m/s). The ignition front propagated fast along the air channels randomly formed between packed textile particles while leaving a large amount of unignited material above. This resulted in irregular behaviour of the temperature profile, ignition rate and the percentage of weight loss in the ignition propagation stage. A slow smouldering burn-out stage followed the ignition propagation stage. At air flow rates of 1200-1600 kg/m{sup 2} h (0.272-0.363 m/s), the bed had a maximum burning rate of about 240 kg/m{sup 2} h consuming most of the combustibles in the ignition propagation stage. More uniform combustion with an increased burning rate was achieved when textile residues were co-burned with cardboard that had a similar bulk density. (author)« less

  6. New textile composite materials development, production, application

    NASA Technical Reports Server (NTRS)

    Mikhailov, Petr Y.

    1993-01-01

    New textile composite materials development, production, and application are discussed. Topics covered include: super-high-strength, super-high-modulus fibers, filaments, and materials manufactured on their basis; heat-resistant and nonflammable fibers, filaments, and textile fabrics; fibers and textile fabrics based on fluorocarbon poylmers; antifriction textile fabrics based on polyfen filaments; development of new types of textile combines and composite materials; and carbon filament-based fabrics.

  7. Material and fabrication strategies for artificial muscles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Spinks, Geoffrey M.

    2017-04-01

    Soft robotic and wearable robotic devices seek to exploit polymer based artificial muscles and sensor materials to generate biomimetic movements and forces. A challenge is to integrate the active materials into a complex, three-dimensional device with integrated electronics, power supplies and support structures. Both 3D printing and textiles technologies offer attractive fabrication strategies, but require suitable functional materials. 3D printing of actuating hydrogels has been developed to produce simple devices, such as a prototype valve. Tough hydrogels based on interpenetrating networks of ionicially crosslinked alginate and covalently crosslinked polyacrylamide and poly(N-isopropylacrylamide) have been developed in a form suitable for extrusion printing with UV curing. Combined with UV-curable and extrudable rigid acrylated urethanes, the tough hydrogels can be 3D printed into composite materials or complex shapes with multiple different materials. An actuating valve was printed that operated thermally to open or close the flow path using 6 parallel hydrogel actuators. Textile processing methods such as knitting and weaving can be used to generate assemblies of actuating fibres. Low cost and high performance coiled fibres made from oriented polymers have been used for developing actuating textiles. Similarly, braiding methods have been developed to fabricate new forms of McKibben muscles that operate without any external apparatus, such as pumps, compressors or piping.

  8. Fire Resistant Composite Closed Cell Foam and Nonwoven Textiles for Tents and Shelters

    DTIC Science & Technology

    2006-01-01

    when heated. The heat causes the plasticizer to dissolve in the PVC to form a flexible, plasticized PVC film . The foam and/or fabric surfaces were...PVC/NBR AF-U9D foam formed a char and only the edge of the material was damaged. These data suggested that burn-through resistance , in addition to...AFRL-ML-TY-TR-2006-4571 FIRE RESISTANT COMPOSITE CLOSED CELL FOAM AND NONWOVEN TEXTILES FOR TENTS AND SHELTERS Stephen C. Davis

  9. Geomembrane barriers using integral fiber optics to monitor barrier integrity

    DOEpatents

    Staller, G.E.; Wemple, R.P.

    1996-10-22

    This invention provides a geomembrane or geotextile with embedded optical sensors that are used to monitor the status of containment site barriers. Fiber optic strands are used to form the sensors that can detect and monitor conditions at the sites such as breaches, slope creep, subsidence, leachate levels, fires, and types of materials present or leaking from the site. The strands are integral to the membrane or textile materials. The geosynthetic membrane is deployed at the site in a fashion similar to carpet laying. Edges of the membrane or textile are joined to form a liner and the ends of the membrane or textile become the connection zones for obtaining signals from the sensors. A connection interface with a control system to generate Optical Time Delay Response or other light signals for transmission to the optic fiber strands or sensors and also to receive reflected signals from the sensors is included in the system. Software to interpret the sensor signals can be used in the geosynthetic monitoring system. 6 figs.

  10. Geomembrane barriers using integral fiber optics to monitor barrier integrity

    DOEpatents

    Staller, George E.; Wemple, Robert P.

    1996-01-01

    This invention provides a geomembrane or geotextile with embedded optical sensors that are used to monitor the status of containment site barriers. Fiber optic strands are used to form the sensors that can detect and monitor conditions at the sites such as breaches, slope creep, subsidence, leachate levels, fires, and types of materials present or leaking from the site. The strands are integral to the membrane or textile materials. The geosythetic membrane is deployed at the site in a fashion similar to carpet laying. Edges of the membrane or textile are joined to form a liner and the ends of the membrane or textile become the connection zones for obtaining signals from the sensors. A connection interface with a control system to generate Optical Time Delay Response or other light signals for transmission to the optic fiber strands or sensors and also to receive reflected signals from the sensors is included in the system. Software to interpret the sensor signals can be used in the geosythetic monitoring system.

  11. Industrial recovered-materials-utilization targets for the textile-mill-products industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1979-01-01

    The Congress, in the National Energy Conservation and Policy Act of 1978 (NECPA), directed the Department of Energy to establish materials recovery targets for the metals and metal products, paper and allied products, rubber, and textile-mill-products industries. The targets were developed to provide incentives for using energy-saving recorded materials and to provied a yardstick for measuring progress and improvement in this endeavor. The NECPA indicates that the targets should represent the maximum technically and economically feasible increase in the use of energy-saving recovered materials that each industry can achieve progressively by January 1, 1987. Materials affected by recovered-materials targets includemore » and are limited to aluminum, copper, lead, zinc, iron, steel, paper and associated products, textile-mill, products, and rubber. Using information gathered from the textile-mill-products industry and from other textile-relaed sources, DOE has developed recovered materials targets for that industry. This report presents those targets and their basis and justification. Following an overview of the textile industry, the chapters are: Textile-Mill-Products Industry Operations; Economic Analysis of the Textile-Mill-Products Industry; Governmental and Regulatory Influence on the US Textile Industry; Current Mill Use of Recovered Materials in the Textile-Mill-Products Industry; Limitations on the Use of Recovered Materials in the US Textile-Mill-Products Industry; Materials-Recovery Targets; and Government and Industry Actions That Could Increase the Use of Recovered Materials.« less

  12. Textile Functionalization and Its Effects on the Release of Silver Nanoparticles into Artificial Sweat.

    PubMed

    Wagener, Sandra; Dommershausen, Nils; Jungnickel, Harald; Laux, Peter; Mitrano, Denise; Nowack, Bernd; Schneider, Gregor; Luch, Andreas

    2016-06-07

    This study addresses the release of total silver (Ag) and silver nanoparticles (Ag-NPs) from textiles into artificial sweat, particularly considering the functionalization technology used in textile finishing. Migration experiments were conducted for four commercially available textiles and for six laboratory-prepared textiles. Two among these lab-prepared textiles represent materials in which Ag-NPs were embedded within the textile fibers (composites), whereas the other lab-prepared textiles contain Ag particles on the respective fiber surfaces (coatings). The results indicate a smaller release of total Ag from composites in comparison to surface-coated textiles. The particulate fraction determined within the artificial sweat was negligible for most textiles, meaning that the majority of the released Ag is present as dissolved Ag. It is also relevant to note that nanotextiles do not release more particulate Ag than conventional Ag textiles. The results rather indicate that the functionalization type is the most important parameter affecting the migration. Furthermore, after measuring different Ag-NP types in their pristine form with inductively coupled plasma mass spectrometry in the single particle mode, there is evidence that particle modifications, like surface coating, may also influence the dissolution behavior of the Ag-NPs in the sweat solutions. These factors are important when discussing the likelihood of consumer exposure.

  13. In vitro cytotoxicity and genotoxicity of composite mixtures of natural rubber and leather residues used for textile applications.

    PubMed

    Cavalcante, Dalita Gsm; Gomes, Andressa S; Dos Reis, Elton Ap; Danna, Caroline S; Kerche-Silva, Leandra E; Yoshihara, Eidi; Job, Aldo E

    2017-06-01

    A novel composite material has been developed from natural rubber and leather waste, and a corresponding patent has been filed. This new material may be incorporated into textile and footwear products. However, as leather waste contains chromium, the biocompatibility of this new material and its safety for use in humans must be investigated. The aim of the present study was to investigate the presence of chromium in this new material, determine the amount of each form of chromium present (trivalent or hexavalent), and evaluate the potential cytotoxic and genotoxic effects of the novel composite in two cell lines. The cellular viability was quantified using the MTT3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction method and neutral red uptake assay, and genotoxic damage was analyzed using the comet assay. Our findings indicated that the extracts obtained from the composite were severely cytotoxic to both cell lines tested, and additionally highly genotoxic to MRC-5 cells. These biological responses do not appear to be attributable to the presence of chromium, as the trivalent form was predominantly found to be present in the extracts, indicating that hexavalent chromium is not formed during the production of the novel composite. The incorporation of this new material in applications that do not involve direct contact with the human skin is thus indicated, and it is suggested that the chain of production of this material be studied in order to improve its biocompatibility so that it may safely be used in the textile and footwear industries.

  14. Consolidation of graphite thermoplastic textile preforms for primary aircraft structure

    NASA Technical Reports Server (NTRS)

    Suarez, J.; Mahon, J.

    1991-01-01

    The use of innovative cost effective material forms and processes is being considered for fabrication of future primary aircraft structures. Processes that have been identified as meeting these goals are textile preforms that use resin transfer molding (RTM) and consolidation forming. The Novel Composites for Wing and Fuselage Applications (NCWFA) program has as its objective the integration of innovative design concepts with cost effective fabrication processes to develop damage-tolerant structures that can perform at a design ultimate strain level of 6000 micro-inch/inch. In this on-going effort, design trade studies were conducted to arrive at advanced wing designs that integrate new material forms with innovative structural concepts and cost effective fabrication methods. The focus has been on minimizing part count (mechanical fasteners, clips, number of stiffeners, etc.), by using cost effective textile reinforcement concepts that provide improved damage tolerance and out-of-plane load capability, low-cost resin transfer molding processing, and thermoplastic forming concepts. The fabrication of representative Y spars by consolidation methods will be described. The Y spars were fabricated using AS4 (6K)/PEEK 150g commingled angle interlock 0/90-degree woven preforms with +45-degree commingled plies stitched using high strength Toray carbon thread and processed by autoclave consolidation.

  15. Development of Textile Reinforced Composites for Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson

    1998-01-01

    NASA has been a leader in development of composite materials for aircraft applications during the past 25 years. In the early 1980's NASA and others conducted research to improve damage tolerance of composite structures through the use of toughened resins but these resins were not cost-effective. The aircraft industry wanted affordable, robust structures that could withstand the rigors of flight service with minimal damage. The cost and damage tolerance barriers of conventional laminated composites led NASA to focus on new concepts in composites which would incorporate the automated manufacturing methods of the textiles industry and which would incorporate through-the-thickness reinforcements. The NASA Advanced Composites Technology (ACT) Program provided the resources to extensively investigate the application of textile processes to next generation aircraft wing and fuselage structures. This paper discusses advanced textile material forms that have been developed, innovative machine concepts and key technology advancements required for future application of textile reinforced composites in commercial transport aircraft. Multiaxial warp knitting, triaxial braiding and through-the-thickness stitching are the three textile processes that have surfaced as the most promising for further development. Textile reinforced composite structural elements that have been developed in the NASA ACT Program are discussed. Included are braided fuselage frames and window-belt reinforcements, woven/stitched lower fuselage side panels, stitched multiaxial warp knit wing skins, and braided wing stiffeners. In addition, low-cost processing concepts such as resin transfer molding (RTM), resin film infusion (RFI), and vacuum-assisted resin transfer molding (VARTM) are discussed. Process modeling concepts to predict resin flow and cure in textile preforms are also discussed.

  16. Modelling the development of defects during composite reinforcements and prepreg forming.

    PubMed

    Boisse, P; Hamila, N; Madeo, A

    2016-07-13

    Defects in composite materials are created during manufacture to a large extent. To avoid them as much as possible, it is important that process simulations model the onset and the development of these defects. It is then possible to determine the manufacturing conditions that lead to the absence or to the controlled presence of such defects. Three types of defects that may appear during textile composite reinforcement or prepreg forming are analysed and modelled in this paper. Wrinkling is one of the most common flaws that occur during textile composite reinforcement forming processes. The influence of the different rigidities of the textile reinforcement is studied. The concept of 'locking angle' is questioned. A second type of unusual behaviour of fibrous composite reinforcements that can be seen as a flaw during their forming process is the onset of peculiar 'transition zones' that are directly related to the bending stiffness of the fibres. The 'transition zones' are due to the bending stiffness of fibres. The standard continuum mechanics of Cauchy is not sufficient to model these defects. A second gradient approach is presented that allows one to account for such unusual behaviours and to master their onset and development during forming process simulations. Finally, the large slippages that may occur during a preform forming are discussed and simulated with meso finite-element models used for macroscopic forming. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).

  17. Structural Performance of a Compressively Loaded Foam-Core Hat-Stiffened Textile Composite Panel

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Dexter, Benson H.

    1996-01-01

    A structurally efficient hat-stiffened panel concept that utilizes a structural foam as a stiffener core material has been designed and developed for aircraft primary structural applications. This stiffener concept is fabricated from textile composite material forms with a resin transfer molding process. This foam-filled hat-stiffener concept is structurally more efficient than most other prismatically stiffened panel configurations in a load range that is typical for both fuselage and wing structures. The panel design is based on woven/stitched and braided graphite-fiber textile preforms, an epoxy resin system, and Rohacell foam core. The structural response of this panel design was evaluated for its buckling and postbuckling behavior with and without low-speed impact damage. The results from single-stiffener and multi-stiffener specimen tests suggest that this structural concept responds to loading as anticipated and has excellent damage tolerance characteristics compared to a similar panel design made from preimpregnated graphite-epoxy tape material.

  18. Textile materials for the design of wearable antennas: a survey.

    PubMed

    Salvado, Rita; Loss, Caroline; Gonçalves, Ricardo; Pinho, Pedro

    2012-11-15

    In the broad context of Wireless Body Sensor Networks for healthcare and pervasive applications, the design of wearable antennas offers the possibility of ubiquitous monitoring, communication and energy harvesting and storage. Specific requirements for wearable antennas are a planar structure and flexible construction materials. Several properties of the materials influence the behaviour of the antenna. For instance, the bandwidth and the efficiency of a planar microstrip antenna are mainly determined by the permittivity and the thickness of the substrate. The use of textiles in wearable antennas requires the characterization of their properties. Specific electrical conductive textiles are available on the market and have been successfully used. Ordinary textile fabrics have been used as substrates. However, little information can be found on the electromagnetic properties of regular textiles. Therefore this paper is mainly focused on the analysis of the dielectric properties of normal fabrics. In general, textiles present a very low dielectric constant that reduces the surface wave losses and increases the impedance bandwidth of the antenna. However, textile materials are constantly exchanging water molecules with the surroundings, which affects their electromagnetic properties. In addition, textile fabrics are porous, anisotropic and compressible materials whose thickness and density might change with low pressures. Therefore it is important to know how these characteristics influence the behaviour of the antenna in order to minimize unwanted effects. This paper presents a survey of the key points for the design and development of textile antennas, from the choice of the textile materials to the framing of the antenna. An analysis of the textile materials that have been used is also presented.

  19. Textile Materials for the Design of Wearable Antennas: A Survey

    PubMed Central

    Salvado, Rita; Loss, Caroline; Gonçalves, Ricardo; Pinho, Pedro

    2012-01-01

    In the broad context of Wireless Body Sensor Networks for healthcare and pervasive applications, the design of wearable antennas offers the possibility of ubiquitous monitoring, communication and energy harvesting and storage. Specific requirements for wearable antennas are a planar structure and flexible construction materials. Several properties of the materials influence the behaviour of the antenna. For instance, the bandwidth and the efficiency of a planar microstrip antenna are mainly determined by the permittivity and the thickness of the substrate. The use of textiles in wearable antennas requires the characterization of their properties. Specific electrical conductive textiles are available on the market and have been successfully used. Ordinary textile fabrics have been used as substrates. However, little information can be found on the electromagnetic properties of regular textiles. Therefore this paper is mainly focused on the analysis of the dielectric properties of normal fabrics. In general, textiles present a very low dielectric constant that reduces the surface wave losses and increases the impedance bandwidth of the antenna. However, textile materials are constantly exchanging water molecules with the surroundings, which affects their electromagnetic properties. In addition, textile fabrics are porous, anisotropic and compressible materials whose thickness and density might change with low pressures. Therefore it is important to know how these characteristics influence the behaviour of the antenna in order to minimize unwanted effects. This paper presents a survey of the key points for the design and development of textile antennas, from the choice of the textile materials to the framing of the antenna. An analysis of the textile materials that have been used is also presented. PMID:23202235

  20. Silver speciation and release in commercial antimicrobial textiles as influenced by washing.

    PubMed

    Lombi, Enzo; Donner, Erica; Scheckel, Kirk G; Sekine, Ryo; Lorenz, Christiane; Von Goetz, Natalie; Nowack, Bernd

    2014-09-01

    The use of nanoscale Ag in textiles is one the most often mentioned uses of nano-Ag. It has previously been shown that significant amounts of the Ag in the textiles are released upon washing. However, the form of Ag present in the textiles remains largely unknown as product labelling is insufficient. The aim of this study was therefore to investigate the solid phase speciation of Ag in original and washed silver textiles using XANES. The original Ag speciation in the textiles was found to vary greatly between different materials with Ag(0), AgCl, Ag2S, Ag-phosphate, ionic Ag and other species identified. Furthermore, within the same textile a number of different species were found to coexist. This is likely due to a combination of factors such as the synthesis processes at industrial scale and the possible reaction of Ag with atmospheric gases. Washing with two different detergents resulted in marked changes in Ag-speciation. For some textiles the two detergents induced similar transformation, in other textiles they resulted in very different Ag species. This study demonstrates that in functional Ag textiles a variety of different Ag species coexist before and after washing. These results have important implications for the risk assessment of Ag textiles because they show that the metallic Ag is only one of the many silver species that need to be considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Auxetic textiles.

    PubMed

    Rant, Darja; Rijavec, Tatjana; Pavko-Čuden, Alenka

    2013-01-01

    Common materials have Poisson's ratio values ranging from 0.0 to 0.5. Auxetic materials exhibit negative Poisson's ratio. They expand laterally when stretched longitudinally and contract laterally when compressed. In recent years the use of textile technology to fabricate auxetic materials has attracted more and more attention. It is reflected in the extent of available research work exploring the auxetic potential of various textile structures and subsequent increase in the number of research papers published. Generally there are two approaches to producing auxetic textiles. The first one includes the use of auxetic fibers to produce an auxetic textile structure, whereas the other utilizes conventional fibres to produce a textile structure with auxetic properties. This review deals with auxetic materials in general and in the specific context of auxetic polymers, auxetic fibers, and auxetic textile structures made from conventional fibers and knitted structures with auxetic potential.

  2. The Design and Testing of a Dual Fiber Textile Matrix for Accelerating Surface Hemostasis

    PubMed Central

    Fischer, Thomas H.; Vournakis, John N.; Manning, James E.; McCurdy, Shane L.; Rich, Preston B.; Nichols, Timothy C.; Scull, Christopher M.; McCord, Marian G.; Decorta, Joseph A.; Johnson, Peter C.; Smith, Carr J.

    2011-01-01

    The standard treatment for severe traumatic injury is frequently compression and application of gauze dressing to the site of hemorrhage. However, while able to rapidly absorb pools of shed blood, gauze fails to provide strong surface (topical) hemostasis. The result can be excess hemorrhage-related morbidity and mortality. We hypothesized that cost-effective materials (based on widespread availability of bulk fibers for other commercial uses) could be designed based on fundamental hemostatic principles to partially emulate the wicking properties of gauze while concurrently stimulating superior hemostasis. A panel of readily available textile fibers was screened for the ability to activate platelets and the intrinsic coagulation cascade in vitro. Type E continuous filament glass and a specialty rayon fiber were identified from the material panel as accelerators of hemostatic reactions and were custom woven to produce a dual fiber textile bandage. The glass component strongly activated platelets while the specialty rayon agglutinated red blood cells. In comparison with gauze in vitro, the dual fiber textile significantly enhanced the rate of thrombin generation, clot generation as measured by thromboelastography, adhesive protein adsorption and cellular attachment and activation. These results indicate that hemostatic textiles can be designed that mimic gauze in form but surpass gauze in ability to accelerate hemostatic reactions. PMID:19489008

  3. Exploration of microfluidic devices based on multi-filament threads and textiles: A review

    PubMed Central

    Nilghaz, A.; Ballerini, D. R.; Shen, W.

    2013-01-01

    In this paper, we review the recent progress in the development of low-cost microfluidic devices based on multifilament threads and textiles for semi-quantitative diagnostic and environmental assays. Hydrophilic multifilament threads are capable of transporting aqueous and non-aqueous fluids via capillary action and possess desirable properties for building fluid transport pathways in microfluidic devices. Thread can be sewn onto various support materials to form fluid transport channels without the need for the patterned hydrophobic barriers essential for paper-based microfluidic devices. Thread can also be used to manufacture fabrics which can be patterned to achieve suitable hydrophilic-hydrophobic contrast, creating hydrophilic channels which allow the control of fluids flow. Furthermore, well established textile patterning methods and combination of hydrophilic and hydrophobic threads can be applied to fabricate low-cost microfluidic devices that meet the low-cost and low-volume requirements. In this paper, we review the current limitations and shortcomings of multifilament thread and textile-based microfluidics, and the research efforts to date on the development of fluid flow control concepts and fabrication methods. We also present a summary of different methods for modelling the fluid capillary flow in microfluidic thread and textile-based systems. Finally, we summarized the published works of thread surface treatment methods and the potential of combining multifilament thread with other materials to construct devices with greater functionality. We believe these will be important research focuses of thread- and textile-based microfluidics in future. PMID:24086179

  4. Effect of textiles structural parameters on surgical healing; a case study

    NASA Astrophysics Data System (ADS)

    Marwa, A. Ali

    2017-10-01

    Medical Textiles is one of the most rapidly expanding sectors in the technical textile market. The huge growth of medical textiles applications was over the last 12 years. “Biomedical Textiles” is a subcategory of medical textiles that narrows the field down to those applications that are intended for active tissue contact, tissue regeneration or surgical implantation. Since the mid-1960s, the current wave of usage is coming as a result of new fibers and new technologies for textile materials construction. “Biotextiles” term include structures composed of textile fibers designed for use in specific biological environments. Medical Textile field was utilizing different materials, textile techniques and structures to provide new medical products with high functionality in the markets. There are other processes that are associated with textiles in terms of the various treatments and finishing. The aim of this article is to draw attention to the medical field in each of Vitro and Vivo trend, and its relation with textile structural parameters, with regard to the fiber material, production techniques, and fabric structures. Also, it is focusing on some cases studies which were applied in our research which produced with different textile parameters. Finally; an overview is presented about modern and innovative applications of the medical textiles.

  5. Functional Circuitry on Commercial Fabric via Textile-Compatible Nanoscale Film Coating Process for Fibertronics.

    PubMed

    Bae, Hagyoul; Jang, Byung Chul; Park, Hongkeun; Jung, Soo-Ho; Lee, Hye Moon; Park, Jun-Young; Jeon, Seung-Bae; Son, Gyeongho; Tcho, Il-Woong; Yu, Kyoungsik; Im, Sung Gap; Choi, Sung-Yool; Choi, Yang-Kyu

    2017-10-11

    Fabric-based electronic textiles (e-textiles) are the fundamental components of wearable electronic systems, which can provide convenient hand-free access to computer and electronics applications. However, e-textile technologies presently face significant technical challenges. These challenges include difficulties of fabrication due to the delicate nature of the materials, and limited operating time, a consequence of the conventional normally on computing architecture, with volatile power-hungry electronic components, and modest battery storage. Here, we report a novel poly(ethylene glycol dimethacrylate) (pEGDMA)-textile memristive nonvolatile logic-in-memory circuit, enabling normally off computing, that can overcome those challenges. To form the metal electrode and resistive switching layer, strands of cotton yarn were coated with aluminum (Al) using a solution dip coating method, and the pEGDMA was conformally applied using an initiated chemical vapor deposition process. The intersection of two Al/pEGDMA coated yarns becomes a unit memristor in the lattice structure. The pEGDMA-Textile Memristor (ETM), a form of crossbar array, was interwoven using a grid of Al/pEGDMA coated yarns and untreated yarns. The former were employed in the active memristor and the latter suppressed cell-to-cell disturbance. We experimentally demonstrated for the first time that the basic Boolean functions, including a half adder as well as NOT, NOR, OR, AND, and NAND logic gates, are successfully implemented with the ETM crossbar array on a fabric substrate. This research may represent a breakthrough development for practical wearable and smart fibertronics.

  6. Photonic Sorting of Aligned, Crystalline Carbon Nanotube Textiles.

    PubMed

    Bulmer, John S; Gspann, Thurid S; Orozco, Francisco; Sparkes, Martin; Koerner, Hilmar; Di Bernardo, A; Niemiec, Arkadiusz; Robinson, J W A; Koziol, Krzysztof K; Elliott, James A; O'Neill, William

    2017-10-11

    Floating catalyst chemical vapor deposition uniquely generates aligned carbon nanotube (CNT) textiles with individual CNT lengths magnitudes longer than competing processes, though hindered by impurities and intrinsic/extrinsic defects. We present a photonic-based post-process, particularly suited for these textiles, that selectively removes defective CNTs and other carbons not forming a threshold thermal pathway. In this method, a large diameter laser beam rasters across the surface of a partly aligned CNT textile in air, suspended from its ends. This results in brilliant, localized oxidation, where remaining material is an optically transparent film comprised of few-walled CNTs with profound and unique improvement in microstructure alignment and crystallinity. Raman spectroscopy shows substantial D peak suppression while preserving radial breathing modes. This increases the undoped, specific electrical conductivity at least an order of magnitude to beyond that of single-crystal graphite. Cryogenic conductivity measurements indicate intrinsic transport enhancement, opposed to simply removing nonconductive carbons/residual catalyst.

  7. Chemistry of Durable and Regenerable Biocidal Textiles

    ERIC Educational Resources Information Center

    Gang Sun; Worley, S. Dave

    2005-01-01

    Antimicrobial textiles can be categorized into two groups, biocidal and biostatic materials, according to their functions. Biostatic functions refer to inhibiting growth of microorganisms on textiles and preventing the materials from biodegradation and biocidal materials are able to kill microorganisms, thus eliminating their growth, sterilizing…

  8. Chemochromic Detector for Sensing Gas Leakage and Process for Producing the Same

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Captain, Janine E. (Inventor); Roberson, Luke B. (Inventor); Tate, LaNetra Clayton (Inventor)

    2015-01-01

    A chemochromic sensor for detecting a combustible gas, such as hydrogen, includes a chemochromic pigment and a textile polymer. The textile material includes a chemochromic pigment operably responsive to a combustible gas. The combustible gas sensing textile material can be made by melt spinning, solution spinning, or other similar techniques. In a preferred embodiment carbon nanotubes are used with the textile material which will increase the material strength and alter the thermal and/or electrical properties. These textiles woven into fabrics can provide garments not only with hydrogen sensing capabilities but the carbon nanotubes will allow for a range of sensing capabilities to be embedded (i.e. gas, health, and electronic monitors) within the garments.

  9. Novel Wireless-Communicating Textiles Made from Multi-Material and Minimally-Invasive Fibers

    PubMed Central

    Gorgutsa, Stepan; Bélanger-Garnier, Victor; Ung, Bora; Viens, Jeff; Gosselin, Benoit; LaRochelle, Sophie; Messaddeq, Younes

    2014-01-01

    The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications. PMID:25325335

  10. Novel wireless-communicating textiles made from multi-material and minimally-invasive fibers.

    PubMed

    Bélanger-Garnier, Victor; Gorgutsa, Stephan; Ung, Bora; Viens, Jeff; Gosselin, Benoit; LaRochelle, Sophie; Messaddeq, Younes

    2014-01-01

    The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications.

  11. Novel wireless-communicating textiles made from multi-material and minimally-invasive fibers.

    PubMed

    Gorgutsa, Stepan; Bélanger-Garnier, Victor; Ung, Bora; Viens, Jeff; Gosselin, Benoit; LaRochelle, Sophie; Messaddeq, Younes

    2014-10-16

    The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications.

  12. Development of 2D and 3D structured textile batteries processing conductive material with Tailored Fiber Placement (TFP)

    NASA Astrophysics Data System (ADS)

    Normann, M.; Grethe, T.; Zöll, K.; Ehrmann, A.; Schwarz-Pfeiffer, A.

    2017-10-01

    In recent years smart textiles have gained a significant increase of attention. Electrotherapeutic socks, light emitting dresses or shirts with integrated sensors, having the ability to process data of vital parameters, are just a few examples and the full potential is not yet exhausted: Smart textiles are not only used for clothing purposes. Sensors for the care of the elderly, light applications for home textiles and monitoring systems in the automotive section are promising fields for the future. For all these electrical and electronic features, the supply of power is needed. The most common used power supplies, however, are not flexible, often not lightweight and therefore a huge problem for the integration into textile products. In recent projects, textile-based batteries are being developed. Metal-coated fabrics and yarns (e.g. silver, copper, nickel, zinc) as well as carbon based materials were used to create textile based energy sources. This article gives an overview of textile based electrochemical cells by combining different conductive yarns and a gel-electrolyte. The available materials will be processed by embroidering utilizing tailored fiber placement (TFP). The electrical characteristics of different embroidered patterns and material combinations are examined.

  13. [Hygienic study and evaluation of textile materials with reduced combustibility with reference to the use of the new anti-inflammable preparations Pyrofix 2 and Torflam].

    PubMed

    Uzunova, S; Baĭnova, A; Iordanova, I; Dolova, D

    1986-01-01

    The new anti-flammable preparations, proposed by the Higher Chemical Technology Institute (Sofia), were studied, namely: Pyrofix 2--for treatment of textile materials and Torflam--for production of anti-inflammable polyester fibres. The following parameters were studied: skin-irritating and skin-sensitizing effect of both preparations, skin toxic effect of Pyrofix 2 and migration of chemicals from the anti-inflammable textile materials (from the composition of the preparations used). The results obtained revealed the absence of skin-irritating and skin-sensitizing effect of both preparations and cumulative dermal toxicity of Pyrofix 2. The textile materials with reduced combustibility are chemically stable and do not release compounds in the contact aqueous medium, imitating the underclothes space. Formaldehyde from recipe for the treatment of Pyrofix 2 migrates in the air environment. In conclusion, Pyrofix 2 could be applied for the final anti-inflammable treatment of the textile materials for industrial needs, working garments and everyday textile (with the elimination of formaldehyde compound from the recipe). Torflam could be used in the production of anti-inflammable polyester fibres for textile materials intended for industry and everyday life without immediate contact with the skin of the consumers.

  14. 16 CFR 303.30 - Textile fiber products in form for consumer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Textile fiber products in form for consumer... products in form for consumer. A textile fiber product shall be considered to be in the form intended for sale or delivery to, or for use by, the ultimate consumer when the manufacturing or processing of the...

  15. 16 CFR 303.30 - Textile fiber products in form for consumer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Textile fiber products in form for consumer... products in form for consumer. A textile fiber product shall be considered to be in the form intended for sale or delivery to, or for use by, the ultimate consumer when the manufacturing or processing of the...

  16. Comparative toxicity of leachates from 52 textiles to Daphnia magna.

    PubMed

    Dave, Göran; Aspegren, Pia

    2010-10-01

    The environmental aspects of textiles are very complex and include production, processing, transport, usage, and recycling. Textiles are made from a variety of materials and can contain a large number of chemicals. Chemicals are used during production of fibres, for preservation and colouring and they are released during normal wear and during washing. The aim of this study was to investigate the release to water of toxic chemicals from various textiles. Altogether 52 samples of textiles made from cotton (21), linen (4), cotton and linen (7), cellulose (3), synthetic fibres (7), cotton and synthetic fibres (8) and wool (2). Seven were eco-labelled. All textiles were cut into squares and placed into Petri dishes with 50 ml ISO test medium in a concentration series (4-256 cm(2)/50 ml) and tested for acute toxicity to Daphnia magna. Estimated EC50s were converted into weight/volume, and 48-h EC50s ranged between <1 and >182 g/L. It was not possible to detect any difference between fibre type and toxicity (ANOVA), but a significantly higher toxicity was found for printed versus unprinted cotton and cotton/linen textiles, while the opposite was found for synthetic textiles. Eco-labelled products were evenly distributed on a toxicity scale, which means that eco-labelling in its present form does not necessarily protect users or the environment from exposure to toxic chemicals. Therefore, the results from the present study suggest that bioassays and toxicity tests should become an integrated part of textile environmental quality control programs. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. The Role of China in the UK Relative Imports from Three Selected Trading Regions: The Case of Textile Raw Material Industry.

    PubMed

    Xu, Junqian

    2017-11-30

    The UK textile industry was very prosperous in the past but in the 1970s Britain started to import textile materials from abroad. Since 1990, half of its textile materials have been imported from the EEA (European Economic Area), ASEAN (Association of Southeast Asian Nations) and North America countries. Meanwhile, UK imports from China have increased dramatically. Through comparisons, this paper calculates the trade competitiveness index and relative competitive advantages of regions and investigates the impact of Chinese textiles on UK imports from three key free trade regions across the textile sectors in the period 1990-2016 on the basis of United Nation Comtrade Rev. 3. We find that China's textile prices, product techniques, political trade barriers and even tax system have made a varied impact on the UK's imports across related sectors in the context of green trade and the strengthening of barriers, which helps us recognize China's competitiveness in international trading and also provides advice on China's sustainable development of textile exports.

  18. The Role of China in the UK Relative Imports from Three Selected Trading Regions: The Case of Textile Raw Material Industry

    PubMed Central

    Xu, Junqian

    2017-01-01

    The UK textile industry was very prosperous in the past but in the 1970s Britain started to import textile materials from abroad. Since 1990, half of its textile materials have been imported from the EEA (European Economic Area), ASEAN (Association of Southeast Asian Nations) and North America countries. Meanwhile, UK imports from China have increased dramatically. Through comparisons, this paper calculates the trade competitiveness index and relative competitive advantages of regions and investigates the impact of Chinese textiles on UK imports from three key free trade regions across the textile sectors in the period 1990–2016 on the basis of United Nation Comtrade Rev. 3. We find that China’s textile prices, product techniques, political trade barriers and even tax system have made a varied impact on the UK’s imports across related sectors in the context of green trade and the strengthening of barriers, which helps us recognize China’s competitiveness in international trading and also provides advice on China’s sustainable development of textile exports. PMID:29189756

  19. Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)

    2008-01-01

    A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.

  20. Finite element based micro-mechanics modeling of textile composites

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Griffin, O. H., Jr.

    1995-01-01

    Textile composites have the advantage over laminated composites of a significantly greater damage tolerance and resistance to delamination. Currently, a disadvantage of textile composites is the inability to examine the details of the internal response of these materials under load. Traditional approaches to the study fo textile based composite materials neglect many of the geometric details that affect the performance of the material. The present three dimensional analysis, based on the representative volume element (RVE) of a plain weave, allows prediction of the internal details of displacement, strain, stress, and failure quantities. Through this analysis, the effect of geometric and material parameters on the aforementioned quantities are studied.

  1. Migration of Organophorus Flame Retardants From Closed cell form to Settled Dust

    EPA Science Inventory

    Many industrial and consumer products, such as electrical and electronic products, furniture, plastics, textile, and building materials are manufactured with organophosphorus flame retardants (OPFRs). OPFRs can leach or diffuse out of the products and are released to the surround...

  2. Degradation patterns of natural and synthetic textiles on a soil surface during summer and winter seasons studied using ATR-FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ueland, Maiken; Howes, Johanna M.; Forbes, Shari L.; Stuart, Barbara H.

    2017-10-01

    Textiles are a valuable source of forensic evidence and the nature and condition of textiles collected from a crime scene can assist investigators in determining the nature of the death and aid in the identification of the victim. Until now, much of the knowledge of textile degradation in forensic contexts has been based on the visual inspection of material collected from soil environments. The purpose of the current study was to investigate the potential of a more quantitative approach to the understanding of forensic textile degradation through the application of infrared spectroscopy. Degradation patterns of natural and synthetic textile materials as they were subjected to a natural outdoor environment in Australia were investigated. Cotton, polyester and polyester - cotton blend textiles were placed on a soil surface during the summer and winter seasons and were analysed over periods 1 and 1.5 years, respectively, and examined using attenuated total reflectance (ATR) spectroscopy. Statistical analysis of the spectral data obtained for the cotton material correlated with visual degradation and a difference in the onset of degradation between the summer and winter season was revealed. The synthetic material did not show any signs of degradation either visually or statistically throughout the experimental period and highlighted the importance of material type in terms of preservation. The cotton section from the polyester - cotton blend samples was found to behave in a similar manner to that of the 100% cotton samples, however principal component analysis (PCA) demonstrated that the degradation patterns were less distinct in both the summer and winter trial for the blend samples. These findings indicated that the presence of the synthetic material may have inhibited the degradation of the natural material. The use of statistics to analyse the spectral data obtained for textiles of forensic interest provides a better foundation for the interpretation of the data obtained using ATR-FTIR spectroscopy, and has provided insight into textile degradation processes relevant to a soil environment.

  3. A review on utilization of textile composites in transportation towards sustainability

    NASA Astrophysics Data System (ADS)

    Aly, Nermin M.

    2017-10-01

    Transportation industry is rapidly developing owing to its size and importance which affects on various aspects of life. It includes all the transport means that facilitate mobility of people or goods either by air, land or sea like aircrafts, automotives, ships, trains, etc. The utilization of textiles in this industry is increasing as a result of moving towards achieving sustainability and enhancing performance, comfort and safety. Through substituting heavier materials with textiles of high performance specifications and textile reinforced composites to reduce weight, fuel consumption and CO2 emissions. Composite materials can fulfil the demands for sustainability in the transportation sector through using renewable, recycled and lightweight materials, considering the requirements of each category of transport vehicles. Textiles used in reinforcing composites are diverse including fibers, yarns or fabric preforms such as woven, nonwoven, knitted, braided which varies from 2D to complex 3D structures. This paper presents a brief review on the utilization of textiles in reinforcing composites for various transportation applications to achieve sustainability. Also, discussing the influence of textiles structural parameters like fiber material properties, fabric production technique and construction on their mechanical behaviour. Focusing on researches findings in this area and highlighting some prospects for further developments domestically.

  4. Infrared spectroscopic investigations on the distribution of residual grease on textiles

    NASA Astrophysics Data System (ADS)

    Siedler, J.; Schumacher-Hamedat, Ursula; Hoecker, Hartwig

    1992-03-01

    Surface modification of textile materials is of major importance in the modern textile industry. Several methods are commonly applied to produce a broad range of coated materials. The adhesion between the coating polymers and the textile fibers often determines the quality. Improved adhesion of the coating is achieved by a chemical bonding (covalent or ionic) between the coating materials and the textile. The efficiency,however, is dependent on the orientation of the functional groups of the outmost molecular layers of the fibers. Therefore, we have used surface sensitive methods to analyze the surface structure of proteinaceous fibers. Homopoly(aminoacid) films like poly(-(gamma) -benzyl-L-glutamate) and poly(- (Beta) -benzyl-L-aspartate) have been chosen as models for natural fibers like wool.

  5. 3D Interconnected V6O13 Nanosheets Grown on Carbonized Textile via a Seed-Assisted Hydrothermal Process as High-Performance Flexible Cathodes for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Xu, Shixing; Cen, Dingcheng; Gao, Peibo; Tang, Huang; Bao, Zhihao

    2018-03-01

    Three-dimensional (3D) free-standing nanostructured materials have been proven to be one of the most promising electrodes for energy storage due to their enhanced electrochemical performance. And they are also widely studied for the wearable energy storage systems. In this work, interconnected V6O13 nanosheets were grown on the flexible carbonized textile (c-textile) via a seed-assisted hydrothermal method to form a 3D free-standing electrode for lithium-ion batteries (LIBs). The electrode exhibited a specific capacity of 170 mA h g-1 at a specific current of 300 mA g-1. With carbon nanotube (CNT) coating, its specific capacities further increased 12-40% at the various current rates. It could retain a reversible capacity of 130 mA h g-1, 74% of the initial capacity after 300 cycles at the specific current of 300 mA g-1. It outperformed most of the mixed-valence vanadium oxides. The improved electrochemical performance was ascribed to the synergistic effect of the 3D nanostructure of V6O13 for feasible Li+ diffusion and transport and highly conductive hierarchical conductive network formed by CNT and carbon fiber in c-textile.

  6. Smart textiles: a new drug delivery system for symptomatic treatment of a common cold.

    PubMed

    Wienforth, F; Landrock, A; Schindler, C; Siegert, J; Kirch, W

    2007-05-01

    Smart textiles provide the possibility of being coated with cineole, menthol, and camphor. Due to over-the-counter availability, ethereal oils are frequently used to treat a common cold. The existing pharmaceutical forms entail the risk of oral ingestion by children, which can cause severe intoxications. This risk could be limited by a smart textile application. Prior to applicability tests in children, the principal traceability of smart textile-applied ethereal oils at their site of action in the alveoli has to be demonstrated. Therefore, a crossover trial (ointment vs smart textiles) with 6 healthy volunteers was carried out as a proof-of-concept study. As a result, the principle proof is given that smart textile-applied ethereal oils are available at their site of action. Because of the volatility of the active ingredients, a close-fitting textile form has to be developed for further clinical development of smart textiles to achieve higher concentrations in the alveoli. Slower liberation properties and a more convenient skin sensation in comparison to available pharmaceutical forms may provide advantages for the applicability in both children and adults.

  7. Recent researches concerning the obtaining of functional textiles based on conductive yarns

    NASA Astrophysics Data System (ADS)

    Leon, A. L.; Manea, L. R.; Hristian, L.

    2016-08-01

    Modem textile industry is influenced both by consumers' lifestyle and by novel materials. Functional textiles can be included into the group of technical textiles. The functional activity can be shortly interpreted as "sense - react - adapt" to the environment while traditional materials meet only passive protective role, a barrier between body and environment. Functional materials cross the conventional limits because they are designed for specific performances, being part of domains as: telemedicine, medicine, aeronautics, biotechnology, nanotechnology, protective clothes, sportswear, etc. This paper highlights the most recent developments in the field of using conductive yarns for obtaining functional textiles. Conductive fabrics can be done by incorporating into the textile structure the conductive fibers / yarns. The technologies differ from embroidering, sewing, weaving, knitting to braiding and obtaining nonwovens. The conductive fabrics production has a quickly growth because it is a high demand for these textiles used for data transfer in clothing, monitoring vital signs, germ-free garments, brain-computer interface, etc. Nowadays it is of high interest surface treatments of fibers/yarns which can be considered as a novel kind of textile finishing. There are presented some researches related to obtaining conductive yarns by coating PET and PP yarns with PANi conductive polymer.

  8. Textile Supercapacitors

    NASA Astrophysics Data System (ADS)

    Jost, Kristy Alana

    Innovative and interdisciplinary solutions to wearable textile energy storage are explored as power sources for wearable electronics and smart textiles. Due to their long cycle life, non-toxic and inexpensive materials, supercapacitors were converted into textiles. Textile supercapacitors were developed using scalable fabrication methods including screen-printing, yarn making, and 3D computerized knitting. The electrode materials reported in this thesis undergo thorough electrochemical analysis, and are capable of storing up to 0.5 F/cm2 which is on par with conventionally solid supercapacitors (0.6 F/cm2). Capacitive yarns are capable of storing up to 37 mF/cm and are shown to be knittable on industrial knitting equipment. Both are some of the highest reported capacitance for all-carbon systems in the field. Yet both are the only systems composed of inexpensive and non-toxic activated carbon, the most commonly used electrode material used in supercapacitors, opposed to carbon nanotubes or graphene, which are typically more 10-100 times more expensive. However, all of the fabrication techniques reported here are also capable of incorporating a wide variety of materials, ultimately broadening the applications of textile energy storage as a whole. Fully machine knitted supercapacitors are also explored and electrochemically characterized in order to determine how the textile structure affects the capacitance. In conclusion, a wide variety of fabrication techniques for making textile supercapacitors were successfully explored.

  9. Modelling the development of defects during composite reinforcements and prepreg forming

    PubMed Central

    Hamila, N.; Madeo, A.

    2016-01-01

    Defects in composite materials are created during manufacture to a large extent. To avoid them as much as possible, it is important that process simulations model the onset and the development of these defects. It is then possible to determine the manufacturing conditions that lead to the absence or to the controlled presence of such defects. Three types of defects that may appear during textile composite reinforcement or prepreg forming are analysed and modelled in this paper. Wrinkling is one of the most common flaws that occur during textile composite reinforcement forming processes. The influence of the different rigidities of the textile reinforcement is studied. The concept of ‘locking angle’ is questioned. A second type of unusual behaviour of fibrous composite reinforcements that can be seen as a flaw during their forming process is the onset of peculiar ‘transition zones’ that are directly related to the bending stiffness of the fibres. The ‘transition zones’ are due to the bending stiffness of fibres. The standard continuum mechanics of Cauchy is not sufficient to model these defects. A second gradient approach is presented that allows one to account for such unusual behaviours and to master their onset and development during forming process simulations. Finally, the large slippages that may occur during a preform forming are discussed and simulated with meso finite-element models used for macroscopic forming. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242300

  10. Textiles for protection against microorganism

    NASA Astrophysics Data System (ADS)

    Sauperl, O.

    2016-04-01

    Concerning micro-organisms such as bacteria, viruses and fungi, there is a huge progress in the development of textile materials and procedures which should effectively protect against these various pathogens. In this sense there is especially problematic hospital environment, where it is necessary to take into account properly designed textile material which, when good selected and composed, act as a good barrier against transfer of micro-organisms through material mainly in its wet state. Respect to this it is necessary to be familiar with the rules regarding selection of the input material, the choice of proper yarn construction, the choice of the proper weaving mode, the rules regarding selection of antimicrobial-active compound suitable for (eco-friendly) treatment, and the choice of the most appropriate test method by which it is possible objectively to conclude on the reduction of selected microorganism. As is well known, fabrics are three-dimensional structures with void and non-void areas. Therefore, the physical-chemical properties of the textile material/fabric, the surface characteristics together with the shape of microorganism, and the carriers' characteristics contribute to control the transfer of microorganism through textile material. Therefore, careful planning of textile materials and treatment procedure with the compound which is able to reduce micro-organism satisfactory is particularly important, especially due to the fact that in hospital environment population with impaired immune system is mainly presented.

  11. Sewing up Science

    ERIC Educational Resources Information Center

    Tofel-Grehl, Colby; Fields, Deborah

    2015-01-01

    Electronic textiles (e-textiles)--fabrics embedded with electrical or electronic components--offer a new model for teaching this content. E-textiles also engage students in programming and engineering design through nontraditional projects and materials. This article describes a four-week electricity curriculum using three e-textiles projects that…

  12. Textiles and Apparel Design.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock. Home Economics Curriculum Center.

    This document contains teacher's materials for a seven-unit secondary education vocational home economics course on textiles and apparel design. The units cover: (1) fiber/fiber characteristics and textile development (including fabrication and dyeing, printing, and finishing); (2) textile and apparel design industries (including their history and…

  13. PHOTOCITYTEX - A LIFE project on the air pollution treatment in European urban environments by means of photocatalytic textiles

    NASA Astrophysics Data System (ADS)

    Ródenas, Milagros; Fages, Eduardo; Fatarella, Enrico; Herrero, David; Castagnoli, Lidia; Borrás, Esther; Vera, Teresa; Gómez, Tatiana; Carreño, Javier; López, Ramón; Gimeno, Cristina; Catota, Marlon; Muñoz, Amalia

    2016-04-01

    In urban areas, air pollution from traffic is becoming a growing problem. In recent years the use of titanium dioxide (TiO2) based photocatalytic self-cleaning and de-polluting materials has been considered to remove these pollutants. TiO2 is now commercially available and used in construction material or paints for environmental purposes. Further work, however, is still required to clarify the potential impacts from wider TiO2 use. Specific test conditions are required to provide objective and accurate knowledge. Under the LIFE PHOTOCITYTEX project, the effectiveness of using TiO2-based photocatalytic nanomaterials in building textiles as a way of improving the air quality in urban areas will be assessed. Moreover, information on secondary products formed during the tests will be obtained, yielding a better overall understanding of the whole process and its implications. For this purpose, a series of demonstrations are foreseen, comprising 1. lab-test and development of textile prototypes at lab scale, 2. larger scale demonstration of the use of photocatalytic textiles in the depollution of urban environments employing the EUPHORE chambers to simulate a number of environmental conditions of various European cities and 3. field demonstrations installing the photocatalytic textiles in two urban locations in Quart de Poblet, a tunnel and a school. A one-year extensive passive dosimetric campaign has already being carried out to characterize the selected urban sites before the installation of the photocatalytic textile prototypes, and a similar campaign after their installation is ongoing. Also, more comprehensive intensive active measurement campaigns have been conducted to account for winter and summer conditions. In parallel, lab-tests have already been completed to determine optimal photocatalytic formulations on textiles, followed by experiments at EUPHORE. Information on the deployment of the campaigns is given together with laboratory conclusions and first verification on the photocatalytic textile effectiveness as observed in the field campaigns and at EUPHORE. A discussion on the impact of this depolluting solution on the air quality of urban environments is given.

  14. The solar textile challenge: how it will not work and where it might.

    PubMed

    Krebs, Frederik C; Hösel, Markus

    2015-03-01

    Solar textiles are highlighted as a future technology with transformative power within the fields of both textiles and solar cells provided that developments are made in critical areas. Specifically, these are fundamental solutions to materials and material combinations with mechanical stability and flexibility imposed by textile architectures, scientific solutions to achieve high carrier transport efficiency and optical transmission in a textile topology, technical solutions to controlling the physical disposition of the anode and cathode along with their specific and error-free contacting and, finally, practical solutions to fast and efficient manufacture and integration. The areas of application and the penetration of solar textiles into our everyday life are expected to be explosive pending efficient developments within these four key areas. A shortcoming in one or more of these will, however, lead to the solar textiles being banned to academic existence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Textile electrode characterization: dependencies in the skin-clothing-electrode interface

    NASA Astrophysics Data System (ADS)

    Macías, R.; Fernández, M.; Bragós, R.

    2013-04-01

    Given the advances in the technology known as smart textiles, the use of textile electrodes is more and more common. However this kind of electrodes presents some differences regarding the standard ones as the Ag-AgCl electrodes. Therefore to characterize them as best as possible is required. In order to make the characterization reproducible and repetitive, a skin dummy made of agar-agar and a standardized measurement set-up is used in this article. Thus, some dependencies in the skin-electrode interface are described. These dependencies are related to the surface of the textile electrode, the conductive material and the applied pressure. Furthermore, the dependencies on clothing in the skin-textile electrode interface are also analyzed. Thus, based on some parameters such as textile material, width and number of layers, the behavior of the interface made up by the skin, the textile electrode and clothing is depicted.

  16. Degradation patterns of natural and synthetic textiles on a soil surface during summer and winter seasons studied using ATR-FTIR spectroscopy.

    PubMed

    Ueland, Maiken; Howes, Johanna M; Forbes, Shari L; Stuart, Barbara H

    2017-10-05

    Textiles are a valuable source of forensic evidence and the nature and condition of textiles collected from a crime scene can assist investigators in determining the nature of the death and aid in the identification of the victim. Until now, much of the knowledge of textile degradation in forensic contexts has been based on the visual inspection of material collected from soil environments. The purpose of the current study was to investigate the potential of a more quantitative approach to the understanding of forensic textile degradation through the application of infrared spectroscopy. Degradation patterns of natural and synthetic textile materials as they were subjected to a natural outdoor environment in Australia were investigated. Cotton, polyester and polyester - cotton blend textiles were placed on a soil surface during the summer and winter seasons and were analysed over periods 1 and 1.5years, respectively, and examined using attenuated total reflectance (ATR) spectroscopy. Statistical analysis of the spectral data obtained for the cotton material correlated with visual degradation and a difference in the onset of degradation between the summer and winter season was revealed. The synthetic material did not show any signs of degradation either visually or statistically throughout the experimental period and highlighted the importance of material type in terms of preservation. The cotton section from the polyester - cotton blend samples was found to behave in a similar manner to that of the 100% cotton samples, however principal component analysis (PCA) demonstrated that the degradation patterns were less distinct in both the summer and winter trial for the blend samples. These findings indicated that the presence of the synthetic material may have inhibited the degradation of the natural material. The use of statistics to analyse the spectral data obtained for textiles of forensic interest provides a better foundation for the interpretation of the data obtained using ATR-FTIR spectroscopy, and has provided insight into textile degradation processes relevant to a soil environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Bio-Contamination Control for Spacesuit Garments - A Preliminary Study

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Korona, Adam; Orndoff, Evelyn; Ott, Mark; Poritz, Darwin

    2010-01-01

    This paper outlines a preliminary study to review, test, and improve upon the current state of spacesuit bio-contamination control. The study includes an evaluation of current and advanced suit materials, ground and on-orbit cleaning methods, and microbial test and analysis methods. The first aspect of this study was to identify potential anti-microbial textiles and cleaning agents, and to review current microbial test methods. The anti-microbial cleaning agent and textile market survey included a review of current commercial-off-the-shelf (COTS) products that could potentially be used as future space flight hardware. This review included replacements for any of the softgood layers that may become contaminated during an extravehicular activity (EVA), including the pressure bladder, liquid cooling garment, and ancillary comfort undergarment. After a series of COTS anti-microbial textiles and clean ing agents were identified, a series of four tests were conducted: (1) a stacked configuration test that was conducted in order to review how bio-contamination would propagate through the various suit layers, (2) a individual materials test that evaluated how well each softgood layer either promoted or repressed growth, (3) a cleaning agent test that evaluated the efficacy on each of the baseline bladders, and (4) an evaluation of various COTS anti-microbial textiles. All antimicrobial COTS materials tested appeared to control bacteria colony forming unit (CFU) growth better than the Thermal Comfort Undergarment (TCU) and ACES Liquid Cooling Garment (LCG)/EMU Liquid Cooling Ventilation Garment (LCVG) materials currently in use. However, a comparison of fungi CFU growth in COTS to current suit materials appeared to vary per material. All cleaning agents tested in this study appeared to inhibit the level of bacteria and fungi growth to acceptable levels for short duration tests. While several trends can be obtained from the current analysis, a series of test improvements are described for future microbial testing.

  18. Database of Mechanical Properties of Textile Composites

    NASA Technical Reports Server (NTRS)

    Delbrey, Jerry

    1996-01-01

    This report describes the approach followed to develop a database for mechanical properties of textile composites. The data in this database is assembled from NASA Advanced Composites Technology (ACT) programs and from data in the public domain. This database meets the data documentation requirements of MIL-HDBK-17, Section 8.1.2, which describes in detail the type and amount of information needed to completely document composite material properties. The database focuses on mechanical properties of textile composite. Properties are available for a range of parameters such as direction, fiber architecture, materials, environmental condition, and failure mode. The composite materials in the database contain innovative textile architectures such as the braided, woven, and knitted materials evaluated under the NASA ACT programs. In summary, the database contains results for approximately 3500 coupon level tests, for ten different fiber/resin combinations, and seven different textile architectures. It also includes a limited amount of prepreg tape composites data from ACT programs where side-by-side comparisons were made.

  19. Sodium alginate adhesives as binders in wood fibers/textile waste fibers biocomposites for building insulation.

    PubMed

    Lacoste, Clément; El Hage, Roland; Bergeret, Anne; Corn, Stéphane; Lacroix, Patrick

    2018-03-15

    Alginate derived from seaweed is a natural polysaccharide able to form stable gel through carbohydrate functional groups largely used in the food and pharmaceutical industry. This article deals with the use of sodium alginate as an adhesive binder for wood fibres/textile waste fibres biocomposites. Several aldehyde-based crosslinking agents (glyoxal, glutaraldehyde) were compared for various wood/textile waste ratios (100/0, 50/50, 60/40, 70/30 and 0/100 in weight). The fully biomass derived composites whose properties are herewith described satisfy most of the appropriate requirements for building materials. They are insulating with a thermal conductivity in the range 0.078-0.089 W/m/K for an average density in the range 308-333 kg/m3 according to the biocomposite considered. They are semi-rigid with a maximal mechanical strength of 0.84 MPa under bending and 0.44 MPa under compression for 60/40 w/w wood/textile waste biocomposites with a glutaraldehyde crosslinking agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Plasma Sterilization: New Epoch in Medical Textiles

    NASA Astrophysics Data System (ADS)

    Senthilkumar, P.; Arun, N.; Vigneswaran, C.

    2015-04-01

    Clothing is perceived to be second skin to the human body since it is in close contact with the human skin most of the times. In hospitals, use of textile materials in different forms and sterilization of these materials is an essential requirement for preventing spread of germs. The need for appropriate disinfection and sterilization techniques is of paramount importance. There has been a continuous demand for novel sterilization techniques appropriate for use on various textile materials as the existing sterilization techniques suffer from various technical and economical drawbacks. Plasma sterilization is the alternative method, which is friendlier and more effective on the wide spectrum of prokaryotic and eukaryotic microorganisms. Basically, the main inactivation factors for cells exposed to plasma are heat, UV radiation and various reactive species. Plasma exposure can kill micro-organisms on a surface in addition to removing adsorbed monolayer of surface contaminants. Advantages of plasma surface treatment are removal of contaminants from the surface, change in the surface energy and sterilization of the surface. Plasma sterilization aims to kill and/or remove all micro-organisms which may cause infection of humans or animals, or which can cause spoilage of foods or other goods. This review paper emphasizes necessity for sterilization, essentials of sterilization, mechanism of plasma sterilization and the parameters influencing it.

  1. Experimental Investigation of Textile Composite Materials Using Moire Interferometry

    NASA Technical Reports Server (NTRS)

    Ifju, Peter G.

    1995-01-01

    The viability as an efficient aircraft material of advanced textile composites is currently being addressed in the NASA Advanced Composites Technology (ACT) Program. One of the expected milestones of the program is to develop standard test methods for these complex material systems. Current test methods for laminated composites may not be optimum for textile composites, since the architecture of the textile induces nonuniform deformation characteristics on the scale of the smallest repeating unit of the architecture. The smallest repeating unit, also called the unit cell, is often larger than the strain gages used for testing of tape composites. As a result, extending laminated composite test practices to textiles can often lead to pronounced scatter in material property measurements. It has been speculated that the fiber architectures produce significant surface strain nonuniformities, however, the magnitudes were not well understood. Moire interferometry, characterized by full-field information, high displacement sensitivity, and high spatial resolution, is well suited to document the surface strain on textile composites. Studies at the NASA Langley Research Center on a variety of textile architectures including 2-D braids and 3-D weaves, has evidenced the merits of using moire interferometry to guide in test method development for textile composites. Moire was used to support tensile testing by validating instrumentation practices and documenting damage mechanisms. It was used to validate shear test methods by mapping the full-field deformation of shear specimens. Moire was used to validate open hole tension experiments to determine the strain concentration and compare then to numeric predictions. It was used for through-the-thickness tensile strength test method development, to verify capabilities for testing of both 2-D and 3-D material systems. For all of these examples, moire interferometry provided vision so that test methods could be developed with less speculation and more documentation.

  2. Smoldering and Flame Resistant Textiles via Conformal Barrier Formation.

    PubMed

    Zammarano, Mauro; Cazzetta, Valeria; Nazaré, Shonali; Shields, J Randy; Kim, Yeon Seok; Hoffman, Kathleen M; Maffezzoli, Alfonso; Davis, Rick

    2016-12-07

    A durable and flexible silicone-based backcoating (halogen free) is applied to the backside of an otherwise smoldering-prone and flammable fabric. When exposed to fire, cyclic siloxanes (produced by thermal decomposition of the backcoating) diffuse through the fabric in the gas phase. The following oxidation of the cyclic siloxanes forms a highly conformal and thermally stable coating that fully embeds all individual fibers and shields them from heat and oxidation. As a result, the combustion of the fabric is prevented. This is a novel fire retardant mechanism that discloses a powerful approach towards textiles and multifunctional flexible materials with combined smoldering/flaming ignition resistance and fire-barrier properties.

  3. Green piezoelectric for autonomous smart textile

    NASA Astrophysics Data System (ADS)

    Lemaire, E.; Borsa, C. J.; Briand, D.

