Sample records for texture

  1. The effect of texture granularity on texture synthesis quality

    NASA Astrophysics Data System (ADS)

    Golestaneh, S. Alireza; Subedar, Mahesh M.; Karam, Lina J.

    2015-09-01

    Natural and artificial textures occur frequently in images and in video sequences. Image/video coding systems based on texture synthesis can make use of a reliable texture synthesis quality assessment method in order to improve the compression performance in terms of perceived quality and bit-rate. Existing objective visual quality assessment methods do not perform satisfactorily when predicting the synthesized texture quality. In our previous work, we showed that texture regularity can be used as an attribute for estimating the quality of synthesized textures. In this paper, we study the effect of another texture attribute, namely texture granularity, on the quality of synthesized textures. For this purpose, subjective studies are conducted to assess the quality of synthesized textures with different levels (low, medium, high) of perceived texture granularity using different types of texture synthesis methods.

  2. Automatic Texture Reconstruction of 3d City Model from Oblique Images

    NASA Astrophysics Data System (ADS)

    Kang, Junhua; Deng, Fei; Li, Xinwei; Wan, Fang

    2016-06-01

    In recent years, the photorealistic 3D city models are increasingly important in various geospatial applications related to virtual city tourism, 3D GIS, urban planning, real-estate management. Besides the acquisition of high-precision 3D geometric data, texture reconstruction is also a crucial step for generating high-quality and visually realistic 3D models. However, most of the texture reconstruction approaches are probably leading to texture fragmentation and memory inefficiency. In this paper, we introduce an automatic framework of texture reconstruction to generate textures from oblique images for photorealistic visualization. Our approach include three major steps as follows: mesh parameterization, texture atlas generation and texture blending. Firstly, mesh parameterization procedure referring to mesh segmentation and mesh unfolding is performed to reduce geometric distortion in the process of mapping 2D texture to 3D model. Secondly, in the texture atlas generation step, the texture of each segmented region in texture domain is reconstructed from all visible images with exterior orientation and interior orientation parameters. Thirdly, to avoid color discontinuities at boundaries between texture regions, the final texture map is generated by blending texture maps from several corresponding images. We evaluated our texture reconstruction framework on a dataset of a city. The resulting mesh model can get textured by created texture without resampling. Experiment results show that our method can effectively mitigate the occurrence of texture fragmentation. It is demonstrated that the proposed framework is effective and useful for automatic texture reconstruction of 3D city model.

  3. Memory texture as a mechanism of improvement in preference by adding noise

    NASA Astrophysics Data System (ADS)

    Zhao, Yinzhu; Aoki, Naokazu; Kobayashi, Hiroyuki

    2014-02-01

    According to color research, people have memory colors for familiar objects, which correlate with high color preference. As a similar concept to this, we propose memory texture as a mechanism of texture preference by adding image noise (1/f noise or white noise) to photographs of seven familiar objects. Our results showed that (1) memory texture differed from real-life texture; (2) no consistency was found between memory texture and real-life texture; (3) correlation existed between memory texture and preferred texture; and (4) the type of image noise which is more appropriate to texture reproduction differed by object.

  4. Adhesive behavior of micro/nano-textured surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Wang, Ben

    2015-02-01

    A numerical model of the adhesive contact between a rigid smooth sphere and an elastic textured surface based on the Lennard-Jones interatomic potential law and the Hamaker summation method is established. Textures are considered by introducing the texture height distribution into the gap equation. Simulation results show that the pull-off force on textured surfaces decreases compared to that on smooth surfaces. Furthermore, effects of sphere-shaped textures on reducing adhesion are more obvious than cylinder-shaped or cube-shaped textures when the coverage area ratio, maximum height and interval of textures are fixed. For surfaces with sphere-shaped textures, variation trends of the mean pull-off force with texture density are not monotonous, and there exists a certain range of texture densities in which the mean pull-off force is small and its variation is insignificant. In addition, the pull-off force depends also on the maximum height and radius of textures. On one hand, if the texture radius is fixed, larger maximum height results in smaller pull-off force, and if the maximum height is fixed, the pull-off force tends to increase almost linearly with increases in texture radius. On the other hand, if the height-diameter ratio of textures is fixed, the pull-off force reaches a minimum at an optimum texture radius or maximum height.

  5. A subjective study and an objective metric to quantify the granularity level of textures

    NASA Astrophysics Data System (ADS)

    Subedar, Mahesh M.; Karam, Lina J.

    2015-03-01

    Texture granularity is an important visual characteristic that is useful in a variety of applications, including analysis, recognition, and compression, to name a few. A texture granularity measure can be used to quantify the perceived level of texture granularity. The granularity level of the textures is influenced by the size of the texture primitives. A primitive is defined as the smallest recognizable repetitive object in the texture. If the texture has large primitives then the perceived granularity level tends to be lower as compared to a texture with smaller primitives. In this work we are presenting a texture granularity database referred as GranTEX which consists of 30 textures with varying levels of primitive sizes and granularity levels. The GranTEX database consists of both natural and man-made textures. A subjective study is conducted to measure the perceived granularity level of textures present in the GranTEX database. An objective metric that automatically measures the perceived granularity level of textures is also presented as part of this work. It is shown that the proposed granularity metric correlates well with the subjective granularity scores.

  6. Hybrid texture generator

    NASA Astrophysics Data System (ADS)

    Miyata, Kazunori; Nakajima, Masayuki

    1995-04-01

    A method is given for synthesizing a texture by using the interface of a conventional drawing tool. The majority of conventional texture generation methods are based on the procedural approach, and can generate a variety of textures that are adequate for generating a realistic image. But it is hard for a user to imagine what kind of texture will be generated simply by looking at its parameters. Furthermore, it is difficult to design a new texture freely without a knowledge of all the procedures for texture generation. Our method offers a solution to these problems, and has the following four merits: First, a variety of textures can be obtained by combining a set of feature lines and attribute functions. Second, data definitions are flexible. Third, the user can preview a texture together with its feature lines. Fourth, people can design their own textures interactively and freely by using the interface of a conventional drawing tool. For users who want to build this texture generation method into their own programs, we also give the language specifications for generating a texture. This method can interactively provide a variety of textures, and can also be used for typographic design.

  7. Aesthetic perception of visual textures: a holistic exploration using texture analysis, psychological experiment, and perception modeling.

    PubMed

    Liu, Jianli; Lughofer, Edwin; Zeng, Xianyi

    2015-01-01

    Modeling human aesthetic perception of visual textures is important and valuable in numerous industrial domains, such as product design, architectural design, and decoration. Based on results from a semantic differential rating experiment, we modeled the relationship between low-level basic texture features and aesthetic properties involved in human aesthetic texture perception. First, we compute basic texture features from textural images using four classical methods. These features are neutral, objective, and independent of the socio-cultural context of the visual textures. Then, we conduct a semantic differential rating experiment to collect from evaluators their aesthetic perceptions of selected textural stimuli. In semantic differential rating experiment, eights pairs of aesthetic properties are chosen, which are strongly related to the socio-cultural context of the selected textures and to human emotions. They are easily understood and connected to everyday life. We propose a hierarchical feed-forward layer model of aesthetic texture perception and assign 8 pairs of aesthetic properties to different layers. Finally, we describe the generation of multiple linear and non-linear regression models for aesthetic prediction by taking dimensionality-reduced texture features and aesthetic properties of visual textures as dependent and independent variables, respectively. Our experimental results indicate that the relationships between each layer and its neighbors in the hierarchical feed-forward layer model of aesthetic texture perception can be fitted well by linear functions, and the models thus generated can successfully bridge the gap between computational texture features and aesthetic texture properties.

  8. Image statistics underlying natural texture selectivity of neurons in macaque V4

    PubMed Central

    Okazawa, Gouki; Tajima, Satohiro; Komatsu, Hidehiko

    2015-01-01

    Our daily visual experiences are inevitably linked to recognizing the rich variety of textures. However, how the brain encodes and differentiates a plethora of natural textures remains poorly understood. Here, we show that many neurons in macaque V4 selectively encode sparse combinations of higher-order image statistics to represent natural textures. We systematically explored neural selectivity in a high-dimensional texture space by combining texture synthesis and efficient-sampling techniques. This yielded parameterized models for individual texture-selective neurons. The models provided parsimonious but powerful predictors for each neuron’s preferred textures using a sparse combination of image statistics. As a whole population, the neuronal tuning was distributed in a way suitable for categorizing textures and quantitatively predicts human ability to discriminate textures. Together, we suggest that the collective representation of visual image statistics in V4 plays a key role in organizing the natural texture perception. PMID:25535362

  9. Conjoint representation of texture ensemble and location in the parahippocampal place area.

    PubMed

    Park, Jeongho; Park, Soojin

    2017-04-01

    Texture provides crucial information about the category or identity of a scene. Nonetheless, not much is known about how the texture information in a scene is represented in the brain. Previous studies have shown that the parahippocampal place area (PPA), a scene-selective part of visual cortex, responds to simple patches of texture ensemble. However, in natural scenes textures exist in spatial context within a scene. Here we tested two hypotheses that make different predictions on how textures within a scene context are represented in the PPA. The Texture-Only hypothesis suggests that the PPA represents texture ensemble (i.e., the kind of texture) as is, irrespective of its location in the scene. On the other hand, the Texture and Location hypothesis suggests that the PPA represents texture and its location within a scene (e.g., ceiling or wall) conjointly. We tested these two hypotheses across two experiments, using different but complementary methods. In experiment 1 , by using multivoxel pattern analysis (MVPA) and representational similarity analysis, we found that the representational similarity of the PPA activation patterns was significantly explained by the Texture-Only hypothesis but not by the Texture and Location hypothesis. In experiment 2 , using a repetition suppression paradigm, we found no repetition suppression for scenes that had the same texture ensemble but differed in location (supporting the Texture and Location hypothesis). On the basis of these results, we propose a framework that reconciles contrasting results from MVPA and repetition suppression and draw conclusions about how texture is represented in the PPA. NEW & NOTEWORTHY This study investigates how the parahippocampal place area (PPA) represents texture information within a scene context. We claim that texture is represented in the PPA at multiple levels: the texture ensemble information at the across-voxel level and the conjoint information of texture and its location at the within-voxel level. The study proposes a working hypothesis that reconciles contrasting results from multivoxel pattern analysis and repetition suppression, suggesting that the methods are complementary to each other but not necessarily interchangeable. Copyright © 2017 the American Physiological Society.

  10. Textured catalysts and methods of making textured catalysts

    DOEpatents

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2007-03-06

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  11. Texture control of zircaloy tubing during tube reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagai, N.; Kakuma, T.; Fujita, K.

    1982-01-01

    Seven batches of Zircaloy-2 nuclear fuel cladding tubes with different textures were processed from tube shells of the same size, by different reduction routes, using pilger and 3-roll mills. Based on the texture data of these tubes, the texture control of Zircaloy tubing, the texture gradient across the wall, and the texture change during annealing were studied. The deformation texture of Zicaloy-2 tubing was dependent on the tool's curvature and was independent of the dimensions of the mother tubes. The different slopes of texture gradients were observed between the tubing of higher strain ration and that of lower strain ratio.

  12. Some distinguishing characteristics of contour and texture phenomena in images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1992-01-01

    The development of generalized contour/texture discrimination techniques is a central element necessary for machine vision recognition and interpretation of arbitrary images. Here, the visual perception of texture, selected studies of texture analysis in machine vision, and diverse small samples of contour and texture are all used to provide insights into the fundamental characteristics of contour and texture. From these, an experimental discrimination scheme is developed and tested on a battery of natural images. The visual perception of texture defined fine texture as a subclass which is interpreted as shading and is distinct from coarse figural similarity textures. Also, perception defined the smallest scale for contour/texture discrimination as eight to nine visual acuity units. Three contour/texture discrimination parameters were found to be moderately successful for this scale discrimination: (1) lightness change in a blurred version of the image, (2) change in lightness change in the original image, and (3) percent change in edge counts relative to local maximum.

  13. Structure-guided statistical textural distinctiveness for salient region detection in natural images.

    PubMed

    Scharfenberger, Christian; Wong, Alexander; Clausi, David A

    2015-01-01

    We propose a simple yet effective structure-guided statistical textural distinctiveness approach to salient region detection. Our method uses a multilayer approach to analyze the structural and textural characteristics of natural images as important features for salient region detection from a scale point of view. To represent the structural characteristics, we abstract the image using structured image elements and extract rotational-invariant neighborhood-based textural representations to characterize each element by an individual texture pattern. We then learn a set of representative texture atoms for sparse texture modeling and construct a statistical textural distinctiveness matrix to determine the distinctiveness between all representative texture atom pairs in each layer. Finally, we determine saliency maps for each layer based on the occurrence probability of the texture atoms and their respective statistical textural distinctiveness and fuse them to compute a final saliency map. Experimental results using four public data sets and a variety of performance evaluation metrics show that our approach provides promising results when compared with existing salient region detection approaches.

  14. Fiber vs Rolling Texture: Stress State Dependence for Cold-Drawn Wire

    NASA Astrophysics Data System (ADS)

    Zorina, M. A.; Karabanalov, M. S.; Stepanov, S. I.; Demakov, S. L.; Loginov, Yu. N.; Lobanov, M. L.

    2018-02-01

    The texture of the cold-drawn copper wire was investigated along the radius using electron backscatter diffraction. The complex fiber texture of the central region of the wire was considered as the rolling texture consisting of a set of preferred orientations. The texture of the periphery region was revealed to be similar to the shear texture. The orientation-dependent properties of the wire were proven to be determined by the texture of the near-surface layers.

  15. Semantic attributes based texture generation

    NASA Astrophysics Data System (ADS)

    Chi, Huifang; Gan, Yanhai; Qi, Lin; Dong, Junyu; Madessa, Amanuel Hirpa

    2018-04-01

    Semantic attributes are commonly used for texture description. They can be used to describe the information of a texture, such as patterns, textons, distributions, brightness, and so on. Generally speaking, semantic attributes are more concrete descriptors than perceptual features. Therefore, it is practical to generate texture images from semantic attributes. In this paper, we propose to generate high-quality texture images from semantic attributes. Over the last two decades, several works have been done on texture synthesis and generation. Most of them focusing on example-based texture synthesis and procedural texture generation. Semantic attributes based texture generation still deserves more devotion. Gan et al. proposed a useful joint model for perception driven texture generation. However, perceptual features are nonobjective spatial statistics used by humans to distinguish different textures in pre-attentive situations. To give more describing information about texture appearance, semantic attributes which are more in line with human description habits are desired. In this paper, we use sigmoid cross entropy loss in an auxiliary model to provide enough information for a generator. Consequently, the discriminator is released from the relatively intractable mission of figuring out the joint distribution of condition vectors and samples. To demonstrate the validity of our method, we compare our method to Gan et al.'s method on generating textures by designing experiments on PTD and DTD. All experimental results show that our model can generate textures from semantic attributes.

  16. Effect of environmental dust particles on laser textured yttria-stabilized zirconia surface in humid air ambient

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Sulaiman, F.; Karatas, C.

    2018-05-01

    Zirconium nitride is used as a selective surface for concentrated solar heating applications and one of the methods to form a zirconium nitride is texturing of zirconia surface by a high intensity laser beam under high pressure nitrogen gas environment. Laser texturing also provides hydrophobic surface characteristics via forming micro/nano pillars at the surface; however, environmental dust settlement on textured surface influences the surface characteristics significantly. In the present study, laser texturing of zirconia surface and effects of the dust particles on the textured surface in a humid air ambient are investigated. Analytical tools are used to assess the morphological changes on the laser textured surface prior and after the dust settlement in the humid air ambient. It is found that laser textured surface has hydrophobic characteristics. The mud formed during condensate of water on the dust particles alters the characteristics of the laser textured surface. The tangential force required to remove the dry mud from the textured surface remains high; in which case, the dried liquid solution at the mud-textured surface interface is responsible for the strong adhesion of the dry mud on the textured surface. The textured surface becomes hydrophilic after the dry mud was removed from the surface by a desalinated water jet.

  17. Analyzing and improving surface texture by dual-rotation magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Wang, Yuyue; Zhang, Yun; Feng, Zhijing

    2016-01-01

    The main advantages of magnetorheological finishing (MRF) are its high convergence rate of surface error, the ability of polishing aspheric surfaces and nearly no subsurface damage. However, common MRF produces directional surface texture due to the constant flow direction of the magnetorheological (MR) polishing fluid. This paper studies the mechanism of surface texture formation by texture modeling. Dual-rotation magnetorheological finishing (DRMRF) is presented to suppress directional surface texture after analyzing the results of the texture model for common MRF. The results of the surface texture model for DRMRF and the proposed quantitative method based on mathematical statistics indicate the effective suppression of directional surface texture. An experimental setup is developed and experiments show directional surface texture and no directional surface texture in common MRF and DRMRF, respectively. As a result, the surface roughness of DRMRF is 0.578 nm (root-mean-square value) which is lower than 1.109 nm in common MRF.

  18. Structural analysis of natural textures.

    PubMed

    Vilnrotter, F M; Nevatia, R; Price, K E

    1986-01-01

    Many textures can be described structurally, in terms of the individual textural elements and their spatial relationships. This paper describes a system to generate useful descriptions of natural textures in these terms. The basic approach is to determine an initial, partial description of the elements using edge features. This description controls the extraction of the texture elements. The elements are grouped by type, and spatial relationships between elements are computed. The descriptions are shown to be useful for recognition of the textures, and for reconstruction of periodic textures.

  19. Textured catalysts, methods of making textured catalysts, and methods of catalyzing reactions conducted in hydrothermal conditions

    DOEpatents

    Werpy, Todd [West Richland, WA; Wang, Yong [Richland, WA

    2003-12-30

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  20. Height perception influenced by texture gradient.

    PubMed

    Tozawa, Junko

    2012-01-01

    Three experiments were carried out to examine whether a texture gradient influences perception of relative object height. Previous research implicated texture cues in judgments of object width, but similar influences have not been demonstrated for relative height. In this study, I evaluate a hypothesis that the projective ratio of the number of texture elements covered by the objects combined with the ratio of the retinal object heights determines percepts of relative object height. Density of texture background was varied: four density conditions ranged from no-texture to very dense texture. In experiments 1 and 2, participants judged the height of comparison bar compared to the standard bar positioned on no-texture or textured backgrounds. Results showed relative height judgments differed with texture manipulations, consistent with predictions from a hypothesised combination of the number of texture elements with retinal height (experiment 1), or partially consistent with this hypothesis (experiment 2). In experiment 2, variations in the position of a comparison object showed that comparisons located far from the horizon were judged more poorly than in other positions. In experiment 3 I examined distance perception; relative distance judgments were found to be also affected by textured backgrounds. Results are discussed in terms of Gibson's relational theory and distance calibration theory.

  1. Deep Filter Banks for Texture Recognition, Description, and Segmentation.

    PubMed

    Cimpoi, Mircea; Maji, Subhransu; Kokkinos, Iasonas; Vedaldi, Andrea

    Visual textures have played a key role in image understanding because they convey important semantics of images, and because texture representations that pool local image descriptors in an orderless manner have had a tremendous impact in diverse applications. In this paper we make several contributions to texture understanding. First, instead of focusing on texture instance and material category recognition, we propose a human-interpretable vocabulary of texture attributes to describe common texture patterns, complemented by a new describable texture dataset for benchmarking. Second, we look at the problem of recognizing materials and texture attributes in realistic imaging conditions, including when textures appear in clutter, developing corresponding benchmarks on top of the recently proposed OpenSurfaces dataset. Third, we revisit classic texture represenations, including bag-of-visual-words and the Fisher vectors, in the context of deep learning and show that these have excellent efficiency and generalization properties if the convolutional layers of a deep model are used as filter banks. We obtain in this manner state-of-the-art performance in numerous datasets well beyond textures, an efficient method to apply deep features to image regions, as well as benefit in transferring features from one domain to another.

  2. Reliability and dimensionality of judgments of visually textured materials.

    PubMed

    Cho, R Y; Yang, V; Hallett, P E

    2000-05-01

    We extended perceptual studies of the Brodatz set of textured materials. In the experiments, texture perception for different texture sets, viewing distances, or lighting intensities was examined. Subjects compared one pair of textures at a time. The main task was to rapidly rate all of the texture pairs on a number scale for their overall dissimilarities first and then for their dissimilarities according to six specified attributes (e.g., texture contrast). The implied dimensionality of perceptual texture space was usually at least four, rather than three. All six attributes proved to be useful predictors of overall dissimilarity, especially coarseness and regularity. The novel attribute texture lightness, an assessment of mean surface reflectance, was important when viewing conditions were wide-ranging. We were impressed by the general validity of texture judgments across subject, texture set, and comfortable viewing distances or lighting intensities. The attributes are nonorthogonal directions in four-dimensional perceptual space and are probably not narrow linear axes. In a supplementary experiment, we studied a completely different task: identifying textures from a distance. The dimensionality for this more refined task is similar to that for rating judgments, so our findings may have general application.

  3. Interactive evolution of camouflage.

    PubMed

    Reynolds, Craig

    2011-01-01

    This article presents an abstract computation model of the evolution of camouflage in nature. The 2D model uses evolved textures for prey, a background texture representing the environment, and a visual predator. A human observer, acting as the predator, is shown a cohort of 10 evolved textures overlaid on the background texture. The observer clicks on the five most conspicuous prey to remove ("eat") them. These lower-fitness textures are removed from the population and replaced with newly bred textures. Biological morphogenesis is represented in this model by procedural texture synthesis. Nested expressions of generators and operators form a texture description language. Natural evolution is represented by genetic programming (GP), a variant of the genetic algorithm. GP searches the space of texture description programs for those that appear least conspicuous to the predator.

  4. Low-level contrast statistics are diagnostic of invariance of natural textures

    PubMed Central

    Groen, Iris I. A.; Ghebreab, Sennay; Lamme, Victor A. F.; Scholte, H. Steven

    2012-01-01

    Texture may provide important clues for real world object and scene perception. To be reliable, these clues should ideally be invariant to common viewing variations such as changes in illumination and orientation. In a large image database of natural materials, we found textures with low-level contrast statistics that varied substantially under viewing variations, as well as textures that remained relatively constant. This led us to ask whether textures with constant contrast statistics give rise to more invariant representations compared to other textures. To test this, we selected natural texture images with either high (HV) or low (LV) variance in contrast statistics and presented these to human observers. In two distinct behavioral categorization paradigms, participants more often judged HV textures as “different” compared to LV textures, showing that textures with constant contrast statistics are perceived as being more invariant. In a separate electroencephalogram (EEG) experiment, evoked responses to single texture images (single-image ERPs) were collected. The results show that differences in contrast statistics correlated with both early and late differences in occipital ERP amplitude between individual images. Importantly, ERP differences between images of HV textures were mainly driven by illumination angle, which was not the case for LV images: there, differences were completely driven by texture membership. These converging neural and behavioral results imply that some natural textures are surprisingly invariant to illumination changes and that low-level contrast statistics are diagnostic of the extent of this invariance. PMID:22701419

  5. Use of feature extraction techniques for the texture and context information in ERTS imagery: Spectral and textural processing of ERTS imagery. [classification of Kansas land use

    NASA Technical Reports Server (NTRS)

    Haralick, R. H. (Principal Investigator); Bosley, R. J.

    1974-01-01

    The author has identified the following significant results. A procedure was developed to extract cross-band textural features from ERTS MSS imagery. Evolving from a single image texture extraction procedure which uses spatial dependence matrices to measure relative co-occurrence of nearest neighbor grey tones, the cross-band texture procedure uses the distribution of neighboring grey tone N-tuple differences to measure the spatial interrelationships, or co-occurrences, of the grey tone N-tuples present in a texture pattern. In both procedures, texture is characterized in such a way as to be invariant under linear grey tone transformations. However, the cross-band procedure complements the single image procedure by extracting texture information and spectral information contained in ERTS multi-images. Classification experiments show that when used alone, without spectral processing, the cross-band texture procedure extracts more information than the single image texture analysis. Results show an improvement in average correct classification from 86.2% to 88.8% for ERTS image no. 1021-16333 with the cross-band texture procedure. However, when used together with spectral features, the single image texture plus spectral features perform better than the cross-band texture plus spectral features, with an average correct classification of 93.8% and 91.6%, respectively.

  6. Advecting Procedural Textures for 2D Flow Animation

    NASA Technical Reports Server (NTRS)

    Kao, David; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    This paper proposes the use of specially generated 3D procedural textures for visualizing steady state 2D flow fields. We use the flow field to advect and animate the texture over time. However, using standard texture advection techniques and arbitrary textures will introduce some undesirable effects such as: (a) expanding texture from a critical source point, (b) streaking pattern from the boundary of the flowfield, (c) crowding of advected textures near an attracting spiral or sink, and (d) absent or lack of textures in some regions of the flow. This paper proposes a number of strategies to solve these problems. We demonstrate how the technique works using both synthetic data and computational fluid dynamics data.

  7. Through-process modelling of texture and anisotropy in AA5182

    NASA Astrophysics Data System (ADS)

    Crumbach, M.; Neumann, L.; Goerdeler, M.; Aretz, H.; Gottstein, G.; Kopp, R.

    2006-07-01

    A through-process texture and anisotropy prediction for AA5182 sheet production from hot rolling through cold rolling and annealing is reported. Thermo-mechanical process data predicted by the finite element method (FEM) package T-Pack based on the software LARSTRAN were fed into a combination of physics based microstructure models for deformation texture (GIA), work hardening (3IVM), nucleation texture (ReNuc), and recrystallization texture (StaRT). The final simulated sheet texture was fed into a FEM simulation of cup drawing employing a new concept of interactively updated texture based yield locus predictions. The modelling results of texture development and anisotropy were compared to experimental data. The applicability to other alloys and processes is discussed.

  8. Optimum rolling ratio for obtaining {001}<110> recrystallization texture in Ti-Nb-Al biomedical shape memory alloy.

    PubMed

    Inamura, T; Shimizu, R; Kim, H Y; Miyazaki, S; Hosoda, H

    2016-04-01

    The rolling rate (r) dependence of textures was investigated in the Ti-26Nb-3Al (mol%) alloy to reveal the conditions required to form the {001}<110> recrystallization texture, which is a desirable orientation for the β-titanium shape memory alloy. {001}<110> was the dominant cold-rolling texture when r=90% and it was transferred to the recrystallization texture without forming {112}<110>, which is detrimental for the isotropic mechanical properties of the rolled sheet. A further increase in r resulted in the formation of {112}<110> in both rolling and recrystallization textures. Therefore, r should be controlled to form only the {001}<110> rolling texture, because the {112}<110> texture can overwhelm the {001}<110> texture during recrystallization. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A parametric texture model based on deep convolutional features closely matches texture appearance for humans.

    PubMed

    Wallis, Thomas S A; Funke, Christina M; Ecker, Alexander S; Gatys, Leon A; Wichmann, Felix A; Bethge, Matthias

    2017-10-01

    Our visual environment is full of texture-"stuff" like cloth, bark, or gravel as distinct from "things" like dresses, trees, or paths-and humans are adept at perceiving subtle variations in material properties. To investigate image features important for texture perception, we psychophysically compare a recent parametric model of texture appearance (convolutional neural network [CNN] model) that uses the features encoded by a deep CNN (VGG-19) with two other models: the venerable Portilla and Simoncelli model and an extension of the CNN model in which the power spectrum is additionally matched. Observers discriminated model-generated textures from original natural textures in a spatial three-alternative oddity paradigm under two viewing conditions: when test patches were briefly presented to the near-periphery ("parafoveal") and when observers were able to make eye movements to all three patches ("inspection"). Under parafoveal viewing, observers were unable to discriminate 10 of 12 original images from CNN model images, and remarkably, the simpler Portilla and Simoncelli model performed slightly better than the CNN model (11 textures). Under foveal inspection, matching CNN features captured appearance substantially better than the Portilla and Simoncelli model (nine compared to four textures), and including the power spectrum improved appearance matching for two of the three remaining textures. None of the models we test here could produce indiscriminable images for one of the 12 textures under the inspection condition. While deep CNN (VGG-19) features can often be used to synthesize textures that humans cannot discriminate from natural textures, there is currently no uniformly best model for all textures and viewing conditions.

  10. Methods of making textured catalysts

    DOEpatents

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  11. Natural texture retrieval based on perceptual similarity measurement

    NASA Astrophysics Data System (ADS)

    Gao, Ying; Dong, Junyu; Lou, Jianwen; Qi, Lin; Liu, Jun

    2018-04-01

    A typical texture retrieval system performs feature comparison and might not be able to make human-like judgments of image similarity. Meanwhile, it is commonly known that perceptual texture similarity is difficult to be described by traditional image features. In this paper, we propose a new texture retrieval scheme based on texture perceptual similarity. The key of the proposed scheme is that prediction of perceptual similarity is performed by learning a non-linear mapping from image features space to perceptual texture space by using Random Forest. We test the method on natural texture dataset and apply it on a new wallpapers dataset. Experimental results demonstrate that the proposed texture retrieval scheme with perceptual similarity improves the retrieval performance over traditional image features.

  12. Wavelet-based image analysis system for soil texture analysis

    NASA Astrophysics Data System (ADS)

    Sun, Yun; Long, Zhiling; Jang, Ping-Rey; Plodinec, M. John

    2003-05-01

    Soil texture is defined as the relative proportion of clay, silt and sand found in a given soil sample. It is an important physical property of soil that affects such phenomena as plant growth and agricultural fertility. Traditional methods used to determine soil texture are either time consuming (hydrometer), or subjective and experience-demanding (field tactile evaluation). Considering that textural patterns observed at soil surfaces are uniquely associated with soil textures, we propose an innovative approach to soil texture analysis, in which wavelet frames-based features representing texture contents of soil images are extracted and categorized by applying a maximum likelihood criterion. The soil texture analysis system has been tested successfully with an accuracy of 91% in classifying soil samples into one of three general categories of soil textures. In comparison with the common methods, this wavelet-based image analysis approach is convenient, efficient, fast, and objective.

  13. Crystallographic texture of straight-rolled ?-uranium foils via neutron and X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Einhorn, J. R.; Steiner, M. A.; Vogel, S. C.

    The texture of recrystallized straight-rolled ?-uranium foils, a component in prospective irradiation target designs for medical isotope production, has been measured by neutron diffraction, as well as X-ray diffraction using both Cu and Mo sources. Variations in the penetration depth of neutron and X-ray radiation allow for determination of both the bulk and surface textures. The bulk ?-uranium foil texture is similar to the warm straight-rolled plate texture, with the addition of a notable splitting of the (001) poles along the transverse direction. The surface texture of the foils is similar to the bulk, with an additional (001) texture componentmore » that is oriented between the rolling and normal directions. Differences between the surface and bulk textures are expected to arise from shear forces during the rolling process and the influence that distinct strain histories have on subsequent texture evolution during recrystallization.« less

  14. Crystallographic texture of straight-rolled ?-uranium foils via neutron and X-ray diffraction

    DOE PAGES

    Einhorn, J. R.; Steiner, M. A.; Vogel, S. C.; ...

    2017-05-25

    The texture of recrystallized straight-rolled ?-uranium foils, a component in prospective irradiation target designs for medical isotope production, has been measured by neutron diffraction, as well as X-ray diffraction using both Cu and Mo sources. Variations in the penetration depth of neutron and X-ray radiation allow for determination of both the bulk and surface textures. The bulk ?-uranium foil texture is similar to the warm straight-rolled plate texture, with the addition of a notable splitting of the (001) poles along the transverse direction. The surface texture of the foils is similar to the bulk, with an additional (001) texture componentmore » that is oriented between the rolling and normal directions. Differences between the surface and bulk textures are expected to arise from shear forces during the rolling process and the influence that distinct strain histories have on subsequent texture evolution during recrystallization.« less

  15. Ion beam texturing

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    A microscopic surface texture is created by sputter etching a surface while simultaneously sputter depositing a lower sputter yield material onto the surface. A xenon ion beam source has been used to perform this texturing process on samples as large as three centimeters in diameter. Ion beam textured surface structures have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, Stainless steel, Au, and Ag. Surfaces have been textured using a variety of low sputter yield materials - Ta, Mo, Nb, and Ti. The initial stages of the texture creation have been documented, and the technique of ion beam sputter removal of any remaining deposited material has been studied. A number of other texturing parameters have been studied such as the variation of the texture with ion beam power, surface temperature, and the rate of texture growth with sputter etching time.

  16. Texture segmentation by genetic programming.

    PubMed

    Song, Andy; Ciesielski, Vic

    2008-01-01

    This paper describes a texture segmentation method using genetic programming (GP), which is one of the most powerful evolutionary computation algorithms. By choosing an appropriate representation texture, classifiers can be evolved without computing texture features. Due to the absence of time-consuming feature extraction, the evolved classifiers enable the development of the proposed texture segmentation algorithm. This GP based method can achieve a segmentation speed that is significantly higher than that of conventional methods. This method does not require a human expert to manually construct models for texture feature extraction. In an analysis of the evolved classifiers, it can be seen that these GP classifiers are not arbitrary. Certain textural regularities are captured by these classifiers to discriminate different textures. GP has been shown in this study as a feasible and a powerful approach for texture classification and segmentation, which are generally considered as complex vision tasks.

  17. Influence of Surface Texture and Roughness of Softer and Harder Counter Materials on Friction During Sliding

    NASA Astrophysics Data System (ADS)

    Menezes, Pradeep L.; Kishore; Kailas, Satish V.; Lovell, Michael R.

    2015-01-01

    Surface texture influences friction during sliding contact conditions. In the present investigation, the effect of surface texture and roughness of softer and harder counter materials on friction during sliding was analyzed using an inclined scratch testing system. In the experiments, two test configurations, namely (a) steel balls against aluminum alloy flats of different surface textures and (b) aluminum alloy pins against steel flats of different surface textures, are utilized. The surface textures were classified into unidirectionally ground, 8-ground, and randomly polished. For a given texture, the roughness of the flat surfaces was varied using grinding or polishing methods. Optical profilometer and scanning electron microscope were used to characterize the contact surfaces before and after the experiments. Experimental results showed that the surface textures of both harder and softer materials are important in controlling the frictional behavior. The softer material surface textures showed larger variations in friction between ground and polished surfaces. However, the harder material surface textures demonstrated a better control over friction among the ground surfaces. Although the effect of roughness on friction was less significant when compared to textures, the harder material roughness showed better correlations when compared to the softer material roughness.

  18. Control of mechanical response of freestanding PbZr0.52Ti0.48O3 films through texture

    NASA Astrophysics Data System (ADS)

    Das, Debashish; Sanchez, Luz; Martin, Joel; Power, Brian; Isaacson, Steven; Polcawich, Ronald G.; Chasiotis, Ioannis

    2016-09-01

    The texture of piezoelectric lead zirconate titanate (PZT) thin films plays a key role in their mechanical response and linearity in the stress vs. strain behavior. The open circuit mechanical properties of PZT films with controlled texture varying from 100% (001) to 100% (111) were quantified with the aid of direct strain measurements from freestanding thin film specimens. The texture was tuned using a highly {111}-textured Pt substrate and excess-Pb in the PbTiO3 seed layer. The mechanical and ferroelastic properties of 500 nm thick PZT (52/48) films were found to be strongly dependent on grain orientation: the lowest elastic modulus of 90 ± 2 GPa corresponded to pure (001) texture, and its value increased linearly with the percentage of (111) texture reaching 122 ± 3 GPa for pure (111) texture. These elastic modulus values were between those computed for transversely isotropic textured PZT films by using the soft and hard bulk PZT compliance coefficients. Pure (001) texture exhibited maximum non-linearity and ferroelastic domain switching, contrary to pure (111) texture that exhibited more linearity and the least amount of switching. A micromechanics model was employed to calculate the strain due to domain switching. The model fitted well the non-linearities in the experimental stress-strain curves of (001) and (111) textured PZT films, predicting 17% and 10% of switched 90° domains that initially were favorably aligned with the applied stress in (001) and (111) textured PZT films, respectively.

  19. Processing, properties, and application of textured 0.72lead(magnesium niobate)-0.28lead titanate ceramics

    NASA Astrophysics Data System (ADS)

    Brosnan, Kristen H.

    In this study, XRD and electron backscatter diffraction (EBSD) techniques were used to characterize the fiber texture in oriented PMN-28PT and the intensity data were fit with a texture model (the March-Dollase equation) that describes the texture in terms of texture fraction (f), and the width of the orientation distribution (r). EBSD analysis confirmed the <001> orientation of the microstructure, with no distinguishable randomly oriented, fine grain matrix. Although XRD rocking curve and EBSD data analysis gave similar f and r values, XRD rocking curve analysis was the most efficient and gave a complete description of texture fraction and texture orientation (f = 0.81 and r = 0.21, respectively). XRD rocking curve analysis was the preferred approach for characterization of the texture volume and the orientation distribution of texture in fiber-oriented PMN-PT. The dielectric, piezoelectric and electromechanical properties for random ceramic, 69 vol% textured, 81 vol% textured, and single crystal PMN-28PT were fully characterized and compared. The room temperature dielectric constant at 1 kHz for highly textured PMN-28PT was epsilonr ≥ 3600 with low dielectric loss (tan delta = 0.004). The temperature dependence of the dielectric constant for 81 vol% textured ceramic followed a similar trend as the single crystal PMN-28PT up to the rhombohedral to tetragonal transition temperature (TRT) at 104°C. 81 vol% textured PMN-28PT consistently displayed 60 to 65% of the single crystal PMN-28PT piezoelectric coefficient (d33) and 1.5 to 3.0 times greater than the random ceramic d33 (measured by Berlincourt meter, unipolar strain-field curves, IEEE standard resonance method, and laser vibrometry). The 81 vol% textured PMN-28PT displayed similarly low piezoelectric hysteresis as single crystal PMN-28PT measured by strain-field curves at 5 kV/cm. 81 vol% textured PMN-28PT and single crystal PMN-28PT displayed similar mechanical quality factors of QM = 74 and 76, respectively. The electromechanical coupling (k 33) of 81 vol% textured PMN-28PT (k33 = 0.79) was a significant fraction of single crystal (k33 = 0.91) and was higher than a commercial PMN-PT ceramic (k33 ˜ 0.74). The nonlinearity of the dielectric and piezoelectric response were investigated in textured ceramics and single crystal PMN-28PT using the Rayleigh approach. The reversible piezoelectric coefficient was found to increase significantly and the hysteretic contribution to the piezoelectric coefficient decreased significantly with an increase in texture volume. This indicates that increasing the texture volume decreases the non-180° domain wall contribution to the piezoelectric response in PMN-28PT. Finally, 81 vol% textured ceramics were also integrated into a Navy SONAR transducer design. In-water characterization of the transducers showed higher source levels, higher in-water coupling, higher acoustic intensity, and more bandwidth for the 81 vol% textured PMN-28PT tonpilz single elements compared to the ceramic PMN-28PT tonpilz element. In addition, an 81 vol% textured PMN-28PT tonpilz element showed large scale linearity in sound pressure levels as a function of drive level under high drive conditions (up to 2.33 kV/cm). The maximum electromechanical coupling obtained by the 81 vol% textured PMN-28PT transducer under high drive conditions was keff = 0.69. However, the resonance frequency shifted significantly during high drive tests (Deltafs = -19% at 3.7 kV/cm), evidence of a "soft" characteristic of the 81 vol% textured PMN-28PT, possibly caused by Sr2+ from the template particles. The results suggest there are limitations on the preload compressive stress (and thus drive level) for these textured ceramics, but this could be addressed with compositional modifications. The dielectric, piezoelectric and electromechanical properties have been significantly improved in textured PMN-PT ceramics of this study. Furthermore, scale-up in processing for incorporation into devices of highly textured ceramics with reproducible texture (and hence narrow properties distribution) was achieved in these materials. SONAR applications could benefit from textured ceramic parts because of their ease of processing, compositional homogeneity and potentially lower cost. (Abstract shortened by UMI.)

  20. Texture evolution and mechanical behaviour of irradiated face-centred cubic metals

    NASA Astrophysics Data System (ADS)

    Chen, L. R.; Xiao, X. Z.; Yu, L.; Chu, H. J.; Duan, H. L.

    2018-02-01

    A physically based theoretical model is proposed to investigate the mechanical behaviour and crystallographic texture evolution of irradiated face-centred cubic metals. This model is capable of capturing the main features of irradiated polycrystalline materials including irradiation hardening, post-yield softening and plasticity localization. Numerical results show a good agreement with experimental data for both unirradiated and irradiated stress-strain relationships. The study of crystallographic texture reveals that the initial randomly distributed texture of unirradiated metals under tensile loading can evolve into a mixture of [111] and [100] textures. Regarding the irradiated case, crystallographic texture develops in a different way, and an extra part of [110] texture evolves into [100] and [111] textures. Thus, [100] and [111] textures become dominant more quickly compared with those of the unirradiated case for the reason that [100] and [111]-oriented crystals have higher strength, and their plastic deformation behaviours are more active than other oriented crystals. It can be concluded that irradiation-induced defects can affect both the mechanical behaviour and texture evolution of metals, both of which are closely related to irradiation hardening.

  1. Objective measurement of bread crumb texture

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Coles, Graeme D.

    1995-01-01

    Evaluation of bread crumb texture plays an important role in judging bread quality. This paper discusses the application of image analysis methods to the objective measurement of the visual texture of bread crumb. The application of Fast Fourier Transform and mathematical morphology methods have been discussed by the authors in their previous work, and a commercial bread texture measurement system has been developed. Based on the nature of bread crumb texture, we compare the advantages and disadvantages of the two methods, and a third method based on features derived directly from statistics of edge density in local windows of the bread image. The analysis of various methods and experimental results provides an insight into the characteristics of the bread texture image and interconnection between texture measurement algorithms. The usefulness of the application of general stochastic process modelling of texture is thus revealed; it leads to more reliable and accurate evaluation of bread crumb texture. During the development of these methods, we also gained useful insights into how subjective judges form opinions about bread visual texture. These are discussed here.

  2. The neutron texture diffractometer at the China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Li, Mei-Juan; Liu, Xiao-Long; Liu, Yun-Tao; Tian, Geng-Fang; Gao, Jian-Bo; Yu, Zhou-Xiang; Li, Yu-Qing; Wu, Li-Qi; Yang, Lin-Feng; Sun, Kai; Wang, Hong-Li; Santisteban, J. r.; Chen, Dong-Feng

    2016-03-01

    The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)

  3. The effect of texture and grain size on improving the mechanical properties of Mg-Al-Zn alloys by friction stir processing.

    PubMed

    Peng, Jinhua; Zhang, Zhen; Liu, Zhao; Li, Yaozu; Guo, Peng; Zhou, Wei; Wu, Yucheng

    2018-03-08

    Friction stir processing (FSP) was used to achieve grain refinement on Mg-Al-Zn alloys, which also brought in significant texture modification. The different micro-texture characteristics were found to cause irregular micro-hardness distribution in FSPed region. The effects of texture and grain size were investigated by comparative analyses with strongly textured rolling sheet. Grain refinement improved both strength and elongation in condition of a basal texture while such led to an increment in yield stress and a drop in elongation and ultimate stress when the basal texture was modified by FSP.

  4. Texture and anisotropy in ferroelectric lead metaniobate

    NASA Astrophysics Data System (ADS)

    Iverson, Benjamin John

    Ferroelectric lead metaniobate, PbNb2O6, is a piezoelectric ceramic typically used because of its elevated Curie temperature and anisotropic properties. However, the piezoelectric constant, d33, is relatively low in randomly oriented ceramics when compared to other ferroelectrics. Crystallographic texturing is often employed to increase the piezoelectric constant because the spontaneous polarization axes of grains are better aligned. In this research, crystallographic textures induced through tape casting are distinguished from textures induced through electrical poling. Texture is described using multiple quantitative approaches utilizing X-ray and neutron time-of-flight diffraction. Tape casting lead metaniobate with an inclusion of acicular template particles induces an orthotropic texture distribution. Templated grain growth from seed particles oriented during casting results in anisotropic grain structures. The degree of preferred orientation is directly linked to the shear behavior of the tape cast slurry. Increases in template concentration, slurry viscosity, and casting velocity lead to larger textures by inducing more particle orientation in the tape casting plane. The maximum 010 texture distributions were two and a half multiples of a random distribution. Ferroelectric texture was induced by electrical poling. Electric poling increases the volume of material oriented with the spontaneous polarization direction in the material. Samples with an initial paraelectric texture exhibit a greater change in the domain volume fraction during electrical poling than randomly oriented ceramics. In tape cast samples, the resulting piezoelectric response is proportional to the 010 texture present prior to poling. This results in property anisotropy dependent on initial texture. Piezoelectric properties measured on the most textured ceramics were similar to those obtained with a commercial standard.

  5. Parenchymal Texture Analysis in Digital Breast Tomosynthesis for Breast Cancer Risk Estimation: A Preliminary Study

    PubMed Central

    Kontos, Despina; Bakic, Predrag R.; Carton, Ann-Katherine; Troxel, Andrea B.; Conant, Emily F.; Maidment, Andrew D.A.

    2009-01-01

    Rationale and Objectives Studies have demonstrated a relationship between mammographic parenchymal texture and breast cancer risk. Although promising, texture analysis in mammograms is limited by tissue superimposition. Digital breast tomosynthesis (DBT) is a novel tomographic x-ray breast imaging modality that alleviates the effect of tissue superimposition, offering superior parenchymal texture visualization compared to mammography. Our study investigates the potential advantages of DBT parenchymal texture analysis for breast cancer risk estimation. Materials and Methods DBT and digital mammography (DM) images of 39 women were analyzed. Texture features, shown in studies with mammograms to correlate with cancer risk, were computed from the retroareolar breast region. We compared the relative performance of DBT and DM texture features in correlating with two measures of breast cancer risk: (i) the Gail and Claus risk estimates, and (ii) mammographic breast density. Linear regression was performed to model the association between texture features and increasing levels of risk. Results No significant correlation was detected between parenchymal texture and the Gail and Claus risk estimates. Significant correlations were observed between texture features and breast density. Overall, the DBT texture features demonstrated stronger correlations with breast percent density (PD) than DM (p ≤0.05). When dividing our study population in groups of increasing breast PD, the DBT texture features appeared to be more discriminative, having regression lines with overall lower p-values, steeper slopes, and higher R2 estimates. Conclusion Although preliminary, our results suggest that DBT parenchymal texture analysis could provide more accurate characterization of breast density patterns, which could ultimately improve breast cancer risk estimation. PMID:19201357

  6. Power spectral ensity of markov texture fields

    NASA Technical Reports Server (NTRS)

    Shanmugan, K. S.; Holtzman, J. C.

    1984-01-01

    Texture is an important image characteristic. A variety of spatial domain techniques were proposed for extracting and utilizing textural features for segmenting and classifying images. for the most part, these spatial domain techniques are ad hos in nature. A markov random field model for image texture is discussed. A frequency domain description of image texture is derived in terms of the power spectral density. This model is used for designing optimum frequency domain filters for enhancing, restoring and segmenting images based on their textural properties.

  7. [Visual Texture Agnosia in Humans].

    PubMed

    Suzuki, Kyoko

    2015-06-01

    Visual object recognition requires the processing of both geometric and surface properties. Patients with occipital lesions may have visual agnosia, which is impairment in the recognition and identification of visually presented objects primarily through their geometric features. An analogous condition involving the failure to recognize an object by its texture may exist, which can be called visual texture agnosia. Here we present two cases with visual texture agnosia. Case 1 had left homonymous hemianopia and right upper quadrantanopia, along with achromatopsia, prosopagnosia, and texture agnosia, because of damage to his left ventromedial occipitotemporal cortex and right lateral occipito-temporo-parietal cortex due to multiple cerebral embolisms. Although he showed difficulty matching and naming textures of real materials, he could readily name visually presented objects by their contours. Case 2 had right lower quadrantanopia, along with impairment in stereopsis and recognition of texture in 2D images, because of subcortical hemorrhage in the left occipitotemporal region. He failed to recognize shapes based on texture information, whereas shape recognition based on contours was well preserved. Our findings, along with those of three reported cases with texture agnosia, indicate that there are separate channels for processing texture, color, and geometric features, and that the regions around the left collateral sulcus are crucial for texture processing.

  8. Development of low friction snake-inspired deterministic textured surfaces

    NASA Astrophysics Data System (ADS)

    Cuervo, P.; López, D. A.; Cano, J. P.; Sánchez, J. C.; Rudas, S.; Estupiñán, H.; Toro, A.; Abdel-Aal, H. A.

    2016-06-01

    The use of surface texturization to reduce friction in sliding interfaces has proved successful in some tribological applications. However, it is still difficult to achieve robust surface texturing with controlled designer-functionalities. This is because the current existing gap between enabling texturization technologies and surface design paradigms. Surface engineering, however, is advanced in natural surface constructs especially within legless reptiles. Many intriguing features facilitate the tribology of such animals so that it is feasible to discover the essence of their surface construction. In this work, we report on the tribological behavior of a novel class of surfaces of which the spatial dimensions of the textural patterns originate from micro-scale features present within the ventral scales of pre-selected snake species. Mask lithography was used to produce implement elliptical texturizing patterns on the surface of titanium alloy (Ti6Al4V) pins. To study the tribological behavior of the texturized pins, pin-on-disc tests were carried out with the pins sliding against ultra-high molecular weight polyethylene discs with no lubrication. For comparison, two non-texturized samples were also tested under the same conditions. The results show the feasibility of the texturization technique based on the coefficient of friction of the textured surfaces to be consistently lower than that of the non-texturized samples.

  9. Aural analysis of image texture via cepstral filtering and sonification

    NASA Astrophysics Data System (ADS)

    Rangayyan, Rangaraj M.; Martins, Antonio C. G.; Ruschioni, Ruggero A.

    1996-03-01

    Texture plays an important role in image analysis and understanding, with many applications in medical imaging and computer vision. However, analysis of texture by image processing is a rather difficult issue, with most techniques being oriented towards statistical analysis which may not have readily comprehensible perceptual correlates. We propose new methods for auditory display (AD) and sonification of (quasi-) periodic texture (where a basic texture element or `texton' is repeated over the image field) and random texture (which could be modeled as filtered or `spot' noise). Although the AD designed is not intended to be speech- like or musical, we draw analogies between the two types of texture mentioned above and voiced/unvoiced speech, and design a sonification algorithm which incorporates physical and perceptual concepts of texture and speech. More specifically, we present a method for AD of texture where the projections of the image at various angles (Radon transforms or integrals) are mapped to audible signals and played in sequence. In the case of random texture, the spectral envelopes of the projections are related to the filter spot characteristics, and convey the essential information for texture discrimination. In the case of periodic texture, the AD provides timber and pitch related to the texton and periodicity. In another procedure for sonification of periodic texture, we propose to first deconvolve the image using cepstral analysis to extract information about the texton and horizontal and vertical periodicities. The projections of individual textons at various angles are used to create a voiced-speech-like signal with each projection mapped to a basic wavelet, the horizontal period to pitch, and the vertical period to rhythm on a longer time scale. The sound pattern then consists of a serial, melody-like sonification of the patterns for each projection. We believe that our approaches provide the much-desired `natural' connection between the image data and the sounds generated. We have evaluated the sonification techniques with a number of synthetic textures. The sound patterns created have demonstrated the potential of the methods in distinguishing between different types of texture. We are investigating the application of these techniques to auditory analysis of texture in medical images such as magnetic resonance images.

  10. Soil Texture Estimates: A Tool to Compare Texture-by-Feel and Lab Data

    ERIC Educational Resources Information Center

    Franzmeier, D.P.; Owens, P.R.

    2008-01-01

    Soil texture is a fundamental soil property that impacts agricultural and engineering land-use. Comparing texture estimates-by-feel to laboratory-known values to calibrate fingers is a common practice. As educators, it is difficult to assess this field skill consistently and fairly. The instructor may give full credit for the correct texture class…

  11. Decoupling of superposed textures in an electrically biased piezoceramic with a 100 preferred orientation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fancher, Chris M.; Blendell, John E.; Bowman, Keith J.

    2017-02-07

    A method leveraging Rietveld full-pattern texture analysis to decouple induced domain texture from a preferred grain orientation is presented in this paper. The proposed method is demonstrated by determining the induced domain texture in a polar polymorph of 100 oriented 0.91Bi 1/2Na 1/2TiO 3-0.07BaTiO 3-0.02K 0.5Na 0.5NbO 3. Domain textures determined using the present method are compared with results obtained via single peak fitting. Texture determined using single peak fitting estimated more domain alignment than that determined using the Rietveld based method. These results suggest that the combination of grain texture and phase transitions can lead to single peak fittingmore » under or over estimating domain texture. Finally, while demonstrated for a bulk piezoelectric, the proposed method can be applied to quantify domain textures in multi-component systems and thin films.« less

  12. Visual texture perception via graph-based semi-supervised learning

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Dong, Junyu; Zhong, Guoqiang

    2018-04-01

    Perceptual features, for example direction, contrast and repetitiveness, are important visual factors for human to perceive a texture. However, it needs to perform psychophysical experiment to quantify these perceptual features' scale, which requires a large amount of human labor and time. This paper focuses on the task of obtaining perceptual features' scale of textures by small number of textures with perceptual scales through a rating psychophysical experiment (what we call labeled textures) and a mass of unlabeled textures. This is the scenario that the semi-supervised learning is naturally suitable for. This is meaningful for texture perception research, and really helpful for the perceptual texture database expansion. A graph-based semi-supervised learning method called random multi-graphs, RMG for short, is proposed to deal with this task. We evaluate different kinds of features including LBP, Gabor, and a kind of unsupervised deep features extracted by a PCA-based deep network. The experimental results show that our method can achieve satisfactory effects no matter what kind of texture features are used.

  13. Shape from texture: an evaluation of visual cues

    NASA Astrophysics Data System (ADS)

    Mueller, Wolfgang; Hildebrand, Axel

    1994-05-01

    In this paper an integrated approach is presented to understand and control the influence of texture on shape perception. Following Gibson's hypotheses, which states that texture is a mathematically and psychological sufficient stimulus for surface perception, we evaluate different perceptual cues. Starting out from a perception-based texture classification introduced by Tamura et al., we build up a uniform sampled parameter space. For the synthesis of some of our textures we use the texture description language HiLDTe. To acquire the desired texture specification we take advantage of a genetic algorithm. Employing these textures we practice a number of psychological tests to evaluate the significance of the different texture features. A comprehension of the results derived from the psychological tests is done to constitute new shape analyzing techniques. Since the vanishing point seems to be an important visual cue we introduce the Hough transform. A prospective of future work within the field of visual computing is provided within the final section.

  14. Texture in steel plates revealed by laser ultrasonic surface acoustic waves velocity dispersion analysis.

    PubMed

    Yin, Anmin; Wang, Xiaochen; Glorieux, Christ; Yang, Quan; Dong, Feng; He, Fei; Wang, Yanlong; Sermeus, Jan; Van der Donck, Tom; Shu, Xuedao

    2017-07-01

    A photoacoustic, laser ultrasonics based approach in an Impulsive Stimulated Scattering (ISS) implementation was used to investigate the texture in polycrystalline metal plates. The angular dependence of the 'polycrystalline' surface acoustic wave (SAW) velocity measured along regions containing many grains was experimentally determined and compared with simulated results that were based on the angular dependence of the 'single grain' SAW velocity within single grains and the grain orientation distribution. The polycrystalline SAW velocities turn out to vary with texture. The SAW velocities and their angular variations for {110} texture were found to be larger than that the ones for {111} texture or the strong γ fiber texture. The SAW velocities for {001} texture were larger than for {111} texture, but with almost the same angular dependence. The results infer the feasibility to apply angular SAW angular dispersion measurements by laser ultrasonics for on-line texture monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. South Polar Textures

    NASA Image and Video Library

    2014-10-07

    While yesterday image showed a texture of oval depressions swiss cheese, this image from NASA 2001 Mars Odyssey spacecraft shows a linear surface texture of the south polar cap. This texture is described as looking like a thumbprint.

  16. Adaptive texture filtering for defect inspection in ultrasound images

    NASA Astrophysics Data System (ADS)

    Zmola, Carl; Segal, Andrew C.; Lovewell, Brian; Nash, Charles

    1993-05-01

    The use of ultrasonic imaging to analyze defects and characterize materials is critical in the development of non-destructive testing and non-destructive evaluation (NDT/NDE) tools for manufacturing. To develop better quality control and reliability in the manufacturing environment advanced image processing techniques are useful. For example, through the use of texture filtering on ultrasound images, we have been able to filter characteristic textures from highly-textured C-scan images of materials. The materials have highly regular characteristic textures which are of the same resolution and dynamic range as other important features within the image. By applying texture filters and adaptively modifying their filter response, we have examined a family of filters for removing these textures.

  17. Description of textures by a structural analysis.

    PubMed

    Tomita, F; Shirai, Y; Tsuji, S

    1982-02-01

    A structural analysis system for describing natural textures is introduced. The analyzer automatically extracts the texture elements in an input image, measures their properties, classifies them into some distinctive classes (one ``ground'' class and some ``figure'' classes), and computes the distributions of the gray level, the shape, and the placement of the texture elements in each class. These descriptions are used for classification of texture images. An analysis-by-synthesis method for evaluating texture analyzers is also presented. We propose a synthesizer which generates a texture image based on the descriptions. By comparing the reconstructed image with the original one, we can see what information is preserved and what is lost in the descriptions.

  18. Ultra-High Sensitive Magnetoelectric Nanocomposite Current Sensors

    DTIC Science & Technology

    2009-12-01

    textured grains. In the sintered composite, PZT -PZN...constant increases by 50% for the moderate degree of texturing . Figure 8 shows the ME coefficient of trilayer with textured PZT – PZN as function of DC...1000 1100 d E /d H ( m V /c m .O e ) Field (Oe) NCZF - PZT - PZN ( textured ) - NCZF Figure 8: ME coefficient of the textured ME composite.

  19. Texture generation for use in synthetic infrared scenes

    NASA Astrophysics Data System (ADS)

    Ota, Clem Z.; Rollins, John M.; Bleiweiss, Max P.

    1996-06-01

    In the process of creating synthetic scenes for use in simulations/visualizations, texture is used as a surrogate to 'high' spatial definition. For example, if one were to measure the location of every blade of grass and all of the characteristics of each blade of grass in a lawn, then in the process of composing a scene of the lawn, it would be expected that the result would appear 'real;' however, because this process is excruciatingly laborious, various techniques have been devised to place the required details in the scene through the use of texturing. Experience gained during the recent Smart Weapons Operability Enhancement Joint Test and Evaluation (SWOE JT&E) has shown the need for higher fidelity texturing algorithms and a better parameterization of those that are in use. In this study, four aspects of the problem have been analyzed: texture extraction, texture insertion, texture metrics, and texture creation algorithms. The results of extracting real texture from an image, measuring it with a variety of metrics, and generating similar texture with three different algorithms is presented. These same metrics can be used to define clutter and to make comparisons between 'real' and synthetic (or artificial) scenes in an objective manner.

  20. Experimental Study on the Perception Characteristics of Haptic Texture by Multidimensional Scaling.

    PubMed

    Wu, Juan; Li, Na; Liu, Wei; Song, Guangming; Zhang, Jun

    2015-01-01

    Recent works regarding real texture perception demonstrate that physical factors such as stiffness and spatial period play a fundamental role in texture perception. This research used a multidimensional scaling (MDS) analysis to further characterize and quantify the effects of the simulation parameters on haptic texture rendering and perception. In a pilot experiment, 12 haptic texture samples were generated by using a 3-degrees-of-freedom (3-DOF) force-feedback device with varying spatial period, height, and stiffness coefficient parameter values. The subjects' perceptions of the virtual textures indicate that roughness, denseness, flatness and hardness are distinguishing characteristics of texture. In the main experiment, 19 participants rated the dissimilarities of the textures and estimated the magnitudes of their characteristics. The MDS method was used to recover the underlying perceptual space and reveal the significance of the space from the recorded data. The physical parameters and their combinations have significant effects on the perceptual characteristics. A regression model was used to quantitatively analyze the parameters and their effects on the perceptual characteristics. This paper is to illustrate that haptic texture perception based on force feedback can be modeled in two- or three-dimensional space and provide suggestions on improving perception-based haptic texture rendering.

  1. Paraboloid Structured Silicon Surface for Enhanced Light Absorption: Experimental and Simulative Investigations

    NASA Astrophysics Data System (ADS)

    Khan, Firoz; Baek, Seong-Ho; Kaur, Jasmeet; Fareed, Imran; Mobin, Abdul; Kim, Jae Hyun

    2015-09-01

    In this paper, we present an optical model that simulates the light trapping and scattering effects of a paraboloid texture surface first time. This model was experimentally verified by measuring the reflectance values of the periodically textured silicon (Si) surface with the shape of a paraboloid under different conditions. A paraboloid texture surface was obtained by electrochemical etching Si in the solution of hydrofluoric acid, dimethylsulfoxide (DMSO), and deionized (DI) water. The paraboloid texture surface has the advantage of giving a lower reflectance value than the hemispherical, random pyramidal, and regular pyramidal texture surfaces. In the case of parabola, the light can be concentrated in the direction of the Si surface compared to the hemispherical, random pyramidal, and regular pyramidal textured surfaces. Furthermore, in a paraboloid textured surface, there can be a maximum value of 4 or even more by anisotropic etching duration compared to the hemispherical or pyramidal textured surfaces which have a maximum h/ D (depth and diameter of the texture) value of 0.5. The reflectance values were found to be strongly dependent on the h/ D ratio of the texture surface. The measured reflectance values were well matched with the simulated ones. The minimum reflectance value of ~4 % was obtained at a wavelength of 600 nm for an h/ D ratio of 3.75. The simulation results showed that the reflectance value for the h/ D ratio can be reduced to ~0.5 % by reducing the separations among the textures. This periodic paraboloidal structure can be applied to the surface texturing technique by substituting with a conventional pyramid textured surface or moth-eye antireflection coating.

  2. Annealing texture of nanostructured IF steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamaati, Roohollah, E-mail: jamaati@nit.ac.ir

    In the present work, the evolution of annealing texture in nanostructured interstitial free steel fabricated via accumulative roll bonding (ARB) process was investigated. Textural evolution after post-annealing of ARB-processed samples was evaluated using X-ray diffraction. There were several texture transitions in the γ-fiber and ζ-fiber during ARB and post-annealing treatment. It was found that with increasing the number of ARB cycles, the volume fraction of the low angle grain boundary decreased and the high angle grain boundary fraction increased. Also, the shear texture was dominant after the first cycle, while for other samples, the rolling texture was dominant. The one-cyclemore » sample clearly indicated a weak α-fiber and γ-fiber and a relatively strong ζ-fiber. In addition, during the recrystallization and before the grain growth, the intensity of α-fiber and γ-fiber decreased, the intensity of ζ-fiber increased, and the intensity of (011)〈100〉 orientation in the ε-fiber and η-fiber increased. Moreover, it was concluded that the transition from the rolling texture to the shear one was a sign of occurrence of the recrystallization (before the grain growth). Finally, with increasing the number of ARB cycles, the intensity of rolling and shear textures saturated and a stable texture formed. - Highlights: • There were texture transitions in the γ-fiber and ζ-fiber. • When the number of cycles increased, the low angle grain boundaries decreased. • The shear texture was dominant after the first cycle. • Transition from rolling texture to shear one was a sign of recrystallization. • With increasing the number of ARB cycles, a stable texture formed.« less

  3. Rolling process for producing biaxially textured substrates

    DOEpatents

    Goyal, Amit

    2004-05-25

    A method of preparing a biaxially textured article includes the steps of: rolling a metal preform while applying shear force thereto to form as-rolled biaxially textured substrate having an a rotated cube texture wherein a (100) cube face thereof is parallel to a surface of said substrate, and wherein a [100] direction thereof is at an angle of at least 30.degree. relative to the rolling direction; and depositing onto the surface of the biaxially textured substrate at least one epitaxial layer of another material to form a biaxially textured article.

  4. Diagnostic Performance of Mammographic Texture Analysis in the Differential Diagnosis of Benign and Malignant Breast Tumors.

    PubMed

    Li, Zhiming; Yu, Lan; Wang, Xin; Yu, Haiyang; Gao, Yuanxiang; Ren, Yande; Wang, Gang; Zhou, Xiaoming

    2017-11-09

    The purpose of this study was to investigate the diagnostic performance of mammographic texture analysis in the differential diagnosis of benign and malignant breast tumors. Digital mammography images were obtained from the Picture Archiving and Communication System at our institute. Texture features of mammographic images were calculated. Mann-Whitney U test was used to identify differences between the benign and malignant group. The receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic performance of texture features. Significant differences of texture features of histogram, gray-level co-occurrence matrix (GLCM) and run length matrix (RLM) were found between the benign and malignant breast group (P < .05). The area under the ROC (AUROC) of histogram, GLCM, and RLM were 0.800, 0.787, and 0.761, with no differences between them (P > .05). The AUROCs of imaging-based diagnosis, texture analysis, and imaging-based diagnosis combined with texture analysis were 0.873, 0.863, and 0.961, respectively. When imaging-based diagnosis was combined with texture analysis, the AUROC was higher than that of imaging-based diagnosis or texture analysis (P < .05). Mammographic texture analysis is a reliable technique for differential diagnosis of benign and malignant breast tumors. Furthermore, the combination of imaging-based diagnosis and texture analysis can significantly improve diagnostic performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cascaded Amplitude Modulations in Sound Texture Perception.

    PubMed

    McWalter, Richard; Dau, Torsten

    2017-01-01

    Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as "beating" in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures-stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.

  6. Texture-dependent effects of pseudo-chewing sound on perceived food texture and evoked feelings in response to nursing care foods.