    2015-12-01

    In this work, the fabrication of Rochelle salt based piezoelectric textiles are shown. Structures composed of fibers and Rochelle salt are easily produced using green processes. Both manufacturing and the material itself are really efficient in terms of environmental impact, considering the fabrication processes and the material resources involved. Additionally Rochelle salt is biocompatible. In this green paradigm, active sensing or actuating textiles are developed. Thus processing method and piezoelectric properties have been studied: (1) pure crystals are used as acoustic actuator, (2) fabrication of the textile-based composite is detailed, (3) converse effective d33 is evaluated and compared to lead zirconate titanate ceramic. The utility of textile-based piezoelectric merits its use in a wide array of applications.

  4. Defined UV protection by apparel textiles.

    PubMed

    Hoffmann, K; Laperre, J; Avermaete, A; Altmeyer, P; Gambichler, T

    2001-08-01

    This article was written to update information on test methods and standards for determining the UV protection of apparel textiles and on factors affecting UV protective properties of fabrics, from dermatological and textile technological viewpoints. Articles from dermatological and textile technological journals published from 1990 to 2001 were identified from MEDLINE, Excerpta Medica/EMBASE, World Textiles, and Textile Technology Digest. Peer-reviewed dermatological articles, textile technological research articles, and normative publications were selected. Independent data extraction was performed by several observers. Spectrophotometry is the preferred method for determining UV protection factor of textile materials. Various textile qualities affect the UV protection factor of a finished garment; important elements are the fabric porosity, type, color, weight, and thickness. The application of UV absorbers in the yarns significantly improves the UV protection factor of a garment. With wear and use, several factors can alter the UV protective properties of a textile, including stretch, wetness, and degradation due to laundering. Standards in the field exist in Australia and Great Britain, and organizations such as the European Standardization Commission in Europe and the American Association of Textile Chemists and Colorists and the American Society for Testing and Materials in the United States are also establishing standards for the determination and labeling of sun protective clothing. Various textile qualities and conditions of wear and use affect UV protective properties of apparel textiles. The use of UV blocking fabrics can provide excellent protection against the hazards of sunlight; this is especially true for garments manufactured as UV protective clothing.

  5. 4-H Textile Science Textile Arts Projects.

    ERIC Educational Resources Information Center

    Scholl, Jan

    This packet contains three 4-H textile arts projects for students in the textile sciences area. The projects cover weaving, knitting, and crocheting. Each project provides an overview of what the student will learn, what materials are needed, and suggested projects for the area. Projects can be adapted for beginning, intermediate, or advanced…

  6. 16 CFR 303.14 - Products containing unknown fibers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., secondhand materials, textile by-products, or waste materials of unknown, and for practical purposes... the fiber content disclosure otherwise required by the Act and regulations, indicate that such product is composed of miscellaneous scraps, rags, odd lots, textile by-products, secondhand materials (in...

  7. Electrical characterization of conductive textile materials and its evaluation as electrodes for venous occlusion plethysmography.

    PubMed

    Goy, C B; Dominguez, J M; Gómez López, M A; Madrid, R E; Herrera, M C

    2013-08-01

    The ambulatory monitoring of biosignals involves the use of sensors, electrodes, actuators, processing tools and wireless communication modules. When a garment includes these elements with the purpose of recording vital signs and responding to specific situations it is call a 'Smart Wearable System'. Over the last years several authors have suggested that conductive textile material (e-textiles) could perform as electrode for these systems. This work aims at implementing an electrical characterization of e-textiles and an evaluation of their ability to act as textile electrodes for lower extremity venous occlusion plethysmography (LEVOP). The e-textile electrical characterization is carried out using two experimental set-ups (in vitro evaluation). Besides, LEVOP records are obtained from healthy volunteers (in vivo evaluation). Standard Ag/AgCl electrodes are used for comparison in all tests. Results shown that the proposed e-textiles are suitable for LEVOP recording and a good agreement between evaluations (in vivo and in vitro) is found.

  8. Characterization of Textile-Insulated Capacitive Biosensors

    PubMed Central

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-01-01

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test. PMID:28287493

  9. 16 CFR 303.12 - Trimmings of household textile articles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Trimmings of household textile articles. 303... household textile articles. (a) Trimmings incorporated in articles of wearing apparel and other household textile articles may, among other forms of trim, include: (1) Rick-rack, tape, belting, binding, braid...

  10. 16 CFR 303.12 - Trimmings of household textile articles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Trimmings of household textile articles. 303... household textile articles. (a) Trimmings incorporated in articles of wearing apparel and other household textile articles may, among other forms of trim, include: (1) Rick-rack, tape, belting, binding, braid...

  11. 16 CFR 303.12 - Trimmings of household textile articles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Trimmings of household textile articles. 303... household textile articles. (a) Trimmings incorporated in articles of wearing apparel and other household textile articles may, among other forms of trim, include: (1) Rick-rack, tape, belting, binding, braid...

  12. 16 CFR 303.12 - Trimmings of household textile articles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Trimmings of household textile articles. 303... household textile articles. (a) Trimmings incorporated in articles of wearing apparel and other household textile articles may, among other forms of trim, include: (1) Rick-rack, tape, belting, binding, braid...

  13. Proposed industrial recoverd materials utilization targets for the textile mill products industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-05-01

    Materials recovery targets were established to represent the maximum technically and economically feasible increase in the use of energy-saving materials by January 1, 1987. This report describes targets for the textile industry and describes how those targets were determined. (MCW)

  14. Raman Detection of Improvised Explosive Device (IED) Material Fabricated Using Drop-on-Demand Inkjet Technology on Several Real World Surfaces

    DTIC Science & Technology

    2015-09-01

    deposited using an inkjet printer into several different common material surfaces (e.g., wood, human hair , textiles, metals, plastics). The materials are......human hair , textiles, metals, plastics). The materials are characterized with microscope images and by collecting Raman spectral data. In this

  15. Rapid Copper Metallization of Textile Materials: a Controlled Two-Step Route to Achieve User-Defined Patterns under Ambient Conditions.

    PubMed

    Zhang, Shuang-Yuan; Guan, Guijian; Jiang, Shan; Guo, Hongchen; Xia, Jing; Regulacio, Michelle D; Wu, Mingda; Shah, Kwok Wei; Dong, Zhili; Zhang, Jie; Han, Ming-Yong

    2015-09-30

    Throughout history earth-abundant copper has been incorporated into textiles and it still caters to various needs in modern society. In this paper, we present a two-step copper metallization strategy to realize sequentially nondiffusive copper(II) patterning and rapid copper deposition on various textile materials, including cotton, polyester, nylon, and their mixtures. A new, cost-effective formulation is designed to minimize the copper pattern migration on textiles and to achieve user-defined copper patterns. The metallized copper is found to be very adhesive and stable against washing and oxidation. Furthermore, the copper-metallized textile exhibits excellent electrical conductivity that is ~3 times better than that of stainless steel and also inhibits the growth of bacteria effectively. This new copper metallization approach holds great promise as a commercially viable method to metallize an insulating textile, opening up research avenues for wearable electronics and functional garments.

  16. Intrinsically Stretchable and Conductive Textile by a Scalable Process for Elastic Wearable Electronics.

    PubMed

    Wang, Chunya; Zhang, Mingchao; Xia, Kailun; Gong, Xueqin; Wang, Huimin; Yin, Zhe; Guan, Baolu; Zhang, Yingying

    2017-04-19

    The prosperous development of stretchable electronics poses a great demand on stretchable conductive materials that could maintain their electrical conductivity under tensile strain. Previously reported strategies to obtain stretchable conductors usually involve complex structure-fabricating processes or utilization of high-cost nanomaterials. It remains a great challenge to produce stretchable and conductive materials via a scalable and cost-effective process. Herein, a large-scalable pyrolysis strategy is developed for the fabrication of intrinsically stretchable and conductive textile in utilizing low-cost and mass-produced weft-knitted textiles as raw materials. Due to the intrinsic stretchability of the weft-knitted structure and the excellent mechanical and electrical properties of the as-obtained carbonized fibers, the obtained flexible and durable textile could sustain tensile strains up to 125% while keeping a stable electrical conductivity (as shown by a Modal-based textile), thus ensuring its applications in elastic electronics. For demonstration purposes, stretchable supercapacitors and wearable thermal-therapy devices that showed stable performance with the loading of tensile strains have been fabricated. Considering the simplicity and large scalability of the process, the low-cost and mass production of the raw materials, and the superior performances of the as-obtained elastic and conductive textile, this strategy would contribute to the development and industrial production of wearable electronics.

  17. Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications.

    PubMed

    Heo, Jae Sang; Eom, Jimi; Kim, Yong-Hoon; Park, Sung Kyu

    2018-01-01

    Wearable electronics are emerging as a platform for next-generation, human-friendly, electronic devices. A new class of devices with various functionality and amenability for the human body is essential. These new conceptual devices are likely to be a set of various functional devices such as displays, sensors, batteries, etc., which have quite different working conditions, on or in the human body. In these aspects, electronic textiles seem to be a highly suitable possibility, due to the unique characteristics of textiles such as being light weight and flexible and their inherent warmth and the property to conform. Therefore, e-textiles have evolved into fiber-based electronic apparel or body attachable types in order to foster significant industrialization of the key components with adaptable formats. Although the advances are noteworthy, their electrical performance and device features are still unsatisfactory for consumer level e-textile systems. To solve these issues, innovative structural and material designs, and novel processing technologies have been introduced into e-textile systems. Recently reported and significantly developed functional materials and devices are summarized, including their enhanced optoelectrical and mechanical properties. Furthermore, the remaining challenges are discussed, and effective strategies to facilitate the full realization of e-textile systems are suggested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Textile technology development

    NASA Technical Reports Server (NTRS)

    Shah, Bharat M.

    1995-01-01

    The objectives of this report were to evaluate and select resin systems for Resin Transfer Molding (RTM) and Powder Towpreg Material, to develop and evaluate advanced textile processes by comparing 2-D and 3-D braiding for fuselage frame applications and develop window belt and side panel structural design concepts, to evaluate textile material properties, and to develop low cost manufacturing and tooling processes for the automated manufacturing of fuselage primary structures. This research was in support of the NASA and Langley Research Center (LaRc) Advanced Composite Structural Concepts and Materials Technologies for Primary Aircraft Structures program.

  19. Characterization and manufacture of braided composites for large commercial aircraft structures

    NASA Technical Reports Server (NTRS)

    Fedro, Mark J.; Willden, Kurtis

    1992-01-01

    Braided composite materials has been recognized as a potential cost effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. Advance braided composite technology is advanced towards applications to a large commercial transport fuselage. The mechanics are summarized of materials and manufacturing demonstration results which were obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 2-D, 2-D triaxial, and 3-D braid patterns with thermoplastic and two resin transfer molding resin systems were studied. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architecture; stiffness; fiber stresses; failure mechanisms; notch effects; and the history of failure of the braided composite specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration.

  20. Silver speciation and release in commercial antimicrobial textiles as influenced by washing

    EPA Science Inventory

    The use of nanoscale Ag in textiles is one the most often mentioned uses of nano-Ag. It has previously been shown that significant amounts of the Ag in the textiles are released upon washing. However, the form of Ag present in the textiles remains largely unknown as product label...

  1. Highly Flexible Dye-sensitized Solar Cells Produced by Sewing Textile Electrodes on Cloth

    PubMed Central

    Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; Lee, Dong Y.

    2014-01-01

    Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices. PMID:24957920

  2. Highly flexible dye-sensitized solar cells produced by sewing textile electrodes on cloth.

    PubMed

    Yun, Min Ju; Cha, Seung I; Seo, Seon Hee; Lee, Dong Y

    2014-06-24

    Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices.

  3. Flammability on textile of flight crew professional clothing

    NASA Astrophysics Data System (ADS)

    Silva-Santos, M. C.; Oliveira, M. S.; Giacomin, A. M.; Laktim, M. C.; Baruque-Ramos, J.

    2017-10-01

    The issue about flammability of textile materials employed in passenger cabins of commercial aircrafts is an important part of safety routines planning. Once an in-flight emergency initiated with fire or smoke aboard, time becomes critical and the entire crew must be involved in the solution. It is part of the crew functions, notably the attendants, the in-flight firefighting. This study compares the values of textile material of flight attendant working cloths and galley curtain fabric with regard to flammability and Limiting Oxygen Index (LOI). Values to the professional clothing material indicate that they are flammable and the curtains, self-extinguishing. Thus, despite of the occurrences of fire outbreaks in aircrafts are unexceptional, the use of other materials and technologies for uniforms, such as alternative textile fibers and flame retardant finishes should be considered as well as the establishment of performance limits regarding flame and fire exposing.

  4. Comparison of gravimetric and gas chromatographic methods for assessing performance of textile materials against liquid pesticide penetration.

    PubMed

    Shaw, Anugrah; Abbi, Ruchika

    2004-01-01

    Penetration of liquid pesticides through textile materials is a criterion for determining the performance of protective clothing used by pesticide handlers. The pipette method is frequently used to apply liquid pesticides onto textile materials to measure penetration. Typically, analytical techniques such as Gas Chromatography (GC) are used to measure percentage penetration. These techniques are labor intensive and costly. A simpler gravimetric method was developed, and tests were conducted to compare the gravimetric and GC methods of analysis. Three types of pesticide formulations and 4 fabrics were used for the study. Diluted pesticide formulations were pipetted onto the test specimens and percentage penetration was measured using the 2 methods. For homogeneous formulation, the results of the two methods were fairly comparable. However, due to the filtering action of the textile materials, there were differences in the percentage penetration between the 2 methods for formulations that were not homogeneous.

  5. Investigations of the historic textiles excavated from Ancient Ainos (Enez - Turkey) by multiple analytical techniques

    NASA Astrophysics Data System (ADS)

    Akyuz, Sevim; Akyuz, Tanil; Cakan, Banu; Basaran, Sait

    2014-09-01

    Some metal ornamented textile specimens and a textile button, excavated from Ancient Ainos (Enez - Turkey), have been investigated using FTIR and EDXRF spectrometry, for the purpose of material identification. FTIR spectral results indicated that textiles were made from partially degummed Bombyx mori silk. The IR spectral investigation of the textile button revealed that some cellulose fillings were used inside the button. The EDXRF analysis of the metal ornaments showed that they were silver plated copper. Surface morphology of the textiles and the metal ornaments were investigated by SEM images. It was shown that textile fibers were highly degraded.

  6. Textile electrodes and integrated smart textile for reliable biomonitoring.

    PubMed

    Paradiso, R; Pacelli, M

    2011-01-01

    Since birth the first and the most natural interface for the body is fabric, a soft, warm and reassuring material. Cloth is usually covering more than 80 % of the skin; which leads us to consider textile material as the most appropriate interface where new sensorial and interactive functions can be implemented. The new generation of personalised monitoring systems is based on this paradigm: functions like sensing, transmission and elaboration are implementable in the materials through the textile technology. Functional yarns and fibres are usable to realise garments where electrical and computing properties are combined with the traditional mechanical characteristics, giving rise to textile platforms that are comparable with the cloths that are normally used to produce our garments. The feel of the fabric is the same, but the functionality is augmented. Nowadays, consumers demand user-friendly connectivity and interactivity; sensing clothes are the most natural and ordinary interface able to follow us, everywhere in a non-intrusive way, in natural harmony with our body.

  7. Geometrical modelling of textile reinforcements

    NASA Technical Reports Server (NTRS)

    Pastore, Christopher M.; Birger, Alexander B.; Clyburn, Eugene

    1995-01-01

    The mechanical properties of textile composites are dictated by the arrangement of yarns contained with the material. Thus to develop a comprehensive understanding of the performance of these materials, it is necessary to develop a geometrical model of the fabric structure. This task is quite complex, as the fabric is made form highly flexible yarn systems which experience a certain degree of compressability. Furthermore there are tremendous forces acting on the fabric during densification typically resulting in yarn displacement and misorientation. The objective of this work is to develop a methodology for characterizing the geometry of yarns within a fabric structure including experimental techniques for evaluating these models. Furthermore, some applications of these geometric results to mechanical prediction models are demonstrated. Although more costly than its predecessors, the present analysis is based on the detailed architecture developed by one of the authors and his colleagues and accounts for many of the geometric complexities that other analyses ignore.

  8. Production of a textile reinforced concrete protective layers with non-woven polypropylene fabric

    NASA Astrophysics Data System (ADS)

    Žák, J.; Štemberk, P.; Vodička, J.

    2017-09-01

    Textile concrete with nonwoven polypropylene fabric can be used for protective layers of reinforced concrete structures, reducing the thickness of the cover layer or reducing the water penetration rate into the structure. The material consists of cement matrix with finegrained aggregate and nonwoven textile reinforcement. The maximum grain size of the mixture suitable for the nonwoven textile infiltration is 0.25 mm. The interlayer contains larger aggregates and short fibers. Tensile loading causes a large amount of microcracks in the material. The material can withstand strain over 25% without collapsing. Increased quality and water-cement ratio reduction was achieved using the plasticizers and distribution of the mixture into a fabric using a vibrating trowel. It is possible to make flat plates and even curved structures from this material. Larger curvatures of structures should be solved by cutting and overlapping the fabric. Small curvatures can be solved within the deformability of the fabric. Proper infiltration of the cement mixture into the fabric is the most important task in producing this material.

  9. Standard Methods for Unnotched Tension Testing of Textile Composites

    NASA Technical Reports Server (NTRS)

    Portanova, M. A.

    1995-01-01

    An investigation was conducted by researchers at the Boeing Defense & Space Group to investigate the effects of specimen sizing on several braided textile materials. Test results from this and other test programs were compared in an effort to determine what effect, if any, specimen size has on elastic property measurements of unnotched tension test. In general, the unnotched tensile strength of 2-D braids was found to be insensitive to specimen width, length, or thickness effects. The results from this study suggest that standard testing methods used for tape materials may be sufficient for tension testing of textile composite materials. Specifically, the straight sided specimen geometry described in ASTM 3034, and used by Boeing, should provide acceptable results. Further experiments performed at Boeing and by other investigators on other textile architectures suggest similar results. Although specimen size studies were not conducted, failing stresses varied on the same order as those obtained with the 2-D materials. This suggests that the accuracy of the results were consistent with those obtained with the 2-D materials.

  10. Electro-osmotic transport in wet processing of textiles

    DOEpatents

    Cooper, John F.

    1998-01-01

    Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1-5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric.

  11. Electro-osmotic transport in wet processing of textiles

    DOEpatents

    Cooper, J.F.

    1998-09-22

    Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1--5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric. 5 figs.

  12. FIBER-TEX 1992: The Sixth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Editor)

    1993-01-01

    The FIBER-TEX 1992 proceedings contain the papers presented at the conference held on 27-29 Oct. 1992 at Drexel University. The conference was held to create a forum to encourage an interrelationship of the various disciplines involved in the fabrication of materials, the types of equipment, and the processes used in the production of advanced composite structures. Topics discussed were advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, and the latest requirements for the use of textiles in the production of composite materials and structures as related to global activities focused on textile structural composites.

  13. New developments in functional medical textiles and their mechanism of action

    USDA-ARS?s Scientific Manuscript database

    Functional medical textiles are undergoing a revolution in structural design. Medical textiles as non-implantables, implantables, and extracorporeals, are playing central roles in healthcare improvements enhancing and prolonging the quality of life. Developments in the design of materials that funct...

  14. Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective

    PubMed Central

    Kaushik, Vishakha; Lee, Jaehong; Hong, Juree; Lee, Seulah; Lee, Sanggeun; Seo, Jungmok; Mahata, Chandreswar; Lee, Taeyoon

    2015-01-01

    Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study. PMID:28347078

  15. Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective.

    PubMed

    Kaushik, Vishakha; Lee, Jaehong; Hong, Juree; Lee, Seulah; Lee, Sanggeun; Seo, Jungmok; Mahata, Chandreswar; Lee, Taeyoon

    2015-09-07

    Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study.

  16. Smart fabric sensors and e-textile technologies: a review

    NASA Astrophysics Data System (ADS)

    Castano, Lina M.; Flatau, Alison B.

    2014-05-01

    This paper provides a review of recent developments in the rapidly changing and advancing field of smart fabric sensor and electronic textile technologies. It summarizes the basic principles and approaches employed when building fabric sensors as well as the most commonly used materials and techniques used in electronic textiles. This paper shows that sensing functionality can be created by intrinsic and extrinsic modifications to textile substrates depending on the level of integration into the fabric platform. The current work demonstrates that fabric sensors can be tailored to measure force, pressure, chemicals, humidity and temperature variations. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with fabric technologies prove to be customizable and versatile but less robust than their conventional electronics counterparts. The findings of this survey suggest that a complete smart fabric system is possible through the integration of the different types of textile based functional elements. This work intends to be a starting point for standardization of smart fabric sensing techniques and e-textile fabrication methods.

  17. Characterization and thermal behaviour of textile waste from the industrial city of Aleppo in Syria.

    PubMed

    Majanny, Abdulkader; Nassour, Abdallah; Gose, Sven; Scholz, Reinhard; Nelles, Michael

    2011-03-01

    This paper describes the present waste management practices in the industrial city Alsheikh Najjar of Aleppo, mainly with regard to textile waste materials, and provides some insights into future prospects. As a first exploration for energy recovery from textile waste materials, the thermal behaviour of seven different types of textile waste were studied by thermogravimetry. There were assorted differential thermogravimetry peaks found over a particular range of temperatures. Pyrolysis experiments were carried out to identify the pyrolysis products such as gas, liquid, and solid residues known as char. In a subsequent analysis, the combustion behaviour of textile waste was determined and analysed. Typical parameters - reaction front velocity, ignition rate - were considered for the evaluation of the combustion behaviour and the results were compared with values observed for waste wood.

  18. Researches on the development of new composite materials complete / partially biodegradable using natural textile fibers of new vegetable origin and those recovered from textile waste

    NASA Astrophysics Data System (ADS)

    Todor, M. P.; Bulei, C.; Heput, T.; Kiss, I.

    2018-01-01

    The objective of the research is to develop new fully / partially biodegradable composite materials by using new natural fibers and those recovered from various wastes. Thus, the research aims to obtain some composites with matrix of various types of polymeric materials and the reinforcement phase of textile materials (of different natures, morphologies and composites) so that the resulting products to be (bio)degradable. The textile inserts used as raffle are ecological, non-toxic and biodegradable and they contain (divided or in combination) bast fibers (flax, hemp, jute) and other vegetable fibers (cotton, wool) as plain yarn or fabric, which can replace fibers of glass commonly used in polymeric composites. The main activities described in this article are carried out during the first phase of the research (phase I - initiation of research) and they are oriented towards the choice of types of textile inserts from which the composites will be obtained (the materials needed for the raffle), the choice of the types of polymers (the necessary materials for matrices) and choosing the variants of composites with different types and proportions of the constituent content (proposals and working variants) and choosing the right method for obtaining samples of composite materials (realization technology). The purpose of the research is to obtain composite materials with high structural, thermo-mechanical and / or tribological performances, according to ecological norms and international requirements in order to replace the existing classical materials, setting up current, innovative and high performance solutions, for applications in top areas such as automotive industry and not only.

  19. Review of Synthetic Fiber Ropes,

    DTIC Science & Technology

    1970-08-01

    Publishing Co., New York, 1962, p. 57. 4) Morton, W.E., Hearle, J.W.S., Physical Properties of Textile Fibres , Butterworth & Co., The Textile Institute...made from coconut fibers) has only 10% of the strength of nylon rope, and is little used, it is omitted here. It generally follows the same...Testing and Materials definition, quoted by Morton, W.E.; Hearle, J.W.S.; "Physical Properties of Textile Fibres , The Textile Institute, Manchester

  20. Carbon Textile Decorated with Pseudocapacitive VC/Vx Oy for High-Performance Flexible Supercapacitors.

    PubMed

    Van Lam, Do; Shim, Hyung Cheoul; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Seung-Mo

    2017-11-01

    It is demonstrated that, via V 2 O 5 coating by low temperature atomic layer deposition and subsequent pyrolysis, ubiquitous cotton textile can readily turn into high-surface-area carbon textile fully decorated with pseudocapacitive V x O y /VC widely usable as electrodes of high-performance supercapacitor. It is found that carbothermic reduction of V 2 O 5 (C + V 2 O 5 → C' + VC + CO/CO 2 (g)) leads to chemical/mechanical activation of carbon textile, thereby producing high-surface-area conductive carbon textile. In addition, sequential phase transformation and carbide formation (V 2 O 5 → V x O y → VC) occurred by carbothermic reduction trigger decoration of the carbon textile with redox-active V x O y /VC. Thanks to the synergistic effect of electrical double layer and pseudocapacitance, the supercapacitors made of the hybrid carbon textile exhibit far better energy density (over 30-fold increase) with excellent cycling stability than the carbon textile simply undergone pyrolysis. The method can open up a promising and facile way to synthesize hybrid electrode materials for electrochemical energy storages possessing advantages of both electrical double layer and pseudocapacitive material. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Smart Electronic Textiles.

    PubMed

    Weng, Wei; Chen, Peining; He, Sisi; Sun, Xuemei; Peng, Huisheng

    2016-05-17

    This Review describes the state-of-the-art of wearable electronics (smart textiles). The unique and promising advantages of smart electronic textiles are highlighted by comparing them with the conventional planar counterparts. The main kinds of smart electronic textiles based on different functionalities, namely the generation, storage, and utilization of electricity, are then discussed with an emphasis on the use of functional materials. The remaining challenges are summarized together with important new directions to provide some useful clues for the future development of smart electronic textiles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Textile fibers coated with carbon nanotubes for smart clothing applications

    NASA Astrophysics Data System (ADS)

    Lepak, Sandra; Lalek, Bartłomiej; Janczak, Daniel; Dybowska-Sarapuk, Łucja; Krzemiński, Jakub; Jakubowska, Małgorzata; Łekawa-Raus, Agnieszka

    2017-08-01

    Carbon nanomaterials: graphene, fullerenes and in particular carbon nanotubes (CNTs) are extremely interesting and extraordinary materials. It is mostly thanks to theirs unusual electrical and mechanical properties. Carbon nanotubes are increasingly examined to enable its usage in many fields of science and technology. It has been reported that there is a high possibility to use CNTs in electronics, optics, material engineering, biology or medicine. However, this material still interests and inspire scientists around the world and the list of different CNTs applications is constantly expanding. In this paper we are presenting a study on the possibility of application carbon nanotubes as a textile fiber coating for smart clothing applications. Various suspensions and pastes containing CNTs have been prepared as a possible coating onto textile fibers. Different application techniques have also been tested. Those techniques included painting with nanotube suspension, spray coating of suspensions and immersion. Following textile fibers were subject to tests: cotton, silk, polyester, polyamide and wool. Obtained composites materials were then characterized electrically by measuring the electrical resistance.

  3. Development of textile-based high-tech products: the new challenge.

    PubMed

    da Rocha, Ana Maria M F

    2004-01-01

    The new generation of smart textiles is represented by fibers, yarns, fabrics and other resulting products that have special properties, regarding mechanical, chemical, electrical and thermal performances. These high-tech products, being able to respond to external stimuli through the integration of electronic components, phase change materials, shape memory materials or nano materials, enabled the development of different active and functional products. These products when combining the functions of medium, carrier and interface for micro-systems applications represent the ideal connecting channel between humans and the environment. This is a field of innovation that broadened the scope of the traditional textile and apparel products to high-tech textiles, designed to meet specific needs, involving different technologies and produced according to required properties, like personal protection, safety, leisure or health wear. The development of smart wear is a new challenge for the textile and clothing industry: it has to develop products based not only on design, fashion and comfort concepts but also in terms of functions. Moreover these products must be easy to care and durable.

  4. Problem Based Learning in Constructed Textile Design

    ERIC Educational Resources Information Center

    Sayer, Kate; Wilson, Jacquie; Challis, Simon

    2006-01-01

    Staff observing undergraduate students enrolled on the BSc Hons Textile Design and Design Management programme in The School of Materials, The University of Manchester, identified difficulties with knowledge retention in the area of constructed textile design. Consequently an experimental pilot was carried out in seamless knitwear design using a…

  5. Reuse of textile effluent treatment plant sludge in building materials.

    PubMed

    Balasubramanian, J; Sabumon, P C; Lazar, John U; Ilangovan, R

    2006-01-01

    This study examines the potential reuse of textile effluent treatment plant (ETP) sludge in building materials. The physico-chemical and engineering properties of a composite textile sludge sample from the southern part of India have been studied. The tests were conducted as per Bureau of Indian Standards (BIS) specification codes to evaluate the suitability of the sludge for structural and non-structural application by partial replacement of up to 30% of cement. The cement-sludge samples failed to meet the required strength for structural applications. The strength and other properties met the Bureau of Indian Standards for non-structural materials such as flooring tiles, solid and pavement blocks, and bricks. Results generally meet most ASTM standards for non-structural materials, except that the sludge-amended bricks do not meet the Grade NW brick standard. It is concluded that the substitution of textile ETP sludge for cement, up to a maximum of 30%, may be possible in the manufacturing of non-structural building materials. Detailed leachability and economic feasibility studies need to be carried out as the next step of research.

  6. Method and apparatus for the application of textile treatment compositions to textile materials

    DOEpatents

    Argyle, M.D.; Propp, W.A.

    1998-01-20

    A system is described for applying textile treatment compositions to textile materials. A conduit member is provided which includes a passageway having a first end, a second end, and a medial portion with a constricted (narrowed) region. The passageway may include at least one baffle having an opening there through. A yarn strand is then moved through the passageway. A textile treatment composition (a sizing agent or dye) dissolved in a carrier medium (a supercritical fluid or liquefied gas) is thereafter introduced into the constricted region, preferably at an acute angle relative to the passageway. The carrier medium expands inside the passageway which causes delivery of the treatment composition to the yarn. The treated yarn then passes through the baffle (if used) which facilitates drying of the yarn. During this process, a carrier gas can be introduced into the passageway to ensure the production of a smooth, dry product. 1 fig.

  7. Method and apparatus for the application of textile treatment compositions to textile materials

    DOEpatents

    Argyle, Mark D.; Propp, William Alan

    1998-01-01

    A system for applying textile treatment compositions to textile materials. A conduit member is provided which includes a passageway having a first end, a second end, and a medial portion with a constricted (narrowed) region. The passageway may include at least one baffle having an opening therethrough. A yarn strand is then moved through the passageway. A textile treatment composition (a sizing agent or dye) dissolved in a carrier medium (a supercritical fluid or liquified gas) is thereafter introduced into the constricted region, preferably at an acute angle relative to the passageway. The carrier medium expands inside the passageway which causes delivery of the treatment composition to the yarn. The treated yarn then passes through the baffle (if used) which facilitates drying of the yarn. During this process, a carrier gas can be introduced into the passageway to ensure the production of a smooth, dry product.

  8. Porous textile antenna designs for improved wearability

    NASA Astrophysics Data System (ADS)

    Shahariar, Hasan; Soewardiman, Henry; Muchler, Clifford A.; Adams, Jacob J.; Jur, Jesse S.

    2018-04-01

    Textile antennas are an integral part of the next generation personalized wearable electronics system. However, the durability of textile antennas are rarely discussed in the literature. Typical textile antennas are prone to damage during normal wearable user scenarios, washing, and heat cycling over time. Fabricating a durable, washable, flexible, and breathable (like textile materials) antenna is challenging due to the incompatibility of the mechanical properties of conductive materials and soft textile materials. This paper describes a scalable screen printing process on an engineered nonwoven substrate to fabricate microstrip patch antennas with enhanced durability. This work used an Evolon® nonwoven substrate with low surface roughness (˜Ra = 18 μm) and high surface area (˜2.05 mm2 mm-2 of fabric area) compared to traditional textile materials, which allows the ink to penetrate evenly in the fiber bulk with its strong capillary wicking force and enhances print resolution. The composite layer of ink and fiber is conductive and enables the antennas to maintain high mechanical flexibility without varying its RF (Radio Frequency) properties. Additionally, the antennas are packaged by laminating porous polyurethane web to make the device durable and washable. The fully packaged antennas maintain the structural flexibility and RF functionality after 15 cycles of washing and drying. To improve the air permeability and enhance flexibility the antenna is also modified by incorporating holes in the both patch and ground layer of the antenna. The antennas were analyzed before and after submerging in water to observe the effect of wetting and drying with respect to frequency response. The porous antenna with holes recovered 3x times faster than the one without holes (solid) from fully wet state (saturated with water) to the dry state, demonstrating its potential use as a moisture sensor system.

  9. Detection of the Deformation of an Intelligent Textile in a Specific Point

    PubMed Central

    Alsina, Maria; Escudero, Francesc; Margalef, Jordi; Cambra, Vicente; Gisbert, José

    2007-01-01

    An intelligent textile is a textile structure that measures and reacts in front of external agents or stimulus with or without integrated electronic equipment. The finality of the present textile is to take one more step towards intelligent textile, considering the integration of electronics and textile needs, to be industrially viable and to keep up the necessary competitiveness, raising the final price as little as possible. The finality of these experiments is to develop a textile that varies in conductivity and resistance in relation to the elongation of the textile, detecting changes caused by the alteration of a piece of clothing, from the pressure of a finger on the material, for example. One of the most important characteristics of textile is the capacity of reproducing measures, of varying the response in different tests. Two lines of research were opened: the study of the most adequate structure to achieve a response that can be reproduced and the study of the best way of taking measures without altering the behavior of the textile.

  10. Progressive Failure And Life Prediction of Ceramic and Textile Composites

    NASA Technical Reports Server (NTRS)

    Xue, David Y.; Shi, Yucheng; Katikala, Madhu; Johnston, William M., Jr.; Card, Michael F.

    1998-01-01

    An engineering approach to predict the fatigue life and progressive failure of multilayered composite and textile laminates is presented. Analytical models which account for matrix cracking, statistical fiber failures and nonlinear stress-strain behavior have been developed for both composites and textiles. The analysis method is based on a combined micromechanics, fracture mechanics and failure statistics analysis. Experimentally derived empirical coefficients are used to account for the interface of fiber and matrix, fiber strength, and fiber-matrix stiffness reductions. Similar approaches were applied to textiles using Repeating Unit Cells. In composite fatigue analysis, Walker's equation is applied for matrix fatigue cracking and Heywood's formulation is used for fiber strength fatigue degradation. The analysis has been compared with experiment with good agreement. Comparisons were made with Graphite-Epoxy, C/SiC and Nicalon/CAS composite materials. For textile materials, comparisons were made with triaxial braided and plain weave materials under biaxial or uniaxial tension. Fatigue predictions were compared with test data obtained from plain weave C/SiC materials tested at AS&M. Computer codes were developed to perform the analysis. Composite Progressive Failure Analysis for Laminates is contained in the code CPFail. Micromechanics Analysis for Textile Composites is contained in the code MicroTex. Both codes were adapted to run as subroutines for the finite element code ABAQUS and CPFail-ABAQUS and MicroTex-ABAQUS. Graphic user interface (GUI) was developed to connect CPFail and MicroTex with ABAQUS.

  11. Propagation of polarized light through textile material.

    PubMed

    Peng, Bo; Ding, Tianhuai; Wang, Peng

    2012-09-10

    In this paper a detailed investigation, based on simulations and experiments of polarized light propagation through textile material, is presented. The fibers in textile material are generally anisotropic with axisymmetric structure. The formalism of anisotropic fiber scattering (AFS) at oblique incidence is first deduced and then, based on this formalism and considered multiscattering, a polarization-dependent Monte Carlo method is employed to simulate the propagation of polarized light in textile material. Taking cotton fiber assemblies as samples, the forward-scattering Mueller matrices are calculated theoretically through the AFS-based simulations and measured experimentally by an improved Mueller matrix polarimeter. Their variations according to sample thickness are discussed primarily. With these matrices polar-decomposed, a further discussion on the optical polarization properties of cotton fiber assemblies (i.e., depolarization Δ, diattenuation D, optical rotation ψ and linear retardance δ) versus the thickness is held. Simultaneously, a meaningful comparison of both the matrices and their polar decomposition, generated from the simulations based on isotropic fiber scattering (IFS), with those simulated based on AFS is made. Results show that the IFS-derived values are strikingly different from those that are AFS-derived due to ignoring the fiber anisotropy. Furthermore, all the AFS-derived results are perfectly consistent with those obtained experimentally, which suggests that the Monte Carlo simulation based on AFS has potential applications for light scattering and propagation in textile material.

  12. Functionalization of textiles with silver and zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pulit-Prociak, Jolanta; Chwastowski, Jarosław; Kucharski, Arkadiusz; Banach, Marcin

    2016-11-01

    The paper presents a method for functionalization of textile materials using fabric dyes modified with silver or zinc oxide nanoparticles. Embedding of these nanoparticles into the structure of other materials makes that the final product is characterized by antimicrobial properties. Indigo and commercially available dye were involved in studies. It is worth to note that silver nanoparticles were obtained in-situ in the reaction of preparing indigo dye and in the process of preparing commercial dye baths. Such a method allows reducing technological steps. The modified dyes were used for dyeing of cotton fibers. The antimicrobial properties of final textile materials were studied. Saccharomyces cerevisiae strain was used in microbiological test. The results confirmed biocidal activity of prepared materials.

  13. On the Measurement of the Electrical Power Produced by Melt Spun Piezoelectric Textile Fibres

    NASA Astrophysics Data System (ADS)

    Matsouka, Dimitroula; Vassiliadis, Savvas; Prekas, Kleanthis; Bayramol, Derman Vatansever; Soin, Navneet; Siores, Elias

    2016-10-01

    Piezoelectric, melt spun, textile fibres as multifunctional materials appeared recently, and they are under thorough investigation and testing in order to define their performance and behaviour. Although piezoelectricity was first reported in 1880 and the piezoelectric behaviour of organic polymers materials has been known since 1969, the fibrous form of the piezoelectric materials under consideration opens new technological horizons; however, it introduces novel restrictions and further complex parameters are involved in their study. The major issue of the current research work is the study of the actual capacity of the piezoelectric fibres, i.e. the electric power produced following mechanical stimulation of the individual fibre. The measurements were made possible after the development of the necessary specific equipment. The test results enabled the ranking of the various types of the piezoelectric fibres according to the respective power generation. The main difference in this research approach is the measurement of the power generated by the fibres. Measurement of the power generated by an electrical power source (in the case of energy harvesting applications which is the prime interest of this research project) is an important characteristic as the requirements of various applications are expressed in units of power. Stating the voltage produced during mechanical deformation of the fibres is not enough (cf. voltage produced due to electrostatic phenomena on textiles where the voltage is in the range is the several kV, but the power is not enough to power a light-emitting diode).

  14. Submicron Surface-Patterned Fibers and Textiles

    DTIC Science & Technology

    2016-11-04

    These authors contributed equally Keywords: grating, fiber, polymer , patterning, textile Distribution A: approved for public release...requirements. Second, textile materials are primarily polymer -based, while most surface-patterning techniques have been developed for silicon...Alternative substrates, especially flexible polymers , remain challenging to pattern [25,26] due to the highly specific surface chemistry of different

  15. A Review of the NASA Textile Composites Research

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Dexter, H. B.; Raju, I. S.

    1997-01-01

    During the past 15 years NASA has taken the lead role in exploiting the benefits of textile reinforced composite materials for application to aircraft structures. The NASA Advanced Composites Technology (ACT) program was started in 1989 to develop composite primary structures for commercial transport airplanes with costs that are competitive with metal structures. As part of this program, several contractors investigated the cost, weight, and performance attributes of textile reinforced composites. Textile composites made using resin transfer molding type processes were evaluated for numerous applications. Methods were also developed to predict resin infiltration and flow in textile preforms and to predict and measure mechanical properties of the textile composites. This paper describes the salient results of that program.

  16. FIBER-TEX 1991: The Fifth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Editor)

    1992-01-01

    This document is a compilation of papers presented at a joint NASA/North Carolina State University/DoD/Clemson University/Drexel University conference on Fibers, Textile Technology, and Composites Structures held at the College of Textiles Building on Centennial Campus of North Carolina State University, Raleigh, North Carolina on October 15-17, 1991. Conference papers presented information on advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, pultruded composites, and the latest requirements for the use of textiles in the production of composite materials and structures.

  17. Hospital Textiles, Are They a Possible Vehicle for Healthcare-Associated Infections?

    PubMed Central

    Fijan, Sabina; Šostar Turk, Sonja

    2012-01-01

    Textiles are a common material in healthcare facilities; therefore it is important that they do not pose as a vehicle for the transfer of pathogens to patients or hospital workers. During the course of use hospital textiles become contaminated and laundering is necessary. Laundering of healthcare textiles is most commonly adequate, but in some instances, due to inappropriate disinfection or subsequent recontamination, the textiles may become a contaminated inanimate surface with the possibility to transfer pathogens. In this review we searched the published literature in order to answer four review questions: (1) Are there any reports on the survival of microorganisms on hospital textiles after laundering? (2) Are there any reports that indicate the presence of microorganisms on hospital textiles during use? (3) Are there any reports that microorganisms on textiles are a possible source infection of patients? (4) Are there any reports that microorganisms on textiles are a possible source infection for healthcare workers? PMID:23202690

  18. Risk Identification in a Smart Monitoring System Used to Preserve Artefacts Based on Textile Materials

    NASA Astrophysics Data System (ADS)

    Diaconescu, V. D.; Scripcariu, L.; Mătăsaru, P. D.; Diaconescu, M. R.; Ignat, C. A.

    2018-06-01

    Exhibited textile-materials-based artefacts can be affected by the environmental conditions. A smart monitoring system that commands an adaptive automatic environment control system is proposed for indoor exhibition spaces containing various textile artefacts. All exhibited objects are monitored by many multi-sensor nodes containing temperature, relative humidity and light sensors. Data collected periodically from the entire sensor network is stored in a database and statistically processed in order to identify and classify the environment risk. Risk consequences are analyzed depending on the risk class and the smart system commands different control measures in order to stabilize the indoor environment conditions to the recommended values and prevent material degradation.

  19. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. G.; Yushkov, G. Yu.; Oks, E. M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E. S.; Brown, I. G.

    2014-08-01

    Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal-gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the "inverse" concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  20. Heart valves from polyester fibers: a preliminary 6-month in vivo study.

    PubMed

    Vaesken, Antoine; Pelle, Anne; Pavon-Djavid, Graciela; Rancic, Jeanne; Chakfe, Nabil; Heim, Frederic

    2018-06-27

    Transcatheter aortic valve implantation (TAVI) has become a popular alternative technique to surgical valve replacement for critical patients. Biological valve tissue has been used in TAVI procedures for over a decade, with over 150,000 implantations to date. However, with only 6 years of follow up, little is known about the long-term durability of biological tissue. Moreover, the high cost of tissue harvesting and chemical treatment procedures favor the development of alternative synthetic valve leaflet materials. In that context, textile polyester [polyethylene terephthalate (PET)] could be considered as an interesting candidate to replace the biological valve leaflets in TAVI procedures. However, no result is available in the literature about the behavior of textile once in contact with biological tissue in the valve position. The interaction of synthetic textile material with living tissues should be comparable to biological tissue. The purpose of this preliminary work is to compare the in vivo performances of various woven textile PET valves over a 6-month period in order to identify favorable textile construction features. In vivo results indicate that fibrosis as well as calcium deposit can be limited with an appropriate material design.

  1. Mechanics of Textile Composites Conference

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C. (Editor); Harris, Charles E. (Editor)

    1995-01-01

    This document is a compilation of papers presented at the Mechanics of Textile Composites Conference in Hampton, Virginia, December 6-8, 1994. This conference was the culmination of a 3-year program that was initiated by NASA late in 1990 to develop mechanics of textile composites in support of the NASA Advance Composites Technology Program (ACT). The goal of the program was to develop mathematical models of textile preform materials and test methods to facilitate structural analysis and design. Participants in the program were from NASA, academia, and industry.

  2. Force Project Technology Presentation to the NRCC

    DTIC Science & Technology

    2014-02-04

    Functional Bridge components Smart Odometer Adv Pretreatment Smart Bridge Multi-functional Gap Crossing Fuel Automated Tracking System Adv...comprehensive matrix of candidate composite material systems and textile reinforcement architectures via modeling/analyses and testing. Product(s...Validated Dynamic Modeling tool based on parametric study using material models to reliably predict the textile mechanics of the hose

  3. In Vitro Evaluation and Mechanism Analysis of the Fiber Shedding Property of Textile Pile Debridement Materials

    PubMed Central

    Fu, Yijun; Xie, Qixue; Lao, Jihong; Wang, Lu

    2016-01-01

    Fiber shedding is a critical problem in biomedical textile debridement materials, which leads to infection and impairs wound healing. In this work, single fiber pull-out test was proposed as an in vitro evaluation for the fiber shedding property of a textile pile debridement material. Samples with different structural design (pile densities, numbers of ground yarns and coating times) were prepared and estimated under this testing method. Results show that single fiber pull-out test offers an appropriate in vitro evaluation for the fiber shedding property of textile pile debridement materials. Pull-out force for samples without back-coating exhibited a slight escalating trend with the supplement in pile density and number of ground yarn plies, while back-coating process significantly raised the single fiber pull-out force. For fiber shedding mechanism analysis, typical pull-out behavior and failure modes of the single fiber pull-out test were analyzed in detail. Three failure modes were found in this study, i.e., fiber slippage, coating point rupture and fiber breakage. In summary, to obtain samples with desirable fiber shedding property, fabric structural design, preparation process and raw materials selection should be taken into full consideration. PMID:28773428

  4. Evaluating the combined efficacy of polymers with fungicides for protection of museum textiles against fungal deterioration in Egypt.

    PubMed

    Abdel-Kareem, Omar

    2010-01-01

    Fungal deterioration is one of the highest risk factors for damage of historical textile objects in Egypt. This paper represents both a study case about the fungal microflora deteriorating historical textiles in the Egyptian Museum and the Coptic museum in Cairo, and evaluation of the efficacy of several combinations of polymers with fungicides for the reinforcement of textiles and their prevention against fungal deterioration. Both cotton swab technique and biodeteriorated textile part technique were used for isolation of fungi from historical textile objects. The plate method with the manual key was used for identification of fungi. The results show that the most dominant fungi isolated from the tested textile samples belong to Alternaria, Aspergillus, Chaetomium, Penicillium and Trichoderma species. Microbiological testing was used for evaluating the usefulness of the suggested conservation materials (polymers combined with fungicides) in prevention of the fungal deterioration of ancient Egyptian textiles. Textile samples were treated with 4 selected polymers combined with two selected fungicides. Untreated and treated textile samples were deteriorated by 3 selected active fungal strains isolated from ancient Egyptian textiles. This study reports that most of the tested polymers combined with the tested fungicides prevented the fungal deterioration of textiles. Treatment of ancient textiles by suggested polymers combined with the suggested fungicides not only reinforces these textiles, but also prevents fungal deterioration and increases the durability of these textiles. The tested polymers without fungicides reduce the fungal deterioration of textiles but do not prevent it completely.

  5. Micromechanical models for textile structural composites

    NASA Technical Reports Server (NTRS)

    Marrey, Ramesh V.; Sankar, Bhavani V.

    1995-01-01

    The objective is to develop micromechanical models for predicting the stiffness and strength properties of textile composite materials. Two models are presented to predict the homogeneous elastic constants and coefficients of thermal expansion of a textile composite. The first model is based on rigorous finite element analysis of the textile composite unit-cell. Periodic boundary conditions are enforced between opposite faces of the unit-cell to simulate deformations accurately. The second model implements the selective averaging method (SAM), which is based on a judicious combination of stiffness and compliance averaging. For thin textile composites, both models can predict the plate stiffness coefficients and plate thermal coefficients. The finite element procedure is extended to compute the thermal residual microstresses, and to estimate the initial failure envelope for textile composites.

  6. ATTRIBUTES OF AESTHETIC QUALITY USED BY TEXTILE CONSERVATORS IN EVALUATING CONSERVATION INTERVENTIONS ON MUSEUM COSTUMES.

    PubMed

    Nilsson, Johanna; Axelsson, Östen

    2015-08-01

    Aesthetic quality is central to textile conservators when evaluating a conservation method. However, the literature on textile conservation chiefly focuses on physical properties, and little is known about what factors determine aesthetic quality according to textile conservators. The latter was explored through two experiments. Experiment 1 explored the underlying attributes of aesthetic quality of textile conservation interventions. Experiment 2 explored the relationships between these attributes and how well they predicted aesthetic quality. Rank-order correlation analyses revealed two latent factors called Coherence and Completeness. Ordinal regression analysis revealed that Coherence was the most important predictor of aesthetic quality. This means that a successful conservation intervention is visually well-integrated with the textile item in terms of the material and method.

  7. Interwoven Story: A Narrative Study of Textiles as Educators

    ERIC Educational Resources Information Center

    Tremblay-Dion, Catherine-Laura

    2017-01-01

    Drawing from both narrative research and Joe Kincheloe's work of research bricolage this study inquired into how textiles have served as educator throughout my life. Weaving, as the earliest and most integral of textile fabrications, is particularly featured in this narrative inquiry. A loom, in its most basic form, consists of three components; a…

  8. Effects of waste glass additions on quality of textile sludge-based bricks.

    PubMed

    Rahman, Ari; Urabe, Takeo; Kishimoto, Naoyuki; Mizuhara, Shinji

    2015-01-01

    This research investigated the utilization of textile sludge as a substitute for clay in brick production. The addition of textile sludge to a brick specimen enhanced its pores, thus reducing the quality of the product. However, the addition of waste glass to brick production materials improved the quality of the brick in terms of both compressive strength and water absorption. Maximum compressive strength was observed with the following composition of waste materials: 30% textile sludge, 60% clay and 10% waste glass. The melting of waste glass clogged up pores on the brick, which improved water absorption performance and compressive strength. Moreover, a leaching test on a sludge-based brick to which 10% waste glass did not detect significant heavy metal compounds in leachates, with the product being in conformance with standard regulations. The recycling of textile sludge for brick production, when combined with waste glass additions, may thus be promising in terms of both product quality and environmental aspects.

  9. Standard Test Methods for Textile Composites

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Portanova, Marc A.

    1996-01-01

    Standard testing methods for composite laminates reinforced with continuous networks of braided, woven, or stitched fibers have been evaluated. The microstructure of these textile' composite materials differs significantly from that of tape laminates. Consequently, specimen dimensions and loading methods developed for tape type composites may not be applicable to textile composites. To this end, a series of evaluations were made comparing testing practices currently used in the composite industry. Information was gathered from a variety of sources and analyzed to establish a series of recommended test methods for textile composites. The current practices established for laminated composite materials by ASTM and the MIL-HDBK-17 Committee were considered. This document provides recommended test methods for determining both in-plane and out-of-plane properties. Specifically, test methods are suggested for: unnotched tension and compression; open and filled hole tension; open hole compression; bolt bearing; and interlaminar tension. A detailed description of the material architectures evaluated is also provided, as is a recommended instrumentation practice.

  10. Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents.

    PubMed

    López-Maya, Elena; Montoro, Carmen; Rodríguez-Albelo, L Marleny; Aznar Cervantes, Salvador D; Lozano-Pérez, A Abel; Cenís, José Luis; Barea, Elisa; Navarro, Jorge A R

    2015-06-01

    The current technology of air-filtration materials for protection against highly toxic chemicals, that is, chemical-warfare agents, is mainly based on the broad and effective adsorptive properties of hydrophobic activated carbons. However, adsorption does not prevent these materials from behaving as secondary emitters once they are contaminated. Thus, the development of efficient self-cleaning filters is of high interest. Herein, we report how we can take advantage of the improved phosphotriesterase catalytic activity of lithium alkoxide doped zirconium(IV) metal-organic framework (MOF) materials to develop advanced self-detoxifying adsorbents of chemical-warfare agents containing hydrolysable P-F, P-O, and C-Cl bonds. Moreover, we also show that it is possible to integrate these materials onto textiles, thereby combining air-permeation properties of the textiles with the self-detoxifying properties of the MOF material. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Viking and Early Middle Ages Northern Scandinavian Textiles Proven to be made with Hemp

    NASA Astrophysics Data System (ADS)

    Skoglund, G.; Nockert, M.; Holst, B.

    2013-10-01

    Nowadays most plant textiles used for clothing and household are made of cotton and viscose. Before the 19th century however, plant textiles were mainly made from locally available raw materials, in Scandinavia these were: nettle, hemp and flax. It is generally believed that in Viking and early Middle Ages Scandinavia hemp was used only for coarse textiles (i.e. rope and sailcloth). Here we present an investigation of 10 Scandinavian plant fibre textiles from the Viking and Early Middle Ages, believed to be locally produced. Up till now they were all believed to be made of flax. We show that 4 textiles, including two pieces of the famous Överhogdal Viking wall-hanging are in fact made with hemp (in three cases hemp and flax are mixed). This indicates that hemp was important, not only for coarse but also for fine textile production in Viking and Early Middle Ages in Scandinavia.

  12. Viking and early Middle Ages northern Scandinavian textiles proven to be made with hemp.

    PubMed

    Skoglund, G; Nockert, M; Holst, B

    2013-10-18

    Nowadays most plant textiles used for clothing and household are made of cotton and viscose. Before the 19th century however, plant textiles were mainly made from locally available raw materials, in Scandinavia these were: nettle, hemp and flax. It is generally believed that in Viking and early Middle Ages Scandinavia hemp was used only for coarse textiles (i.e. rope and sailcloth). Here we present an investigation of 10 Scandinavian plant fibre textiles from the Viking and Early Middle Ages, believed to be locally produced. Up till now they were all believed to be made of flax. We show that 4 textiles, including two pieces of the famous Överhogdal Viking wall-hanging are in fact made with hemp (in three cases hemp and flax are mixed). This indicates that hemp was important, not only for coarse but also for fine textile production in Viking and Early Middle Ages in Scandinavia.

  13. Stretchable, porous, and conductive energy textiles.

    PubMed

    Hu, Liangbing; Pasta, Mauro; Mantia, Fabio La; Cui, Lifeng; Jeong, Sangmoo; Deshazer, Heather Dawn; Choi, Jang Wook; Han, Seung Min; Cui, Yi

    2010-02-10

    Recently there is strong interest in lightweight, flexible, and wearable electronics to meet the technological demands of modern society. Integrated energy storage devices of this type are a key area that is still significantly underdeveloped. Here, we describe wearable power devices using everyday textiles as the platform. With an extremely simple "dipping and drying" process using single-walled carbon nanotube (SWNT) ink, we produced highly conductive textiles with conductivity of 125 S cm(-1) and sheet resistance less than 1 Omega/sq. Such conductive textiles show outstanding flexibility and stretchability and demonstrate strong adhesion between the SWNTs and the textiles of interest. Supercapacitors made from these conductive textiles show high areal capacitance, up to 0.48F/cm(2), and high specific energy. We demonstrate the loading of pseudocapacitor materials into these conductive textiles that leads to a 24-fold increase of the areal capacitance of the device. These highly conductive textiles can provide new design opportunities for wearable electronics and energy storage applications.

  14. Fabric opto-electronics enabling healthcare applications; a case study.

    PubMed

    van Pieterson, L; van Abeelen, F A; van Os, K; Hornix, E; Zhou, G; Oversluizen, G

    2011-01-01

    Textiles are a ubiquitous part of human life. By combining them with electronics to create electronic textile systems, new application fields emerge. In this paper, technology and applications of light-emitting textile systems are presented, with emphasis on the healthcare domain: A fabric substrate is described for electronic textile with robust interwoven connections between the conductive yarns in it. This fabric enables the creation of different forms of comfortable light therapy systems. Specific challenges to enable this use in medical applications are discussed.

  15. Unitized Stiffened Composite Textile Panels: Manufacturing, Characterization, Experiments, and Analysis

    NASA Astrophysics Data System (ADS)

    Kosztowny, Cyrus Joseph Robert

    Use of carbon fiber textiles in complex manufacturing methods creates new implementations of structural components by increasing performance, lowering manufacturing costs, and making composites overall more attractive across industry. Advantages of textile composites include high area output, ease of handling during the manufacturing process, lower production costs per material used resulting from automation, and provide post-manufacturing assembly mainstreaming because significantly more complex geometries such as stiffened shell structures can be manufactured with fewer pieces. One significant challenge with using stiffened composite structures is stiffener separation under compression. Axial compression loading conditions have frequently observed catastrophic structural failure due to stiffeners separating from the shell skin. Characterizing stiffener separation behavior is often costly computationally and experimentally. The objectives of this research are to demonstrate unitized stiffened textile composite panels can be manufactured to produce quality test specimens, that existing characterization techniques applied to state-of-the-art high-performance composites provide valuable information in modeling such structures, that the unitized structure concept successfully removes stiffener separation as a primary structural failure mode, and that modeling textile material failure modes are sufficient to accurately capture postbuckling and final failure responses of the stiffened structures. The stiffened panels in this study have taken the integrally stiffened concept to an extent such that the stiffeners and skin are manufactured at the same time, as one single piece, and from the same composite textile layers. Stiffener separation is shown to be removed as a primary structural failure mode for unitized stiffened composite textile panels loaded under axial compression well into the postbuckling regime. Instead of stiffener separation, a material damaging and failure model effectively captures local post-peak material response via incorporating a mesoscale model using a multiscaling framework with a smeared crack element-based failure model in the macroscale stiffened panel. Material damage behavior is characterized by simple experimental tests and incorporated into the post-peak stiffness degradation law in the smeared crack implementation. Computational modeling results are in overall excellent agreement compared to the experimental responses.

  16. Scalable Production of Graphene-Based Wearable E-Textiles.

    PubMed

    Karim, Nazmul; Afroj, Shaila; Tan, Sirui; He, Pei; Fernando, Anura; Carr, Chris; Novoselov, Kostya S

    2017-12-26

    Graphene-based wearable e-textiles are considered to be promising due to their advantages over traditional metal-based technology. However, the manufacturing process is complex and currently not suitable for industrial scale application. Here we report a simple, scalable, and cost-effective method of producing graphene-based wearable e-textiles through the chemical reduction of graphene oxide (GO) to make stable reduced graphene oxide (rGO) dispersion which can then be applied to the textile fabric using a simple pad-dry technique. This application method allows the potential manufacture of conductive graphene e-textiles at commercial production rates of ∼150 m/min. The graphene e-textile materials produced are durable and washable with acceptable softness/hand feel. The rGO coating enhanced the tensile strength of cotton fabric and also the flexibility due to the increase in strain% at maximum load. We demonstrate the potential application of these graphene e-textiles for wearable electronics with activity monitoring sensor. This could potentially lead to a multifunctional single graphene e-textile garment that can act both as sensors and flexible heating elements powered by the energy stored in graphene textile supercapacitors.

  17. Core-Shell-Yarn-Based Triboelectric Nanogenerator Textiles as Power Cloths.

    PubMed

    Yu, Aifang; Pu, Xiong; Wen, Rongmei; Liu, Mengmeng; Zhou, Tao; Zhang, Ke; Zhang, Yang; Zhai, Junyi; Hu, Weiguo; Wang, Zhong Lin

    2017-12-26

    Although textile-based triboelectric nanogenerators (TENGs) are highly promising because they scavenge energy from their working environment to sustainably power wearable/mobile electronics, the challenge of simultaneously possessing the qualities of cloth remains. In this work, we propose a strategy for TENG textiles as power cloths in which core-shell yarns with core conductive fibers as the electrode and artificial polymer fibers or natural fibrous materials tightly twined around core conductive fibers are applied as the building blocks. The resulting TENG textiles are comfortable, flexible, and fashionable, and their production processes are compatible with industrial, large-scale textile manufacturing. More importantly, the comfortable TENG textiles demonstrate excellent washability and tailorability and can be fully applied in further garment processing. TENG textiles worn under the arm or foot have also been demonstrated to scavenge various types of energy from human motion, such as patting, walking, and running. All of these merits of proposed TENG textiles for clothing uses suggest their great potentials for viable applications in wearable electronics or smart textiles in the near future.

  18. Mechanics of Textile Composites Conference. Part 1

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr. (Editor); Harris, Charles E. (Editor)

    1995-01-01

    This document is a compilation of papers presented at the Mechanics of Textile Composites Conference in Hampton, Virginia, December 6-8, 1994. This conference was the culmination of a 3-year program that was initiated by NASA late in 1990 to develop mechanics of textile composites in support of the NASA Advanced Composites Technology Program (ACT). The goal of the program was to develop mathematical models of textile preform materials and test methods to facilitate structural analysis and design. Participants in the program were from NASA, academia, and industry.