    PubMed

    Endo, Hiroshi; Ino, Shuichi; Fujisaki, Waka

    2017-09-01

    Because chewing sounds influence perceived food textures, unpleasant textures of texture-modified diets might be improved by chewing sound modulation. Additionally, since inhomogeneous food properties increase perceived sensory intensity, the effects of chewing sound modulation might depend on inhomogeneity. This study examined the influences of texture inhomogeneity on the effects of chewing sound modulation. Three kinds of nursing care foods in two food process types (minced-/puréed-like foods for inhomogeneous/homogeneous texture respectively) were used as sample foods. A pseudo-chewing sound presentation system, using electromyogram signals, was used to modulate chewing sounds. Thirty healthy elderly participants participated in the experiment. In two conditions with and without the pseudo-chewing sound, participants rated the taste, texture, and evoked feelings in response to sample foods. The results showed that inhomogeneity strongly influenced the perception of food texture. Regarding the effects of the pseudo-chewing sound, taste was less influenced, the perceived food texture tended to change in the minced-like foods, and evoked feelings changed in both food process types. Though there were some food-dependent differences in the effects of the pseudo-chewing sound, the presentation of the pseudo-chewing sounds was more effective in foods with an inhomogeneous texture. In addition, it was shown that the pseudo-chewing sound might have positively influenced feelings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Wear Behavior of Textured Steel Sliding against Polymers

    PubMed Central

    Wang, Meiling; Zhang, Changtao; Wang, Xiaolei

    2017-01-01

    Artificially fabricated surface textures can significantly improve the friction and wear resistance of a tribological contact. Recently, this surface texturing technique has been applied to polymer materials to improve their tribological performance. However, the wear behavior of textured tribo-pairs made of steel and polymer materials has been less thoroughly investigated and is not well understood; thus, it needs further research. The aim of this study is to investigate the wear properties of tribological contacts made of textured stainless steel against polymer surfaces. Three polymer materials were selected in this study, namely, ultrahigh molecular weight polyethylene (UHMWPE), polyoxymethylene (POM) and (polyetheretherketone) PEEK. Wear tests were operated through a ring-on-plane mode. The results revealed that the texture features and material properties affected the wear rates and friction coefficients of the textured tribo-pairs. In general, PEEK/textured steel achieved the lowest wear rate among the three types of tribo-pairs investigated. Energy dispersive x-ray spectroscopy (EDX) analysis revealed that the elements of C and O on the contacting counterfaces varied with texture features and indicated different wear behavior. Experimental and simulated results showed differences in the stress distribution around the dimple edge, which may influence wear performance. Wear debris with different surface morphologies were found for tribo-pairs with varying texture features. This study has increased the understanding of the wear behavior of tribo-pairs between textured stainless steel and polymer materials. PMID:28772688

  8. Beyond the subjective experience of colour: An experimental case study of grapheme-texture synesthesia.

    PubMed

    Banno, Hayaki; Koga, Hiroki; Yamamoto, Hiroki; Saiki, Jun

    2017-07-01

    This study was a case investigation of grapheme-texture synestheste TH, a female who subjectively reported experiencing a visual association between grapheme and colour/texture. First, we validated the existence of a synesthetic association in an objective manner. Involuntarily elicited experience is a major hallmark that is common to different types of synesthetes. Our results indicated interference between physical and synesthetic texture, suggesting the involuntary occurrence of synesthetic textural experience. We analysed the behavioural measures using the EZ diffusion model. The result suggested that TH's synesthetic experience was dissociable from that of briefly trained associative processing of non-synesthetes. Second, we investigated how the synesthetic experience of colour and texture dimensions was bound in the visual representation. We found that the interference effects of colour and texture were not independent. This suggested that in the elicited experience, the colour and texture features construct an integrated representation.

  9. The Development of Surface Roughness and Implications for Cellular Attachment in Biomedical Applications

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Miller, Sharon; deGroh, Kim; Chan, Amy; Sahota, Mandeep

    2001-01-01

    The application of a microscopic surface texture produced by ion beam sputter texturing to the surfaces of polymer implants has been shown to result in significant increases in cellular attachment compared to smooth surface implants in animal studies. A collaborative program between NASA Glenn Research Center and the Cleveland Clinic Foundation has been established to evaluate the potential for improving osteoblast attachment to surfaces that have been microscopically roughened by atomic oxygen texturing. The range of surface textures that are feasible depends upon both the texturing process and the duration of treatment. To determine whether surface texture saturates or continues to increase with treatment duration, an effort was conducted to examine the development of surface textures produced by various physical and chemical erosion processes. Both experimental tests and computational modeling were performed to explore the growth of surface texture with treatment time. Surface texturing by means of abrasive grit blasting of glass, stainless steel, and polymethylmethacry I ate surfaces was examined to measure the growth in roughness with grit blasting duration by surface profilometry measurements. Laboratory tests and computational modeling was also conducted to examine the development of texture on Aclar(R) (chlorotfifluoroethylene) and Kapton(R) polyimide, respectively. For the atomic oxygen texturing tests of Aclar(R), atomic force microscopy was used to measure the development of texture with atomic oxygen fluence. The results of all the testing and computational modeling support the premise that development of surface roughness obeys Poisson statistics. The results indicate that surface roughness does not saturate but increases as the square root of the treatment time.

  10. Microstructure, crystallographic texture and mechanical properties of friction stir welded AA2017A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, M.M.Z., E-mail: mohamed_ahmed4@s-petrol.suez.edu.eg; Department of Metallurgical and Materials Engineering, Suez Canal University, Suez 43721; Wynne, B.P.

    2012-02-15

    In this study a thick section (20 mm) friction stir welded AA2017A-T451 has been characterized in terms of microstructure, crystallographic texture and mechanical properties. For microstructural analysis both optical and scanning electron microscopes have been used. A detailed crystallographic texture analysis has been carried out using the electron back scattering diffraction technique. Crystallographic texture has been examined in both shoulder and probe affected regions of the weld NG. An entirely weak texture is observed at the shoulder affected region which is mainly explained by the effect of the sequential multi pass deformation experienced by both tool probe and tool shoulder.more » The texture in the probe dominated region at the AS side of the weld is relatively weak but still assembles the simple shear texture of FCC metals with B/B{sup Macron} and C components existing across the whole map. However, the texture is stronger at the RS than at the AS of the weld, mainly dominated byB/B{sup Macron} components and with C component almost absent across the map. An alternating bands between (B) components and (B{sup Macron }) component are observed only at the AS side of the weld. - Highlights: Black-Right-Pointing-Pointer Detailed investigation of microstructure and crystallographic texture. Black-Right-Pointing-Pointer The grain size is varied from the top to the bottom of the NG. Black-Right-Pointing-Pointer An entirely weak texture is observed at the shoulder affected region. Black-Right-Pointing-Pointer The texture in the probe affected region is dominated by simple shear texture.« less

  11. Interactions between soil texture, water, and nutrients control patterns of biocrusts abundance and structure

    NASA Astrophysics Data System (ADS)

    Young, Kristina; Bowker, Matthew; Reed, Sasha; Howell, Armin

    2017-04-01

    Heterogeneity in the abiotic environment structures biotic communities by controlling niche space and parameters. This has been widely observed and demonstrated in vascular plant and other aboveground communities. While soil organisms are presumably also strongly influenced by the physical and chemical dimensions of the edaphic environment, there are fewer studies linking the development, structure, productivity or function of surface soil communities to specific edaphic gradients. Here, we use biological soil crusts (biocrusts) as a model system to determine mechanisms regulating community structure of soil organisms. We chose soil texture to serve as an edaphic gradient because of soil texture's influence over biocrust distribution on a landscape level. We experimentally manipulated texture in constructed soil, and simultaneously manipulated two main outcomes of texture, water and nutrient availability, to determine the mechanism underlying texture's influence on biocrust abundance and structure. We grew biocrust communities from a field-sourced inoculum on four different soil textures, sieved from the same parent soil material, manipulating watering levels and nutrient additions across soil textures in a full-factorial design over a 5-month period of time. We measured abundance and structure of biocrusts over time, and measured two metrics of function, N2 fixation rates and soil stabilization, at the conclusion of the experiment. Our results showed finer soil textures resulted in faster biocrust community development and dominance by mosses, whereas coarser textures grew more slowly and had biocrust communities dominated by cyanobacteria and lichen. Additionally, coarser textured soils contained cyanobacterial filaments significantly deeper into the soil profile than fine textured soils. N2-fixation values increased with increasing moss cover and decreased with increasing cyanobacterial cover, however, the rate of change depended on soil texture and water amount. Soil shear resistance was highest on finer textured soil with the highest watering treatment, whereas compression resistance was highest on the coarsest textured soils with the highest watering amounts. Nutrient addition did not influence total cover or biocrust function, but did decrease lichen cover. Taken together, these results suggest that interactions between soil texture, water, and to a lesser degree nutrients, create predictable patterns in biocrust assemblage and offers a mechanistic understanding of edaphic controls over biocrust abundance and structure. These insights add to our increasing understanding of how edaphic gradients structure soil communities.

  12. A neural network detection model of spilled oil based on the texture analysis of SAR image

    NASA Astrophysics Data System (ADS)

    An, Jubai; Zhu, Lisong

    2006-01-01

    A Radial Basis Function Neural Network (RBFNN) Model is investigated for the detection of spilled oil based on the texture analysis of SAR imagery. In this paper, to take the advantage of the abundant texture information of SAR imagery, the texture features are extracted by both wavelet transform and the Gray Level Co-occurrence matrix. The RBFNN Model is fed with a vector of these texture features. The RBFNN Model is trained and tested by the sample data set of the feature vectors. Finally, a SAR image is classified by this model. The classification results of a spilled oil SAR image show that the classification accuracy for oil spill is 86.2 by the RBFNN Model using both wavelet texture and gray texture, while the classification accuracy for oil spill is 78.0 by same RBFNN Model using only wavelet texture as the input of this RBFNN model. The model using both wavelet transform and the Gray Level Co-occurrence matrix is more effective than that only using wavelet texture. Furthermore, it keeps the complicated proximity and has a good performance of classification.

  13. Training Spatial Knowledge Acquisition Using Virtual Environments

    DTIC Science & Technology

    2000-04-03

    bands of textures and tiles them together to form long, continuous swaths of texture. This paper summarizes these tools and their function, and...which allows it to control these devices. It also includes a texture- tiling application to precisely line up frames from the camera to create wall...that textures exist a priori and has no support for cropping and tiling textures within the program, much less an interface to hardware specifically

  14. Relation between plastic surface microtexturation and Ag film percolation and resistivity

    NASA Astrophysics Data System (ADS)

    Rapeaux, Michel; Tribut, Laurent

    2017-09-01

    Reinforced polycarbonate samples are textured by laser to get hydrophilic or hydrophobic surface. Then, Ag films are deposited on textured and non-textured samples by magnetron sputtering. In-situ resistivity measurement has been done to determine the electrical percolation threshold according to the texturation. Results are discussed and texturation is presented as one option to improve surface insulation in circuit breaker after a short-circuit event.

  15. A Review of Texture Evolution Mechanisms During Deformation by Rolling in Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Li, Shasha; Zhao, Qi; Liu, Zhiyi; Li, Fudong

    2018-06-01

    The current understanding of texture evolution during deformation by rolling in aluminum alloys was summarized. This included understanding the evolution mechanisms and several key factors of initial texture, microstructure, alloy composition, deformation temperature, stress-strain condition, and rolling geometry. Related models on predicting texture evolution during rolling were also discussed. Finally, for this research field, the recommendations for controlling the formation of rolling textures were proposed.

  16. Powder-in-tube and thick-film methods of fabricating high temperature superconductors having enhanced biaxial texture

    DOEpatents

    Goyal, Amit; Kroeger, Donald M.

    2003-11-11

    A method for forming an electronically active biaxially textured article includes the steps of providing a substrate having a single crystal metal or metal alloy surface, deforming the substrate to form an elongated substrate surface having biaxial texture and depositing an epitaxial electronically active layer on the biaxially textured surface. The method can include at least one annealing step after the deforming step to produce the biaxially textured substrate surface. The invention can be used to form improved biaxially textured articles, such as superconducting wire and tape articles having improved J.sub.c values.

  17. Electrodeposition of biaxially textured layers on a substrate

    DOEpatents

    Bhattacharya, Raghu N; Phok, Sovannary; Spagnol, Priscila; Chaudhuri, Tapas

    2013-11-19

    Methods of producing one or more biaxially textured layer on a substrate, and articles produced by the methods, are disclosed. An exemplary method may comprise electrodepositing on the substrate a precursor material selected from the group consisting of rare earths, transition metals, actinide, lanthanides, and oxides thereof. An exemplary article (150) may comprise a biaxially textured base material (130), and at least one biaxially textured layer (110) selected from the group consisting of rare earths, transition metals, actinides, lanthanides, and oxides thereof. The at least one biaxially textured layer (110) is formed by electrodeposition on the biaxially textured base material (130).

  18. A quasi-in-situ EBSD observation of the transformation from rolling texture to recrystallization texture in V-4Cr-4Ti alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Lixia

    Recrystallization texture evolution of rolled V-4Cr-4Ti alloy has been investigated by quasi-in-situ EBSD (electron back-scattering diffraction) method. Concurrently, the precipitates were characterized by SEM (Scanning Electron Microscopy). It was found that both the initial rolling textures and the distribution of the precipitates affected the formation of the recrystallization texture. It was revealed that the texture transformations of (558) 〈110〉 + (665) 〈110〉 to (334) 〈483〉 + (665) 〈1 1 2.4〉 were possibly attributed to the selective drag induced by the sparsely dispersed Ti-rich precipitates. While the densely distributed Ti-rich precipitates were responsible for the randomized recrystallization texture. Finally, when themore » precipitates were absent, the orientation changes from (112) 〈110〉 and (558) 〈110〉 to (111) 〈112〉 and (001) <110> to (001) <520> were observed. - Highlights: • Micro recrystallization texture evolution in V-4Cr-4Ti alloys is reported for the first time. • The volume fraction of Ti-rich precipitates has significant effect on the recrystallization texture evolution. • The dissolution of the Ti-rich precipitates above 1100 °C induces the strengthening of (111) <112> texture.« less

  19. Optimizing Pt/TiO2 templates for textured PZT growth and MEMS devices

    NASA Astrophysics Data System (ADS)

    Potrepka, Daniel; Fox, Glenn; Sanchez, Luz; Polcawich, Ronald

    2013-03-01

    Crystallographic texture of lead zirconate titanate (PZT) thin films strongly influences piezoelectric properties used in MEMS applications. Textured growth can be achieved by relying on crystal growth habit and can also be initiated by the use of a seed-layer heteroepitaxial template. Template choice and the process used to form it determine structural quality, ultimately influencing performance and reliability of MEMS PZT devices such as switches, filters, and actuators. This study focuses on how 111-textured PZT is generated by a combination of crystal habit and templating mechanisms that occur in the PZT/bottom-electrode stack. The sequence begins with 0001-textured Ti deposited on thermally grown SiO2 on a Si wafer. The Ti is converted to 100-textured TiO2 (rutile) through thermal oxidation. Then 111-textured Pt can be grown to act as a template for 111-textured PZT. Ti and Pt are deposited by DC magnetron sputtering. TiO2 and Pt film textures and structure were optimized by variation of sputtering deposition times, temperatures and power levels, and post-deposition anneal conditions. The relationship between Ti, TiO2, and Pt texture and their impact on PZT growth will be presented. Also affiliated with U.S. Army Research Lab, Adelphi, MD 20783, USA

  20. Orbital selective spin-texture in a topological insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Bahadur, E-mail: bahadursingh24@gmail.com; Prasad, R.

    Three-dimensional topological insulators support a metallic non-trivial surface state with unique spin texture, where spin and momentum are locked perpendicular to each other. In this work, we investigate the orbital selective spin-texture associated with the topological surface states in Sb2Te{sub 3}, using the first principles calculations. Sb2Te{sub 3} is a strong topological insulator with a p-p type bulk band inversion at the Γ-point and supports a single topological metallic surface state with upper (lower) Dirac-cone has left (right) handed spin-texture. Here, we show that the topological surface state has an additional locking between the spin and orbitals, leading to anmore » orbital selective spin-texture. The out-of-plane orbitals (p{sub z} orbitals) have an isotropic orbital texture for both the Dirac cones with an associated left and right handed spin-texture for the upper and lower Dirac cones, respectively. In contrast, the in-planar orbital texture (p{sub x} and p{sub y} projections) is tangential for the upper Dirac-cone and is radial for the lower Dirac-cone surface state. The dominant in-planar orbital texture in both the Dirac cones lead to a right handed orbital-selective spin-texture.« less

  1. Texture and mechanical properties of Al-0.5Mg-1.0Si-0.5Cu alloy sheets manufactured via a cross rolling method

    NASA Astrophysics Data System (ADS)

    Jeon, Jae-Yeol; Son, Hyeon-Taek; Woo, Kee-Do; Lee, Kwang-Jin

    2012-04-01

    The relationship between the texture and mechanical properties of 6xxx aluminum alloy sheets processed via cross rolling was investigated. The microstructures of the conventional rolled and cross rolled sheets after annealing were analyzed using optical micrographs (OM). The texture distribution across the thickness in the Al-Mg-Si-Cu alloy, conventional rolled sheets, and cross rolled sheets both before and after annealing was investigated via X-ray texture measurements. The texture was analyzed in three layers from the surface to the center of the sheet. The β-fiber texture of the conventional rolled sheet was typical of the texture obtained using aluminumoll ring. After annealing, the typical β-fiber orientations were changed to recrystallization textures: cube{001}<100> and normal direction (ND)-rotated cubes. However, the texture of the cross rolled sheet was composed of an asymmetrical, rolling direction (RD)-rotated cubes. After annealing, the asymmetrical orientations in the cross rolled sheet were changed to a randomized texture. The average R-value of the annealed cross rolled sheets was higher than that of the conventional rolled sheets. The limit dome height (LDH) test results demonstrated that cross rolling is effective in improving the formability of the Al-Mg-Si-Cu alloy sheets.

  2. Dynamic crystallization of a eucrite basalt. [achondrite textural features produced by superheating and differing cooling rates

    NASA Technical Reports Server (NTRS)

    Walker, D.; Powell, M. A.; Hays, J. F.; Lofgren, G. E.

    1978-01-01

    The textural features produced in Stannern, a non-porpyritic representative of the eucrite basaltic achondrite class of meteorite, at differing cooling rates and various degrees of initial superheating were studied. Textures produced from mildly superheated melts were found to be fasciculate rather than porphyritic as the result of the cosaturated bulk chemistry of Stannern. The qualitative type of texture apparently depends mainly on the degree of initial superheating, whereas cooling rate exerts a strong influence on the coarseness of texture. Increasing the degree of superheating produces textures from intergranular/subophitic to fasciculate/porphyritic. With initial superheating to 1200 deg C the transition to quasi-porphyritic is controlled by cooling rate, but the development of phenocrysts is merely an overprint on the fasciculate background texture of the groundmass. The suppression of fasciculate texture is completed by a decrease of the degree of initial superheating below the plagioclast entry and suppression of quasi-porphyritic texture is completed by decrease of the degree of initial superheating below pyroxene entry; these qualitative changes do not seem to be produced by changes of cooling rate. A grain size/cooling rate dependence has been used to deduce the cooling rate of fasciculate-textured Stannern clasts (10.1 to 100 deg C/hr).

  3. Effect of texture dispersion on the effective biaxial modulus of fiber-textured hexagonal, tetragonal, and orthorhombic films

    NASA Astrophysics Data System (ADS)

    Wu, Huaping; Wu, Linzhi; Du, Shanyi

    2008-04-01

    The effective biaxial modulus (Meff) of fiber-textured hexagonal, tetragonal, and orthorhombic films is estimated by using the Voigt-Reuss-Hill and Vook-Witt grain-interaction models. The orientation distribution function with Gaussian distributions of the two Euler angles θ and ϕ is adopted to analyze the effect of texture dispersion degree on Meff. Numerical results that are based on ZnO, BaTiO3, and yttrium barium copper oxide (YBCO) materials show that the Vook-Witt average of Meff is identical to the Voigt-Reuss-Hill average of Meff for the (001) plane of ideally fiber-textured hexagonal and tetragonal films. The ϕ distribution has no influence on Meff of the (hkl)-fiber-textured hexagonal film at any θ distribution in terms of the isotropy in the plane perpendicular to the [001] direction. Comparably, tetragonal and orthorhombic films represent considerable actions of ϕ dispersion on Meff, and the effect of ϕ dispersion on Meff of a (001)-fiber-textured YBCO film is smaller than that for a (001)-fiber-textured BaTiO3 film since the shear anisotropic factor in the (001) shear plane of a YBCO film more closely approaches 1. Enhanced θ and ϕ distributions destroy the perfect fiber textures, and as a result, the films exhibit an evolution from ideal (hkl) fiber textures to random textures with varying full widths at half maximums of θ and ϕ.

  4. Line Laser and Triple Laser Quantification of the Difference in International Roughness Index between Textured and Non-Textured Strips

    DOT National Transportation Integrated Search

    2017-07-01

    Practitioners have often wondered whether, during ride measurement with inertial devices, the motion of the laser through pavement texture introduces non representative values of international roughness index (IRI), particularly in certain textures. ...

  5. The effect of texture on the shaft surface on the sealing performance of radial lip seals

    NASA Astrophysics Data System (ADS)

    Guo, Fei; Jia, XiaoHong; Gao, Zhi; Wang, YuMing

    2014-07-01

    On the basis of elastohydrodynamic model, the present study numerically analyzes the effect of various microdimple texture shapes, namely, circular, square, oriented isosceles triangular, on the pumping rate and the friction torque of radial lip seals, and determines the microdimple texture shape that can produce positive pumping rate. The area ratio, depth and shape dimension of a single texture are the most important geometric parameters which influence the tribological performance. According to the selected texture shape, parameter analysis is conducted to determine the optimal combination for the above three parameters. Simultaneously, the simulated performances of radial lip seal with texture on the shaft surface are compared with those of the conventional lip seal without any texture on the shaft surface.

  6. Early classification of Alzheimer's disease using hippocampal texture from structural MRI

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Ding, Yanhui; Wang, Pan; Dou, Xuejiao; Zhou, Bo; Yao, Hongxiang; An, Ningyu; Zhang, Yongxin; Zhang, Xi; Liu, Yong

    2017-03-01

    Convergent evidence has been collected to support that Alzheimer's disease (AD) is associated with reduction in hippocampal volume based on anatomical magnetic resonance imaging (MRI) and impaired functional connectivity based on functional MRI. Radiomics texture analysis has been previously successfully used to identify MRI biomarkers of several diseases, including AD, mild cognitive impairment and multiple sclerosis. In this study, our goal was to determine if MRI hippocampal textures, including the intensity, shape, texture and wavelet features, could be served as an MRI biomarker of AD. For this purpose, the texture marker was trained and evaluated from MRI data of 48 AD and 39 normal samples. The result highlights the presence of hippocampal texture abnormalities in AD, and the possibility that texture may serve as a neuroimaging biomarker for AD.

  7. Transfer the multiscale texture of crystalline Si onto thin-film micromorph cell by UV nanoimprint for light trapping

    NASA Astrophysics Data System (ADS)

    Liu, Daiming; Wang, Qingkang; Wang, Qing

    2018-05-01

    Surface texturing is of great significance in light trapping for solar cells. Herein, the multiscale texture, consisting of microscale pyramids and nanoscale porous arrangement, was fabricated on crystalline Si by KOH etching and Ag-assisted HF etching processes and subsequently replicated onto glass with high fidelity by UV nanoimprint method. Light trapping of the multiscale texture was studied by spectral (reflectance, haze ratio) characterizations. Results reveal the multiscale texture provides the broadband reflection reducing, the highlighted light scattering and the additional self-cleaning behaviors. Compared with bare cell, the multiscale textured micromorph cell achieves a 4% relative increase in power conversion efficiency. This surface texturing route paves a promising way for developing low-cost, large-scale and high-efficiency solar applications.

  8. Efficient optical analysis of surface texture combinations for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Tucher, Nico; Eisenlohr, Johannes; Kiefel, Peter; Gebrewold, Habtamu; Höhn, Oliver; Hauser, Hubert; Müller, Claas; Goldschmidt, Jan Christoph; Bläsi, Benedikt

    2016-04-01

    Surface textures can significantly improve anti-reflective and light trapping properties of silicon solar cells. Combining standard pyramidal front side textures with scattering or diffractive rear side textures has the potential to further increase the light path length inside the silicon and thereby increase the solar cell efficiency. In this work we introduce the OPTOS (Optical Properties of Textured Optical Sheets) simulation formalism and apply it to the modelling of silicon solar cells with different surface textures at front and rear side. OPTOS is a matrix-based method that allows for the computationally-efficient calculation of non-coherent light propagation within textured solar cells, featuring multiple textures that may operate in different optical regimes. After calculating redistribution matrices for each individual surface texture with the most appropriate technique, optical properties like angle dependent reflectance, transmittance or absorptance can be determined via matrix multiplications. Using OPTOS, we demonstrate for example that the integration of a diffractive grating at the rear side of solar cells with random pyramids at the front results in an absorptance gain that corresponds to a photocurrent density enhancement of 0.73 mA/cm2 for a 250 μm thick cell. The re-usability of matrices enables the investigation of different solar cell thicknesses within minutes. For thicknesses down to 50 μm the simulated gain increases up to 1.22 mA/cm2. The OPTOS formalism is furthermore not restricted with respect to the number of textured interfaces. By combining two or more textured sheets to effective interfaces, it is possible to optically model a complete photovoltaic module including EVA and potentially textured glass layers with one calculation tool.

  9. Aesthetics by Numbers: Links between Perceived Texture Qualities and Computed Visual Texture Properties.

    PubMed

    Jacobs, Richard H A H; Haak, Koen V; Thumfart, Stefan; Renken, Remco; Henson, Brian; Cornelissen, Frans W

    2016-01-01

    Our world is filled with texture. For the human visual system, this is an important source of information for assessing environmental and material properties. Indeed-and presumably for this reason-the human visual system has regions dedicated to processing textures. Despite their abundance and apparent relevance, only recently the relationships between texture features and high-level judgments have captured the interest of mainstream science, despite long-standing indications for such relationships. In this study, we explore such relationships, as these might be used to predict perceived texture qualities. This is relevant, not only from a psychological/neuroscience perspective, but also for more applied fields such as design, architecture, and the visual arts. In two separate experiments, observers judged various qualities of visual textures such as beauty, roughness, naturalness, elegance, and complexity. Based on factor analysis, we find that in both experiments, ~75% of the variability in the judgments could be explained by a two-dimensional space, with axes that are closely aligned to the beauty and roughness judgments. That a two-dimensional judgment space suffices to capture most of the variability in the perceived texture qualities suggests that observers use a relatively limited set of internal scales on which to base various judgments, including aesthetic ones. Finally, for both of these judgments, we determined the relationship with a large number of texture features computed for each of the texture stimuli. We find that the presence of lower spatial frequencies, oblique orientations, higher intensity variation, higher saturation, and redness correlates with higher beauty ratings. Features that captured image intensity and uniformity correlated with roughness ratings. Therefore, a number of computational texture features are predictive of these judgments. This suggests that perceived texture qualities-including the aesthetic appreciation-are sufficiently universal to be predicted-with reasonable accuracy-based on the computed feature content of the textures.

  10. Aesthetics by Numbers: Links between Perceived Texture Qualities and Computed Visual Texture Properties

    PubMed Central

    Jacobs, Richard H. A. H.; Haak, Koen V.; Thumfart, Stefan; Renken, Remco; Henson, Brian; Cornelissen, Frans W.

    2016-01-01

    Our world is filled with texture. For the human visual system, this is an important source of information for assessing environmental and material properties. Indeed—and presumably for this reason—the human visual system has regions dedicated to processing textures. Despite their abundance and apparent relevance, only recently the relationships between texture features and high-level judgments have captured the interest of mainstream science, despite long-standing indications for such relationships. In this study, we explore such relationships, as these might be used to predict perceived texture qualities. This is relevant, not only from a psychological/neuroscience perspective, but also for more applied fields such as design, architecture, and the visual arts. In two separate experiments, observers judged various qualities of visual textures such as beauty, roughness, naturalness, elegance, and complexity. Based on factor analysis, we find that in both experiments, ~75% of the variability in the judgments could be explained by a two-dimensional space, with axes that are closely aligned to the beauty and roughness judgments. That a two-dimensional judgment space suffices to capture most of the variability in the perceived texture qualities suggests that observers use a relatively limited set of internal scales on which to base various judgments, including aesthetic ones. Finally, for both of these judgments, we determined the relationship with a large number of texture features computed for each of the texture stimuli. We find that the presence of lower spatial frequencies, oblique orientations, higher intensity variation, higher saturation, and redness correlates with higher beauty ratings. Features that captured image intensity and uniformity correlated with roughness ratings. Therefore, a number of computational texture features are predictive of these judgments. This suggests that perceived texture qualities—including the aesthetic appreciation—are sufficiently universal to be predicted—with reasonable accuracy—based on the computed feature content of the textures. PMID:27493628

  11. A common framework for the analysis of complex motion? Standstill and capture illusions

    PubMed Central

    Dürsteler, Max R.

    2014-01-01

    A series of illusions was created by presenting stimuli, which consisted of two overlapping surfaces each defined by textures of independent visual features (i.e., modulation of luminance, color, depth, etc.). When presented concurrently with a stationary 2-D luminance texture, observers often fail to perceive the motion of an overlapping stereoscopically defined depth-texture. This illusory motion standstill arises due to a failure to represent two independent surfaces (one for luminance and one for depth textures) and motion transparency (the ability to perceive motion of both surfaces simultaneously). Instead the stimulus is represented as a single non-transparent surface taking on the stationary nature of the luminance-defined texture. By contrast, if it is the 2D-luminance defined texture that is in motion, observers often perceive the stationary depth texture as also moving. In this latter case, the failure to represent the motion transparency of the two textures gives rise to illusionary motion capture. Our past work demonstrated that the illusions of motion standstill and motion capture can occur for depth-textures that are rotating, or expanding / contracting, or else spiraling. Here I extend these findings to include stereo-shearing. More importantly, it is the motion (or lack thereof) of the luminance texture that determines how the motion of the depth will be perceived. This observation is strongly in favor of a single pathway for complex motion that operates on luminance-defines texture motion signals only. In addition, these complex motion illusions arise with chromatically-defined textures with smooth transitions between their colors. This suggests that in respect to color motion perception the complex motions' pathway is only able to accurately process signals from isoluminant colored textures with sharp transitions between colors, and/or moving at high speeds, which is conceivable if it relies on inputs from a hypothetical dual opponent color pathway. PMID:25566023

  12. Textured silicon nitride: processing and anisotropic properties

    PubMed Central

    Zhu, Xinwen; Sakka, Yoshio

    2008-01-01

    Textured silicon nitride (Si3N4) has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW) and templated grain growth (TGG). The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured α-Sialon using the same methods as those used for textured β-Si3N4 and β-Sialon. PMID:27877995

  13. Role of deformation temperature on the evolution and heterogeneity of texture during equal channel angular pressing of magnesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Somjeet, E-mail: somjeetbiswas@gmail.com; Department of Materials Engineering, Indian Institute of Science, Bangalore 560012; Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures

    Investigations on texture evolution and through-thickness texture heterogeneity during equal channel angular pressing (ECAP) of pure magnesium at 200 °C, 150 °C and room temperature (RT) was carried out by neutron, high energy synchrotron X-ray and electron back-scatter diffraction. Irrespective of the ECAP temperature, a distinctive basal (B) and pyramidal (C{sub 2}) II type of fibers forms. The texture differs in the bottom 1 mm portion, where the B-fiber is shifted ~ 55° due to negative shear attributed to friction. - Highlights: • ECAP of magnesium was carried out at 200 °C, 150 °C and room temperature. • Microstructure andmore » micro-texture evolution was examined using EBSD in FEG–SEM. • Bulk-texture was studied using neutron diffraction and compared with micro-texture. • Through thickness texture heterogeneity was observed by synchrotron radiation. • Changes in these parameters with respect to deformation temperature are discussed.« less

  14. Simulation study on improving efficiencies of perovskite solar cell: Introducing nano textures on it

    NASA Astrophysics Data System (ADS)

    Xie, Ziang; Sun, Shuren; Wang, Wei; Qin, Laixiang; Yan, Yu; Hou, Ruixiang; Qin, G. G.

    2018-03-01

    We report that the power conversion efficiencies (PCEs) of the planar CH3NH3PbI3 solar cells (SCs) can be largely improved by fabricating nano textures on the SC surface. With the finite difference time domain (FDTD) method, the ultimate efficiencies of the planar CH3NH3PbI3 SCs with two types of nano textures are investigated: the column-shaped nano hollow (CLNH) array and the cone-shaped nano hollow (CNNH) array. For the nano textured CH3NH3PbI3 SCs with photovoltaic layer depth in the range of 125 nm ∼ 500 nm, when the array period and filling fraction of the nano textures are optimized, in comparison with the planar ones, their PCE increased 42% ∼ 84% for the CLNH textured ones, and 52% ∼ 63% for the CNNH textured ones. As a conclusion, introduction of nano textures on the SC surface is a promising route for improving the PCEs of the perovskite SCs.

  15. Structural texture similarity metrics for image analysis and retrieval.

    PubMed

    Zujovic, Jana; Pappas, Thrasyvoulos N; Neuhoff, David L

    2013-07-01

    We develop new metrics for texture similarity that accounts for human visual perception and the stochastic nature of textures. The metrics rely entirely on local image statistics and allow substantial point-by-point deviations between textures that according to human judgment are essentially identical. The proposed metrics extend the ideas of structural similarity and are guided by research in texture analysis-synthesis. They are implemented using a steerable filter decomposition and incorporate a concise set of subband statistics, computed globally or in sliding windows. We conduct systematic tests to investigate metric performance in the context of "known-item search," the retrieval of textures that are "identical" to the query texture. This eliminates the need for cumbersome subjective tests, thus enabling comparisons with human performance on a large database. Our experimental results indicate that the proposed metrics outperform peak signal-to-noise ratio (PSNR), structural similarity metric (SSIM) and its variations, as well as state-of-the-art texture classification metrics, using standard statistical measures.

  16. Chemometric approach to texture profile analysis of kombucha fermented milk products.

    PubMed

    Malbaša, Radomir; Jevrić, Lidija; Lončar, Eva; Vitas, Jasmina; Podunavac-Kuzmanović, Sanja; Milanović, Spasenija; Kovačević, Strahinja

    2015-09-01

    In the present work, relationships between the textural characteristics of fermented milk products obtained by kombucha inoculums with various teas were investigated by using chemometric analysis. The presented data which describe numerically the textural characteristics (firmness, consistency, cohesiveness and index of viscosity) were analysed. The quadratic correlation was determined between the textural characteristics of fermented milk products obtained at fermentation temperatures of 40 and 43 °C, using milk with 0.8, 1.6 and 2.8% milk fat and kombucha inoculums cultivated on the extracts of peppermint, stinging nettle, wild thyme and winter savory. Hierarchical cluster analysis (HCA) was performed to identify the similarities among the fermented products. The best mathematical models predicting the textural characteristics of investigated samples were developed. The results of this study indicate that textural characteristics of sample based on winter savory have a significant effect on textural characteristics of samples based on peppermint, stinging nettle and wild thyme, which can be very useful in the determination of products texture profile.

  17. Preference evaluation of ground beef by untrained subjects with three levels of finely textured beef

    PubMed Central

    Depue, Sandra Molly; Neilson, Morgan Marie

    2018-01-01

    After receiving bad publicity in 2012 and being removed from many ground beef products, finely textured beef (referred to as ‘pink slime’ by some) is making a comeback. Some of its proponents argue that consumers prefer ground beef containing finely textured beef, but no objective scientific party has tested this claim—that is the purpose of the present study. Over 200 untrained subjects participated in a sensory analysis in which they tasted one ground beef sample with no finely textured beef, another with 15% finely textured beef (by weight), and another with more than 15%. Beef with 15% finely textured beef has an improved juiciness (p < 0.01) and tenderness (p < 0.01) quality. However, subjects rate the flavor-liking and overall likeability the same regardless of the finely textured beef content. Moreover, when the three beef types are consumed as part of a slider (small hamburger), subjects are indifferent to the level of finely textured beef. PMID:29342174

  18. Field-Scale Evaluation of Infiltration Parameters From Soil Texture for Hydrologic Analysis

    NASA Astrophysics Data System (ADS)

    Springer, Everett P.; Cundy, Terrance W.

    1987-02-01

    Recent interest in predicting soil hydraulic properties from simple physical properties such as texture has major implications in the parameterization of physically based models of surface runoff. This study was undertaken to (1) compare, on a field scale, soil hydraulic parameters predicted from texture to those derived from field measurements and (2) compare simulated overland flow response using these two parameter sets. The parameters for the Green-Ampt infiltration equation were obtained from field measurements and using texture-based predictors for two agricultural fields, which were mapped as single soil units. Results of the analyses were that (1) the mean and variance of the field-based parameters were not preserved by the texture-based estimates, (2) spatial and cross correlations between parameters were induced by the texture-based estimation procedures, (3) the overland flow simulations using texture-based parameters were significantly different than those from field-based parameters, and (4) simulations using field-measured hydraulic conductivities and texture-based storage parameters were very close to simulations using only field-based parameters.

  19. Emotional effects of dynamic textures

    PubMed Central

    Toet, Alexander; Henselmans, Menno; Lucassen, Marcel P; Gevers, Theo

    2011-01-01

    This study explores the effects of various spatiotemporal dynamic texture characteristics on human emotions. The emotional experience of auditory (eg, music) and haptic repetitive patterns has been studied extensively. In contrast, the emotional experience of visual dynamic textures is still largely unknown, despite their natural ubiquity and increasing use in digital media. Participants watched a set of dynamic textures, representing either water or various different media, and self-reported their emotional experience. Motion complexity was found to have mildly relaxing and nondominant effects. In contrast, motion change complexity was found to be arousing and dominant. The speed of dynamics had arousing, dominant, and unpleasant effects. The amplitude of dynamics was also regarded as unpleasant. The regularity of the dynamics over the textures' area was found to be uninteresting, nondominant, mildly relaxing, and mildly pleasant. The spatial scale of the dynamics had an unpleasant, arousing, and dominant effect, which was larger for textures with diverse content than for water textures. For water textures, the effects of spatial contrast were arousing, dominant, interesting, and mildly unpleasant. None of these effects were observed for textures of diverse content. The current findings are relevant for the design and synthesis of affective multimedia content and for affective scene indexing and retrieval. PMID:23145257

  20. Surface texture can bias tactile form perception.

    PubMed

    Nakatani, Masashi; Howe, Robert D; Tachi, Susumu

    2011-01-01

    The sense of touch is believed to provide a reliable perception of the object's properties; however, our tactile perceptions could be illusory at times. A recently reported tactile illusion shows that a raised form can be perceived as indented when it is surrounded by textured areas. This phenomenon suggests that the form perception can be influenced by the surface textures in its adjacent areas. As perception of texture and that of form have been studied independently of each other, the present study examined whether textures, in addition to the geometric edges, contribute to the tactile form perception. We examined the perception of the flat and raised contact surface (3.0 mm width) with various heights (0.1, 0.2, 0.3 mm), which had either textured or non-textured adjacent areas, under the static, passive and active touch conditions. Our results showed that texture decreased the raised perception of the surface with a small height (0.1 mm) and decreased the flat perception of the physically flat surface under the passive and active touch conditions. We discuss a possible mechanism underlying the effect of the textures on the form perception based on previous neurophysiological findings.

  1. The relative contribution of ferroelastic and ferroelectric texture to the character of a hard PZT ceramic

    NASA Astrophysics Data System (ADS)

    Key, Thomas Stallings

    The development of ferroelastic (90°) texture in addition to ferroelectric (180°) texture is essential to maximizing the piezoelectric properties of many hard tetragonal PZTs, including Piezoetechnologies K270. Ferroelastic texture results from motion of domain walls that is dependent on an individual crystals orientation. Increases in ferroelastic texture raises the maximum net polarization that can be achieved by changes in ferroelectric texture. By studying a hard PZT poled under various temperature conditions, insight was gained into factors affecting the development of ferroelastic texture and how ferroelastic texture contributes to piezoelectric properties. Depinning proved to be the major barrier to preventing ferroelastic domain wall motion where strain based domain interactions and polar defect complexes on the domain level appear to be the dominant factors. Insight into the affect of increased domain texture on the relationship between the increasing magnitude of the remnant polarization (|Pr|) and the magnitude of the coercive field (|EC|) was gained by plotting |EC| vs. |Pr| as a function of poling time for a variety of poling temperatures. At low |Pr| values, |EC| increased rapidly as a function of increases in |Pr| regardless of the poling temperature. This relationship was characteristic of samples poled at 25 °C where increases in ferroelastic texture were largely suppressed. Because increases in polarization were still observable changes in ferroelectric texture most responsible for the polarization increase and like play a strong role in the initial |EC| vs. |Pr| relationship. As |Pr| increased beyond 5 to 8 iC/cm2, the slope of |EC| vs. |Pr| decreased where the reduction in slope increased with poling temperature. This only occurred in samples poled at elevated temperatures where ferroelastic texture was know to ultimately develop during the poling process, leading to the suggestion that the change in slope was due to increases in combined ferroelectric and ferroelastic texture. Lastly, it was found that electric field induced increases in ferroelectric texture by poling at 25 °C occurs while ferroelastic domain wall motion is largely suppressed. This change in ferroelectric texture severely hinders the rate at which subsequent ferroelastic domain wall motion can be induced during poling at elevated temperatures below TC, suggesting that hard PZT samples should be preheated to the poling temperature before poling begins.

  2. Theory of Image Analysis and Recognition.

    DTIC Science & Technology

    1983-01-24

    Stanley M. Dunn, "Texture Classification with Change Point Statistics," TR- 1082 , July 1981. 97. R. Chellappa, "Synthesis of Textures Using Simultane...July 1981. 96. Stanley M. Dunn, "Texture Classification with Change Point Statistics," TR- 1082 , July 1981. * 97. R. Chellappa, "Synthesis of Textures

  3. Instrumental texture characteristics of broiler pectoralis major with the woody breast condition

    USDA-ARS?s Scientific Manuscript database

    The objective was to characterize texture properties of raw and cooked broiler fillets (pectoralis major) with the woody breast condition (WBC) using instrumental texture techniques Meullenet-Owens Razor Shear (MORS) and texture profile analysis (TPA). Deboned (3 h postmortem) broiler fillets were c...

  4. Occurrence of 'super soft' wheat kernel texture in hexaploid and tetraploid wheats

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture is a key trait that governs milling performance, flour starch damage, flour particle size, flour hydration properties, and baking quality. Kernel texture is commonly measured using the Perten Single Kernel Characterization System (SKCS). The SKCS returns texture values (Hardness...

  5. Textural states of a hot-worked MA2-1 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Serebryany, V. N.; Kochubei, A. Ya.; Kurtasov, S. F.; Mel'Nikov, K. E.

    2007-02-01

    Quantitative texture analysis is used to study texture formation in an MA2-1 magnesium alloy subjected to axisymmetric upsetting at temperatures of 250-450°C and strain rates of 10-4-100 -1. The deformed structure is examined by optical microscopy, and the results obtained are used to plot the structural-state diagram of the alloy after 50% upsetting. The experimental textures are compared with the textures calculated in terms of a thermoactivation model.

  6. Functional surfaces for tribological applications: inspiration and design

    NASA Astrophysics Data System (ADS)

    Abdel-Aal, Hisham A.

    2016-12-01

    Surface texturing has been recognized as a method for enhancing the tribological properties of surfaces for many years. Adding a controlled texture to one of two faces in relative motion can have many positive effects, such as reduction of friction and wear and increase in load capacity. To date, the true potential of texturing has not been realized not because of the lack of enabling texturing technologies but because of the severe lack of detailed information about the mechanistic functional details of texturing in a tribological situation. Experimental as well as theoretical analysis of textured surfaces define important metrics for performance evaluation. These metrics represent the interaction between geometry of the texturing element and surface topology. To date, there is no agreement on the optimal values that should be implemented given a particular surface. More importantly, a well-defined methodology for the generation of deterministic textures of optimized designs virtually does not exist. Nature, on the other hand, offers many examples of efficient texturing strategies (geometries and topologies) specifically applied to mitigate frictional effects in a variety of situations. Studying these examples may advance the technology of surface engineering. This paper therefore, provides a comparative review of surface texturing that manifest viable synergy between tribology and biology. We attempt to provide successful emerging examples where borrowing from nature has inspired viable surface solutions that address difficult tribological problems both in dry and lubricated contact situations.

  7. Multi Texture Analysis of Colorectal Cancer Continuum Using Multispectral Imagery

    PubMed Central

    Chaddad, Ahmad; Desrosiers, Christian; Bouridane, Ahmed; Toews, Matthew; Hassan, Lama; Tanougast, Camel

    2016-01-01

    Purpose This paper proposes to characterize the continuum of colorectal cancer (CRC) using multiple texture features extracted from multispectral optical microscopy images. Three types of pathological tissues (PT) are considered: benign hyperplasia, intraepithelial neoplasia and carcinoma. Materials and Methods In the proposed approach, the region of interest containing PT is first extracted from multispectral images using active contour segmentation. This region is then encoded using texture features based on the Laplacian-of-Gaussian (LoG) filter, discrete wavelets (DW) and gray level co-occurrence matrices (GLCM). To assess the significance of textural differences between PT types, a statistical analysis based on the Kruskal-Wallis test is performed. The usefulness of texture features is then evaluated quantitatively in terms of their ability to predict PT types using various classifier models. Results Preliminary results show significant texture differences between PT types, for all texture features (p-value < 0.01). Individually, GLCM texture features outperform LoG and DW features in terms of PT type prediction. However, a higher performance can be achieved by combining all texture features, resulting in a mean classification accuracy of 98.92%, sensitivity of 98.12%, and specificity of 99.67%. Conclusions These results demonstrate the efficiency and effectiveness of combining multiple texture features for characterizing the continuum of CRC and discriminating between pathological tissues in multispectral images. PMID:26901134

  8. Cascaded Amplitude Modulations in Sound Texture Perception

    PubMed Central

    McWalter, Richard; Dau, Torsten

    2017-01-01

    Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches. PMID:28955191

  9. Prediction of textural attributes using color values of banana (Musa sapientum) during ripening.

    PubMed

    Jaiswal, Pranita; Jha, Shyam Narayan; Kaur, Poonam Preet; Bhardwaj, Rishi; Singh, Ashish Kumar; Wadhawan, Vishakha

    2014-06-01

    Banana is an important sub-tropical fruit in international trade. It undergoes significant textural and color transformations during ripening process, which in turn influence the eating quality of the fruit. In present study, color ('L', 'a' and 'b' value) and textural attributes of bananas (peel, fruit and pulp firmness; pulp toughness; stickiness) were studied simultaneously using Hunter Color Lab and Texture Analyser, respectively, during ripening period of 10 days at ambient atmosphere. There was significant effect of ripening period on all the considered textural characteristics and color properties of bananas except color value 'b'. In general, textural descriptors (peel, fruit and pulp firmness; and pulp toughness) decreased during ripening except stickiness, while color values viz 'a' and 'b' increased with ripening barring 'L' value. Among various textural attributes, peel toughness and pulp firmness showed highest correlation (r) with 'a' value of banana peel. In order to predict textural properties using color values of banana, five types of equations (linear/polynomial/exponential/logarithmic/power) were fitted. Among them, polynomial equation was found to be the best fit (highest coefficient of determination, R(2)) for prediction of texture using color properties for bananas. The pulp firmness, peel toughness and pulp toughness showed R(2) above 0.84 with indicating its potentiality of the fitted equations for prediction of textural profile of bananas non-destructively using 'a' value.

  10. Fabrication and properties of radially <001>C textured PMN-PT cylinders for transducer applications

    NASA Astrophysics Data System (ADS)

    Poterala, Stephen F.; Meyer, Richard J.; Messing, Gary L.

    2012-07-01

    <001>C Textured PMN-PT ceramics have electromechanical properties (d33 = 850-1050 pm/V, k33 = 0.79-0.83) between those of conventional PZT ceramics and relaxor PMN-PT crystals. In this work, we tailor crystallographic orientation in textured PMN-PT ceramics for transducer designs with non-planar poling surfaces. Specifically, omni-directional cylindrical transducer elements were fabricated using monolithic, radially <001>C textured and poled PMN-PT ceramic. Texture was produced by templated grain growth using NBT-PT templates, which were oriented radially by wrapping green ceramic tapes around a cylindrical mandrel. Finished transducer elements measure ˜5 cm in diameter by ˜2.5 cm in height and demonstrate scalability of textured ceramic fabrication techniques. The fabricated cylinders are ˜50 vol. % textured and show high 31-mode electromechanical properties compared to PZT ceramics (d31 = -259 pm/V, k31 = 0.43, ɛT33 = 3000, and Qm = 350). Frequency bandwidth is related to the square of the hoop mode coupling coefficient kh2, which is ˜60% higher in textured PMN-PT cylinders compared to PZT 5H. Finite element simulations show that this parameter may be further increased by improving texture quality to ≥90 vol. %. Radially textured PMN-PT may thus improve performance in omni-directional cylindrical transducers while avoiding the need for segmented single crystal designs.

  11. Objective and quantitative definitions of modified food textures based on sensory and rheological methodology.

    PubMed

    Wendin, Karin; Ekman, Susanne; Bülow, Margareta; Ekberg, Olle; Johansson, Daniel; Rothenberg, Elisabet; Stading, Mats

    2010-06-28

    Patients who suffer from chewing and swallowing disorders, i.e. dysphagia, may have difficulties ingesting normal food and liquids. In these patients a texture modified diet may enable that the patient maintain adequate nutrition. However, there is no generally accepted definition of 'texture' that includes measurements describing different food textures. Objectively define and quantify categories of texture-modified food by conducting rheological measurements and sensory analyses. A further objective was to facilitate the communication and recommendations of appropriate food textures for patients with dysphagia. About 15 food samples varying in texture qualities were characterized by descriptive sensory and rheological measurements. Soups were perceived as homogenous; thickened soups were perceived as being easier to swallow, more melting and creamy compared with soups without thickener. Viscosity differed between the two types of soups. Texture descriptors for pâtés were characterized by high chewing resistance, firmness, and having larger particles compared with timbales and jellied products. Jellied products were perceived as wobbly, creamy, and easier to swallow. Concerning the rheological measurements, all solid products were more elastic than viscous (G'>G''), belonging to different G' intervals: jellied products (low G') and timbales together with pâtés (higher G'). By combining sensory and rheological measurements, a system of objective, quantitative, and well-defined food textures was developed that characterizes the different texture categories.

  12. Cube-textured nickel substrates for high-temperature superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, E.D.; Goyal, A.; Lee, D.F.

    1998-02-01

    The biaxial textures created in metals by rolling and annealing make them useful substrates for the growth of long lengths of biaxially textured material. The growth of overlayers such as high-temperature superconductors (HTS) require flat substrates with a single, sharp texture. A sharp cube texture is produced in high-purity Ni by rolling and annealing. The authors report the effect of rolling reduction and annealing conditions on the sharpness of the cube texture, the incidence of other orientations, the grain size, and the surface topography. A combination of high reduction, and high temperature annealing in a reducing atmosphere leads to >more » 99% cube texture, with mosaic of 9.0{degree} about the rolling direction (RD), 6.5{degree} about the transverse direction (TD), and 5.0{degree} about the normal direction (ND).« less

  13. Texture analysis of aeromagnetic data for enhancing geologic features using co-occurrence matrices in Elallaqi area, South Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Eldosouky, Ahmed M.; Elkhateeb, Sayed O.

    2018-06-01

    Enhancement of aeromagnetic data for qualitative purposes depends on the variations of texture and amplitude to outline various geologic features within the data. The texture of aeromagnetic data consists continuity of adjacent anomalies, size, and pattern. Variations in geology, or particularly rock magnetization, in a study area cause fluctuations in texture. In the present study, the anomalous features of Elallaqi area were extracted from aeromagnetic data. In order to delineate textures from the aeromagnetic data, the Red, Green, and Blue Co-occurrence Matrices (RGBCM) were applied to the reduced to the pole (RTP) grid of Elallaqi district in the South Eastern Desert of Egypt. The RGBCM are fashioned of sets of spatial analytical parameters that transform magnetic data into texture forms. Six texture features (parameters), i.e. Correlation, Contrast, Entropy, Homogeneity, Second Moment, and Variance, of RGB Co-occurrence Matrices (RGBCM) are used for analyzing the texture of the RTP grid in this study. These six RGBCM texture characteristics were mixed into a single image using principal component analysis. The calculated texture images present geologic characteristics and structures with much greater sidelong resolution than the original RTP grid. The estimated texture images enabled us to distinguish multiple geologic regions and structures within Elallaqi area including geologic terranes, lithologic boundaries, cracks, and faults. The faults of RGBCM maps were more represented than those of magnetic derivatives providing enhancement of the fine structures of Elallaqi area like the NE direction which scattered WNW metavolcanics and metasediments trending in the northwestern division of Elallaqi area.

  14. Doped LZO buffer layers for laminated conductors

    DOEpatents

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  15. Comparison of objective texture measurements in raw and cooked wooden breast meat.

    USDA-ARS?s Scientific Manuscript database

    Broiler breast meat exhibiting the wooden breast condition is characterized as having an abnormally hard or rigid texture. The efficacy of using objective texture measurements to characterize the texture attributes of breast meat exhibiting this condition before and after cooking are not well under...

  16. Texture Fish

    ERIC Educational Resources Information Center

    Stone, Julie

    2007-01-01

    In an effort to provide an opportunity for her first graders to explore texture through an engaging subject, the author developed a three-part lesson that features fish in a mixed-media artwork: (1) Exploring Textured Paint; (2) Creating the Fish; and (3) Role Playing. In this lesson, students effectively explore texture through painting, drawing,…

  17. 7 CFR 58.317 - Bulk butter trucks, boats, texturizers, and packers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Bulk butter trucks, boats, texturizers, and packers... and Grading Service 1 Equipment and Utensils § 58.317 Bulk butter trucks, boats, texturizers, and packers. Bulk butter trucks, boats, texturizers, and packers shall be constructed of aluminum, stainless...

  18. 7 CFR 58.317 - Bulk butter trucks, boats, texturizers, and packers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Bulk butter trucks, boats, texturizers, and packers... and Grading Service 1 Equipment and Utensils § 58.317 Bulk butter trucks, boats, texturizers, and packers. Bulk butter trucks, boats, texturizers, and packers shall be constructed of aluminum, stainless...

  19. 7 CFR 58.317 - Bulk butter trucks, boats, texturizers, and packers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Bulk butter trucks, boats, texturizers, and packers... and Grading Service 1 Equipment and Utensils § 58.317 Bulk butter trucks, boats, texturizers, and packers. Bulk butter trucks, boats, texturizers, and packers shall be constructed of aluminum, stainless...

  20. 7 CFR 58.317 - Bulk butter trucks, boats, texturizers, and packers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Bulk butter trucks, boats, texturizers, and packers... and Grading Service 1 Equipment and Utensils § 58.317 Bulk butter trucks, boats, texturizers, and packers. Bulk butter trucks, boats, texturizers, and packers shall be constructed of aluminum, stainless...

  1. 7 CFR 58.317 - Bulk butter trucks, boats, texturizers, and packers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Bulk butter trucks, boats, texturizers, and packers... and Grading Service 1 Equipment and Utensils § 58.317 Bulk butter trucks, boats, texturizers, and packers. Bulk butter trucks, boats, texturizers, and packers shall be constructed of aluminum, stainless...

  2. The use of an ion-beam source to alter the surface morphology of biological implant materials

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.

    1978-01-01

    An electron bombardment, ion thruster was used as a neutralized-ion beam sputtering source to texture the surfaces of biological implant materials. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane were obtained.

  3. Material characterization and defect inspection in ultrasound images

    NASA Astrophysics Data System (ADS)

    Zmola, Carl; Segal, Andrew C.; Lovewell, Brian; Mahdavieh, Jacob; Ross, Joseph; Nash, Charles

    1992-08-01

    The use of ultrasonic imaging to analyze defects and characterize materials is critical in the development of non-destructive testing and non-destructive evaluation (NDT/NDE) tools for manufacturing. To develop better quality control and reliability in the manufacturing environment advanced image processing techniques are useful. For example, through the use of texture filtering on ultrasound images, we have been able to filter characteristic textures from highly textured C-scan images of materials. The materials have highly regular characteristic textures which are of the same resolution and dynamic range as other important features within the image. By applying texture filters and adaptively modifying their filter response, we have examined a family of filters for removing these textures.

  4. Coexistence of colossal stress and texture gradients in sputter deposited nanocrystalline ultra-thin metal films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuru, Yener; Welzel, Udo; Mittemeijer, Eric J.

    2014-12-01

    This paper demonstrates experimentally that ultra-thin, nanocrystalline films can exhibit coexisting colossal stress and texture depth gradients. Their quantitative determination is possible by X-ray diffraction experiments. Whereas a uniform texture by itself is known to generally cause curvature in so-called sin{sup 2}ψ plots, it is shown that the combined action of texture and stress gradients provides a separate source of curvature in sin{sup 2}ψ plots (i.e., even in cases where a uniform texture does not induce such curvature). On this basis, the texture and stress depth profiles of a nanocrystalline, ultra-thin (50 nm) tungsten film could be determined.

  5. Method of forming biaxially textured alloy substrates and devices thereon

    DOEpatents

    Goyal, Amit; Specht, Eliot D.; Kroeger, Donald M.; Paranthaman, Mariappan

    2000-01-01

    Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.

  6. Modulating Thin Film Transistor Characteristics by Texturing the Gate Metal.

    PubMed

    Nair, Aswathi; Bhattacharya, Prasenjit; Sambandan, Sanjiv

    2017-12-20

    The development of reliable, high performance integrated circuits based on thin film transistors (TFTs) is of interest for the development of flexible electronic circuits. In this work we illustrate the modulation of TFT transconductance via the texturing of the gate metal created by the addition of a conductive pattern on top of a planar gate. Texturing results in the semiconductor-insulator interface acquiring a non-planar geometry with local variations in the radius of curvature. This influences various TFT parameters such as the subthreshold slope, gate voltage at the onset of conduction, contact resistance and gate capacitance. Specific studies are performed on textures based on periodic striations oriented along different directions. Textured TFTs showed upto ±40% variation in transconductance depending on the texture orientation as compared to conventional planar gate TFTs. Analytical models are developed and compared with experiments. Gain boosting in common source amplifiers based on textured TFTs as compared to conventional TFTs is demonstrated.

  7. Cloud and surface textural features in polar regions

    NASA Technical Reports Server (NTRS)

    Welch, Ronald M.; Kuo, Kwo-Sen; Sengupta, Sailes K.

    1990-01-01

    The study examines the textural signatures of clouds, ice-covered mountains, solid and broken sea ice and floes, and open water. The textural features are computed from sum and difference histogram and gray-level difference vector statistics defined at various pixel displacement distances derived from Landsat multispectral scanner data. Polar cloudiness, snow-covered mountainous regions, solid sea ice, glaciers, and open water have distinguishable texture features. This suggests that textural measures can be successfully applied to the detection of clouds over snow-covered mountains, an ability of considerable importance for the modeling of snow-melt runoff. However, broken stratocumulus cloud decks and thin cirrus over broken sea ice remain difficult to distinguish texturally. It is concluded that even with high spatial resolution imagery, it may not be possible to distinguish broken stratocumulus and thin clouds from sea ice in the marginal ice zone using the visible channel textural features alone.

  8. Utilizing Antecedent Manipulations and Reinforcement in the Treatment of Food Selectivity by Texture

    ERIC Educational Resources Information Center

    Najdowski, Adel C.; Tarbox, Jonathan; Wilke, Arthur E.

    2012-01-01

    Food selectivity by texture is relatively common in children. Treatments for food selectivity by texture have included components such as stimulus fading, reinforcement, and escape extinction. The purpose of the current study was to attempt to treat food selectivity by texture utilizing antecedent manipulations and reinforcement in the absence of…

  9. Modified centroid for estimating sand, silt, and clay from soil texture class

    USDA-ARS?s Scientific Manuscript database

    Models that require inputs of soil particle size commonly use soil texture class for input; however, texture classes do not represent the continuum of soil size fractions. Soil texture class and clay percentage are collected as a standard practice for many land management agencies (e.g., NRCS, BLM, ...

  10. A procedure for classifying textural facies in gravel-bed rivers

    Treesearch

    John M. Buffington; David R. Montgomery

    1999-01-01

    Textural patches (i.e., grain-size facies) are commonly observed in gravel-bed channels and are of significance for both physical and biological processes at subreach scales. We present a general framework for classifying textural patches that allows modification for particular study goals, while maintaining a basic degree of standardization. Textures are classified...

  11. Characteristics of hierarchical micro/nano surface structure formation generated by picosecond laser processing in water and air

    NASA Astrophysics Data System (ADS)

    Rajab, Fatema H.; Whitehead, David; Liu, Zhu; Li, Lin

    2017-12-01

    Laser surface texturing or micro/nano surface structuring in the air has been extensively studied. However, until now, there are very few studies on the characteristics of laser-textured surfaces in water, and there was no reported work on picosecond laser surface micro/nano-structuring in water. In this work, the surface properties of picosecond laser surface texturing in water and air were analysed and compared. 316L stainless steel substrates were textured using a picosecond laser. The surface morphology and the chemical composition were characterised using Philips XL30 FEG-SEM, EDX and confocal laser microscopy. The wettability of the textured surfaces was determined using a contact angle analyser FTA 188. Results showed that a variety of hierarchical micro/nano surface patterns could be controlled by a suitable adjustment of laser parameters. Not only surface morphology but also remarkable differences in wettability, optical reflectivity and surface oxygen content were observed for different types of surface textures produced by laser surface texture in water and air. The possible mechanisms of the changes in the behaviour of laser-textured surfaces are discussed.

  12. Epitaxial hexagonal materials on IBAD-textured substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a <111> oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substratesmore » to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.« less

  13. Drag reduction by herringbone riblet texture in direct numerical simulations of turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Benschop, H. O. G.; Breugem, W.-P.

    2017-08-01

    A bird-feather-inspired herringbone riblet texture was investigated for turbulent drag reduction. The texture consists of blade riblets in a converging/diverging or herringbone pattern with spanwise wavelength Λf. The aim is to quantify the drag change for this texture as compared to a smooth wall and to study the underlying mechanisms. To that purpose, direct numerical simulations of turbulent flow in a channel with height Lz were performed. The Fukagata-Iwamoto-Kasagi identity for drag decomposition was extended to textured walls and was used to study the drag change mechanisms. For Λf/Lz ≳ O(10), the herringbone texture behaves similarly to a conventional parallel-riblet texture in yaw: the suppression of turbulent advective transport results in a slight drag reduction of 2%. For Λf/Lz ≲ O(1), the drag increases strongly with a maximum of 73%. This is attributed to enhanced mean and turbulent advection, which results from the strong secondary flow that forms over regions of riblet convergence/divergence. Hence, the employment of convergent/divergent riblets in the texture seems to be detrimental to turbulent drag reduction.

  14. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction.

    PubMed

    Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou

    2016-01-01

    Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design.

  15. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction

    PubMed Central

    Wu, Wei; Chen, Guiming; Fan, Boxuan; Liu, Jianyou

    2016-01-01

    Energy consumption and tribological properties could be improved by proper design of surface texture in friction. However, some literature focused on investigating their performance under high temperature. In the study, different groove surface textures were fabricated on steels by a laser machine, and their tribological behaviors were experimentally studied with the employment of the friction and wear tester under distinct high temperature and other working conditions. The friction coefficient was recorded, and wear performance were characterized by double light interference microscope, scanning electron microscope (SEM) and x-ray energy dispersive spectrometry (EDS). Then, the performances of energy consumptions were carefully estimated. Results showed that friction coefficient, wear, and energy consumption could almost all be reduced by most textures under high temperature conditions, but to a different extent which depends on the experimental conditions and texture parameters. The main improvement mechanisms were analyzed, such as the hardness change, wear debris storage, thermal stress release and friction induced temperature reduction by the textures. Finally, a scattergram of the relatively reduced ratio of the energy consumption was drawn for different surface textures under four distinctive experimental conditions to illustrate the comprehensive energy consumption improving ability of textures, which was of benefit for the application of texture design. PMID:27035658

  16. Laser gas assisted texturing and formation of nitride and oxynitride compounds on alumina surface: Surface response to environmental dust

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Aqeeli, N.

    2018-03-01

    Laser gas assisted texturing of alumina surface is carried out, and formation of nitride and oxynitride compounds in the surface vicinity is examined. The laser parameters are selected to create the surface topology consisting of micro/nano pillars with minimum defect sites including micro-cracks, voids and large size cavities. Morphological and hydrophobic characteristics of the textured surface are examined using the analytical tools. The characteristics of the environmental dust and its influence on the laser textured surface are studied while mimicking the local humid air ambient. Adhesion of the dry mud on the laser textured surface is assessed through the measurement of the tangential force, which is required to remove the dry mud from the surface. It is found that laser texturing gives rise to micro/nano pillars topology and the formation of AlN and AlON compounds in the surface vicinity. This, in turn, lowers the free energy of the textured surface and enhances the hydrophobicity of the surface. The liquid solution resulted from the dissolution of alkaline and alkaline earth metals of the dust particles in water condensate forms locally scattered liquid islands at the interface of mud and textured surface. The dried liquid solution at the interface increases the dry mud adhesion on the textured surface. Some dry mud residues remain on the textured surface after the dry mud is removed by a pressurized desalinated water jet.

  17. Texture analysis based on the Hermite transform for image classification and segmentation

    NASA Astrophysics Data System (ADS)

    Estudillo-Romero, Alfonso; Escalante-Ramirez, Boris; Savage-Carmona, Jesus

    2012-06-01

    Texture analysis has become an important task in image processing because it is used as a preprocessing stage in different research areas including medical image analysis, industrial inspection, segmentation of remote sensed imaginary, multimedia indexing and retrieval. In order to extract visual texture features a texture image analysis technique is presented based on the Hermite transform. Psychovisual evidence suggests that the Gaussian derivatives fit the receptive field profiles of mammalian visual systems. The Hermite transform describes locally basic texture features in terms of Gaussian derivatives. Multiresolution combined with several analysis orders provides detection of patterns that characterizes every texture class. The analysis of the local maximum energy direction and steering of the transformation coefficients increase the method robustness against the texture orientation. This method presents an advantage over classical filter bank design because in the latter a fixed number of orientations for the analysis has to be selected. During the training stage, a subset of the Hermite analysis filters is chosen in order to improve the inter-class separability, reduce dimensionality of the feature vectors and computational cost during the classification stage. We exhaustively evaluated the correct classification rate of real randomly selected training and testing texture subsets using several kinds of common used texture features. A comparison between different distance measurements is also presented. Results of the unsupervised real texture segmentation using this approach and comparison with previous approaches showed the benefits of our proposal.