  19. Quinolines in clothing textiles--a source of human exposure and wastewater pollution?

    PubMed

    Luongo, Giovanna; Thorsén, Gunnar; Ostman, Conny

    2014-05-01

    A production process in which the use of various types of chemicals seems to be ubiquitous makes the textile industry a growing problem regarding both public health as well as the environment. Among several substances used at each stage, the present study focuses on the quinolines, a class of compounds involved in the manufacture of dyes, some of which are skin irritants and/or classified as probable human carcinogens. A method was developed for the determination of quinoline derivatives in textile materials comprising ultrasound-assisted solvent extraction, solid phase extraction cleanup, and final analysis by gas chromatography/mass spectrometry. Quinoline and ten quinoline derivatives were determined in 31 textile samples. The clothing samples, diverse in color, material, brand, country of manufacture, and price, and intended for a broad market, were purchased from different shops in Stockholm, Sweden. Quinoline, a possible human carcinogen, was found to be the most abundant compound present in almost all of the samples investigated, reaching a level of 1.9 mg in a single garment, and it was found that quinoline and its derivatives were mainly correlated to polyester material. This study points out the importance of screening textiles with nontarget analysis to investigate the presence of chemicals in an unbiased manner. Focus should be primarily on clothing worn close to the body.

  20. Development of active porous medium filters based on plasma textiles

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Ivan A.; Saveliev, Alexei V.; Rasipuram, Srinivasan; Kuznetsov, Andrey V.; Brown, Alan; Jasper, Warren

    2012-05-01

    Inexpensive, flexible, washable, and durable materials that serve as antimicrobial filters and self-decontaminating fabrics are needed to provide active protection to people in areas regularly exposed to various biohazards, such as hospitals and bio research labs working with pathogens. Airlines and cruise lines need such material to combat the spread of infections. In households these materials can be used in HVAC filters to fight indoor pollution, which is especially dangerous to people suffering from asthma. Efficient filtering materials are also required in areas contaminated by other types of hazardous dust particulates, such as nuclear dust. The primary idea that guided the undertaken study is that a microplasma-generating structure can be embedded in a textile fabric to generate a plasma sheath ("plasma shield") that kills bacterial agents coming in contact with the fabric. The research resulted in the development of a plasma textile that can be used for producing new types of self-decontaminating garments, fabrics, and filter materials, capable of activating a plasma sheath that would filter, capture, and destroy any bacteriological agent deposited on its surface. This new material relies on the unique antimicrobial and catalytic properties of cold (room temperature) plasma that is benign to people and does not cause thermal damage to many polymer textiles, such as Nomex and polypropylene. The uniqueness of cold plasma as a disinfecting agent lies in the inability of bacteria to develop resistance to plasma exposure, as they can for antibiotics. Plasma textiles could thus be utilized for microbial destruction in active antimicrobial filters (for continuous decontamination and disinfection of large amounts of air) as well as in self-decontaminating surfaces and antibacterial barriers (for example, for creating local antiseptic or sterile environments around wounds and burns).

  1. Development of active porous medium filters based on plasma textiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, Ivan A.; Saveliev, Alexei V.; Rasipuram, Srinivasan

    2012-05-15

    Inexpensive, flexible, washable, and durable materials that serve as antimicrobial filters and self-decontaminating fabrics are needed to provide active protection to people in areas regularly exposed to various biohazards, such as hospitals and bio research labs working with pathogens. Airlines and cruise lines need such material to combat the spread of infections. In households these materials can be used in HVAC filters to fight indoor pollution, which is especially dangerous to people suffering from asthma. Efficient filtering materials are also required in areas contaminated by other types of hazardous dust particulates, such as nuclear dust. The primary idea that guidedmore » the undertaken study is that a microplasma-generating structure can be embedded in a textile fabric to generate a plasma sheath (''plasma shield'') that kills bacterial agents coming in contact with the fabric. The research resulted in the development of a plasma textile that can be used for producing new types of self-decontaminating garments, fabrics, and filter materials, capable of activating a plasma sheath that would filter, capture, and destroy any bacteriological agent deposited on its surface. This new material relies on the unique antimicrobial and catalytic properties of cold (room temperature) plasma that is benign to people and does not cause thermal damage to many polymer textiles, such as Nomex and polypropylene. The uniqueness of cold plasma as a disinfecting agent lies in the inability of bacteria to develop resistance to plasma exposure, as they can for antibiotics. Plasma textiles could thus be utilized for microbial destruction in active antimicrobial filters (for continuous decontamination and disinfection of large amounts of air) as well as in self-decontaminating surfaces and antibacterial barriers (for example, for creating local antiseptic or sterile environments around wounds and burns).« less

  2. T & I--Textiles, Cotton Boll. Kit No. 59. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Buddin, David

    An instructor's manual and student activity guide on the cotton boll are provided in this set of prevocational education materials which focuses on the vocational area of trade and industry (textiles). (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings: agriculture, home…

  3. Study of the stretching force of the needle‧s thread in the work with woollen textiles

    NASA Astrophysics Data System (ADS)

    Andonova, Snezhina; Rahnev, Ivelin

    2017-10-01

    The presented paper deals with examining the thread tension force while working with woolen textile materials. The thread’s tension force is a main characteristic of a quality stitch. Its analysis and definition is characterized by the creation of a computer-integrated measuring system to determine the thread’s tension force. A statistical method (double-factor disperse analysis) is used to analyze and evaluate the fact how the factors: • F1 - surface mass of processed woolen textile materials, • F2 -the number of layers on the thread‧s influence the deviation from the maximal value of the thread’s tension force.

  4. A finite element framework for multiscale/multiphysics analysis of structures with complex microstructures

    NASA Astrophysics Data System (ADS)

    Varghese, Julian

    This research work has contributed in various ways to help develop a better understanding of textile composites and materials with complex microstructures in general. An instrumental part of this work was the development of an object-oriented framework that made it convenient to perform multiscale/multiphysics analyses of advanced materials with complex microstructures such as textile composites. In addition to the studies conducted in this work, this framework lays the groundwork for continued research of these materials. This framework enabled a detailed multiscale stress analysis of a woven DCB specimen that revealed the effect of the complex microstructure on the stress and strain energy release rate distribution along the crack front. In addition to implementing an oxidation model, the framework was also used to implement strategies that expedited the simulation of oxidation in textile composites so that it would take only a few hours. The simulation showed that the tow architecture played a significant role in the oxidation behavior in textile composites. Finally, a coupled diffusion/oxidation and damage progression analysis was implemented that was used to study the mechanical behavior of textile composites under mechanical loading as well as oxidation. A parametric study was performed to determine the effect of material properties and the number of plies in the laminate on its mechanical behavior. The analyses indicated a significant effect of the tow architecture and other parameters on the damage progression in the laminates.

  5. Composites of 3D-Printed Polymers and Textile Fabrics*

    NASA Astrophysics Data System (ADS)

    Martens, Yasmin; Ehrmann, Andrea

    2017-08-01

    3D printing belongs to the rapidly emerging technologies of our time. Due to its recent drawback - the technology is relatively slow compared with other primary shaping methods, such as injection molding -, 3D printing is often not used for creating complete large components but to add specific features to existing larger objects. One of the possibilities to create such composites with an additional value consists in combining 3D printed polymers with textile fabrics. Several attempts have been made to enhance the adhesion between both materials, a task which is still challenging for diverse material combinations. Our paper reports about new experiments combining 3D printed embossed designs, snap fasteners and zip fasteners with different textile base materials, showing the possibilities and technical limits of these novel composites.

  6. Flexible force sensors for e-textiles

    NASA Astrophysics Data System (ADS)

    Carvalho, H.; Yao, Y.; Gonçalves, L. M.

    2017-10-01

    This paper presents the development of inexpensive, lightweight, flexible polymer-based piezoresistive sensors appropriate for integration in e-textiles. The transducing element used is a volume-conductive carbon impregnated black polypropylene/polyethylene film with commercial names Velostat (from 3M) or Linqstat (from Caplinq). The objective is to investigate on the influence of different sensor constructions, varying film thicknesses, electrode materials and encapsulations on sensor performance. Furthermore, ways of integrating the sensors into textile products, as well as potential applications are also studied. In this paper, the behaviour of the sensors under different cyclic compression loads, applied at different speeds, is presented. Sensors using three different electrode materials are tested. The results show significant influence of sensor construction and electrode material on the static and dynamic performance of the devices.

  7. Characterization and manufacture of braided composites for large commercial aircraft structures

    NASA Technical Reports Server (NTRS)

    Fedro, Mark J.; Willden, Kurtis

    1992-01-01

    Braided composite materials, one of the advanced material forms which is under investigation in Boeing's ATCAS program, have been recognized as a potential cost-effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. The overall objective of this work is to advance braided composite technology towards applications to a large commercial transport fuselage. This paper summarizes the mechanics of materials and manufacturing demonstration results which have been obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 1D, 2D triaxial, and 3D braid patterns with thermoplastic and two RTM resin systems were investigated. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architectures, stiffnesses, fiber stresses, failure mechanisms, notch effects, and the entire history of failure of the braided composites specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration. Three foot fuselage circumferential hoop frames were manufactured to demonstrate the feasibility of consistently producing high quality braided/RTM composite primary structures. The manufacturing issues (tooling requirements, processing requirements, and process/quality control) addressed during the demonstration are summarized. The manufacturing demonstration in conjunction with the mechanical test results and developed analytical methods increased the confidence in the ATCAS approach to the design, manufacture, test, and analysis of braided composites.

  8. Development of seal ring carbon-graphite materials (tasks 5, 6, and 7)

    NASA Technical Reports Server (NTRS)

    Fechter, N. J.; Petrunich, P. S.

    1972-01-01

    Carbon-graphite seal ring bodies for operation at air temperatures to 1300 F(704 C) were manufactured from three select formulations. Mechanical and thermal properties, porosities, and oxidation rates were measured. The results have shown that: (1) Major property improvements anticipated from the screening studies were not realized because of processing problems associated with the scale-up in material size and probable deterioration of a phenolic resin binder; (2) the mechanical properties of a phenolic resin-bonded, carbon-graphite material can be improved by applying high pressure during carbonization; and (3) the textile form of graphite fiber used as the minor filler component in a carbon-graphite material can beneficially affect mechanical properties.

  9. Compression Testing of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Masters, John E.

    1996-01-01

    The applicability of existing test methods, which were developed primarily for laminates made of unidirectional prepreg tape, to textile composites is an area of concern. The issue is whether the values measured for the 2-D and 3-D braided, woven, stitched, and knit materials are accurate representations of the true material response. This report provides a review of efforts to establish a compression test method for textile reinforced composite materials. Experimental data have been gathered from several sources and evaluated to assess the effectiveness of a variety of test methods. The effectiveness of the individual test methods to measure the material's modulus and strength is determined. Data are presented for 2-D triaxial braided, 3-D woven, and stitched graphite/epoxy material. However, the determination of a recommended test method and specimen dimensions is based, primarily, on experimental results obtained by the Boeing Defense and Space Group for 2-D triaxially braided materials. They evaluated seven test methods: NASA Short Block, Modified IITRI, Boeing Open Hole Compression, Zabora Compression, Boeing Compression after Impact, NASA ST-4, and a Sandwich Column Test.

  10. Scalable Production of Graphene-Based Wearable E-Textiles

    PubMed Central

    2017-01-01

    Graphene-based wearable e-textiles are considered to be promising due to their advantages over traditional metal-based technology. However, the manufacturing process is complex and currently not suitable for industrial scale application. Here we report a simple, scalable, and cost-effective method of producing graphene-based wearable e-textiles through the chemical reduction of graphene oxide (GO) to make stable reduced graphene oxide (rGO) dispersion which can then be applied to the textile fabric using a simple pad-dry technique. This application method allows the potential manufacture of conductive graphene e-textiles at commercial production rates of ∼150 m/min. The graphene e-textile materials produced are durable and washable with acceptable softness/hand feel. The rGO coating enhanced the tensile strength of cotton fabric and also the flexibility due to the increase in strain% at maximum load. We demonstrate the potential application of these graphene e-textiles for wearable electronics with activity monitoring sensor. This could potentially lead to a multifunctional single graphene e-textile garment that can act both as sensors and flexible heating elements powered by the energy stored in graphene textile supercapacitors. PMID:29185706

  11. Health and safety concerns of textiles with nanomaterials

    NASA Astrophysics Data System (ADS)

    Almeida, L.; Ramos, D.

    2017-10-01

    There is a growing concern related to the effects of nanomaterials in health and safety.Nanotechnologies are already present in many consumer products, including textiles. “Nanotextiles” can be considered as traditional textiles with the incorporation of nanoparticles. They present often functionalities such as antibacterial, ultraviolet radiation protection, water and dirt repellency, self-cleaning or flame retardancy. Nanoparticles can be released from the textile materials due to different effects (abrasion and other mechanical stresses, sweat, irradiation, washing, temperature changes, etc.). It is then expectable that “nanotextiles” may release individual nanoparticles, agglomerates of nanoparticles or small particles of textile with or without nanoparticles, depending on the type of integration of the nanoparticles in textiles. The most important exposure route of the human body to nanoparticles in case of textiles is skin contact. Several standards are being developed under the auspices of the European Committee for Standardization. In this paper, it is presented the development and application of a test method to evaluate the skin exposure to nanoparticles, to evaluate the transfer of the nanoparticles from the textile to the skin by the effect of abrasion and sweat.

  12. Direct Integration of Dynamic Emissive Displays into Knitted Fabric Structures

    NASA Astrophysics Data System (ADS)

    Bellingham, Alyssa

    Smart textiles are revolutionizing the textile industry by combining technology into fabric to give clothing new abilities including communication, transformation, and energy conduction. The advent of electroluminescent fibers, which emit light in response to an applied electric field, has opened the door for fabric-integrated emissive displays in textiles. This thesis focuses on the development of a flexible and scalable emissive fabric display with individually addressable pixels disposed within a fabric matrix. The pixels are formed in areas where a fiber supporting the dielectric and phosphor layers of an electroluminescent structure contacts a conductive surface. This conductive surface can be an external conductive fiber, yarn or wire, or a translucent conductive material layer deposited at set points along the electroluminescent fibers. Different contacting methods are introduced and the different ways the EL yarns can be incorporated into the knitted fabric are discussed. EL fibers were fabricated using a single yarn coating system with a custom, adjustable 3D printed slot die coater for even distribution of material onto the supporting fiber substrates. These fibers are mechanically characterized inside of and outside of a knitted fabric matrix to determine their potential for various applications, including wearables. A 4-pixel dynamic emissive display prototype is fabricated and characterized. This is the first demonstration of an all-knit emissive display with individually controllable pixels. The prototype is composed of a grid of fibers supporting the dielectric and phosphor layers of an electroluminescent (EL) device structure, called EL fibers, and conductive fibers acting as the top electrode. This grid is integrated into a biaxial weft knit structure where the EL fibers make up the rows and conductive fibers make up the columns of the reinforcement yarns inside the supporting weft knit. The pixels exist as individual segments of electroluminescence that occur where the conductive fibers contact the EL fibers. A passive matrix addressing scheme was used to apply a voltage to each pixel individually, creating a display capable of dynamically communicating information. Optical measurements of the intensity and color of emitted light were used to quantify the performance of the display and compare it to state-of-the-art display technologies. The charge-voltage (Q-V) electrical characterization technique is used to gain information about the ACPEL fiber device operation, and mechanical tests were performed to determine the effect everyday wear and tear would have on the performance of the display. The presented textile display structure and method of producing fibers with individual sections of electroluminescence addresses the shortcomings in existing textile display technology and provides a route to directly integrated communicative textiles for applications ranging from biomedical research and monitoring to fashion. An extensive discussion of the materials and methods of production needed to scale this textile display technology and incorporate it into wearable applications is presented.

  13. Direct catalytic production of sorbitol from waste cellulosic materials.

    PubMed

    Ribeiro, Lucília Sousa; Órfão, José J de Melo; Pereira, Manuel Fernando Ribeiro

    2017-05-01

    Cotton wool, cotton textile, tissue paper and printing paper, all potential waste cellulosic materials, were directly converted to sorbitol using a Ru/CNT catalyst in the presence of H 2 and using only water as solvent, without any acids. Conversions up to 38% were attained for the raw substrates, with sorbitol yields below 10%. Ball-milling of the materials disrupted their crystallinity, allowing reaching 100% conversion of cotton wool, cotton textile and tissue paper after 4h, with sorbitol yields around 50%. Mix-milling these materials with the catalyst greatly enhanced their conversion rate, and the materials were efficiently converted to sorbitol with a yield around 50% in 2h. However, ball- and mix-milled printing paper presented a conversion of only 50% after 5h, with sorbitol yields of 7%. Amounts of sorbitol of 0.525, 0.511 and 0.559g could be obtained from 1g of cotton wool, cotton textile and tissue paper, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Recent Trends in Sustainable Textile Waste Recycling Methods: Current Situation and Future Prospects.

    PubMed

    Pensupa, Nattha; Leu, Shao-Yuan; Hu, Yunzi; Du, Chenyu; Liu, Hao; Jing, Houde; Wang, Huaimin; Lin, Carol Sze Ki

    2017-08-16

    In recent years, there have been increasing concerns in the disposal of textile waste around the globe. The growth of textile markets not only depends on population growth but also depends on economic and fashion cycles. The fast fashion cycle in the textile industry has led to a high level of consumption and waste generation. This can cause a negative environmental impact since the textile and clothing industry is one of the most polluting industries. Textile manufacturing is a chemical-intensive process and requires a high volume of water throughout its operations. Wastewater and fiber wastes are the major wastes generated during the textile production process. On the other hand, the fiber waste was mainly created from unwanted clothes in the textile supply chain. This fiber waste includes natural fiber, synthetic fiber, and natural/synthetic blends. The natural fiber is mostly comprised of cellulosic material, which can be used as a resource for producing bio-based products. The main challenge for utilization of textile waste is finding the method that is able to recover sugars as monosaccharides. This review provides an overview of valorization of textile waste to value-added products, as well as an overview of different strategies for sugar recovery from cellulosic fiber and their hindrances.

  15. Analysis of linear elasticity and non-linearity due to plasticity and material damage in woven and biaxial braided composites

    NASA Astrophysics Data System (ADS)

    Goyal, Deepak

    Textile composites have a wide variety of applications in the aerospace, sports, automobile, marine and medical industries. Due to the availability of a variety of textile architectures and numerous parameters associated with each, optimal design through extensive experimental testing is not practical. Predictive tools are needed to perform virtual experiments of various options. The focus of this research is to develop a better understanding of linear elastic response, plasticity and material damage induced nonlinear behavior and mechanics of load flow in textile composites. Textile composites exhibit multiple scales of complexity. The various textile behaviors are analyzed using a two-scale finite element modeling. A framework to allow use of a wide variety of damage initiation and growth models is proposed. Plasticity induced non-linear behavior of 2x2 braided composites is investigated using a modeling approach based on Hill's yield function for orthotropic materials. The mechanics of load flow in textile composites is demonstrated using special non-standard postprocessing techniques that not only highlight the important details, but also transform the extensive amount of output data into comprehensible modes of behavior. The investigations show that the damage models differ from each other in terms of amount of degradation as well as the properties to be degraded under a particular failure mode. When compared with experimental data, predictions of some models match well for glass/epoxy composite whereas other's match well for carbon/epoxy composites. However, all the models predicted very similar response when damage factors were made similar, which shows that the magnitude of damage factors are very important. Full 3D as well as equivalent tape laminate predictions lie within the range of the experimental data for a wide variety of braided composites with different material systems, which validated the plasticity analysis. Conclusions about the effect of fiber type on the degree of plasticity induced non-linearity in a +/-25° braid depend on the measure of non-linearity. Investigations about the mechanics of load flow in textile composites bring new insights about the textile behavior. For example, the reasons for existence of transverse shear stress under uni-axial loading and occurrence of stress concentrations at certain locations were explained.

  16. The effect of soil texture on the degradation of textiles associated with buried bodies.

    PubMed

    Lowe, A C; Beresford, D V; Carter, D O; Gaspari, F; O'Brien, R C; Stuart, B H; Forbes, S L

    2013-09-10

    There are many factors which affect the rate of decomposition in a grave site including; the depth of burial, climatic conditions, physical conditions of the soil (e.g. texture, pH, moisture), and method of burial (e.g. clothing, wrappings). Clothing is often studied as a factor that can slow the rate of soft tissue decomposition. In contrast, the effect of soft tissue decomposition on the rate of textile degradation is usually reported as anecdotal evidence rather than being studied under controlled conditions. The majority of studies in this area have focused on the degradation of textiles buried directly in soil. The purpose of this study was to investigate the effect of soil texture on the degradation and/or preservation of textile materials associated with buried bodies. The study involved the burial of clothed domestic pig carcasses and control clothing in contrasting soil textures (silty clay loam, fine sand and fine sandy loam) at three field sites in southern Ontario, Canada. Graves were exhumed after 2, 12 and 14 months burial to observe the degree of degradation for both natural and synthetic textiles. Recovered textile samples were chemically analyzed using infrared (IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) to investigate the lipid decomposition by-products retained in the textiles. The findings of this study demonstrate that natural textile in contact with a buried decomposing body will be preserved for longer periods of time when compared to the same textile buried directly in soil and not in contact with a body. The soil texture did not visually impact the degree of degradation or preservation. Furthermore, the natural-synthetic textile blend was resistant to degradation, regardless of soil texture, contact with the body or time since deposition. Chemical analysis of the textiles using GC-MS correctly identified a lipid degradation profile consistent with the degree of soft tissue decomposition. Such information may be important for estimating time since deposition in instances where only grave goods and associated materials are recovered from a burial site. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Composite theory applied to elastomers

    NASA Technical Reports Server (NTRS)

    Clark, S. K.

    1986-01-01

    Reinforced elastomers form the basis for most of the structural or load carrying applications of rubber products. Computer based structural analysis in the form of finite element codes was highly successful in refining structural design in both isotropic materials and rigid composites. This has lead the rubber industry to attempt to make use of such techniques in the design of structural cord-rubber composites. While such efforts appear promising, they were not easy to achieve for several reasons. Among these is a distinct lack of a clearly defined set of material property descriptors suitable for computer analysis. There are substantial differences between conventional steel, aluminum, or even rigid composites such as graphite-epoxy, and textile-cord reinforced rubber. These differences which are both conceptual and practical are discussed.

  18. Electrical Textile Valves for Paper Microfluidics.

    PubMed

    Ainla, Alar; Hamedi, Mahiar M; Güder, Firat; Whitesides, George M

    2017-10-01

    This paper describes electrically-activated fluidic valves that operate based on electrowetting through textiles. The valves are fabricated from electrically conductive, insulated, hydrophobic textiles, but the concept can be extended to other porous materials. When the valve is closed, the liquid cannot pass through the hydrophobic textile. Upon application of a potential (in the range of 100-1000 V) between the textile and the liquid, the valve opens and the liquid penetrates the textile. These valves actuate in less than 1 s, require low energy (≈27 µJ per actuation), and work with a variety of aqueous solutions, including those with low surface tension and those containing bioanalytes. They are bistable in function, and are, in a sense, the electrofluidic analog of thyristors. They can be integrated into paper microfluidic devices to make circuits that are capable of controlling liquid, including autonomous fluidic timers and fluidic logic. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Digital fabrication of textiles: an analysis of electrical networks in 3D knitted functional fabrics

    NASA Astrophysics Data System (ADS)

    Vallett, Richard; Knittel, Chelsea; Christe, Daniel; Castaneda, Nestor; Kara, Christina D.; Mazur, Krzysztof; Liu, Dani; Kontsos, Antonios; Kim, Youngmoo; Dion, Genevieve

    2017-05-01

    Digital fabrication methods are reshaping design and manufacturing processes through the adoption of pre-production visualization and analysis tools, which help minimize waste of materials and time. Despite the increasingly widespread use of digital fabrication techniques, comparatively few of these advances have benefited the design and fabrication of textiles. The development of functional fabrics such as knitted touch sensors, antennas, capacitors, and other electronic textiles could benefit from the same advances in electrical network modeling that revolutionized the design of integrated circuits. In this paper, the efficacy of using current state-of-the-art digital fabrication tools over the more common trialand- error methods currently used in textile design is demonstrated. Gaps are then identified in the current state-of-the-art tools that must be resolved to further develop and streamline the rapidly growing field of smart textiles and devices, bringing textile production into the realm of 21st century manufacturing.

  20. Novel Composites for Wing and Fuselage Applications. Task 1; Novel Wing Design Concepts

    NASA Technical Reports Server (NTRS)

    Suarez, J. A.; Buttitta, C.; Flanagan, G.; DeSilva, T.; Egensteiner, W.; Bruno, J.; Mahon, J.; Rutkowski, C.; Collins, R.; Fidnarick, R.; hide

    1996-01-01

    Design trade studies were conducted to arrive at advanced wing designs that integrated new material forms with innovative structural concepts and cost-effective fabrication methods. A representative spar was selected for design, fabrication, and test to validate the predicted performance. Textile processes, such as knitting, weaving and stitching, were used to produce fiber preforms that were later fabricated into composite span through epoxy Resin Transfer Molding (RTM), Resin Film Infusion (RFI), and consolidation of commingled thermoplastic and graphite tows. The target design ultimate strain level for these innovative structural design concepts was 6000 mu in. per in. The spars were subjected to four-point beam bending to validate their structural performance. The various material form /processing combination Y-spars were rated for their structural efficiency and acquisition cost. The acquisition cost elements were material, tooling, and labor.

  1. Smart hydrogel-functionalized textile system with moisture management property for skin application

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowen; Hu, Huawen; Yang, Zongyue; He, Liang; Kong, Yeeyee; Fei, Bin; Xin, John H.

    2014-12-01

    In this study, a functional textile-based material for topical skin application was fabricated by coating a thermoresponsive hydrogel onto one side of absorbent nonwoven fabric. The thermoresponsive hydrogel was synthesized easily through coupling of poly (ethylene glycol) (PEG) and poly (ɛ-caprolactone) (PCL) with hexamethylene diisocyanate (HMDI) as a chemical linker. The chemical structure of the as-prepared triblock copolymer hydrogel was unraveled by FTIR and 1H NMR analysis. The hydrogel showed a temperature-triggered sol-gel transition behavior and high potential for use as drug controlled release. When the surrounding temperature was close to the skin temperature of around 34 °C, it became a moisture management system where the liquids including sweat, blood, and other body fluids can be transported unidirectionally from one fabric side with the hydrophobic hydrogel coating to the untreated opposite side. This thereby showed that the thermoresponsive hydrogel-coated textile materials had a function to keep topical skin area clean, breathable, and comfortable, thus suggesting a great potential and significance for long-term skin treatment application. The structure and surface morphology of the thermoresponsive hydrogel, in vitro drug release behavior, and the mechanism of unidirectional water transport were investigated in detail. Our success in preparation of the functional textile composites will pave the way for development of various polymer- or textile-based functional materials that are applicable in the real world.

  2. Switchable and responsive liquid crystal-functionalized microfibers produced via coaxial electrospinning

    NASA Astrophysics Data System (ADS)

    Lagerwall, Jan P. F.

    2012-03-01

    "Wearable technology" or "smart textiles" are concepts that are very rapidly gaining in attention around the world, as industry as well as academia are making major advances in integrating advanced devices with various textiles around our household. The technological challenges involved in this development are however considerable, calling for new solutions, new materials and truly original thinking. An attractive approach to realize certain classes of wearable devices may be to use textile fibers functionalized by responsive materials such as liquid crystals, normally not connected to textiles. We can produce non-woven textiles with such fibers by means of electrospinning, a technique for producing very thin polymer fibers that can be uniform or with core-sheath geometries. Since the core can be made out of traditionally non-spinnable materials we can use coaxial electrospinning (one fluid spun inside another) to produce composite fibers with a core of liquid crystal inside a polymer sheath. The resulting fibers constitute an entirely new configuration for applying liquid crystals, giving the fibers functionality and responsiveness. For instance, with a cholesteric core we can produce non-woven mats with iridescent color that can be tuned (or removed) e.g. by heating or cooling. In this paper I describe our method of producing these novel functionalized fibers and their characterization, and I will discuss the directions for future research and application possibilities, e.g. in clothing-integrated sensors and indicators.

  3. Hybrid functional microfibers for textile electronics and biosensors

    NASA Astrophysics Data System (ADS)

    Nanda Sahoo, Bichitra; Choi, Byungwoo; Seo, Jungmok; Lee, Taeyoon

    2018-01-01

    Fibers are low-cost substrates that are abundantly used in our daily lives. This review highlights recent advances in the fabrication and application of multifunctional fibers to achieve fibers with unique functions for specific applications ranging from textile electronics to biomedical applications. By incorporating various nanomaterials such as carbon nanomaterials, metallic nanomaterials, and hydrogel-based biomaterials, the functions of fibers can be precisely engineered. This review also highlights the performance of the functional fibers and electronic materials incorporated with textiles and demonstrates their practical application in pressure/tensile sensors, chemical/biosensors, and drug delivery. Textile technologies in which fibers containing biological factors and cells are formed and assembled into constructions with biomimetic properties have attracted substantial attention in the field of tissue engineering. We also discuss the current limitations of functional textile-based devices and their prospects for use in various future applications. Project supported by the Priority Research Centers Program (No. 2012-0006689) through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (MEST) and the R&D program of MOTIE/KEIT [10064081, Development of fiber-based flexible multimodal pressure sensor and algorithm for gesture/posture-recognizable wearable devices]. We gratefully acknowledge partial support from the National Research Foundation of Korea (No. NRF-2017K2A9A2A06013377, NRF-2017M3A7B4049466) and the Yonsei University Future-leading Research Initiative and Implantable artificial electronic skin for an ubiquitous healthcare system of 2016-12-0050. This work is also supported by KIST Project (Nos. 2E26900, 2E27630). Dr. Seo was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2016R1A6A3A03006491).

  4. Experimental investigation of effects of stitching orientation on forming behaviors of 2D P-aramid multilayer woven preform

    NASA Astrophysics Data System (ADS)

    Abtew, Mulat Alubel; Boussu, François; Bruniaux, Pascal; Loghin, Carmen; Cristian, Irina; Chen, Yan; Wang, Lichuan

    2018-05-01

    In many textile applications stitching process is one of the widely used methods to join the multi-layer fabric plies not only due to its easy applicability and flexible production but also provide structural integrity throughout-the-thickness of materials. In this research, the influences of stitching pattern on various molding characteristics of multi-layer 2D para-aramid plain woven fabrics while deformation was investigated. The fabrics were made of high performance fiber with 930dtex yarn linear density and fabric areal density of 200gm/m2. First, different stitch pattern (orientation) was applied for joining the mentioned multi-layered fabrics keeping other stitching parameters such as stitch gap, stitch thread tension, stitch length, stitch type, stitch thread type etc. constant throughout the study. Then, a pneumatic based molding device with a low speed forming process specially designed for preforming of textile with a predefined hemispherical shape of punch. The result shows that stitching pattern is one of the parameter that influences the different molding behavior and should be consider while molding stitched multi-layer fabrics.

  5. Advanced textile materials and biopolymers in wound management.

    PubMed

    Petrulyte, Salvinija

    2008-02-01

    New generation medical textiles are an important growing field with great expansion in wound management products. Virtually new products are coming but also well known materials with significantly improved properties using advanced technologies and new methods are in the centre of research which are highly technical, technological, functional, and effective oriented. The key qualities of fibres and dressings as wound care products include that they are bacteriostatic, anti-viral, fungistatic, non-toxic, high absorbent, non-allergic, breathable, haemostatic, biocompatible, and manipulatable to incorporate medications, also provide reasonable mechanical properties. Many advantages over traditional materials have products modified or blended with also based on alginate, chitin/chitosan, collagen, branan ferulate, carbon fibres. Textile structures used for modern wound dressings are of large variety: sliver, yarn, woven, non-woven, knitted, crochet, braided, embroidered, composite materials. Wound care also applies to materials like hydrogels, matrix (tissue engineering), films, hydrocolloids, foams. Specialized additives with special functions can be introduced in advanced wound dressings with the aim to absorb odours, provide strong antibacterial properties, smooth pain and relieve irritation. Because of unique properties as high surface area to volume ratio, film thinness, nano scale fibre diameter, porosity, light weight, nanofibres are used in wound care. The aim of this study is to outline and review the latest developments and advance in medical textiles and biopolymers for wound management providing the overview with generalized scope about novelties in products and properties.

  6. Antimicrobial Approaches for Textiles: From Research to Market

    PubMed Central

    Morais, Diana Santos; Guedes, Rui Miranda; Lopes, Maria Ascensão

    2016-01-01

    The large surface area and ability to retain moisture of textile structures enable microorganisms’ growth, which causes a range of undesirable effects, not only on the textile itself, but also on the user. Due to the public health awareness of the pathogenic effects on personal hygiene and associated health risks, over the last few years, intensive research has been promoted in order to minimize microbes’ growth on textiles. Therefore, to impart an antimicrobial ability to textiles, different approaches have been studied, being mainly divided into the inclusion of antimicrobial agents in the textile polymeric fibers or their grafting onto the polymer surface. Regarding the antimicrobial agents, different types have been used, such as quaternary ammonium compounds, triclosan, metal salts, polybiguanides or even natural polymers. Any antimicrobial treatment performed on a textile, besides being efficient against microorganisms, must be non-toxic to the consumer and to the environment. This review mainly intends to provide an overview of antimicrobial agents and treatments that can be performed to produce antimicrobial textiles, using chemical or physical approaches, which are under development or already commercially available in the form of isolated agents or textile fibers or fabrics. PMID:28773619

  7. Experimental and analytical characterization of triaxially braided textile composites

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Fedro, Mark J.; Ifju, Peter G.

    1993-01-01

    There were two components, experimental and analytical, to this investigation of triaxially braided textile composite materials. The experimental portion of the study centered on measuring the materials' longitudinal and transverse tensile moduli, Poisson's ratio, and strengths. The identification of the damage mechanisms exhibited by these materials was also a prime objective of the experimental investigation. The analytical portion of the investigation utilized the Textile Composites Analysis (TECA) model to predict modulus and strength. The analytical and experimental results were compared to assess the effectiveness of the analysis. The figures contained in this paper reflect the presentation made at the conference. They may be divided into four sections: a definition of the material system tested; followed by a series of figures summarizing the experimental results (these figures contain results of a Moire interferometry study of the strain distribution in the material, examples and descriptions of the types of damage encountered in these materials, and a summary of the measured properties); a description of the TECA model follows the experimental results (this includes a series of predicted results and a comparison with measured values); and finally, a brief summary completes the paper.

  8. Molecular weaving via surface-templated epitaxy of crystalline coordination networks.

    NASA Astrophysics Data System (ADS)

    Wang, Zhengbang; Błaszczyk, Alfred; Fuhr, Olaf; Heissler, Stefan; Wöll, Christof; Mayor, Marcel

    2017-02-01

    One of the dream reactions in polymer chemistry is the bottom-up, self-assembled synthesis of polymer fabrics, with interwoven, one-dimensional fibres of monomolecular thickness forming planar pieces of textiles. We have made a major step towards realizing this goal by assembling sophisticated, quadritopic linkers into surface-mounted metal-organic frameworks. By sandwiching these quadritopic linkers between sacrificial metal-organic framework thin films, we obtained multi-heteroepitaxial, crystalline systems. In a next step, Glaser-Hay coupling of triple bonds in the quadritopic linkers yields linear, interwoven polymer chains. X-ray diffraction studies revealed that this topochemical reaction leaves the MOF backbone completely intact. After removing the metal ions, the textile sheets can be transferred onto different supports and imaged using scanning electron microscopy and atomic-force microscopy. The individual polymer strands forming the two-dimensional textiles have lengths on the order of 200 nm, as evidenced by atomic-force microscopy images recorded from the disassembled textiles.

  9. Conductive Textiles via Vapor-Phase Polymerization of 3,4-Ethylenedioxythiophene.

    PubMed

    Ala, Okan; Hu, Bin; Li, Dapeng; Yang, Chen-Lu; Calvert, Paul; Fan, Qinguo

    2017-08-30

    We fabricated electrically conductive textiles via vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) layers on cotton, cotton/poly(ethylene terephthalate) (PET), cotton/Lycra, and PET fabrics. We then measured the electrical resistivity values of such PEDOT-coated textiles and analyzed the effect of water treatment on the electrical resistivity. Additionally, we tested the change in the electrical resistance of the conductive textiles under cyclic stretching and relaxation. Last, we characterized the uniformity and morphology of the conductive layer formed on the fabrics using scanning electron microscopy and electron-dispersive X-ray spectroscopy.

  10. Local Structure Fixation in the Composite Manufacturing Chain

    NASA Astrophysics Data System (ADS)

    Girdauskaite, Lina; Krzywinski, Sybille; Rödel, Hartmut; Wildasin-Werner, Andrea; Böhme, Ralf; Jansen, Irene

    2010-12-01

    Compared to metal materials, textile reinforced composites show interesting features, but also higher production costs because of low automation rate in the manufacturing chain at this time. Their applicability is also limited due to quality problems, which restrict the production of complex shaped dry textile preforms. New technologies, design concepts, and cost-effective manufacturing methods are needed in order to establish further fields of application. This paper deals with possible ways to improve the textile deformation process by locally applying a fixative to the structure parallel to the cut. This hinders unwanted deformation in the textile stock during the subsequent stacking and formation steps. It is found that suitable thermoplastic binders, applied in the appropriate manner do not restrict formation of the textile and have no negative influence on the mechanical properties of the composite.

  11. Characterisation of oil and aluminium complex on replica and historical 19th c. Turkey red textiles by non-destructive diffuse reflectance FTIR spectroscopy.

    PubMed

    Wertz, Julie H; Tang, Pik Leung; Quye, Anita; France, David J

    2018-06-11

    This work investigates historical and replica Turkey red textiles with diffuse reflectance infrared (DRIFT) spectroscopy to study the coordination complex between cellulose, fatty acids, and the aluminium ions that form the basis of the colour lake. Turkey red was produced in Scotland for around 150 years, and is held in many museum and archive collections. The textile was renowned for its brilliant red hue, and for its fastness to light, washing, rubbing, and bleaching. This was attributed to its unusual preparatory process, the chemistry of which was never fully understood, that involved imbuing cotton with a solution of aqueous fatty acids and then aluminium in the following step. Here we show, for the first time, a characterisation of the Turkey red complex on replica and historical textiles. The development of techniques for non-destructive and in situ analysis of historical textiles is valuable for improving understanding of their chemistry, hopefully contributing to better conservation and display practices. The results show the fatty acids condense onto the cellulose polymer via hydrogen bonding between the CO and OH of the respective compounds, then the aluminium forms a bridging complex with the fatty acid carboxyl. This contributes to an improved understanding of Turkey red textiles, and shows the useful application of handheld diffuse FTIR instruments for heritage textile research. Copyright © 2018. Published by Elsevier B.V.

  12. Computer-Assisted Programmed Instruction in Textiles.

    ERIC Educational Resources Information Center

    Kean, Rita C.; Laughlin, Joan

    Students in an introductory textiles course at the University of Nebraska's College of Home Economics actively participate in the learning experience through a self-paced instructional technique. Specific learning packets were developed adapting programmed instructional learning materials to computer assisted instruction (CAI). A study booklet…

  13. Literature Reviews on Modeling Internal Geometry of Textile Composites and Rate-Independent Continuum Damage

    NASA Technical Reports Server (NTRS)

    Su-Yuen, Hsu

    2011-01-01

    Textile composite materials have good potential for constructing composite structures where the effects of three-dimensional stresses are critical or geometric complexity is a manufacturing concern. There is a recent interest in advancing competence within Langley Research Center for modeling the degradation of mechanical properties of textile composites. In an initial effort, two critical areas are identified to pursue: (1) Construction of internal geometry of textile composites, and (2) Rate-independent continuum damage mechanics. This report documents reviews on the two subjects. Various reviewed approaches are categorized, their assumptions, methods, and progress are briefed, and then critiques are presented. Each review ends with recommended research.

  14. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics.

    PubMed

    Lee, Jaehong; Kwon, Hyukho; Seo, Jungmok; Shin, Sera; Koo, Ja Hoon; Pang, Changhyun; Son, Seungbae; Kim, Jae Hyung; Jang, Yong Hoon; Kim, Dae Eun; Lee, Taeyoon

    2015-04-17

    A flexible and sensitive textile-based pressure sensor is developed using highly conductive fibers coated with dielectric rubber materials. The pressure sensor exhibits superior sensitivity, very fast response time, and high stability, compared with previous textile-based pressure sensors. By using a weaving method, the pressure sensor can be applied to make smart gloves and clothes that can control machines wirelessly as human-machine interfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. From Wood to Textiles: Top-Down Assembly of Aligned Cellulose Nanofibers.

    PubMed

    Jia, Chao; Chen, Chaoji; Kuang, Yudi; Fu, Kun; Wang, Yilin; Yao, Yonggang; Kronthal, Spencer; Hitz, Emily; Song, Jianwei; Xu, Fujun; Liu, Boyang; Hu, Liangbing

    2018-06-07

    Advanced textiles made of macroscopic fibers are usually prepared from synthetic fibers, which have changed lives over the past century. The shortage of petrochemical resources, however, greatly limits the development of the textile industry. Here, a facile top-down approach for fabricating macroscopic wood fibers for textile applications (wood-textile fibers) comprising aligned cellulose nanofibers directly from natural wood via delignification and subsequent twisting is demonstrated. Inherently aligned cellulose nanofibers are well retained, while the microchannels in the delignified wood are squeezed and totally removed by twisting, resulting in a dense structure with approximately two times higher mechanical strength (106.5 vs 54.9 MPa) and ≈20 times higher toughness (7.70 vs 0.36 MJ m -3 ) than natural wood. Dramatically different from natural wood, which is brittle in nature, the resultant wood-textile fibers are highly flexible and bendable, likely due to the twisted structures. The wood-textile fibers also exhibit excellent knitting properties and dyeability, which are critical for textile applications. Furthermore, functional wood-textile fibers can be achieved by preinfiltrating functional materials in the delignified wood film before twisting. This top-down approach of fabricating aligned macrofibers is simple, scalable, and cost-effective, representing a promising direction for the development of smart textiles and wearable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. An Evaluation Model for Sustainable Development of China’s Textile Industry: An Empirical Study

    NASA Astrophysics Data System (ADS)

    Zhao, Hong; Lu, Xiaodong; Yu, Ting; Yin, Yanbin

    2018-04-01

    With economy’s continuous rapid growth, textile industry is required to search for new rules and adjust strategies in order to optimize industrial structure and rationalize social spending. The sustainable development of China’s textile industry is a comprehensive research subject. This study analyzed the status of China’s textile industry and constructed the evaluation model based on the economical, ecologic, and social benefits. Analytic Hierarchy Process (AHP) and Data Envelopment Analysis (DEA) were used for an empirical study of textile industry. The result of evaluation model suggested that the status of the textile industry has become the major problems in the sustainable development of China’s textile industry. It’s nearly impossible to integrate into the global economy if no measures are taken. The enterprises concerned with the textile industry status should be reformed in terms of product design, raw material selection, technological reform, technological progress, and management, in accordance with the ideas and requirements of sustainable development. The results of this study are benefit for 1) discover the main elements restricting the industry’s sustainable development; 2) seek for corresponding solutions for policy formulation and implementation of textile industry; 3) provide references for enterprises’ development transformation in strategic deployment, fund allocation, and personnel assignment.

  17. Possible Applications of 3D Printing Technology on Textile Substrates

    NASA Astrophysics Data System (ADS)

    Korger, M.; Bergschneider, J.; Lutz, M.; Mahltig, B.; Finsterbusch, K.; Rabe, M.

    2016-07-01

    3D printing is a rapidly emerging additive manufacturing technology which can offer cost efficiency and flexibility in product development and production. In textile production 3D printing can also serve as an add-on process to apply 3D structures on textiles. In this study the low-cost fused deposition modeling (FDM) technique was applied using different thermoplastic printing materials available on the market with focus on flexible filaments such as thermoplastic elastomers (TPE) or Soft PLA. Since a good adhesion and stability of the 3D printed structures on textiles are essential, separation force and abrasion resistance tests were conducted with different kinds of printed woven fabrics demonstrating that a sufficient adhesion can be achieved. The main influencing factor can be attributed to the topography of the textile surface affected by the weave, roughness and hairiness offering formlocking connections followed by the wettability of the textile surface by the molten polymer, which depends on the textile surface energy and can be specifically controlled by washing (desizing), finishing or plasma treatment of the textile before the print. These basic adhesion mechanisms can also be considered crucial for 3D printing on knitwear.

  18. Production and validation of model iron-tannate dyed textiles for use as historic textile substitutes in stabilisation treatment studies

    PubMed Central

    2012-01-01

    Background For millennia, iron-tannate dyes have been used to colour ceremonial and domestic objects shades of black, grey, or brown. Surviving iron-tannate dyed objects are part of our cultural heritage but their existence is threatened by the dye itself which can accelerate oxidation and acid hydrolysis of the substrate. This causes many iron-tannate dyed textiles to discolour and decrease in tensile strength and flexibility at a faster rate than equivalent undyed textiles. The current lack of suitable stabilisation treatments means that many historic iron-tannate dyed objects are rapidly crumbling to dust with the knowledge and value they hold being lost forever. This paper describes the production, characterisation, and validation of model iron-tannate dyed textiles as substitutes for historic iron-tannate dyed textiles in the development of stabilisation treatments. Spectrophotometry, surface pH, tensile testing, SEM-EDX, and XRF have been used to characterise the model textiles. Results On application to textiles, the model dyes imparted mid to dark blue-grey colouration, an immediate tensile strength loss of the textiles and an increase in surface acidity. The dyes introduced significant quantities of iron into the textiles which was distributed in the exterior and interior of the cotton, abaca, and silk fibres but only in the exterior of the wool fibres. As seen with historic iron-tannate dyed objects, the dyed cotton, abaca, and silk textiles lost tensile strength faster and more significantly than undyed equivalents during accelerated thermal ageing and all of the dyed model textiles, most notably the cotton, discoloured more than the undyed equivalents on ageing. Conclusions The abaca, cotton, and silk model textiles are judged to be suitable for use as substitutes for cultural heritage materials in the testing of stabilisation treatments. PMID:22616934

  19. Production and validation of model iron-tannate dyed textiles for use as historic textile substitutes in stabilisation treatment studies.

    PubMed

    Wilson, Helen; Carr, Chris; Hacke, Marei

    2012-05-22

    For millennia, iron-tannate dyes have been used to colour ceremonial and domestic objects shades of black, grey, or brown. Surviving iron-tannate dyed objects are part of our cultural heritage but their existence is threatened by the dye itself which can accelerate oxidation and acid hydrolysis of the substrate. This causes many iron-tannate dyed textiles to discolour and decrease in tensile strength and flexibility at a faster rate than equivalent undyed textiles. The current lack of suitable stabilisation treatments means that many historic iron-tannate dyed objects are rapidly crumbling to dust with the knowledge and value they hold being lost forever.This paper describes the production, characterisation, and validation of model iron-tannate dyed textiles as substitutes for historic iron-tannate dyed textiles in the development of stabilisation treatments. Spectrophotometry, surface pH, tensile testing, SEM-EDX, and XRF have been used to characterise the model textiles. On application to textiles, the model dyes imparted mid to dark blue-grey colouration, an immediate tensile strength loss of the textiles and an increase in surface acidity. The dyes introduced significant quantities of iron into the textiles which was distributed in the exterior and interior of the cotton, abaca, and silk fibres but only in the exterior of the wool fibres. As seen with historic iron-tannate dyed objects, the dyed cotton, abaca, and silk textiles lost tensile strength faster and more significantly than undyed equivalents during accelerated thermal ageing and all of the dyed model textiles, most notably the cotton, discoloured more than the undyed equivalents on ageing. The abaca, cotton, and silk model textiles are judged to be suitable for use as substitutes for cultural heritage materials in the testing of stabilisation treatments.

  20. Textile & Apparel Production, Management, and Services: Curriculum Guide.

    ERIC Educational Resources Information Center

    Killman, Letitia

    This curriculum guide contains materials for a course that provides occupationally specific training designed to develop knowledge and skills for employment in the textile and apparel industries. Contents include an introduction; the Texas Essential Knowledge and Skills (TEKS) covered; sample course outlines; instructional strategies organized…

  1. A crossed dodecagonal deployable polarizer on textile and polydimethylsiloxane (PDMS) substrates

    NASA Astrophysics Data System (ADS)

    Mirza, Hidayath; Soh, Ping Jack; Jamlos, Mohd Faizal; Hossain, Toufiq Md; Ramli, Muhammad Nazrin; Al-Hadi, Azremi Abdullah; Sheikh, R. Ahmad; Hassan, Emad S.; Yan, Sen

    2018-02-01

    This paper presents the design of a flexible using two set of flexible material classes: polymer and textiles. ShieldIt Super conductive fabric and felt are used as the textile material, and its performance is compared with another version designed on a polydimethylsiloxane (PDMS) polymeric substrate. They are both built using a 4 × 4 dodecagonal unit element array backed by a rectangular patch, each sized at 54 × 64 × 3.34 mm3 (0.40 λ × 0.34 λ × 0.02λ) and 62 × 52 × 3.34 mm3 (0.35λ × 0.41λ × 0.02 λ). Both of them are validated to be operational centered at 2.2 GHz with a measured conversion efficiency of more than 90% from 1.578 to 2.578 GHz (48.12%) for the textile prototype. The results of the bending investigations suggest that the deployment mechanism must ensure a flat polarizer condition to enable its optimal performance.

  2. Design of an inclusive & interactive educational textile toy

    NASA Astrophysics Data System (ADS)

    Pereira, C.; Cunha, J.

    2017-10-01

    The market for educational toys is scarce in products specifically developed for blind and low sighted children, aiming not only at their motor and cognitive development as well as to the non-stigmatization of these children. Considering the development of educational toys, and based in previous research work [1], we found that textile materials offer an enormous application capability in this regard due not only to their flexibility in use and maintenance of properties, but also because of our familiarity with these materials. The main goal of this project is the study of the emotional response to an interactive educational textile toy by children with visual impairments - blind or partially sighted. In this way the project is based on four main axes: knowing the user, identifying his specific needs; knowing the product-user relationship with a special focus on tactile and emotional perception; study textile structures to best fit the design; and, finally, evaluate the user’s response to the developed product by evaluating the product experience.

  3. Material Property Characterization of AS4/VRM-34 Textile Laminates

    NASA Technical Reports Server (NTRS)

    Grenoble, Ray W.; Johnston, William M

    2013-01-01

    Several material properties (modulus, strengths, and fracture toughness) of a textile composite have been evaluated to provide input data to analytical models of Pultruded Rod Stiffened Efficient Unitized Structure (PRSEUS). The material system is based on warp-knitted preforms of AS4 carbon fibers and VRM-34 epoxy resin, which have been processed via resin infusion and oven curing. Tensile, compressive, shear, and fracture toughness properties have been measured at ambient and elevated temperatures. All specimens were tested in as-fabricated (dry) condition. Specimens were tested with and without through-thickness stitching.

  4. Development of new smart materials and spinning systems inspired by natural silks and their applications

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Lee, Sang-Hoon

    2015-12-01

    Silks produced by spiders and silkworms are charming natural biological materials with highly optimized hierarchical structures and outstanding physicomechanical properties. The superior performance of silks relies on the integration of a unique protein sequence, a distinctive spinning process, and complex hierarchical structures. Silks have been prepared to form a variety of morphologies and are widely used in diverse applications, for example, in the textile industry, as drug delivery vehicles, and as tissue engineering scaffolds. This review presents an overview of the organization of natural silks, in which chemical and physical functions are optimized, as well as a range of new materials inspired by the desire to mimic natural silk structure and synthesis.

  5. Bacterial Growth on Chitosan-Coated Polypropylene Textile

    PubMed Central

    Erben, D.; Hola, V.; Jaros, J.; Rahel, J.

    2012-01-01

    Biofouling is a problem common in all systems where microorganisms and aqueous environment meet. Prevention of biofouling is therefore important in many industrial processes. The aim of this study was to develop a method to evaluate the ability of material coating to inhibit biofilm formation. Chitosan-coated polypropylene nonwoven textile was prepared using dielectric barrier discharge plasma activation. Resistance of the textile to biofouling was then tested. First, the textile was submerged into a growth medium inoculated with green fluorescein protein labelled Pseudomonas aeruginosa. After overnight incubation at 33°C, the textile was observed using confocal laser scanning microscopy for bacterial enumeration and biofilm structure characterisation. In the second stage, the textile was used as a filter medium for prefiltered river water, and the pressure development on the in-flow side was measured to quantify the overall level of biofouling. In both cases, nontreated textile samples were used as a control. The results indicate that the chitosan coating exhibits antibacterial properties. The developed method is applicable for the evaluation of the ability to inhibit biofilm formation. PMID:23724330

  6. Effect of tow alignment on the mechanical performance of 3D woven textile composites

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Allison, Patti; Baldwin, Jack W.; Gracias, Brian K.; Seesdorf, Dave

    1993-01-01

    Three-dimensional (3D) woven preforms are currently being considered for use as primary structural components. Lack of technology to properly manufacture, characterize and predict mechanical properties, and predict damage mechanisms leading to failure are problems facing designers of textile composite materials. Two material systems with identical specifications but different manufacturing approaches are investigated. One manufacturing approach resulted in an irregular (nonuniform) preform geometry. The other approach yielded the expected preform geometry (uniform). The objectives are to compare the mechanical properties of the uniform and nonuniform angle interlock 3D weave constructions. The effect of adding layers of laminated tape to the outer surfaces of the textile preform is also examined. Damage mechanisms are investigated and test methods are evaluated.

  7. Efficiency Improvement of Some Agricultural Residue Modified Materials for Textile Dyes Absorption

    NASA Astrophysics Data System (ADS)

    Boonsong, P.; Paksamut, J.

    2018-03-01

    In this work, the adsorption efficiency was investigated of some agricultural residue modified materials as natural bio-adsorbents which were rice straw (Oryza sativa L.) and pineapple leaves (Ananas comosus (L.) Merr.) for the removal of textile dyes. Reactive dyes were used in this research. The improvement procedure of agricultural residue materials properties were alkali-acid modification with sodium hydroxide solution and hydrochloric acid solution. Adsorption performance has been investigated using batch experiments. Investigated adsorption factors consisted of adsorbent dose, contact time, adsorbent materials and pH of solution. The results were found that rice straw had higher adsorption capacity than pineapple leaves. The increasing of adsorption capacity depends on adsorbent dose and contact time. Moreover, the optimum pH for dye adsorption was acidic range because lowering pH increased the positively charges on the adsorbent surface which could be attacked by negatively charge of acid dyes. The agricultural residue modified materials had significant dye removal efficiency which these adsorbents could be used for the treatment of textile effluent in industries.

  8. Development of a system to measure local measurement conditions around textile electrodes.

    PubMed

    Kim, Saim; Oliveira, Joana; Roethlingshoefer, Lisa; Leonhard, Steffen

    2010-01-01

    The three main influence factors on the interface between textile electrode an skin are: temperature, contact pressure and relative humidity. This paper presents first results of a prototype, which measures these local measurement conditions around textile electrodes. The wearable prototype is a data acquisition system based on a microcontroller with a flexible sensor sleeve. Validation measurements included variation of ambient temperature, contact pressures and sleeve material. Results show a good correlation with data found in literature.

  9. A Simple and Scalable Fabrication Method for Organic Electronic Devices on Textiles.

    PubMed

    Ismailov, Usein; Ismailova, Esma; Takamatsu, Seiichi

    2017-03-13

    Today, wearable electronics devices combine a large variety of functional, stretchable, and flexible technologies. However, in many cases, these devices cannot be worn under everyday conditions. Therefore, textiles are commonly considered the best substrate to accommodate electronic devices in wearable use. In this paper, we describe how to selectively pattern organic electroactive materials on textiles from a solution in an easy and scalable manner. This versatile deposition technique enables the fabrication of wearable organic electronic devices on clothes.

  10. Advanced resin systems and 3D textile preforms for low cost composite structures

    NASA Technical Reports Server (NTRS)

    Shukla, J. G.; Bayha, T. D.

    1993-01-01

    Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.

  11. Capillarity-induced folds fuel extreme shape changes in thin wicked membranes.

    PubMed

    Grandgeorge, Paul; Krins, Natacha; Hourlier-Fargette, Aurélie; Laberty-Robert, Christel; Neukirch, Sébastien; Antkowiak, Arnaud

    2018-04-20

    Soft deformable materials are needed for applications such as stretchable electronics, smart textiles, or soft biomedical devices. However, the design of a durable, cost-effective, or biologically compatible version of such a material remains challenging. Living animal cells routinely cope with extreme deformations by unfolding preformed membrane reservoirs available in the form of microvilli or membrane folds. We synthetically mimicked this behavior by creating nanofibrous liquid-infused tissues that spontaneously form similar reservoirs through capillarity-induced folding. By understanding the physics of membrane buckling within the liquid film, we developed proof-of-concept conformable chemical surface treatments and stretchable basic electronic circuits. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Dermal exposure potential from textiles that contain silver nanoparticles

    PubMed Central

    Stefaniak, Aleksandr B; Duling, Mathew G; Lawrence, Robert B; Thomas, Treye A; LeBouf, Ryan F; Wade, Eleanor E; Abbas Virji, M

    2014-01-01

    Background: Factors that influence exposure to silver particles from the use of textiles are not well understood. Objectives: The aim of this study was to evaluate the influence of product treatment and physiological factors on silver release from two textiles. Methods: Atomic and absorbance spectroscopy, electron microscopy, and dynamic light scattering (DLS) were applied to characterize the chemical and physical properties of the textiles and evaluate silver release in artificial sweat and saliva under varying physiological conditions. One textile had silver incorporated into fiber threads (masterbatch process) and the other had silver nanoparticles coated on fiber surfaces (finishing process). Results: Several complementary and confirmatory analytical techniques (spectroscopy, microscopy, etc.) were required to properly assess silver release. Silver released into artificial sweat or saliva was primarily in ionic form. In a simulated “use” and laundering experiment, the total cumulative amount of silver ion released was greater for the finishing process textile (0.51±0.04%) than the masterbatch process textile (0.21±0.01%); P<0.01. Conclusions: We found that the process (masterbatch vs finishing) used to treat textile fibers was a more influential exposure factor than physiological properties of artificial sweat or saliva. PMID:25000110

  13. Dermal exposure potential from textiles that contain silver nanoparticles.

    PubMed

    Stefaniak, Aleksandr B; Duling, Mathew G; Lawrence, Robert B; Thomas, Treye A; LeBouf, Ryan F; Wade, Eleanor E; Virji, M Abbas

    2014-01-01

    Factors that influence exposure to silver particles from the use of textiles are not well understood. The aim of this study was to evaluate the influence of product treatment and physiological factors on silver release from two textiles. Atomic and absorbance spectroscopy, electron microscopy, and dynamic light scattering (DLS) were applied to characterize the chemical and physical properties of the textiles and evaluate silver release in artificial sweat and saliva under varying physiological conditions. One textile had silver incorporated into fiber threads (masterbatch process) and the other had silver nanoparticles coated on fiber surfaces (finishing process). Several complementary and confirmatory analytical techniques (spectroscopy, microscopy, etc.) were required to properly assess silver release. Silver released into artificial sweat or saliva was primarily in ionic form. In a simulated "use" and laundering experiment, the total cumulative amount of silver ion released was greater for the finishing process textile (0·51±0·04%) than the masterbatch process textile (0·21±0·01%); P<0·01. We found that the process (masterbatch vs finishing) used to treat textile fibers was a more influential exposure factor than physiological properties of artificial sweat or saliva.

  14. Measurement and Analysis of Drapeability Effects of Warp-Knit NCF with a Standardised, Automated Testing Device

    NASA Astrophysics Data System (ADS)

    Christ, Mirko; Miene, Andrea; Mörschel, Ulrich

    2017-08-01

    Characterising the drapeability of reinforcement fabrics, is one of the most sought after abilities of those designing composite processes and components. This is not surprising as composite processes are being considered in a greater range of fields and applications. Drapeability effects are formed by the irregular rearrangement of fibres. This displacement can occur within the textile plane and result in fibre disorientations, undulations and gaps or the fibres can be pushed into the third dimension - forming wrinkles or loops. To measure such effects in non-crimp fabrics, the Textechno Drapetest automatic drapeability tester was developed. To show its viability as a tool for composite engineering, a set of fabrics was chosen to show that the influence of textile design parameters on drapeability effects is now quantifiable. The Textechno Drapetest uses a sophisticated digital image analysis system to measure the position and direction of fibres and conclude from this information on the extent and intensity of drapeability effects in the textile surface. To measure effects outside the surface, i.e. wrinkles, a laser triangulation sensor is employed. The textiles were varied in the production parameters of stitch point distance in machine direction (MD) and cross direction (CD), the weight per area, and the stitch pattern (tricot and chain). The measurements showed that the new test method is capable of measuring the effects that were expected from classical test setups as well as a range of additional effects. From the results a significant influence of the stitch yarn on the formation of effects can be deduced. Especially the density of stitch points is a parameter that lets the textile producer control the behaviour of the textile when they are formed into a doubly curved three dimensional shape. To control the gap formation, however, the spacing of the stitch points in machine or in crosswise direction is also of importance with a shorter stitch length decreasing the forming of gaps more than a tighter stitch yarn pitch.