  18. Electron backscatter and X-ray diffraction studies on the deformation and annealing textures of austenitic stainless steel 310S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nezakat, Majid, E-mail: majid.nezakat@usask.ca

    We studied the texture evolution of thermo-mechanically processed austenitic stainless steel 310S. This alloy was cold rolled up to 90% reduction in thickness and subsequently annealed at 1050 °C. At the early stages of deformation, strain-induced martensite was formed from deformed austenite. By increasing the deformation level, slip mechanism was found to be insufficient to accommodate higher deformation strains. Our results demonstrated that twinning is the dominant deformation mechanism at higher deformation levels. Results also showed that cold rolling in unidirectional and cross rolling modes results in Goss/Brass and Brass dominant textures in deformed samples, respectively. Similar texture components aremore » observed after annealing. Thus, the annealing texture was greatly affected by texture of the deformed parent phase and martensite did not contribute as it showed an athermal reversion during annealing. Results also showed that when the fraction of martensite exceeds a critical point, its grain boundaries impeded the movement of austenite grain boundaries during annealing. As a result, recrystallization incubation time would increase. This caused an incomplete recrystallization of highly deformed samples, which led to a rational drop in the intensity of the texture components. - Highlights: •Thermo-mechanical processing through different cold rolling modes can induce different textures. •Martensite reversion is athermal during annealing. •Higher fraction of deformation-induced martensite can increase the annealing time required for complete recrystallization. •Annealing texture is mainly influenced by the deformation texture of austenite.« less

  19. Use of Textured Surfaces to Mitigate Sliding Friction and Wear of Lubricated and Non-Lubricated Contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, Peter Julian

    If properly employed, the placement of three-dimensional feature patterns, also referred to as textures, on relatively-moving, load-bearing surfaces can be beneficial to their friction and wear characteristics. For example, geometric patterns can function as lubricant supply channels or depressions in which to trap debris. They can also alter lubricant flow in a manner that produces thicker load-bearing films locally. Considering the area occupied by solid areas and spaces, textures also change the load distribution on surfaces. At least ten different attributes of textures can be specified, and their combinations offer wide latitude in surface engineering. By employing directional machining andmore » grinding procedures, texturing has been used on bearings and seals for well over a half century, and the size scales of texturing vary widely. This report summarizes past work on the texturing of load-bearing surfaces, including past research on laser surface dimpling of ceramics done at ORNL. Textured surfaces generally show most pronounced effects when they are used in conformal or nearly conformal contacts, like that in face seals. Combining textures with other forms of surface modification and lubrication methods can offer additional benefits in surface engineering for tribology. As the literature and past work at ORNL shows, texturing does not always provide benefits. Rather, the selected pattern and arrangement of features must be matched to characteristics of the proposed application, bearing materials, and lubricants.« less

  20. Influence of grain size and texture prior to warm rolling on microstructure, texture and magnetic properties of Fe-6.5 wt% Si steel

    NASA Astrophysics Data System (ADS)

    Xu, H. J.; Xu, Y. B.; Jiao, H. T.; Cheng, S. F.; Misra, R. D. K.; Li, J. P.

    2018-05-01

    Fe-6.5 wt% Si steel hot bands with different initial grain size and texture were obtained through different annealing treatment. These bands were then warm rolled and annealed. An analysis on the evolution of microstructure and texture, particularly the formation of recrystallization texture was studied. The results indicated that initial grain size and texture had a significant effect on texture evolution and magnetic properties. Large initial grains led to coarse deformed grains with dense and long shear bands after warm rolling. Such long shear bands resulted in growth advantage for {1 1 3} 〈3 6 1〉 oriented grains during recrystallization. On the other hand, sharp {11 h} 〈1, 2, 1/h〉 (α∗-fiber) texture in the coarse-grained sample led to dominant {1 1 2} 〈1 1 0〉 texture after warm rolling. Such {1 1 2} 〈1 1 0〉 deformed grains provided massive nucleation sites for {1 1 3} 〈3 6 1〉 oriented grains during subsequent recrystallization. These {1 1 3} 〈3 6 1〉 grains were confirmed to exhibit an advantage on grain growth compared to γ-fiber grains. As a result, significant {1 1 3} 〈3 6 1〉 texture was developed and unfavorable γ-fiber texture was inhibited in the final annealed sheet. Both these aspects led to superior magnetic properties in the sample with largest initial grain size. The magnetic induction B8 was 1.36 T and the high frequency core loss P10/400 was 17.07 W/kg.

  1. Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm.

    PubMed

    Al Ajmi, Eiman; Forghani, Behzad; Reinhold, Caroline; Bayat, Maryam; Forghani, Reza

    2018-06-01

    There is a rich amount of quantitative information in spectral datasets generated from dual-energy CT (DECT). In this study, we compare the performance of texture analysis performed on multi-energy datasets to that of virtual monochromatic images (VMIs) at 65 keV only, using classification of the two most common benign parotid neoplasms as a testing paradigm. Forty-two patients with pathologically proven Warthin tumour (n = 25) or pleomorphic adenoma (n = 17) were evaluated. Texture analysis was performed on VMIs ranging from 40 to 140 keV in 5-keV increments (multi-energy analysis) or 65-keV VMIs only, which is typically considered equivalent to single-energy CT. Random forest (RF) models were constructed for outcome prediction using separate randomly selected training and testing sets or the entire patient set. Using multi-energy texture analysis, tumour classification in the independent testing set had accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 92%, 86%, 100%, 100%, and 83%, compared to 75%, 57%, 100%, 100%, and 63%, respectively, for single-energy analysis. Multi-energy texture analysis demonstrates superior performance compared to single-energy texture analysis of VMIs at 65 keV for classification of benign parotid tumours. • We present and validate a paradigm for texture analysis of DECT scans. • Multi-energy dataset texture analysis is superior to single-energy dataset texture analysis. • DECT texture analysis has high accura\\cy for diagnosis of benign parotid tumours. • DECT texture analysis with machine learning can enhance non-invasive diagnostic tumour evaluation.

  2. Formation mechanisms of periodic longitudinal microstructure and texture patterns in friction stir welded magnesium AZ80

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiscocks, J., E-mail: j.hiscocks@queensu.ca

    Many studies of friction stir welding have shown that periodicity of metal flow around the tool pin may result in the formation of periodic differences in microstructure and texture in the weld nugget area correlated with the weld pitch. The current work investigates the periodicity of magnesium weld microtexture in the nugget region and its association with material flow using optical and electron microscopy. Two welds created in AZ80 at different processing conditions are presented in detail, one illustrating periodic longitudinal texture change, and one showing for the first time that periodic variations in texture, grain size, or composition aremore » not defining features of periodic nugget flow. While nugget texture is dominated by shear deformation, it was found here to be affected to a lesser degree by compaction of material behind the welding tool, which led to reduction in intensity of the shear texture fiber. The decreased tendency for magnesium based alloys to form periodic patterns as compared to aluminum based alloys is explained with reference to the shear textures. - Highlights: •It is shown here that periodic material flow in the nugget does not necessitate longitudinal texture patterns. •Longitudinal texture patterns are shown to be present or absent in Mg AZ80 based on processing conditions. •Texture in the nugget is mainly dictated by shear deformation, but has measurable effects from other deformation modes. •Explanation of why longitudinal texture change is frequently reported in aluminum but not magnesium alloys is provided. •A new vector visualization of material flow based on EBSD data analysis is shown.« less

  3. Bayesian exploration for intelligent identification of textures.

    PubMed

    Fishel, Jeremy A; Loeb, Gerald E

    2012-01-01

    In order to endow robots with human-like abilities to characterize and identify objects, they must be provided with tactile sensors and intelligent algorithms to select, control, and interpret data from useful exploratory movements. Humans make informed decisions on the sequence of exploratory movements that would yield the most information for the task, depending on what the object may be and prior knowledge of what to expect from possible exploratory movements. This study is focused on texture discrimination, a subset of a much larger group of exploratory movements and percepts that humans use to discriminate, characterize, and identify objects. Using a testbed equipped with a biologically inspired tactile sensor (the BioTac), we produced sliding movements similar to those that humans make when exploring textures. Measurement of tactile vibrations and reaction forces when exploring textures were used to extract measures of textural properties inspired from psychophysical literature (traction, roughness, and fineness). Different combinations of normal force and velocity were identified to be useful for each of these three properties. A total of 117 textures were explored with these three movements to create a database of prior experience to use for identifying these same textures in future encounters. When exploring a texture, the discrimination algorithm adaptively selects the optimal movement to make and property to measure based on previous experience to differentiate the texture from a set of plausible candidates, a process we call Bayesian exploration. Performance of 99.6% in correctly discriminating pairs of similar textures was found to exceed human capabilities. Absolute classification from the entire set of 117 textures generally required a small number of well-chosen exploratory movements (median = 5) and yielded a 95.4% success rate. The method of Bayesian exploration developed and tested in this paper may generalize well to other cognitive problems.

  4. Bayesian Exploration for Intelligent Identification of Textures

    PubMed Central

    Fishel, Jeremy A.; Loeb, Gerald E.

    2012-01-01

    In order to endow robots with human-like abilities to characterize and identify objects, they must be provided with tactile sensors and intelligent algorithms to select, control, and interpret data from useful exploratory movements. Humans make informed decisions on the sequence of exploratory movements that would yield the most information for the task, depending on what the object may be and prior knowledge of what to expect from possible exploratory movements. This study is focused on texture discrimination, a subset of a much larger group of exploratory movements and percepts that humans use to discriminate, characterize, and identify objects. Using a testbed equipped with a biologically inspired tactile sensor (the BioTac), we produced sliding movements similar to those that humans make when exploring textures. Measurement of tactile vibrations and reaction forces when exploring textures were used to extract measures of textural properties inspired from psychophysical literature (traction, roughness, and fineness). Different combinations of normal force and velocity were identified to be useful for each of these three properties. A total of 117 textures were explored with these three movements to create a database of prior experience to use for identifying these same textures in future encounters. When exploring a texture, the discrimination algorithm adaptively selects the optimal movement to make and property to measure based on previous experience to differentiate the texture from a set of plausible candidates, a process we call Bayesian exploration. Performance of 99.6% in correctly discriminating pairs of similar textures was found to exceed human capabilities. Absolute classification from the entire set of 117 textures generally required a small number of well-chosen exploratory movements (median = 5) and yielded a 95.4% success rate. The method of Bayesian exploration developed and tested in this paper may generalize well to other cognitive problems. PMID:22783186

  5. Extraction of texture features with a multiresolution neural network

    NASA Astrophysics Data System (ADS)

    Lepage, Richard; Laurendeau, Denis; Gagnon, Roger A.

    1992-09-01

    Texture is an important surface characteristic. Many industrial materials such as wood, textile, or paper are best characterized by their texture. Detection of defaults occurring on such materials or classification for quality control anD matching can be carried out through careful texture analysis. A system for the classification of pieces of wood used in the furniture industry is proposed. This paper is concerned with a neural network implementation of the features extraction and classification components of the proposed system. Texture appears differently depending at which spatial scale it is observed. A complete description of a texture thus implies an analysis at several spatial scales. We propose a compact pyramidal representation of the input image for multiresolution analysis. The feature extraction system is implemented on a multilayer artificial neural network. Each level of the pyramid, which is a representation of the input image at a given spatial resolution scale, is mapped into a layer of the neural network. A full resolution texture image is input at the base of the pyramid and a representation of the texture image at multiple resolutions is generated by the feedforward pyramid structure of the neural network. The receptive field of each neuron at a given pyramid level is preprogrammed as a discrete Gaussian low-pass filter. Meaningful characteristics of the textured image must be extracted if a good resolving power of the classifier must be achieved. Local dominant orientation is the principal feature which is extracted from the textured image. Local edge orientation is computed with a Sobel mask at four orientation angles (multiple of (pi) /4). The resulting intrinsic image, that is, the local dominant orientation image, is fed to the texture classification neural network. The classification network is a three-layer feedforward back-propagation neural network.

  6. A Community Database of Quartz Microstructures: Can we make measurements that constrain rheology?

    NASA Astrophysics Data System (ADS)

    Toy, Virginia; Peternell, Mark; Morales, Luiz; Kilian, Ruediger

    2014-05-01

    Rheology can be explored by performing deformation experiments, and by examining resultant microstructures and textures as links to naturally deformed rocks. Certain deformation processes are assumed to result in certain microstructures or textures, of which some might be uniquely indicative, while most cannot be unequivocally used to interpret the deformation mechanism and hence rheology. Despite our lack of a sufficient understanding of microstructure and texture forming processes, huge advances in texture measurements and quantification of microstructural parameters have been made. Unfortunately, there are neither standard procedures nor a common consensus on interpretation of many parameters (e.g. texture, grain size, shape preferred orientation). Textures (crystallographic preferred orientations) have been extensively correlated to the interpretation of deformation mechanisms. For example the strength of textures can be measured either from the orientation distribution function (e.g. the J-index (Bunge, 1983) or texture entropy (Hielscher et al., 2007) or via the intensity of polefigures. However, there are various ways to identify a representative volume, to measure, to process the data and to calculate an odf and texture descriptors, which restricts their use as a comparative and diagnostic measurement. Microstructural parameters such as grain size, grain shape descriptors and fabric descriptors are similarly used to deduce and quantify deformation mechanisms. However there is very little consensus on how to measure and calculate some of these very important parameters, e.g. grain size which makes comparison of a vast amount of precious data in the literature very difficult. We propose establishing a community database of a standard set of such measurements, made using typical samples of different types of quartz rocks through standard methods of microstructural and texture quantification. We invite suggestions and discussion from the community about the worth of proposed parameters, methodology and usefulness and willingness to contribute to a database with free access of the community. We further invite institutions to participate on a benchmark analysis of a set of 'standard' thin sections. Bunge, H.J. 1983, Texture Analysis in Materials Science: mathematical methods. Butterworth-Heinemann, 593pp. Hielscher, R., Schaeben, H., Chateigner, D., 2007, On the entropy to texture index relationship in quantitative texture analysis: Journal of Applied Crystallography 40, 371-375.

  7. Effect of the wooden breast condition on shear force and texture profile analysis of raw and cooked broiler pectoralis major

    USDA-ARS?s Scientific Manuscript database

    The objective was to characterize texture properties of raw and cooked broiler fillets (Pectoralis major) with the wooden breast condition (WBC) using the instrumental texture techniques of Meullenet-Owens Razor Shear (MORS) and Texture Profile Analysis (TPA). Deboned (3 h post-mortem) broiler fille...

  8. Music Structure Analysis from Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Dannenberg, Roger B.; Goto, Masataka

    Music is full of structure, including sections, sequences of distinct musical textures, and the repetition of phrases or entire sections. The analysis of music audio relies upon feature vectors that convey information about music texture or pitch content. Texture generally refers to the average spectral shape and statistical fluctuation, often reflecting the set of sounding instruments, e.g., strings, vocal, or drums. Pitch content reflects melody and harmony, which is often independent of texture. Structure is found in several ways. Segment boundaries can be detected by observing marked changes in locally averaged texture.

  9. Method of deforming a biaxially textured buffer layer on a textured metallic substrate and articles therefrom

    DOEpatents

    Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    The present invention provides methods and biaxially textured articles having a deformed epitaxial layer formed therefrom for use with high temperature superconductors, photovoltaic, ferroelectric, or optical devices. A buffer layer is epitaxially deposited onto biaxially-textured substrates and then mechanically deformed. The deformation process minimizes or eliminates grooves, or other irregularities, formed on the buffer layer while maintaining the biaxial texture of the buffer layer. Advantageously, the biaxial texture of the buffer layer is not altered during subsequent heat treatments of the deformed buffer. The present invention provides mechanical densification procedures which can be incorporated into the processing of superconducting films through the powder deposit or precursor approaches without incurring unfavorable high-angle grain boundaries.

  10. Simulation of complex magnesium alloy texture using the axial component fit method with central normal distributions

    NASA Astrophysics Data System (ADS)

    Ivanova, T. M.; Serebryany, V. N.

    2017-12-01

    The component fit method in quantitative texture analysis assumes that the texture of the polycrystalline sample can be represented by a superposition of weighted standard distributions those are characterized by position in the orientation space, shape and sharpness of the scattering. The components of the peak and axial shapes are usually used. It is known that an axial texture develops in materials subjected to direct pressing. In this paper we considered the possibility of modelling a texture of a magnesium sample subjected to equal-channel angular pressing with axial components only. The results obtained make it possible to conclude that ECAP is also a process leading to the appearance of an axial texture in magnesium alloys.

  11. Optimal frequency domain textural edge detection filter

    NASA Technical Reports Server (NTRS)

    Townsend, J. K.; Shanmugan, K. S.; Frost, V. S.

    1985-01-01

    An optimal frequency domain textural edge detection filter is developed and its performance evaluated. For the given model and filter bandwidth, the filter maximizes the amount of output image energy placed within a specified resolution interval centered on the textural edge. Filter derivation is based on relating textural edge detection to tonal edge detection via the complex low-pass equivalent representation of narrowband bandpass signals and systems. The filter is specified in terms of the prolate spheroidal wave functions translated in frequency. Performance is evaluated using the asymptotic approximation version of the filter. This evaluation demonstrates satisfactory filter performance for ideal and nonideal textures. In addition, the filter can be adjusted to detect textural edges in noisy images at the expense of edge resolution.

  12. Perceptual asymmetry in texture perception.

    PubMed

    Williams, D; Julesz, B

    1992-07-15

    A fundamental property of human visual perception is our ability to distinguish between textures. A concerted effort has been made to account for texture segregation in terms of linear spatial filter models and their nonlinear extensions. However, for certain texture pairs the ease of discrimination changes when the role of figure and ground are reversed. This asymmetry poses a problem for both linear and nonlinear models. We have isolated a property of texture perception that can account for this asymmetry in discrimination: subjective closure. This property, which is also responsible for visual illusions, appears to be explainable by early visual processes alone. Our results force a reexamination of the process of human texture segregation and of some recent models that were introduced to explain it.

  13. Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Zhao, Quanzhong; Wang, Chengwei; Zhang, Yang

    2015-06-01

    We reported on the modification of tribological properties of stainless steel by femtosecond laser surface microstructuring. Regular arranged micro-grooved textures with different spacing were produced on the AISI 304L steel surfaces by an 800-nm femtosecond laser. The tribological properties of smooth surface and textured surface were investigated by carrying out reciprocating ball-on-flat tests against Al2O3 ceramic balls under dry friction. Results show that the spacing of micro-grooves had a significant impact on friction coefficient of textured surfaces. Furthermore, the wear behaviors of smooth and textured surface were also investigated. Femtosecond laser surface texturing had a marked potential for modulating friction and wear properties if the micro-grooves were distributed in an appropriate manner.

  14. Method of forming biaxially textured alloy substrates and devices thereon

    DOEpatents

    Goyal, Amit; Specht, Eliot D.; Kroeger, Donald M.; Paranthaman, Mariappan

    1999-01-01

    Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be fabricated in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.

  15. Effects of rolling conditions on recrystallization microstructure and texture in magnetostrictive Fe-Ga-Al rolled sheets

    NASA Astrophysics Data System (ADS)

    Li, Jiheng; Liu, Yangyang; Li, Xiaojuan; Mu, Xing; Bao, Xiaoqian; Gao, Xuexu

    2018-07-01

    The effects of different rolling conditions on the microstructure and texture of primary and secondary recrystallization in magnetostrictive Fe82Ga9Al9+0.1at%NbC alloy sheets were investigated. After the primary recrystallization annealing at 850 °C for 5 min, the as-rolled sheets prepared by warm-cold rolling with an intermediate annealing, can be fully recrystallized, and obtain the homogeneous matrix in which the fine dispersed NbC precipitate particles are distributed. The primary recrystallization textures of sheets with different rolling conditions consist mostly of strong {1 0 0} textures, γ-fiber textures, {4 1 1}〈1 4 8〉 texture and weak Goss texture. In the primary recrystallized sheets prepared by warm-cold rolling with an intermediate annealing, the high energy grain boundaries and ∑9 boundaries have the highest proportion. After high temperature annealing, the secondary recrystallizations of Goss grains in these sheets are more complete, and the size of abnormal grown Goss grain is up to several centimeters, which results in the strongest Goss texture. Correspondingly, the largest magnetostriction of 183 ppm is observed. The sample prepared by warm-cold rolling with an intermediate annealing, has homogeneous primary matrix, special texture components and grain boundary distribution, all of which provide a better surrounding for the abnormal growth of Goss grains. This work indicates that the control of rolling conditions of Fe-Ga-Al alloy sheets is necessary to achieve the strong Goss texture and obtain a possible high magnetostriction if other appropriate conditions (stress, domain structure) are achieved.

  16. Effect of triangular texture on the tribological performance of die steel with TiN coatings under lubricated sliding condition

    NASA Astrophysics Data System (ADS)

    Chen, Ping; Xiang, Xin; Shao, Tianmin; La, Yingqian; Li, Junling

    2016-12-01

    The friction and wear of stamping die surface can affect the service life of stamping die and the quality of stamping products. Surface texturing and surface coating have been widely used to improve the tribological performance of mechanical components. This study experimentally investigated the effect of triangular surface texture on the friction and wear properties of the die steel substrate with TiN coatings under oil lubrication. TiN coatings were deposited on a die steel (50Cr) substrate through a multi-arc ion deposition system, and then triangular surface texturing was fabricated by a laser surface texturing. The friction and wear test was conducted by a UMT-3 pin-on-disk tribometer under different sliding speeds and different applied loads, respectively. The adhesion test was performed to evaluate the effectiveness of triangular texturing on the interfacial bonding strength between the TiN coating and the die steel substrate. Results show that the combination method of surface texturing process and surface coating process has excellent tribological properties (the lowest frictional coefficient and wear volume), compared with the single texturing process or the single coating process. The tribological performance is improved resulting from the high hardness and low elastic modulus of TiN coatings, and the generation of hydrodynamic pressure, function of micro-trap for wear debris and micro-reservoirs for lubricating oil of the triangular surface texture. In addition, the coating bonding strength of the texturing sample is 3.63 MPa, higher than that of the single coating sample (3.48 MPa), but the mechanisms remain to be further researched.

  17. Texture-based segmentation and analysis of emphysema depicted on CT images

    NASA Astrophysics Data System (ADS)

    Tan, Jun; Zheng, Bin; Wang, Xingwei; Lederman, Dror; Pu, Jiantao; Sciurba, Frank C.; Gur, David; Leader, J. Ken

    2011-03-01

    In this study we present a texture-based method of emphysema segmentation depicted on CT examination consisting of two steps. Step 1, a fractal dimension based texture feature extraction is used to initially detect base regions of emphysema. A threshold is applied to the texture result image to obtain initial base regions. Step 2, the base regions are evaluated pixel-by-pixel using a method that considers the variance change incurred by adding a pixel to the base in an effort to refine the boundary of the base regions. Visual inspection revealed a reasonable segmentation of the emphysema regions. There was a strong correlation between lung function (FEV1%, FEV1/FVC, and DLCO%) and fraction of emphysema computed using the texture based method, which were -0.433, -.629, and -0.527, respectively. The texture-based method produced more homogeneous emphysematous regions compared to simple thresholding, especially for large bulla, which can appear as speckled regions in the threshold approach. In the texture-based method, single isolated pixels may be considered as emphysema only if neighboring pixels meet certain criteria, which support the idea that single isolated pixels may not be sufficient evidence that emphysema is present. One of the strength of our complex texture-based approach to emphysema segmentation is that it goes beyond existing approaches that typically extract a single or groups texture features and individually analyze the features. We focus on first identifying potential regions of emphysema and then refining the boundary of the detected regions based on texture patterns.

  18. Texture analysis of apparent diffusion coefficient maps for treatment response assessment in prostate cancer bone metastases-A pilot study.

    PubMed

    Reischauer, Carolin; Patzwahl, René; Koh, Dow-Mu; Froehlich, Johannes M; Gutzeit, Andreas

    2018-04-01

    To evaluate whole-lesion volumetric texture analysis of apparent diffusion coefficient (ADC) maps for assessing treatment response in prostate cancer bone metastases. Texture analysis is performed in 12 treatment-naïve patients with 34 metastases before treatment and at one, two, and three months after the initiation of androgen deprivation therapy. Four first-order and 19 second-order statistical texture features are computed on the ADC maps in each lesion at every time point. Repeatability, inter-patient variability, and changes in the feature values under therapy are investigated. Spearman rank's correlation coefficients are calculated across time to demonstrate the relationship between the texture features and the serum prostate specific antigen (PSA) levels. With few exceptions, the texture features exhibited moderate to high precision. At the same time, Friedman's tests revealed that all first-order and second-order statistical texture features changed significantly in response to therapy. Thereby, the majority of texture features showed significant changes in their values at all post-treatment time points relative to baseline. Bivariate analysis detected significant correlations between the great majority of texture features and the serum PSA levels. Thereby, three first-order and six second-order statistical features showed strong correlations with the serum PSA levels across time. The findings in the present work indicate that whole-tumor volumetric texture analysis may be utilized for response assessment in prostate cancer bone metastases. The approach may be used as a complementary measure for treatment monitoring in conjunction with averaged ADC values. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Prostate-specific membrane antigen PET/MRI validation of MR textural analysis for detection of transition zone prostate cancer.

    PubMed

    Bates, Anthony; Miles, Kenneth

    2017-12-01

    To validate MR textural analysis (MRTA) for detection of transition zone (TZ) prostate cancer through comparison with co-registered prostate-specific membrane antigen (PSMA) PET-MR. Retrospective analysis was performed for 30 men who underwent simultaneous PSMA PET-MR imaging for staging of prostate cancer. Thirty texture features were derived from each manually contoured T2-weighted, transaxial, prostatic TZ using texture analysis software that applies a spatial band-pass filter and quantifies texture through histogram analysis. Texture features of the TZ were compared to PSMA expression on the corresponding PET images. The Benjamini-Hochberg correction controlled the false discovery rate at <5%. Eighty-eight T2-weighted images in 18 patients demonstrated abnormal PSMA expression within the TZ on PET-MR. 123 images were PSMA negative. Based on the corrected p-value of 0.005, significant differences between PSMA positive and negative slices were found for 16 texture parameters: Standard deviation and mean of positive pixels for all spatial filters (p = <0.0001 for both at all spatial scaling factor (SSF) values) and mean intensity following filtration for SSF 3-6 mm (p = 0.0002-0.0018). Abnormal expression of PSMA within the TZ is associated with altered texture on T2-weighted MR, providing validation of MRTA for the detection of TZ prostate cancer. • Prostate transition zone (TZ) MR texture analysis may assist in prostate cancer detection. • Abnormal transition zone PSMA expression correlates with altered texture on T2-weighted MR. • TZ with abnormal PSMA expression demonstrates significantly reduced MI, SD and MPP.

  20. Spectral dependence of texture features integrated with hyperspectral data for area target classification improvement

    NASA Astrophysics Data System (ADS)

    Bangs, Corey F.; Kruse, Fred A.; Olsen, Chris R.

    2013-05-01

    Hyperspectral data were assessed to determine the effect of integrating spectral data and extracted texture feature data on classification accuracy. Four separate spectral ranges (hundreds of spectral bands total) were used from the Visible and Near Infrared (VNIR) and Shortwave Infrared (SWIR) portions of the electromagnetic spectrum. Haralick texture features (contrast, entropy, and correlation) were extracted from the average gray-level image for each of the four spectral ranges studied. A maximum likelihood classifier was trained using a set of ground truth regions of interest (ROIs) and applied separately to the spectral data, texture data, and a fused dataset containing both. Classification accuracy was measured by comparison of results to a separate verification set of test ROIs. Analysis indicates that the spectral range (source of the gray-level image) used to extract the texture feature data has a significant effect on the classification accuracy. This result applies to texture-only classifications as well as the classification of integrated spectral data and texture feature data sets. Overall classification improvement for the integrated data sets was near 1%. Individual improvement for integrated spectral and texture classification of the "Urban" class showed approximately 9% accuracy increase over spectral-only classification. Texture-only classification accuracy was highest for the "Dirt Path" class at approximately 92% for the spectral range from 947 to 1343nm. This research demonstrates the effectiveness of texture feature data for more accurate analysis of hyperspectral data and the importance of selecting the correct spectral range to be used for the gray-level image source to extract these features.

  1. T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results.

    PubMed

    Nketiah, Gabriel; Elschot, Mattijs; Kim, Eugene; Teruel, Jose R; Scheenen, Tom W; Bathen, Tone F; Selnæs, Kirsten M

    2017-07-01

    To evaluate the diagnostic relevance of T2-weighted (T2W) MRI-derived textural features relative to quantitative physiological parameters derived from diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI in Gleason score (GS) 3+4 and 4+3 prostate cancers. 3T multiparametric-MRI was performed on 23 prostate cancer patients prior to prostatectomy. Textural features [angular second moment (ASM), contrast, correlation, entropy], apparent diffusion coefficient (ADC), and DCE pharmacokinetic parameters (K trans and V e ) were calculated from index tumours delineated on the T2W, DW, and DCE images, respectively. The association between the textural features and prostatectomy GS and the MRI-derived parameters, and the utility of the parameters in differentiating between GS 3+4 and 4+3 prostate cancers were assessed statistically. ASM and entropy correlated significantly (p < 0.05) with both GS and median ADC. Contrast correlated moderately with median ADC. The textural features correlated insignificantly with K trans and V e . GS 4+3 cancers had significantly lower ASM and higher entropy than 3+4 cancers, but insignificant differences in median ADC, K trans , and V e . The combined texture-MRI parameters yielded higher classification accuracy (91%) than the individual parameter sets. T2W MRI-derived textural features could serve as potential diagnostic markers, sensitive to the pathological differences in prostate cancers. • T2W MRI-derived textural features correlate significantly with Gleason score and ADC. • T2W MRI-derived textural features differentiate Gleason score 3+4 from 4+3 cancers. • T2W image textural features could augment tumour characterization.

  2. Cortical mechanisms for the segregation and representation of acoustic textures.

    PubMed

    Overath, Tobias; Kumar, Sukhbinder; Stewart, Lauren; von Kriegstein, Katharina; Cusack, Rhodri; Rees, Adrian; Griffiths, Timothy D

    2010-02-10

    Auditory object analysis requires two fundamental perceptual processes: the definition of the boundaries between objects, and the abstraction and maintenance of an object's characteristic features. Although it is intuitive to assume that the detection of the discontinuities at an object's boundaries precedes the subsequent precise representation of the object, the specific underlying cortical mechanisms for segregating and representing auditory objects within the auditory scene are unknown. We investigated the cortical bases of these two processes for one type of auditory object, an "acoustic texture," composed of multiple frequency-modulated ramps. In these stimuli, we independently manipulated the statistical rules governing (1) the frequency-time space within individual textures (comprising ramps with a given spectrotemporal coherence) and (2) the boundaries between textures (adjacent textures with different spectrotemporal coherences). Using functional magnetic resonance imaging, we show mechanisms defining boundaries between textures with different coherences in primary and association auditory cortices, whereas texture coherence is represented only in association cortex. Furthermore, participants' superior detection of boundaries across which texture coherence increased (as opposed to decreased) was reflected in a greater neural response in auditory association cortex at these boundaries. The results suggest a hierarchical mechanism for processing acoustic textures that is relevant to auditory object analysis: boundaries between objects are first detected as a change in statistical rules over frequency-time space, before a representation that corresponds to the characteristics of the perceived object is formed.

  3. Microstructure and Crystallographic Texture Evolution During the Friction-Stir Processing of a Precipitation-Hardenable Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Nadammal, Naresh; Kailas, Satish V.; Szpunar, Jerzy; Suwas, Satyam

    2015-05-01

    Friction-stir processing (FSP) has been proven as a successful method for the grain refinement of high-strength aluminum alloys. The most important attributes of this process are the fine-grain microstructure and characteristic texture, which impart suitable properties in the as-processed material. In the current work, FSP of the precipitation-hardenable aluminum alloy 2219 has been carried out and the consequent evolution of microstructure and texture has been studied. The as-processed materials were characterized using electron back-scattered diffraction, x-ray diffraction, and electron probe microanalysis. Onion-ring formation was observed in the nugget zone, which has been found to be related to the precipitation response and crystallographic texture of the alloy. Texture development in the alloy has been attributed to the combined effect of shear deformation and dynamic recrystallization. The texture was found heterogeneous even within the nugget zone. A microtexture analysis revealed the dominance of shear texture components, with C component at the top of nugget zone and the B and A2* components in the middle and bottom. The bulk texture measurement in the nugget zone revealed a dominant C component. The development of a weaker texture along with the presence of some large particles in the nugget zone indicates particle-stimulated nucleation as the dominant nucleation mechanism during FSP. Grain growth follows the Burke and Turnbull mechanism and geometrical coalescence.

  4. Lack of robustness of textural measures obtained from 3D brain tumor MRIs impose a need for standardization.

    PubMed

    Molina, David; Pérez-Beteta, Julián; Martínez-González, Alicia; Martino, Juan; Velasquez, Carlos; Arana, Estanislao; Pérez-García, Víctor M

    2017-01-01

    Textural measures have been widely explored as imaging biomarkers in cancer. However, their robustness under dynamic range and spatial resolution changes in brain 3D magnetic resonance images (MRI) has not been assessed. The aim of this work was to study potential variations of textural measures due to changes in MRI protocols. Twenty patients harboring glioblastoma with pretreatment 3D T1-weighted MRIs were included in the study. Four different spatial resolution combinations and three dynamic ranges were studied for each patient. Sixteen three-dimensional textural heterogeneity measures were computed for each patient and configuration including co-occurrence matrices (CM) features and run-length matrices (RLM) features. The coefficient of variation was used to assess the robustness of the measures in two series of experiments corresponding to (i) changing the dynamic range and (ii) changing the matrix size. No textural measures were robust under dynamic range changes. Entropy was the only textural feature robust under spatial resolution changes (coefficient of variation under 10% in all cases). Textural measures of three-dimensional brain tumor images are not robust neither under dynamic range nor under matrix size changes. Standards should be harmonized to use textural features as imaging biomarkers in radiomic-based studies. The implications of this work go beyond the specific tumor type studied here and pose the need for standardization in textural feature calculation of oncological images.