  15. Multifunctional Wearable Electronic Textiles Using Cotton Fibers with Polypyrrole and Carbon Nanotubes.

    PubMed

    Lima, Ravi M A P; Alcaraz-Espinoza, Jose Jarib; da Silva, Fernando A G; de Oliveira, Helinando P

    2018-04-25

    Multifunctional wearable electronic textiles based on interfacial polymerization of polypyrrole on carbon nanotubes/cotton fibers offer advantages of simple and low-cost materials that incorporate bactericidal, good electrochemical performance, and electrical heating properties. The high conductivity of doped polypyrrole/CNT composite provides textiles that reaches temperature on order of 70 °C with field of 5 V/cm, superior electrochemical performance applied as electrodes of supercapacitor prototypes, reaching capacitance in order of 30 F g -1 and strong bactericidal activity against Staphylococcus aureus. The combination of these properties can be explored in smart devices for heat and microbial treatment on different parts of body, with incorporated storage of energy on textiles.

  16. Developing a national programme for textiles and clothing recovery.

    PubMed

    Bukhari, Mohammad Abdullatif; Carrasco-Gallego, Ruth; Ponce-Cueto, Eva

    2018-04-01

    Textiles waste is relatively small in terms of weight as compared to other waste streams, but it has a large impact on human health and environment, and its rate is increasing due to the 'fast fashion' model. In this paper, we examine the French national programme for managing post-consumer textiles and clothing through a case study research. To date, France is the only country in the world implementing an extended producer responsibility (EPR) policy for end-of-use clothing, linen and shoes. The case highlights the benefits of using an EPR policy and provides interesting insights about the challenges faced by the textiles waste sector. For instance, the EPR policy has contributed to a threefold increase in the collection and recycling rates of post-consumer textiles since 2006. In addition, the material recovery rate of the post-consumer textiles can reach 90%, 50% of which can be directly reused. However, the 'reuse' stream is facing some challenges because its main market is in Africa and many African countries are considering banning the import of used textiles to encourage a competitive textiles industry locally and internationally. The EPR policy shows a great potential to identify new markets for 'reuse' and to improve the textiles waste sector. Such an EPR policy also could drive societies to financially support innovation and research to provide feasible solutions for fashion producers to adopt eco-design and design for recycling practices. This paper provides guidance for policy makers, shareholders, researchers and practitioners interested in diverting post-consumer textiles and clothing waste from landfills and promoting circular textiles transition.

  17. Impact testing of textile composite materials

    NASA Technical Reports Server (NTRS)

    Portanova, Marc

    1995-01-01

    The objectives of this report were to evaluate the impact damage resistance and damage tolerance of a variety of textile composite materials. Static indentation and impact tests were performed on the stitched and unstitched uniweave composites constructed from AS4/3501-6 Carbon/Epoxy with a fiberglass yarn woven in to hold the fibers together while being stitched. Compression and tension were measured after the tests to determine the damage resistance, residual strength and the damage tolerance of the specimens.

  18. Mechanics Methodology for Textile Preform Composite Materials

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr.

    1996-01-01

    NASA and its contractors have completed a program to develop a basic mechanics underpinning for textile composites. Three major deliverables were produced by the program: 1. A set of test methods for measuring material properties and design allowables; 2. Mechanics models to predict the effects of the fiber preform architecture and constituent properties on engineering moduli, strength, damage resistance, and fatigue life; and 3. An electronic data base of coupon type test data. This report describes these three deliverables.

  19. Hybrid textile heart valve prosthesis: preliminary in vitro evaluation.

    PubMed

    Vaesken, Antoine; Pidancier, Christian; Chakfe, Nabil; Heim, Frederic

    2016-09-22

    Transcatheter aortic valve implantation (TAVI) is nowadays a popular alternative technique to surgical valve replacement for critical patients. Biological valve tissue has been used in these devices for over a decade now with over 100,000 implantations. However, material degradations due to crimping for catheter insertion purpose have been reported, and with only 6-year follow-up, no information is available about the long-term durability of biological tissue. Moreover, expensive biological tissue harvesting and chemical treatment procedures tend to promote the development of synthetic valve leaflet materials. Textile polyester (PET) material is characterized by outstanding folding and strength properties combined with proven biocompatibility and could therefore be considered as a candidate to replace biological valve leaflets in TAVI devices. Nevertheless, the material should be preferentially partly elastic in order to limit water hammer effects at valve closing time and prevent exaggerated stress from occurring into the stent and the valve. The purpose of the present work is to study in vitro the mechanical as well as the hydrodynamic behavior of a hybrid elastic textile valve device combining non-deformable PET yarn and elastic polyurethane (PU) yarn. The hybrid valve properties are compared with those of a non-elastic textile valve. Testing results show improved hydrodynamic properties with the elastic construction. However, under fatigue conditions, the interaction between PU and PET yarns tends to limit the valve durability.

  20. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics.

    PubMed

    Carey, Tian; Cacovich, Stefania; Divitini, Giorgio; Ren, Jiesheng; Mansouri, Aida; Kim, Jong M; Wang, Chaoxia; Ducati, Caterina; Sordan, Roman; Torrisi, Felice

    2017-10-31

    Fully printed wearable electronics based on two-dimensional (2D) material heterojunction structures also known as heterostructures, such as field-effect transistors, require robust and reproducible printed multi-layer stacks consisting of active channel, dielectric and conductive contact layers. Solution processing of graphite and other layered materials provides low-cost inks enabling printed electronic devices, for example by inkjet printing. However, the limited quality of the 2D-material inks, the complexity of the layered arrangement, and the lack of a dielectric 2D-material ink able to operate at room temperature, under strain and after several washing cycles has impeded the fabrication of electronic devices on textile with fully printed 2D heterostructures. Here we demonstrate fully inkjet-printed 2D-material active heterostructures with graphene and hexagonal-boron nitride (h-BN) inks, and use them to fabricate all inkjet-printed flexible and washable field-effect transistors on textile, reaching a field-effect mobility of ~91 cm 2  V -1  s -1 , at low voltage (<5 V). This enables fully inkjet-printed electronic circuits, such as reprogrammable volatile memory cells, complementary inverters and OR logic gates.

  1. TEACHING-LEARNING UNITS IN CLOTHING AND TEXTILES.

    ERIC Educational Resources Information Center

    Arizona Association of Future Homemakers of America, Phoenix.

    GUIDELINES FOR TEACHERS WHO ARE PLANNING LESSONS FOR ELEMENTARY AND SECONDARY STUDENTS IN CLOTHING AND TEXTILE CLASSES WERE DEVELOPED BY TEACHERS, TEACHER EDUCATORS, AND STATE SUPERVISORS. MATERIALS WERE TESTED BY CLASSROOM TEACHERS, REFINED, AND EDITED. MODELS OF TEACHING-LEARNING UNITS, EACH ON DIFFERENT COLORED PAPER, ARE PRESENTED FOR THREE…

  2. Textile Recycling, Convenience, and the Older Adult.

    ERIC Educational Resources Information Center

    Domina, Tanya; Koch, Kathryn

    2001-01-01

    Results of a study to examine the recycling practices and needs of older adults (n=217) indicated that older adults do recycle traditional materials, but need accommodations for physical limitations. They report textile recycling as time consuming and difficult and used donations to religious organizations as their principal means of textile…

  3. The Importance of Attendance in an Introductory Textile Science Course

    ERIC Educational Resources Information Center

    Marcketti, Sara B.; Wang, Xinxin; Greder, Kate

    2013-01-01

    At Iowa State University, the introductory textile science course is a required 4-credit class for all undergraduate students enrolled in the Apparel, Merchandising, and Design Program. Frustrated by a perceived gap between students who easily comprehended course material and those who complained and struggled, the instructor implemented an…

  4. Superoleophobic Textiles

    DTIC Science & Technology

    2011-06-01

    different techniques to achieve superhydrophobicity and superoleophobicity using nylon/cotton woven fabric (nyco) and hydroentangled nylon nonwoven...condensation through wet processing. Fabric materials prepared using these three techniques were superhydrophobic and superoleophobic as shown by...Baxter surface. superhydrophobic , superoleophobic, textiles U U U UU 38 Jeffery R. Owens Reset i Distribution A: Approved for public release

  5. Original method to compute epipoles using variable homography: application to measure emergent fibers on textile fabrics

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Cudel, Christophe; Kohler, Sophie; Fontaine, Stéphane; Haeberlé, Olivier; Klotz, Marie-Louise

    2012-04-01

    Fabric's smoothness is a key factor in determining the quality of finished textile products and has great influence on the functionality of industrial textiles and high-end textile products. With popularization of the zero defect industrial concept, identifying and measuring defective material in the early stage of production is of great interest to the industry. In the current market, many systems are able to achieve automatic monitoring and control of fabric, paper, and nonwoven material during the entire production process, however online measurement of hairiness is still an open topic and highly desirable for industrial applications. We propose a computer vision approach to compute epipole by using variable homography, which can be used to measure emergent fiber length on textile fabrics. The main challenges addressed in this paper are the application of variable homography on textile monitoring and measurement, as well as the accuracy of the estimated calculation. We propose that a fibrous structure can be considered as a two-layer structure, and then we show how variable homography combined with epipolar geometry can estimate the length of the fiber defects. Simulations are carried out to show the effectiveness of this method. The true length of selected fibers is measured precisely using a digital optical microscope, and then the same fibers are tested by our method. Our experimental results suggest that smoothness monitored by variable homography is an accurate and robust method of quality control for important industrial fabrics.

  6. Using variable homography to measure emergent fibers on textile fabrics

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Cudel, Christophe; Kohler, Sophie; Fontaine, Stéphane; Haeberlé, Olivier; Klotz, Marie-Louise

    2011-07-01

    A fabric's smoothness is a key factor to determine the quality of textile finished products and has great influence on the functionality of industrial textiles and high-end textile products. With popularization of the 'zero defect' industrial concept, identifying and measuring defective material in the early stage of production is of great interest for the industry. In the current market, many systems are able to achieve automatic monitoring and control of fabric, paper, and nonwoven material during the entire production process, however online measurement of hairiness is still an open topic and highly desirable for industrial applications. In this paper we propose a computer vision approach, based on variable homography, which can be used to measure the emergent fiber's length on textile fabrics. The main challenges addressed in this paper are the application of variable homography to textile monitoring and measurement, as well as the accuracy of the estimated calculation. We propose that a fibrous structure can be considered as a two-layer structure and then show how variable homography can estimate the length of the fiber defects. Simulations are carried out to show the effectiveness of this method to measure the emergent fiber's length. The true lengths of selected fibers are measured precisely using a digital optical microscope, and then the same fibers are tested by our method. Our experimental results suggest that smoothness monitored by variable homography is an accurate and robust method for quality control of important industrially fabrics.

  7. Microscopic contact area and friction between medical textiles and skin.

    PubMed

    Derler, S; Rotaru, G-M; Ke, W; El Issawi-Frischknecht, L; Kellenberger, P; Scheel-Sailer, A; Rossi, R M

    2014-10-01

    The mechanical contact between medical textiles and skin is relevant in the health care for patients with vulnerable skin or chronic wounds. In order to gain new insights into the skin-textile contact on the microscopic level, the 3D surface topography of a normal and a new hospital bed sheet with a regular surface structure was measured using a digital microscope. The topographic data was analysed concerning material distribution and real contact area against smooth surfaces as a function of surface deformations. For contact conditions that are relevant for the skin of patients lying in a hospital bed it was found that the order of magnitude of the ratio of real and apparent contact area between textiles and skin or a mechanical skin model lies between 0.02 and 0.1 and that surface deformations, i.e. penetration of the textile surface asperities into skin or a mechanical skin model, range from 10 to 50µm. The performed analyses of textile 3D surface topographies and comparisons with previous friction measurement results provided information on the relationship between microscopic surface properties and macroscopic friction behaviour of medical textiles. In particular, the new bed sheet was found to be characterised by a trend towards a smaller microscopic contact area (up to a factor of two) and by a larger free interfacial volume (more than a factor of two) in addition to a 1.5 times lower shear strength when in contact with counter-surfaces. The applied methods can be useful to develop improved and skin-adapted materials and surfaces for medical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Molecular weaving via surface-templated epitaxy of crystalline coordination networks.

    PubMed Central

    Wang, Zhengbang; Błaszczyk, Alfred; Fuhr, Olaf; Heissler, Stefan; Wöll, Christof; Mayor, Marcel

    2017-01-01

    One of the dream reactions in polymer chemistry is the bottom-up, self-assembled synthesis of polymer fabrics, with interwoven, one-dimensional fibres of monomolecular thickness forming planar pieces of textiles. We have made a major step towards realizing this goal by assembling sophisticated, quadritopic linkers into surface-mounted metal-organic frameworks. By sandwiching these quadritopic linkers between sacrificial metal-organic framework thin films, we obtained multi-heteroepitaxial, crystalline systems. In a next step, Glaser–Hay coupling of triple bonds in the quadritopic linkers yields linear, interwoven polymer chains. X-ray diffraction studies revealed that this topochemical reaction leaves the MOF backbone completely intact. After removing the metal ions, the textile sheets can be transferred onto different supports and imaged using scanning electron microscopy and atomic-force microscopy. The individual polymer strands forming the two-dimensional textiles have lengths on the order of 200 nm, as evidenced by atomic-force microscopy images recorded from the disassembled textiles. PMID:28198388

  9. Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Ko, Wen-Yin; Chen, You-Feng; Lu, Ke-Ming; Lin, Kuan-Jiuh

    2016-01-01

    The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plastic substrates (denoted as honeycomb MnO2/CNT textiles).These substrates were fabricated through a simple two-step procedure involving the coating of multi-walled carbon nanotubes (MWCNTs) onto commercial textiles by a dipping-drying process and subsequent electrodeposition of the interconnected MnO2 sheets onto the MWCNT-coated textile. With such unique MnO2 architectures integrated onto CNT flexible films, good performance was achieved with a specific capacitance of 324 F/g at 0.5 A/g. A maximum energy density of 7.2 Wh/kg and a power density as high as 3.3 kW/kg were exhibited by the honeycomb MnO2/CNT network device, which is comparable to the performance of other carbon-based and metal oxide/carbon-based solid-state supercapacitor devices. Specifically, the long-term cycling stability of this material is excellent, with almost no loss of its initial capacitance and good Coulombic efficiency of 82% after 5000 cycles. These impressive results identify these materials as a promising candidate for use in environmentally friendly, low-cost, and high-performance flexible energy-storage devices.

  10. Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors

    PubMed Central

    Ko, Wen-Yin; Chen, You-Feng; Lu, Ke-Ming; Lin, Kuan-Jiuh

    2016-01-01

    The use of lightweight and easily-fabricated MnO2/carbon nanotube (CNT)-based flexible networks as binder-free electrodes and a polyvinyl alcohol/H2SO4 electrolyte for the formation of stretchable solid-state supercapacitors was examined. The active electrodes were fabricated from 3D honeycomb porous MnO2 assembled from cross-walled and interconnected sheet-architectural MnO2 on CNT-based plastic substrates (denoted as honeycomb MnO2/CNT textiles).These substrates were fabricated through a simple two-step procedure involving the coating of multi-walled carbon nanotubes (MWCNTs) onto commercial textiles by a dipping-drying process and subsequent electrodeposition of the interconnected MnO2 sheets onto the MWCNT-coated textile. With such unique MnO2 architectures integrated onto CNT flexible films, good performance was achieved with a specific capacitance of 324 F/g at 0.5 A/g. A maximum energy density of 7.2 Wh/kg and a power density as high as 3.3 kW/kg were exhibited by the honeycomb MnO2/CNT network device, which is comparable to the performance of other carbon-based and metal oxide/carbon-based solid-state supercapacitor devices. Specifically, the long-term cycling stability of this material is excellent, with almost no loss of its initial capacitance and good Coulombic efficiency of 82% after 5000 cycles. These impressive results identify these materials as a promising candidate for use in environmentally friendly, low-cost, and high-performance flexible energy-storage devices. PMID:26726724

  11. Examination of the sintering process-dependent properties of TiO2 on glass and textile substrates

    NASA Astrophysics Data System (ADS)

    Junger, Irén Juhász; Homburg, Sarah Vanessa; Grethe, Thomas; Herrmann, Andreas; Fiedler, Johannes; Schwarz-Pfeiffer, Anne; Blachowicz, Tomasz; Ehrmann, Andrea

    2017-01-01

    In recent years, the development of smart textiles has attracted great attention. Such textiles can contain small electrical devices, which need a power supply. Dye-sensitized solar cells, which can be produced from nontoxic, cheap, low-purity materials, could fill this purpose. However, to reach reasonable cell properties, sintering the TiO2 layer on the substrate is necessary. Unfortunately, only a few textile materials can withstand a sintering process at high temperatures. Therefore, it is important to find an optimal temperature leading to a reasonable improvement of the cell characteristics without damaging the textile substrate. The influence of the sintering temperature on different properties is investigated. For this, the surface properties of the TiO2 coating, such as adhesion to the substrate, dye adsorption characteristic, and film stability, are investigated on different substrates, i.e., a glass plate, a stainless steel nonwoven fabric, and a carbon woven fabric. Two commercially available TiO2 sources are used: a TiO2 dispersion obtained from Man Solar and a water-based solution of TiO2 particles purchased from Kronos. The influence of the sintering temperature on short-circuit current and open-circuit voltage of solar cells on the aforementioned substrates is also examined.

  12. Economic and employment potential in textile waste management of Faisalabad.

    PubMed

    Noman, Muhammad; Batool, Syeda Adila; Chaudhary, Muhammad Nawaz

    2013-05-01

    The aim of this study is to characterize the waste from the textile industry, to identify the sources and types of waste generation and to find out the economic and employment potential in this sector. Textile waste, its management, and the economic and employment potential in this sector are unrevealed facts in developing countries such as Pakistan. The textile industry is ranked first in export earning in Pakistan. Textile export of yarn and cloth from Faisalabad is US$3 billion per year. On average 161 325 people are employed in the textile sector in Faisalabad, of which 11 860 are involved in solid waste handling and management. The textile industries generate solid wastes such as fibre, metal, plastic and paper waste. A total of 794 209 kg day(-1) (289 886 285 kg year(-1)) solid waste is produced from this sector and purchased by cotton waste junkshop owners at US$125 027 day(-1) (US$45 634 855 year(-1)). Only pre-consumer textile waste is considered. Interestingly no waste is sent to landfill. The waste is first segregated into different categories/ types by hand and then weighed. Cotton waste is sold to brick kilns where it is used as an alternative fuel as it is cheaper than wood/coal. Iron scrap is sold in the junk market from where it is resold to recycling industries. Paper waste is recycled, minimizing the virgin material used for producing new paper products. Iron and plastic drums are returned to the chemical industries for refilling, thus decreasing the cost of dyes and decreasing the demand for new drums. Cutting rags are used for making different things such as ropes and underlay, it is also shredded and used as fillings for pillows and mattresses, thus improving waste management, reducing cost and minimizing the need for virgin material. As no system of quality control and no monitoring of subsequent products exist there is a need to carry out quality control and monitoring.

  13. Synthetic fibers as microplastics in the marine environment: A review from textile perspective with a focus on domestic washings.

    PubMed

    Salvador Cesa, Flavia; Turra, Alexander; Baruque-Ramos, Julia

    2017-11-15

    The ubiquity of plastic materials in the environment has been, for long, a matter of discussion. Smaller particles, named microplastics (<5mm), gained attention more recently and are now the focus of many studies, especially for their particularities regarding sources, characteristics and effects (e.g., surface-area-to-volume ratio which can increase their potential to transport toxic substances). Fibers from textile materials are a subgroup of microplastics and can be originated from domestic washings, as machine filters and wastewater treatment plants (WWTPs) are not specifically designed to retain them. Once in the environment, fibers can reach concentrations up to thousands of particles per cubic meter, being available to be ingested by a broad range of species. In this scenario, this review adds and details the textile perspective to the microplastics exploring nomenclature, characteristics and factors influencing emission, but also evidencing gaps in knowledge needed to overcome this issue. Preliminarily, general information about marine litter and plastics, followed by specific aspects regarding textile fibers as microplastics, were introduced. Then fiber sources to microplastic pollution were discussed, mainly focusing on domestic washings that pass through WWTPs. Studies that reveal domestic washing as microplastic sources are scarce and there is a considerable lack of standardization in methods as well as incorporation of textile aspects in experimental design. Knowledge gaps include laundry parameters (e.g., water temperature, use of chemicals) and textile articles characteristics (e.g., yarn type, fabric structure) orchestrated by consumers' choice. The lack of information on the coverage and efficiency of sewage treatment systems to remove textile fibers also prevent a global understanding of such sources. The search of alternatives and applicable solutions should come from an integrated, synergic and global perspective, of both environmental and textile area, which still need to be fostered. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Material Perception.

    PubMed

    Fleming, Roland W

    2017-09-15

    Under typical viewing conditions, human observers effortlessly recognize materials and infer their physical, functional, and multisensory properties at a glance. Without touching materials, we can usually tell whether they would feel hard or soft, rough or smooth, wet or dry. We have vivid visual intuitions about how deformable materials like liquids or textiles respond to external forces and how surfaces like chrome, wax, or leather change appearance when formed into different shapes or viewed under different lighting. These achievements are impressive because the retinal image results from complex optical interactions between lighting, shape, and material, which cannot easily be disentangled. Here I argue that because of the diversity, mutability, and complexity of materials, they pose enormous challenges to vision science: What is material appearance, and how do we measure it? How are material properties estimated and represented? Resolving these questions causes us to scrutinize the basic assumptions of mid-level vision.

  15. Influence of thermofixation on artificial ACL ligament dimensional and mechanical properties

    NASA Astrophysics Data System (ADS)

    Ben Abdessalem, S.; Jedda, H.; Skhiri, S.; Karray, S.; Dahmen, J.; Boughamoura, H.

    2005-11-01

    The anterior cruciate ligament (ACL) is the major articular ligamentous structure of the knee, it functions as a joint stabilizer. When ruptured, the natural ACL ligament can be replaced by a textile synthetic ligament such as a braid, knitted cord, or woven cord. Theses structures are composed of biocompatible materials such as polyester or Gore-Tex filaments. The success of an ACL replacement is widely linked to its mechanical and dimensional properties such as tensile strength, dimensional stability and resistance to abrasion. We introduced an additional treatment in the manufacturing of textile ACL ligaments based on the thermofixation of the textile structure by using textile industry stabilization techniques. Boiling water, saturated vapor and dry heat have been tested to stabilize a braided ligament made of Dacron polyester. The application of these three techniques led to shrinkage and an increase of breaking strength of the textile structure.

  16. An engineering approach for the application of textile composites to a structural component

    NASA Technical Reports Server (NTRS)

    Baldwin, Jack W.; Gracias, Brian K.; Clark, Steven R.

    1993-01-01

    An engineering approach for the application of textile composites to a structural component is addressed. The main objective is to improve impact resistance of composite blades by using some form of 3-D reinforcement. Project goals, results, and conclusions are discussed.

  17. In vitro percutaneous penetration and characterization of silver from silver-containing textiles

    PubMed Central

    Bianco, Carlotta; Kezic, Sanja; Crosera, Matteo; Svetličić, Vesna; Šegota, Suzana; Maina, Giovanni; Romano, Canzio; Larese, Francesca; Adami, Gianpiero

    2015-01-01

    The objective of this study was to determine the in vitro percutaneous penetration of silver and characterize the silver species released from textiles in different layers of full thickness human skin. For this purpose, two different wound dressings and a garment soaked in artificial sweat were placed in the donor compartments of Franz cells for 24 hours. The concentration of silver in the donor phase and in the skin was determined by an electrothermal atomic absorption spectrometer (ET-AAS) and by inductively coupled plasma mass spectrometer (ICP-MS). The characterization of silver species in the textiles and in the skin layers was made by scanning electron microscopy with integrated energy dispersive X-ray spectroscopy (SEM-EDX). Additionally, the size distribution of silver nanoparticles in the textiles was performed by atomic force microscopy (AFM). On the surface of all investigated materials, silver nanoparticles of different size and morphology were found. Released silver concentrations in the soaking solutions (ie, exposure concentration) ranged from 0.7 to 4.7 μg/mL (0.6–4.0 μg/cm2), fitting the bactericidal range. Silver and silver chloride aggregates at sizes of up to 1 μm were identified both in the epidermis and dermis. The large size of these particles suggests that the aggregation occurred in the skin. The formation of these aggregates likely slowed down the systemic absorption of silver. Conversely, these aggregates may form a reservoir enabling prolonged release of silver ions, which might lead to local effects. PMID:25792824

  18. Standard methods for filled hole tension testing of textile composites

    NASA Technical Reports Server (NTRS)

    Portanova, M. A.; Masters, J. E.

    1995-01-01

    The effects of two test specimen geometry parameters, the specimen width and W/D ratio, on filled-hole tensile strength were determined for textile composite materials. Test data generated by Boeing and Lockheed on 2-D and 3-D braids, and 3-D weaves were used to make these evaluations. The investigation indicated that filled-hole tensile-strength showed little sensitivity to either parameter. Test specimen configurations used in open-hole tension tests, such as those suggested by ASTM D5766 - Standard Test Method for Open Hole Tensile Strength of Polymer Matrix Composite Laminates or those proposed by MIL-HDBK-17-lD should provide adequate results for material comparisons studies. Comparisons of the materials' open-hole and filled-hole tensile strengths indicated that the latter were generally lower than the former. The 3-D braids were the exception; their filled-hole strengths were unexpected larger than their open-hole strengths. However, these increases were small compared to the scatter in the data. Thus, filled hole tension may be a critical design consideration for textile composite materials.

  19. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO2 Composite Textiles.

    PubMed

    Wang, Jinjie; Dong, Liubing; Xu, Chengjun; Ren, Danyang; Ma, Xinpei; Kang, Feiyu

    2018-04-04

    Polymorphous supercapacitors were constructed from flexible three-dimensional carbon network/polyaniline (PANI)/MnO 2 composite textile electrodes. The flexible textile electrodes were fabricated through a layer-by-layer construction strategy: PANI, carbon nanotubes (CNTs), and MnO 2 were deposited on activated carbon fiber cloth (ACFC) in turn through an electropolymerization process, "dipping and drying" method, and in situ chemical reaction, respectively. In the fabricated ACFC/PANI/CNTs/MnO 2 textile electrodes, the ACFC/CNT hybrid framework serves as a porous and electrically conductive 3D network for the rapid transmission of electrons and electrolyte ions, where ACFC, PANI, and MnO 2 are high-performance supercapacitor electrode materials. In the electrolyte of H 2 SO 4 solution, the textile electrode-based symmetric supercapacitor delivers superior areal capacitance, energy density, and power density of 4615 mF cm -2 (for single electrode), 157 μW h cm -2 , and 10372 μW cm -2 , respectively, whereas asymmetric supercapacitor assembled with the prepared composite textile as the positive electrode and ACFC as the negative electrode exhibits an improved energy density of 413 μW h cm -2 and a power density of 16120 μW cm -2 . On the basis of the ACFC/PANI/CNTs/MnO 2 textile electrodes, symmetric and asymmetric solid-state textile supercapacitors with a PVA/H 2 SO 4 gel electrolyte were also produced. These solid-state textile supercapacitors exhibit good electrochemical performance and high flexibility. Furthermore, flexible solid-state fiber-like supercapacitors were prepared with fiber bundle electrodes dismantled from the above composite textiles. Overall, this work makes a meaningful exploration of the versatile applications of textile electrodes to produce polymorphous supercapacitors.

  20. Biomimicry in textiles: past, present and potential. An overview

    PubMed Central

    Eadie, Leslie; Ghosh, Tushar K.

    2011-01-01

    The natural world around us provides excellent examples of functional systems built with a handful of materials. Throughout the millennia, nature has evolved to adapt and develop highly sophisticated methods to solve problems. There are numerous examples of functional surfaces, fibrous structures, structural colours, self-healing, thermal insulation, etc., which offer important lessons for the textile products of the future. This paper provides a general overview of the potential of bioinspired textile structures by highlighting a few specific examples of pertinent, inherently sustainable biological systems. Biomimetic research is a rapidly growing field and its true potential in the development of new and sustainable textiles can only be realized through interdisciplinary research rooted in a holistic understanding of nature. PMID:21325320

  1. Biomimicry in textiles: past, present and potential. An overview.

    PubMed

    Eadie, Leslie; Ghosh, Tushar K

    2011-06-06

    The natural world around us provides excellent examples of functional systems built with a handful of materials. Throughout the millennia, nature has evolved to adapt and develop highly sophisticated methods to solve problems. There are numerous examples of functional surfaces, fibrous structures, structural colours, self-healing, thermal insulation, etc., which offer important lessons for the textile products of the future. This paper provides a general overview of the potential of bioinspired textile structures by highlighting a few specific examples of pertinent, inherently sustainable biological systems. Biomimetic research is a rapidly growing field and its true potential in the development of new and sustainable textiles can only be realized through interdisciplinary research rooted in a holistic understanding of nature. © 2011 The Royal Society

  2. Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells.

    PubMed

    Yun, Min Ju; Cha, Seung I; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y

    2016-10-06

    Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells-including the preparation of fibre-type solar cells woven into textiles-face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes' surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research.

  3. Influence of plasma modification on hygienic properties of textile fabrics with nonporous membrane coating

    NASA Astrophysics Data System (ADS)

    Voznesensky, E. F.; Ibragimov, R. G.; Vishnevskaya, O. V.; Sisoev, V. A.; Lutfullina, G. G.; Tihonova, N. V.

    2017-11-01

    The work investigated the possibility of using plasma modification to improve the hygienic properties of textile materials with nonporous membrane coating to improve vapor-, air-permeability and water-resistant. Determined that, after plasma modification changes degree of supramolecular orderliness of the polymers nonporous membrane coating and the base fabric.

  4. Material flow analysis for an industry - A case study in packaging

    USGS Publications Warehouse

    Amey, E.B.; Sandgren, K.

    1996-01-01

    The basic materials used in packaging are glass, metals (primarily aluminum and steel), an ever-growing range of plastics, paper and paperboard, wood, textiles for bags, and miscellaneous other materials (such as glues, inks, and other supplies). They are fabricated into rigid, semi-rigid, or flexible containers. The most common forms of these containers include cans, drums, bottles, cartons, boxes, bags, pouches, and wraps. Packaging products are, for the most part, low cost, bulky products that are manufactured close to their customers. There is virtually no import or export of packaging products. A material flow analysis can be developed that looks at all inputs to an industrial sector, inventories the losses in processing, and tracks the fate of the material after its useful life. An example is presented that identifies the material inputs to the packaging industry, and addresses the ultimate fate of the materials used. ?? 1996 International Association for Mathematical Geology.

  5. 16 CFR 303.36 - Form of separate guaranty.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... deceptively advertised or invoiced under the provisions of the Textile Fiber Products Identification Act and... advertised or invoiced under the provisions of the Textile Fiber Products Identification Act and rules and regulations thereunder. Note: The printed name and address on the invoice or other paper will suffice to meet...

  6. Interior surface materials in the home and the development of bronchial obstruction in young children in Oslo, Norway.

    PubMed Central

    Jaakkola, J J; Oie, L; Nafstad, P; Botten, G; Samuelsen, S O; Magnus, P

    1999-01-01

    OBJECTIVES: This study assessed the role of polyvinyl chloride (PVC) plastics and textile materials in the home in the development of bronchial obstruction during the first 2 years of life. METHODS: The study was a matched pair case-control study based on a cohort of 3754 newborns in Oslo in 1992 and 1993 who were followed up for 2 years. The case group consisted of 251 children with bronchial obstruction; the control group was matched one-to-one for date of birth. RESULTS: In conditional logistic regression analysis, the risk of bronchial obstruction was related to the presence of PVC flooring (adjusted odds ratio [OR] = 1.89; 95% confidence interval [CI] = 1.14, 3.14) and textile wall materials (adjusted OR = 1.58; 95% CI = 0.98, 2.54). The reference category was wood or parquet flooring and painted walls and ceiling. Further analysis revealed an exposure-response relationship between the assessed amount of PVC and other plasticizer-containing surface materials and the risk of bronchial obstruction. CONCLUSIONS: This study provides new evidence of the role of PVC and textile wall materials in the development of bronchial obstruction in young children. PMID:9949747

  7. Interior surface materials in the home and the development of bronchial obstruction in young children in Oslo, Norway.

    PubMed

    Jaakkola, J J; Oie, L; Nafstad, P; Botten, G; Samuelsen, S O; Magnus, P

    1999-02-01

    This study assessed the role of polyvinyl chloride (PVC) plastics and textile materials in the home in the development of bronchial obstruction during the first 2 years of life. The study was a matched pair case-control study based on a cohort of 3754 newborns in Oslo in 1992 and 1993 who were followed up for 2 years. The case group consisted of 251 children with bronchial obstruction; the control group was matched one-to-one for date of birth. In conditional logistic regression analysis, the risk of bronchial obstruction was related to the presence of PVC flooring (adjusted odds ratio [OR] = 1.89; 95% confidence interval [CI] = 1.14, 3.14) and textile wall materials (adjusted OR = 1.58; 95% CI = 0.98, 2.54). The reference category was wood or parquet flooring and painted walls and ceiling. Further analysis revealed an exposure-response relationship between the assessed amount of PVC and other plasticizer-containing surface materials and the risk of bronchial obstruction. This study provides new evidence of the role of PVC and textile wall materials in the development of bronchial obstruction in young children.

  8. Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors.

    PubMed

    Li, Zheng; Huang, Tieqi; Gao, Weiwei; Xu, Zhen; Chang, Dan; Zhang, Chunxiao; Gao, Chao

    2017-11-28

    Carbon textiles are promising electrode materials for wearable energy storage devices owing to their conductive, flexible, and lightweight features. However, there still lacks a perfect choice for high-performance carbon textile electrodes with sufficient electrochemical activity. Graphene fiber fabrics (GFFs) are newly discovered carbon textiles, exhibiting various attractive properties, especially a large variability on the microstructure. Here we report the fabrication of hierarchical GFFs with significantly enlarged specific surface area using a hydrothermal activation strategy. By carefully optimize the activation process, the hydrothermally activated graphene fiber fabrics (HAGFFs) could achieve an areal capacitance of 1060 mF cm -2 in a very thin thickness (150 μm) and the capacitance is easily magnified by overlaying several layers of HAGFFs, even up to a record value of 7398 mF cm -2 . Meanwhile, a good rate capability and a long cycle life are also attained. As compared with other carbon textiles, including the commercial carbon fiber cloths, our HAGFFs present much better capacitive performance. Therefore, the mechanically stable, flexible, conductive, and highly active HAGFFs have provided an option for high-performance textile electrodes.

  9. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment.

    PubMed

    Carney Almroth, Bethanie M; Åström, Linn; Roslund, Sofia; Petersson, Hanna; Johansson, Mats; Persson, Nils-Krister

    2018-01-01

    Microplastics in the environment are a subject of intense research as they pose a potential threat to marine organisms. Plastic fibers from textiles have been indicated as a major source of this type of contaminant, entering the oceans via wastewater and diverse non-point sources. Their presence is also documented in terrestrial samples. In this study, the amount of microfibers shedding from synthetic textiles was measured for three materials (acrylic, nylon, polyester), knit using different gauges and techniques. All textiles were found to shed, but polyester fleece fabrics shed the greatest amounts, averaging 7360 fibers/m -2 /L -1 in one wash, compared with polyester fabrics which shed 87 fibers/m -2 /L -1 . We found that loose textile constructions shed more, as did worn fabrics, and high twist yarns are to be preferred for shed reduction. Since fiber from clothing is a potentially important source of microplastics, we suggest that smarter textile construction, prewashing and vacuum exhaustion at production sites, and use of more efficient filters in household washing machines could help mitigate this problem.

  10. Integrated microelectronics for smart textiles.

    PubMed

    Lauterbach, Christl; Glaser, Rupert; Savio, Domnic; Schnell, Markus; Weber, Werner

    2005-01-01

    The combination of textile fabrics with microelectronics will lead to completely new applications, thus achieving elements of ambient intelligence. The integration of sensor or actuator networks, using fabrics with conductive fibres as a textile motherboard enable the fabrication of large active areas. In this paper we describe an integration technology for the fabrication of a "smart textile" based on a wired peer-to-peer network of microcontrollers with integrated sensors or actuators. A self-organizing and fault-tolerant architecture is accomplished which detects the physical shape of the network. Routing paths are formed for data transmission, automatically circumventing defective or missing areas. The network architecture allows the smart textiles to be produced by reel-to-reel processes, cut into arbitrary shapes subsequently and implemented in systems at low installation costs. The possible applications are manifold, ranging from alarm systems to intelligent guidance systems, passenger recognition in car seats, air conditioning control in interior lining and smart wallpaper with software-defined light switches.

  11. A critical review on textile wastewater treatments: Possible approaches.

    PubMed

    Holkar, Chandrakant R; Jadhav, Ananda J; Pinjari, Dipak V; Mahamuni, Naresh M; Pandit, Aniruddha B

    2016-11-01

    Waste water is a major environmental impediment for the growth of the textile industry besides the other minor issues like solid waste and resource waste management. Textile industry uses many kinds of synthetic dyes and discharge large amounts of highly colored wastewater as the uptake of these dyes by fabrics is very poor. This highly colored textile wastewater severely affects photosynthetic function in plant. It also has an impact on aquatic life due to low light penetration and oxygen consumption. It may also be lethal to certain forms of marine life due to the occurrence of component metals and chlorine present in the synthetic dyes. So, this textile wastewater must be treated before their discharge. In this article, different treatment methods to treat the textile wastewater have been presented along with cost per unit volume of treated water. Treatment methods discussed in this paper involve oxidation methods (cavitation, photocatalytic oxidation, ozone, H2O2, fentons process), physical methods (adsorption and filtration), biological methods (fungi, algae, bacteria, microbial fuel cell). This review article will also recommend the possible remedial measures to treat different types of effluent generated from each textile operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Smart healthcare textile sensor system for unhindered-pervasive health monitoring

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Kumar, Prashanth S.; Oh, Sechang; Kwon, Hyeokjun; Mathur, Gyanesh N.; Varadan, Vijay K.; Agarwal, M. P.

    2012-04-01

    Simultaneous monitoring of physiological parameters- multi-lead Electrocardiograph (ECG), Heart rate variability, and blood pressure- is imperative to all forms of medical treatments. Using an array of signal recording devices imply that the patient will have to be confined to a bed. Textiles offer durable platform for embedded sensor and communication systems. The smart healthcare textile, presented here, is a mobile system for remote/wireless data recording and conditioning. The wireless textile system has been designed to monitor a patient in a non-obstructive way. It has a potential for facilitating point of care medicine and streamlining ambulatory medicine. The sensor systems were designed and fabricated with textile based components for easy integration on textile platform. An innovative plethysmographic blood pressure monitoring system was designed and tested as an alternative to inflatable blood pressure sphygmomanometer. Flexible dry electrodes technology was implemented for ECG. The sensor systems were tested and conditioned to daily activities of patients, which is not permissible with halter type systems. The signal quality was assessed for it applicability to medical diagnosis. The results were used to corroborate smart textile sensor system's ability to function as a point of care system that can provide quality healthcare.

  13. Melding Vapor-Phase Organic Chemistry and Textile Manufacturing To Produce Wearable Electronics.

    PubMed

    Andrew, Trisha L; Zhang, Lushuai; Cheng, Nongyi; Baima, Morgan; Kim, Jae Joon; Allison, Linden; Hoxie, Steven

    2018-04-17

    Body-mountable electronics and electronically active garments are the future of portable, interactive devices. However, wearable devices and electronic garments are demanding technology platforms because of the large, varied mechanical stresses to which they are routinely subjected, which can easily abrade or damage microelectronic components and electronic interconnects. Furthermore, aesthetics and tactile perception (or feel) can make or break a nascent wearable technology, irrespective of device metrics. The breathability and comfort of commercial fabrics is unmatched. There is strong motivation to use something that is already familiar, such as cotton/silk thread, fabrics, and clothes, and imperceptibly adapt it to a new technological application. (24) Especially for smart garments, the intrinsic breathability, comfort, and feel of familiar fabrics cannot be replicated by devices built on metalized synthetic fabrics or cladded, often-heavy designer fibers. We propose that the strongest strategy to create long-lasting and impactful electronic garments is to start with a mass-produced article of clothing, fabric, or thread/yarn and coat it with conjugated polymers to yield various textile circuit components. Commonly available, mass-produced fabrics, yarns/threads, and premade garments can in theory be transformed into a plethora of comfortably wearable electronic devices upon being coated with films of electronically active conjugated polymers. The definitive hurdle is that premade garments, threads, and fabrics have densely textured, three-dimensional surfaces that display roughness over a large range of length scales, from microns to millimeters. Tremendous variation in the surface morphology of conjugated-polymer-coated fibers and fabrics can be observed with different coating or processing conditions. In turn, the morphology of the conjugated polymer active layer determines the electrical performance and, most importantly, the device ruggedness and lifetime. Reactive vapor coating methods allow a conjugated polymer film to be directly formed on the surface of any premade garment, prewoven fabric, or fiber/yarn substrate without the need for specialized processing conditions, surface pretreatments, detergents, or fixing agents. This feature allows electronic coatings to be applied at the end of existing, high-throughput textile and garment manufacturing routines, irrespective of dye content or surface finish of the final textile. Furthermore, reactive vapor coating produces conductive materials without any insulating moieties and yields uniform and conformal films on fiber/fabric surfaces that are notably wash- and wear-stable and can withstand mechanically demanding textile manufacturing routines. These unique features mean that rugged and practical textile electronic devices can be created using sewing, weaving, or knitting procedures without compromising or otherwise affecting the surface electronic coating. In this Account, we highlight selected electronic fabrics and garments created by melding reactive vapor deposition with traditional textile manipulation processes, including electrically heated gloves that are lightweight, breathable, and sweat-resistant; surface-coated cotton, silk, and bast fiber threads capable of carrying large current densities and acting as sewable circuit interconnects; and surface-coated nylon threads woven together to form triboelectric textiles that can convert surface charge created during small body movements into usable and storable power.

  14. Textile dye degradation using nano zero valent iron: A review.

    PubMed

    Raman, Chandra Devi; Kanmani, S

    2016-07-15

    Water soluble unfixed dyes and inorganic salts are the major pollutants in textile dyeing industry wastewater. Existing treatment methods fail to degrade textile dyes and have limitations too. The inadequate treatment of textile dyeing wastewater is a major concern when effluent is directly discharged into the nearby environment. Long term disposal threatens the environment, which needs reclamation. This article reviews the current knowledge of nano zero valent iron (nZVI) technique in the degradation of textile dyes. The application of nZVI on textile dye degradation is receiving great attention in the recent years because nZVI particles are highly reactive towards the pollutant, less toxic, and economical. The nZVI particles aggregate quickly with respect to time and the addition of supports such as resin, nickel, zinc, bentonite, biopolymer, kaolin, rectorite, nickel-montmorillonite, bamboo, cellulose, biochar, graphene, and clinoptilolite enhanced the stability of iron nanoparticles. Inclusion of supports may in turn introduce additional toxic pollutants, hence green supports are recommended. The majority of investigations concluded dye color removal as textile dye compound removal, which is not factual. Very few studies monitored the removal of total organic carbon and observed the products formed. The results revealed that partial mineralization of the textile dye compound was achieved. Instead of stand alone technique, nZVI can be integrated with other suitable technique to achieve complete degradation of textile dye and also to treat multiple pollutants in the real textile dyeing wastewater. It is highly recommended to perform more bench-scale and pilot-scale studies to apply this technique to the textile effluent contaminated sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Dyed and Printed Textiles: Javanese Batik [and] Dutch Wax Prints [and] West African Adire. Third Edition.

    ERIC Educational Resources Information Center

    Burke, Sue

    Three booklets focusing on dyed and printed textile techniques of Java, West Africa, and the Netherlands describe historical and ethnographic materials as well as the development of particular technical traditions. Each section may be used alone or with either or both of the others. When used together, these booklets illustrate the…

  16. Decolourisation of Red 5 MB dye by microbes isolated from textile dye effluent.

    PubMed

    Subashini, P; Hiranmaiyadav, R; Premalatha, M S

    2010-07-01

    One of the major environmental problems is the presence of dye materials in textile wastewater, which need to be removed before releasing into the environment. Some dyes are toxic and carcinogenic in nature. The discharge of the textile effluent into rivers and lakes leads to higher BOD causing threat to aquatic life. Development of efficient dye degradation requires suitable strain and its use under favorable condition to realize the degradation potential. In this study, three microorganisms were isolated from the Red 5 MB dye containing textile wastewater. They were identified and tested for the dye decolourisation provided with different sugars as carbon source. The percentage of dye decolorized by Bacillus subtilis, Aspergillus flavus and Aspergillus fumigatus were found to be about 40%, 75% and 53.8% respectively.

  17. Improved electrospinning processing of PU/PEDOT:PSS for electronic textile applications

    NASA Astrophysics Data System (ADS)

    Evke, Erin; Clippinger, Aaron; Spackman, Clayson; Samuel, Johnson; Ozisik, Rahmi

    Poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate), PEDOT:PSS, is an electrically conductive polymer used in electronic textile (e-textile) applications, such as eletrochromic textiles, strain sensors, and resistive heaters. In the current study, PEDOT:PSS is blended with varying concentrations of polyurethane (PU) to investigate the flexibility of PU/PEDOT:PSS fibers that are produced via a modified electrospinning process where the jet is collected close to the tip of the needle, thereby, enabling the collection of straight fibers by a rotating spool. The electrical conductivity and mechanical properties of PU/PEDOT:PSS fibers are characterized to understand the effect of PU concentration and the processing parameters. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.

  18. Matching Learning Style Preferences with Suitable Delivery Methods on Textile Design Programmes

    ERIC Educational Resources Information Center

    Sayer, Kate; Studd, Rachel

    2006-01-01

    Textile design is a subject that encompasses both design and technology; aesthetically pleasing patterns and forms must be set within technical parameters to create successful fabrics. When considering education methods in design programmes, identifying the most relevant learning approach is key to creating future successes. Yet are the most…

  19. Improving the appearance of all textile products from clothing to home textile using laser technology

    NASA Astrophysics Data System (ADS)

    Ondogan, Ziynet; Pamuk, Oktay; Ondogan, Ece Nuket; Ozguney, Arif

    2005-11-01

    Denim trousers, commonly known as "blue jeans", have maintained their popularity for many years. For the purpose of supporting customers' purchasing behaviour and to address their aesthetic taste, companies have been trying in recent years to develop various techniques to improve the visual aspects of denim fabrics. These techniques mainly include printing on fabrics, embroidery and washing the final product. Especially, fraying certain areas of the fabric by sanding and stone washing to create designs is a popular technique. However, due to certain inconveniences caused by these procedures and in response to growing demands, research is underway to obtain a similar appearance by creating better quality and more advantageous manufacturing conditions. As is known, the laser is a source of energy which can be directed on desired objects and whose power and intensity can be easily controlled. Use of the laser enables us to cut a great variety of material from metal to fabric. Starting off from this point, we thought it would be possible to transfer certain designs onto the surface of textile material by changing the dye molecules in the fabric and creating alterations in its colour quality values by directing the laser to the material at reduced intensity. This study mainly deals with a machine specially designed for making use of laser beams to transfer pictures, figures as well as graphics of desired variety, size and intensity on all kinds of surfaces in textile manufacturing such as knitted—woven fabrics, leather, etc. at desired precision and without damaging the texture of the material. In the designed system, computer-controlled laser beams are used to change the colour of the dye material on the textile surface by directing the laser beams at a desired wavelength and intensity onto various textile surfaces selected for application. For this purpose, a laser beam source that can reach the initial level of power and that can be controlled by means of a computer interface; reflecting mirrors that can direct this beam at two axes; a galvanometer which comprised of an optical aperture; and a computer program that can transfer images obtained in standard formats to the galvanometer control card were used. Developing new designs by using the computer and transferring the designs that are obtained on textile surfaces will not only increase and facilitate the production in a more practical manner, but also help you to create identical designs. This means serial manufacturing of the products at a standard quality and increasing their added values. Moreover, creating textile designs using laser will also contribute to the value of the product as far as the consumer is concerned because it will not cause any wearing off and deformation in the texture of the fabric unlike the sanding and stoning processes. Another advantage of this system is that it gives a richer look to the product by causing the textile surfaces to get wrinkled and become three-dimensional by deformation as well as enabling you to create pictures and patterns on leather and synthetic fabrics by means of heat. As for the results of the study, the first step was to prepare 40 pairs of denim trousers, half of which were prepared manually and the other half by using laser beam. Time studies were made at every step of the production. So as to determine the abrasion degrees of the trousers in design applications, tensile strength as well as tensile extension tests were conducted for all the trousers.

  20. Benzothiazole, benzotriazole, and their derivates in clothing textiles--a potential source of environmental pollutants and human exposure.

    PubMed

    Avagyan, Rozanna; Luongo, Giovanna; Thorsén, Gunnar; Östman, Conny

    2015-04-01

    Textiles play an important role in our daily life, and textile production is one of the oldest industries. In the manufacturing chain from natural and/or synthetic fibers to the final clothing products, the use of many different chemicals is ubiquitous. A lot of research has focused on chemicals in textile wastewater, but the knowledge of the actual content of harmful chemicals in clothes sold on the retail market is limited. In this paper, we have focused on eight benzothiazole and benzotriazole derivatives, compounds rated as high production volume chemicals. Twenty-six clothing samples of various textile materials and colors manufactured in 14 different countries were analyzed in textile clothing using liquid chromatography tandem mass spectrometry. Among the investigated textile products, 11 clothes were for babies, toddlers, and children. Eight of the 11 compounds included in the investigation were detected in the textiles. Benzothiazole was present in 23 of 26 investigated garments in concentrations ranging from 0.45 to 51 μg/g textile. The garment with the highest concentration of benzothiazole contained a total amount of 8.3 mg of the chemical. The third highest concentration of benzothiazole (22 μg/g) was detected in a baby body made from "organic cotton" equipped with the "Nordic Ecolabel" ("Svanenmärkt"). It was also found that concentrations of benzothiazoles in general were much higher than those for benzotriazoles. This study implicates that clothing textiles can be a possible route for human exposure to harmful chemicals by skin contact, as well as being a potential source of environmental pollutants via laundering and release to household wastewater.

  1. Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material.

    PubMed

    Hatamie, Amir; Khan, Azam; Golabi, Mohsen; Turner, Anthony P F; Beni, Valerio; Mak, Wing Cheung; Sadollahkhani, Azar; Alnoor, Hatim; Zargar, Behrooz; Bano, Sumaira; Nur, Omer; Willander, Magnus

    2015-10-06

    Recently, one-dimensional nanostructures with different morphologies (such as nanowires, nanorods (NRs), and nanotubes) have become the focus of intensive research, because of their unique properties with potential applications. Among them, zinc oxide (ZnO) nanomaterials has been found to be highly attractive, because of the remarkable potential for applications in many different areas such as solar cells, sensors, piezoelectric devices, photodiode devices, sun screens, antireflection coatings, and photocatalysis. Here, we present an innovative approach to create a new modified textile by direct in situ growth of vertically aligned one-dimensional (1D) ZnO NRs onto textile surfaces, which can serve with potential for biosensing, photocatalysis, and antibacterial applications. ZnO NRs were grown by using a simple aqueous chemical growth method. Results from analyses such as X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed that the ZnO NRs were dispersed over the entire surface of the textile. We have demonstrated the following applications of these multifunctional textiles: (1) as a flexible working electrode for the detection of aldicarb (ALD) pesticide, (2) as a photocatalyst for the degradation of organic molecules (i.e., Methylene Blue and Congo Red), and (3) as antibacterial agents against Escherichia coli. The ZnO-based textile exhibited excellent photocatalytic and antibacterial activities, and it showed a promising sensing response. The combination of sensing, photocatalysis, and antibacterial properties provided by the ZnO NRs brings us closer to the concept of smart textiles for wearable sensing without a deodorant and antibacterial control. Perhaps the best known of the products that is available in markets for such purposes are textiles with silver nanoparticles. Our modified textile is thus providing acceptable antibacterial properties, compared to available commercial modified textiles.

  2. Textile composite fuselage structures development

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony C.; Barrie, Ronald E.; Chu, Robert L.

    1993-01-01

    Phase 2 of the NASA ACT Contract (NAS1-18888), Advanced Composite Structural Concepts and Materials Technology for Transport Aircraft Structures, focuses on textile technology, with resin transfer molding or powder coated tows. The use of textiles has the potential for improving damage tolerance, reducing cost and saving weight. This program investigates resin transfer molding (RTM), as a maturing technology for high fiber volume primary structures and powder coated tows as an emerging technology with a high potential for significant cost savings and superior structural properties. Powder coated tow technology has promise for significantly improving the processibility of high temperature resins such as polyimides.

  3. NASA CPAS Drogue Textile Riser Feasibility Study

    NASA Technical Reports Server (NTRS)

    Hennings, Elsa J.; Petersen, Michael L.; Anderson, Brian; Johnson, Brian

    2015-01-01

    Steel cable was chosen for the lower end of the drogue and main parachute risers on NASA's Orion Multi Purpose Crew Vehicle Parachute Assembly System (CPAS) to protect the risers from extreme temperatures and abrasion should they contact the crew module during deployment, as was done for Apollo. Due to the weight and deployment complexity inherent in steel, there was significant interest in the possibility of substituting textile for steel for the drogue and main parachute risers. However, textile risers could be damaged when subjected to high temperature and abrasion. Investigations were consequently performed by a subset of the authors to determine whether sacrificial, non-load-bearing textile riser covers could be developed to mitigate the thermal and abrasion concerns. Multiple material combinations were tested, resulting in a cover design capable of protecting the riser against severe riser/crew module contact interactions. A feasibility study was then conducted to evaluate the performance of the textile drogue riser cover in relevant abrasive environments. This paper describes the testing performed and documents the results of this feasibility study.

  4. Analysis of in vivo penetration of textile dyes causing allergic reactions

    NASA Astrophysics Data System (ADS)

    Lademann, J.; Patzelt, A.; Worm, M.; Richter, H.; Sterry, W.; Meinke, M.

    2009-10-01

    Contact allergies to textile dyes are common and can cause severe eczema. In the present study, we investigated the penetration of a fluorescent textile dye, dissolved from a black pullover, into the skin of one volunteer during perspiration and nonperspiration. Previously, wearing this pullover had induced a severe contact dermatitis in an 82-year old woman, who was not aware of her sensitization to textile dyes. The investigations were carried out by in vivo laser scanning microscopy. It could be demonstrated that the dye was eluted from the textile material by sweat. Afterwards, the dye penetrated into the stratum corneum and into the hair follicles. Inside the hair follicles, the fluorescent signal was still detectable after 24 h, whereas it was not verifiable anymore in the stratum corneum, Laser scanning microscopy represents an efficient tool for in vivo investigation of the penetration and storage of topically applied substances and allergens into the human skin and reveals useful hints for the development and optimization of protection strategies.

  5. Non-woven PGA/PVA fibrous mesh as an appropriate scaffold for chondrocyte proliferation.

    PubMed

    Rampichová, M; Koštáková, E; Filová, E; Prosecká, E; Plencner, M; Ocheretná, L; Lytvynets, A; Lukáš, D; Amler, E

    2010-01-01

    Non-woven textile mesh from polyglycolic acid (PGA) was found as a proper material for chondrocyte adhesion but worse for their proliferation. Neither hyaluronic acid nor chitosan nor polyvinyl alcohol (PVA) increased chondrocyte adhesion. However, chondrocyte proliferation suffered from acidic byproducts of PGA degradation. However, the addition of PVA and/or chitosan into a wet-laid non-woven textile mesh from PGA improved chondrocyte proliferation seeded in vitro on the PGA-based composite scaffold namely due to a diminished acidification of their microenvironment. This PVA/PGA composite mesh used in combination with a proper hydrogel minimized the negative effect of PGA degradation without dropping positive parameters of the PGA wet-laid non-woven textile mesh. In fact, presence of PVA and/or chitosan in the PGA-based wet-laid non-woven textile mesh even advanced the PGA-based wet-laid non-woven textile mesh for chondrocyte seeding and artificial cartilage production due to a positive effect of PVA in such a scaffold on chondrocyte proliferation.

  6. Sound absorption of textile material using a microfibres resistive layer

    NASA Astrophysics Data System (ADS)

    Segura Alcaraz, M. P.; Bonet-Aracil, M.; Segura Alcaraz, J. G.; Montava Seguí, I.

    2017-10-01

    Acoustic comfort is a basic human need. One of the adverse effects of noise is its interference with speech discrimination. Textile materials are suitable to be used as sound absorptive materials and thus help to improve acoustic comfort in rooms. Micro-fibre fabrics can be considered as better sound absorbers than regular fibre fabrics mainly due to the higher surface of its fibres and bigger contact area with the air thus, allowing greater dissipation of sound energy. In this work, the use of a microfibre woven fabric as an upstream layer is analysed considering acoustic issues. Authors demonstrate it improves the sound absorption of a polyester nonwoven, resulting in a material suitable for absorption at the sound frequencies of the human voice.

  7. Test methods for textile composites

    NASA Technical Reports Server (NTRS)

    Minguet, Pierre J.; Fedro, Mark J.; Gunther, Christian K.

    1994-01-01

    Various test methods commonly used for measuring properties of tape laminate composites were evaluated to determine their suitability for the testing of textile composites. Three different types of textile composites were utilized in this investigation: two-dimensional (2-D) triaxial braids, stitched uniweave fabric, and three-dimensional (3-D) interlock woven fabric. Four 2-D braid architectures, five stitched laminates, and six 3-D woven architectures were tested. All preforms used AS4 fibers and were resin-transfer-molded with Shell RSL-1895 epoxy resin. Ten categories of material properties were investigated: tension, open-hole tension, compression, open-hole compression, in-plane shear, filled-hole tension, bolt bearing, interlaminar tension, interlaminar shear, and interlaminar fracture toughness. Different test methods and specimen sizes were considered for each category of test. Strength and stiffness properties obtained with each of these methods are documented in this report for all the material systems mentioned above.

  8. Design & Performance of Wearable Ultra Wide Band Textile Antenna for Medical Applications

    NASA Astrophysics Data System (ADS)

    Singh, Nikhil; Singh, Ashutosh Kumar; Singh, Vinod Kumar

    2015-02-01

    The concept of wearable products such as textile antenna are being developed which are capable of monitoring, alerting and demanding attention whenever hospital emergency is needed, hence minimizing labour and resource. In the proposed work by using textile material as a substrate the ultra wideband antenna is designed especially for medical applications.Simulated and measured results here shows that the proposed antenna design meets the requirements of wide working bandwidth and provides 13.08 GHz bandwidth with very small size, washable (if using conductive thread for conductive parts) and flexible materials. Results in terms of bandwidth, radiation pattern, return loss as well as gain and efficiency are presented to validate the usefulness of the current proposed design. The work done here has many implications for future research and it could help patients with such flexible and comfortable medical monitoring techniques.

  9. Simulation of Forming and Wrinkling of Textile Composite Reinforcements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamila, N.; Wang, P.; Vidal-Salle, E.

    Because of the very weak textile bending stiffness, wrinkles are frequent during composite reinforcement forming. The simulation of the shape of these wrinkles during the forming process permits to verify there is no wrinkle in the useful part of the preform. In this paper the role of tensions, in-plane shear and bending rigidities in wrinkling development are analyzed. In-plane shear plays a main role for onset of wrinkles in double-curved shape forming but wrinkling is a global phenomenon depending on all strains and stiffnesses and on boundary conditions. The bending stiffness mainly determines the shape of the wrinkles and amore » membrane approach it is not sufficient to simulate wrinkles.« less

  10. High velocity impact on different hybrid architectures of 2D laminated and 3D warp interlock fabric composite

    NASA Astrophysics Data System (ADS)

    Provost, B.; Boussu, F.; Coutellier, D.; Vallee, D.; Rondot, F.

    2012-08-01

    For decades, conventional amour shield is mainly oriented on metallic materials which are today well-known. Since the use of non conventional threats as IEDs, performances of those protections are required to be upgraded. The expected improvements that manufacturers are looking for are mainly oriented to the weight reduction which is the key parameter to reduce the fuel consumption, increase the payload, and offer more manoeuvrability to vehicles [1]. However, the difficulty is to reduce as cautiously as possible the total mass of the protection solution while ensuring the safety of the vehicle. One of the possible solutions is to use new combinations of materials, able to be more efficient against new threats and lighter than the traditional steel armour. It is in this context that the combination between some well-known ballistic alloys and textile composite material appear as a high potential solution for armour plated protection. Indeed, used as a backing, textile composite material present some interesting properties such as a very low density compared with steel and good behaviour in term of ballistic efficiency. This study proposes to test and compare the behaviour and efficiency of three different textile composite backings.

  11. Investigating the feasibility of a reuse scenario for textile fibres recovered from end-of-life tyres.

    PubMed

    Landi, Daniele; Gigli, Silvia; Germani, Michele; Marconi, Marco

    2018-05-01

    The management of end-of-life tyres (ELTs) is regulated by several national and international legislations aiming to promote the recovery of materials and energy from this waste. The three main materials used in tyres are considered: rubber (main product), which is currently reused in other closed-loop applications; steel, which is used for the production of virgin materials; and textile fibres (approximately 10% by weight of ELTs), which are mainly incinerated for energy recovery (open-loop scenario). This study aims to propose and validate a new closed-loop scenario for textile fibres based on material reuse for bituminous conglomerates. The final objective is to verify the technical, environmental, financial, and economic feasibility of the proposed treatment process and reuse scenario. After characterization of the textile material, which is required to determine the technological feasibility, a specific process has been developed to clean, compact, and prepare the fibres for subsequent reuse. A life cycle assessment (LCA) has been carried out to quantify the environmental benefits of reusing the fibres. Finally, a cost benefit analysis based on the LCA results was conducted to establish the long-term financial and economic sustainability. From a technological point of view, the tyre textile fibres could be a promising substitute to the reinforcement cellulose commonly used in asphalts as long as the fibres are properly prepared (compaction and pellet production) for application in the standard bituminous conglomerate production process. From an environmental point of view, relevant benefits in terms of global warming potential and acidification potential reduction were observed in comparison with the standard incineration for energy recovery (respectively -86% and -45%). Moreover, the proposed scenario can be considered as financially viable in the medium to long term (cumulative generated cash flow is positive after the 5th year) and economically sustainable (expected net present value of more than €3,000,000 and economic rate of return of approximately 30%). Finally, the sensitivity and risk analyses show that no specific issues are foreseen for the future implementation in real industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Macroscale porous carbonized polydopamine-modified cotton textile for application as electrode in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zeng, Lizhen; Zhao, Shaofei; He, Miao

    2018-02-01

    The anode material is a crucial factor that significantly affects the cost and performance of microbial fuel cells (MFCs). In this study, a novel macroscale porous, biocompatible, highly conductive and low cost electrode, carbonized polydopamine-modified cotton textile (NC@CCT), is fabricated by using normal cheap waste cotton textiles as raw material via a simple in situ polymerization and carbonization treatment as anode of MFCs. The physical and chemical characterizations show that the macroscale porous and biocompatible NC@CCT electrode is coated by nitrogen-doped carbon nanoparticles and offers a large specific surface area (888.67 m2 g-1) for bacterial cells growth, accordingly greatly increases the loading amount of bacterial cells and facilitates extracellular electron transfer (EET). As a result, the MFC equipped with the NC@CCT anode achieves a maximum power density of 931 ± 61 mW m-2, which is 80.5% higher than that of commercial carbon felt (516 ± 27 mW m-2) anode. Moreover, making full use of the normal cheap waste cotton textiles can greatly reduce the cost of MFCs and the environmental pollution problem.

  13. A two-dimensional analytical model and experimental validation of garter stitch knitted shape memory alloy actuator architecture

    NASA Astrophysics Data System (ADS)

    Abel, Julianna; Luntz, Jonathan; Brei, Diann

    2012-08-01

    Active knits are a unique architectural approach to meeting emerging smart structure needs for distributed high strain actuation with simultaneous force generation. This paper presents an analytical state-based model for predicting the actuation response of a shape memory alloy (SMA) garter knit textile. Garter knits generate significant contraction against moderate to large loads when heated, due to the continuous interlocked network of loops of SMA wire. For this knit architecture, the states of operation are defined on the basis of the thermal and mechanical loading of the textile, the resulting phase change of the SMA, and the load path followed to that state. Transitions between these operational states induce either stick or slip frictional forces depending upon the state and path, which affect the actuation response. A load-extension model of the textile is derived for each operational state using elastica theory and Euler-Bernoulli beam bending for the large deformations within a loop of wire based on the stress-strain behavior of the SMA material. This provides kinematic and kinetic relations which scale to form analytical transcendental expressions for the net actuation motion against an external load. This model was validated experimentally for an SMA garter knit textile over a range of applied forces with good correlation for both the load-extension behavior in each state as well as the net motion produced during the actuation cycle (250% recoverable strain and over 50% actuation). The two-dimensional analytical model of the garter stitch active knit provides the ability to predict the kinetic actuation performance, providing the basis for the design and synthesis of large stroke, large force distributed actuators that employ this novel architecture.

  14. Potential Space Applications for Body-Centric Wireless and E-Textile Antennas

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.; Studor, George F.

    2007-01-01

    Space environment benefits of body-centric wireless communications are numerous, particularly in the context of long duration Lunar and Martian outposts that are in planning stages at several space agencies around the world. Since crew time for such missions is a scarce commodity, seamless integration of body-centric wireless from various sources is paramount. Sources include traditional data, such as audio, video, tracking, and biotelemetry. Newer data sources include positioning, orientation, and status of handheld tools and devices, as well as management and status of on-body inventories. In addition to offering lighter weight and flexibility, performance benefits of e-textile antennas are anticipated due to advantageous use of the body s surface area. In creating e-textile antennas and RF devices, researchers are faced with the challenge of transferring conventional and novel designs to textiles. Lack of impedance control, limited conductivity, and the inability to automatically create intricate designs are examples of limitations frequently attributed to e-textiles. Reliable interfaces between e-textiles and conventional hardware also represent significant challenges. Addressing these limitations is critical to the continued development and acceptance of fabric-based circuits for body-centric wireless applications. Here we present several examples of e-textile antennas and RF devices, created using a NASA-developed process, that overcome several of these limitations. The design and performance of an equiangular spiral, miniaturized spiral-loaded slot antenna, and a hybrid coupler are considered, with the e-textile devices showing comparable performance to like designs using conventional materials.

  15. Supercritical water oxidation treatment of textile sludge.

    PubMed

    Zhang, Jie; Wang, Shuzhong; Li, Yanhui; Lu, Jinling; Chen, Senlin; Luo, XingQi

    2017-08-01

    In this work, we studied the supercritical water oxidation (SCWO) of the textile sludge, the hydrothermal conversion of typical textile compounds and the corrosion properties of stainless steel 316. Moreover, the influence mechanisms of NaOH during these related processes were explored. The results show that decomposition efficiency for organic matter in liquid phase of the textile sludge was improved with the increment of reaction temperature or oxidation coefficient. However, the organic substance in solid phase can be oxidized completely in supercritical water. Serious coking occurred during the high pressure water at 250-450°C for the Reactive Orange 7, while at 300 and 350°C for the polyvinyl alcohol. The addition of NaOH not only accelerated the destruction of organic contaminants in the SCWO reactor, but effectively inhibited the dehydration conversion of textile compounds during the preheating process, which was favorable for the treatment system of textile sludge. The corrosion experiment results indicate that the stainless steel 316 could be competent for the body materials of the reactor and the heat exchangers. Furthermore, there was prominent enhancement of sodium hydroxide for the corrosion resistance of 316 in subcritical water. On the contrary the effect was almost none during SCWO.

  16. 40 CFR 61.144 - Standard for manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., twine, rope, thread, yarn, roving, lap, or other textile materials. (2) The manufacture of cement... manufacturing facility, including air cleaning devices, process equipment, and buildings housing material...

  17. 40 CFR 61.144 - Standard for manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., twine, rope, thread, yarn, roving, lap, or other textile materials. (2) The manufacture of cement... manufacturing facility, including air cleaning devices, process equipment, and buildings housing material...

  18. 40 CFR 61.144 - Standard for manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., twine, rope, thread, yarn, roving, lap, or other textile materials. (2) The manufacture of cement... manufacturing facility, including air cleaning devices, process equipment, and buildings housing material...

  19. 40 CFR 61.144 - Standard for manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., twine, rope, thread, yarn, roving, lap, or other textile materials. (2) The manufacture of cement... manufacturing facility, including air cleaning devices, process equipment, and buildings housing material...

  20. 40 CFR 61.144 - Standard for manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., twine, rope, thread, yarn, roving, lap, or other textile materials. (2) The manufacture of cement... manufacturing facility, including air cleaning devices, process equipment, and buildings housing material...

  1. Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications.

    PubMed

    Allison, Linden; Hoxie, Steven; Andrew, Trisha L

    2017-06-29

    Traditional textile materials can be transformed into functional electronic components upon being dyed or coated with films of intrinsically conducting polymers, such as poly(aniline), poly(pyrrole) and poly(3,4-ethylenedioxythiophene). A variety of textile electronic devices are built from the conductive fibers and fabrics thus obtained, including: physiochemical sensors, thermoelectric fibers/fabrics, heated garments, artificial muscles and textile supercapacitors. In all these cases, electrical performance and device ruggedness is determined by the morphology of the conducting polymer active layer on the fiber or fabric substrate. Tremendous variation in active layer morphology can be observed with different coating or dyeing conditions. Here, we summarize various methods used to create fiber- and fabric-based devices and highlight the influence of the coating method on active layer morphology and device stability.

  2. Electro-textile garments for power and data distribution

    NASA Astrophysics Data System (ADS)

    Slade, Jeremiah R.; Winterhalter, Carole

    2015-05-01

    U.S. troops are increasingly being equipped with various electronic assets including flexible displays, computers, and communications systems. While these systems can significantly enhance operational capabilities, forming reliable connections between them poses a number of challenges in terms of comfort, weight, ergonomics, and operational security. IST has addressed these challenges by developing the technologies needed to integrate large-scale cross-seam electrical functionality into virtually any textile product, including the various garments and vests that comprise the warfighter's ensemble. Using this technology IST is able to develop textile products that do not simply support or accommodate a network but are the network.

  3. Sensing textile seam-line for wearable multimodal physiological monitoring.

    PubMed

    McKnight, M; Agcayazi, T; Kausche, H; Ghosh, T; Bozkurt, A

    2016-08-01

    This paper investigates a novel multimodal sensing method by forming seam-lines of conductive textile fibers into commercially available fabrics. The proposed ultra-low cost micro-electro-mechanical sensor would provide, wearable, flexible, textile based biopotential signal recording, wetness detection and tactile sensing simultaneously. Three types of fibers are evaluated for their array-based sensing capability, including a 3D printed conductive fiber, a multiwall carbon nanotube based fiber, and a commercially available stainless steel conductive thread. The sensors were shown to have a correlation between capacitance and pressure; impedance and wetness; and recorded potential and ECG waveforms.

  4. Laser surface modification of electrically conductive fabrics: Material performance improvement and design effects

    NASA Astrophysics Data System (ADS)

    Tunakova, Veronika; Hrubosova, Zuzana; Tunak, Maros; Kasparova, Marie; Mullerova, Jana

    2018-01-01

    Development of lightweight flexible materials for electromagnetic interference shielding has obtained increased attention in recent years particularly for clothing, textiles in-house use and technical applications especially in areas of aircraft, aerospace, automobiles and flexible electronics such as portable electronics and wearable devices. There are many references in the literature concerning development and investigation of electromagnetic shielding lightweight flexible materials especially textile based with different electrically conductive additives. However, only little attention is paid to designing and enhancing the properties of these special fabrics by textile finishing processes. Laser technology applied as a physical treatment method is becoming very popular and can be used in different applications to make improvement and even overcome drawbacks of some of the traditional processes. The main purpose of this study is firstly to analyze the possibilities of transferring design onto the surface of electrically conductive fabrics by laser beam and secondly to study of effect of surface modification degree on performance of conductive fabric including electromagnetic shielding ability and mechanical properties. Woven fabric made of yarns containing 10% of extremely thin stainless steel fiber was used as a conductive substrate.

  5. Reeling in the textiles at Row Clothing Enterprises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridgley, H.

    1997-12-01

    While a handful of textile processing centers in operation today can date their roots back to the turn of this century or before, Row Clothing Enterprises (Baltimore) first opened its doors in 1985. Soon after, it climbed its way to becoming one of the premier textile processing businesses in the country. And what they want most of all is usable clothing--the discards of American secondhand clothing stores. The company exports 100% of the usable clothing it recovers paying institutions as much as $150 a ton for the material. Graders also sort the material into piles headed for the mutilating, ormore » fiber-shredding, machine. While not all the material is shredded, it does provide more opportunities for resale. Whatever Row cannot resell as clothing--because it is soiled or torn--gets processed into industrial wiping cloths, if it is cotton. Clothing made from wool and polyester is sent to woolen and polyester fiber mills to be made into new clothing. While 80% of Row`s wiper market is domestic, 80% of its fiber market is overseas.« less

  6. Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.

  7. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Allen, L. E.; Mccollum, J. R.; Thomas, H. L.

    1988-01-01

    Now that quantities of prepreg were made on the thermoplastic coating line, they are being formed into both textile preform structures and directly into composite samples. The textile preforms include both woven and knitted structures which will be thermoformed into a finished part. In order to determine if the matrix resin is properly adhering to the fibers or if voids are being formed in the coating process, the tensile strength and modulus of these samples will be tested. The matrix uniformity of matrix distribution in these samples is also being determined using an image analyzer.

  8. Tension Strength, Failure Prediction and Damage Mechanisms in 2D Triaxial Braided Composites with Notch

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Anglin, Colin

    1995-01-01

    The unnotched and notched (open hole) tensile strength and failure mechanisms of two-dimensional (2D) triaxial braided composites were examined. The effect of notch size and notch position were investigated. Damage initiation and propagation in notched and unnotched coupons were also examined. Theory developed to predict the normal stress distribution near an open hole and failure for tape laminated composites was evaluated for its applicability to 2D triaxial braided textile composite materials. Four different fiber architectures were considered; braid angle, yarn and braider size, percentage of longitudinal yarns and braider angle varied. Tape laminates equivalent to textile composites were also constructed for comparison. Unnotched tape equivalents were stronger than braided textiles but exhibited greater notch sensitivity. Notched textiles and tape equivalents have roughly the same strength at large notch sizes. Two common damage mechanisms were found: braider yarn cracking and near notch longitudinal yarn splitting. Cracking was found to initiate in braider yarns in unnotched and notched coupons, and propagate in the direction of the braider yarns until failure. Damage initiation stress decreased with increasing braid angle. No significant differences in prediction of near notch strain between textile and tape equivalents could be detected for small braid angle, but the correlations were weak for textiles with large braid angle. Notch strength could not be predicted using existing anisotropic theory for braided textiles due to their insensitivity to notch.

  9. Direct patterning of organic conductors on knitted textiles for long-term electrocardiography

    NASA Astrophysics Data System (ADS)

    Takamatsu, Seiichi; Lonjaret, Thomas; Crisp, Dakota; Badier, Jean-Michel; Malliaras, George G.; Ismailova, Esma

    2015-10-01

    Wearable sensors are receiving a great deal of attention as they offer the potential to become a key technological tool for healthcare. In order for this potential to come to fruition, new electroactive materials endowing high performance need to be integrated with textiles. Here we present a simple and reliable technique that allows the patterning of conducting polymers on textiles. Electrodes fabricated using this technique showed a low impedance contact with human skin, were able to record high quality electrocardiograms at rest, and determine heart rate even when the wearer was in motion. This work paves the way towards imperceptible electrophysiology sensors for human health monitoring.

  10. Micromagnetic Simulation of Fibers and Coatings on Textiles

    NASA Astrophysics Data System (ADS)

    Ehrmann, Andrea; Blachowicz, Tomasz

    2015-10-01

    Simulations of mechanical or comfort properties of fibers, yarns and textile fabrics have been developed for a long time. In the course of increasing interest in smart textiles, models for conductive fabrics have also been developed. The magnetic properties of fibers or magnetic coatings, however, are almost exclusively being examined experimentally. This article thus describes different possibilities of micromagnetically modeling magnetic fibers or coatings. It gives an overview of calculation times for different dimensions of magnetic materials, indicating the limits due to available computer performance and shows the influence of these dimensions on the simulated magnetic properties for magnetic coatings on fibers and fabrics.

  11. Smart and hybrid materials: perspectives for their use in textile structures for better health care.

    PubMed

    Carosio, Stefano; Monero, Alessandra

    2004-01-01

    High tech materials such as Shape Memory Alloys can be effectively integrated in textiles, thus providing multifunctional garments with potential application to the health care industry or for simply improving the quality of life. The objective of the present paper is to describe the development of a novel hybrid fabric with embedded shape memory (Nitinol) wires, and the related clothing application with the capability of recovering any shape depending upon the environment and becoming superelastic. The use of these smart garments for biomedical applications will be illustrated, thus opening new perspectives for enhanced health care provision.

  12. Mechanical properties of 2D and 3D braided textile composites

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.

    1991-01-01

    The purpose of this research was to determine the mechanical properties of 2D and 3D braided textile composite materials. Specifically, those designed for tension or shear loading were tested under static loading to failure to investigate the effects of braiding. The overall goal of the work was to provide a structural designer with an idea of how textile composites perform under typical loading conditions. From test results for unnotched tension, it was determined that the 2D is stronger, stiffer, and has higher elongation to failure than the 3D. It was also found that the polyetherether ketone (PEEK) resin system was stronger, stiffer, and had higher elongation at failure than the resin transfer molding (RTM) epoxy. Open hole tension tests showed that PEEK resin is more notch sensitive than RTM epoxy. Of greater significance, it was found that the 3D is less notch sensitive than the 2D. Unnotched compression tests indicated, as did the tension tests, that the 2D is stronger, stiffer, and has higher elongation at failure than the RTM epoxy. The most encouraging results were from compression after impact. The 3D braided composite showed a compression after impact failure stress equal to 92 percent of the unimpacted specimen. The 2D braided composite failed at about 67 percent of the unimpacted specimen. Higher damage tolerance is observed in textiles over conventional composite materials. This is observed in the results, especially in the 3D braided materials.

  13. Stitch modeling of non crimp fabric in forming simulations

    NASA Astrophysics Data System (ADS)

    Steer, Q.; Colmars, J.; Boisse, P.

    2018-05-01

    The use of Non Crimp Fabric composite has increased during the last years due to cheaper cost of manufacturing and high mechanicals properties suitable for applications such as aeronautic, automotive and wind turbines. The main difference between Non Crimp Fabric (NCF) and textile reinforcement is the mean of manufacturing: where in textile fibers are woven, in NCF layers of unidirectional oriented fibers are assembled with a stitch. As a consequence, the stitch especially its geometry (stitch pattern) will have a major influence on the deformation of this type of reinforcement during forming process. Experimental campaigns on NCF samples compared to textile with the same fibers orientation have showed that the stitch affects the shear behavior of the reinforcement which is the main mode of deformation in the forming process. A description of the stitch has been implemented in a shell element for macro scale forming simulation as a first approach based on simple hypothesis. Further works are focus on the specific behavior of the stitch along the fabric and interaction with the fibers layers during shear deformation of the reinforcement and a method to implement the stitch in a more refined model of the fabric.

  14. Sugarcane bagasse powder as biosorbent for reactive red 120 removals from aqueous solution

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Wong, Y. C.; Veloo, K. V.

    2018-04-01

    Reactive red 120 is used as a textile dye for fabric coloring. The dye waste is produced during textile finishing process subsequently released directly to water bodies which giving harmful effects to the environment due to the carcinogenic characteristic. Adsorption process becomes an effective treatment to treat textile dye. This research emphasizes the treatment of textile dye namely reactive red 120 (RR120) by using sugarcane bagasse powder. The batch study was carried out under varying parameters such as 60 minutes contact time, pH (1-8), dye concentration (5-25 mg/L), particle size (125-500 μm) and biosorbent dosage (0.01-0.2 g/L). The maximum adsorption percentage of RR120 was 94.62%. The adsorption of dye was increased with the decreasing of pH, initial dye concentration and particle size. Sugarcane bagasse powder as low-cost biosorbent was established using Fourier Transform Infrared (FTIR) and scanning electron microscopy (SEM). This locally agricultural waste could be upgraded into useful material which is biosorbent that promising for decolorization of colored textile wastewater.

  15. Removing nickel from nickel-coated carbon fibers

    NASA Astrophysics Data System (ADS)

    Hardianto, A.; Hertleer, C.; De Mey, G.; Van Langenhove, L.

    2017-10-01

    Conductive fibers/yarns are one of the most important materials for smart textiles because of their electrically conductive functionality combined with flexibility and light weight. They can be applied in many fields such as the medical sector, electronics, sensors and even as thermoelectric generators. Temperature sensors, for example, can be made using the thermocouple or thermopile principle which usually uses two different metal wires that can produce a temperature-dependent voltage. However, if metal wires are inserted into a textile structure, they will decrease the flexibility properties of the textile product. Nickel-coated Carbon Fiber (NiCF), a conductive textile yarn, has a potential use as a textile-based thermopile if we can create an alternating region of carbon and nickel along the fiber which in turn it can be used for substituting the metallic thermopile. The idea was to remove nickel from NiCF in order to obtain a yarn that contains alternating zones of carbon and nickel. Due to no literature reporting on how to remove nickel from NiCF, in this paper we investigated some chemicals to remove nickel from NiCF.

  16. Forensic Fiber Examination and Analysis.

    PubMed

    Hauck, M M

    2005-01-01

    Fiber evidence suffers from the same misperception as many other types of trace evidence, that it is weak in its significance. Despite this pejorative perception, textiles make excellent evidence because of their presence in our daily lives and the variations they demonstrate. Fibers from the textiles in our and others' environments transfer from surface to surface and variously persist. Textile fibers are produced with specific raw materials, production methods, and postproduction alterations that create this variety. The distribution and use of the fibers add to their distinctive significance. The number of methods used in analysis helps to define and identify the fibers. Millions of color shades are possible in textiles and yet color analysis is not a universal technique in forensic laboratories. Transfer study after transfer study demonstrates the rarity of finding unrelated fibers at random that exhibit the same microscopic characteristics and optical properties. Examples from casework also demonstrate the usefulness of forensic textile fiber analysis in demonstrating probative associations in criminal investigations. Additional work needs to be done to fortify and support these conclusions and provide the verification necessary to remove the taint of "could have". Copyright © 2005 Central Police University.

  17. The IMPACT shirt: textile integrated and portable impedance cardiography.

    PubMed

    Ulbrich, Mark; Mühlsteff, Jens; Sipilä, Auli; Kamppi, Merja; Koskela, Anne; Myry, Manu; Wan, Tingting; Leonhardt, Steffen; Walter, Marian

    2014-06-01

    Measurement of hemodynamic parameters such as stroke volume (SV) via impedance cardiography (ICG) is an easy, non-invasive and inexpensive way to assess the health status of the heart. We present a possibility to use this technology for monitoring risk patients at home. The IMPACT Shirt (IMPedAnce Cardiography Textile) has been developed with integrated textile electrodes and textile wiring, as well as with portable miniaturized hardware. Several textile materials were characterized in vitro and in vivo to analyze their performance with regard to washability, and electrical characteristics such as skin-electrode impedance, capacitive coupling and subjective tactile feeling. The small lightweight hardware measures ECG and ICG continuously and transmits wireless data via Bluetooth to a mobile phone (Android) or PC for further analysis. A lithium polymer battery supplies the circuit and can be charged via a micro-USB. Results of a proof-of-concept trial show excellent agreement between SV assessed by a commercial device and the developed system. The IMPACT Shirt allows monitoring of SV and ECG on a daily basis at the patient's home.

  18. Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications

    NASA Astrophysics Data System (ADS)

    Abdelkader, Amr M.; Karim, Nazmul; Vallés, Cristina; Afroj, Shaila; Novoselov, Kostya S.; Yeates, Stephen G.

    2017-09-01

    Printed graphene supercapacitors have the potential to empower tomorrow’s wearable electronics. We report a solid-state flexible supercapacitor device printed on textiles using graphene oxide ink and a screen-printing technique. After printing, graphene oxide was reduced in situ via a rapid electrochemical method avoiding the use of any reducing reagents that may damage the textile substrates. The printed electrodes exhibited excellent mechanical stability due to the strong interaction between the ink and textile substrate. The unique hierarchical porous structure of the electrodes facilitated ionic diffusion and maximised the surface area available for the electrolyte/active material interface. The obtained device showed outstanding cyclic stability over 10 000 cycles and maintained excellent mechanical flexibility, which is necessary for wearable applications. The simple printing technique is readily scalable and avoids the problems associated with fabricating supercapacitor devices made of conductive yarn, as previously reported in the literature.

  19. Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment.

    PubMed

    Liu, Yuyang; Chen, Xianqiong; Xin, J H

    2008-12-01

    Inspired by the non-wetting phenomena of duck feathers, the water repellent property of duck feathers was studied at the nanoscale. The microstructures of the duck feather were investigated by a scanning electron microscope (SEM) imaging method through a step-by-step magnifying procedure. The SEM results show that duck feathers have a multi-scale structure and that this multi-scale structure as well as the preening oil are responsible for their super hydrophobic behavior. The microstructures of the duck feather were simulated on textile substrates using the biopolymer chitosan as building blocks through a novel surface solution precipitation (SSP) method, and then the textile substrates were further modified with a silicone compound to achieve low surface energy. The resultant textiles exhibit super water repellent properties, thus providing a simple bionic way to create super hydrophobic surfaces on soft substrates using flexible material as building blocks.

  20. Social and economic importance of textile reuse and recycling in Brazil

    NASA Astrophysics Data System (ADS)

    Baruque-Ramos, J.; Amaral, M. C.; Laktim, M. C.; Santos, H. N.; Araujo, F. B.; Zonatti, W. F.

    2017-10-01

    Brazil is an important world producer of textiles. However, this industrial activity, combined with additional import and trade, generates millions of tons of textile scraps, unsold clothing and discarded post-consumption garments. There is a great potential for the recycling and reuse industry in the context of solidarity and circular economy. The present study aimed to present examples in Brazil related to waste reduction, reuse and recycling of textiles in the context of solidary economy. In this way, some representative initiatives, from Sao Paulo, Minas Gerais and Rio de Janeiro states are presented and discussed based on these principles and approaching responsible lifestyles and environmental awareness and the refusal to waste resources in general. The main socioenvironmental benefits are related to the training of labor and local income generation, the population’s awareness of consumption patterns, saving of natural resources and raw materials, and mitigation of environmental impacts.

  1. Crystalline Bacterial Surface Layer (S-Layer) Opens Golden Opportunities for Nanobiotechnology in Textiles.

    PubMed

    Asadi, Narges; Chand, Nima; Rassa, Mehdi

    2015-12-01

    This study focuses on the successful recrystallization of bacterial S-layer arrays of the Lactobacillus acidophilus ATCC 4356 at textile surfaces to create a novel method and material. Optimum bacterial growth was obtained at approximately 45 °C, pH 5.0, and 14 h pi. The cells were resuspended in guanidine hydrochloride and the 43 kDa S-protein was dialyzed and purified. The optimum reassembly on the polypropylene fabric surface in terms of scanning electron microscopy (SEM), reflectance, and uniformity (spectrophotometry) was obtained at 30 °C, pH 5.0 for 30 minutes in the presence of 2 gr/l (liquor ratio; 1:40) of the S-protein. Overall, our data showed that the functional aspects and specialty applications of the fabric would be very attractive for the textile and related sciences, and result in advanced technical textiles.

  2. Development of a quantitative method for the analysis of cocaine analogue impregnated into textiles by Raman spectroscopy.

    PubMed

    Xiao, Linda; Alder, Rhiannon; Mehta, Megha; Krayem, Nadine; Cavasinni, Bianca; Laracy, Sean; Cameron, Shane; Fu, Shanlin

    2018-04-01

    Cocaine trafficking in the form of textile impregnation is routinely encountered as a concealment method. Raman spectroscopy has been a popular and successful testing method used for in situ screening of cocaine in textiles and other matrices. Quantitative analysis of cocaine in these matrices using Raman spectroscopy has not been reported to date. This study aimed to develop a simple Raman method for quantifying cocaine using atropine as the model analogue in various types of textiles. Textiles were impregnated with solutions of atropine in methanol. The impregnated atropine was extracted using less hazardous acidified water with the addition of potassium thiocyanate (KSCN) as an internal standard for Raman analysis. Despite the presence of background matrix signals arising from the textiles, the cocaine analogue could easily be identified by its characteristic Raman bands. The successful use of KSCN normalised the analyte signal response due to different textile matrix background interferences and thus removed the need for a matrix-matched calibration. The method was linear over a concentration range of 6.25-37.5 mg/cm 2 with a coefficient of determination (R 2 ) at 0.975 and acceptable precision and accuracy. A simple and accurate Raman spectroscopy method for the analysis and quantification of a cocaine analogue impregnated in textiles has been developed and validated for the first time. This proof-of-concept study has demonstrated that atropine can act as an ideal model compound to study the problem of cocaine impregnation in textile. The method has the potential to be further developed and implemented in real world forensic cases. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Constructing safe and durable antibacterial textile surfaces using a robust graft-to strategy via covalent bond formation

    NASA Astrophysics Data System (ADS)

    He, Liang; Li, Sha; Chung, Cordelia T. W.; Gao, Chang; Xin, John H.

    2016-11-01

    Recently zwitterionic materials have been widely applied in the biomedical and bioengineering fields due to their excellent biocompatibility. Inspired by these, this study presents a graft-to strategy via covalent bond formation to fabricate safe and durable antibacterial textile surfaces. A novel zwitterionic sulfobetaine containing triazine reactive group was specifically designed and synthesized. MTT assay showed that it had no obvious cytotoxicity to human skin HaCaT cells as verified by ca. 89.9% relative viability at a rather high concentration of 0.8 mg·mL-1. In the evaluation for its skin sensitization, the maximum score for symptoms of erythema and edema in all tests were 0 in all observation periods. The sulfobetaine had a hydrophilic nature and the hydrophilicity of the textiles was enhanced by 43.9% when it was covalently grafted onto the textiles. Moreover, the textiles grafted with the reactive sulfobetaine exhibited durable antibacterial activities, which was verified by the fact that they showed antibacterial rates of 97.4% against gram-positive S. aureus and 93.2% against gram-negative E. coli even after they were laundered for 30 times. Therefore, the titled zwitterionic sulfobetaine is safe to human for healthcare and wound dressing and shows a promising prospect on antibacterial textile application.

  4. Carbon nanotubes polymer nanoparticles inks for healthcare textile

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Lee, Jungmin; Mathur, Gyanesh N.; Varadan, Vijay K.

    2012-10-01

    Healthcare textiles are ambient health monitoring systems that can contribute towards medical aid as well as general fitness of the populace. These are textile based products that have sensor systems mounted on them or are electrically functionalized to act as sensors. While embedded sensor chipsets and connection wires have been shown as working prototypes of this concept, there is a need for seamless integration of sensor technologies without hindering the inherent properties of the textile. Screen printing or stamping with electrically conductive inks have been demonstrated as technologies for fabricating electronics on flexible substrates. They are applicable to textile manufacturing as well. Printing technology allows for fabrication of nanocomposite based electronics elements in a bottom-up fashion. This has advantages such as low material consumption, high speed fabrication and low temperature processing. In this research, Multi-Wall Carbon Nanotubes (MWCNTs) and polyaniline nanoparticles (PANP) core shell based nanocomposites were synthesized and formulated into colloidal ink. Printed MWCNTs-PANP traces were electrically characterized and compared with traces made with those made by other composites such as Silver, and Carbon Black. The nanocomposite based inks are compared for proposed applications as sensor systems and conductive tracks on smart textile for pervasive wireless healthcare system that can be mass produced using low cost printing processes.

  5. Constructing safe and durable antibacterial textile surfaces using a robust graft-to strategy via covalent bond formation

    PubMed Central

    He, Liang; Li, Sha; Chung, Cordelia T. W.; Gao, Chang; Xin, John H.

    2016-01-01

    Recently zwitterionic materials have been widely applied in the biomedical and bioengineering fields due to their excellent biocompatibility. Inspired by these, this study presents a graft-to strategy via covalent bond formation to fabricate safe and durable antibacterial textile surfaces. A novel zwitterionic sulfobetaine containing triazine reactive group was specifically designed and synthesized. MTT assay showed that it had no obvious cytotoxicity to human skin HaCaT cells as verified by ca. 89.9% relative viability at a rather high concentration of 0.8 mg·mL−1. In the evaluation for its skin sensitization, the maximum score for symptoms of erythema and edema in all tests were 0 in all observation periods. The sulfobetaine had a hydrophilic nature and the hydrophilicity of the textiles was enhanced by 43.9% when it was covalently grafted onto the textiles. Moreover, the textiles grafted with the reactive sulfobetaine exhibited durable antibacterial activities, which was verified by the fact that they showed antibacterial rates of 97.4% against gram-positive S. aureus and 93.2% against gram-negative E. coli even after they were laundered for 30 times. Therefore, the titled zwitterionic sulfobetaine is safe to human for healthcare and wound dressing and shows a promising prospect on antibacterial textile application. PMID:27808248

  6. Bio-functionalization of conductive textile materials with redox enzymes

    NASA Astrophysics Data System (ADS)

    Kahoush, M.; Behary, N.; Cayla, A.; Nierstrasz, V.

    2017-10-01

    In recent years, immobilization of oxidoreductase enzymes on electrically conductive materials has played an important role in the development of sustainable bio-technologies. Immobilization process allows the re-use of these bio-catalysts in their final applications. In this study, different methods of immobilizing redox enzymes on conductive textile materials were used to produce bio-functionalized electrodes. These electrodes can be used for bio-processes and bio-sensing in eco-designed applications in domains such as medicine and pollution control. However, the main challenge facing the stability and durability of these electrodes is the maintenance of the enzymatic activity after the immobilization. Hence, preventing the enzyme’s denaturation and leaching is a critical factor for the success of the immobilization processes.

  7. Postcards from the edge: Trash-2-Cash communication tools used to support inter-disciplinary work towards a design driven material innovation (DDMI) methodology

    NASA Astrophysics Data System (ADS)

    Earley, R.; Hornbuckle, R.

    2017-10-01

    In this paper postcards from the EU funded Horizon 2020 Trash-2-Cash (2015-2018) project - completed by workshop participants - are presented in three tables with a focus on how they contributed to the building of communication channels, shared understanding and methods in this inter-disciplinary consortium work. The Trash-2-Cash project aims to support better waste utilisation, improve material efficiency, contribute to reduction of landfill area needs, whilst also producing high-value commercial products. Novel materials will drive the generation of new textile fibres that will utilize paper and textile fibre waste, originating from continuously increasing textile consumption. The inter-disciplanarity of the participants is key to achieving the project aims - but communication between sectors is challenging due to diverse expertise and levels of experience; language and cultural differences can also be barriers to collaboration as well. Designing easy and accessible, even fun, communication tools are one of the ways to help build relationships. The cards reviewed were used in Prato (November 2015), Helsinki (February 2016) and London (November 2016). This paper concludes with insights for the ongoing development of the project communications work towards the Design Driven Material Innovation (DDMI) methodology, due to be presented at the end of the project in 2018.

  8. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium.

    PubMed

    Oliveira, Luiz C A; Gonçalves, Maraísa; Oliveira, Diana Q L; Guerreiro, Mário C; Guilherme, Luiz R G; Dallago, Rogério M

    2007-03-06

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80mgg(-1)) and textile dye reactive red (163mgg(-1)), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.

  9. Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors

    NASA Astrophysics Data System (ADS)

    He, Shuijian; Chen, Wei

    2015-10-01

    Successful application of inexpensive energy storage devices lies in the exploitation of fabrication approaches that are based on cost-efficient materials and that can be easily scaled up. Here, inexpensive textile weaved by natural flax fiber is selected as raw material in preparing flexible and binder-free electrode material for supercapacitors. Although carbon fiber cloth obtained from the direct carbonization of flax textile exhibits a low specific capacitance of 0.78 F g-1, carbon fiber cloth electrode shows a very short relaxation time of 39.1 m s and good stability with almost 100% capacitance retaining after 104 cycles at 5 A g-1. To extend the application of the resulting carbon cloth in supercapacitor field, a layer of MnO2 nanosheets is deposited on the surface of carbon fiber via in situ redox reaction between carbon and KMnO4. The specific capacitance of MnO2 reaches 683.73 F g-1 at 2 A g-1 and still retains 269.04 F g-1 at 300 A g-1, indicating the excellent rate capacitance performance of the carbon cloth/MnO2 hybrids. The present study shows that carbon cloth derived from flax textile can provide a low-cost material platform for the facile, cost-efficient and large scale fabrication of binder-free electrode materials for energy storage devices.

  10. Field-emission scanning electron microscopy and energy-dispersive x-ray analysis to understand the role of tannin-based dyes in the degradation of historical wool textiles.

    PubMed

    Restivo, Annalaura; Degano, Ilaria; Ribechini, Erika; Pérez-Arantegui, Josefina; Colombini, Maria Perla

    2014-10-01

    An innovative approach, combining field-emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDX) analysis, is presented to investigate the degradation mechanisms affecting tannin-dyed wool. In fact, tannin-dyed textiles are more sensitive to degradation then those dyed with other dyestuffs, even in the same conservation conditions. FESEM-EDX was first used to study a set of 48 wool specimens (artificially aged) dyed with several raw materials and mordants, and prepared according to historical dyeing recipes. EDX analysis was performed on the surface of wool threads and on their cross-sections. In addition, in order to validate the model formulated by the analysis of reference materials, several samples collected from historical and archaeological textiles were subjected to FESEM-EDX analysis. FESEM-EDX investigations enabled us to reveal the correlation between elemental composition and morphological changes. In addition, aging processes were clarified by studying changes in the elemental composition of wool from the protective cuticle to the fiber core in cross-sections. Morphological and elemental analysis of wool specimens and of archaeological and historical textiles showed that the presence of tannins increases wool damage, primarily by causing a sulfur decrease and fiber oxidation.

  11. Biosorption of textile dye reactive blue 221 by capia pepper (Capsicum annuum L.) seeds.

    PubMed

    Gürel, Levent

    2017-04-01

    Peppers are very important foodstuffs in the world for direct and indirect consumption, so they are extensively used. The seeds of these peppers are waste materials that are disposed of from houses and factories. To evaluate the performance of this biomass in the treatment of wastewaters, a study was conducted to remove a textile dye, reactive blue 221, which is commercially used in textile mills. Raw seed materials were used without any pre-treatment. The effects of contact time, initial concentration of dye, pH and dose of biosorbent were studied to determine the optimum conditions for this biomass on color removal from wastewaters. The optimum pH value for dye biosorption was found to be 2.0. At an initial dye concentration of 217 mg L -1 , treatment efficiency and biosorption capacity were 96.7% and 95.35 mg g -1 , respectively. A maximum biosorption capacity of 142.86 mg g -1 was also obtained. Equilibrium biosorption of dye by capia seeds was well described by the Langmuir isotherm with a correlation coefficient above 99%. The biosorption process was also successfully explained with the pseudo-second order kinetic model. This biomass was found to be effective in terms of textile dye removal from aqueous solutions.

  12. Application of solar photo-Fenton toward toxicity removal and textile wastewater reuse.

    PubMed

    Starling, Maria Clara V M; Dos Santos, Paulo Henrique Rodrigues; de Souza, Felipe Antônio Ribeiro; Oliveira, Sílvia Corrêa; Leão, Mônica M D; Amorim, Camila C

    2017-05-01

    Solar photo-Fenton represents an innovative and low-cost option for the treatment of recalcitrant industrial wastewater, such as the textile wastewater. Textile wastewater usually shows high acute toxic and variability and may be composed of many different chemical compounds. This study aimed at optimizing and validating solar photo-Fenton treatment of textile wastewater in a semi-pilot compound parabolic collector (CPC) for toxicity removal and wastewater reclamation. In addition, treated wastewater reuse feasibility was investigated through pilot tests. Experimental design performed in this study indicated optimum condition for solar photo-Fenton reaction (20 mg L -1 of Fe 2+ and 500 mg L -1 of H 2 O 2 ; pH 2.8), which achieved 96 % removal of dissolved organic carbon (DOC) and 99 % absorbance removal. A toxicity peak was detected during treatment, suggesting that highly toxic transformation products were formed during reaction. Toxic intermediates were properly removed during solar photo-Fenton (SPF) treatment along with the generation of oxalic acid as an ultimate product of degradation and COS increase. Different samples of real textile wastewater were treated in order to validate optimized treatment condition with regard to wastewater variability. Results showed median organic carbon removal near 90 %. Finally, reuse of treated textile wastewater in both dyeing and washing stages of production was successful. These results confirm that solar photo-Fenton, as a single treatment, enables wastewater reclamation in the textile industry. Graphical abstract Solar photo-Fenton as a revolutionary treatment technology for "closing-the-loop" in the textile industry.

  13. Nanomaterials for Functional Textiles and Fibers

    NASA Astrophysics Data System (ADS)

    Rivero, Pedro J.; Urrutia, Aitor; Goicoechea, Javier; Arregui, Francisco J.

    2015-12-01

    Nanoparticles are very interesting because of their surface properties, different from bulk materials. Such properties make possible to endow ordinary products with new functionalities. Their relatively low cost with respect to other nano-additives make them a promising choice for industrial mass-production systems. Nanoparticles of different kind of materials such as silver, titania, and zinc oxide have been used in the functionalization of fibers and fabrics achieving significantly improved products with new macroscopic properties. This article reviews the most relevant approaches for incorporating such nanoparticles into synthetic fibers used traditionally in the textile industry allowing to give a solution to traditional problems for textiles such as the microorganism growth onto fibers, flammability, robustness against ultraviolet radiation, and many others. In addition, the incorporation of such nanoparticles into special ultrathin fibers is also analyzed. In this field, electrospinning is a very promising technique that allows the fabrication of ultrathin fiber mats with an extraordinary control of their structure and properties, being an ideal alternative for applications such as wound healing or even functional membranes.

  14. Nanomaterials for Functional Textiles and Fibers.

    PubMed

    Rivero, Pedro J; Urrutia, Aitor; Goicoechea, Javier; Arregui, Francisco J

    2015-12-01

    Nanoparticles are very interesting because of their surface properties, different from bulk materials. Such properties make possible to endow ordinary products with new functionalities. Their relatively low cost with respect to other nano-additives make them a promising choice for industrial mass-production systems. Nanoparticles of different kind of materials such as silver, titania, and zinc oxide have been used in the functionalization of fibers and fabrics achieving significantly improved products with new macroscopic properties. This article reviews the most relevant approaches for incorporating such nanoparticles into synthetic fibers used traditionally in the textile industry allowing to give a solution to traditional problems for textiles such as the microorganism growth onto fibers, flammability, robustness against ultraviolet radiation, and many others. In addition, the incorporation of such nanoparticles into special ultrathin fibers is also analyzed. In this field, electrospinning is a very promising technique that allows the fabrication of ultrathin fiber mats with an extraordinary control of their structure and properties, being an ideal alternative for applications such as wound healing or even functional membranes.

  15. Direct patterning of organic conductors on knitted textiles for long-term electrocardiography

    PubMed Central

    Takamatsu, Seiichi; Lonjaret, Thomas; Crisp, Dakota; Badier, Jean-Michel; Malliaras, George G.; Ismailova, Esma

    2015-01-01

    Wearable sensors are receiving a great deal of attention as they offer the potential to become a key technological tool for healthcare. In order for this potential to come to fruition, new electroactive materials endowing high performance need to be integrated with textiles. Here we present a simple and reliable technique that allows the patterning of conducting polymers on textiles. Electrodes fabricated using this technique showed a low impedance contact with human skin, were able to record high quality electrocardiograms at rest, and determine heart rate even when the wearer was in motion. This work paves the way towards imperceptible electrophysiology sensors for human health monitoring. PMID:26446346

  16. Effect of open hole on tensile failure properties of 2D triaxial braided textile composites and tape equivalents

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Anglin, Colin; Gaskin, David; Patrick, Mike

    1995-01-01

    The unnotched and notched (open hole) tensile strength and failure mechanisms of two-dimensional (2D) triaxial braided composites were examined. The effect of notch size and notch position were investigated. Damage initiation and propagation in notched and unnotched coupons were also examined. Theory developed to predict the normal stress distribution near an open hole and failure for tape laminated composites was evaluated for its applicability to triaxial braided textile composite materials. Four fiber architectures were considered with different combinations of braid angle, longitudinal and braider yam size, and percentage of longitudinal yarns. Tape laminates equivalent to textile composites were also constructed for comparison. Unnotched tape equivalents were stronger than braided textiles but exhibited greater notch sensitivity. Notched textiles and tape equivalents have roughly the same strength at large notch sizes. Two common damage mechanisms were found: braider yams cracking and near notch longitudinal yarn splitting. Cracking was found to initiate in braider yarns in unnotched and notched coupons, and propagate in the direction of the braider yarns until failure. Longitudinal yarn splitting occurred in three of four architectures that were longitudinally fiber dominated. Damage initiation stress decreased with increasing braid angle. No significant differences in prediction of near notch stress between measured and predicted stress were weak for textiles with large braid angle. Notch strength could not be predicted using existing anisotropic theory for braided textiles due to their insensitivity to notch.

  17. Comparison of methods for determining the effectiveness of antibacterial functionalized textiles.

    PubMed

    Haase, Hajo; Jordan, Lisa; Keitel, Laura; Keil, Claudia; Mahltig, Boris

    2017-01-01

    Antimicrobial functionalization of textiles is important for various applications, such as protection of textile materials from decomposition, generation of more effective wound dressings, and the prevention of infections or malodors resulting from bacterial growth. In order to test the efficacy of new products, their antibacterial activity needs to be evaluated. At present, several different procedures are being used for this purpose, hindering comparisons among different studies. The present paper compares five of these assays using a sample panel of different textiles functionalized with copper (Cu) and silver (Ag) as antibacterial agents, and discusses the suitability of these methods for different analytical requirements. Bacterial viability was determined by measuring the optical density at 600 nm, a colorimetric assay based on MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide) conversion, an agar diffusion assay, and colony formation, either after culturing in media containing textile samples, or after recovery from textiles soaked with bacterial suspension. All experiments were performed with a Gram-negative (Escherichia coli) and a Gram-positive (Staphylococcus warneri) model organism. In general, the results yielded by the different methods were of good comparability. To identify the most suitable test system for the particular type of antibacterial coating, several factors need to be taken into account, such as choosing appropriate endpoints for analyzing passive or active antibacterial effects, selection of relevant microorganisms, correcting for potential interference by leaching of colored textile coatings, required hands on time, and the necessary sensitivity.

  18. Comparison of methods for determining the effectiveness of antibacterial functionalized textiles

    PubMed Central

    Jordan, Lisa; Keitel, Laura; Keil, Claudia; Mahltig, Boris

    2017-01-01

    Antimicrobial functionalization of textiles is important for various applications, such as protection of textile materials from decomposition, generation of more effective wound dressings, and the prevention of infections or malodors resulting from bacterial growth. In order to test the efficacy of new products, their antibacterial activity needs to be evaluated. At present, several different procedures are being used for this purpose, hindering comparisons among different studies. The present paper compares five of these assays using a sample panel of different textiles functionalized with copper (Cu) and silver (Ag) as antibacterial agents, and discusses the suitability of these methods for different analytical requirements. Bacterial viability was determined by measuring the optical density at 600 nm, a colorimetric assay based on MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide) conversion, an agar diffusion assay, and colony formation, either after culturing in media containing textile samples, or after recovery from textiles soaked with bacterial suspension. All experiments were performed with a Gram-negative (Escherichia coli) and a Gram-positive (Staphylococcus warneri) model organism. In general, the results yielded by the different methods were of good comparability. To identify the most suitable test system for the particular type of antibacterial coating, several factors need to be taken into account, such as choosing appropriate endpoints for analyzing passive or active antibacterial effects, selection of relevant microorganisms, correcting for potential interference by leaching of colored textile coatings, required hands on time, and the necessary sensitivity. PMID:29161306

  19. Two Dimensional (2D) P-Aramid Dry Multi-Layered Woven Fabrics Deformational Behaviour for Technical Applications

    NASA Astrophysics Data System (ADS)

    Abtew, M. A.; Loghin, C.; Cristian, I.; Boussu, F.; Bruniaux, P.; Chen, Y.; Wang, L.

    2018-06-01

    In today’s scenario for the various technical applications, from composites to body armour, the material mouldability along with its mechanical property become very important. In the present study, two dimensional (2D) woven fabrics made of para-aramid high performance fibres in multi-layer dry structure were used for investigating different forming characteristics. The different layers were arranged with 0°/90° orientation for deep drawing formability test to analyse the effect of number of layers and blank-holder pressure (BHP) during the test. Specific preforming device with low speed forming process and predefined hemispherical shape of punch has been applied. Using fine photographic analysis, some important 2D multi-layer fabrics forming characteristics i.e., material drawing-in, surface shear angle etc. from the imposed deformation have been observed, measured and analysed for better understanding and co MPa rison. The result revealed that the mouldability behaviour of the multi-layered dry textile fabric preforms is directional, and closely dependent on blank-holding pressure and number of layers. This indicates both parameters should be carefully considered while material deformation to avoid the formation of wrinkling and maintain other mechanical properties on final application.

  20. ASTM test methods for composite characterization and evaluation

    NASA Technical Reports Server (NTRS)

    Masters, John E.

    1994-01-01

    A discussion of the American Society for Testing and Materials is given. Under the topic of composite materials characterization and evaluation, general industry practice and test methods for textile composites are presented.

  1. Nanocomposite electrodes for smartphone enabled healthcare garments: e-bra and smart vest

    NASA Astrophysics Data System (ADS)

    Kumar, Prashanth S.; Rai, Pratyush; Oh, Sechang; Kwon, Hyeokjun; Varadan, Vijay K.

    2012-10-01

    The financial burden of hospital readmissions and treatment of chronic cardiac diseases are global concerns. Point of Care (POC) has been presented as an elegant solution for healthcare cost reduction. However, large scale adoption of POC systems requires an intuitive, unobtrusive and easy to use health monitoring system from patient's perspective. Healthcare textiles are sensor systems mounted on textile platform that function as wearable unobtrusive health monitoring systems. Although much work has been done in the development and demonstration of textile mounted monitoring systems, material and production costs are still high. Nanomaterials based devices and technology can be employed in these healthcare textiles for improved electrical characteristics of the sensors, lowered cost due to less material consumption and compatibility to varied manufacturing techniques. Carbon nanotube composite ink based printable conductive electrodes is such a textile adaptable nanomaterial technology. Screen printed Nanocomposite electrodes made of carbon nanotubes and an acrylic polymer can be used in undergarments like vests and brassieres, for cardiac biopotential (Electrocardiography, ECG) sensing. A Bluetooth module and a smartphone can then be used to provide cyber-infrastructure connectivity for the healthcare data from these healthcare garments. They can be used to monitor young or elderly recuperating /convalescent patients either in hospital or at home, or they can be used by young athletes to monitor important physiological parameters to better design their training or fitness program. In this study, we evaluate screen printed CNT-acrylic Nanocomposite electrodes for ECG signal quality and any CNT leaching hazard that might lead to skin toxicity.

  2. Characterization and development of materials for advanced textile composites

    NASA Technical Reports Server (NTRS)

    Hartness, J. Timothy; Greene, Timothy L.; Taske, Leo E.

    1993-01-01

    Work ongoing under the NASA Langley - Advanced Composite Technology (ACT) program is discussed. The primary emphasis of the work centers around the development and characterization of graphite fiber that has been impregnated with an epoxy powder. Four epoxies have been characterized in towpreg form as to their weaveability and braidability. Initial mechanical properties have been generated on each resin system. These include unidirectional as well as 8-harness satin cloth. Initial 2D and 3D weaving and braiding trials will be reported on as well as initial efforts to develop towpreg suitable for advanced tow placement.

  3. Mild extraction methods using aqueous glucose solution for the analysis of natural dyes in textile artefacts dyed with Dyer's madder (Rubia tinctorum L.).

    PubMed

    Ford, Lauren; Henderson, Robert L; Rayner, Christopher M; Blackburn, Richard S

    2017-03-03

    Madder (Rubia tinctorum L.) has been widely used as a red dye throughout history. Acid-sensitive colorants present in madder, such as glycosides (lucidin primeveroside, ruberythric acid, galiosin) and sensitive aglycons (lucidin), are degraded in the textile back extraction process; in previous literature these sensitive molecules are either absent or present in only low concentrations due to the use of acid in typical textile back extraction processes. Anthraquinone aglycons alizarin and purpurin are usually identified in analysis following harsh back extraction methods, such those using solvent mixtures with concentrated hydrochloric acid at high temperatures. Use of softer extraction techniques potentially allows for dye components present in madder to be extracted without degradation, which can potentially provide more information about the original dye profile, which varies significantly between madder varieties, species and dyeing technique. Herein, a softer extraction method involving aqueous glucose solution was developed and compared to other back extraction techniques on wool dyed with root extract from different varieties of Rubia tinctorum. Efficiencies of the extraction methods were analysed by HPLC coupled with diode array detection. Acidic literature methods were evaluated and they generally caused hydrolysis and degradation of the dye components, with alizarin, lucidin, and purpurin being the main compounds extracted. In contrast, extraction in aqueous glucose solution provides a highly effective method for extraction of madder dyed wool and is shown to efficiently extract lucidin primeveroside and ruberythric acid without causing hydrolysis and also extract aglycons that are present due to hydrolysis during processing of the plant material. Glucose solution is a favourable extraction medium due to its ability to form extensive hydrogen bonding with glycosides present in madder, and displace them from the fibre. This new glucose method offers an efficient process that preserves these sensitive molecules and is a step-change in analysis of madder dyed textiles as it can provide further information about historical dye preparation and dyeing processes that current methods cannot. The method also efficiently extracts glycosides in artificially aged samples, making it applicable for museum textile artefacts. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Electrocoagulation for the treatment of textile wastewaters with Al or Fe electrodes: compared variations of COD levels, turbidity and absorbance.

    PubMed

    Zongo, Inoussa; Maiga, Amadou Hama; Wéthé, Joseph; Valentin, Gérard; Leclerc, Jean-Pierre; Paternotte, Gérard; Lapicque, Francois

    2009-09-30

    Electrocoagulation technique has been used for the treatment of two wastewaters issued by textile industry. Treatment was carried out in a discontinuous system provided with aluminium or iron electrodes, and with recirculation of the liquid. The efficiency of the technique was followed depending on the electrode material in terms of water treatment, current efficiency of the dissolution, cell voltage, energy consumption to reach the same COD or turbidity abatement: regardless of the quality of the phase separation in the flocculation section downstream of the electrocoagulation cell, the two metals were found to be of comparable efficiency. Besides COD and absorbance were shown to follow similar, regular variations along the treatment; experimental data could be interpreted by a simple model involving the overall equilibrium between the metal dissolved--in the form of hydroxides--and the polluting substance. Abatement of the waste turbidity was observed to obey another law, with a sharp reduction of turbidity after a preliminary phase, where accumulation of metal hydroxide has no effect on this variable.

  5. Characterization of orange oil microcapsules for application in textiles

    NASA Astrophysics Data System (ADS)

    Rossi, W.; Bonet-Aracil, M.; Bou-Belda, E.; Gisbert-Payá, J.; Wilson, K.; Roldo, L.

    2017-10-01

    The use of orange oil presents as an ecological alternative to chemicals, attracting the attention of the scientific community to the development of eco-friendly antimicrobials. The microencapsulation technology has been used for the application of orange oil to textiles, being an economically viable, fast and efficient method by combining core and shell materials, desirable perceptual and functional characteristics, responsible for properties related to the nature of the product and provides that the wall materials release the functional substances in a controlled manner, in addition to effectively protecting and isolating the core material from the external environment to prevent its volatilization and deterioration, increasing the stability of the oil, such as non-toxicity. Thus, to better exploit the properties of the orange essential oil applied to textile products this study presents a characterization of microcapsules of Melamine formaldehyde obtained by the interfacial polymerization method with variations of proportions of orange oil (volatile) with fixed oil Medium-Chain Triglycerides (MCT) (non-volatile) to assist in the stability of the orange essential oil. Scanning electron microscope (SEM) was used as visualizing tool to characterize microparticles and surface morphology and thermal characteristics of microcapsules were premeditated by mean Differential scanning calorimetry (DSC).

  6. Skin physiology and textiles - consideration of basic interactions.

    PubMed

    Wollina, U; Abdel-Naser, M B; Verma, S

    2006-01-01

    The skin exerts a number of essential protective functions ensuring homeostasis of the whole body. In the present review barrier function of the skin, thermoregulation, antimicrobial defence and the skin-associated immune system are discussed. Barrier function is provided by the dynamic stratum corneum structure composed of lipids and corneocytes. The stratum corneum is a conditio sine qua non for terrestrial life. Impairment of barrier function can be due to injury and inflammatory skin diseases. Textiles, in particular clothing, interact with skin functions in a dynamic pattern. Mechanical properties like roughness of fabric surface are responsible for non-specific skin reactions like wool intolerance or keratosis follicularis. Thermoregulation, which is mediated by local blood flow and evaporation of sweat, is an important subject for textile-skin interactions. There are age-, gender- and activity-related differences in thermoregulation of skin that should be considered for the development of specifically designed fabrics. The skin is an important immune organ with non-specific and specific activities. Antimicrobial textiles may interfere with non-specific defence mechanisms like antimicrobial peptides of skin or the resident microflora. The use of antibacterial compounds like silver, copper or triclosan is a matter of debate despite their use for a very long period. Macromolecules with antimicrobial activity like chitosan that can be incorporated into textiles or inert material like carbon fibres or activated charcoal seem to be promising agents. Interaction of textiles with the specific immune system of skin is a rare event but may lead to allergic contact dermatitis. Electronic textiles and other smart textiles offer new areas of usage in health care and risk management but bear their own risks for allergies.

  7. Evaluation of textile substrates for dispensing synthetic attractants for malaria mosquitoes.

    PubMed

    Mweresa, Collins K; Mukabana, Wolfgang R; Omusula, Philemon; Otieno, Bruno; Gheysens, Tom; Takken, Willem; van Loon, Joop J A

    2014-08-16

    The full-scale impact of odour-baited technology on the surveillance, sampling and control of vectors of infectious diseases is partly limited by the lack of methods for the efficient and sustainable dispensing of attractants. In this study we investigated whether locally-available and commonly used textiles are efficient substrates for the release of synthetic odorant blends attracting malaria mosquitoes. The relative efficacy of (a) polyester, (b) cotton, (c) cellulose + polyacrylate, and (d) nylon textiles as substrates for dispensing a synthetic odour blend (Ifakara blend 1(IB1)) that attracts malaria mosquitoes was evaluated in western Kenya. The study was conducted through completely randomized Latin square experimental designs under semi-field and field conditions. Traps charged with IB1-impregnated polyester, cotton and cellulose + polyacrylate materials caught significantly more female Anopheles gambiae sensu stricto (semi-field conditions) and An. gambiae sensu lato (field conditions) mosquitoes than IB1-treated nylon (P = 0.001). The IB1-impregnated cellulose + polyacrylate material was the most attractive to female An. funestus mosquitoes compared to all other dispensing textile substrates (P < 0.001). The responses of female An. funestus mosquitoes to IB1-treated cotton and polyester were equal (P = 0.45). Significantly more female Culex mosquitoes were attracted to IB1-treated cotton than to the other treatments (P < 0.001). Whereas IB1-impregnated cotton and cellulose + polyacrylate material attracted equal numbers of female Mansonia mosquitoes (P = 0.44), the catches due to these two substrates were significantly higher than those associated with the other substrates (P < 0.001). The number and species of mosquitoes attracted to a synthetic odour blend is influenced by the type of odour-dispensing material used. Thus, surveillance and intervention programmes for malaria and other mosquito vectors using attractive odour baits should select an odour-release material that optimizes the odour blend.

  8. Career Oriented Mathematics, Student's Manual. [Includes Scale; Apprenticeship: Learning to be a Cement Mason; Textiles; Being Self-Employed: Harvesting and Sale of Pulpwood; and Lumber Yard Employee.

    ERIC Educational Resources Information Center

    Mahaffey, Michael L.; McKillip, William D.

    This volume includes student manuals for five units in the Career Oriented Mathematics Program, which was developed to improve mathematical abilities and attitudes of secondary students by presenting the material in a job-relevant context. The units are titled: (1) Scale, (2) Apprenticeship: Learning to be a Cement Mason, (3) Textiles, (4) Being…

  9. Evaluation of textiles proposed for spacecraft crew apparel

    NASA Technical Reports Server (NTRS)

    Duncan, W. C.

    1976-01-01

    Textiles proposed for spacecraft wearing apparel were tested for possible primary irritancy and allergenicity using guinea pigs and human subjects. The materials submitted for testing were: (1) blue, loosely knit fabric of a copolymer of chlorotrifluoroethylene and ethylene (CTFE), (2) a white fabric, 100% cotton double knit, treated with fire retardant Tetrakis (hydroxymethyl) phosphonium hydroxide/ammonia, and (3) a gold colored polyimide fabric. There were no adverse reactions to any of the fabrics.