  5. Objective and quantitative definitions of modified food textures based on sensory and rheological methodology

    PubMed Central

    Wendin, Karin; Ekman, Susanne; Bülow, Margareta; Ekberg, Olle; Johansson, Daniel; Rothenberg, Elisabet; Stading, Mats

    2010-01-01

    Introduction Patients who suffer from chewing and swallowing disorders, i.e. dysphagia, may have difficulties ingesting normal food and liquids. In these patients a texture modified diet may enable that the patient maintain adequate nutrition. However, there is no generally accepted definition of ‘texture’ that includes measurements describing different food textures. Objective Objectively define and quantify categories of texture-modified food by conducting rheological measurements and sensory analyses. A further objective was to facilitate the communication and recommendations of appropriate food textures for patients with dysphagia. Design About 15 food samples varying in texture qualities were characterized by descriptive sensory and rheological measurements. Results Soups were perceived as homogenous; thickened soups were perceived as being easier to swallow, more melting and creamy compared with soups without thickener. Viscosity differed between the two types of soups. Texture descriptors for pâtés were characterized by high chewing resistance, firmness, and having larger particles compared with timbales and jellied products. Jellied products were perceived as wobbly, creamy, and easier to swallow. Concerning the rheological measurements, all solid products were more elastic than viscous (G′>G″), belonging to different G′ intervals: jellied products (low G′) and timbales together with pâtés (higher G′). Conclusion By combining sensory and rheological measurements, a system of objective, quantitative, and well-defined food textures was developed that characterizes the different texture categories. PMID:20592965

  6. An extensive analysis of various texture feature extractors to detect Diabetes Mellitus using facial specific regions.

    PubMed

    Shu, Ting; Zhang, Bob; Yan Tang, Yuan

    2017-04-01

    Researchers have recently discovered that Diabetes Mellitus can be detected through non-invasive computerized method. However, the focus has been on facial block color features. In this paper, we extensively study the effects of texture features extracted from facial specific regions at detecting Diabetes Mellitus using eight texture extractors. The eight methods are from four texture feature families: (1) statistical texture feature family: Image Gray-scale Histogram, Gray-level Co-occurance Matrix, and Local Binary Pattern, (2) structural texture feature family: Voronoi Tessellation, (3) signal processing based texture feature family: Gaussian, Steerable, and Gabor filters, and (4) model based texture feature family: Markov Random Field. In order to determine the most appropriate extractor with optimal parameter(s), various parameter(s) of each extractor are experimented. For each extractor, the same dataset (284 Diabetes Mellitus and 231 Healthy samples), classifiers (k-Nearest Neighbors and Support Vector Machines), and validation method (10-fold cross validation) are used. According to the experiments, the first and third families achieved a better outcome at detecting Diabetes Mellitus than the other two. The best texture feature extractor for Diabetes Mellitus detection is the Image Gray-scale Histogram with bin number=256, obtaining an accuracy of 99.02%, a sensitivity of 99.64%, and a specificity of 98.26% by using SVM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Muscle Protein Profiles Used for Prediction of Texture of Farmed Salmon (Salmo salar L.).

    PubMed

    Ørnholt-Johansson, Gine; Frosch, Stina; Gudjónsdóttir, María; Wulff, Tune; Jessen, Flemming

    2017-04-26

    A soft texture is undesired in Atlantic salmon as it leads to downgrading and reduced yield, yet it is a factor for which the cause is not fully understood. This lack of understanding highlights the need for identifying the cause of the soft texture and developing solutions by which the processing industry can improve the yield. Changes in muscle protein profiles can occur both pre- and postharvest and constitute an overall characterization of the muscle properties including texture. The aim of this study was to investigate this relationship between specific muscle proteins and the texture of the salmon fillet. Samples for 2D-gel-based proteomics were taken from the fillet above the lateral line at the same position as where the texture had been measured. The resulting protein profiles were analyzed using multivariate data analysis. Sixteen proteins were found to correlate to the measured texture, showing that it is possible to predict peak force based on a small subset of proteins. Additionally, eight of the 16 proteins were identified by tandem mass spectrometry including serum albumin, dipeptidyl peptidase 3, heat shock protein 70, annexins, and a protein presumed to be a titin fragment. It is contemplated that the identification of these proteins and their significance for the measured texture will contribute to further understanding of the Atlantic salmon muscle texture.

  8. Polycrystalline ferroelectric or multiferroic oxide articles on biaxially textured substrates and methods for making same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Amit; Shin, Junsoo

    A polycrystalline ferroelectric and/or multiferroic oxide article includes a substrate having a biaxially textured surface; at least one biaxially textured buffer layer supported by the substrate; and a biaxially textured ferroelectric or multiferroic oxide layer supported by the buffer layer. Methods for making polycrystalline ferroelectric and/or multiferroic oxide articles are also disclosed.

  9. New durum wheat with soft kernel texture: end-use quality analysis of the Hardness locus in Triticum turgidum ssp. durum

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which precludes conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft whit...

  10. Mechanical properties of ion-beam-textured surgical implant alloys

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.

    1977-01-01

    An electron-bombardment Hg ion thruster was used as an ion source to texture surfaces of materials used to make orthopedic and/or dental prostheses or implants. The materials textured include 316 stainless steel, titanium-6% aluminum, 4% vanadium, and cobalt-20% chromium, 15% tungsten. To determine the effect of ion texturing on the ultimate strength and yield strength, stainless steel and Co-Cr-W alloy samples were tensile tested to failure. Three types of samples of both materials were tested. One type was ion-textured (the process also heats each sample to 300 C), another type was simply heated to 300 C in an oven, and the third type was untreated. Stress-strain diagrams, 0.2% offset yield strength data, total elongation data, and area reduction data are presented. Fatigue specimens of ion textured and untextured 316 stainless steel and Ti-6% Al-4% V were tested. Included as an ion textured sample is a Ti-6% Al-4% V sample which was ion machined by means of Ni screen mask so as to produce an array of 140 mu m x 140 mu m x 60 mu m deep pits. Scanning electron microscopy was used to characterize the ion textured surfaces.

  11. Texture analysis at neutron diffractometer STRESS-SPEC

    NASA Astrophysics Data System (ADS)

    Brokmeier, H.-G.; Gan, W. M.; Randau, C.; Völler, M.; Rebelo-Kornmeier, J.; Hofmann, M.

    2011-06-01

    In response to the development of new materials and the application of materials and components in advanced technologies, non-destructive measurement methods of textures and residual stresses have gained worldwide significance in recent years. The materials science neutron diffractometer STRESS-SPEC at FRM II (Garching, Germany) is designed to be applied equally to texture and residual stress analyses by virtue of its very flexible configuration. Due to the high penetration capabilities of neutrons and the high neutron flux of STRESS-SPEC it allows a combined analysis of global texture, local texture, strain pole figure and FWHM pole figure in a wide variety of materials including metals, alloys, composites, ceramics and geological materials. Especially, the analysis of texture gradients in bulk materials using neutron diffraction has advantages over laboratory X-rays and EBSD for many scientific cases. Moreover, neutron diffraction is favourable for coarse-grained materials, where bulk information averaged over texture inhomogeneities is needed, and also stands out due to easy sample preparation. In future, the newly developed robot system for STRESS-SPEC will allow much more flexibility than an Eulerian cradle as on standard instruments. Five recent measurements are shown to demonstrate the wide range of possible texture applications at STRESS-SPEC diffractometer.

  12. Temperature dependence of piezoelectric properties for textured SBN ceramics.

    PubMed

    Kimura, Masahiko; Ogawa, Hirozumi; Kuroda, Daisuke; Sawada, Takuya; Higuchi, Yukio; Takagi, Hiroshi; Sakabe, Yukio

    2007-12-01

    Temperature dependences of piezoelectric properties were studied for h001i textured ceramics of bismuth layer-structured ferroelectrics, SrBi(2)Nb(2)O(9) (SBN). The textured ceramics with varied orientation degrees were fabricated by templated, grain-growth method, and the temperature dependences of resonance frequency were estimated. Excellent temperature stability of resonance frequency was obtained for the 76% textured ceramics. The resonance frequency of the 76% textured specimens varied almost linearly over a wide temperature range. Therefore, the variation was slight, even in a high temperature region above 150 degrees C. Temperature stability of a quartz crystal oscillator is generally higher than that of a ceramic resonator around room temperature. The variation of resonance frequency for the 76% textured SrBi(2)Nb(2)O(9) was larger than that of oscillation frequency for a typical quartz oscillator below 150 degrees C also in this study. However, the variation of the textured SrBi(2)Nb(2)O(9) was smaller than that of the quartz oscillator over a wide temperature range from -50 to 250 degrees C. Therefore, textured SrBi(2)Nb(2)O(9) ceramics is a major candidate material for the resonators used within a wide temperature range.

  13. Performance of two-lobe hole-entry hybrid journal bearing system under the combined influence of textured surface and couple stress lubricant

    NASA Astrophysics Data System (ADS)

    Khatri, Chandra B.; Sharma, Satish C.

    2018-02-01

    Textured surface in journal bearings is becoming an important area of investigation during the last few years. Surface textures have the shapes of micro-dimple with a small diameter and depth having order of magnitude of bearing clearance. This paper presents the influence of couple stress lubricant on the circular and non-circular hole-entry hybrid journal bearing system and reports the comparative study between the textured and non-textured circular/non-circular hybrid journal bearing system. The governing Reynolds equation has been modified for the couple stress lubricant flow in the clearance of bearing and journal. The FEM technique has been applied to solve the modified Reynolds equation together with restrictor flow equation. The numerically simulated results indicate that the influence of couple stress lubricant is significantly more in textured journal bearing than that of non-textured journal bearing. Further, it has been observed that the textured two-lobe (δ = 1.1) hybrid journal bearing lubricated with couple stress lubricant provides larger values of fluid film stiffness coefficients and stability threshold speed against other bearings studied in the present paper.

  14. Cooling of hot bubbles by surface texture during the boiling crisis

    NASA Astrophysics Data System (ADS)

    Dhillon, Navdeep; Buongiorno, Jacopo; Varanasi, Kripa

    2015-11-01

    We report the existence of maxima in critical heat flux (CHF) enhancement for pool boiling on textured hydrophilic surfaces and reveal the interaction mechanism between bubbles and surface texture that governs the boiling crisis phenomenon. Boiling is a process of fundamental importance in many engineering and industrial applications but the maximum heat flux that can be absorbed by the boiling liquid (or CHF) is limited by the boiling crisis. Enhancing the CHF of industrial boilers by surface texturing can lead to substantial energy savings and reduction in greenhouse gas emissions on a global scale. However, the fundamental mechanisms behind this enhancement are not well understood, with some previous studies indicating that CHF should increase monotonically with increasing texture density. However, using pool boiling experiments on a parametrically designed set of plain and nano-textured micropillar surfaces, we show that there is an optimum intermediate texture density that maximizes CHF and further that the length scale of this texture is of fundamental significance. Using imbibition experiments and high-speed optical and infrared imaging, we reveal the fundamental mechanisms governing the CHF enhancement maxima in boiling crisis. We acknowledge funding from the Chevron corporation.

  15. Investigations on femtosecond laser modified micro-textured surface with anti-friction property on bearing steel GCr15

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Ding, Ye; Cheng, Bai; He, Jiangtao; Wang, Genwang; Wang, Yang

    2018-03-01

    This work puts forward femtosecond laser modification of micro-textured surface on bearing steel GCr15 in order to reduce frictional wear and enhance load capacity during its application. Multi pulses femtosecond laser ablation experiments are established for the confirmation of laser spot radius as well as single pulse threshold fluence and pulse incubation coefficient of bulk material. Analytical models are set up in combination with hydrodynamics lubrication theory. Corresponding simulations are carried out on to explore influences of surface and cross sectional morphology of textures on hydrodynamics lubrication effect based on Navier-Stokes (N-S) equation. Technological experiments focus on the impacts of femtosecond laser machining variables, like scanning times, scanning velocity, pulse frequency and scanning gap on morphology of grooves as well as realization of optimized textures proposed by simulations, mechanisms of which are analyzed from multiple perspectives. Results of unidirectional rotating friction tests suggest that spherical texture with depth-to-width ratio of 0.2 can significantly improve tribological properties at low loading and velocity condition comparing with un-textured and other textured surfaces, which also verifies the accuracy of simulations and feasibility of femtosecond laser in modification of micro-textured surface.

  16. Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Fa-Jun, E-mail: Fajun.Ma@nus.edu.sg; Duttagupta, Shubham; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576

    2014-11-14

    Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boronmore » diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed.« less

  17. Enhancement of Stereo Imagery by Artificial Texture Projection Generated Using a LIDAR

    NASA Astrophysics Data System (ADS)

    Veitch-Michaelis, Joshua; Muller, Jan-Peter; Walton, David; Storey, Jonathan; Foster, Michael; Crutchley, Benjamin

    2016-06-01

    Passive stereo imaging is capable of producing dense 3D data, but image matching algorithms generally perform poorly on images with large regions of homogenous texture due to ambiguous match costs. Stereo systems can be augmented with an additional light source that can project some form of unique texture onto surfaces in the scene. Methods include structured light, laser projection through diffractive optical elements, data projectors and laser speckle. Pattern projection using lasers has the advantage of producing images with a high signal to noise ratio. We have investigated the use of a scanning visible-beam LIDAR to simultaneously provide enhanced texture within the scene and to provide additional opportunities for data fusion in unmatched regions. The use of a LIDAR rather than a laser alone allows us to generate highly accurate ground truth data sets by scanning the scene at high resolution. This is necessary for evaluating different pattern projection schemes. Results from LIDAR generated random dots are presented and compared to other texture projection techniques. Finally, we investigate the use of image texture analysis to intelligently project texture where it is required while exploiting the texture available in the ambient light image.

  18. Three-Dimensional Spin Texture in Hybrid Perovskites and Its Impact on Optical Transitions

    DOE PAGES

    Zhang, Xie; Shen, Jimmy -Xuan; Van de Walle, Chris G.

    2018-05-15

    Hybrid perovskites such as MAPbI 3 (MA = CH 3NH 3) exhibit a unique spin texture. The spin texture (as calculated within the Rashba model) has been suggested to be responsible for a suppression of radiative recombination due to a mismatch of spins at the band edges. Here we compute the spin texture from first principles and demonstrate that it does not suppress recombination. The exact spin texture is dominated by the inversion asymmetry of the local electrostatic potential, which is determined by the structural distortion induced by the MA molecule. In addition, the rotation of the MA molecule atmore » room temperature leads to a dynamic spin texture in MAPbI 3. Furthermore these insights call for a reconsideration of the scenario that radiative recombination is suppressed and provide an in-depth understanding of the origin of the spin texture in hybrid perovskites, which is crucial for designing spintronic devices.« less

  19. Effect of surface texture by ion beam sputtering on implant biocompatibility and soft tissue attachment

    NASA Technical Reports Server (NTRS)

    Gibbons, D. F.

    1977-01-01

    The objectives in this report were to use the ion beam sputtering technique to produce surface textures on polymers, metals, and ceramics. The morphology of the texture was altered by varying both the width and depth of the square pits which were formed by ion beam erosion. The width of the ribs separating the pits were defined by the mask used to produce the texture. The area of the surface containing pits varies as the width was changed. The biological parameters used to evaluate the biological response to the texture were: (1) fibrous capsule and inflammatory response in subcutaneous soft tissue; (2) strength of the mechanical attachment of the textured surface by the soft tissue; and (3) morphology of the epidermal layer interfacing the textured surface of percutaneous connectors. Because the sputter yield on teflon ribs was approximately an order of magnitude larger than any other material the majority of the measurements presented in the report were obtained with teflon.

  20. On soil textural classifications and soil-texture-based estimations

    NASA Astrophysics Data System (ADS)

    Ángel Martín, Miguel; Pachepsky, Yakov A.; García-Gutiérrez, Carlos; Reyes, Miguel

    2018-02-01

    The soil texture representation with the standard textural fraction triplet sand-silt-clay is commonly used to estimate soil properties. The objective of this work was to test the hypothesis that other fraction sizes in the triplets may provide a better representation of soil texture for estimating some soil parameters. We estimated the cumulative particle size distribution and bulk density from an entropy-based representation of the textural triplet with experimental data for 6240 soil samples. The results supported the hypothesis. For example, simulated distributions were not significantly different from the original ones in 25 and 85 % of cases when the sand-silt-clay and very coarse+coarse + medium sand - fine + very fine sand - silt+clay were used, respectively. When the same standard and modified triplets were used to estimate the average bulk density, the coefficients of determination were 0.001 and 0.967, respectively. Overall, the textural triplet selection appears to be application and data specific.

  1. Three-Dimensional Spin Texture in Hybrid Perovskites and Its Impact on Optical Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xie; Shen, Jimmy -Xuan; Van de Walle, Chris G.

    Hybrid perovskites such as MAPbI 3 (MA = CH 3NH 3) exhibit a unique spin texture. The spin texture (as calculated within the Rashba model) has been suggested to be responsible for a suppression of radiative recombination due to a mismatch of spins at the band edges. Here we compute the spin texture from first principles and demonstrate that it does not suppress recombination. The exact spin texture is dominated by the inversion asymmetry of the local electrostatic potential, which is determined by the structural distortion induced by the MA molecule. In addition, the rotation of the MA molecule atmore » room temperature leads to a dynamic spin texture in MAPbI 3. Furthermore these insights call for a reconsideration of the scenario that radiative recombination is suppressed and provide an in-depth understanding of the origin of the spin texture in hybrid perovskites, which is crucial for designing spintronic devices.« less

  2. Development of Thin-Walled Magnesium Alloy Extrusions for Improved Crash Performance Based Upon Texture Control

    NASA Astrophysics Data System (ADS)

    Williams, Bruce W.; Agnew, Sean R.; Klein, Robert W.; McKinley, Jonathan

    Recent investigations suggest that it is possible to achieve dramatic modifications to both strength and ductility of magnesium alloys through a combination of alloying, grain refinement, and texture control. The current work explores the possibility of altering the texture in extruded thin-walled magnesium alloy tubes for improved ductility during axial crush in which energy is absorbed through progressive buckling. The texture evolution was predicted using the viscoplastic self-consistent (VPSC) crystal plasticity model, with strain path input from continuum-based finite element simulations of extrusion. A limited diversity of textures can be induced by altering the strain path through the extrusion die design. In some cases, such as for simple bar extrusion, the textures predicted can be connected with simple shape change. In other cases, a subtle influence of strain path involving shear-reverse-shear is predicted. The most promising textures predicted for a variety of strain paths are selected for subsequent experimental study.

  3. Effect of Thermomechanical Processing on Texture and Superelasticity in Fe-Ni-Co-Al-Ti-B Alloy

    NASA Astrophysics Data System (ADS)

    Lee, Doyup; Omori, Toshihiro; Han, Kwangsik; Hayakawa, Yasuyuki; Kainuma, Ryosuke

    2018-03-01

    The texture and superelasticity were investigated in austenitic Fe-Ni-Co-Al-Ti-B alloy with various reduction ratios of cold rolling and heating ratios in annealing. The rolled sheets show the {110} <112> deformation texture at a reduction ratio higher than 80%, while the texture hardly changes in the primary recrystallization at 1000 °C. The β (B2) precipitates inhibit the grain growth at this temperature, but they dissolve during heating, and secondary recrystallization occurs due to decreased pinning force at temperatures higher than 1100 °C, resulting in texture change to {210} <001> . The recrystallization texture is more strongly developed when the reduction ratio and heating rate are high and slow, respectively. The 90% cold-rolled and slowly heated sheet shows the recrystallization texture and high fraction of low-angle boundaries. As a result, ductility and superelasticity can be drastically improved in the 90% cold-rolled sheet, although superelasticity was previously obtained only in thin sheets with 98.5% reduction.

  4. Selective oxidation of cube textured Ni and Ni-Cr substrate for the formation of cube textured NiO as a component buffer layer for REBa 2Cu 3O 7+ x (REBCO) coated conductors

    NASA Astrophysics Data System (ADS)

    Lockman, Z.; Goldacker, W.; Nast, R.; deBoer, B.; MacManus-Driscoll, J. L.

    2002-08-01

    Thermal oxidation of cube textured, pure Ni and Ni-Cr tapes was undertaken under different oxidation conditions to form cube textured NiO for the use as a first component of buffer layer for the coated conductor. Cube textured NiO was formed on pure Ni after oxidising for more than 130 min in O 2 at 1250 °C. The oxide thickness was >30 μm. Much shorter oxidation times (20-40 min, NiO thickness of ∼5 μm) and lower temperature (1050 °C) were required to form a similar texture on Ni-Cr foils. In addition, NiO formed on Ni-13%Cr was more highly textured than Ni-10%Cr. A Cr 2O 3 inner layer and NiO outer layer was formed on the Ni-Cr alloys.

  5. Prediction of troponin-T degradation using color image texture features in 10d aged beef longissimus steaks.

    PubMed

    Sun, X; Chen, K J; Berg, E P; Newman, D J; Schwartz, C A; Keller, W L; Maddock Carlin, K R

    2014-02-01

    The objective was to use digital color image texture features to predict troponin-T degradation in beef. Image texture features, including 88 gray level co-occurrence texture features, 81 two-dimension fast Fourier transformation texture features, and 48 Gabor wavelet filter texture features, were extracted from color images of beef strip steaks (longissimus dorsi, n = 102) aged for 10d obtained using a digital camera and additional lighting. Steaks were designated degraded or not-degraded based on troponin-T degradation determined on d 3 and d 10 postmortem by immunoblotting. Statistical analysis (STEPWISE regression model) and artificial neural network (support vector machine model, SVM) methods were designed to classify protein degradation. The d 3 and d 10 STEPWISE models were 94% and 86% accurate, respectively, while the d 3 and d 10 SVM models were 63% and 71%, respectively, in predicting protein degradation in aged meat. STEPWISE and SVM models based on image texture features show potential to predict troponin-T degradation in meat. © 2013.

  6. Texture and Elastic Anisotropy of Mantle Olivine

    NASA Astrophysics Data System (ADS)

    Nikitin, A. N.; Ivankina, T. I.; Bourilitchev, D. E.; Klima, K.; Locajicek, T.; Pros, Z.

    Eight olivine rock samples from different European regions were collected for neu- tron texture analyses and for P-wave velocity measurements by means of ultrasonic sounding at various confining pressures. The orientation distribution functions (ODFs) of olivine were determined and pole figures of the main crystallographic planes were calculated. The spatial P-wave velocity distributions were determined at confining pressures from 0.1 to 400 MPa and modelled from the olivine textures. In dependence upon the type of rock (xenolith or dunite) different behavior of both the P-wave veloc- ity distributions and the anisotropy coefficients with various confining pressures was observed. In order to explain the interdependence of elastic anisotropy and hydrostatic pressure, a model for polycrystalline olivine rocks was suggested, which considers the influence of the crystallographic and the mechanical textures on the elastic behaviour of the polycrystal. Since the olivine texture depends upon the active slip systems and the deformation temperature, neutron texture analyses enable us to estimate depth and thermodynamical conditions during texture formation.

  7. Highly alloyed Ni-W substrates for low AC loss applications

    NASA Astrophysics Data System (ADS)

    Gaitzsch, Uwe; Hänisch, Jens; Hühne, Ruben; Rodig, Christian; Freudenberger, Jens; Holzapfel, Bernhard; Schultz, Ludwig

    2013-08-01

    Cube texture formation has been studied in Ni-W alloys with a W content of 9 at.% and above. These alloys show a low magnetization at 77 K and below, and are therefore excellent candidates for use as substrates of coated conductors in AC applications. The application of a modified deformation and annealing sequence leads to a highly textured surface of Ni9W and Ni9.5W tapes with cube texture fractions above 96%. YBCO (YBa2Cu3O7-δ) layers obtained on these substrates using a standard buffer architecture showed a critical current density exceeding 1.5 MA cm-2 at 77 K, similar to those for films on commercial Ni5W tapes. In contrast, only a weak cube texture was achieved in Ni10W tapes. The rolling texture of this alloy showed a significantly increased Goss component, which could not be reduced by applying intermediate annealing treatments. The influence of this texture on the cube texture formation will be discussed in detail.

  8. Microstructure Characterization of Weakly Textured and Fine Grained AZ61 Sheet

    NASA Astrophysics Data System (ADS)

    Berman, T. D.; Donlon, W.; Hung, C. K.; Milligan, P.; Decker, R.; Pollock, T. M.; Jones, J. W.

    Formability in magnesium alloy sheet is strongly limited by a strong basal texture in the as-rolled material, which is difficulty to remove by thermal processing. We introduce a new process to the control of texture by combining Thixomolding and Thermomechanical Processing (TTMP). Plates of AZ61L with a divorced β-Mg17Al12 eutectic are produced by Thixomolding, resulting in a non-textured, fine grained (2.8 µm) precursor. Sheet produced from the plate by single pass warm-rolling exhibits a weaker texture, and more isotropic tensile deformation than generally observed in AZ-series alloy sheet. Recrystallization annealing produces a further reduction in texture and average grain size (2.3 µm) and results in nearly isotropic room temperature deformation, a yield strength of 220 MPa, and an elongation of 23%. Particle stimulated nucleation of new grains by the β-phase during both dynamic and static recrystallization, is critical for achieving the low levels of texture. The influence of β-phase distribution in microstructure development is discussed.

  9. Scanning-electron-microscopy observations and mechanical characteristics of ion-beam-sputtered surgical implant alloys

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Meyer, M. L.; Ling, J. S.

    1977-01-01

    An electron bombardment ion thruster was used as an ion source to sputter the surfaces of orthopedic prosthetic metals. Scanning electron microscopy photomicrographs were made of each ion beam textured surface. The effect of ion texturing an implant surface on its bond to bone cement was investigated. A Co-Cr-W alloy and surgical stainless steel were used as representative hard tissue implant materials to determine effects of ion texturing on bulk mechanical properties. Work was done to determine the effect of substrate temperature on the development of an ion textured surface microstructure. Results indicate that the ultimate strength of the bulk materials is unchanged by ion texturing and that the microstructure will develop more rapidly if the substrate is heated prior to ion texturing.

  10. Image segmentation using association rule features.

    PubMed

    Rushing, John A; Ranganath, Heggere; Hinke, Thomas H; Graves, Sara J

    2002-01-01

    A new type of texture feature based on association rules is described. Association rules have been used in applications such as market basket analysis to capture relationships present among items in large data sets. It is shown that association rules can be adapted to capture frequently occurring local structures in images. The frequency of occurrence of these structures can be used to characterize texture. Methods for segmentation of textured images based on association rule features are described. Simulation results using images consisting of man made and natural textures show that association rule features perform well compared to other widely used texture features. Association rule features are used to detect cumulus cloud fields in GOES satellite images and are found to achieve higher accuracy than other statistical texture features for this problem.

  11. Acquiring 3-D information about thick objects from differential interference contrast images using texture extraction

    NASA Astrophysics Data System (ADS)

    Sierra, Heidy; Brooks, Dana; Dimarzio, Charles

    2010-07-01

    The extraction of 3-D morphological information about thick objects is explored in this work. We extract this information from 3-D differential interference contrast (DIC) images by applying a texture detection method. Texture extraction methods have been successfully used in different applications to study biological samples. A 3-D texture image is obtained by applying a local entropy-based texture extraction method. The use of this method to detect regions of blastocyst mouse embryos that are used in assisted reproduction techniques such as in vitro fertilization is presented as an example. Results demonstrate the potential of using texture detection methods to improve morphological analysis of thick samples, which is relevant to many biomedical and biological studies. Fluorescence and optical quadrature microscope phase images are used for validation.

  12. Influence of Nd and Y on texture of as-extruded Mg-5Li-3Al-2Zn alloy

    NASA Astrophysics Data System (ADS)

    Wu, Liqun; Zhang, Tianlong; Cui, Chongliang; Wu, Ruizhi; Zhang, Milin; Hou, Legan

    2016-07-01

    Mg-5Li-3Al-2Zn alloys with the additions of Y and Nd were prepared using induction melting furnace under the atmosphere of pure argon; then they were extruded. The textures of the as-extruded alloys were analyzed by pole figures and electron backscatter diffraction. Results show that the addition of a small amount of Nd can weaken the basal texture. The further increase of Nd content has no corresponding further influence on texture. When a small amount of Y is used to replace Nd, the basal texture can be further weakened and the prismatic slip system can be further activated. In the alloy of Mg-5Li-3Al-2Zn-1.2Y-0.8Nd, the basal textures almost vanish.

  13. Robust constraint on cosmic textures from the cosmic microwave background.

    PubMed

    Feeney, Stephen M; Johnson, Matthew C; Mortlock, Daniel J; Peiris, Hiranya V

    2012-06-15

    Fluctuations in the cosmic microwave background (CMB) contain information which has been pivotal in establishing the current cosmological model. These data can also be used to test well-motivated additions to this model, such as cosmic textures. Textures are a type of topological defect that can be produced during a cosmological phase transition in the early Universe, and which leave characteristic hot and cold spots in the CMB. We apply bayesian methods to carry out a rigorous test of the texture hypothesis, using full-sky data from the Wilkinson Microwave Anisotropy Probe. We conclude that current data do not warrant augmenting the standard cosmological model with textures. We rule out at 95% confidence models that predict more than 6 detectable cosmic textures on the full sky.

  14. Independent Component Analysis of Textures

    NASA Technical Reports Server (NTRS)

    Manduchi, Roberto; Portilla, Javier

    2000-01-01

    A common method for texture representation is to use the marginal probability densities over the outputs of a set of multi-orientation, multi-scale filters as a description of the texture. We propose a technique, based on Independent Components Analysis, for choosing the set of filters that yield the most informative marginals, meaning that the product over the marginals most closely approximates the joint probability density function of the filter outputs. The algorithm is implemented using a steerable filter space. Experiments involving both texture classification and synthesis show that compared to Principal Components Analysis, ICA provides superior performance for modeling of natural and synthetic textures.

  15. On the development of a model predicting the recrystallization texture of aluminum using the Taylor model for rolling textures and the coincidence lattice site theory

    NASA Astrophysics Data System (ADS)

    T, Morimoto; F, Yoshida; A, Yanagida; J, Yanagimoto

    2015-04-01

    First, hardening model in f.c.c. metals was formulated with collinear interactions slips, Hirth slips and Lomer-Cottrell slips. Using the Taylor and the Sachs rolling texture prediction model, the residual dislocation densities of cold-rolled commercial pure aluminum were estimated. Then, coincidence site lattice grains were investigated from observed cold rolling texture. Finally, on the basis of oriented nucleation theory and coincidence site lattice theory, the recrystallization texture of commercial pure aluminum after low-temperature annealing was predicted.

  16. Constraints on texture zero and cofactor zero models for neutrino mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whisnant, K.; Liao, Jiajun; Marfatia, D.

    2014-06-24

    Imposing a texture or cofactor zero on the neutrino mass matrix reduces the number of independent parameters from nine to seven. Since five parameters have been measured, only two independent parameters would remain in such models. We find the allowed regions for single texture zero and single cofactor zero models. We also find strong similarities between single texture zero models with one mass hierarchy and single cofactor zero models with the opposite mass hierarchy. We show that this correspondence can be generalized to texture-zero and cofactor-zero models with the same homogeneous costraints on the elements and cofactors.

  17. Textural signatures for wetland vegetation

    NASA Technical Reports Server (NTRS)

    Whitman, R. I.; Marcellus, K. L.

    1973-01-01

    This investigation indicates that unique textural signatures do exist for specific wetland communities at certain times in the growing season. When photographs with the proper resolution are obtained, the textural features can identify the spectral features of the vegetation community seen with lower resolution mapping data. The development of a matrix of optimum textural signatures is the goal of this research. Seasonal variations of spectral and textural features are particularly important when performing a vegetations analysis of fresh water marshes. This matrix will aid in flight planning, since expected seasonal variations and resolution requirements can be established prior to a given flight mission.

  18. Quantifying Urban Texture in Nairobi, Kenya and its Implications for Understanding Natural Hazard Impact

    NASA Astrophysics Data System (ADS)

    Taylor, Faith E.; Malamud, Bruce D.; Millington, James D. A.

    2016-04-01

    The configuration of infrastructure networks such as roads, drainage and power lines can both affect and be affected by natural hazards such as earthquakes, intense rain, wildfires and extreme temperatures. In this paper, we present and compare two methods to quantify urban topology on approximate scales of 0.0005 km2 to 10 km2 and create classifications of different 'urban textures' that relate to risk of natural hazard impact in an area. The methods we use focus on applicability in urban developing country settings, where access to high resolution and high quality data may be difficult. We use the city of Nairobi, Kenya to trial these methods. Nairobi has a population >3 million, and is a mix of informal settlements, residential and commercial development. The city and its immediate surroundings are subject to a variety of natural hazards such as floods, landslides, fires, drought, hail, heavy wind and extreme temperatures; all of these hazards can occur singly, but also have the potential for one to trigger another, thus providing a 'cascade' of hazards, or for two of the hazards to occur spatially and temporally near each other and interact. We use two measures of urban texture: (i) Street block textures, (ii) Google Earth land cover textures. Street block textures builds on the methodology of Louf and Barthelemy (2014) and uses Open Street Map data to analyse the shape, size, complexity and pattern of individual blocks of land created by fully enclosed loops of the major and minor road network of Nairobi. We find >4000 of these blocks ranging in size from approximately 0.0005 km2 to 10 km2, with approximately 5 classifications of urban texture. Google Earth land cover texture is a visual classification of homogeneous parcels of land performed in Google Earth using high-resolution airborne imagery and a qualitative criteria for each land cover type. Using the Google Earth land cover texture method, we identify >40 'urban textures' based on visual characteristics such as colour, texture, shadow and setting and have created a clear criteria for classifying an area based on its visual characteristics. These two methods for classifying urban texture in Nairobi are compared in a GIS and in the field to investigate whether there is a link between the visual appearance of an area and its network topology. From these urban textures, we may start to identify areas where (a) urban texture types may indicate a relative propensity to certain hazards and their interactions and (b) urban texture types that may increase or decrease the impact of a hazard that occurs in that area.