  10. E-learning for textile enterprises innovation improvement

    NASA Astrophysics Data System (ADS)

    Blaga, M.; Harpa, R.; Radulescu, I. R.; Stepjanovic, Z.

    2017-10-01

    The Erasmus Plus project- TEXMatrix: “Matrix of knowledge for innovation and competitiveness in textile enterprises”, financed through the Erasmus+ Programme, Strategic partnerships- KA2 for Vocational Education and Training, aims at spreading the creative and innovative organizational culture inside textile enterprises by transferring and implementing methodologies, tools and concepts for improved training. Five European partners form the project consortium: INCDTP - Bucharest, Romania (coordinator), TecMinho - Portugal, Centrocot - Italy, University Maribor, Slovenia, and “Gheorghe Asachi” Technical University of Iasi, Romania. These will help the textile enterprises involved in the project, to learn how to apply creative thinking in their organizations and how to develop the capacity for innovation and change. The project aims to bridge the gap between textile enterprises need for qualified personnel and the young workforce. It develops an innovative knowledge matrix for the tangible and intangible assets of an enterprise and a benchmarking study, based on which a dedicated software tool will be created. This software tool will aid the decision-making enterprise staff (managers, HR specialists, professionals) as well as the trainees (young employees, students, and scholars) to cope with the new challenges of innovation and competitiveness for the textile field. The purpose of this paper is to present the main objectives and achievements of the project, according to its declared goals, with the focus on the presentation of the knowledge matrix of innovation, which is a powerful instrument for the quantification of the intangible assets of textile enterprises.

  11. An Evaluation of 3D Woven Orthogonal Composites' Potential in the Automotive Supply Chain

    NASA Astrophysics Data System (ADS)

    Taylor, Dalia

    The automotive supply chain and its management can be a very complex process and comprises a long dynamic and complex network that consists of four primary segments: original equipment manufacturers (OEMs), first tier suppliers, sub tiers suppliers, and infrastructure suppliers. During the analysis of the current automotive industry it was identified that textile industry importance is considerable increasing as a part of the global automotive supply chain, because textile products are used for interior, exterior and even suspension parts and components. Automotive industry has an increasing demand for higher quality exterior panels with better functional properties and reduced weight. One of the main potentials for this demand is based on the three-dimensional woven composites technology innovations which can replace an existing technology. The new role of the textile industry could make important changes in the automotive supply chain industry, such as: changes in the size of the supply chain, the time to the market and the position of textile industry in the automotive supply chain structure. 3D composite materials from high performance fibers, such as glass and carbon, have been used for automotive applications in a limited way due to the low production rate and the lack of research and development. This research will contribute to the understanding of textile composites in transportation and the textile parameters that affect the performance characteristics of these materials. The research examines the performance characteristics of lighter and stronger 3D woven fabric composites made from fiberglass with the aim to improve fuel efficiency by reducing the total vehicle weight while maintaining safety standards. The performance characteristics of the 3D woven fabric composite can be designed by changing different construction parameters, such as picks density, pick roving linear density, arrangements of warp and z-yarns, and the number of warp and picks layers. The purpose of this research was to evaluate and predict composite panels' performance attributes based on these structural parameters. The tested properties include: tensile and flexural properties, impact performance, and fiber volume fraction. The testing results were compared with required performance characteristics for metal auto body parts. The properties of composite materials designed and developed in this research are comparable to the properties of materials currently used for auto body parts, e.g. BH 240 steels and 6000 series aluminum. It is evident that there is an opportunity to substitute some metal parts with lighter composite materials and to decrease automobile weight. Safety during an automotive crash can be influenced by the impact strength of the newly designed and produced material, so impact properties evaluation is the critical purpose of this study. Reducing the weight of the vehicle is not only popular because of its positive impact on fuel consumption, but also may provide additional benefits, such as CO2 emissions reductions, significantly reduced noise and vibration, increased performance, corrosion resistance, and handling characteristics of the vehicle.

  12. Quantification of micro-CT images of textile reinforcements

    NASA Astrophysics Data System (ADS)

    Straumit, Ilya; Lomov, Stepan V.; Wevers, Martine

    2017-10-01

    VoxTex software (KU Leuven) employs 3D image processing, which use the local directionality information, retrieved using analysis of local structure tensor. The processing results in a voxel 3D array, with each voxel carrying information on (1) material type (matrix; yarn/ply, with identification of the yarn/ply in the reinforcement architecture; void) and (2) fibre direction for fibrous yarns/plies. The knowledge of the material phase volume and known characterisation of the textile structure allows assigning to the voxels (3) fibre volume fraction. This basic voxel model can be further used for different type of the material analysis: Internal geometry and characterisation of defects; permeability; micromechanics; mesoFE voxel models. Apart from the voxel based analysis, approaches to reconstruction of the yarn paths are presented.

  13. Construction of three-dimensional graphene interfaces into carbon fiber textiles for increasing deposition of nickel nanoparticles: flexible hierarchical magnetic textile composites for strong electromagnetic shielding

    NASA Astrophysics Data System (ADS)

    Bian, Xing-Ming; Liu, Lin; Li, Hai-Bing; Wang, Chan-Yuan; Xie, Qing; Zhao, Quan-Liang; Bi, Song; Hou, Zhi-Ling

    2017-01-01

    Since manipulating electromagnetic waves with electromagnetic active materials for environmental and electric engineering is a significant task, here a novel prototype is reported by introducing reduced graphene oxide (RGO) interfaces in carbon fiber (CF) networks for a hierarchical carbon fiber/reduced graphene oxide/nickel (CF-RGO-Ni) composite textile. Upon charaterizations of the microscopic morphologies, electrical and magnetic properties, the presence of three-dimensional RGO interfaces and bifunctional nickel nanoparticles substantially influences the related physical properties in the resulting hierarchical composite textiles. Eletromagnetic interference (EMI) shielding performance suggests that the hierarchical composite textiles hold a strong shielding effectiveness greater than 61 dB, showing greater advantages than conventional polymeric and foamy shielding composites. As a polymer-free lightweight structure, flexible CF-RGO-Ni composites of all electromagnetic active components offer unique understanding of the multi-scale and multiple mechanisms in electromagnetic energy consumption. Such a novel prototype of shielding structures along with convenient technology highlight a strategy to achieve high-performance EMI shielding, coupled with a universal approach for preparing advanced lightweight composites with graphene interfaces.

  14. The impact of different types of textile liners used in protective footwear on the subjective sensations of firefighters.

    PubMed

    Irzmańska, Emilia

    2015-03-01

    The paper presents ergonomic evaluation of footwear used with three types of textile liners differing in terms of design and material composition. Two novel textile composite liners with enhanced hygienic properties were compared with a standard liner used in firefighter boots. The study involved 45 healthy firefighters from fire and rescue units who wore protective footwear with one of the three types of liners. The study was conducted in a laboratory under a normal atmosphere. The ergonomic properties of the protective footwear and liners were evaluated according to the standard EN ISO 20344:2012 as well as using an additional questionnaire concerning the thermal and moisture sensations experienced while wearing the footwear. The study was conducted on a much larger group of subjects (45) than that required by the ISO standard (3) to increase the reliability of subjective evaluations. Some statistically significant differences were found between the different types of textile liners used in firefighter boots. It was confirmed that the ergonomic properties of protective footwear worn in the workplace may be improved by the use of appropriate textile components. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. Systematic development of technical textiles

    NASA Astrophysics Data System (ADS)

    Beer, M.; Schrank, V.; Gloy, Y.-S.; Gries, T.

    2016-07-01

    Technical textiles are used in various fields of applications, ranging from small scale (e.g. medical applications) to large scale products (e.g. aerospace applications). The development of new products is often complex and time consuming, due to multiple interacting parameters. These interacting parameters are production process related and also a result of the textile structure and used material. A huge number of iteration steps are necessary to adjust the process parameter to finalize the new fabric structure. A design method is developed to support the systematic development of technical textiles and to reduce iteration steps. The design method is subdivided into six steps, starting from the identification of the requirements. The fabric characteristics vary depending on the field of application. If possible, benchmarks are tested. A suitable fabric production technology needs to be selected. The aim of the method is to support a development team within the technology selection without restricting the textile developer. After a suitable technology is selected, the transformation and correlation between input and output parameters follows. This generates the information for the production of the structure. Afterwards, the first prototype can be produced and tested. The resulting characteristics are compared with the initial product requirements.

  16. Wearable Electronics and Smart Textiles: A Critical Review

    PubMed Central

    Stoppa, Matteo; Chiolerio, Alessandro

    2014-01-01

    Electronic Textiles (e-textiles) are fabrics that feature electronics and interconnections woven into them, presenting physical flexibility and typical size that cannot be achieved with other existing electronic manufacturing techniques. Components and interconnections are intrinsic to the fabric and thus are less visible and not susceptible of becoming tangled or snagged by surrounding objects. E-textiles can also more easily adapt to fast changes in the computational and sensing requirements of any specific application, this one representing a useful feature for power management and context awareness. The vision behind wearable computing foresees future electronic systems to be an integral part of our everyday outfits. Such electronic devices have to meet special requirements concerning wearability. Wearable systems will be characterized by their ability to automatically recognize the activity and the behavioral status of their own user as well as of the situation around her/him, and to use this information to adjust the systems' configuration and functionality. This review focuses on recent advances in the field of Smart Textiles and pays particular attention to the materials and their manufacturing process. Each technique shows advantages and disadvantages and our aim is to highlight a possible trade-off between flexibility, ergonomics, low power consumption, integration and eventually autonomy. PMID:25004153

  17. Wearable electronics and smart textiles: a critical review.

    PubMed

    Stoppa, Matteo; Chiolerio, Alessandro

    2014-07-07

    Electronic Textiles (e-textiles) are fabrics that feature electronics and interconnections woven into them, presenting physical flexibility and typical size that cannot be achieved with other existing electronic manufacturing techniques. Components and interconnections are intrinsic to the fabric and thus are less visible and not susceptible of becoming tangled or snagged by surrounding objects. E-textiles can also more easily adapt to fast changes in the computational and sensing requirements of any specific application, this one representing a useful feature for power management and context awareness. The vision behind wearable computing foresees future electronic systems to be an integral part of our everyday outfits. Such electronic devices have to meet special requirements concerning wearability. Wearable systems will be characterized by their ability to automatically recognize the activity and the behavioral status of their own user as well as of the situation around her/him, and to use this information to adjust the systems' configuration and functionality. This review focuses on recent advances in the field of Smart Textiles and pays particular attention to the materials and their manufacturing process. Each technique shows advantages and disadvantages and our aim is to highlight a possible trade-off between flexibility, ergonomics, low power consumption, integration and eventually autonomy.

  18. Construction of three-dimensional graphene interfaces into carbon fiber textiles for increasing deposition of nickel nanoparticles: flexible hierarchical magnetic textile composites for strong electromagnetic shielding.

    PubMed

    Bian, Xing-Ming; Liu, Lin; Li, Hai-Bing; Wang, Chan-Yuan; Xie, Qing; Zhao, Quan-Liang; Bi, Song; Hou, Zhi-Ling

    2017-01-27

    Since manipulating electromagnetic waves with electromagnetic active materials for environmental and electric engineering is a significant task, here a novel prototype is reported by introducing reduced graphene oxide (RGO) interfaces in carbon fiber (CF) networks for a hierarchical carbon fiber/reduced graphene oxide/nickel (CF-RGO-Ni) composite textile. Upon charaterizations of the microscopic morphologies, electrical and magnetic properties, the presence of three-dimensional RGO interfaces and bifunctional nickel nanoparticles substantially influences the related physical properties in the resulting hierarchical composite textiles. Eletromagnetic interference (EMI) shielding performance suggests that the hierarchical composite textiles hold a strong shielding effectiveness greater than 61 dB, showing greater advantages than conventional polymeric and foamy shielding composites. As a polymer-free lightweight structure, flexible CF-RGO-Ni composites of all electromagnetic active components offer unique understanding of the multi-scale and multiple mechanisms in electromagnetic energy consumption. Such a novel prototype of shielding structures along with convenient technology highlight a strategy to achieve high-performance EMI shielding, coupled with a universal approach for preparing advanced lightweight composites with graphene interfaces.

  19. Protection from visible light by commonly used textiles is not predicted by ultraviolet protection.

    PubMed

    Van den Keybus, Caroline; Laperre, Jan; Roelandts, Rik

    2006-01-01

    Interest is increasing in the prevention of acute and chronic actinic damage provided by clothing. This interest has focused mainly on protection against ultraviolet irradiation, but it has now also turned to protection against visible light. This change is mainly due to the action spectrum in the visible light range of some photodermatoses and the increasing interest in photodynamic therapy. The ultraviolet protection provided by commercially available textiles can be graded by determining an ultraviolet protection factor. Several methods have already been used to determine the ultraviolet protection factor. The fact that protection from visible light by textiles cannot be predicted by their ultraviolet protection makes the situation more complicated. This study attempts to determine whether or not the ultraviolet protection factor value of a particular textile is a good parameter for gauging its protection in the visible light range and concludes that a protection factor of textile materials against visible light needs to be developed. This development should go beyond the protection factor definition used in this article, which has some limitations, and should take into account the exact action spectrum for which the protection is needed.

  20. Characterization and optimization of an inkjet-printed smart textile UV-sensor cured with UV-LED light

    NASA Astrophysics Data System (ADS)

    Seipel, S.; Yu, J.; Periyasamy, A. P.; Viková, M.; Vik, M.; Nierstrasz, V. A.

    2017-10-01

    For the development of niche products like smart textiles and other functional high-end products, resource-saving production processes are needed. Niche products only require small batches, which makes their production with traditional textile production techniques time-consuming and costly. To achieve a profitable production, as well as to further foster innovation, flexible and integrated production techniques are a requirement. Both digital inkjet printing and UV-light curing contribute to a flexible, resource-efficient, energy-saving and therewith economic production of smart textiles. In this article, a smart textile UV-sensor is printed using a piezoelectric drop-on-demand printhead and cured with a UV-LED lamp. The UVcurable ink system is based on free radical polymerization and the integrated UVsensing material is a photochromic dye, Reversacol Ruby Red. The combination of two photoactive compounds, for which UV-light is both the curer and the activator, challenges two processes: polymer crosslinking of the resin and color performance of the photochromic dye. Differential scanning calorimetry (DSC) is used to characterize the curing efficiency of the prints. Color measurements are made to determine the influence of degree of polymer crosslinking on the developed color intensities, as well as coloration and decoloration rates of the photochromic prints. Optimized functionality of the textile UV-sensor is found using different belt speeds and lamp intensities during the curing process.

  1. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites

    NASA Astrophysics Data System (ADS)

    Dey, Vikram

    The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and correlate the behavior of these structural composites under uniaxial tension and flexural loading responses. Development and use of analytical models enables optimal design for application of these materials in structural applications. Another area of immediate focus is the development of new construction products from SHCC laminates such as angles, channels, hat sections, closed sections with optimized cross sections. Sandwich composites with stress skin-cellular core concept were also developed to utilize strength and ductility of fabric reinforced skin in addition to thickness, ductility, and thermal benefits of cellular core materials. The proposed structurally efficient and durable sections promise to compete with wood and light gage steel based sections for lightweight construction and panel application.

  2. Effects of Contamination and Cleaning on Parachute Structural Textile Elements

    NASA Technical Reports Server (NTRS)

    Mollmann, Catherine

    2017-01-01

    Throughout their lifecycle, parachute textiles come into contact with various other substances. This contact may occur during manufacturing and repair, storage and transportation, packing, or actual use. While this interaction does not always result in negative repercussions, it may cause a loss in material strength. This paper examines the strength degradation due to several contaminants as well as the effects of cleaning agents on common parachute materials. Materials tested were: Kevlar cord and webbing, Nylon broadcloth and webbing, and Vectran cord; all of these constitute the major structural elements for CPAS (Capsule Parachute Assembly System), the parachute system for the NASA Orion Crew Module. Contaminants tested were: sewing machine oil, dried stamping ink, dirt, basting glue, Sergene, and rust. Recommendations for cleaning (or not cleaning) these materials with respect to each of the contaminants are given in this paper, as well as recommendations for future tests.

  3. Vapor-Liquid Sol-Gel Approach to Fabricating Highly Durable and Robust Superhydrophobic Polydimethylsiloxane@Silica Surface on Polyester Textile for Oil-Water Separation.

    PubMed

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Wang, Jing; Liao, Xiaofeng; Zeng, Xingrong

    2017-08-23

    Large-scale fabrication of superhydrophobic surfaces with excellent durability by simple techniques has been of considerable interest for its urgent practical application in oil-water separation in recent years. Herein, we proposed a facile vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surfaces on the cross-structure polyester textiles. Scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated that the silica generated from the hydrolysis-condensation of tetraethyl orthosilicate (TEOS) gradually aggregated at microscale driven by the extreme nonpolar dihydroxyl-terminated polydimethylsiloxane (PDMS(OH)). This led to construction of hierarchical roughness and micronano structures of the superhydrophobic textile surface. The as-fabricated superhydrophobic textile possessed outstanding durability in deionized water, various solvents, strong acid/base solutions, and boiling/ice water. Remarkably, the polyester textile still retained great water repellency and even after ultrasonic treatment for 18 h, 96 laundering cycles, and 600 abrasion cycles, exhibiting excellent mechanical robustness. Importantly, the superhydrophobic polyester textile was further applied for oil-water separation as absorption materials and/or filter pipes, presenting high separation efficiency and great reusability. Our method to construct superhydrophobic textiles is simple but highly efficient; no special equipment, chemicals, or atmosphere is required. Additionally, no fluorinated slianes and organic solvents are involved, which is very beneficial for environment safety and protection. Our findings conceivably stand out as a new tool to fabricate organic-inorganic superhydrophobic surfaces with strong durability and robustness for practical applications in oil spill accidents and industrial sewage emission.

  4. A Thermally Insulating Textile Inspired by Polar Bear Hair.

    PubMed

    Cui, Ying; Gong, Huaxin; Wang, Yujie; Li, Dewen; Bai, Hao

    2018-04-01

    Animals living in the extremely cold environment, such as polar bears, have shown amazing capability to keep warm, benefiting from their hollow hairs. Mimicking such a strategy in synthetic fibers would stimulate smart textiles for efficient personal thermal management, which plays an important role in preventing heat loss and improving efficiency in house warming energy consumption. Here, a "freeze-spinning" technique is used to realize continuous and large-scale fabrication of fibers with aligned porous structure, mimicking polar bear hairs, which is difficult to achieve by other methods. A textile woven with such biomimetic fibers shows an excellent thermal insulation property as well as good breathability and wearability. In addition to passively insulating heat loss, the textile can also function as a wearable heater, when doped with electroheating materials such as carbon nanotubes, to induce fast thermal response and uniform electroheating while maintaining its soft and porous nature for comfortable wearing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Advanced stitching technology

    NASA Technical Reports Server (NTRS)

    Scardino, Frank L.

    1992-01-01

    In the design of textile composites, the selection of materials and constructional techniques must be matched with product performance, productivity, and cost requirements. Constructional techniques vary. A classification of various textile composite systems is given. In general, the chopped fiber system is not suitable for structural composite applications because of fiber discontinuity, uncontrolled fiber orientation and a lack of fiber integration or entanglement. Linear filament yarn systems are acceptable for structural components which are exposed to simple tension in their applications. To qualify for more general use as structural components, filament yarn systems must be multi-directionally positioned. With the most sophisticated filament winding and laying techniques, however, the Type 2 systems have limited potential for general load-bearing applications because of a lack of filament integration or entanglement, which means vulnerability to splitting and delamination among filament layers. The laminar systems (Type 3) represented by a variety of simple fabrics (woven, knitted, braided and nonwoven) are especially suitable for load-bearing panels in flat form and for beams in a roled up to wound form. The totally integrated, advanced fabric system (Type 4) are thought to be the most reliable for general load-bearing applications because of fiber continuity and because of controlled multiaxial fiber orientation and entanglement. Consequently, the risk of splitting and delamination is minimized and practically omitted. Type 4 systems can be woven, knitted, braided or stitched through with very special equipment. Multiaxial fabric technologies are discussed.

  6. Composite Material from By-products and Its Properties

    NASA Astrophysics Data System (ADS)

    Šeps, K.; Broukalová, I.; Vodička, J.

    2017-09-01

    The paper shows an example of utilization of specific textile admixture - fluffs of torn textiles from waste cars in production of composite with aggregate consisting entirely of unsorted recycled concrete. The admixture in the mixture of recycled concrete and cement binder fills the pores and voids in composite. The elaborated composite has working title STEREDconcrete. In the article, basic mechanical-physical properties of the composite are presented also the fire resistance of STEREDconcrete, which was determined in tests.

  7. Migration of Ag- and TiO2-(Nano)particles from textiles into artificial sweat under physical stress: experiments and exposure modeling.

    PubMed

    von Goetz, N; Lorenz, C; Windler, L; Nowack, B; Heuberger, M; Hungerbühler, K

    2013-09-03

    Engineered nanoparticles (ENP) are increasingly used to functionalize textiles taking advantage, e.g., of the antimicrobial activity of silver (Ag)-ENP or the UV-absorption of titania (TiO2)-ENP. Mobilization and migration of ENPs from the textile into human sweat can result in dermal exposure to these nanoobjects and their aggregates and agglomerates (NOAA). In this study we assessed exposure to NOAA migrating from commercially available textiles to artificial sweat by an experimental setup that simulates wear-and-tear during physical activity. By combining physical stress with incubation in alkaline and acidic artificial sweat solutions we experimentally realized a worst case scenario for wearing functionalized textiles during sports activities. This experimental approach is not limited to NOAA, but can be used for any other textile additive. Out of four investigated textiles, one T-shirt and one pair of trousers with claimed antimicrobial properties were found to release Ag <450 nm in detectable amounts (23-74 μg/g/L). Textiles containing TiO2 for UV protection did not release significant amounts of TiO2 <450 nm, but the antimicrobial T-shirt released both TiO2 and Ag <450 nm. The silver was present in dissolved and particulate form, whereas TiO2 was mainly found as particulate. On the basis of our experimental results we calculated external dermal exposure to Ag and TiO2 for male and female adults per use. For silver, maximal amounts of 17.1 and 8.2 μg/kg body weight were calculated for total and particulate Ag <450 nm, respectively. For TiO2, the exposure levels amount to maximal 11.6 μg/kg body weight for total (mainly particulate) TiO2. In comparison with other human exposure pathways, dermal exposure to NOAA from textiles can be considered comparably minor for TiO2-NOAA, but not for Ag-NOAA.

  8. 40 CFR 63.4282 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... are used in fabric and other textiles web coating and printing operations. The regulated materials for the web coating and printing subcategory are the coating, printing, thinning and cleaning materials... materials to a substrate on the coating or printing line to prepare it for coating or printing material...

  9. Development of generalized 3-D braiding machines for composite preforms

    NASA Technical Reports Server (NTRS)

    Huey, Cecil O., Jr.; Farley, Gary L.

    1993-01-01

    The operating principles of two prototype braiding machines for the production of generalized braid patterns are described. Both processes afford previously unachievable control of the interlacing of fibers within a textile structure that make them especially amenable to the fabrication of textile preforms for composite materials. They enable independent control of the motion of the individual fibers being woven, thereby enabling the greatest possible freedom in controlling fiber orientation within a structure. This freedom enables the designer to prescribe local fiber orientation to better optimize material performance. The processes have been implemented on a very small scale but at a level that demonstrates their practicality and the soundness of the principles governing their operation.

  10. Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing.

    PubMed

    Runavot, Jean-Luc; Guo, Xiaoyuan; Willats, William G T; Knox, J Paul; Goubet, Florence; Meulewaeter, Frank

    2014-01-01

    Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non-cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being removed during bleaching and scouring. However, some forms of pectin are more resistant than others. Xylan and xyloglucan are affected in later processing steps and to a lesser extent, whereas callose showed a strong resistance to the chemical processing steps. This study shows that non-cellulosic polysaccharides are differently impacted by the treatments used in cotton textile processing with some hemicelluloses and callose being resistant to these harsh treatments.

  11. Laundering in the prevention of skin infections.

    PubMed

    Kurz, Josef

    2003-01-01

    The statistics at the Hohenstein Institutes and the detergent industry show that the number of complaints due to skin irritations or allergies of washed laundry are relatively low. A clear interdependence between the number of complaints and the season of the year is existing. An interesting fact is that work wear made of cotton shows a relatively higher number of complaints than blends of polyester with cotton. The highest number of complaints results from operating theatre textiles, which is probably due to the exceptional strain of the skin of the operating-theatre staff by surgical disinfecting measures. During washing in household washing machines and also in the industrial sector it is mainly the mechanical action of the washing machines and the chemistry of the detergents which influence the textiles. The effects of the washing process on the textiles if assessed regarding the dermatological point of view, can go in two different directions: Changes of the textile itself and the formation of residues on the washed laundry, whereby the residues can be unintended, i.e. inevitable or desired, so to speak as finishing, for example optical brighteners, softeners, etc. The changes of the textile substance itself can result in a raising. This can either mean that the textile becomes more harsh in feel or fluffier. Textiles which become harsher only have little influence on the skin. Whereas the change to a fluffier textile has positive effects on the skin as there are so-called 'distance holders' formed on the textile surface, which prevents an early sticking of the textiles to a perspirating skin. This increases the wear comfort. Inevitable residues on the washed laundry can be caused by wear (this is not important), the washing water and the detergent. Within the detergents only the surfactants and alkalines are of interest. Desired residues are for example optical brighteners to increase the degree of whiteness, softeners, finishing baths (starch), scents and water-repellent finishes. Regarding special cases like for example flame-retardant finishes, antistatic additives and antimicrobial effects, there is only little experience available so far.

  12. Textile Visual Materials: Appropriate Technology in Action.

    ERIC Educational Resources Information Center

    Donoghue, Beverly Emerson

    An innovative educational medium--screenprinted visual aids on cloth--is one alternative to conventional media in Africa, where visual materials are important communication tools but conventional media and materials are often scarce. A production process for cloth visual aids was developed and evaluated in Ghana and Sudan through the…

  13. 16 CFR 1610.5 - Test apparatus and materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Test apparatus and materials. 1610.5 Section... STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES The Standard § 1610.5 Test apparatus and materials. (a) Flammability apparatus. The flammability test apparatus consists of a draft-proof ventilated chamber enclosing...

  14. 16 CFR 1610.5 - Test apparatus and materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test apparatus and materials. 1610.5 Section... STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES The Standard § 1610.5 Test apparatus and materials. (a) Flammability apparatus. The flammability test apparatus consists of a draft-proof ventilated chamber enclosing...

  15. Efficient technical solution for recycling textile materials by manufacturing nonwoven geotextiles

    NASA Astrophysics Data System (ADS)

    Leon, A. L.; Potop, G. L.; Hristian, L.; Manea, L. R.

    2016-08-01

    This paper aims to support the concept "circular economy" that was developed recently. It presents an efficient method for creating a closed loop in the Romanian textile industry by recycling textile materials, such as polyacrylonitrile knitted old products (collected from population) and small polyester woven patches from pre-consumer waste (garments manufacturing companies). Because of their properties, nonwoven geotextiles have many advantages in railways reinforcement, slopes stabilization, erosion control, drainage, filtration, paving roads, crops coverings, etc. The nonwoven geotextiles were obtained from three fibrous blends based on recovered fibers (PES and PAN) and fibers at first usage (PP) in different ratios. All experimental variants were processed on the same manufacturing line with the same technological parameters. There were tested the main physical and mechanical parameters and it was applied single factor ANOVA method for thickness, bulk density, air permeability and static puncture strength. The conclusion is that adding PP fibers in the blends represents a very important factor for geotextiles characteristics but it possible to decrease the ratio from economical reasons and still maintain a high quality level of nonwovens.

  16. Green engineering: Green composite material, biodiesel from waste coffee grounds, and polyurethane bio-foam

    NASA Astrophysics Data System (ADS)

    Cheng, Hsiang-Fu

    In this thesis we developed several ways of producing green materials and energy resources. First, we developed a method to fabricate natural fibers composites, with the purpose to develop green textile/woven composites that could potentially serve as an alternative to materials derived from non-renewable sources. Flax and hemp fabrics were chosen because of their lightweight and exceptional mechanical properties. To make these textile/woven composites withstand moist environments, a commercially available marine resin was utilized as a matrix. The tensile, three-point bending, and edgewise compression strengths of these green textile/woven composites were measured using ASTM protocols. Secondly, we developed a chemical procedure to obtain oil from waste coffee grounds; we did leaching and liquid extractions to get liquid oil from the solid coffee. This coffee oil was used to produce bio-diesel that could be used as a substitute for petroleum-based diesel. Finally, polyurethane Bio-foam formation utilized glycerol that is the by-product from the biodiesel synthesis. A chemical synthesis procedure from the literature was used as the reference system: a triol and isocynate are mixed to produce polyurethane foam. Moreover, we use a similar triol, a by-product from bio-diesel synthesis, to reproduce polyurethane foam.

  17. Innovative Self-Cleaning and Biocompatible Polyester Textiles Nano-Decorated with Fe–N-Doped Titanium Dioxide

    PubMed Central

    Nica, Ionela Cristina; Stan, Miruna Silvia; Dinischiotu, Anca; Popa, Marcela; Chifiriuc, Mariana Carmen; Lazar, Veronica; Pircalabioru, Gratiela G.; Bezirtzoglou, Eugenia; Iordache, Ovidiu G.; Varzaru, Elena; Dumitrescu, Iuliana; Feder, Marcel; Vasiliu, Florin; Mercioniu, Ionel; Diamandescu, Lucian

    2016-01-01

    The development of innovative technologies to modify natural textiles holds an important impact for medical applications, including the prevention of contamination with microorganisms, particularly in the hospital environment. In our study, Fe and N co-doped TiO2 nanoparticles have been obtained via the hydrothermal route, at moderate temperature, followed by short thermal annealing at 400 °C. These particles were used to impregnate polyester (PES) materials which have been evaluated for their morphology, photocatalytic performance, antimicrobial activity against bacterial reference strains, and in vitro biocompatibility on human skin fibroblasts. Microscopic examination and quantitative assays have been used to evaluate the cellular morphology and viability, cell membrane integrity, and inflammatory response. All treated PES materials specifically inhibited the growth of Gram-negative bacilli strains after 15 min of contact, being particularly active against Pseudomonas aeruginosa. PES fabrics treated with photocatalysts did not affect cell membrane integrity nor induce inflammatory processes, proving good biocompatibility. These results demonstrate that the treatment of PES materials with TiO2-1% Fe–N particles could provide novel biocompatible fabrics with short term protection against microbial colonization, demonstrating their potential for the development of innovative textiles that could be used in biomedical applications for preventing patients’ accidental contamination with microorganisms from the hospital environment. PMID:28335342

  18. The effects of fabric type, fabric width and model type on the cost of unit raw material in terms of apparel

    NASA Astrophysics Data System (ADS)

    Bilgiç, H.; Duru Baykal, P.

    2017-10-01

    The cost of the fabric which is the raw material of apparel constitutes approximately the half of the total product cost. So, it is highly important that the fabric should be used with the greatest productivity. Cost analysis are of great importance in terms of competitiveness of readymade clothing and apparel sector both in national and international markets. The proximity of costs to international average and the average cost of the countries that are competitors of Turkey in clothing market is essential for Turkey to sustain its effect in textile sector. In the contrary case, the sector won’t be able to maintain its competitive capacity sustainably [1].The main cost elements of textile and apparel sector consist of raw material, labor, energy and financing [2].

  19. Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications.

    PubMed

    Stegmaier, Thomas; Linke, Michael; Planck, Heinrich

    2009-05-13

    Solar thermal collectors used at present consist of rigid and heavy materials, which are the reasons for their immobility. Based on the solar function of polar bear fur and skin, new collector systems are in development, which are flexible and mobile. The developed transparent heat insulation material consists of a spacer textile based on translucent polymer fibres coated with transparent silicone rubber. For incident light of the visible spectrum the system is translucent, but impermeable for ultraviolet radiation. Owing to its structure it shows a reduced heat loss by convection. Heat loss by the emission of long-wave radiation can be prevented by a suitable low-emission coating. Suitable treatment of the silicone surface protects it against soiling. In combination with further insulation materials and flow systems, complete flexible solar collector systems are in development.

  20. Textile Pressure Sensor Made of Flexible Plastic Optical Fibers

    PubMed Central

    Rothmaier, Markus; Luong, Minh Phi; Clemens, Frank

    2008-01-01

    In this paper we report the successful development of pressure sensitive textile prototypes based on flexible optical fibers technology. Our approach is based on thermoplastic silicone fibers, which can be integrated into woven textiles. As soon as pressure at a certain area of the textile is applied to these fibers they change their cross section reversibly, due to their elastomeric character, and a simultaneous change in transmitted light intensity can be detected. We have successfully manufactured two different woven samples with fibers of 0.51 and 0.98 mm diameter in warp and weft direction, forming a pressure sensitive matrix. Determining their physical behavior when a force is applied shows that pressure measurements are feasible. Their usable working range is between 0 and 30 N. Small drifts in the range of 0.2 to 4.6%, over 25 load cycles, could be measured. Finally, a sensor array of 2 × 2 optical fibers was tested for sensitivity, spatial resolution and light coupling between fibers at intersections. PMID:27879938

  1. Effects of thermal and moisture cycling on the internal structure of stitched RTM laminates

    NASA Technical Reports Server (NTRS)

    Walker, Jeff; Roundy, Lance; Goering, Jon

    1993-01-01

    Conventional aerospace composites are strong and stiff in the directions parallel to the carbon fibers, but they are prone to delaminations and damage in the through-the-thickness directions. Recent research has shown that substantial improvements in damage tolerance are obtained from textile composites with Z-direction reinforcement provided by stitching, weaving, or braiding. Because of the mismatch in thermal and moisture expansion properties of the various material components, there is a potential for microcracks to develop in the resin matrix. These cracks can form to relieve the mechanical stresses that are generated during curing or in-service temperature cycles.

  2. Stochastic damage evolution in textile laminates

    NASA Technical Reports Server (NTRS)

    Dzenis, Yuris A.; Bogdanovich, Alexander E.; Pastore, Christopher M.

    1993-01-01

    A probabilistic model utilizing random material characteristics to predict damage evolution in textile laminates is presented. Model is based on a division of each ply into two sublaminas consisting of cells. The probability of cell failure is calculated using stochastic function theory and maximal strain failure criterion. Three modes of failure, i.e. fiber breakage, matrix failure in transverse direction, as well as matrix or interface shear cracking, are taken into account. Computed failure probabilities are utilized in reducing cell stiffness based on the mesovolume concept. A numerical algorithm is developed predicting the damage evolution and deformation history of textile laminates. Effect of scatter of fiber orientation on cell properties is discussed. Weave influence on damage accumulation is illustrated with the help of an example of a Kevlar/epoxy laminate.

  3. Novel Flexible Wearable Sensor Materials and Signal Processing for Vital Sign and Human Activity Monitoring.

    PubMed

    Servati, Amir; Zou, Liang; Wang, Z Jane; Ko, Frank; Servati, Peyman

    2017-07-13

    Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology.

  4. Novel Flexible Wearable Sensor Materials and Signal Processing for Vital Sign and Human Activity Monitoring

    PubMed Central

    Servati, Amir; Wang, Z. Jane; Ko, Frank; Servati, Peyman

    2017-01-01

    Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology. PMID:28703744

  5. Structure and mechanics of aegagropilae fiber network.

    PubMed

    Verhille, Gautier; Moulinet, Sébastien; Vandenberghe, Nicolas; Adda-Bedia, Mokhtar; Le Gal, Patrice

    2017-05-02

    Fiber networks encompass a wide range of natural and manmade materials. The threads or filaments from which they are formed span a wide range of length scales: from nanometers, as in biological tissues and bundles of carbon nanotubes, to millimeters, as in paper and insulation materials. The mechanical and thermal behavior of these complex structures depends on both the individual response of the constituent fibers and the density and degree of entanglement of the network. A question of paramount importance is how to control the formation of a given fiber network to optimize a desired function. The study of fiber clustering of natural flocs could be useful for improving fabrication processes, such as in the paper and textile industries. Here, we use the example of aegagropilae that are the remains of a seagrass ( Posidonia oceanica ) found on Mediterranean beaches. First, we characterize different aspects of their structure and mechanical response, and second, we draw conclusions on their formation process. We show that these natural aggregates are formed in open sea by random aggregation and compaction of fibers held together by friction forces. Although formed in a natural environment, thus under relatively unconstrained conditions, the geometrical and mechanical properties of the resulting fiber aggregates are quite robust. This study opens perspectives for manufacturing complex fiber network materials.

  6. Automatic grading of appearance retention of carpets using intensity and range images

    NASA Astrophysics Data System (ADS)

    Orjuela Vargas, Sergio Alejandro; Ortiz-Jaramillo, Benhur; Vansteenkiste, Ewout; Rooms, Filip; De Meulemeester, Simon; de Keyser, Robain; Van Langenhove, Lieva; Philips, Wilfried

    2012-04-01

    Textiles are mainly used for decoration and protection. In both cases, their original appearance and its retention are important factors for customers. Therefore, evaluation of appearance parameters are critical for quality assurance purposes, during and after manufacturing, to determine the lifetime and/or beauty of textile products. In particular, appearance retention of textile products is commonly certified with grades, which are currently assigned by human experts. However, manufacturers would prefer a more objective system. We present an objective system for grading appearance retention, particularly, for textile floor coverings. Changes in appearance are quantified by using linear regression models on texture features extracted from intensity and range images. Range images are obtained by our own laser scanner, reconstructing the carpet surface using two methods that have been previously presented. We extract texture features using a variant of the local binary pattern technique based on detecting those patterns whose frequencies are related to the appearance retention grades. We test models for eight types of carpets. Results show that the proposed approach describes the degree of wear with a precision within the range allowed to human inspectors by international standards. The methodology followed in this experiment has been designed to be general for evaluating global deviation of texture in other types of textiles, as well as other surface materials.

  7. Modified natural fibrils for structural hybrid composites: Towards an investigation of textile reduction

    NASA Astrophysics Data System (ADS)

    Ufodike, Chukwuzubelu Okenwa

    Recently, the interest for renewable resources for fibers particularly of plant origin has been increasing. Reduction of use of traditional textile materials is now considered more critical due to the increasing environmental concern. Natural fibers are renewable, biodegradable, recyclable, and lightweight materials with high specific modulus, in competition with man-made fossil materials and fiberglass. Natural fibers are used for preparation of functionalized textiles to achieve smart and intelligent properties. However, the incorporation of these fibers in composite systems has been challenging due to their hydrophilic nature. Nevertheless, the fact that these biodegradable materials can be manipulated at a nano-scale to complement desired objective and application has made them a favorable option. The idea behind this project is to explore ways to convert green waste to high value materials and to utilize natural building blocks to design textile reinforcement materials. In this work, cellulose nanofibrils (CNF) supplied from the University of Maine were hydrophobized by silylation and characterized using Fourier-Transform Infrared (FTIR) spectroscopy, Raman spectroscopy, and Thermogravimetric analysis (TGA). Results from FTIR spectroscopy showed a formation of Si-O-C bonds, indicating better fiber-matrix adhesion. Raman spectroscopy showed disruption of hydrogen bonding which indicates interference of parallel nanocellulose fiber adhesion to neighboring fibrils. The TGA suggests that the thermal stability of the functionalized CNF is higher than that of the corresponding neat sample, which could be a result of stable Si bond formation. The raw materials (neat and functionalized) were encapsulated in a polystyrene matrix through a solvent and non-solvent precipitation process, and then extruded using single and dual heat processing. The extruded thin filaments were tested according to the ASTM D638 (tensile test of plastics). Results showed an increasing Ultimate Tensile Strength (UTS) and Elastic Modulus, with peak values attributed to the dual-heat processing up to 79% and 69% increase respectively at 5wt% loading. Further increase was seen at 10wt% loading up to 112MPa UTS, and modulus up to 10.7GPa for the dual-heat processing. The UTS increase is assumed to be a result of linear arrangement of CNF in the matrix during the extrusion process. The results revealed the strong reinforcing ability of CNF and their compatibility with thermoplastic matrix if functionalized.

  8. Generation of nano roughness on fibrous materials by atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Kulyk, I.; Scapinello, M.; Stefan, M.

    2012-12-01

    Atmospheric plasma technology finds novel applications in textile industry. It eliminates the usage of water and of hazard liquid chemicals, making production much more eco-friendly and economically convenient. Due to chemical effects of atmospheric plasma, it permits to optimize dyeing and laminating affinity of fabrics, as well as anti-microbial treatments. Other important applications such as increase of mechanical resistance of fiber sleeves and of yarns, anti-pilling properties of fabrics and anti-shrinking property of wool fabrics were studied in this work. These results could be attributed to the generation of nano roughness on fibers surface by atmospheric plasma. Nano roughness generation is extensively studied at different conditions. Alternative explanations for the important practical results on textile materials and discussed.

  9. Comparison of resin film infusion, resin transfer molding, and consolidation of textile preforms for primary aircraft structure

    NASA Technical Reports Server (NTRS)

    Suarez, J.; Dastin, S.

    1992-01-01

    Innovative design concepts and cost effective fabrication processes were developed for damage tolerant primary structures that can perform at a design ultimate strain level of 6000 micro inch/inch. Attention focused on the use of textile high performance fiber reinforcement concepts that provide improved damage tolerance and out-of-plane load capability, low cost resin film infusion (RFI) and resin transfer molding (RTM) processes, and thermoplastic forming concepts. The fabrication of wing 'Y' spars by four different materials and/or processes methods is described: fabricated using IM7 angle interlock 0 to 90 deg woven preforms with + or - 45 deg plies stitched with Toray high strength graphite thread and processed using RFI and 3501-6 epoxy; fabricated using G40-800 knitted/stitched preforms and processed using RFI and 3501-6 epoxy; fabricated using G40-800 knitted/stitched preforms using RTM and Tactix 123/H41 epoxy; and fabricated preforms using AS4(6K)/PEEK 150 g commingled angle interlock 0 to 90 deg woven preforms with + or - 45 deg commingled plies stitched using high strength graphite thread and processed by consolidation. Structural efficiency, processability, and acquisition cost are compared.

  10. Characterization of ecofriendly polyethylene fiber from plastic bag waste

    NASA Astrophysics Data System (ADS)

    Soekoco, Asril S.; Noerati, Komalasari, Maya; Kurniawan, Hananto, Agus

    2017-08-01

    This paper presents the characterization of fiber morphology, fiber count and tenacity of polyethylene fiber which is made from plastic bag waste. Recycling plastic bag waste into textile fiber has not developed yet. Plastic bag waste was recycled into fiber by melt spinning using laboratory scale melt spinning equipment with single orifice nozzle and plunger system. The basic principle of melt spinning is by melting materials and then extruding it through small orifice of a spinning nozzle to form fibers. Diameter and cross section shape of Recycled polyethylene fiber were obtained by using scanning electron microscope (SEM) instrumentation. Linear density of the recycled fiber were analyzed by calculation using denier and dTex formulation and The mechanical strength of the fibers was measured in accordance with the ASTM D 3379-75 standard. The cross section of recycled fiber is circular taking the shape of orifice. Fiber count of 303.75 denier has 1.84 g/denier tenacity and fiber count of 32.52 has 3.44 g/denier tenacity. This conditions is affected by the growth of polymer chain alignment when take-up axial velocity become faster. Recycled polyethylene fiber has a great potential application in non-apparel textile.

  11. Conformable wearable systems comprising organic electronics on foil for well being and healthcare (presentation video)

    NASA Astrophysics Data System (ADS)

    de Kok, Margreet M.

    2014-10-01

    Integration of electronics into materials and objects that have not been functionalized with electronics before, open up extensive possibilities to support mankind. By adding intelligence and/or operating power to materials in close skin contact like clothing, furniture or bandages the health of people can be monitored or even improved. Foil based electronics are interesting components to be integrated as they are thin, large area and cost effective available components Our developed technology of printed electronic structures to which components are reliably bonded, fulfills the promise. We have integrated these components into textiles and built wearable encapsulated products with foil based electronics. Foil components with organic and inorganic LEDs are interconnected and laminated onto electronic textiles by using conductive adhesives to bond the contact pads of the component to conductive yarns in the textile. Modelling and reliability testing under dynamic circumstances provided important insights in order to optimise the technology. The design of the interconnection and choice of conductive adhesive / underfill and lamination contributed to the durability of the system. Transition zones from laminated foil to textile are engineered to withstand dynamic use. As an example of a product, we have realized an electronic wristband that is encapsulated in rubber and has a number of sensor functionalities integrated on stretchable electronic circuits based on Cu and Ag. The encapsulation with silicone or polyurethanes was performed such, that charging and sensor/skin contacts are possible while simultaneously protecting the electronics from mechanical and environmental stresses.

  12. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka

    2016-01-01

    In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively. © The Author(s) 2015.

  13. Box-Behnken design approach towards optimization of activated carbon synthesized by co-pyrolysis of waste polyester textiles and MgCl2

    NASA Astrophysics Data System (ADS)

    Yuan, Zhihang; Xu, Zhihua; Zhang, Daofang; Chen, Weifang; Zhang, Tianqi; Huang, Yuanxing; Gu, Lin; Deng, Haixuan; Tian, Danqi

    2018-01-01

    Pyrolysis activation of waste polyester textiles (WPT) was regarded as a sustainable technique to synthesize multi-pore activated carbons. MgO-template method of using MgCl2 as the template precursor was employed, which possessed the advantages of ideal pore-forming effect and efficient preparation process. The response surface methodology coupled with Box-Behnken design (BBD) was conducted to study the interaction between different variables and optimized preparation conditions of waste polyester textiles based activated carbons. Derived from BBD design results, carbonization temperature was the most significant individual factor. And the maximum specific surface area of 1364 m2/g, which presented a good agreement with the predicted response values(1315 m2/g), was obtained at mixing ratio in MgCl2/WPT, carbonization temperature and time of 5:1, 900 °C and 90 min, respectively. Furthermore, the physicochemical properties of the sample prepared under optimal conditions were carried on utilizing nitrogen adsorption/desorption isotherms, EA, XRD, SEM and FTIR. In addition, the pore-forming mechanism was mainly attributed to the tendency of carbon layer coating on MgO to form pore walls after elimination of MgO and the strong dehydration effect of MgCl2 on WPT.

  14. Skin penetration and antioxidant effect of cosmeto-textiles with gallic acid.

    PubMed

    Alonso, C; Martí, M; Barba, C; Lis, M; Rubio, L; Coderch, L

    2016-03-01

    In this work, the antioxidant gallic acid (GA) has been encapsulated in microspheres prepared with poly-ε-caprolactone (PCL) and incorporated into polyamide (PA) obtaining the cosmeto-textile. The topical application of the cosmeto-textile provides a reservoir effect in the skin delivery of GA. The close contact of the cosmeto-textile, containing microsphere-encapsulated GA (ME-GA), with the skin and their corresponding occlusion, may be the main reasons that explain the crossing of active principle (GA) through the skin barrier, located in the stratum corneum, and its penetration into the different compartments of the skin, epidermis and dermis. An ex vivo assessment was performed to evaluate the antioxidant effect of the ME-GA on the stratum corneum (SC) using the thiobarbituric acid-reactive species (TBARS) test. The test is based on a non-invasive ex vivo methodology that evaluates lipid peroxides formed in the outermost layers of the SC from human volunteers after UV radiation to determine the effectiveness of an antioxidant. In this case, a ME-GA cosmeto-textile or ME-GA formulation were applied to the skin in vivo and lipid peroxidation (LPO) in the horny layer were determined after UV irradiation. This methodology may be used as a quality control tool to determine ex vivo the percentage of LPO inhibition on human SC for a variety of antioxidants that are topically applied, in this case GA. Results show that LPO formation was inhibited in human SC when GA was applied directly or embedded in the cosmeto-textile, demonstrating the effectiveness of both applications. The percentage of LPO inhibition obtained after both topical applications was approximately 10% for the cosmeto-textile and 41% for the direct application of microspheres containing GA. This methodology could be used to determine the effectiveness of topically applied antioxidants encapsulated in cosmeto-textiles on human SC. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Deposition of Zinc Oxide on Different Polymer Textiles and Their Antibacterial Properties.

    PubMed

    Fiedot-Toboła, Marta; Ciesielska, Magdalena; Maliszewska, Irena; Rac-Rumijowska, Olga; Suchorska-Woźniak, Patrycja; Teterycz, Helena; Bryjak, Marek

    2018-04-30

    A surface modification of polyamide 6 (PA), polyethylene terephthalate (PET) and polypropylene (PP) textiles was performed using zinc oxide to obtain antibacterial layer. ZnO microrods were synthesized on ZnO nanoparticles (NPs) as a nucleus centers by chemical bath deposition (CBD) process. Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) indicated that wurzite ZnO microrods were obtained on every sample. Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM) and Liquid Absorption Capacity (LAC) analysis indicate that the amount and structure of antibacterial layer is dependent on roughness and wettability of textile surface. The rougher and more hydrophilic is the material, the more ZnO were deposited. All studied textiles show significant bactericidal activity against Escherichia coli ( E. coli ) and Staphylococcus aureus ( S. aureus ). A possible mechanism and difference in sensitivity between Gram-negative and Gram-positive bacteria to ZnO is discussed. Considering that antibacterial activity of ZnO is caused by Reactive Oxygen Species (ROS) generation, an influence of surface to volume ratio and crystalline parameters is also discussed.

  16. Simultaneous sonochemical-enzymatic coating of medical textiles with antibacterial ZnO nanoparticles.

    PubMed

    Petkova, Petya; Francesko, Antonio; Perelshtein, Ilana; Gedanken, Aharon; Tzanov, Tzanko

    2016-03-01

    The antimicrobial finishing is a must for production of medical textiles, aiming at reducing the bioburden in clinical wards and consequently decreasing the risk of hospital-acquired infections. This work reports for the first time on a simultaneous sonochemical/enzymatic process for durable antibacterial coating of cotton with zinc oxide nanoparticles (ZnO NPs). The novel technology goes beyond the "stepwise" concept we proposed recently for enzymatic pre-activation of the fabrics and subsequent sonochemical nano-coating, and is designed to produce "ready-to-use" antibacterial medical textiles in a single step. A multilayer coating of uniformly dispersed NPs was obtained in the process. The enzymatic treatment provides better adhesion of the ZnO NPs and, as a consequence, enhanced coating stability during exploitation. The NPs-coated cotton fabrics inhibited the growth of the medically relevant Staphylococcus aureus and Escherichia coli respectively by 67% and 100%. The antibacterial efficiency of these textile materials resisted the intensive laundry regimes used in hospitals, though only 33% of the initially deposited NPs remained firmly fixed onto the fabrics after multiple washings. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Identification of detergents for forensic fiber analysis.

    PubMed

    Heider, Emily C; Mujumdar, Nirvani; Campiglia, Andres D

    2016-11-01

    Trace fibers are an important form of trace evidence, and identification of exogenous substances on textile fibers provides valuable information about the origin of the fiber. Laundering textiles can provide a unique fluorescent spectral signature of the whitening agent in the detergent that adsorbs to the fiber. Using fluorescence microscopy, the spectral characteristics of seven detergents adsorbed to single fibers drawn from laundered textiles were investigated, and principal component analysis of clusters was used to characterize the type of detergent on the fiber. On dyed nylon fibers, spectra from eight different detergent pairs could be resolved and washed validation fibers correctly classified. On dyed acrylic fibers, five different detergent pairs could be resolved and identified. Identification of the detergent type may prove useful in matching a trace fiber to its bulk specimen of origin.

  18. Chemically Driven Printed Textile Sensors Based on Graphene and Carbon Nanotubes

    PubMed Central

    Skrzetuska, Ewa; Puchalski, Michał; Krucińska, Izabella

    2014-01-01

    The unique properties of graphene, such as the high elasticity, mechanical strength, thermal conductivity, very high electrical conductivity and transparency, make them it an interesting material for stretchable electronic applications. In the work presented herein, the authors used graphene and carbon nanotubes to introduce chemical sensing properties into textile materials by means of a screen printing method. Carbon nanotubes and graphene pellets were dispersed in water and used as a printing paste in the screen printing process. Three printing paste compositions were prepared—0%, 1% and 3% graphene pellet content with a constant 3% carbon nanotube mass content. Commercially available materials were used in this process. As a substrate, a twill woven cotton fabric was utilized. It has been found that the addition of graphene to printing paste that contains carbon nanotubes significantly enhances the electrical conductivity and sensing properties of the final product. PMID:25211197

  19. Development of a Textile Nanocomposite as Naked Eye Indicator of the Exposition to Strong Acids

    PubMed Central

    Pallás, Isabel; Marcos, Maria D.

    2017-01-01

    Chemical burns, mainly produced by acids, are a topic of concern. A new sensing material for the detection of strong acids able to be incorporated into textiles has been developed. The material is prepared by the covalent attachment of 2,2′,4,4′,4″-pentamethoxy triphenyl methanol to a mesoporous material which further is included in a nitro resin to obtain a colourless composite. The response of this composite to diverse acid solutions was tested showing the appearance of an intense purple colour (with a colour difference higher than 160) that can be monitored by the naked eye or could be easily digitised to feed an instrumental sensor. Reversibility and resistance to washing cycles were studied with positive results. Finally, the response of the sensing composite to acid vapours was assayed, observing a colour change similar to that found in solution. PMID:28926950

  20. Processing, properties and applications of composites using powder-coated epoxy towpreg technology

    NASA Technical Reports Server (NTRS)

    Bayha, T. D.; Osborne, P. P.; Thrasher, T. P.; Hartness, J. T.; Johnston, N. J.; Marchello, J. M.; Hugh, M. K.

    1993-01-01

    Composite manufacturing using the current prepregging technology of impregnating liquid resin into three-dimensionally reinforced textile preforms can be a costly and difficult operation. Alternatively, using polymer in the solid form, grinding it into a powder, and then depositing it onto a carbon fiber tow prior to making a textile preform is a viable method for the production of complex textile shapes. The powder-coated towpreg yarn is stable, needs no refrigeration, contains no solvents and is easy to process into various woven and braided preforms for later consolidation into composite structures. NASA's Advanced Composites Technology (ACT) program has provided an avenue for developing the technology by which advanced resins and their powder-coated preforms may be used in aircraft structures. Two-dimensional braiding and weaving studies using powder-coated towpreg have been conducted to determine the effect of resin content, towpreg size and twist on textile composite properties. Studies have been made to customize the towpreg to reduce friction and bulk factor. Processing parameters have been determined for three epoxy resin systems on eight-harness satin fabric, and on more advanced 3-D preform architectures for the downselected resin system. Processing effects and the resultant mechanical properties of these textile composites will be presented and compared.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, John; McCreight, Dan J.

    This project was undertaken to develop and demonstrate on a pilot scale the use of electro-osmotic transport to increase the efficiency of textiles wet processing operations. In particular, we sought to develop a means of rinsing textiles to remove material entrapped between the individual fibers that constitute a yarn. Material trapped within the yarn is slow to exchange with rinse water flowing primarily in the open weave are abetween the yarns. The application of an external field (strength, 5-50 kV /m) requires only a few volts for most fabric thicknesses. This field is sufficient to promote a rapid exchange ofmore » material to enhance rinsing and reduce the water required for rinsing from about 20 kg/kg-fabric to 3-6 kg/kg-fabric. We successfully developed technical and economic models of application of the process to the rinsing of many materials of industrial importance, including dyes, tints, chemicals, detergents and dye electrolytes. We demonstrated the process on a pilot plant scale using a translator designed in cooperation with Milliken and Company (Spartanburg, SC).« less

  2. Use of polarized spectroscopy as a tool for examining the microstructure of cellulosic textile fibers.

    PubMed

    Garside, Paul; Wyeth, Paul

    2007-05-01

    Textile artifacts form a vital part of our cultural heritage. In order to determine appropriate methods of conservation, storage, and display, it is important to understand the current physical state of an artifact, as effected by the microstructure of the component fibers. The semi-crystalline nature of the constituent polymer aggregates, the degree of crystallinity, and the crystallite orientation have a significant influence on mechanical properties. The value of polarized Fourier transform infrared (FT-IR) spectroscopy in probing these aspects of cellulosic fibers has been assessed. A variety of representative fibers (both natural plant fibers and regenerated materials) were examined by polarized attenuated total reflection spectroscopy (Pol-ATR) and polarized infrared microspectroscopy (Pol-microIR); the former is a surface sampling technique and the latter is a transmission technique. The introduction of a polarizer into the system allows the alignment as well as the nature of bonds to be determined, and thus the presence and extent of crystallinity or long range ordering can be investigated. Using the data from the Pol-ATR experiments, it was found to be possible to derive the principle alignment of the cellulose polymer with respect to the fiber axis, along with an indication of the total cellulose crystallinity of the material, as measured by a crystallinity parameter, Chi. The Pol-microIR spectra, on the other hand, yielded more limited information, particularly when considering plant fibers with more complex microstructures.

  3. Radiative human body cooling by nanoporous polyethylene textile.

    PubMed

    Hsu, Po-Chun; Song, Alex Y; Catrysse, Peter B; Liu, Chong; Peng, Yucan; Xie, Jin; Fan, Shanhui; Cui, Yi

    2016-09-02

    Thermal management through personal heating and cooling is a strategy by which to expand indoor temperature setpoint range for large energy saving. We show that nanoporous polyethylene (nanoPE) is transparent to mid-infrared human body radiation but opaque to visible light because of the pore size distribution (50 to 1000 nanometers). We processed the material to develop a textile that promotes effective radiative cooling while still having sufficient air permeability, water-wicking rate, and mechanical strength for wearability. We developed a device to simulate skin temperature that shows temperatures 2.7° and 2.0°C lower when covered with nanoPE cloth and with processed nanoPE cloth, respectively, than when covered with cotton. Our processed nanoPE is an effective and scalable textile for personal thermal management. Copyright © 2016, American Association for the Advancement of Science.

  4. Distribution and mass balance of hexavalent and trivalent chromium in a subsurface, horizontal flow (SF-h) constructed wetland operating as post-treatment of textile wastewater for water reuse.

    PubMed

    Fibbi, Donatella; Doumett, Saer; Lepri, Luciano; Checchini, Leonardo; Gonnelli, Cristina; Coppini, Ester; Del Bubba, Massimo

    2012-01-15

    In this study, during a two-year period, we investigated the fate of hexavalent and trivalent chromium in a full-scale subsurface horizontal flow constructed wetland planted with Phragmites australis. The reed bed operated as post-treatment of the effluent wastewater from an activated sludge plant serving the textile industrial district and the city of Prato (Italy). Chromium speciation was performed in influent and effluent wastewater and in water-suspended solids, at different depths and distances from the inlet; plants were also analyzed for total chromium along the same longitudinal profile. Removals of hexavalent and trivalent chromium equal to 72% and 26%, respectively were achieved. The mean hexavalent chromium outlet concentration was 1.6 ± 0.9 μg l(-1) and complied with the Italian legal limits for water reuse. Chromium in water-suspended solids was in the trivalent form, thus indicating that its removal from wastewater was obtained by the reduction of hexavalent chromium to the trivalent form, followed by accumulation of the latter inside the reed bed. Chromium in water-suspended solids was significantly affected by the distance from the inlet. Chromium concentrations in the different plant organs followed the same trend of suspended solids along the longitudinal profile and were much lower than those found in the solid material, evidencing a low metal accumulation in P. australis. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Material, process, and product design of thermoplastic composite materials

    NASA Astrophysics Data System (ADS)

    Dai, Heming

    Thermoplastic composites made of polypropylene (PP) and E-glass fibers were investigated experimentally as well as theoretically for two new classes of product designs. The first application was for reinforcement of wood. Commingled PP/glass yarn was consolidated and bonded on wood panel using a tie layer. The processing parameters, including temperature, pressure, heating time, cooling time, bonding strength, and bending strength were tested experimentally and evaluated analytically. The thermoplastic adhesive interface was investigated with environmental scanning electron microscopy. The wood/composite structural design was optimized and evaluated using a Graphic Method. In the second application, we evaluated use of thermoplastic composites for explosion containment in an arrester. PP/glass yarn was fabricated in a sleeve form and wrapped around the arrester. After consolidation, the flexible composite sleeve forms a solid composite shell. The composite shell acts as a protection layer in a surge test to contain the fragments of the arrester. The manufacturing process for forming the composite shell was designed. Woven, knitted, and braided textile composite shells made of commingled PP/glass yarn were tested and evaluated. Mechanical performance of the woven, knitted, and braided composite shells was examined analytically. The theoretical predictions were used to verify the experimental results.