  19. Texturing new concrete pavements.

    DOT National Transportation Integrated Search

    1977-01-01

    Several texturing experiments on heavily traveled portland cement concrete pavements in Virginia are described. Included in the experiments were textures imparted by a heavy burlap drag, metal tines (transverse and longitudinal striations), sprinkled...

  20. Texture classification using autoregressive filtering

    NASA Technical Reports Server (NTRS)

    Lawton, W. M.; Lee, M.

    1984-01-01

    A general theory of image texture models is proposed and its applicability to the problem of scene segmentation using texture classification is discussed. An algorithm, based on half-plane autoregressive filtering, which optimally utilizes second order statistics to discriminate between texture classes represented by arbitrary wide sense stationary random fields is described. Empirical results of applying this algorithm to natural and sysnthesized scenes are presented and future research is outlined.

  1. Structures having enhanced biaxial texture

    DOEpatents

    Goyal, Amit; Budai, John D.; Kroeger, Donald M.; Norton, David P.; Specht, Eliot D.; Christen, David K.

    1999-01-01

    A biaxially textured alloy article includes a rolled and annealed biaxially textured base metal substrate characterized by an x-ray diffraction phi scan peak of no more than 20.degree. FWHM; and a biaxially textured layer of an alloy or another material on a surface thereof. The article further includes at least one of an electromagnetic device or an electro-optical device epitaxially joined to the alloy.

  2. Doped Y.sub.2O.sub.3 buffer layers for laminated conductors

    DOEpatents

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2007-08-21

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the metallic substrate, the biaxially textured buffer layer comprising Y.sub.2O.sub.3 and a dopant for blocking cation diffusion through the Y.sub.2O.sub.3, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  3. A Systematic Evaluation of Food Textures to Decrease Packing and Increase Oral Intake in Children with Pediatric Feeding Disorders

    ERIC Educational Resources Information Center

    Patel, Meeta R.; Piazza, Cathleen C.; Layer, Stacy A.; Coleman, Russell; Swartzwelder, Dana M.

    2005-01-01

    This study examined packing (pocketing or holding accepted food in the mouth) in 3 children who were failing to thrive or had inadequate weight gain due to insufficient caloric intake. The results of an analysis of texture indicated that total grams consumed were higher when lower textured foods were presented than when higher textured foods were…

  4. New durum wheat with soft kernel texture: milling performance and end-use quality analysis of the Hardness locus in Triticum turgidum ssp. durum

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which preclude conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft white...

  5. SU-E-J-262: Variability in Texture Analysis of Gynecological Tumors in the Context of An 18F-FDG PET Adaptive Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrocki, J; Chino, J; Das, S

    Purpose: This study examines the effect on texture analysis due to variable reconstruction of PET images in the context of an adaptive FDG PET protocol for node positive gynecologic cancer patients. By measuring variability in texture features from baseline and intra-treatment PET-CT, we can isolate unreliable texture features due to large variation. Methods: A subset of seven patients with node positive gynecological cancers visible on PET was selected for this study. Prescribed dose varied between 45–50.4Gy, with a 55–70Gy boost to the PET positive nodes. A baseline and intratreatment (between 30–36Gy) PET-CT were obtained on a Siemens Biograph mCT. Eachmore » clinical PET image set was reconstructed 6 times using a TrueX+TOF algorithm with varying iterations and Gaussian filter. Baseline and intra-treatment primary GTVs were segmented using PET Edge (MIM Software Inc., Cleveland, OH), a semi-automatic gradient-based algorithm, on the clinical PET and transferred to the other reconstructed sets. Using an in-house MATLAB program, four 3D texture matrices describing relationships between voxel intensities in the GTV were generated: co-occurrence, run length, size zone, and neighborhood difference. From these, 39 textural features characterizing texture were calculated in addition to SUV histogram features. The percent variability among parameters was first calculated. Each reconstructed texture feature from baseline and intra-treatment per patient was normalized to the clinical baseline scan and compared using the Wilcoxon signed-rank test in order to isolate variations due to reconstruction parameters. Results: For the baseline scans, 13 texture features showed a mean range greater than 10%. For the intra scans, 28 texture features showed a mean range greater than 10%. Comparing baseline to intra scans, 25 texture features showed p <0.05. Conclusion: Variability due to different reconstruction parameters increased with treatment, however, the majority of texture features showed significant changes during treatment independent of reconstruction effects.« less

  6. Mapping lava flow textures using three-dimensional measures of surface roughness

    NASA Astrophysics Data System (ADS)

    Mallonee, H. C.; Kobs-Nawotniak, S. E.; McGregor, M.; Hughes, S. S.; Neish, C.; Downs, M.; Delparte, D.; Lim, D. S. S.; Heldmann, J. L.

    2016-12-01

    Lava flow emplacement conditions are reflected in the surface textures of a lava flow; unravelling these conditions is crucial to understanding the eruptive history and characteristics of basaltic volcanoes. Mapping lava flow textures using visual imagery alone is an inherently subjective process, as these images generally lack the resolution needed to make these determinations. Our team has begun mapping lava flow textures using visual spectrum imagery, which is an inherently subjective process involving the challenge of identifying transitional textures such as rubbly and slabby pāhoehoe, as these textures are similar in appearance and defined qualitatively. This is particularly problematic for interpreting planetary lava flow textures, where we have more limited data. We present a tool to objectively classify lava flow textures based on quantitative measures of roughness, including the 2D Hurst exponent, RMS height, and 2D:3D surface area ratio. We collected aerial images at Craters of the Moon National Monument (COTM) using Unmanned Aerial Vehicles (UAVs) in 2015 and 2016 as part of the FINESSE (Field Investigations to Enable Solar System Science and Exploration) and BASALT (Biologic Analog Science Associated with Lava Terrains) research projects. The aerial images were stitched together to create Digital Terrain Models (DTMs) with resolutions on the order of centimeters. The DTMs were evaluated by the classification tool described above, with output compared against field assessment of the texture. Further, the DTMs were downsampled and reevaluated to assess the efficacy of the classification tool at data resolutions similar to current datasets from other planetary bodies. This tool allows objective classification of lava flow texture, which enables more accurate interpretations of flow characteristics. This work also gives context for interpretations of flows with comparatively low data resolutions, such as those on the Moon and Mars. Textural maps based on quantitative measures of roughness are a valuable asset for studies of lava flows on Earth and other planetary bodies.

  7. SU-F-R-18: Updates to the Computational Environment for Radiological Research for Image Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apte, Aditya P.; Deasy, Joseph O.

    2016-06-15

    Purpose: To present new tools in CERR for Texture Analysis and Visualization. Method: (1) Quantitative Image Analysis: We added the ability to compute Haralick texture features based on local neighbourhood. The Texture features depend on many parameters used in their derivation. For example: (a) directionality, (b) quantization of image, (c) patch-size for the neighborhood, (d) handling of the edge voxels within the region of interest, (e) Averaging co-occurance matrix vs texture features for different directions etc. A graphical user interface was built to set these parameters and then visualize their impact on the resulting texture maps. The entire functionality wasmore » written in Matlab. Array indexing was used to speed up the texture calculation. The computation speed is very competitive with the ITK library. Moreover, our implementation works with multiple CPUs and the computation time can be further reduced by using multiple processor threads. In order to reduce the Haralick texture maps into scalar features, we propose the use of Texture Volume Histograms. This lets users make use of the entire distribution of texture values within the region of interest rather than using just the mean and the standard deviations. (2) Qualitative/Visualization tools: The derived texture maps are stored as a new scan (derived) within CERR’s planC data structure. A display that compares various scans was built to show the raw image and the derived texture maps side-by-side. These images are positionally linked and can be navigated together. CERR’s graphics handling was updated and sped-up to be compatible with the newer Matlab versions. As a result, the users can use (a) different window levels and colormaps for different viewports, (b) click-and-drag or use mouse scroll-wheel to navigate slices. Results: The new features and updates are available via https://www.github.com/adityaapte/cerr . Conclusion: Features added to CERR increase its utility in Radiomics and Outcomes modeling.« less

  8. Correlations Between Textures and Infrared Spectra of the Martian Surface in Valles Marineris

    NASA Astrophysics Data System (ADS)

    Ralston, S. J.; Wray, J. J.

    2013-12-01

    RALSTON, S. J., School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, sralston3@gatech.edu, WRAY, James, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, jwray@eas.gatech.edu In the past few decades, a wealth of information has become available on the appearance and composition of the Martian surface. While some previous research has examined possible correlations between certain surface features and mineralogy (such as the hypothesized connection between Recurring Slope Lineae and perchlorate salts), little has yet been done to determine possible correlations between mineralogy and texture in less extraordinary circumstances. In this project, one hundred images taken from across the Valles Marineris region were examined both in infrared (obtained from the CRISM instrument aboard the Mars Reconnaissance Orbiter) and in visible-light images from the HiRISE camera. Spectra were obtained from regions of interest, focusing mainly on the identification of monohydrated and polyhydrated sulfates. Other materials were included in the imaging, including phyllosilicate clays, gypsum, and jarosite, although those materials proved less abundant than the sulfates. The areas from which the spectra were taken were then examined in visible-light wavelengths using HiRISE images to determine textural qualities. The focus of this research was on two particular textures, a 'reticulated' texture and a 'stepped texture,' hypothesized to correlate to monohydrated and polyhydrated sulfates, respectively. Results showed that over 55% of areas containing monohydrated sulfates also contained reticulate texture, whereas areas that contained other materials, such as polyhydrated sulfates and clays, had only a 2-8% correlation with reticulate texture. The stepped texture was shown to have no significant correlation to any one material, although other texture/mineral pairs did show some correlation. This presentation will cover the range of textures and mineralogy found throughout Valles Marineris.

  9. Appearance and characterization of fruit image textures for quality sorting using wavelet transform and genetic algorithms.

    PubMed

    Khoje, Suchitra

    2018-02-01

    Images of four qualities of mangoes and guavas are evaluated for color and textural features to characterize and classify them, and to model the fruit appearance grading. The paper discusses three approaches to identify most discriminating texture features of both the fruits. In the first approach, fruit's color and texture features are selected using Mahalanobis distance. A total of 20 color features and 40 textural features are extracted for analysis. Using Mahalanobis distance and feature intercorrelation analyses, one best color feature (mean of a* [L*a*b* color space]) and two textural features (energy a*, contrast of H*) are selected as features for Guava while two best color features (R std, H std) and one textural features (energy b*) are selected as features for mangoes with the highest discriminate power. The second approach studies some common wavelet families for searching the best classification model for fruit quality grading. The wavelet features extracted from five basic mother wavelets (db, bior, rbior, Coif, Sym) are explored to characterize fruits texture appearance. In third approach, genetic algorithm is used to select only those color and wavelet texture features that are relevant to the separation of the class, from a large universe of features. The study shows that image color and texture features which were identified using a genetic algorithm can distinguish between various qualities classes of fruits. The experimental results showed that support vector machine classifier is elected for Guava grading with an accuracy of 97.61% and artificial neural network is elected from Mango grading with an accuracy of 95.65%. The proposed method is nondestructive fruit quality assessment method. The experimental results has proven that Genetic algorithm along with wavelet textures feature has potential to discriminate fruit quality. Finally, it can be concluded that discussed method is an accurate, reliable, and objective tool to determine fruit quality namely Mango and Guava, and might be applicable to in-line sorting systems. © 2017 Wiley Periodicals, Inc.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, B; Yu, H; Jara, H

    Purpose: To compare enhanced Laws texture derived from parametric proton density (PD) maps to other MRI-based surrogate markers (T2, PD, ADC) in assessing degrees of liver fibrosis in a murine model of hepatic fibrosis using 11.7T scanner. Methods: This animal study was IACUC approved. Fourteen mice were divided into control (n=1) and experimental (n=13). The latter were fed a DDC-supplemented diet to induce hepatic fibrosis. Liver specimens were imaged using an 11.7T scanner; the parametric PD, T2, and ADC maps were generated from spin-echo pulsed field gradient and multi-echo spin-echo acquisitions. Enhanced Laws texture analysis was applied to the PDmore » maps: first, hepatic blood vessels and liver margins were segmented/removed using an automated dual-clustering algorithm; secondly, an optimal thresholding algorithm was applied to reduce the partial volume artifact; next, mean and stdev were corrected to minimize grayscale variation across images; finally, Laws texture was extracted. Degrees of fibrosis was assessed by an experienced pathologist and digital image analysis (%Area Fibrosis). Scatterplots comparing enhanced Laws texture, T2, PD, and ADC values to degrees of fibrosis were generated and correlation coefficients were calculated. Unenhanced Laws texture was also compared to assess the effectiveness of the proposed enhancements. Results: Hepatic fibrosis and the enhanced Laws texture were strongly correlated with higher %Area Fibrosis associated with higher Laws texture (r=0.89). Only a moderate correlation was detected between %Area Fibrosis and unenhanced Laws texture (r=0.70). Strong correlation also existed between ADC and %Area Fibrosis (r=0.86). Moderate correlations were seen between %Area Fibrosis and PD (r=0.65) and T2 (r=0.66). Conclusions: Higher degrees of hepatic fibrosis are associated with increased Laws texture. The proposed enhancements improve the accuracy of Laws texture. Enhanced Laws texture features are more accurate than PD and T2 in assessing fibrosis, and can potentially serve as an accurate surrogate marker for hepatic fibrosis.« less

  11. PREFACE: 17th International Conference on Textures of Materials (ICOTOM 17)

    NASA Astrophysics Data System (ADS)

    Skrotzki, Werner; Oertel, Carl-Georg

    2015-04-01

    The 17th International Conference on Textures of Materials (ICOTOM 17) took place in Dresden, Germany, August 24-29, 2014. It belongs to the "triennial" series of ICOTOM meetings with a long tradition, starting in 1969 - Clausthal, 1971 - Cracow, 1973 - Pont-à-Mousson, 1975 - Cambridge, 1978 - Aachen, 1981 - Tokyo, 1984 - Noordwijkerhout, 1987 - Santa Fe, 1990 - Avignon, 1993 - Clausthal, 1996 - Xian, 1999 - Montreal, 2002 - Seoul, 2005 - Leuven, 2008 - Pittsburgh, 2011 - Mumbai, 2014 - Dresden. ICOTOM 17 was hosted by the Dresden University of Technology, Institute of Structural Physics. Following the tradition of the ICOTOM conferences, the main focus of ICOTOM-17 was to promote and strengthen the fundamental understanding of the basic processes that govern the formation of texture and its relation to the properties of polycrystalline materials. Nonetheless, it was the aim to forge links between basic research on model materials and applied research on engineering materials of technical importance. Thus, ICOTOM 17 provided a forum for the presentation and discussion of recent progress in research of texture and related anisotropy of mechanical and functional properties of all kinds of polycrystalline materials including natural materials like rocks. Particular attention was paid to recent advances in texture measurement and analysis as well as modeling of texture development for all kinds of processes like solidification, plastic deformation, recrystallization and grain growth, phase transformations, thin film deposition, etc. Hence, ICOTOM 17 was of great interest to materials scientists, engineers from many different areas and geoscientists. The topics covered by ICOTOM 17 were: 1. Mathematical, numerical and statistical methods of texture analysis 2. Deformation textures 3. Crystallization, recrystallization and growth textures 4. Transformation textures 5. Textures in functional materials 6. Textures in advanced materials 7. Textures in rocks 8. Texture related research on microstructures 9. Texture-induced anisotropy 10. Insight through new experimental methods 11. Technological applications of texture studies 12. Other new developments and future trends related to the field While there was large interest in the topics 2, 3 and 8, contributions to topic 7 were much less than expected. ICOTOM 17 attracted 266 scientists from 34 countries with about one third of the participants being students. This is a very good ratio showing that we could attract the young generation. There have been 216 oral and 76 poster presentations, three of which received a poster award. It is our pleasure to thank the members of the International ICOTOM Committee for their valuable help, especially for proposing and choosing the 15 plenary speakers as well as the distinguished scientist of the texture community for the "Bunge Award". 130 papers were submitted for publication in the proceedings, 116 were accepted after reviewing. We would like to express our thanks to all referees for their efficient and prompt efforts. We acknowledge particularly support from the German Research Society (DFG) and the City of Dresden. We are also grateful for industrial support from Bruker Nano GmbH, Oxford Instruments GmbH, Ametek GmbH / EDAX, Labosoft S.C., PANalytical GmbH and IOP Publishing. Finally we thank all members of the National Organizing Committee, Intercom Dresden and Conwerk / Laboratory Ten for the excellent organization of ICOTOM 17 and the very pleasant collaboration. On the first day of the conference three tutorials have been offered. Each of them has been attended by about 30 participants. 1. Texture-aided residual stress identification system (TARSIuS) (organized by Prof. Dr. J. Bonarski and Mr. B. Kania) 2. MTEX - MATLAB toolbox for quantitative texture analysis (organized by Dr. R. Hielscher and Mr. F. Bachmann) 3. Grain boundary engineering (organized by Prof. N. Bozzolo and Prof. Dr. A.D. Rollett) A highlight of ICOTOM 17 was the ceremony honoring Prof. Dr. Claude Esling with the Bunge Award for his distinguished contributions to the field of Textures of Materials and his continuous effort to pass on his knowledge to future generations of texture experts. The Bunge Award is named after Professor Hans Bunge († 2004), to whom the world's texture community is very much indebted not only for his magisterial work on the Mathematical Theory of Texture, but also for his lifelong promotion of the field of Textures of Materials. To the great delight of all participants, Helga Bunge and her son Prof. Hans-Peter Bunge, to whom many of the older generation have a personal relationship, attended the ceremony (see Fig. 1 in the PDF). Following the award ceremony Prof. Dr. Claude Esling gave an in memoriam tribute to Prof. Dr. Richard Penelle, who was an internationally recognized texture specialist. Details can be found in the proceedings paper by Esling et al. [this issue]. During the conference the International ICSMA Committee decided to convene the next conference in St. George, USA, in 2017. We wish the organizers of ICOTOM 18 great success and look forward to meeting you in St. George. Werner Skrotzki* (Chairman of ICOTOM 17, Dresden University of Technology) Carl-Georg Oertel (Dresden University of Technology) Guest Editors Dresden, March, 2015 (* Corresponding author; e-mail address: werner.skrotzki@tu-dresden.de)

  12. Mammographic parenchymal texture as an imaging marker of hormonal activity: a comparative study between pre- and post-menopausal women

    NASA Astrophysics Data System (ADS)

    Daye, Dania; Bobo, Ezra; Baumann, Bethany; Ioannou, Antonios; Conant, Emily F.; Maidment, Andrew D. A.; Kontos, Despina

    2011-03-01

    Mammographic parenchymal texture patterns have been shown to be related to breast cancer risk. Yet, little is known about the biological basis underlying this association. Here, we investigate the potential of mammographic parenchymal texture patterns as an inherent phenotypic imaging marker of endogenous hormonal exposure of the breast tissue. Digital mammographic (DM) images in the cranio-caudal (CC) view of the unaffected breast from 138 women diagnosed with unilateral breast cancer were retrospectively analyzed. Menopause status was used as a surrogate marker of endogenous hormonal activity. Retroareolar 2.5cm2 ROIs were segmented from the post-processed DM images using an automated algorithm. Parenchymal texture features of skewness, coarseness, contrast, energy, homogeneity, grey-level spatial correlation, and fractal dimension were computed. Receiver operating characteristic (ROC) curve analysis was performed to evaluate feature classification performance in distinguishing between 72 pre- and 66 post-menopausal women. Logistic regression was performed to assess the independent effect of each texture feature in predicting menopause status. ROC analysis showed that texture features have inherent capacity to distinguish between pre- and post-menopausal statuses (AUC>0.5, p<0.05). Logistic regression including all texture features yielded an ROC curve with an AUC of 0.76. Addition of age at menarche, ethnicity, contraception use and hormonal replacement therapy (HRT) use lead to a modest model improvement (AUC=0.78) while texture features maintained significant contribution (p<0.05). The observed differences in parenchymal texture features between pre- and post- menopausal women suggest that mammographic texture can potentially serve as a surrogate imaging marker of endogenous hormonal activity.

  13. Modelling patterns of pollinator species richness and diversity using satellite image texture.

    PubMed

    Hofmann, Sylvia; Everaars, Jeroen; Schweiger, Oliver; Frenzel, Mark; Bannehr, Lutz; Cord, Anna F

    2017-01-01

    Assessing species richness and diversity on the basis of standardised field sampling effort represents a cost- and time-consuming method. Satellite remote sensing (RS) can help overcome these limitations because it facilitates the collection of larger amounts of spatial data using cost-effective techniques. RS information is hence increasingly analysed to model biodiversity across space and time. Here, we focus on image texture measures as a proxy for spatial habitat heterogeneity, which has been recognized as an important determinant of species distributions and diversity. Using bee monitoring data of four years (2010-2013) from six 4 × 4 km field sites across Central Germany and a multimodel inference approach we test the ability of texture features derived from Landsat-TM imagery to model local pollinator biodiversity. Textures were shown to reflect patterns of bee diversity and species richness to some extent, with the first-order entropy texture and terrain roughness being the most relevant indicators. However, the texture measurements accounted for only 3-5% of up to 60% of the variability that was explained by our final models, although the results are largely consistent across different species groups (bumble bees, solitary bees). While our findings provide indications in support of the applicability of satellite imagery textures for modeling patterns of bee biodiversity, they are inconsistent with the high predictive power of texture metrics reported in previous studies for avian biodiversity. We assume that our texture data captured mainly heterogeneity resulting from landscape configuration, which might be functionally less important for wild bees than compositional diversity of plant communities. Our study also highlights the substantial variability among taxa in the applicability of texture metrics for modelling biodiversity.

  14. Can we trust the calculation of texture indices of CT images? A phantom study.

    PubMed

    Caramella, Caroline; Allorant, Adrien; Orlhac, Fanny; Bidault, Francois; Asselain, Bernard; Ammari, Samy; Jaranowski, Patricia; Moussier, Aurelie; Balleyguier, Corinne; Lassau, Nathalie; Pitre-Champagnat, Stephanie

    2018-04-01

    Texture analysis is an emerging tool in the field of medical imaging analysis. However, many issues have been raised in terms of its use in assessing patient images and it is crucial to harmonize and standardize this new imaging measurement tool. This study was designed to evaluate the reliability of texture indices of CT images on a phantom including a reproducibility study, to assess the discriminatory capacity of indices potentially relevant in CT medical images and to determine their redundancy. For the reproducibility and discriminatory analysis, eight identical CT acquisitions were performed on a phantom including one homogeneous insert and two close heterogeneous inserts. Texture indices were selected for their high reproducibility and capability of discriminating different textures. For the redundancy analysis, 39 acquisitions of the same phantom were performed using varying acquisition parameters and a correlation matrix was used to explore the 2 × 2 relationships. LIFEx software was used to explore 34 different parameters including first order and texture indices. Only eight indices of 34 exhibited high reproducibility and discriminated textures from each other. Skewness and kurtosis from histogram were independent from the six other indices but were intercorrelated, the other six indices correlated in diverse degrees (entropy, dissimilarity, and contrast of the co-occurrence matrix, contrast of the Neighborhood Gray Level difference matrix, SZE, ZLNU of the Gray-Level Size Zone Matrix). Care should be taken when using texture analysis as a tool to characterize CT images because changes in quantitation may be primarily due to internal variability rather than from real physio-pathological effects. Some textural indices appear to be sufficiently reliable and capable to discriminate close textures on CT images. © 2018 American Association of Physicists in Medicine.

  15. Modelling patterns of pollinator species richness and diversity using satellite image texture

    PubMed Central

    Everaars, Jeroen; Schweiger, Oliver; Frenzel, Mark; Bannehr, Lutz; Cord, Anna F.

    2017-01-01

    Assessing species richness and diversity on the basis of standardised field sampling effort represents a cost- and time-consuming method. Satellite remote sensing (RS) can help overcome these limitations because it facilitates the collection of larger amounts of spatial data using cost-effective techniques. RS information is hence increasingly analysed to model biodiversity across space and time. Here, we focus on image texture measures as a proxy for spatial habitat heterogeneity, which has been recognized as an important determinant of species distributions and diversity. Using bee monitoring data of four years (2010–2013) from six 4 × 4 km field sites across Central Germany and a multimodel inference approach we test the ability of texture features derived from Landsat-TM imagery to model local pollinator biodiversity. Textures were shown to reflect patterns of bee diversity and species richness to some extent, with the first-order entropy texture and terrain roughness being the most relevant indicators. However, the texture measurements accounted for only 3–5% of up to 60% of the variability that was explained by our final models, although the results are largely consistent across different species groups (bumble bees, solitary bees). While our findings provide indications in support of the applicability of satellite imagery textures for modeling patterns of bee biodiversity, they are inconsistent with the high predictive power of texture metrics reported in previous studies for avian biodiversity. We assume that our texture data captured mainly heterogeneity resulting from landscape configuration, which might be functionally less important for wild bees than compositional diversity of plant communities. Our study also highlights the substantial variability among taxa in the applicability of texture metrics for modelling biodiversity. PMID:28973006

  16. Mammographic phenotypes of breast cancer risk driven by breast anatomy

    NASA Astrophysics Data System (ADS)

    Gastounioti, Aimilia; Oustimov, Andrew; Hsieh, Meng-Kang; Pantalone, Lauren; Conant, Emily F.; Kontos, Despina

    2017-03-01

    Image-derived features of breast parenchymal texture patterns have emerged as promising risk factors for breast cancer, paving the way towards personalized recommendations regarding women's cancer risk evaluation and screening. The main steps to extract texture features of the breast parenchyma are the selection of regions of interest (ROIs) where texture analysis is performed, the texture feature calculation and the texture feature summarization in case of multiple ROIs. In this study, we incorporate breast anatomy in these three key steps by (a) introducing breast anatomical sampling for the definition of ROIs, (b) texture feature calculation aligned with the structure of the breast and (c) weighted texture feature summarization considering the spatial position and the underlying tissue composition of each ROI. We systematically optimize this novel framework for parenchymal tissue characterization in a case-control study with digital mammograms from 424 women. We also compare the proposed approach with a conventional methodology, not considering breast anatomy, recently shown to enhance the case-control discriminatory capacity of parenchymal texture analysis. The case-control classification performance is assessed using elastic-net regression with 5-fold cross validation, where the evaluation measure is the area under the curve (AUC) of the receiver operating characteristic. Upon optimization, the proposed breast-anatomy-driven approach demonstrated a promising case-control classification performance (AUC=0.87). In the same dataset, the performance of conventional texture characterization was found to be significantly lower (AUC=0.80, DeLong's test p-value<0.05). Our results suggest that breast anatomy may further leverage the associations of parenchymal texture features with breast cancer, and may therefore be a valuable addition in pipelines aiming to elucidate quantitative mammographic phenotypes of breast cancer risk.

  17. Comparison of energy and protein intakes of older people consuming a texture modified diet with a normal hospital diet.

    PubMed

    Wright, L; Cotter, D; Hickson, M; Frost, G

    2005-06-01

    There are very few studies looking at the energy and protein requirements of patients requiring texture modified diets. Dysphagia is the main indication for people to be recommended texture-modified diets. Older people post-stroke are the key group in the hospital setting who consume this type of diet. The diets can be of several consistencies ranging from pureed to soft textures. To compare the 24-hour dietary intake of older people consuming a texture modified diet in a clinical setting to older people consuming a normal hospital diet. Weighed food intakes and food record charts were used to quantify the patients' intakes, which were compared to their individual requirements. The oral intake of 55 patients was measured. Twenty-five of the patients surveyed were eating a normal diet and acted as controls for 30 patients who were prescribed a texture-modified diet. The results showed that the texture-modified group had significantly lower intakes of energy (3877 versus 6115 kJ, P < 0.0001) and protein (40 versus 60 g, P < 0.003) compared to consumption of the normal diet. The energy and protein deficit from estimated requirements was significantly greater in the texture-modified group (2549 versus 357 kJ, P < 0.0001; 6 versus 22 g, P = 0.013; respectively). These statistically significant results indicate that older people on texture-modified diets have a lower intake of energy and protein than those consuming a normal hospital diet and it is likely that other nutrients will be inadequate. All patients on texture-modified diets should be assessed by the dietitian for nutritional support. Evidence based strategies for improving overall nutrient intake should be identified.

  18. Predicting neo-adjuvant chemotherapy response and progression-free survival of locally advanced breast cancer using textural features of intratumoral heterogeneity on F-18 FDG PET/CT and diffusion-weighted MR imaging.

    PubMed

    Yoon, Hai-Jeon; Kim, Yemi; Chung, Jin; Kim, Bom Sahn

    2018-03-30

    Predicting response to neo-adjuvant chemotherapy (NAC) and survival in locally advanced breast cancer (LABC) is important. This study investigated the prognostic value of tumor heterogeneity evaluated with textural analysis through F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) and diffusion-weighted imaging (DWI). We enrolled 83 patients with LABC who had completed NAC and curative surgery. Tumor texture indices from pretreatment FDG PET and DWI were extracted from histogram analysis and 7 different parent matrices: co-occurrence matrix, the voxel-alignment matrix, neighborhood intensity difference matrix, intensity size-zone matrix (ISZM), normalized gray-level co-occurrence matrix (NGLCM), neighboring gray-level dependence matrix (NGLDM), and texture spectrum matrix. The predictive values of textural features were tested regarding both pathologic NAC response and progression-free survival. Among 83 patients, 46 were pathologic responders, while 37 were nonresponders. The PET texture indices from 7 parent matrices, DWI texture indices from histogram, and 1 parent matrix (NGLCM) showed significant differences according to NAC response. On multivariable analysis, number nonuniformity of PET extracted from the NGLDM was an independent predictor of pathologic response (P = .009). During a median follow-up period of 17.3 months, 14 patients experienced recurrence. High-intensity zone emphasis (HIZE) and high-intensity short-zone emphasis (HISZE) from PET extracted from ISZM were significant textural predictors (P = .011 and P = .033). On Cox regression analysis, only HIZE was a significant predictor of recurrence (P = .027), while HISZE showed borderline significance (P = .107). Tumor texture indices are useful for NAC response prediction in LABC. Moreover, PET texture indices can help to predict disease recurrence. © 2018 Wiley Periodicals, Inc.

  19. 7 CFR 51.636 - Smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States...) Definitions § 51.636 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and...

  20. 7 CFR 51.1162 - Fairly smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MARKETING ACT OF 1946 FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND... smooth texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the variety...

  1. 7 CFR 51.698 - Smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States... § 51.698 Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size...

  2. 7 CFR 51.776 - Slightly rough texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Definitions § 51.776 Slightly rough texture. Slightly rough texture means that the skin may be slightly thick but not excessively thick, materially ridged or grooved. “Slightly thick” means that the skin...

  3. 7 CFR 51.776 - Slightly rough texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Definitions § 51.776 Slightly rough texture. Slightly rough texture means that the skin may be slightly thick but not excessively thick, materially ridged or grooved. “Slightly thick” means that the skin...

  4. Optical and electrical properties of ion beam textured Kapton and Teflon

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.

    1977-01-01

    Results are given for ion beam texturing of polyimide (Kapton) and fluorinated ethylene propylene (Teflon) by means of a 30-cm diam electron bombardment argon ion source. Ion beam-textured Kapton and Teflon surfaces are evaluated for various beam energies, current densities, and exposure times. The optical properties and sheet resistance are measured after each exposure. Provided in the paper are optical spectral data, resistivity measurements, calculated absorptance and emittance measurements, and surface structure SEM micrographs for various exposures to argon ions. It is found that Kapton becomes conducting and Teflon nonconducting when ion beam-textured. Textured Kapton exhibits large changes in the transmittance and solar absorptance, but only slight changes in reflectance. Surface texturing of Teflon may allow better adherence of subsequent sputtered metallic films for a high absorptance value. The results are valuable in spacecraft charging applications.

  5. Twinning-mediated work hardening and texture evolution in CrCoFeMnNi high entropy alloys at cryogenic temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T. K.; Wu, Z.; Stoica, A. D.

    The cryogenic plastic deformation of CrCoFeMnNi high entropy alloy is characterized by three distinct stages based on the change of the work hardening rate. Microstructure and bulk texture at different strain levels were studied by electron backscatter diffraction (EBSD) and neutron diffraction. Our findings indicate that the deformation twins led to the constant work hardening rate at Stage II and resulted in the appearance of <115 >//TA texture component, while the dislocation slip was involved all though the entire plastic deformation. As a result, the twinning-mediated tensile plastic deformation at cryogenic temperature finally induced the strong {111}- < 112 >more » texture component and minor {001} < 110 > texture component accompanied with twinning-induced {115}< 552 > texture component.« less

  6. Twinning-mediated work hardening and texture evolution in CrCoFeMnNi high entropy alloys at cryogenic temperature

    DOE PAGES

    Liu, T. K.; Wu, Z.; Stoica, A. D.; ...