  6. Testing for Divergent Transmission Histories among Cultural Characters: A Study Using Bayesian Phylogenetic Methods and Iranian Tribal Textile Data

    PubMed Central

    Matthews, Luke J.; Tehrani, Jamie J.; Jordan, Fiona M.; Collard, Mark; Nunn, Charles L.

    2011-01-01

    Background Archaeologists and anthropologists have long recognized that different cultural complexes may have distinct descent histories, but they have lacked analytical techniques capable of easily identifying such incongruence. Here, we show how Bayesian phylogenetic analysis can be used to identify incongruent cultural histories. We employ the approach to investigate Iranian tribal textile traditions. Methods We used Bayes factor comparisons in a phylogenetic framework to test two models of cultural evolution: the hierarchically integrated system hypothesis and the multiple coherent units hypothesis. In the hierarchically integrated system hypothesis, a core tradition of characters evolves through descent with modification and characters peripheral to the core are exchanged among contemporaneous populations. In the multiple coherent units hypothesis, a core tradition does not exist. Rather, there are several cultural units consisting of sets of characters that have different histories of descent. Results For the Iranian textiles, the Bayesian phylogenetic analyses supported the multiple coherent units hypothesis over the hierarchically integrated system hypothesis. Our analyses suggest that pile-weave designs represent a distinct cultural unit that has a different phylogenetic history compared to other textile characters. Conclusions The results from the Iranian textiles are consistent with the available ethnographic evidence, which suggests that the commercial rug market has influenced pile-rug designs but not the techniques or designs incorporated in the other textiles produced by the tribes. We anticipate that Bayesian phylogenetic tests for inferring cultural units will be of great value for researchers interested in studying the evolution of cultural traits including language, behavior, and material culture. PMID:21559083

  7. Simulation of textile manufacturing processes for planning, scheduling, and quality control purposes

    NASA Astrophysics Data System (ADS)

    Cropper, A. E.; Wang, Z.

    1995-08-01

    Simulation, as a management information tool, has been applied to engineering manufacture and assembly operations. The application of the principles to textile manufacturing (fiber to fabric) is discussed. The particular problems and solutions in applying the simulation software package to the yarn production processes are discussed with an indication of how the software achieves the production schedule. The system appears to have application in planning, scheduling, and quality assurance. The latter being a result of the traceability possibilities through a process involving mixing and splitting of material.

  8. Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing.

    PubMed

    Economou, Anastasios; Kokkinos, Christos; Prodromidis, Mamas

    2018-06-26

    Flexible biosensors represent an increasingly important and rapidly developing field of research. Flexible materials offer several advantages as supports of biosensing platforms in terms of flexibility, weight, conformability, portability, cost, disposability and scope for integration. On the other hand, electrochemical detection is perfectly suited to flexible biosensing devices. The present paper reviews the field of integrated electrochemical bionsensors fabricated on flexible materials (plastic, paper and textiles) which are used as functional base substrates. The vast majority of electrochemical flexible lab-on-a-chip (LOC) biosensing devices are based on plastic supports in a single or layered configuration. Among these, wearable devices are perhaps the ones that most vividly demonstrate the utility of the concept of flexible biosensors while diagnostic cards represent the state-of-the art in terms of integration and functionality. Another important type of flexible biosensors utilize paper as a functional support material enabling the fabrication of low-cost and disposable paper-based devices operating on the lateral flow, drop-casting or folding (origami) principles. Finally, textile-based biosensors are beginning to emerge enabling real-time measurements in the working environment or in wound care applications. This review is timely due to the significant advances that have taken place over the last few years in the area of LOC biosensors and aims to direct the readers to emerging trends in this field.

  9. 16 CFR 303.1 - Terms defined.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Identification Act (approved September 2, 1958, 85th Congress, 2d Sess.; 15 U.S.C. 70, 72 Stat. 1717). (b) The... thereof. (n) The term elastic material means a fabric composed of yarn consisting of an elastomer or a... material mean any materials, used in the direct sale or direct offering for sale of textile products, that...

  10. 16 CFR 303.1 - Terms defined.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Identification Act (approved September 2, 1958, 85th Congress, 2d Sess.; 15 U.S.C. 70, 72 Stat. 1717). (b) The... thereof. (n) The term elastic material means a fabric composed of yarn consisting of an elastomer or a... material mean any materials, used in the direct sale or direct offering for sale of textile products, that...

  11. 16 CFR 303.1 - Terms defined.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Identification Act (approved September 2, 1958, 85th Congress, 2d Sess.; 15 U.S.C. 70, 72 Stat. 1717). (b) The... thereof. (n) The term elastic material means a fabric composed of yarn consisting of an elastomer or a... material mean any materials, used in the direct sale or direct offering for sale of textile products, that...

  12. Dyes removal from textile wastewater using graphene based nanofiltration

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Rizki, Z.; Zunita, M.; Dharmawijaya, P. T.

    2017-05-01

    Wastewater produced from textile industry is having more strict regulation. The major pollutant of wastewater from textile industry is Dyes. Dyes have several harsh properties i.e toxic, volatile, complexing easily with mineral ions that are dissolved in water (decreasing the amount of important mineral ions in water), and hard to disintegrate, therefore it must be removed from the waste stream. There are several methods and mechanisms to remove dyes such as chemical and physical sorption, evaporation, biological degradation, and photocatalytic system that can be applied to the waste stream. Membrane-based separation technology has been introduced in dyes removal treatment and is well known for its advantages (flexibility, mild operating condition, insensitive to toxic pollutant). Graphene and its derivatives are novel materials which have special properties due to its ultrathin layer and nanometer-size pores. Thus, the materials are very light yet strong. Moreover, it has low cost and easy to fabricate. Recently, the application of graphene and its derivatives in nanofiltration membrane processes is being widely explored. This review investigates the potentials of graphene based membrane in dyes removal processes. The operating conditions, dyes removal effectiveness, and the drawbacks of the process are the main focus in this paper.

  13. Non-woven Textile Materials from Waste Fibers for Cleanup of Waters Polluted with Petroleum and Oil Products

    NASA Astrophysics Data System (ADS)

    Neznakomova, Margarita; Boteva, Silvena; Tzankov, Luben; Elhag, Mohamed

    2018-04-01

    The aim of this work was to investigate the possibility of using non-woven materials (NWM) from waste fibers for oil spill cleanup and their subsequent recovery. Manufacture of textile and readymade products generates a significant amount of solid waste. A major part of it is deposited in landfills or disposed of uncontrollably. This slowly degradable waste causes environmental problems. In the present study are used two types of NWM obtained by methods where waste fibers are utilized. Thus, real textile products are produced (blankets) with which spills are covered and removed by adsorption. These products are produced by two methods: the strengthening of the covering from recovered fibers is made by entanglement when needles of special design pass through layers (needle-punching) or by stitching with thread (technology Maliwatt). Regardless of the random nature of the fiber mixture, the investigated products are good adsorbents of petroleum products. The nature of their structure (a significant void volume and developed surface) leads to a rapid recovery of the spilled petroleum products without sinking of the fiber layer for the sampled times. The used NWM can be burned under special conditions.

  14. DPSC colonization of functionalized 3D textiles.

    PubMed

    Ortiz, Marine; Rosales-Ibáñez, Raúl; Pozos-Guillén, Amaury; De Bien, Charlotte; Toye, Dominique; Flores, Héctor; Grandfils, Christian

    2017-05-01

    Fiber scaffolds are attractive materials for mimicking, within a 3D in vitro system, any living environment in which animal cells can adhere and proliferate. In three dimensions, cells have the ability to communicate and organize into complex architectures similar to those found in their natural environments. The aim of this study was to evaluate, in terms of cell reactivity, a new in vitro cell model: dental pulp stem cells (DPSCs) in a 3D polymeric textile. Scaffolds were knitted from polyglycolic acid (PGA) or polydioxanone (PDO) fibers differing in surface roughness. To promote cell adhesion, these hydrophobic fabrics were also functionalized with either chitosan or the peptide arginine-glycine-aspartic acid (RGD). Cell behavior was examined 1, 10, and 21 days post-seeding with a LIVE/DEAD ® Kit. Confocal laser scanning microscopy (CLSM) highlighted the biocompatibility of these materials (cell survival rate: 94% to 100%). Fiber roughness was found to influence cell adhesion and viability significantly and favorably. A clear benefit of polymeric textile functionalization with chitosan or RGD was demonstrated in terms of cell adhesion and viability. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 785-794, 2017. © 2016 Wiley Periodicals, Inc.

  15. The European standard for sun-protective clothing: EN 13758.

    PubMed

    Gambichler, T; Laperre, J; Hoffmann, K

    2006-02-01

    Clothing is considered one of the most important tools for sun protection. Contrary to popular opinion, however, some summer fabrics provide insufficient ultraviolet (UV) protection. The European Committee for Standardization (CEN), has developed a new standard on requirements for test methods and labelling of sun-protective garments. This document has now been completed and is published. Within CEN, a working group, CEN/TC 248 WG14 'UV protective clothing', was set up with the mission to produce standards on the UV-protective properties of textile materials. This working group started its activities in 1998 and included 30 experts (dermatologists, physicists, textile technologists, fabric manufacturers and retailers of apparel textiles) from 11 European member states. Within this working group, all medical, ethical, technical and economical aspects of standardization of UV-protective clothing were discussed on the basis of the expertise of each member and in consideration of the relevant literature in this field. Decisions were made in consensus. The first part of the standard (EN 13758-1) deals with all details of test methods (e.g. spectrophotometric measurements) for textile materials and part 2 (EN 13758-2) covers classification and marking of apparel textiles. UV-protective cloths for which compliance with this standard is claimed must fulfill all stringent instructions of testing, classification and marking, including a UV protection factor (UPF) larger than 40 (UPF 40+), average UVA transmission lower than 5%, and design requirements as specified in part 2 of the standard. A pictogram, which is marked with the number of the standard EN 13758-2 and the UPF of 40+, shall be attached to the garment if it is in compliance with the standard. The dermatology community should take cognizance of this new standard document. Garment manufacturers and retailers may now follow these official guidelines for testing and labelling of UV-protective summer clothes, and the sun-aware consumer can easily recognize garments that definitely provide sufficient UV protection.

  16. Smart Coat with a Fully-Embedded Textile Antenna for IoT Applications.

    PubMed

    Loss, Caroline; Gonçalves, Ricardo; Lopes, Catarina; Pinho, Pedro; Salvado, Rita

    2016-06-22

    The Internet of Things (IoT) scenario is strongly related with the advance of the development of wireless sensor networks (WSN) and radio frequency identification (RFID) systems. Additionally, in the WSN context, for a continuous feed, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution when the replacement of batteries is not easy to practice, such as in wearable devices. This paper presents the E-Caption: Smart and Sustainable Coat. It has an embedded dual-band textile antenna for electromagnetic energy harvesting, operating at global system for mobile communication (GSM) 900 and digital cellular system (DCS) 1800 bands. This printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. Seven prototypes of these "emblem" antennas, manufactured by lamination and embroidering techniques are also presented. It is shown that the orientation of the conductive fabric does not influence the performance of the antenna. It is also shown that the direction and number of the stitches in the embroidery may influence the performance of the antenna. Moreover, the comparison of results obtained before and after the integration of the antenna into cloth shows the integration does not affect the behavior of the antenna.

  17. Development of novel textile and yarn actuators using plasticized PVC gel

    NASA Astrophysics Data System (ADS)

    Furuse, A.; Hashimoto, M.

    2017-04-01

    Soft actuators based on polymers are expected to be used for power sources to drive wearable robots which required in a wide range of fields such as medical, care and welfare, because they are light weight, flexible and quiet. Plasticized PVC gel which has a large deformation by applying a voltage and high driving stability in the atmosphere is considered as a suitable candidate material for development of soft actuator. Then, we proposed two kinds of novel flexible actuators constructed like yarn and textile by using plasticized PVC gel to develop soft actuator to realize a higher flexibility and low-voltage driving. In this study, we prepared prototypes of these actuators and clarify their characteristic. In addition, we considered the deformation model from its characteristics and geometric calculation. When a voltage was applied to their actuators, textile type actuator was contracted, while the twisted yarn type actuator was expanded. The deformation behavior of the proposed actuators could be found at a low voltage of 200V, the contraction strain of the textile actuator was about 27 %, and the expanding ratio of the yarn actuator was 0.4 %. Maximum contraction strain of textile actuator and expansion ratio of yarn actuator was 53% and 1.4% at 600 V, respectively. The calculation results from the proposed model were in roughly agreement with the experimental values. It indicated that deformation behavior of these actuators could estimate from models.

  18. Smart Coat with a Fully-Embedded Textile Antenna for IoT Applications

    PubMed Central

    Loss, Caroline; Gonçalves, Ricardo; Lopes, Catarina; Pinho, Pedro; Salvado, Rita

    2016-01-01

    The Internet of Things (IoT) scenario is strongly related with the advance of the development of wireless sensor networks (WSN) and radio frequency identification (RFID) systems. Additionally, in the WSN context, for a continuous feed, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution when the replacement of batteries is not easy to practice, such as in wearable devices. This paper presents the E-Caption: Smart and Sustainable Coat. It has an embedded dual-band textile antenna for electromagnetic energy harvesting, operating at global system for mobile communication (GSM) 900 and digital cellular system (DCS) 1800 bands. This printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. Seven prototypes of these “emblem” antennas, manufactured by lamination and embroidering techniques are also presented. It is shown that the orientation of the conductive fabric does not influence the performance of the antenna. It is also shown that the direction and number of the stitches in the embroidery may influence the performance of the antenna. Moreover, the comparison of results obtained before and after the integration of the antenna into cloth shows the integration does not affect the behavior of the antenna. PMID:27338407

  19. Chemical Oxidative Polymerization of Polyaniline: A Practical Approach for Preparation of Smart Conductive Textiles

    ERIC Educational Resources Information Center

    Abu-Thabit, Nedal Y.

    2016-01-01

    Electrically conducting polymers are one of the promising alternative materials for technological applications in many interdisciplinary areas, including chemistry, material sciences, and engineering. This experiment was designed for providing undergraduate students with a quick and practical approach for preparation of a polyaniline-conducting…

  20. Cotton: a sustainable raw material for value-added nonwoven textiles

    USDA-ARS?s Scientific Manuscript database

    Sustainability of the materials and services we use today and protection of our environment are very strong initiatives, worldwide. Cotton is an annually renewable cash crop that is critically important to national economies of many countries, including the United States which is the 3rd largest pr...

  1. 48 CFR 245.601 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... further military or lethal use. (3) Production scrap means material left over from the normal production process that has only remelting or reprocessing value, e.g., textile and metal clippings, borings, and...

  2. Quantitative characterization of TiO2 nanoparticle release from textiles by conventional and single particle ICP-MS

    NASA Astrophysics Data System (ADS)

    Mackevica, Aiga; Olsson, Mikael Emil; Hansen, Steffen Foss

    2018-01-01

    TiO2 is ubiquitously present in a wide range of everyday items, both as an intentionally incorporated additive and naturally occurring constituent. It can be found in a wide range of consumer products, including personal care products, food contact materials, and textiles. Normal use of these products may lead to consumer and/or environmental exposure to TiO2, possibly in form of nanoparticles. The aim of this study is to perform a leaching test and apply state-of-the-art methods to investigate nano-TiO2 and total Ti release from five types of commercially available conventional textiles: table placemats, wet wipes, microfiber cloths, and two types of baby bodysuits, with Ti contents ranging from 2.63 to 1448 μg/g. Released particle analysis was performed using conventional and single particle inductively coupled plasma mass spectrometry (ICP-MS and spICP-MS), in conjunction with transmission electron microscopy (TEM), to measure total and particulate TiO2 release by mass and particle number, as well as size distribution. Less than 1% of the initial Ti content was released over 24 h of leaching, with the highest releases reaching 3.13 μg/g. The fraction of nano-TiO2 released varied among fabric types and represented 0-80% of total TiO2 release. Particle mode sizes were 50-75 nm, and TEM imaging revealed particles in sizes of 80-200 nm. This study highlights the importance of using a multi-method approach to obtain quantitative release data that is able to provide an indication regarding particle number, size distribution, and mass concentration, all of which can help in understanding the fate and exposure of nanoparticles.

  3. Damage and failure modelling of hybrid three-dimensional textile composites: a mesh objective multi-scale approach.

    PubMed

    Patel, Deepak K; Waas, Anthony M

    2016-07-13

    This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391-1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre-matrix concentric cylinder model is extended to fibre and (N-1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1-48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1572). This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).

  4. Analysis and treatment of industrial wastewater through chemical coagulation-adsorption process-A case study of Clariant Pakistan limited

    NASA Astrophysics Data System (ADS)

    Ali Shah, Syed Farman; Shah, Abdul Karim; Mehdi, Ahmad; Memon, Aziza Aftab; Harijan, Khanji; Ali, Zeenat M.

    2012-05-01

    Textile dye manufacture processes are known as the most polluting chemical processes of industrial sectors of the world. Colored wastewaters along with many polluting agents are troublesome. They are heavily polluted with dyes, textile auxiliaries and chemicals. Current study applies a coupled technology for wastewater treatment. Combined coagulation-adsorption process was utilized for treatment of complex nature effluents of dyes, binder emulsion, pigments and textile chemicals plants at Clariant Pakistan. Cost effective coagulant and adsorbent was selected by using waste material from a power generation unit of Water and Power Development Authority (WAPDA), Pakistan. The treated effluent could be reused. Alum+ Activated Carbon, Ferrous sulfate+ Activated Carbon, Ferric chloride + Activated Carbon. Almost complete decolourization was achieved along with reduction in COD up to 65%. Pre and post treatment, TDS, COD, Turbidity and suspended solids were improved.

  5. Quantification of processing artifacts in textile composites

    NASA Technical Reports Server (NTRS)

    Pastore, Christopher M.

    1993-01-01

    One of the greatest difficulties in developing detailed models of the mechanical response of textile reinforced composites is an accurate model of the reinforcing elements. In the case of elastic property prediction, the variation of fiber position may not have a critical role in performance. However, when considering highly localized stress events, such as those associated with cracks and holes, the exact position of the reinforcement probably dominates the failure mode. Models were developed for idealized reinforcements which provide an insight into the local behavior. However, even casual observations of micrographical images reveals that the actual material deviates strongly from the idealized models. Some of the deviations and causes are presented for triaxially braided and three dimensionally woven textile composites. The necessary modeling steps to accommodate these variations are presented with some examples. Some of the ramifications of not accounting for these discrepencies are also addressed.

  6. Silk-based biomaterials in biomedical textiles and fiber-based implants

    PubMed Central

    Li, Gang; Li, Yi; Chen, Guoqiang; He, Jihuan; Han, Yifan

    2015-01-01

    Biomedical textiles and fiber-based implants (BTFIs) have been in routine clinical use to facilitate healing for nearly five decades. Amongst the variety of biomaterials used, silk-based biomaterials (SBBs) have been widely used clinically viz. sutures for centuries and are being increasingly recognized as a prospective material for biomedical textiles. The ease of processing, controllable degradability, remarkable mechanical properties and biocompatibility have prompted the use of SBBs for various BTFIs for extracorporeal implants, soft tissue repair, healthcare/hygiene products and related needs. The present review focuses on BTFIs from the perspective of types and physical and biological properties, and this discussion is followed with an examination of the advantages and limitations of BTFIs from SBBs. The review covers progress in surface coatings, physical and chemical modifications of SBBs for BTFIs and identifies future needs and opportunities for the further development for BTFIs using SBBs. PMID:25772248

  7. High performance flexible electronics for biomedical devices.

    PubMed

    Salvatore, Giovanni A; Munzenrieder, Niko; Zysset, Christoph; Kinkeldei, Thomas; Petti, Luisa; Troster, Gerhard

    2014-01-01

    Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine.

  8. Cost efficient carbon fibre reinforced thermoplastics with in-situ polymerization of polyamide

    NASA Astrophysics Data System (ADS)

    Köhler, T.; Akdere, M.; Röding, T.; Gries, T.; Seide, G.

    2017-10-01

    Lightweight design has gained more and more relevance over the last decades. Especially in automotive industry it is of paramount importance to reduce weight and save fuel. At the same time the demand for safety and performance increases the components’ weight. To reach a trade-off between driving comfort and efficiency new lightweight materials have to be developed. One possible solution is the usage of carbon fibre reinforced thermoplastics (CFRTP) as a lightweight substitute material. In contrast to conventional carbon fibre reinforced plastics (CFRP), CFRTPs are cheaper and have a higher impact resistance. Furthermore they are characterized by hot forming ability, weldability and recyclability. However, the impregnation of the textile requires high pressure, because of the melted polymer’s high viscosity. A new innovative approach for CFRTP is the usage of in-situ polymerization with ɛ-caprolactam as matrix, which has a much lower viscosity and thus requires much lower pressure for impregnation and consolidation.

  9. UiO-66-NH2 Metal-Organic Framework (MOF) Nucleation on TiO2, ZnO, and Al2O3 Atomic Layer Deposition-Treated Polymer Fibers: Role of Metal Oxide on MOF Growth and Catalytic Hydrolysis of Chemical Warfare Agent Simulants.

    PubMed

    Lee, Dennis T; Zhao, Junjie; Oldham, Christopher J; Peterson, Gregory W; Parsons, Gregory N

    2017-12-27

    Metal-organic frameworks (MOFs) chemically bound to polymeric microfibrous textiles show promising performance for many future applications. In particular, Zr-based UiO-66-family MOF-textiles have been shown to catalytically degrade highly toxic chemical warfare agents (CWAs), where favorable MOF/polymer bonding and adhesion are attained by placing a nanoscale metal-oxide layer on the polymer fiber preceding MOF growth. To date, however, the nucleation mechanism of Zr-based MOFs on different metal oxides and how product performance is affected are not well understood. Herein, we provide new insight into how different inorganic nucleation films (i.e., Al 2 O 3 , ZnO, or TiO 2 ) conformally coated on polypropylene (PP) nonwoven textiles via atomic layer deposition (ALD) influence the quality, overall surface area, and the fractional yield of UiO-66-NH 2 MOF crystals solvothermally grown on fiber substrates. Of the materials explored, we find that TiO 2 ALD layers lead to the most effective overall MOF/fiber adhesion, uniformity, and a rapid catalytic degradation rate for a CWA simulant, dimethyl p-nitrophenyl phosphate (DMNP) with t 1/2 = 15 min, 580-fold faster than the catalytic performance of untreated PP textiles. Interestingly, compared to ALD TiO 2 and Al 2 O 3 , ALD ZnO induces a larger MOF yield in solution and mass loading on PP fibrous mats. However, this larger MOF yield is ascribed to chemical instability of the ZnO layer under MOF formation condition, leading to Zn 2+ ions that promote further homogeneous MOF growth. Insights presented here improve understanding of compatibility between active MOF materials and substrate surfaces, which we believe will help advanced MOF composite materials for a variety of useful functions.

  10. Concentrate minimization and water recovery enhancement using pellet precipitator in a reverse osmosis process treating textile wastewater.

    PubMed

    Sahinkaya, Erkan; Sahin, Ahmet; Yurtsever, Adem; Kitis, Mehmet

    2018-06-09

    Industrial wastewater reuse together with zero or near zero liquid discharges have been a growing trend due to the requirement of sustainable water management mandated by water scarcity and tightening discharge regulations. Studies have been conducted on the reclamation of textile industry wastewater using RO processes. However a lot of scientific attention has been drawn upon limiting the amount of concentrate generated from RO processes, which depends on the concentrations of scale forming ions in the concentrate stream. Hence, this study aims at investigating the applicability of an ultra-filtration (UF) membrane integrated pellet reactor to remove scale forming ions, i.e. Ca 2+ , Mg 2+ and Si from the concentrate of a pilot-scale textile industry RO process, for the first time in the literature. The resulting effluent was further tested in a secondary RO process to decrease concentrate volume and increase total water recovery. The pellet reactor operated at an extremely low hydraulic retention time of 0.1 h removed scale forming ions, i.e. Ca 2+ , Mg 2+ , with 90-95% efficiency, which improved the secondary RO process performance up to 92-94% overall water recovery, i.e. near zero liquid discharge was reached. Ozonation of the concentrate partially removed COD and color, which further improved the secondary RO filtration performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Polysulfone thin film composite nanofiltration membranes for removal of textile dyes wastewater

    NASA Astrophysics Data System (ADS)

    Sutedja, Andrew; Aileen Josephine, Claresta; Mangindaan, Dave

    2017-12-01

    This research was conducted to produce nanofiltration (NF) membranes, which have good performance in terms of removal of textile dye (Reactive Red 120, RR120) from simulated wastewater as one of several eco-engineering developments for sustainable water resource management. Phase inversion technique was utilized to fabricate the membrane with polysulfone (PSF) support, dissolved in N-methyl-2 pyrollidone (NMP) solvent, and diethylene glycol (DEG) as non-solvent additive. The fabricated membrane then modified with the additional of dopamine coating and further modified by interfacial polymerization (IP) to form a thin film composite (TFC)-NF membrane with PSF substrate. TFC was formed from interaction between amine monomer (2 %-weight of m-phenylenediamine (MPD) in deionized water) and acyl chloride (0.2 %-weight of trimesoyl chloride (TMC) in hexane). From this study, the fabricated PSF-TFC membrane could remove dyestuff from RR120 wastewater by 88% rejection at 120 psi. The result of this study is promising to be applied in Indonesia where researches on removal of dyes from textile wastewater by using membranes are still quite rare. Therefore, this paper may open new avenues for development of eco-engineering development in Indonesia.

  12. Cost model relationships between textile manufacturing processes and design details for transport fuselage elements

    NASA Technical Reports Server (NTRS)

    Metschan, Stephen L.; Wilden, Kurtis S.; Sharpless, Garrett C.; Andelman, Rich M.

    1993-01-01

    Textile manufacturing processes offer potential cost and weight advantages over traditional composite materials and processes for transport fuselage elements. In the current study, design cost modeling relationships between textile processes and element design details were developed. Such relationships are expected to help future aircraft designers to make timely decisions on the effect of design details and overall configurations on textile fabrication costs. The fundamental advantage of a design cost model is to insure that the element design is cost effective for the intended process. Trade studies on the effects of processing parameters also help to optimize the manufacturing steps for a particular structural element. Two methods of analyzing design detail/process cost relationships developed for the design cost model were pursued in the current study. The first makes use of existing databases and alternative cost modeling methods (e.g. detailed estimating). The second compares design cost model predictions with data collected during the fabrication of seven foot circumferential frames for ATCAS crown test panels. The process used in this case involves 2D dry braiding and resin transfer molding of curved 'J' cross section frame members having design details characteristic of the baseline ATCAS crown design.

  13. Corrugated Textile based Triboelectric Generator for Wearable Energy Harvesting

    PubMed Central

    Choi, A Young; Lee, Chang Jun; Park, Jiwon; Kim, Dogyun; Kim, Youn Tae

    2017-01-01

    Triboelectric energy harvesting has been applied to various fields, from large-scale power generation to small electronics. Triboelectric energy is generated when certain materials come into frictional contact, e.g., static electricity from rubbing a shoe on a carpet. In particular, textile-based triboelectric energy-harvesting technologies are one of the most promising approaches because they are not only flexible, light, and comfortable but also wearable. Most previous textile-based triboelectric generators (TEGs) generate energy by vertically pressing and rubbing something. However, we propose a corrugated textile-based triboelectric generator (CT-TEG) that can generate energy by stretching. Moreover, the CT-TEG is sewn into a corrugated structure that contains an effective air gap without additional spacers. The resulting CT-TEG can generate considerable energy from various deformations, not only by pressing and rubbing but also by stretching. The maximum output performances of the CT-TEG can reach up to 28.13 V and 2.71 μA with stretching and releasing motions. Additionally, we demonstrate the generation of sufficient energy from various activities of a human body to power about 54 LEDs. These results demonstrate the potential application of CT-TEGs for self-powered systems. PMID:28349928

  14. Corrugated Textile based Triboelectric Generator for Wearable Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Choi, A. Young; Lee, Chang Jun; Park, Jiwon; Kim, Dogyun; Kim, Youn Tae

    2017-03-01

    Triboelectric energy harvesting has been applied to various fields, from large-scale power generation to small electronics. Triboelectric energy is generated when certain materials come into frictional contact, e.g., static electricity from rubbing a shoe on a carpet. In particular, textile-based triboelectric energy-harvesting technologies are one of the most promising approaches because they are not only flexible, light, and comfortable but also wearable. Most previous textile-based triboelectric generators (TEGs) generate energy by vertically pressing and rubbing something. However, we propose a corrugated textile-based triboelectric generator (CT-TEG) that can generate energy by stretching. Moreover, the CT-TEG is sewn into a corrugated structure that contains an effective air gap without additional spacers. The resulting CT-TEG can generate considerable energy from various deformations, not only by pressing and rubbing but also by stretching. The maximum output performances of the CT-TEG can reach up to 28.13 V and 2.71 μA with stretching and releasing motions. Additionally, we demonstrate the generation of sufficient energy from various activities of a human body to power about 54 LEDs. These results demonstrate the potential application of CT-TEGs for self-powered systems.

  15. The Effect of Fabric Position to the Distribution of Acoustic Pressure Field in Ultrasonic Bath

    NASA Astrophysics Data System (ADS)

    Gürses, B. O.; Özdemir, A. O.; Tonay, Ö.; Şener, M.; Perinçek, S.

    2017-10-01

    Nowadays, the use of ultrasonic energy in textile wet processes at industrial-scale is limited. It is largely due to the lack of understanding about design, operational and performance characteristics of the ultrasonic bath, suitable for textile treatments. In the context of this study, the effect of fabric position, as one of the design parameter, to the distribution of acoustic pressure field in ultrasonic bath was investigated. The ultrasonic bath in the size 20×30 cm2 with one transducer at frequency 40 kHz was used in experiments. The cotton fabric with 1 mm thickness was moved along vertical and horizontal directions of the ultrasonic bath. The acoustic field and cavitation volume density in the bath is analyzed by COMSOL Multiphysic. The cavitation volume density is calculated by comparing the pressure points in the bath with cavitation threshold pressure. Consequently, it was found that the position of the textile material in the ultrasonic bath is one of the most important factors to achieve the uniform and maximum acoustic cavitation field. So, it should be taken into consideration during the design of industrial-scale ultrasonic bath used in textile wet processes.

  16. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.

    PubMed

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liao, Xiaofeng; Wang, Jing; Chen, Zhonghua; He, Jie; Zeng, Xingrong

    2018-01-31

    Superhydrophobic surfaces with tunable adhesion from lotus-leaf to rose-petal states have generated much attention for their potential applications in self-cleaning, anti-icing, oil-water separation, microdroplet transportation, and microfluidic devices. Herein we report a facile magnetic-field-manipulation strategy to fabricate dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states on the two surfaces of the textile simultaneously. Upon exposure to a static magnetic field, fluoroalkylsilane-modified iron oxide (F-Fe 3 O 4 ) nanoparticles in polydimethylsiloxane (PDMS) moved along the magnetic field to construct discrepant hierarchical structures and roughnesses on the two sides of the textile. The positive surface (closer to the magnet, or P-surface) showed a water contact angle up to 165°, and the opposite surface (or O-surface) had a water contact angle of 152.5°. The P-surface where water droplets easily slid off with a sliding angle of 7.5° appeared in the "roll-down" state as Cassie mode, while the O-surface was in the "pinned" state as Wenzel mode, where water droplets firmly adhered even at vertical (90°) and inverted (180°) angles. The surface morphology and wetting mode were adjustable by varying the ratios of F-Fe 3 O 4 nanoparticles and PDMS. By taking advantage of the asymmetric adhesion behaviors, the as-fabricated superhydrophobic textile was successfully applied in no-loss microdroplet transportation and oil-water separation. Our method is simple and cost-effective. The fabricated textile has the characteristics of superhydrophobicity, magnetic responsiveness, excellent chemical stability, adjustable surface morphology, and controllable adhesion. Our findings conceivably stand out as a new tool to fabricate functional superhydrophobic materials with asymmetric surface properties for various potential applications.

  17. Mechanical behavior of a triaxially braided textile composite at high temperature

    NASA Astrophysics Data System (ADS)

    El Mourid, Amine

    The work presented in this thesis aimed at understanding the influence of viscoelasticity, temperature and aging on the mechanical behaviour of a textile composite using experimental, analytical and numerical tools. The studied material was a triaxially braided composite with fibres in the 0°/+/-60° directions. The yarns were made of carbon fibres, embedded in an MVK10 temperature resistant polyimide matrix. The first step consisted in developing analytical and numerical frameworks to predict viscoelastic behaviour in textile composites. Simulations were performed for both braided and woven textile architectures, at different stiffness contrasts and yarns volume fractions. The analytical framework accuracy was verified with the help of the numerical simulations. An important finding of this study was that the analytical framework, combined with the Mori-Tanaka model, leads to relatively accurate predictions for both the permanent and transient parts. Therefore, the authors believe that the Mori-Tanaka model with an adjusted aspect ratio to take into account yarn curvature is reliable for predicting viscoelastic behaviour in textile composites. The textile composite that was studied in this project did not display viscoelastic behaviour, due to the high yarn volume fraction. However, the framework remains relevant for higher temperature applications or lower yarn volume fractions. The second step was to investigate the temperature effect on the tensile behavior of the carbon/MVK10 triaxially braided composite material studied in this project. To achieve this goal, a series of room and high temperature tensile tests on both matrix and composite samples were performed. The tests on composite samples were performed along two different material directions at the maximum service temperature allowed by the Federal Aviation Administration for aircraft components, and a dedicated replication technique was developed in order to track crack densities as a function of loading, for both test temperatures. Then, both analytical and numerical homogenization models were used to quantify the stress distribution at the yarns level as a function of the applied temperature. Finally, the homogenization models were used to explain the failure mechanisms obtained at both temperatures, for the two material directions tested. The study revealed that the impact of the temperature on the failure mechanisms of the textile composite was dependent on the loading direction. It was observed that the yarns and matrix were more compliant at high temperature, especially for the transverse and shear properties. These changes had negligible effects on the elastic properties of the composite in both directions. However, they created local stress redistributions at the yarns level, which in turn affected the ultimate tensile strength of the composite. The concentration of stress in specific yarns decreased the UTS of the composite and changed the damage profile during loading. The analysis showed the potential of analytical and numerical models to explain failure paths in textile composites. At high temperature, the evolution in the constituent elastic properties was responsible for the changes in the stress profile in the material. The final step consisted in the study of the aging effect on the tensile strength and the failure mechanisms of a carbon/MVK10 triaxially braided composite for two material directions. The damage evolution was monitored with the help of edge and cross-section microscopical observations. At the maximum service temperature, the effect of physical aging on the composite's stiffness and density was negligible while the effect of chemical aging was gradually detrimental to the UTS. It was found that the UTS decreased by 30% in Direction 1 and by 20% in Direction 2 after 9 months of aging. Cracks initiated after 1 month of aging, preferentially on the edge surfaces of the specimen and grew inward as aging time increased. The yarns that were transverse to the sample cutting direction acted as catalyst to the aging process, creating anisotropy in the reduction of mechanical properties. Thermal oxidation was the main agent behind UTS degradation in the triaxially braided composite, causing the initiation of transverse cracks on transverse yarns at the surface of the specimen. The crack density and depth increased during aging, further weakening the material. The FAA requirement for a maximum service temperature is suitable to prevent physical aging. However, it does not prevent UTS degradation caused by chemical aging when fibres are in contact with the oxidizing environment. Nevertheless, the MVK10 matrix tested in this work exhibited relative properties retention similar to that of PMR15, which might make this matrix a suitable replacement. (Abstract shortened by UMI.).

  18. Formability of tufted 3-dimensional composite reinforcement

    NASA Astrophysics Data System (ADS)

    Liu, Ling Shan; Wang, Peng; Legrand, Xavier; Soulat, Damien

    2016-10-01

    In the aerospace industry, more and more complex preform for composite parts are needed. Traditionally, laminated reinforcement is largely used as the method. The development of tufting technology has now advanced to a stage whereby it can be employed to produce the 3D textile composite reinforcements. Because the tufting technology is user-friendly, in this study, the tufting parameters (tufting density, tufting length, tufting yarn orientations…) are varied, in order to improve the understanding of formability of the tufted 3D fabric during manufacturing, in particular the influence of the tufting yarns, the present work is performed to analyse the preforming behaviours of tufted 3D reinforcement in the hemispherical stamping process. The preforming behaviours are also compared with the ones of the multilayered forming. Interply sliding and winkling phenomenon during forming are fully influenced by tufting yarns on the material draw-in, by the orientations of tufting yarn, …

  19. Forming "dynamic" membranes on stainless steel

    NASA Technical Reports Server (NTRS)

    Brandon, C. A.; Gaddis, J. L.

    1979-01-01

    "Dynamic" zirconium polyacrylic membrane is formed directly on stainless steel substrate without excessive corrosion of steel. Membrane is potentially useful in removal of contaminated chemicals from solution through reversed osmosis. Application includes use in filtration and desalination equipment, and in textile industry for separation of dyes from aqueous solvents.

  20. Study of Dual Band Wearable Antennas Using Commonly Worn Fabric Materials

    NASA Astrophysics Data System (ADS)

    Das, Dipen Kumar

    In recent years, body-centric communication has become one of the most attractive fields of study. The versatile applications of body-centric communication not only being used for health monitoring, but also for real-time communication purposes in special occupations. They are important for supporting a population with increasing life expectancy and increase the probability of survival for the people suffering from chronic illness. For both wearable and implantable form of body-centric communication, characterizing the system electromagnetically is very important. Given the constraints in power, size, weight and conformity, one of the most challenging parts become the designing antenna for such communication systems. Wearable antennas are the most popular option regarding these issues. Wearable antennas are easier and simpler to mount on clothing when they are made of textile materials. In the process of designing a textile antenna, the availability of the fabrics is pivotal to mount on regularly worn clothes. In this report, several designs of a co-planar waveguide microstrip patch antenna are presented. Instead of felt fabric, the antenna was modified using 100% polyester and cotton fabric for the substrate material. A parasitic patch slot was created on the co-planar ground plane to achieve the dual band resonance frequencies at 2.4 GHz and 5.15 GHz. The geometrical modifications of the antennas were described and their performances were analyzed. The antenna achieved resonating frequency with a thinner substrate as the dielectric constant went higher for the fabrics. The design with different fabric materials was first simulated in CST Microwave Studio, then fabricated and measured in a regular environment. They were also mounted on a 3-D printed human body model to analyze the bending effect. The design of the antennas shows satisfactory performance with a good -10dB bandwidth for both the lower and higher desired resonating frequency band.

  1. Nanotechnology and textiles engineered by carbon nanotubes for the realization of advanced personal protective equipments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andretta, Antonio, E-mail: Antonio-Andretta@klopman.com; Terranova, Maria Letizia; Lavecchia, Teresa

    2014-06-19

    Carbon nanotubes (CNT) and CNT-based active materials have been used to assemble the gas sensing unit of innovative platforms able to detect toxic atmospheres developing in confined workplaces. The main goal of the project was to realize a full-featured, operator-friendly safety detection and monitoring system based on multifunctional textiles nanotechnologies. The fabricated sensing platform consists of a multiple gas detector coupled with a specifically designed telecommunication infrastructure. The portable device, totally integrated in the workwear, offers several advantages over the conventional safety tools employed in industrial work activities.

  2. Nanotechnology and textiles engineered by carbon nanotubes for the realization of advanced personal protective equipments

    NASA Astrophysics Data System (ADS)

    Andretta, Antonio; Terranova, Maria Letizia; Lavecchia, Teresa; Gay, Stefano; Picano, Alfredo; Mascioletti, Alessandro; Stirpe, Daniele; Cucchiella, Cristian; Pascucci, Eddy; Dugnani, Giovanni; Gatti, Davide; Laria, Giuseppe; Codenotti, Barbara; Maldini, Giorgio; Roth, Siegmar; Passeri, Daniele; Rossi, Marco; Tamburri, Emanuela

    2014-06-01

    Carbon nanotubes (CNT) and CNT-based active materials have been used to assemble the gas sensing unit of innovative platforms able to detect toxic atmospheres developing in confined workplaces. The main goal of the project was to realize a full-featured, operator-friendly safety detection and monitoring system based on multifunctional textiles nanotechnologies. The fabricated sensing platform consists of a multiple gas detector coupled with a specifically designed telecommunication infrastructure. The portable device, totally integrated in the workwear, offers several advantages over the conventional safety tools employed in industrial work activities.

  3. 76 FR 68690 - Rules and Regulations Under the Textile Fiber Products Identification Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ..., particularly small businesses? (19) Should the Commission modify the Rules to add or clarify definitions of... Products Identification Act; add or clarify definitions of terms set forth in the Rules; and modify its consumer and business education materials and continue printing paper copies of these materials. In...

  4. [Fabric static effect after the use of synthetic detergents].

    PubMed

    Golenkova, L G; Voloshchenko, O I; Antomonov, M Iu

    2003-01-01

    The residues of surfactants that are present on textile materials were found to affect the surface charge of tissues. If physical properties of clothes materials, such as electrifiability, the positive or negative charge, resistivity, hygroscopicity are known, you may predict the values of residues of surfactants to be adsorbed onto the surface of tissues.

  5. Rapid decolorization of textile wastewater by green synthesized iron nanoparticles.

    PubMed

    Ozkan, Z Y; Cakirgoz, M; Kaymak, E S; Erdim, E

    2018-01-01

    The effectiveness of green tea (Camellia sinensis) and pomegranate (Punica granatum) extracts for the production of iron nanoparticles and their application for color removal from a textile industry wastewater was investigated. Polyphenols in extracts act as reducing agents for iron ions in aqueous solutions, forming iron nanoparticles. Pomegranate extract was found to have almost a 10-fold higher polyphenolic content than the same amount of green tea extract on a mass basis. However, the size of the synthesized nanoparticles did not show a correlation with the polyphenolic content. 100 ppm and 300 ppm of iron nanoparticles were evaluated in terms of color removal efficiency from a real textile wastewater sample. 300 ppm of pomegranate nanoscale zero-valent iron particles showed more than 95% color removal and almost 80% dissolved organic carbon removal. The degradation mechanisms are is considered to be adsorption and precipitation to a major extent, and mineralization to a minor extent.

  6. Printed organic conductive polymers thermocouples in textile and smart clothing applications.

    PubMed

    Seeberg, Trine M; Røyset, Arne; Jahren, Susannah; Strisland, Frode

    2011-01-01

    This work reports on an experimental investigation of the potential of using selected commercially available organic conductive polymers as active ingredients in thermocouples printed on textiles. Poly(3, 4-ethylenedioxythiophene): poly(4 styrenesulfonate) (PEDOT:PSS) and polyaniline (PANI) were screen printed onto woven cotton textile. The influence of multiple thermocycles between 235 K (-38 °C) and 350 K (+77 °C) on resistivity and thermoelectric properties was examined. The Seebeck coefficients of PEDOT:PSS and PANI were found to be about +18 μV/K and +15 uV/K, respectively, when "metal-polymer" thermocouples were realized by combining the polymer with copper. When "polymer-polymer" thermocouples were formed by combining PEDOT:PSS and PANI, a thermoelectric voltage of about +10 μV/K was observed. A challenge recognized in the experiments is that the generated voltage exhibited drift and fluctuations.

  7. Robust and stretchable indium gallium zinc oxide-based electronic textiles formed by cilia-assisted transfer printing

    PubMed Central

    Yoon, Jongwon; Jeong, Yunkyung; Kim, Heeje; Yoo, Seonggwang; Jung, Hoon Sun; Kim, Yonghun; Hwang, Youngkyu; Hyun, Yujun; Hong, Woong-Ki; Lee, Byoung Hun; Choa, Sung-Hoon; Ko, Heung Cho

    2016-01-01

    Electronic textile (e-textile) allows for high-end wearable electronic devices that provide easy access for carrying, handling and using. However, the related technology does not seem to be mature because the woven fabric hampers not only the device fabrication process directly on the complex surface but also the transfer printing of ultrathin planar electronic devices. Here we report an indirect method that enables conformal wrapping of surface with arbitrary yet complex shapes. Artificial cilia are introduced in the periphery of electronic devices as adhesive elements. The cilia also play an important role in confining a small amount of glue and damping mechanical stress to maintain robust electronic performance under mechanical deformation. The example of electronic applications depicts the feasibility of cilia for ‘stick-&-play' systems, which provide electronic functions by transfer printing on unconventional complex surfaces. PMID:27248982

  8. Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes.

    PubMed

    Shim, Bong Sup; Chen, Wei; Doty, Chris; Xu, Chuanlai; Kotov, Nicholas A

    2008-12-01

    The idea of electronic yarns and textiles has appeared for quite some time, but their properties often do not meet practical expectations. In addition to chemicallmechanical durability and high electrical conductivity, important materials qualifications include weavablity, wearability, light weight, and "smart" functionalities. Here we demonstrate a simple process of transforming general commodity cotton threads into intelligent e-textiles using a polyelectrolyte-based coating with carbon nanotubes (CNTs). Efficient charge transport through the network of nanotubes (20 omega/cm) and the possibility to engineer tunneling junctions make them promising materials for many high-knowledge-content garments. Along with integrated humidity sensing, we demonstrate that CNT-cotton threads can be used to detect albumin, the key protein of blood, with high sensitivity and selectivity. Notwithstanding future challenges, these proof-of-concept demonstrations provide a direct pathway for the application of these materials as wearable biomonitoring and telemedicine sensors, which are simple, sensitive, selective, and versatile.

  9. Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy

    NASA Astrophysics Data System (ADS)

    Fukunaga, K.; Cortes, E.; Cosentino, A.; Stã¼nkel, I.; Leona, M.; Duling, N.; Mininberg, D. T.

    2011-08-01

    This paper reports the first use of terahertz time domain reflection imaging involving textiles on part of a complete human mummy, still in original wrapping. X-ray technique has been used extensively to investigate anatomical features, since X-ray pass through the wrapping. Terahertz waves, on the other hand, can penetrate into non-metallic materials and its reflection depends on the refractive index of materials at the interface, such as textiles and the air. The mummy of Kharushere (ca. 945-712 B.C.) was examined by using Terahertz time domain reflection imaging in the Egyptian galleries of The Metropolitan Museum of Art. Experimental results suggest that the Terahetz imaging is a promising technique for probing the fabric layers surrounding Egyptian mummies, although it is still very limited in its current state. In the future it could become a useful complement to CT scanning when materials with low radiographic density and contrast are being investigated

  10. Effect of mechanical damage and wound healing on the viscoelastic properties of stems of flax cultivars (Linum usitatissimum L. cv. Eden and cv. Drakkar).

    PubMed

    Paul-Victor, Cloé; Dalle Vacche, Sara; Sordo, Federica; Fink, Siegfried; Speck, Thomas; Michaud, Véronique; Speck, Olga

    2017-01-01

    As plant fibres are increasingly used in technical textiles and their composites, underlying principles of wound healing in living plant fibres are relevant to product quality, and provide inspiration for biomimetic healing in synthetic materials. In this work, two Linum usitatissimum cultivars differing in their stem mechanical properties, cv. Eden (stems resistant to lodging) and cv. Drakkar (with more flexible stems), were grown without wound or with stems previously wounded with a cut parallel or transversal to the stem. To investigate wound healing efficiency, growth traits, stem biomechanics with Dynamic Mechanical Analysis and anatomy were analysed after 25-day recovery. Longitudinal incisions formed open wounds while transversal incisions generated stem growth restoring the whole cross-section but not the original stem organisation. In the case of transversal wound healing, all the bast fibre bundles in the perturbed area became lignified and pulled apart by parenchyma cells growth. Both Linum cultivars showed a healing efficiency from 79% to 95% with higher scores for transversal healing. Morphological and anatomical modifications of Linum were related to mechanical properties and healing ability. Alongside with an increased understanding of wound healing in plants, our results highlight their possible impact on textile quality and fibre yield.

  11. Effect of mechanical damage and wound healing on the viscoelastic properties of stems of flax cultivars (Linum usitatissimum L. cv. Eden and cv. Drakkar)

    PubMed Central

    Paul-Victor, Cloé; Dalle Vacche, Sara; Sordo, Federica; Fink, Siegfried; Speck, Thomas; Michaud, Véronique

    2017-01-01

    As plant fibres are increasingly used in technical textiles and their composites, underlying principles of wound healing in living plant fibres are relevant to product quality, and provide inspiration for biomimetic healing in synthetic materials. In this work, two Linum usitatissimum cultivars differing in their stem mechanical properties, cv. Eden (stems resistant to lodging) and cv. Drakkar (with more flexible stems), were grown without wound or with stems previously wounded with a cut parallel or transversal to the stem. To investigate wound healing efficiency, growth traits, stem biomechanics with Dynamic Mechanical Analysis and anatomy were analysed after 25-day recovery. Longitudinal incisions formed open wounds while transversal incisions generated stem growth restoring the whole cross-section but not the original stem organisation. In the case of transversal wound healing, all the bast fibre bundles in the perturbed area became lignified and pulled apart by parenchyma cells growth. Both Linum cultivars showed a healing efficiency from 79% to 95% with higher scores for transversal healing. Morphological and anatomical modifications of Linum were related to mechanical properties and healing ability. Alongside with an increased understanding of wound healing in plants, our results highlight their possible impact on textile quality and fibre yield. PMID:28982196

  12. Comprehensive characterisation of flame retardants in textile furnishings by ambient high resolution mass spectrometry, gas chromatography-mass spectrometry and environmental forensic microscopy.

    PubMed

    Ionas, Alin C; Ballesteros Gómez, Ana; Uchida, Natsuyo; Suzuki, Go; Kajiwara, Natsuko; Takata, Kyoko; Takigami, Hidetaka; Leonards, Pim E G; Covaci, Adrian

    2015-10-01

    The presence and levels of flame retardants (FRs), such as polybrominated diphenyl ethers (PBDEs) and organophosphate flame retardants (PFRs), was determined in textile home furnishings, such as carpets and curtains from stores in Belgium. A comprehensive characterisation of FRs in textile was done by ambient high resolution mass spectrometry (qualitative screening), gas chromatography-mass spectrometry (GC-MS) (quantitation), and environmental forensic microscopy (surface distribution). Ambient ionisation coupled to a time-of-flight (TOF) high resolution mass spectrometer (direct probe-TOF-MS) was investigated for the rapid screening of FRs. Direct probe-TOF-MS proved to be useful for a first screening step of textiles to detect FRs below the levels required to impart flame retardancy and to reduce, in this way, the number of samples for further quantitative analysis. Samples were analysed by GC-MS to confirm the results obtained by ambient mass spectrometry and to obtain quantitative information. The levels of PBDEs and PFRs were typically too low to impart flame retardancy. Only high levels of BDE-209 (11-18% by weight) were discovered and investigated in localised hotspots by employing forensic microscopy techniques. Most of the samples were made of polymeric materials known to be inherently flame retarded to some extent, so it is likely that other alternative and halogen-free FR treatments/solutions are preferred for the textiles on the Belgian market. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Electrical performance of PEDOT:PSS-based textile electrodes for wearable ECG monitoring: a comparative study.

    PubMed

    Castrillón, Reinel; Pérez, Jairo J; Andrade-Caicedo, Henry

    2018-04-02

    Wearable textile electrodes for the detection of biopotentials are a promising tool for the monitoring and early diagnosis of chronic diseases. We present a comparative study of the electrical characteristics of four textile electrodes manufactured from common fabrics treated with a conductive polymer, a commercial fabric, and disposable Ag/AgCl electrodes. These characteristics will allow identifying the performance of the materials when used as ECG electrodes. The electrodes were subjected to different electrical tests, and complemented with conductivity calculations and microscopic images to determine their feasibility in the detection of ECG signals. We evaluated four electrical characteristics: contact impedance, electrode polarization, noise, and long-term performance. We analyzed PEDOT:PSS treated fabrics based on cotton, cotton-polyester, lycra and polyester; also a commercial fabric made of silver-plated nylon Shielde® Med-Tex P130, and commercial Ag/AgCl electrodes. We calculated conductivity from the surface resistance and, analyzed their surface at a microscopic level. Rwizard was used in the statistical analysis. The results showed that textile electrodes treated with PEDOT:PSS are suitable for the detection of ECG signals. The error detecting features of the ECG signal was lower than 2% and the electrodes kept working properly after 36 h of continuous use. Even though the contact impedance and the polarization level in textile electrodes were greater than in commercial electrodes, these parameters did not affect the acquisition of the ECG signals. Fabrics conductivity calculations were consistent to the contact impedance.

  14. Fashion in the golden age of Yugoslavian 20th century textile and clothing industry

    NASA Astrophysics Data System (ADS)

    Todorović, T.; Pavko-Čuden, A.

    2017-10-01

    The development of fashion seems to have occurred in societies which were changing, where that change is valued by some group within the society, and social mobility was possible. Fashion is not possible in totally egalitarian society nor in a rigid hierarchy. The paper presents Slovenian/Yugoslavian fashion design based on local industrial and educational capacities in the golden age of the textile and clothing branch. The paradox of Western style fashion in the frame of socialistic political system in commented. In the late 1940s, Yugoslav modernity transmitted through fashionable dress was mainly representational, since industry was unable to deliver fashionable dresses due to post-war poverty and backwardness. Yugoslavia’s different path toward socialism was mirrored in its different symbolic and material production of dress in comparison to that of other Eastern European countries. Although factories had been nationalised, attacks on Western fashion were never intense, and the Yugoslav regime did not establish a central dress institution to politically direct the design, production and distribution of clothes as it was the case in most Eastern European countries. The restoration and the development of the textile industry evoked a need for new jobs, specifically in textile and fashion design. The fashion scene in Slovenia/Yugoslavia started to differ from other Eastern countries. In the golden age of the national textile and clothing industry fashion collections have gone hand in hand with the European fashion.

  15. Electrical bioimpedance enabling prompt intervention in traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Seoane, Fernando; Atefi, S. Reza

    2017-05-01

    Electrical Bioimpedance (EBI) is a well spread technology used in clinical practice across the world. Advancements in Textile material technology with conductive textile fabrics and textile-electronics integration have allowed exploring potential applications for Wearable Measurement Sensors and Systems exploiting. The sensing principle of electrical bioimpedance is based on the intrinsic passive dielectric properties of biological tissue. Using a pair of electrodes, tissue is electrically stimulated and the electrical response can be sensed with another pair of surface electrodes. EBI spectroscopy application for cerebral monitoring of neurological conditions such as stroke and perinatal asphyxia in newborns have been justified using animal studies and computational simulations. Such studies have shown proof of principle that neurological pathologies indeed modify the dielectric composition of the brain that is detectable via EBI. Similar to stroke, Traumatic Brain Injury (TBI) also affects the dielectric properties of brain tissue that can be detected via EBI measurements. Considering the portable and noninvasive characteristics of EBI it is potentially useful for prehospital triage of TBI patients where. In the battlefield blast induced Traumatic Brain Injuries are very common. Brain damage must be assessed promptly to have a chance to prevent severe damage or eventually death. The relatively low-complexity of the sensing hardware required for EBI sensing and the already proven compatibility with textile electrodes suggest the EBI technology is indeed a candidate for developing a handheld device equipped with a sensorized textile cap to produce an examination in minutes for enabling medically-guided prompt intervention.

  16. Imparting pharmaceutical applications to the surface of fabrics for wound and skin care by ultrasonic waves.

    PubMed

    Gedanken, Aharon; Perkas, Nina; Perelshtein, Ilana; Lipovsky, Anat

    2017-12-29

    The review, reports on the functionalization of textiles for the treatment of wounds and skin diseases such as acne. In view of the growing demand for high-quality textiles, much research is focused on the creation of antimicrobial finishings for fabrics, in order to protect customers from pathogenic or odor-generating microorganisms. We present coatings from inorganic, organic and biochemical nanoparticles (NPs) on surfaces that impart the ability to kill bacteria, avoid biofilm formation and speed up the recovery of wounds. In all three cases, sonochemistry is used for immobilizing the nanoparticles on the surfaces. The Introduction broadly covers the progress of nanotechnology in the fields of wound and skin care. The first section of this review outlines the mechanism of the ultrasound-assisted deposition of nanoparticles on textiles. The coating can be performed by an in-situ process in which the nanoparticles are formed and subsequently thrown onto the surface of the fabrics at a very high speed. This approach was used in depositing metal-oxide NPs such as ZnO, CuO and Zn-CuO or the organic NPs of tannic acid, chitosan, etc. on textiles. In addition, the sonochemical process can be used as a "throwing stone" technique, namely, previously synthesized or commercially purchased NPs can be placed in the sonication bath and sonicated in the presence of the fabric. This section will also outline why sonochemical deposition on textiles is considered the best coating technique. The second section will discuss new applications of the sonochemically-coated textiles in killing bacteria, avoiding biofilm formation and more. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Fiber optic strain monitoring of textile GFRP during RTM molding and fatigue tests by using embedded FBG sensors

    NASA Astrophysics Data System (ADS)

    Kosaka, Tatsuro; Osaka, Katsuhiko; Nakakita, Satoru; Fukuda, Takehito

    2003-08-01

    This paper describes cure and health monitoring of glass fiber reinforced plastics (GFRP) textile composites both during a resin transfer molding (RTM) process and in loading tests. Carbon fiber reinforced plastics (CFRP) textile composites also were used for a comparative study. Fiber Bragg grating (FBG) fiber optic sensors were embedded in FRP to monitor internal strain. From the results of cure monitoring, it was found that the embedded FBG sensors were useful to know when cured resin constrained fibers. It also appeared that specimens were subjected to friction stress resulted from difference of coefficient of thermal expansion between FRP and a stainless steel mold in cooling process of RTM molding. After the molding, tensile and fatigue tests were conducted. The results of tensile tests showed that output of the embedded FBG sensors agreed well that of surface-bonded strain gauges despite deterioration of reflected spectra form the sensors. From the results of fatigue tests, the FBG sensors showed good status until 100,000 cycles when specimens had no damage. From these results, it can be concluded that embedded FBG sensors have good capability of monitoring internal strain in textile FRP both during RTM process and in service.

  18. Smart Textiles for Strengthening of Structures

    NASA Astrophysics Data System (ADS)

    Górski, Marcin; Krzywoń, Rafał; Dawczyński, Szymon; Szojda, Leszek; Salvado, Rita; Lopes, Catarina; Araujo, Pedro; Velez, Fernando Jose; Castro-Gomes, Joao

    2016-11-01

    This paper presents results of mechanical tests on a prototype of an innovative structural strengthening in form of self-monitoring fabric. Smart textile employs carbon fibers conductivity for measuring strains while monitoring changes of electric resistance under increasing load. A general solution was tested in a series of calibrating tests on strengthening of small size concrete slabs. Promising results of simple specimen, has encouraged the research team to perform the next tests using mastered carbon fibre reinforced fabric. Main tests were performed on natural scale RC beam. Smart textile proved its efficiency in both: strengthening and monitoring of strains during load increase. New strengthening proposal was given 10% increase of loading capacity and the readings of strain changes were similar to those obtained in classical methods. In order to calibrate the prototype and to define range limits of solution usability, textile sensor was tested in areas of large deformations (timber beam) and aswell as very small strains (bridge bearing block). In both cases, the prototype demonstrated excellent performance in the range of importance for structural engineering. This paper also presents an example of use of the smart strengthening in situ, in a real life conditions.

  19. Identification and partial characterization of C-glycosylflavone markers in Asian plant dyes using liquid chromatography-tandem mass spectrometry.

    PubMed

    Mouri, Chika; Laursen, Richard

    2011-10-14

    Flavonoids in the grasses (Poaceae family), Arthraxon hispidus (Thunb.) Makino and Miscanthus tinctorius (Steudel) Hackel have long histories of use for producing yellow dyes in Japan and China, but up to now there have been no analytical procedures for characterizing the dye components in textiles dyed with these materials. LC-MS analysis of plant material and of silk dyed with extracts of these plants shows the presence, primarily, of flavonoid C-glycosides, three of which have been tentatively identified as luteolin 8-C-rhamnoside, apigenin 8-C-rhamnoside and luteolin 8-C-(4-ketorhamnoside). Two of these compounds, luteolin 8-C-rhamnoside (M=432), apigenin 8-C-rhamnoside (M=416), along with the previously known tricin (M=330) and several other flavonoids that appear in varying amounts, serve as unique markers for identifying A. hispidus and M. tinctorius as the source of yellow dyes in textiles. Using this information, we have been able to identify grass-derived dyes in Japanese textiles dated to the Nara and Heian periods. However, due to the high variability in the amounts of various flavonoid components, our goal of distinguishing between the two plant sources remains elusive. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Organic emitters: Light-emitting fabrics

    NASA Astrophysics Data System (ADS)

    Ortí, Enrique; Bolink, Henk J.

    2015-04-01

    Light-emitting fibres that suit integration with textiles are prepared by dip-coating a steel wire with an electroluminescent material and then cleverly wrapping the structure with a carbon nanotube sheet that functions as a transparent electrode.

  1. Raman detection of improvised explosive device (IED) material fabricated using drop-on-demand inkjet technology on several real world surfaces

    NASA Astrophysics Data System (ADS)

    Farrell, Mikella E.; Holthoff, Ellen L.; Pellegrino, Paul M.

    2015-05-01

    The requirement to detect hazardous materials (i.e., chemical, biological, and explosive) on a host of materials has led to the development of hazard detection systems. These new technologies and their capabilities could have immediate uses for the US military, national security agencies, and environmental response teams in efforts to keep people secure and safe. In particular, due to the increasing use by terrorists, the detection of common explosives and improvised explosive device (IED) materials have motivated research efforts toward detecting trace (i.e., particle level) quantities on multiple commonly encountered surfaces (e.g., textiles, metals, plastics, natural products, and even people). Non-destructive detection techniques can detect trace quantities of explosive materials; however, it can be challenging in the presence of a complex chemical background. One spectroscopic technique gaining increased attention for detection is Raman. One popular explosive precursor material is ammonium nitrate (AN). The material AN has many agricultural applications, however it can also be used in the fabrication of IEDs or homemade explosives (HMEs). In this paper, known amounts of AN will be deposited using an inkjet printer into several different common material surfaces (e.g., wood, human hair, textiles, metals, plastics). The materials are characterized with microscope images and by collecting Raman spectral data. In this report the detection and identification of AN will be demonstrated.

  2. Biotechnological applications of transglutaminases.

    PubMed

    Rachel, Natalie M; Pelletier, Joelle N

    2013-10-22

    In nature, transglutaminases catalyze the formation of amide bonds between proteins to form insoluble protein aggregates. This specific function has long been exploited in the food and textile industries as a protein cross-linking agent to alter the texture of meat, wool, and leather. In recent years, biotechnological applications of transglutaminases have come to light in areas ranging from material sciences to medicine. There has also been a substantial effort to further investigate the fundamentals of transglutaminases, as many of their characteristics that remain poorly understood. Those studies also work towards the goal of developing transglutaminases as more efficient catalysts. Progress in this area includes structural information and novel chemical and biological assays. Here, we review recent achievements in this area in order to illustrate the versatility of transglutaminases.

  3. Antifungal Effect of Non-Woven Textiles Containing Polyhexamethylene Biguanide with Sophorolipid: A Potential Method for Tinea Pedis Prevention

    PubMed Central

    Sanada, Hiromi; Nakagami, Gojiro; Takehara, Kimie; Goto, Taichi; Ishii, Nanase; Yoshida, Satoshi; Ryu, Mizuyuki; Tsunemi, Yuichiro

    2014-01-01

    Tinea pedis is a preventable skin disease common in elderly or diabetic patients. Daily foot washing is effective for prevention, but can be difficult for many patients. Additionally, conventional methods cannot eliminate fungi within the stratum corneum, a common site for fungal invasion. This study investigates the antifungal effects, cytotoxicity, permeability, and efficacy of non-woven textiles containing polyhexamethylene biguanide (PHMB) mixed with sophorolipid. Permeability of PHMB with varying concentrations of sophorolipid was assessed via a cultured skin model. Stratum corneum PHMB concentration was quantified by polyvinylsulphuric acid potassium salt titration and cytotoxicity was assayed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Antifungal effects were evaluated via a new cultured skin/Trichophyton mentagrophytes model, with varying PHMB exposure duration. Clinically-isolated Trichophyton were applied to the feet of four healthy volunteers and then immediately treated with the following methods: washing with soap, a non-woven textile with PHMB, the textile without PHMB, or without washing. Fungal colony forming units (CFUs) were evaluated after one of these treatments were performed. Sophorolipid with various concentrations significantly facilitated PHMB permeation into the stratum corneum, which was not in a dose-dependent manner. Significant PHMB antifungal effects were achieved at 30 min, with low cytotoxicity. Textiles containing PHMB significantly reduced CFU of fungi in healthy volunteers to levels comparable to soap washing. Our results indicate the utility of this product for tinea pedis prevention in clinical settings. PMID:27429269

  4. Antifungal Effect of Non-Woven Textiles Containing Polyhexamethylene Biguanide with Sophorolipid: A Potential Method for Tinea Pedis Prevention.

    PubMed

    Sanada, Hiromi; Nakagami, Gojiro; Takehara, Kimie; Goto, Taichi; Ishii, Nanase; Yoshida, Satoshi; Ryu, Mizuyuki; Tsunemi, Yuichiro

    2014-04-08

    Tinea pedis is a preventable skin disease common in elderly or diabetic patients. Daily foot washing is effective for prevention, but can be difficult for many patients. Additionally, conventional methods cannot eliminate fungi within the stratum corneum, a common site for fungal invasion. This study investigates the antifungal effects, cytotoxicity, permeability, and efficacy of non-woven textiles containing polyhexamethylene biguanide (PHMB) mixed with sophorolipid. Permeability of PHMB with varying concentrations of sophorolipid was assessed via a cultured skin model. Stratum corneum PHMB concentration was quantified by polyvinylsulphuric acid potassium salt titration and cytotoxicity was assayed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Antifungal effects were evaluated via a new cultured skin/Trichophyton mentagrophytes model, with varying PHMB exposure duration. Clinically-isolated Trichophyton were applied to the feet of four healthy volunteers and then immediately treated with the following methods: washing with soap, a non-woven textile with PHMB, the textile without PHMB, or without washing. Fungal colony forming units (CFUs) were evaluated after one of these treatments were performed. Sophorolipid with various concentrations significantly facilitated PHMB permeation into the stratum corneum, which was not in a dose-dependent manner. Significant PHMB antifungal effects were achieved at 30 min, with low cytotoxicity. Textiles containing PHMB significantly reduced CFU of fungi in healthy volunteers to levels comparable to soap washing. Our results indicate the utility of this product for tinea pedis prevention in clinical settings.

  5. Weaving and bonding method to prevent warp and fill distortion

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1997-01-01

    A method to prevent fiber distortion in textile materials employed in a modified weaving process. In a first embodiment, a tacifier in powder form is applied to the yarn and melted while on the fabric. Cool air is then supplied after the tacifier has melted to expedite the solidification of the tacifier. In a second embodiment, a solution form of a tacifier is used by dissolving the tacifier into a solvent that has a high evaporation rate. The solution is then sprayed onto the fabric or fill yarn as each fill yarn is inserted into a shed of the fabric. A third embodiment applies the tacifier in a liquid form that has not been dissolved in a solvent. That is, the tacifier is melted and is sprayed as a liquid onto the fabric or fill yarn as it is being extracted from a fill yarn spool prior to the fill yarn being inserted into the shed of the fabric. A fourth embodiment employs adhesive yarns contained as an integral part of the warp or fill yarn. Additional tacifier material is not required because a matrix is used as the tacifier. The matrix is then locally melted using heating elements on clamping bars or take-up rollers, is cooled, if necessary, and solidified.

  6. Navy Fact File 1984

    DTIC Science & Technology

    1984-10-01

    Textile Fibers/Products Foods , Feeds, Beverages Industrial Supplies Value of Goods Exported ($ billions) 1958 1968 1978 $18.1 billion...character of its government, the soundness of its economy, its industrial efficiency, the development of its internal communications, the quality...decades the United States produced more raw materials than its growing industrial complex could consume. From a raw-materials-surplus-nation we

  7. Advanced stitching head for making stitches in a textile article having variable thickness

    NASA Technical Reports Server (NTRS)

    Thrash, Patrick J. (Inventor); Miller, Jeffrey L. (Inventor); Codos, Richard (Inventor)

    1999-01-01

    A stitching head for a computer numerically controlled stitching machine includes a thread tensioning mechanism for automatically adjusting thread tension according to the thickness of the material being stitched. The stitching head also includes a mechanism for automatically adjusting thread path geometry according to the thickness of the material being stitched.

  8. Comprehensive Planning for Passive Solar Architectural Retrofit

    DTIC Science & Technology

    1980-05-01

    USE WOOD , PLYWOOD, PARTICLE BOARD AND GYPSUM BOARD. USE THE FOLLOWING MATERIALS ONLY IN SMALL QUANTITIES OR WHEN THEY HAVE BEEN RE-CYCLED: STEEL...34 Your selection of good secondary/ finishing materials will, by its nature, be energy conservative. Wood is an excellent secondary material. Other...University, May 1977. 8. Denise Guerin. "Textiles in an Ecological Framework," unpub- lished graduate paper, Michigan State University, June 1976. 9

  9. Production and application of chemical fibers with special properties for manufacturing composite materials and goods of different usage

    NASA Technical Reports Server (NTRS)

    Levit, R.

    1993-01-01

    The development of modern technologies demands the creation of new nonmetallic, fibrous materials with specific properties. The fibers and materials developed by NII 'Chimvolokno', St. Petersburg, can be divided into two groups. The first group includes heat-resistant fibers, fire-resistant fibers, thermotropic fibers, fibers for medical application, and textile structures. The second group contains refractory fibers, chemoresistant and antifriction fibers, fibers on the basis of polyvinyl alcohol, microfiltering films, and paperlike and nonwoven materials. In cooperation with NPO 'Chimvolokno' MYTITSHI, we developed and started producing heat-resistant high-strength fibers on the base of polyhetarearilin and aromatic polyimides (SVM and terlon); heat-resistant fibers on the base of polyemede (aramid); fire-retardant fibers (togilen); chemoresistant and antifriction fibers on the basis of homo and copolymers of polytetrafluoroethylene (polyfen and ftorin); and water soluble, acetylated, and high-modulus fibers from polyvinyl alcohol (vylen). Separate reports will deal with textile structures and thermotropic fibers, as well as with medical fibers. One of the groups of refractory fibers carbon fibers (CF) and the corresponding paperlike nonwoven materials are discussed in detail. Also, composite materials (CM) and their base, which is the subject of the author's research since 1968, is discussed.

  10. Preface

    USDA-ARS?s Scientific Manuscript database

    Agricultural products influence most aspects of life, including food and feed, feedstocks for bio-based products and everyday materials, such as fuels, textiles, and furniture. Advances in technology are necessary to address the future global needs from agriculture. Nanotechnology is a promising fie...

  11. Fire resistant aircraft seat program

    NASA Technical Reports Server (NTRS)

    Fewell, L. A.

    1979-01-01

    Foams, textiles, and thermoformable plastics were tested to determine which materials were fire retardant, and safe for aircraft passenger seats. Seat components investigated were the decorative fabric cover, slip covers, fire blocking layer, cushion reinforcement, and the cushioning layer.

  12. Sorption of Organophosphorus Flame Retardants on Settled Dust

    EPA Science Inventory

    Organophosphorus flame retardants (OPFRs) are widely used as additives in industrial and consumer products such as electrical and electronic products, furniture, plastics, textiles, and building/construction materials. Due to human exposure and potential health effects, OPFRs inc...

  13. Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles.

    PubMed

    Forsman, Nina; Lozhechnikova, Alina; Khakalo, Alexey; Johansson, Leena-Sisko; Vartiainen, Jari; Österberg, Monika

    2017-10-01

    Herein we present a simple method to render cellulosic materials highly hydrophobic while retaining their breathability and moisture buffering properties, thus allowing for their use as functional textiles. The surfaces are coated via layer-by-layer deposition of two natural components, cationic poly-l-lysine and anionic carnauba wax particles. The combination of multiscale roughness, open film structure, and low surface energy of wax colloids, resulted in long-lasting superhydrophobicity on cotton surface already after two bilayers. Atomic force microscopy, interference microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy were used to decouple structural effects from changes in surface energy. Furthermore, the effect of thermal annealing on the coating was evaluated. The potential of this simple and green approach to enhance the use of natural cellulosic materials is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effects of (Oxy-)Fluorination on Various High-Performance Yarns.

    PubMed

    Kruppke, Iris; Bartusch, Matthias; Hickmann, Rico; Hund, Rolf-Dieter; Cherif, Chokri

    2016-08-26

    In this work, typical high-performance yarns are oxy-fluorinated, such as carbon fibers, ultra-high-molecular-weight polyethylene, poly(p-phenylene sulfide) and poly(p-phenylene terephthalamide). The focus is on the property changes of the fiber surface, especially the wetting behavior, structure and chemical composition. Therefore, contact angle, XPS and tensile strength measurements are performed on treated and untreated fibers, while SEM is utilized to evaluate the surface structure. Different results for the fiber materials are observed. While polyethylene exhibits a relevant impact on both surface and bulk properties, polyphenylene terephthalamide and polyphenylene sulfide are only affected slightly by (oxy-)fluorination. The wetting of carbon fiber needs higher treatment intensities, but in contrast to the organic fibers, even its textile-physical properties are enhanced by the treatment. Based on these findings, the capability of (oxy-)fluorination to improve the adhesion of textiles in fiber-reinforced composite materials can be derived.

  15. Synthesis and Characterization of Reactive Powder Concrete for its Application on Thermal Insulation Panels

    NASA Astrophysics Data System (ADS)

    Chozas, V.; Larraza, Í.; Vera-Agullo, J.; Williams-Portal, N.; Mueller, U.; Da Silva, N.; Flansbjer, M.

    2015-11-01

    This paper describes the synthesis and characterization of a set of textile reinforced reactive powder concrete (RPC) mixes that have been prepared in the framework of the SESBE project which aims to develop facade panels for the building envelope. In order to reduce the environmental impact, high concentration of type I and II mineral additions were added to the mixtures (up to 40% of cement replacement). The mechanical properties of the materials were analysed showing high values of compression strength thus indicating no disadvantages in the compression mechanical performance (∼140 MPa) and modulus of elasticity. In order to enable the use of these materials in building applications, textile reinforcement was introduced by incorporating layers of carbon fibre grids into the RPC matrix. The flexural performance of these samples was analysed showing high strength values and suitability for their further utilization.

  16. Investigation of the electrical characteristics of electrically conducting yarns and fabrics

    NASA Astrophysics Data System (ADS)

    Akbarov, R. D.; Baymuratov, B. H.; Akbarov, D. N.; Ilhamova, M.

    2017-11-01

    Electro-conductive textile materials and products are used presently giving solutions to the problems, related to static electricity, electromagnetic shielding and electromagnetic radiation. Thus a study of their electro-physical characteristics, character of conductivity, possibility of forecasting of electric parameters etc has a substantial value. This work shows the possibility of production electro-conducting textile materials with stable anti-static properties by introduction of electro-conducting yarn into the structure of fabrics. The results of the research, directed to the study of the electro-physical characteristics of electroconducting yarn and fabrics, are influenced by the frequent washing of polyester fabrics containing the different amounts of electro-conducting filaments in the composition. This article reviews the results of the related research, of the electrical characteristics of the yarn and fabric, of the effect of multiple water treatments on the electrical properties of polyester fabrics, containing in their composition different amounts of electrically conductive yarns.

  17. Large-scale, thick, self-assembled, nacre-mimetic brick-walls as fire barrier coatings on textiles

    NASA Astrophysics Data System (ADS)

    Das, Paramita; Thomas, Helga; Moeller, Martin; Walther, Andreas

    2017-01-01

    Highly loaded polymer/clay nanocomposites with layered structures are emerging as robust fire retardant surface coatings. However, time-intensive sequential deposition processes, e.g. layer-by-layer strategies, hinders obtaining large coating thicknesses and complicates an implementation into existing technologies. Here, we demonstrate a single-step, water-borne approach to prepare thick, self-assembling, hybrid fire barrier coatings of sodium carboxymethyl cellulose (CMC)/montmorillonite (MTM) with well-defined, bioinspired brick-wall nanostructure, and showcase their application on textile. The coating thickness on the textile is tailored using different concentrations of CMC/MTM (1-5 wt%) in the coating bath. While lower concentrations impart conformal coatings of fibers, thicker continuous coatings are obtained on the textile surface from highest concentration. Comprehensive fire barrier and fire retardancy tests elucidate the increasing fire barrier and retardancy properties with increasing coating thickness. The materials are free of halogen and heavy metal atoms, and are sourced from sustainable and partly even renewable building blocks. We further introduce an amphiphobic surface modification on the coating to impart oil and water repellency, as well as self-cleaning features. Hence, our study presents a generic, environmentally friendly, scalable, and one-pot coating approach that can be introduced into existing technologies to prepare bioinspired, thick, fire barrier nanocomposite coatings on diverse surfaces.

  18. Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode.

    PubMed

    Vidal, Jorge; Villegas, Loreto; Peralta-Hernández, Juan M; Salazar González, Ricardo

    2016-01-01

    Application of an electrocoagulation process (EC) for the elimination of AB194 textile dye from synthetic and textile wastewater (effluent) contaminated with AB194 dye, was carried out using aluminum anodes at two different initial pH values. Tafel studies in the presence and absence of the dye were performed. The aluminum species formed during the electrolysis were quantified by atomic absorption, and the flocs formed in the process were analyzed by HPLC-MS. Complete removal of AB194 from 1.0 L of solution was achieved applying low densities current at initial pH values of 4.0 and 8.0. The removal of AB194 by EC was possible with a short electrolysis time, removing practically 100% of the total organic carbon content and chemical oxygen demand. The final result was completely discolored water lacking dye and organic matter. An effluent contaminated with 126 mg L(-1) AB194 dye from a Chilean textile industry was also treated by EC under optimized experimental conditions, yielding discolored water and considerably decreasing the presence of organic compounds (dye + dyeing additives), with very low concentrations of dissolved Al(3+). Analysis of flocs showed the presence of the original dye without changes in its chemical structure.

  19. Process industries - graphic arts, paint, plastics, and textiles: all cousins under the skin

    NASA Astrophysics Data System (ADS)

    Simon, Frederick T.

    2002-06-01

    The origin and selection of colors in the process industries is different depending upon how the creative process is applied and what are the capabilities of the manufacturing process. The fashion industry (clothing) with its supplier of textiles is the leader of color innovation. Color may be introduced into textile products at several stages in the manufacturing process from fiber through yarn and finally into fabric. The paint industry is divided into two major applications: automotive and trades sales. Automotive colors are selected by stylists who are in the employ of the automobile manufacturers. Trade sales paint on the other hand can be decided by paint manufactureres or by invididuals who patronize custom mixing facilities. Plastics colors are for the most part decided by the industrial designers who include color as part of the design. Graphic Arts (painting) is a burgeoning industry that uses color in image reproduction and package design. Except for text, printed material in color today has become the norm rather than an exception.

  20. Enhancing the functionality of cotton fabric by physical and chemical pre-treatments: A comparative study.

    PubMed

    Gargoubi, Sondes; Tolouei, Ranna; Chevallier, Pascale; Levesque, Lucie; Ladhari, Neji; Boudokhane, Chedly; Mantovani, Diego

    2016-08-20

    Recently, antimicrobial and decontaminating textiles, such as cotton a natural carbohydrate polymer, are generating more attention. Plant materials used for natural dyes are expected to impart biofunctional properties and high added valued functional textiles. In the current study, surface modification of cotton to maximize the dye amount on the surface has been investigated. Physical modification using nitrogen-hydrogen plasma, chemical modification using chitosan and chemical modification using dopamine as biopolymers imparting amino groups were explored. Furthermore, dye exhaustion of curcumin, as a natural functional dye has been studied. Dye stability tests were also performed after fabric washing using hospital washing protocol to predict the durability of the functionalizations. The results demonstrated that cotton surfaces treated with dopamine exhibit a high level of dye uptake (78%) and a good washing fastness. The use of non-toxic and natural additives during cotton finishing process could give the opportunity of cradle to cradle design for antimicrobial textile industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Smart textiles: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Cherenack, Kunigunde; van Pieterson, Liesbeth

    2012-11-01

    Smart textiles research represents a new model for generating creative and novel solutions for integrating electronics into unusual environments and will result in new discoveries that push the boundaries of science forward. A key driver for smart textiles research is the fact that both textile and electronics fabrication processes are capable of functionalizing large-area surfaces at very high speeds. In this article we review the history of smart textiles development, introducing the main trends and technological challenges faced in this field. Then, we identify key challenges that are the focus of ongoing research. We then proceed to discuss fundamentals of smart textiles: textile fabrication methods and textile interconnect lines, textile sensor, and output device components and integration of commercial components into textile architectures. Next we discuss representative smart textile systems and finally provide our outlook over the field and a prediction for the future.

  2. A novel textile characterisation approach using an embedded sensor system and segmented textile manipulation

    NASA Astrophysics Data System (ADS)

    Fial, Julian; Carosella, Stefan; Langheinz, Mario; Wiest, Patrick; Middendorf, Peter

    2018-05-01

    This paper investigates the application of sensors on carbon fibre textiles for the purpose of textile characterisation and draping process optimisation. The objective is to analyse a textile's condition during the draping operation and actively manipulate boundary conditions in order to create better preform qualities. Various realisations of textile integrated sensors are presented, focusing on the measurement of textile strain. Furthermore, a complex textile characterisation approach is presented where these sensors shall be implemented in.

  3. Aerated treatment pond technology with biofilm promoting mats for the bioremediation of benzene, MTBE and ammonium contaminated groundwater.

    PubMed

    Jechalke, Sven; Vogt, Carsten; Reiche, Nils; Franchini, Alessandro G; Borsdorf, Helko; Neu, Thomas R; Richnow, Hans H

    2010-03-01

    A novel aerated treatment pond for enhanced biodegradation of groundwater contaminants was tested under field conditions. Coconut fibre and polypropylene textiles were used to encourage the development of contaminant-degrading biofilms. Groundwater contaminants targeted for removal were benzene, methyl tert-butyl ether (MTBE) and ammonium. Here, we present data from the first 14 months of operation and compare contaminant removal rates, volatilization losses, and biofilm development in one pond equipped with coconut fibre to another pond with polypropylene textiles. Oxygen concentrations were constantly monitored and adjusted by automated aeration modules. A natural transition from anoxic to oxic zones was simulated to minimize the volatilization rate of volatile organic contaminants. Both ponds showed constant reductions in benzene concentrations from 20 mg/L at the inflow to about 1 microg/L at the outflow of the system. A dynamic air chamber (DAC) measurement revealed that only 1% of benzene loss was due to volatilization, and suggests that benzene loss was predominantly due to aerobic mineralization. MTBE concentration was reduced from around 4 mg/L at the inflow to 3.4-2.4 mg/L in the system effluent during the first 8 months of operation, and was further reduced to 1.2 mg/L during the subsequent 6 months of operation. Ammonium concentrations decreased only slightly from around 59 mg/L at the inflow to 56 mg/L in the outflow, indicating no significant nitrification during the first 14 months of continuous operation. Confocal laser scanning microscopy (CLSM) demonstrated that microorganisms rapidly colonized both the coconut fibre and polypropylene textiles. Microbial community structure analysis performed using denaturing gradient gel electrophoresis (DGGE) revealed little similarity between patterns from water and textile samples. Coconut textiles were shown to be more effective than polypropylene fibre textiles for promoting the recruitment and development of MTBE-degrading biofilms. Biofilms of both textiles contained high numbers of benzene metabolizing bacteria suggesting that these materials provide favourable growth conditions for benzene degrading microorganisms. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Mineralization of the textile dye acid yellow 42 by solar photoelectro-Fenton in a lab-pilot plant.

    PubMed

    Espinoza, Carolina; Romero, Julio; Villegas, Loreto; Cornejo-Ponce, Lorena; Salazar, Ricardo

    2016-12-05

    A complete mineralization of a textile dye widely used in the Chilean textile industry, acid yellow 42 (AY42), was studied. Degradation was carried out in an aqueous solution containing 100mgL(-1) of total organic carbon (TOC) of dye using the advanced solar photoelectro-Fenton (SPEF) process in a lab-scale pilot plant consisting of a filter press cell, which contains a boron doped diamond electrode and an air diffusion cathode (BDD/air-diffusion cell), coupled with a solar photoreactor for treat 8L of wastewater during 270min of electrolysis. The main results obtained during the degradation of the textile dye were that a complete transformation to CO2 depends directly on the applied current density, the concentration of Fe(2+) used as catalyst, and the solar radiation intensity. The elimination of AY42 and its organic intermediates was due to hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton's reaction between electrogenerated H2O2 and added Fe(2+). The application of solar radiation in the process (SPEF) yield higher current efficiencies and lower energy consumptions than electro-Fenton (EF) and electro-oxidation with electrogenerated H2O2 (E OH2O2) by the additional production of hydroxyl radicals from the photolysis of Fe(III) hydrated species and the photodecomposition of Fe(III) complexes with organic intermediates. Moreover, some products and intermediates formed during mineralization of dye, such as inorganic ions, carboxylic acids and aromatic compounds were determined by photometric and chromatographic methods. An oxidation pathway is proposed for the complete conversion to CO2. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Making Complex Electrically Conductive Patterns on Cloth

    NASA Technical Reports Server (NTRS)

    Chu, Andrew; Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Scully, Robert C.; Trevino, Robert

    2008-01-01

    A method for automated fabrication of flexible, electrically conductive patterns on cloth substrates has been demonstrated. Products developed using this method, or related prior methods, are instances of a technology known as 'e-textiles,' in which electrically conductive patterns ar formed in, and on, textiles. For many applications, including high-speed digital circuits, antennas, and radio frequency (RF) circuits, an e-textile method should be capable of providing high surface conductivity, tight tolerances for control of characteristic impedances, and geometrically complex conductive patterns. Unlike prior methods, the present method satisfies all three of these criteria. Typical patterns can include such circuit structures as RF transmission lines, antennas, filters, and other conductive patterns equivalent to those of conventional printed circuits. The present method overcomes the limitations of the prior methods for forming the equivalent of printed circuits on cloth. A typical fabrication process according to the present method involves selecting the appropriate conductive and non-conductive fabric layers to build the e-textile circuit. The present method uses commercially available woven conductive cloth with established surface conductivity specifications. Dielectric constant, loss tangent, and thickness are some of the parameters to be considered for the non-conductive fabric layers. The circuit design of the conductive woven fabric is secured onto a non-conductive fabric layer using sewing, embroidery, and/or adhesive means. The portion of the conductive fabric that is not part of the circuit is next cut from the desired circuit using an automated machine such as a printed-circuit-board milling machine or a laser cutting machine. Fiducials can be used to align the circuit and the cutting machine. Multilayer circuits can be built starting with the inner layer and using conductive thread to make electrical connections between layers.

  6. A robust method for determining water-extractable alkylphenol polyethoxylates in textile products by reaction-based headspace gas chromatography.

    PubMed

    Zhang, Shu-Xin; Chai, Xin-Sheng; Huang, Bo-Xi; Mai, Xiao-Xia

    2015-08-07

    Alkylphenol polyethoxylates (APEO), surfactants used in the production of textiles, have the potential to move from the fabric to the skin of the person wearing the clothes, posing an inherent risk of adverse health consequences. Therefore, the textile industry needs a fast, robust method for determining aqueous extractable APEO in fabrics. The currently-favored HPLC methods are limited by the presence of a mixture of analytes (due to the molecular weight distribution) and a lack of analytical standards for quantifying results. As a result, it has not been possible to reach consensus on a standard method for the determination of APEO in textiles. This paper addresses these limitations through the use of reaction-based head space-gas chromatography (HS-GC). Specifically, water is used to simulate body sweat and extract APEO. HI is then used to react the ethoxylate chains to depolymerize the chains into iodoethane that is quantified through HS-GC, providing an estimate of the average amount of APEO in the clothing. Data are presented to justify the optimal operating conditions; i.e., water extraction at 60°C for 1h and reaction with a specified amount of HI in the headspace vial at 135°C for 4h. The results show that the HS-GC method has good precision (RSD<10%) and good accuracy (recoveries from 95 to 106%) for the quantification of APEO content in textile and related materials. As such, the method should be a strong candidate to become a standard method for such determinations. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Facing the rain after the phase out: Performance evaluation of alternative fluorinated and non-fluorinated durable water repellents for outdoor fabrics.

    PubMed

    Schellenberger, S; Gillgard, P; Stare, A; Hanning, A; Levenstam, O; Roos, S; Cousins, I T

    2018-02-01

    Fluorinated durable water repellent (DWR) agents are used to obtain water and stain repellent textiles. Due to the on-going phase-out of DWRs based on side-chain fluorinated polymers (SFP) with "long" perfluoroalkyl chains, the textile industry lacks suitable alternatives with comparable material characteristics. The constant development and optimization of SFPs for textile applications initiated more than half a century ago has resulted in a robust and very efficient DWR-technology and textiles with exceptional hydro- and oleo-phobic properties. The industry is now in the predicament that the long-chain SFPs with the best technical performance have undesirable toxicological and environmental behaviour. This study provides a comprehensive overview of the technical performance of presently available fluorinated and non-fluorinated DWRs as part of a chemical alternatives assessment (CAA). The results are based on a study with synthetic outdoor fabrics treated with alternative DWRs and tested for repellency using industrial standard and complementary methods. Using this approach, the complex structure-property relationships of DWR-polymers could be explained on a molecular level. Both short-chain SFPs and non-fluorinated DWRs showed excellent water repellency and durability in some cases while short-chain SFPs were the more robust of the alternatives to long-chain SFPs. A strong decline in oil repellency and durability with perfluoroalkyl chain length was shown for SFP DWRs. Non-fluorinated alternatives were unable to repel oil, which might limit their potential for substitution in textile application that require repellency towards non-polar liquids. Copyright © 2017. Published by Elsevier Ltd.

  8. Acute dermal toxicity and sensitization studies of novel nano-enhanced UV absorbers.

    PubMed

    Piasecka-Zelga, Joanna; Zelga, Piotr; Górnicz, Magdalena; Strzelczyk, Paweł; Sójka-Ledakowicz, Jadwiga

    2015-01-01

    Many employees working outside are exposed to the harmful effects of UV radiation. A growing problem is also sensitization to textile materials and allergic reactions to active compounds. Groups of inorganic UV blockers with nanoparticles may provide superior properties over organic UV absorbers with relatively less potential of provoking dermatitis. To assess acute dermal irritation and sensitization of nano UV absorbers. Five UV absorbers with nano-sized particles (Z11, TiO2 - SiO2 [TDPK], TK44, TK11, A8G) and 2 vehicles (paste-based on 10% PEG, and dispersion with 1% HEC) were tested. Acute dermal irritation was tested using group of 3 rabbits for each absorber. The sensitization study was carried out on groups of 15 guinea pigs for each tested textile with a UV absorber showing an Ultraviolet Protection Factor (UPF)>40. This research was designed according to OECD Test Guideline No. 404 and 406, and 21 rabbits and 60 guinea pigs were used in the study. In acute dermal irritation, Z11 and A8G modifiers and the analyzed paste gave results of 0.047 to 0.33 which classifies them as barely perceptible irritants, whereas the other analyzed modifiers and dispersion gave results of 0.00 and were classified as nonirritating. Only the textile with TK 11 did not have UPF>40. The analyzed barrier materials were classified as nonsenitizers (TDPK, A8G) or mild sensitizers (TK44, Z11). None of the analyzed materials or modifiers induced major skin reactions in animals. Therefore, they present low risk of provoking skin reactions in humans.

  9. An experimental investigation of the early dynamic impact behaviour of textile armour systems: Decoupling material from system response

    NASA Astrophysics Data System (ADS)

    Cepus, Elvis

    This work focuses on the early impact response of textile armour systems. A relatively new data acquisition system, the Enhanced Laser Velocity Sensor (ELVS), was refined and used to generate a large database of results for a 5.57 mm diameter, 3 gram, non-deforming projectile impacting single-ply configurations of Ballistic Nylon, two weaves of Kevlar 129, and Zylon (PBO) over a range of velocities from 61 m/s to 248 m/s. In addition, one Kevlar 129 material was tested in configurations of 2, 3, 4, 8 and 16 plies over a range of strike velocities from 90 m/s to 481 m/s. ELVS results consisted of high-resolution timehistories of displacement, velocity and energy for each system tested. The strain wave velocity and ballistic performance of each system was also determined. Results taken from during the impact event were analysed up to just prior to the strain-wave rebounding from the boundary and returning to the impact point---effectively removing boundary influences. Regardless of system type, a constant rate of energy absorption within the pre-rebound timeframe was found to exist, which scales with the strike velocity to approximately the 8/3-power. Well-established single fibre theory was modified and applied to woven materials. It was assumed that three primary energy absorption mechanisms exist; elastic strain, in-plane kinetic and out-of-plane kinetic. This simple model yields the experimentally observed 8/3 exponent and parametrically predicts the difference between the different single-ply material systems, but underpredicts the observed behaviour by a factor of 2 and cannot address the performance reduction with increasing ply count. This combined experimental and analytical work confirms the long-held assumption that single fibre wave physics is applicable to multi-ply woven systems. More significantly, for the first time, it decouples material response from overall system response and provides the experimental tools and methodology required to analyse textile armour systems in a scientific manner.

  10. Sorption of Organophosphorus Flame-Retardants on Settled Dust

    EPA Science Inventory

    Dust is an important sink for indoor air pollutants, such as organophosphorus flame-retardants (OPFRs) that are used as additives in industrial and consumer products including electrical and electronic products, furniture, plastics, textile, and building/construction materials. T...

  11. Sorption of Organophosphorus Flame Retardants (OPFRs) on Settled Dust

    EPA Science Inventory

    Organophosphorus flame retardants (OPFRs) are widely used as additives in industrial and consumer products such as electrical and electronic products, furniture, plastics, textiles, and building/construction materials. Due to human exposure and potential health effects, OPFRs inc...

  12. Damage and failure modelling of hybrid three-dimensional textile composites: a mesh objective multi-scale approach

    PubMed Central

    Patel, Deepak K.

    2016-01-01

    This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391–1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre–matrix concentric cylinder model is extended to fibre and (N−1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1–48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware. Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1572). This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242294

  13. Wearable Textile Platform for Assessing Stroke Patient Treatment in Daily Life Conditions

    PubMed Central

    Lorussi, Federico; Carbonaro, Nicola; De Rossi, Danilo; Paradiso, Rita; Veltink, Peter; Tognetti, Alessandro

    2016-01-01

    Monitoring physical activities during post-stroke rehabilitation in daily life may help physicians to optimize and tailor the training program for patients. The European research project INTERACTION (FP7-ICT-2011-7-287351) evaluated motor capabilities in stroke patients during the recovery treatment period. We developed wearable sensing platform based on the sensor fusion among inertial, knitted piezoresistive sensors and textile EMG electrodes. The device was conceived in modular form and consists of a separate shirt, trousers, glove, and shoe. Thanks to the novel fusion approach it has been possible to develop a model for the shoulder taking into account the scapulo-thoracic joint of the scapular girdle, considerably improving the estimation of the hand position in reaching activities. In order to minimize the sensor set used to monitor gait, a single inertial sensor fused with a textile goniometer proved to reconstruct the orientation of all the body segments of the leg. Finally, the sensing glove, endowed with three textile goniometers and three force sensors showed good capabilities in the reconstruction of grasping activities and evaluating the interaction of the hand with the environment, according to the project specifications. This paper reports on the design and the technical evaluation of the performance of the sensing platform, tested on healthy subjects. PMID:27047939

  14. 19 CFR 10.26 - Articles assembled or processed in a beneficiary country in whole of U.S. components or...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) that are a product of the United States; and (3) Neither the fabricated components, materials or... footwear and parts of footwear, that are classifiable in an HTSUS subheading which carries a textile and....191(b)(1); and (3) A component, material, ingredient, or article shall be deemed to have not entered...

  15. 19 CFR 10.26 - Articles assembled or processed in a beneficiary country in whole of U.S. components or...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) that are a product of the United States; and (3) Neither the fabricated components, materials or... footwear and parts of footwear, that are classifiable in an HTSUS subheading which carries a textile and....191(b)(1); and (3) A component, material, ingredient, or article shall be deemed to have not entered...

  16. 19 CFR 10.26 - Articles assembled or processed in a beneficiary country in whole of U.S. components or...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) that are a product of the United States; and (3) Neither the fabricated components, materials or... footwear and parts of footwear, that are classifiable in an HTSUS subheading which carries a textile and....191(b)(1); and (3) A component, material, ingredient, or article shall be deemed to have not entered...

  17. 19 CFR 10.26 - Articles assembled or processed in a beneficiary country in whole of U.S. components or...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) that are a product of the United States; and (3) Neither the fabricated components, materials or... footwear and parts of footwear, that are classifiable in an HTSUS subheading which carries a textile and....191(b)(1); and (3) A component, material, ingredient, or article shall be deemed to have not entered...

  18. Acyclic N-Halamine Polymeric Biocidal Films

    DTIC Science & Technology

    2010-07-01

    surfaces were rechargeable upon chlorine loss. antimicrobial, bacteria, biocidal coatings, biofilms , N-halamine U U U UU 14 Joe Wander 850 283-6240...halamine, biofilms , antimicrobial. INTRODUCTION A variety of antimicrobial organic materials, including phosp ho- nium salts [1-4], quaternary ammonium...Cotton Cellulose , J. Appl. Polym. Sci., 81: 617-624. 21. Sun, Y. and Sun, G. (2002). Durable and Regenerable Antimicrobial Textile Materials Prepared

  19. Laser light-section sensor automating the production of textile-reinforced composites

    NASA Astrophysics Data System (ADS)

    Schmitt, R.; Niggemann, C.; Mersmann, C.

    2009-05-01

    Due to their advanced weight-specific mechanical properties, the application of fibre-reinforced plastics (FRP) has been established as a key technology in several engineering areas. Textile-based reinforcement structures (Preform) in particular achieve a high structural integrity due to the multi-dimensional build-up of dry-fibre layers combined with 3D-sewing and further textile processes. The final composite parts provide enhanced damage tolerances through excellent crash-energy absorbing characteristics. For these reasons, structural parts (e.g. frame) will be integrated in next generation airplanes. However, many manufacturing processes for FRP are still involving manual production steps without integrated quality control. The non-automated production implies considerable process dispersion and a high rework rate. Before the final inspection there is no reliable information about the production status. This work sets metrology as the key to automation and thus an economically feasible production, applying a laser light-section sensor system (LLSS) to measure process quality and feed back the results to close control loops of the production system. The developed method derives 3D-measurements from height profiles acquired by the LLSS. To assure the textile's quality a full surface scan is conducted, detecting defects or misalignment by comparing the measurement results with a CAD model of the lay-up. The method focuses on signal processing of the height profiles to ensure a sub-pixel accuracy using a novel algorithm based on a non-linear least-square fitting to a set of sigmoid functions. To compare the measured surface points to the CAD model, material characteristics are incorporated into the method. This ensures that only the fibre layer of the textile's surface is included and gaps between the fibres or overlaying seams are neglected. Finally, determining the uncertainty in measurement according to the GUM-standard proofed the sensor system's accuracy. First tests under industrial conditions showed that applying this sensor after the drapery of each textile layer reduces the scrap quota by approximately 30%.

  20. Multifunctional smart composites with integrated carbon nanotube yarn and sheet

    NASA Astrophysics Data System (ADS)

    Chauhan, Devika; Hou, Guangfeng; Ng, Vianessa; Chaudhary, Sumeet; Paine, Michael; Moinuddin, Khwaja; Rabiee, Massoud; Cahay, Marc; Lalley, Nicholas; Shanov, Vesselin; Mast, David; Liu, Yijun; Yin, Zhangzhang; Song, Yi; Schulz, Mark

    2017-04-01

    Multifunctional smart composites (MSCs) are materials that combine the good electrical and thermal conductivity, high tensile and shear strength, good impact toughness, and high stiffness properties of metals; the light weight and corrosion resistance properties of composites; and the sensing or actuation properties of smart materials. The basic concept for MSCs was first conceived by Daniel Inman and others about 25 years ago. Current laminated carbon and glass fiber polymeric composite materials have high tensile strength and are light in weight, but they still lack good electrical and thermal conductivity, and they are sensitive to delamination. Carbon nanotube yarn and sheets are lightweight, electrically and thermally conductive materials that can be integrated into laminated composite materials to form MSCs. This paper describes the manufacturing of high quality carbon nanotube yarn and sheet used to form MSCs, and integrating the nanotube yarn and sheet into composites at low volume fractions. Various up and coming technical applications of MSCs are discussed including composite toughening for impact and delamination resistance; structural health monitoring; and structural power conduction. The global carbon nanotube overall market size is estimated to grow from 2 Billion in 2015 to 5 Billion by 2020 at a CAGR of 20%. Nanotube yarn and sheet products are predicted to be used in aircraft, wind machines, automobiles, electric machines, textiles, acoustic attenuators, light absorption, electrical wire, sporting equipment, tires, athletic apparel, thermoelectric devices, biomedical devices, lightweight transformers, and electromagnets. In the future, due to the high maximum current density of nanotube conductors, nanotube electromagnetic devices may also become competitive with traditional smart materials in terms of power density.

  1. UV-light assisted patterned metallization of textile fabrics

    NASA Astrophysics Data System (ADS)

    Bahners, Thomas; Gebert, Beate; Prager, Andrea; Hartmann, Nils; Hagemann, Ulrich; Gutmann, Jochen S.

    2018-04-01

    A UV-assisted process allows full-faced or local deposition of silver domains on textiles made of natural as well as synthetic fibers, which act as nuclei for subsequent galvanic metallization. SEM and XPS analyses indicate that the process generates particulate depositions - particles, aggregates - of elementary silver. Masking the UV irradiation confines silver deposition strictly to the exposed areas thus allowing patterning. Adhesion of the deposited silver is high on the studied natural fiber cotton and polyamide fibers. Adhesion on smooth and chemically inert synthethic fibers such as, e.g., poly(ethylene terephthalate) or para- and meta-aramids could be enhanced by finishing with poly(vinylamine) thus providing complex-forming amino groups. Although the process does not deposit a closed, electrically conducting layer, all studied samples could be metallized by galvanization. The resulting metal coatings exhibit high conductivity and wash stability. Following a patterned silver deposition, the subsequent galvanic metallization produced conductive patterns of identical geometry thus opening an avenue towards printed circuits on textile fabrics.

  2. Treatment and reuse of textile wastewaters by mild solar photo-Fenton in the presence of humic-like substances.

    PubMed

    Negueroles, P G; Bou-Belda, E; Santos-Juanes, L; Amat, A M; Arques, A; Vercher, R F; Monllor, P; Vicente, R

    2017-05-01

    In this paper, the possibility of reusing textile effluents for new dyeing baths has been investigated. For this purpose, different trichromies using Direct Red 80, Direct Blue 106, and Direct Yellow 98 on cotton have been used. Effluents have been treated by means of a photo-Fenton process at pH 5. Addition of humic-like substances isolated form urban wastes is necessary in order to prevent iron deactivation because of the formation of non-active iron hydroxides. Laboratory-scale experiments carried out with synthetic effluents show that comparable results were obtained when using as solvent water treated by photo-Fenton with SBO and fresh deionized water. Experiments were scaled up to pilot plant illuminated under sunlight, using in this case a real textile effluent. Decoloration of the effluent could be achieved after moderate irradiation and cotton dyed with this water presented similar characteristics as when deionized water was used.

  3. The novel measuring method for screening and assessing chromium content in clothes and shoes materials

    NASA Astrophysics Data System (ADS)

    Salerno-Kochan, R.

    2017-10-01

    The aim of this paper is to propose the bioindicative measuring method for screening and assessing the safety of textile and leather materials in relation to chemical threats. This method is based on toxicological assay in which Tetrahymena pyriformis, unicellular organism belonging to protozoans, is used as a test organism. For the realization of the research goal the sensitivity threshold of test organisms to chromium(VI) solutions was identified. The changes in cell development of test organisms in chromium solutions were registered by colorimetric measurements in the presence of alamarBlue® cell viability reagent. Empirical data enabled to fit logistic curves on the base of which the level of chromium toxicity was estimated. In the second step, harmfulness of aqueous extracts obtained from textile and leather samples containing chromium in relation to test organisms was evaluated. The performed research confirmed the high efficiency of the proposed method in screening and assessing chromium content in clothes and shoes materials and showed possibilities of using it in safety assessment of products with regard to chemical risks.

  4. Application of Acoustic Emission on the Characterization of Fracture in Textile Reinforced Cement Laminates

    PubMed Central

    Blom, J.; Wastiels, J.; Aggelis, D. G.

    2014-01-01

    This work studies the acoustic emission (AE) behavior of textile reinforced cementitious (TRC) composites under flexural loading. The main objective is to link specific AE parameters to the fracture mechanisms that are successively dominating the failure of this laminated material. At relatively low load, fracture is initiated by matrix cracking while, at the moment of peak load and thereafter, the fiber pull-out stage is reached. Stress modeling of the material under bending reveals that initiation of shear phenomena can also be activated depending on the shape (curvature) of the plate specimens. Preliminary results show that AE waveform parameters like frequency and energy are changing during loading, following the shift of fracturing mechanisms. Additionally, the AE behavior of specimens with different curvature is very indicative of the stress mode confirming the results of modeling. Moreover, AE source location shows the extent of the fracture process zone and its development in relation to the load. It is seen that AE monitoring yields valuable real time information on the fracture of the material and at the same time supplies valuable feedback to the stress modeling. PMID:24605050

  5. Application of acoustic emission on the characterization of fracture in textile reinforced cement laminates.

    PubMed

    Blom, J; Wastiels, J; Aggelis, D G

    2014-01-01

    This work studies the acoustic emission (AE) behavior of textile reinforced cementitious (TRC) composites under flexural loading. The main objective is to link specific AE parameters to the fracture mechanisms that are successively dominating the failure of this laminated material. At relatively low load, fracture is initiated by matrix cracking while, at the moment of peak load and thereafter, the fiber pull-out stage is reached. Stress modeling of the material under bending reveals that initiation of shear phenomena can also be activated depending on the shape (curvature) of the plate specimens. Preliminary results show that AE waveform parameters like frequency and energy are changing during loading, following the shift of fracturing mechanisms. Additionally, the AE behavior of specimens with different curvature is very indicative of the stress mode confirming the results of modeling. Moreover, AE source location shows the extent of the fracture process zone and its development in relation to the load. It is seen that AE monitoring yields valuable real time information on the fracture of the material and at the same time supplies valuable feedback to the stress modeling.

  6. A Stitch in Time: Gender Issues Explored through Contemporary Textiles Practice in a Sixth Form College

    ERIC Educational Resources Information Center

    Hyde, Wendy

    2007-01-01

    This article discusses, contextualises and locates in contemporary theory, an autobiographical case study of an artist-teacher in the "learning community" of a Sixth Form College art department. It reflects on the educational potential of enabling teachers of art and their students to investigate issues of culture and identity through engaging…

  7. Conformal dual-band textile antenna with metasurface for WBAN application

    NASA Astrophysics Data System (ADS)

    Giman, Fatin Nabilah; Soh, Ping Jack; Jamlos, Mohd Faizal; Lago, Herwansyah; Al-Hadi, Azremi Abdullah; Abdulmalek, Mohamedfareq; Abdulaziz, Nidhal

    2017-01-01

    This paper presents the design of a dual-band wearable planar slotted dipole integrated with a metasurface. It operates in the 2.45 GHz (lower) and 5.8 GHz (upper) bands and made fully using textiles to suit wireless body area network applications. The metasurface in the form of an artificial magnetic conductor (AMC) plane is formed using a rectangular patch incorporated with a diamond-shaped slot to generate dual-phase response. This plane is then integrated with the planar slotted dipole antenna prior to its assessment in free space and bent configurations. Simulations and measurements indicated a good agreement, and the antenna featured an impedance bandwidth of 164 and 592 MHz in the lower and upper band, respectively. The presence of the AMC plane also minimized the backward radiation toward the human body and enhanced realized gains by up to 3.01 and 7.04 dB in the lower and upper band.

  8. Perfluoroalkyl and polyfluoroalkyl substances in consumer products.

    PubMed

    Kotthoff, Matthias; Müller, Josef; Jürling, Heinrich; Schlummer, Martin; Fiedler, Dominik

    2015-10-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are used in a wide range of products of all day life. Due to their toxicological potential, an emerging focus is directed towards their exposure to humans. This study investigated the PFAS load of consumer products in a broad perspective. Perfluoroalkyl sulfonic acids (C4, C6-C8, C10-PFSA), carboxylic acids (C4-C14-PFCA) and fluorotelomer alcohols (4:2, 6:2; 8:2 and 10:2 FTOH) were analysed in 115 random samples of consumer products including textiles (outdoor materials), carpets, cleaning and impregnating agents, leather samples, baking and sandwich papers, paper baking forms and ski waxes. PFCA and PFSA were analysed by HPLC-MS/MS, whereas FTOH were detected by GC/CI-MS. Consumer products such as cleaning agents or some baking and sandwich papers show low or negligible PFSA and PFCA contents. On the other hand, high PFAS levels were identified in ski waxes (up to about 2000 μg/kg PFOA), leather samples (up to about 200 μg/kg PFBA and 120 μg/kg PFBS), outdoor textiles (up to 19 μg/m(2) PFOA) and some other baking papers (up to 15 μg/m(2) PFOA). Moreover, some test samples like carpet and leather samples and outdoor materials exceeded the EU regulatory threshold value for PFOS (1 μg/m(2)). A diverse mixture of PFASs can be found in consumer products for all fields of daily use in varying concentrations. This study proves the importance of screening and monitoring of consumer products for PFAS loads and the necessity for an action to regulate the use of PFASs, especially PFOA, in consumer products.

  9. Estimation of the production, consumption, and atmospheric emissions of pentabrominated diphenyl ether in Europe between 1970 and 2000.

    PubMed

    Prevedouros, K; Jones, K C; Sweetman, A J

    2004-06-15

    A European consumption and atmospheric emissions inventory for pentabrominated diphenyl ethers (PeBDEs) is derived for the period 1970-2000. This time frame has seen a rise in the widespread usage of PeBDE, followed by more recent restrictions/bans. It is estimated that a total of 3000-5000 t of PeBDEs was produced in Europe during this period, with a further 9000-10,000 t imported in finished articles. The main uses for PeBDE are to flame retard consumer products as well as in packaging and solid elastomers. Their major stocks are predicted to be in polyurethane (flexible) foams with up to 30% in cars; more than 10% in furniture foam; and the rest in textiles, building material, packaging, and solid applications. Release of PeBDEs from treated products into environmental media are estimated with a focus on atmospheric inputs via volatilization from their use in cars, upholstered furniture, textiles, television sets, personal computers, and other recycled material. Different emission factors are used to derive different emission scenarios. A peak in atmospheric emissions of between 22 and 31 t of BDE-47 is estimated to have occurred around 1997, with a decline of approximately 20% in 2000. Comparisons with long-term environmental monitoring data revealed that the time trends of human blood and milk concentrations follow similar patterns to the generated emissions, while sediment core levels increase more slowly, probably because they respond to a mix of atmospheric and catchment inputs. The emissions data derived here can be used in a spatially and temporally resolved form as input data for multi-media environmental fate modeling.

  10. Effect of Phosphoric Acid Concentration on the Characteristics of Sugarcane Bagasse Activated Carbon

    NASA Astrophysics Data System (ADS)

    Adib, M. R. M.; Suraya, W. M. S. W.; Rafidah, H.; Amirza, A. R. M.; Attahirah, M. H. M. N.; Hani, M. S. N. Q.; Adnan, M. S.

    2016-07-01

    Impregnation method is one of the crucial steps involved in producing activated carbon using chemical activation process. Chemicals employed in this step is effective at decomposing the structure of material and forming micropores that helps in adsorption of contaminants. This paper explains thorough procedures that have been involved in producing sugarcane bagasse activated carbon (SBAC) by using 5%, 10%, 20%, 30% phosphoric acid (H3PO4) during the impregnation step. Concentration of H3PO4 used in the process of producing SBAC was optimized through several tests including bulk density, ash content, iodine adsorption and pore size diameter and the charactesristic of optimum SBAC produced has been compared with commercial activated carbon (CAC). Batch study has been carried out by using the SBAC produced from optimum condition to investigate the performance of SBAC in removal of turbidity and chemical oxygen demand (COD) from textile wastewater. From characteristic study, SBAC with 30% H3PO4 has shown the optimum value of bulk density, ash content, iodine adsorption and pore size diameter of 0.3023 g cm-3, 4.35%, 974.96 mg/g and 0.21-0.41 µm, respectively. These values are comparable to the characteristics of CAC. Experimental result from the batch study has been concluded that the SBAC has a promising potential in removing turbidity and COD of 75.5% and 66.3%, respectively which was a slightly lower than CAC which were able to remove 82.8% of turbidity and 70% of COD. As a conclusion, the SBAC is comparable with CAC in terms of their characteristics and the capability of removing contaminants from textile wastewater. Therefore, it has a commercial value to be used as an alternative of low-cost material in producing CAC.

  11. Measuring and Modeling Surface Sorption Dynamics of OPFRs in Stainless Steel Empty Chambers

    EPA Science Inventory

    Organophosphorus flame retardants (OPFRs) are produced and used widely as alternative additives in building materials and consumer products such as spray polyurethane foam (SPF), polyvinyl chloride flooring, electrical and electronic products, furniture, textile coatings, and pla...

  12. Advanced Engineering Fibers.

    ERIC Educational Resources Information Center

    Edie, Dan D.; Dunham, Michael G.

    1987-01-01

    Describes Clemson University's Advanced Engineered Fibers Laboratory, which was established to provide national leadership and expertise in developing the processing equipment and advance fibers necessary for the chemical, fiber, and textile industries to enter the composite materials market. Discusses some of the laboratory's activities in…

  13. Textile Messages: Dispatches from the World of E-Textiles and Education. New Literacies and Digital Epistemologies. Volume 62

    ERIC Educational Resources Information Center

    Buechley, Leah, Ed.; Peppler, Kylie, Ed.; Eisenberg, Michael, Ed.; Yasmin, Kafai, Ed.

    2013-01-01

    "Textile Messages" focuses on the emerging field of electronic textiles, or e-textiles--computers that can be soft, colorful, approachable, and beautiful. E-textiles are articles of clothing, home furnishings, or architectures that include embedded computational and electronic elements. This book introduces a collection of tools that…

  14. Nettle as a distinct Bronze Age textile plant.

    PubMed

    Bergfjord, C; Mannering, U; Frei, K M; Gleba, M; Scharff, A B; Skals, I; Heinemeier, J; Nosch, M-L; Holst, B

    2012-01-01

    It is generally assumed that the production of plant fibre textiles in ancient Europe, especially woven textiles for clothing, was closely linked to the development of agriculture through the use of cultivated textile plants (flax, hemp). Here we present a new investigation of the 2800 year old Lusehøj Bronze Age Textile from Voldtofte, Denmark, which challenges this assumption. We show that the textile is made of imported nettle, most probably from the Kärnten-Steiermark region, an area which at the time had an otherwise established flax production. Our results thus suggest that the production of woven plant fibre textiles in Bronze Age Europe was based not only on cultivated textile plants but also on the targeted exploitation of wild plants. The Lusehøj find points to a hitherto unrecognized role of nettle as an important textile plant and suggests the need for a re-evaluation of textile production resource management in prehistoric Europe.

  15. Nettle as a distinct Bronze Age textile plant

    PubMed Central

    Bergfjord, C.; Mannering, U.; Frei, K. M.; Gleba, M.; Scharff, A. B.; Skals, I.; Heinemeier, J.; Nosch, M. -L; Holst, B.

    2012-01-01

    It is generally assumed that the production of plant fibre textiles in ancient Europe, especially woven textiles for clothing, was closely linked to the development of agriculture through the use of cultivated textile plants (flax, hemp). Here we present a new investigation of the 2800 year old Lusehøj Bronze Age Textile from Voldtofte, Denmark, which challenges this assumption. We show that the textile is made of imported nettle, most probably from the Kärnten-Steiermark region, an area which at the time had an otherwise established flax production. Our results thus suggest that the production of woven plant fibre textiles in Bronze Age Europe was based not only on cultivated textile plants but also on the targeted exploitation of wild plants. The Lusehøj find points to a hitherto unrecognized role of nettle as an important textile plant and suggests the need for a re-evaluation of textile production resource management in prehistoric Europe. PMID:23024858

  16. Comparison of resin film infusion, resin transfer molding, and consolidation of textile preforms for primary aircraft structure

    NASA Technical Reports Server (NTRS)

    Suarez, J.; Dastin, S.

    1992-01-01

    Under NASA's Novel Composites for Wing and Fuselage Applications (NCWFA) Program, Grumman is developing innovative design concepts and cost-effective fabrication processes for damage-tolerant primary structures that can perform at a design ultimate strain level of 6000 micro-inch/inch. Attention has focused on the use of textile high-performance fiber-reinforcement concepts that provide improved damage tolerance and out-of-plane load capability, low-cost resin film infusion (RFI) and resin transfer molding (RTM) processes, and thermoplastic forming concepts. The fabrication of wing 'Y' spars by four different materials/processes methods is described: 'Y' spars fabricated using IM7 angle interlock 0/90 deg woven preforms with +/- 45 deg plies stitched with Toray high-strength graphite thread and processed using RFI and 3501-6 epoxy; 'Y' spars fabricated using G40-800 knitted/stitched preforms and processed using RFI and 3501-6 epoxy; 'Y' spars fabricated using G40-800 knitted/stitched preforms and processed using RTM and Tactix 123/H41 epoxy; and 'Y' spars fabricated using AS4(6k)/PEEK 150-g commingled angle interlock 0/90 deg woven preforms with +/- 45 deg commingled plies stitched using high-strength graphite thread and processed by consolidation. A comparison of the structural efficiency, processability, and projected acquisition cost of these representative spars is presented.

  17. Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics.

    PubMed

    Shaheen, Th I; El-Naggar, Mehrez E; Abdelgawad, Abdelrahman M; Hebeish, A

    2016-02-01

    Herein we represent a new discovery based on amine material called hexamethyltriethylene tetramine (HMTETA). We have observed that when an aqueous solution of Zn(NO3)·6H2O was added to aqueous solution of HMTETA followed by shaking for a time, the colorless solution was converted to milky color under the alkaline medium provided by HMTETA prior to formation of uniform zinc oxide nanoparticles (ZnO NPs). The latter are in situ formed within the cotton fabrics without the support of capping or other stabilizing agents. Obviously, then, the new made of formation of ZnO NPs speaks of a single-stage process where cotton fabric is immersed in a prepared solution of the new precursors through which binding of ZnO NPs into the textile fabrics takes place. Textile fabrics are, indeed, used as a template, which is capable of maintaining the size and surface distribution of the as-synthesized nanoparticles in a uniform domain. It is also likely that nanoparticles is confined inside the fibril and microfibrils of the cotton fibers. World-class facilities have been employed to follow up the synthesis of ZnO NPs, their characterization and their application to confer, in particular, high durable antibacterial and UV protective function on cotton fabrics. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Elastic Response and Failure Studies of Multi-Wall Carbon Nanotube Twisted Yarns

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Jefferson, Gail D.; Frankland, Sarah-Jane V.

    2007-01-01

    Experimental data on the stress-strain behavior of a polymer multiwall carbon nanotube (MWCNT) yarn composite are used to motivate an initial study in multi-scale modeling of strength and stiffness. Atomistic and continuum length scale modeling methods are outlined to illustrate the range of parameters required to accurately model behavior. The carbon nanotubes yarns are four-ply, twisted, and combined with an elastomer to form a single-layer, unidirectional composite. Due to this textile structure, the yarn is a complicated system of unique geometric relationships subjected to combined loads. Experimental data illustrate the local failure modes induced by static, tensile tests. Key structure-property relationships are highlighted at each length scale indicating opportunities for parametric studies to assist the selection of advantageous material development and manufacturing methods.

  19. Wettability Switching Techniques on Superhydrophobic Surfaces

    PubMed Central

    2007-01-01

    The wetting properties of superhydrophobic surfaces have generated worldwide research interest. A water drop on these surfaces forms a nearly perfect spherical pearl. Superhydrophobic materials hold considerable promise for potential applications ranging from self cleaning surfaces, completely water impermeable textiles to low cost energy displacement of liquids in lab-on-chip devices. However, the dynamic modification of the liquid droplets behavior and in particular of their wetting properties on these surfaces is still a challenging issue. In this review, after a brief overview on superhydrophobic states definition, the techniques leading to the modification of wettability behavior on superhydrophobic surfaces under specific conditions: optical, magnetic, mechanical, chemical, thermal are discussed. Finally, a focus on electrowetting is made from historical phenomenon pointed out some decades ago on classical planar hydrophobic surfaces to recent breakthrough obtained on superhydrophobic surfaces.

  20. Smart textiles.

    PubMed

    Van Langenhove, Lieva; Hertleer, Carla; Catrysse, Michael; Puers, Robert; Van Egmond, Harko; Matthijs, Dirk

    2004-01-01

    After technical textiles and functional textiles, also smart textiles came into force a few years ago. The term 'smart textiles' covers a broad range. The application possibilities are only limited by our imagination and creativity. In this presentation, it is further explored what smart textiles precisely mean. In a second part, an analysis is made of the possibilities, the state of affairs and the needs for further research.

Top