    2017-06-17

    The cryogenic plastic deformation of CrCoFeMnNi high entropy alloy is characterized by three distinct stages based on the change of the work hardening rate. Microstructure and bulk texture at different strain levels were studied by electron backscatter diffraction (EBSD) and neutron diffraction. Our findings indicate that the deformation twins led to the constant work hardening rate at Stage II and resulted in the appearance of <115 >//TA texture component, while the dislocation slip was involved all though the entire plastic deformation. As a result, the twinning-mediated tensile plastic deformation at cryogenic temperature finally induced the strong {111}- < 112 >more » texture component and minor {001} < 110 > texture component accompanied with twinning-induced {115}< 552 > texture component.« less

  7. Visualization and Quantitative Analysis of Crack-Tip Plastic Zone in Pure Nickel

    NASA Astrophysics Data System (ADS)

    Kelton, Randall; Sola, Jalal Fathi; Meletis, Efstathios I.; Huang, Haiying

    2018-05-01

    Changes in surface morphology have long been thought to be associated with crack propagation in metallic materials. We have studied areal surface texture changes around crack tips in an attempt to understand the correlations between surface texture changes and crack growth behavior. Detailed profiling of the fatigue sample surface was carried out at short fatigue intervals. An image processing algorithm was developed to calculate the surface texture changes. Quantitative analysis of the crack-tip plastic zone, crack-arrested sites near triple points, and large surface texture changes associated with crack release from arrested locations was carried out. The results indicate that surface texture imaging enables visualization of the development of plastic deformation around a crack tip. Quantitative analysis of the surface texture changes reveals the effects of local microstructures on the crack growth behavior.

  8. Adaptive Texture Synthesis for Large Scale City Modeling

    NASA Astrophysics Data System (ADS)

    Despine, G.; Colleu, T.

    2015-02-01

    Large scale city models textured with aerial images are well suited for bird-eye navigation but generally the image resolution does not allow pedestrian navigation. One solution to face this problem is to use high resolution terrestrial photos but it requires huge amount of manual work to remove occlusions. Another solution is to synthesize generic textures with a set of procedural rules and elementary patterns like bricks, roof tiles, doors and windows. This solution may give realistic textures but with no correlation to the ground truth. Instead of using pure procedural modelling we present a method to extract information from aerial images and adapt the texture synthesis to each building. We describe a workflow allowing the user to drive the information extraction and to select the appropriate texture patterns. We also emphasize the importance to organize the knowledge about elementary pattern in a texture catalogue allowing attaching physical information, semantic attributes and to execute selection requests. Roofs are processed according to the detected building material. Façades are first described in terms of principal colours, then opening positions are detected and some window features are computed. These features allow selecting the most appropriate patterns from the texture catalogue. We experimented this workflow on two samples with 20 cm and 5 cm resolution images. The roof texture synthesis and opening detection were successfully conducted on hundreds of buildings. The window characterization is still sensitive to the distortions inherent to the projection of aerial images onto the facades.

  9. Temporal resolution of orientation-defined texture segregation: a VEP study.

    PubMed

    Lachapelle, Julie; McKerral, Michelle; Jauffret, Colin; Bach, Michael

    2008-09-01

    Orientation is one of the visual dimensions that subserve figure-ground discrimination. A spatial gradient in orientation leads to "texture segregation", which is thought to be concurrent parallel processing across the visual field, without scanning. In the visual-evoked potential (VEP) a component can be isolated which is related to texture segregation ("tsVEP"). Our objective was to evaluate the temporal frequency dependence of the tsVEP to compare processing speed of low-level features (e.g., orientation, using the VEP, here denoted llVEP) with texture segregation because of a recent literature controversy in that regard. Visual-evoked potentials (VEPs) were recorded in seven normal adults. Oriented line segments of 0.1 degrees x 0.8 degrees at 100% contrast were presented in four different arrangements: either oriented in parallel for two homogeneous stimuli (from which were obtained the low-level VEP (llVEP)) or with a 90 degrees orientation gradient for two textured ones (from which were obtained the texture VEP). The orientation texture condition was presented at eight different temporal frequencies ranging from 7.5 to 45 Hz. Fourier analysis was used to isolate low-level components at the pattern-change frequency and texture-segregation components at half that frequency. For all subjects, there was lower high-cutoff frequency for tsVEP than for llVEPs, on average 12 Hz vs. 17 Hz (P = 0.017). The results suggest that the processing of feature gradients to extract texture segregation requires additional processing time, resulting in a lower fusion frequency.

  10. Efficient rolling texture predictions and texture-sensitive properties of α-uranium foils

    DOE PAGES

    Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.; ...

    2017-01-01

    Here, finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favorsmore » one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a final recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of the thermal expansion and elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.« less

  11. Efficient rolling texture predictions and texture-sensitive properties of α-uranium foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.

    Here, finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favorsmore » one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a final recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of the thermal expansion and elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.« less

  12. Effect of wheel speed and annealing temperature on microstructure and texture evolution of Ni{sub 45}Mn{sub 36.6}In{sub 13.4}Co{sub 5} ribbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yan, E-mail: yanfeng@nwpu.edu.cn

    Ni{sub 45}Mn{sub 36.6}In{sub 13.4}Co{sub 5} magnetic shape memory alloy was successfully produced as preferentially textured ribbon by melting spinning with different wheel speed. X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) were used to study structure and texture evolution of these melt-spun ribbons. The thickness of melt-spun ribbon is 42 μm, 65 μm and 30 μm depending on wheel speed of 1 0 m/s, 15 m/s and 20 m/s, respectively. Density of α fiber texture (〈100〉//ND) vary with wheel speed changes, and is most intensive in the ribbon with wheel speed of 15 m/s. Grains of the ribbons growmore » after being annealed at 873 K, 973 K, 1073 K and 1173 K, recrystallization was not observed in ribbons after being annealed at 873 K but occurred in ribbons after being annealed at higher temperatures. The α fiber texture becomes weaker to some extent after annealing at different temperatures, due to new recrystallization texture formed at the process of annealing. - Highlights: •Sectional part of shape memory ribbon is firstly investigated by EBSD method. •Thickness and texture of ribbons vary with wheel speed. •Annealing temperature affect texture and microstructure evolution greatly. •Recrystallization textures were observed in ribbons after being annealed.« less

  13. Bridges between multiple-point geostatistics and texture synthesis: Review and guidelines for future research

    NASA Astrophysics Data System (ADS)

    Mariethoz, Gregoire; Lefebvre, Sylvain

    2014-05-01

    Multiple-Point Simulations (MPS) is a family of geostatistical tools that has received a lot of attention in recent years for the characterization of spatial phenomena in geosciences. It relies on the definition of training images to represent a given type of spatial variability, or texture. We show that the algorithmic tools used are similar in many ways to techniques developed in computer graphics, where there is a need to generate large amounts of realistic textures for applications such as video games and animated movies. Similarly to MPS, these texture synthesis methods use training images, or exemplars, to generate realistic-looking graphical textures. Both domains of multiple-point geostatistics and example-based texture synthesis present similarities in their historic development and share similar concepts. These disciplines have however remained separated, and as a result significant algorithmic innovations in each discipline have not been universally adopted. Texture synthesis algorithms present drastically increased computational efficiency, patterns reproduction and user control. At the same time, MPS developed ways to condition models to spatial data and to produce 3D stochastic realizations, which have not been thoroughly investigated in the field of texture synthesis. In this paper we review the possible links between these disciplines and show the potential and limitations of using concepts and approaches from texture synthesis in MPS. We also provide guidelines on how recent developments could benefit both fields of research, and what challenges remain open.

  14. Lack of robustness of textural measures obtained from 3D brain tumor MRIs impose a need for standardization

    PubMed Central

    Pérez-Beteta, Julián; Martínez-González, Alicia; Martino, Juan; Velasquez, Carlos; Arana, Estanislao; Pérez-García, Víctor M.

    2017-01-01

    Purpose Textural measures have been widely explored as imaging biomarkers in cancer. However, their robustness under dynamic range and spatial resolution changes in brain 3D magnetic resonance images (MRI) has not been assessed. The aim of this work was to study potential variations of textural measures due to changes in MRI protocols. Materials and methods Twenty patients harboring glioblastoma with pretreatment 3D T1-weighted MRIs were included in the study. Four different spatial resolution combinations and three dynamic ranges were studied for each patient. Sixteen three-dimensional textural heterogeneity measures were computed for each patient and configuration including co-occurrence matrices (CM) features and run-length matrices (RLM) features. The coefficient of variation was used to assess the robustness of the measures in two series of experiments corresponding to (i) changing the dynamic range and (ii) changing the matrix size. Results No textural measures were robust under dynamic range changes. Entropy was the only textural feature robust under spatial resolution changes (coefficient of variation under 10% in all cases). Conclusion Textural measures of three-dimensional brain tumor images are not robust neither under dynamic range nor under matrix size changes. Standards should be harmonized to use textural features as imaging biomarkers in radiomic-based studies. The implications of this work go beyond the specific tumor type studied here and pose the need for standardization in textural feature calculation of oncological images. PMID:28586353

  15. Can Laws Be a Potential PET Image Texture Analysis Approach for Evaluation of Tumor Heterogeneity and Histopathological Characteristics in NSCLC?

    PubMed

    Karacavus, Seyhan; Yılmaz, Bülent; Tasdemir, Arzu; Kayaaltı, Ömer; Kaya, Eser; İçer, Semra; Ayyıldız, Oguzhan

    2018-04-01

    We investigated the association between the textural features obtained from 18 F-FDG images, metabolic parameters (SUVmax , SUVmean, MTV, TLG), and tumor histopathological characteristics (stage and Ki-67 proliferation index) in non-small cell lung cancer (NSCLC). The FDG-PET images of 67 patients with NSCLC were evaluated. MATLAB technical computing language was employed in the extraction of 137 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM), and Laws' texture filters. Textural features and metabolic parameters were statistically analyzed in terms of good discrimination power between tumor stages, and selected features/parameters were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). We showed that one textural feature (gray-level nonuniformity, GLN) obtained using GLRLM approach and nine textural features using Laws' approach were successful in discriminating all tumor stages, unlike metabolic parameters. There were significant correlations between Ki-67 index and some of the textural features computed using Laws' method (r = 0.6, p = 0.013). In terms of automatic classification of tumor stage, the accuracy was approximately 84% with k-NN classifier (k = 3) and SVM, using selected five features. Texture analysis of FDG-PET images has a potential to be an objective tool to assess tumor histopathological characteristics. The textural features obtained using Laws' approach could be useful in the discrimination of tumor stage.

  16. Cooking Methods for a Soft Diet Using Chicken Based on Food Texture Analysis.

    PubMed

    Watanabe, Emi; Maeno, Masami; Kayashita, Jun; Miyamoto, Ken-Ichi; Kogirima, Miho

    2017-01-01

    Undernutrition caused by difficulties in masticating is of growing concern among the elderly. Soft diets are often served at nursing homes; however, the styles differ with nursing homes. Improperly modified food texture and consistency may lead to further loss of nutritive value. Therefore, we developed a method to produce a soft diet using chicken. The texture-modified chicken was prepared by boiling a mixture of minced chicken and additive foodstuff that softened the meat. The best food additive was determined through testing cooking process, size after modification and texture. The optimum proportions of each component in the mixture were determined measuring food texture using a creep meter. Teriyaki chicken was cooked using the texture-modified chicken, and provided to a nursing home. The amount of food intake by elderly residents was subsequently surveyed. This study involved 22 residents (1 man and 21 women; mean age 91.4±5.3 y). Consequently, yakifu, which was made from wheat gluten, was the most suitable additive foodstuff. The hardness of the texture-modified chicken, with proportions of minced chicken, yakifu, and water being 50%, 10%, and 40% respectively, was under 40,000 N/m 2 . The intake amount of the texture-modified chicken of subjects whose intake amount of conventional chicken using chicken thigh was not 100% was significantly higher. These findings suggest that properly modified food textures could contribute to improve the quality of meals by preventing undernutrition among the elderly with mastication difficulties.

  17. CT texture features of liver parenchyma for predicting development of metastatic disease and overall survival in patients with colorectal cancer.

    PubMed

    Lee, Scott J; Zea, Ryan; Kim, David H; Lubner, Meghan G; Deming, Dustin A; Pickhardt, Perry J

    2018-04-01

    To determine if identifiable hepatic textural features are present at abdominal CT in patients with colorectal cancer (CRC) prior to the development of CT-detectable hepatic metastases. Four filtration-histogram texture features (standard deviation, skewness, entropy and kurtosis) were extracted from the liver parenchyma on portal venous phase CT images at staging and post-treatment surveillance. Surveillance scans corresponded to the last scan prior to the development of CT-detectable CRC liver metastases in 29 patients (median time interval, 6 months), and these were compared with interval-matched surveillance scans in 60 CRC patients who did not develop liver metastases. Predictive models of liver metastasis-free survival and overall survival were built using regularised Cox proportional hazards regression. Texture features did not significantly differ between cases and controls. For Cox models using all features as predictors, all coefficients were shrunk to zero, suggesting no association between any CT texture features and outcomes. Prognostic indices derived from entropy features at surveillance CT incorrectly classified patients into risk groups for future liver metastases (p < 0.001). On surveillance CT scans immediately prior to the development of CRC liver metastases, we found no evidence suggesting that changes in identifiable hepatic texture features were predictive of their development. • No correlation between liver texture features and metastasis-free survival was observed. • Liver texture features incorrectly classified patients into risk groups for liver metastases. • Standardised texture analysis workflows need to be developed to improve research reproducibility.

  18. Efficient rolling texture predictions and texture-sensitive thermomechanical properties of α-uranium foils

    NASA Astrophysics Data System (ADS)

    Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.; Knezevic, Marko; Garlea, Elena; Agnew, Sean R.

    2017-11-01

    Finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold straight-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favors one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold straight-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of thermal expansion and the elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.

  19. Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification.

    PubMed

    Agner, Shannon C; Soman, Salil; Libfeld, Edward; McDonald, Margie; Thomas, Kathleen; Englander, Sarah; Rosen, Mark A; Chin, Deanna; Nosher, John; Madabhushi, Anant

    2011-06-01

    Dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) of the breast has emerged as an adjunct imaging tool to conventional X-ray mammography due to its high detection sensitivity. Despite the increasing use of breast DCE-MRI, specificity in distinguishing malignant from benign breast lesions is low, and interobserver variability in lesion classification is high. The novel contribution of this paper is in the definition of a new DCE-MRI descriptor that we call textural kinetics, which attempts to capture spatiotemporal changes in breast lesion texture in order to distinguish malignant from benign lesions. We qualitatively and quantitatively demonstrated on 41 breast DCE-MRI studies that textural kinetic features outperform signal intensity kinetics and lesion morphology features in distinguishing benign from malignant lesions. A probabilistic boosting tree (PBT) classifier in conjunction with textural kinetic descriptors yielded an accuracy of 90%, sensitivity of 95%, specificity of 82%, and an area under the curve (AUC) of 0.92. Graph embedding, used for qualitative visualization of a low-dimensional representation of the data, showed the best separation between benign and malignant lesions when using textural kinetic features. The PBT classifier results and trends were also corroborated via a support vector machine classifier which showed that textural kinetic features outperformed the morphological, static texture, and signal intensity kinetics descriptors. When textural kinetic attributes were combined with morphologic descriptors, the resulting PBT classifier yielded 89% accuracy, 99% sensitivity, 76% specificity, and an AUC of 0.91.

  20. Biaxially textured articles formed by plastic deformation

    DOEpatents

    Goyal, Amit

    2001-01-01

    A method of preparing a biaxially textured article comprises the steps of providing a metal preform, coating or laminating the preform with a metal layer, deforming the layer to a sufficient degree, and rapidly recrystallizing the layer to produce a biaxial texture. A superconducting epitaxial layer may then be deposited on the biaxial texture. In some embodiments the article further comprises buffer layers, electromagnetic devices or electro-optical devices.

  1. Method for making biaxially textured articles by plastic deformation

    DOEpatents

    Goyal, Amit

    2002-01-01

    A method of preparing a biaxially textured article comprises the steps of providing a metal preform, coating or laminating the preform with a metal layer, deforming the layer to a sufficient degree, and rapidly recrystallizing the layer to produce a biaxial texture. A superconducting epitaxial layer may then be deposited on the biaxial texture. In some embodiments the article further comprises buffer layers, electromagnetic devices or electro-optical devices.

  2. Yield Asymmetry Design of Magnesium Alloys by Integrated Computational Materials Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Joshi, Vineet V.; Lavender, Curt A.

    2013-11-01

    Deformation asymmetry of magnesium alloys is an important factor on machine design in automobile industry. Represented by the ratio of compressive yield stress (CYS) against tensile yield stress (TYS), deformation asymmetry is strongly related to microstructure, characterized by texture and grain size. Modified intermediate phi-model, a polycrystalline viscoplasticity model, is used to predict the deformation behavior of magnesium alloys with different grain sizes. Validated with experimental results, integrated computational materials engineering is applied to find out the route in achieving desired asymmetry by thermomechanical processing. In some texture, for example, rolled texture, CYS/TYS is smaller than 1 under different loadingmore » directions. In some texture, for example, extruded texture, asymmetry is large along normal direction. Starting from rolled texture, the asymmetry will increased to close to 1 along rolling direction after compressed to a strain of 0.2. Our model shows that grain refinement increases CYS/TYS. Besides texture control, grain refinement can also optimize the yield asymmetry. After the grain size decreased to a critical value, CYS/TYS reaches to 1 since CYS increases much faster than TYS. By tailoring the microstructure using texture control and grain refinement, it is achievable to optimize yield asymmetry in wrought magnesium alloys.« less

  3. Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age

    NASA Astrophysics Data System (ADS)

    Chaddad, Ahmad; Desrosiers, Christian; Toews, Matthew

    2017-03-01

    We propose using multi-scale image textures to investigate links between neuroanatomical regions and clinical variables in MRI. Texture features are derived at multiple scales of resolution based on the Laplacian-of-Gaussian (LoG) filter. Three quantifier functions (Average, Standard Deviation and Entropy) are used to summarize texture statistics within standard, automatically segmented neuroanatomical regions. Significance tests are performed to identify regional texture differences between ASD vs. TDC and male vs. female groups, as well as correlations with age (corrected p < 0.05). The open-access brain imaging data exchange (ABIDE) brain MRI dataset is used to evaluate texture features derived from 31 brain regions from 1112 subjects including 573 typically developing control (TDC, 99 females, 474 males) and 539 Autism spectrum disorder (ASD, 65 female and 474 male) subjects. Statistically significant texture differences between ASD vs. TDC groups are identified asymmetrically in the right hippocampus, left choroid-plexus and corpus callosum (CC), and symmetrically in the cerebellar white matter. Sex-related texture differences in TDC subjects are found in primarily in the left amygdala, left cerebellar white matter, and brain stem. Correlations between age and texture in TDC subjects are found in the thalamus-proper, caudate and pallidum, most exhibiting bilateral symmetry.

  4. Multifunctional Textured Surfaces with Enhanced Friction and Hydrophobic Behaviors Produced by Fiber Debonding and Pullout.

    PubMed

    Rizvi, Reza; Anwer, Ali; Fernie, Geoff; Dutta, Tilak; Naguib, Hani

    2016-11-02

    Fiber debonding and pullout are well-understood processes that occur during damage and failure events in composite materials. In this study, we show how these mechanisms, under controlled conditions, can be used to produce multifunctional textured surfaces. A two-step process consisting of (1) achieving longitudinal fiber alignment followed by (2) cutting, rearranging, and joining is used to produce the textured surfaces. This process employs common composite manufacturing techniques and uses no reactive chemicals or wet handling, making it suitable for scalability. This uniform textured surface is due to the fiber debonding and pullout occurring during the cutting process. Using well-established fracture mechanics principles for composite materials, we demonstrate how different material parameters such as fiber geometry, fiber and matrix stiffness and strength, and interface behavior can be used to achieve multifunctional textured surfaces. The resulting textured surfaces show very high friction coefficients on wet ice (9× improvement), indicating their promising potential as materials for ice traction/tribology. Furthermore, the texturing enhances the surface's hydrophobicity as indicated by an increase in the contact angle of water by 30%. The substantial improvements to surface tribology and hydrophobicity make fiber debonding and pullout an effective, simple, and scalable method of producing multifunctional textured surfaces.

  5. High-Speed Rolling of AZ31 Magnesium Alloy Having Different Initial Textures

    NASA Astrophysics Data System (ADS)

    Onuki, Yusuke; Hara, Kenichiro; Utsunomiya, Hiroshi; Szpunar, Jerzy A.

    2015-02-01

    It is known that magnesium alloys can be rolled up to a large thickness reduction and develop a unique texture when the rolling speed is high (>1000 m/min). In order to understand the texture formation mechanism during high-strain-rate deformation, high-speed rolling of AZ31 magnesium alloy samples having different initial textures was conducted. The main components of the textures after the rolling were the RD-split basal, which consisted of 10°-20° inclining basal poles from the normal direction toward the rolling direction of the sheet, regardless of the different initial textures. With preheating at 473 K, all the samples were rolled without cracking while all were cracked when preheating was not applied. The optical micrographs and EBSD measurements showed a significant amount of twins and the cracks that developed along the shear bands consisted with laminated twins. Based on the texture simulation using the visco-plastic self-consistent model, it is concluded that the rapid development of the RD-split basal component from the initial basal alignment along the transverse direction was attributable to the tension twinning, The effect of the initial texture on the crack formation can be explained by the activation of the twinning system.

  6. Combined Effect of Textured Patterns and Graphene Flake Additives on Tribological Behavior under Boundary Lubrication

    PubMed Central

    Cai, Zhen-bing; Zhao, Lei; Zhang, Xu; Yue, Wen; Zhu, Min-hao

    2016-01-01

    A ball-on-plate wear test was employed to investigate the effectiveness of graphene (GP) nanoparticles dispersed in a synthetic-oil-based lubricant in reducing wear. The effect by area ratio of elliptically shaped dimple textures and elevated temperatures were also explored. Pure PAO4 based oil and a mixture of this oil with 0.01 wt% GP were compared as lubricants. At pit area ratio of 5%, GP-base oil effectively reduced friction and wear, especially at 60 and 100°C. Under pure PAO4 oil lubrication, the untextured surfaces gained low friction coefficients (COFs) and wear rates under 60 and 100°C. With increasing laser—texture area ratio, the COF and wear rate decreased at 25 and 150°C but increased at 60 and 100°C. Under the GP-based oil lubrication, the textured surface with 5% area ratio achieved the lowest COF among those of the area ratios tested at all test temperatures. Meanwhile, the textured surface with 20% area ratio obtained the highest COF among those of the area ratios. With the joint action of GP and texture, the textured surface with 10% area ratio exhibited the best anti-wear performance among all of the textured surfaces at all test temperatures. PMID:27054762

  7. Correlating objective and subjective evaluation of texture appearance with applications to camera phone imaging

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan B.; Coppola, Stephen M.; Jin, Elaine W.; Chen, Ying; Clark, James H.; Mauer, Timothy A.

    2009-01-01

    Texture appearance is an important component of photographic image quality as well as object recognition. Noise cleaning algorithms are used to decrease sensor noise of digital images, but can hinder texture elements in the process. The Camera Phone Image Quality (CPIQ) initiative of the International Imaging Industry Association (I3A) is developing metrics to quantify texture appearance. Objective and subjective experimental results of the texture metric development are presented in this paper. Eight levels of noise cleaning were applied to ten photographic scenes that included texture elements such as faces, landscapes, architecture, and foliage. Four companies (Aptina Imaging, LLC, Hewlett-Packard, Eastman Kodak Company, and Vista Point Technologies) have performed psychophysical evaluations of overall image quality using one of two methods of evaluation. Both methods presented paired comparisons of images on thin film transistor liquid crystal displays (TFT-LCD), but the display pixel pitch and viewing distance differed. CPIQ has also been developing objective texture metrics and targets that were used to analyze the same eight levels of noise cleaning. The correlation of the subjective and objective test results indicates that texture perception can be modeled with an objective metric. The two methods of psychophysical evaluation exhibited high correlation despite the differences in methodology.

  8. Research of second harmonic generation images based on texture analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Li, Yan; Gong, Haiming; Zhu, Xiaoqin; Huang, Zufang; Chen, Guannan

    2014-09-01

    Texture analysis plays a crucial role in identifying objects or regions of interest in an image. It has been applied to a variety of medical image processing, ranging from the detection of disease and the segmentation of specific anatomical structures, to differentiation between healthy and pathological tissues. Second harmonic generation (SHG) microscopy as a potential noninvasive tool for imaging biological tissues has been widely used in medicine, with reduced phototoxicity and photobleaching. In this paper, we clarified the principles of texture analysis including statistical, transform, structural and model-based methods and gave examples of its applications, reviewing studies of the technique. Moreover, we tried to apply texture analysis to the SHG images for the differentiation of human skin scar tissues. Texture analysis method based on local binary pattern (LBP) and wavelet transform was used to extract texture features of SHG images from collagen in normal and abnormal scars, and then the scar SHG images were classified into normal or abnormal ones. Compared with other texture analysis methods with respect to the receiver operating characteristic analysis, LBP combined with wavelet transform was demonstrated to achieve higher accuracy. It can provide a new way for clinical diagnosis of scar types. At last, future development of texture analysis in SHG images were discussed.

  9. Effect of Phase Contiguity and Morphology on the Evolution of Deformation Texture in Two-Phase Alloys

    NASA Astrophysics Data System (ADS)

    Gurao, N. P.; Suwas, Satyam

    2017-02-01

    Deformation texture evolution in two-phase xFe- yNi-(100- x- y)Cr model alloys and Ti-13Nb-13Zr alloy was studied during rolling to develop an understanding of micro-mechanisms of deformation in industrially relevant two-phase FCC-BCC steels and HCP-BCC titanium alloys, respectively. It was found that volume fraction and contiguity of phases lead to systematic changes in texture, while morphology affects the strength of texture. There was a characteristic change in texture from typical Brass-type to a weaker Copper-type texture in the austenite phase accompanied with a change from alpha fiber to gamma fiber in ferrite phase for Fe-Ni-Cr alloys with increase in fraction of harder ferrite phase. However, similar characteristic texture evolution was noted in both α and β phase irrespective of the different initial morphologies in Ti-13Nb-13Zr alloy. Viscoplastic self-consistent simulations with two-phase scheme were able to qualitatively predict texture evolution in individual phases. It is proposed that the transition from iso-strain-type behavior for equiaxed microstructure at low strain to iso-stress-type behavior at higher strain is aided by the presence of higher volume fraction of the second phase and increasing aspect ratio of individual phases in two-phase alloys.

  10. Impact-shocked zircons: discovery of shock-induced textures reflecting increasing degrees of shock metamorphism

    USGS Publications Warehouse

    Bohor, B.F.; Betterton, W.J.; Krogh, T.E.

    1993-01-01

    Textural effects specifically characteristic of shock metamorphism in zircons from impact environments have not been reported previously. However, planar deformation features (PDF) due to shock metamorphism are well documented in quartz and other mineral grains from these same environments. An etching technique was developed that allows SEM visualization of PDF and other probable shock-induced textural features, such as granular (polycrystalline) texture, in zircons from a variety of impact shock environments. These textural features in shocked zircons from K/T boundary distal ejecta form a series related to increasing degrees of shock that should correlate with proportionate resetting of the UPb isotopic system. ?? 1993.

  11. Textured substrate tape and devices thereof

    DOEpatents

    Goyal, Amit

    2006-08-08

    A method for forming a sharply biaxially textured substrate, such as a single crystal substrate, includes the steps of providing a deformed metal substrate, followed by heating above the secondary recrystallization temperature of the deformed substrate, and controlling the secondary recrystallization texture by either using thermal gradients and/or seeding. The seed is selected to shave a stable texture below a predetermined temperature. The sharply biaxially textured substrate can be formed as a tape having a length of 1 km, or more. Epitaxial articles can be formed from the tapes to include an epitaxial electromagnetically active layer. The electromagnetically active layer can be a superconducting layer.

  12. 7 CFR 51.776 - Slightly rough texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... texture. Slightly rough texture means that the skin may be slightly thick but not excessively thick, materially ridged or grooved. “Slightly thick” means that the skin thickness does not average more than 5/8...

  13. 7 CFR 51.776 - Slightly rough texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... texture. Slightly rough texture means that the skin may be slightly thick but not excessively thick, materially ridged or grooved. “Slightly thick” means that the skin thickness does not average more than 5/8...

  14. 7 CFR 51.776 - Slightly rough texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... texture. Slightly rough texture means that the skin may be slightly thick but not excessively thick, materially ridged or grooved. “Slightly thick” means that the skin thickness does not average more than 5/8...

  15. TEXTURES IN EXTRUDED URANIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, R.B.

    The preferred orientation or texture of alpha-extruded, cold-swaged, recrystallized, and beta-quenched uranium has been determined. An attempt is made to predict the mean thermal expansion coefficients from the texture and principal crystallographic thermal expansion coefficients. (auth)

  16. Incident flux angle induced crystal texture transformation in nanostructured molybdenum films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.; Lu, T.-M.; Wang, G.-C.

    2012-07-15

    Molybdenum films were observed to undergo a dramatic change in crystal texture orientation when the incident flux angle was varied in an oblique angle sputter deposition on amorphous substrates. Reflection high-energy electron diffraction pole figure and scanning electron microscopy were used to analyze in detail the texture orientation of the films. The normal incident deposition resulted in a fiber texture film with the minimum energy (110) crystal plane parallel to the substrate surface. A (110)[110] biaxial texture was observed for the samples grown with low incident angles of less than 45 Degree-Sign , with respect to the surface normal. Onmore » the other hand, for an oblique angle deposition of larger than 60 Degree-Sign , a (111)[112] biaxial texture was observed and appeared to be consistent with a zone T structure where the geometrically fastest growth [001] direction of a crystal plays a dominant role in defining the texture. We argue that a structural transition had occurred when the incident flux was varied from near normal incidence to a large angle.« less

  17. Realization of Quasi‐Omnidirectional Solar Cells with Superior Electrical Performance by All‐Solution‐Processed Si Nanopyramids

    PubMed Central

    Zhong, Sihua; Wang, Wenjie; Tan, Miao; Zhuang, Yufeng

    2017-01-01

    Abstract Large‐scale (156 mm × 156 mm) quasi‐omnidirectional solar cells are successfully realized and featured by keeping high cell performance over broad incident angles (θ), via employing Si nanopyramids (SiNPs) as surface texture. SiNPs are produced by the proposed metal‐assisted alkaline etching method, which is an all‐solution‐processed method and highly simple together with cost‐effective. Interestingly, compared to the conventional Si micropyramids (SiMPs)‐textured solar cells, the SiNPs‐textured solar cells possess lower carrier recombination and thus superior electrical performances, showing notable distinctions from other Si nanostructures‐textured solar cells. Furthermore, SiNPs‐textured solar cells have very little drop of quantum efficiency with increasing θ, demonstrating the quasi‐omnidirectional characteristic. As an overall result, both the SiNPs‐textured homojunction and heterojunction solar cells possess higher daily electric energy production with a maximum relative enhancement approaching 2.5%, when compared to their SiMPs‐textured counterparts. The quasi‐omnidirectional solar cell opens a new opportunity for photovoltaics to produce more electric energy with a low cost. PMID:29201616

  18. Realization of Quasi-Omnidirectional Solar Cells with Superior Electrical Performance by All-Solution-Processed Si Nanopyramids.

    PubMed

    Zhong, Sihua; Wang, Wenjie; Tan, Miao; Zhuang, Yufeng; Shen, Wenzhong

    2017-11-01

    Large-scale (156 mm × 156 mm) quasi-omnidirectional solar cells are successfully realized and featured by keeping high cell performance over broad incident angles (θ), via employing Si nanopyramids (SiNPs) as surface texture. SiNPs are produced by the proposed metal-assisted alkaline etching method, which is an all-solution-processed method and highly simple together with cost-effective. Interestingly, compared to the conventional Si micropyramids (SiMPs)-textured solar cells, the SiNPs-textured solar cells possess lower carrier recombination and thus superior electrical performances, showing notable distinctions from other Si nanostructures-textured solar cells. Furthermore, SiNPs-textured solar cells have very little drop of quantum efficiency with increasing θ, demonstrating the quasi-omnidirectional characteristic. As an overall result, both the SiNPs-textured homojunction and heterojunction solar cells possess higher daily electric energy production with a maximum relative enhancement approaching 2.5%, when compared to their SiMPs-textured counterparts. The quasi-omnidirectional solar cell opens a new opportunity for photovoltaics to produce more electric energy with a low cost.

  19. Directional motion of impacting drops on dual-textured surfaces.

    PubMed

    Vaikuntanathan, V; Sivakumar, D

    2012-09-01

    In this work, we analyze the directional movement of impacting liquid drops on dual-textured solid surfaces comprising two different surface morphologies: a textured surface and a smooth surface. The dynamics of liquid drops impacting onto the junction line between the two parts of the dual-textured surfaces is studied experimentally for varying drop impact velocity. The dual-textured surfaces used here featured a variation in their textures' geometrical parameters as well as their surface chemistry. Two types of liquid drop differing in their surface tension were used. The impact process develops a net horizontal drop velocity towards the higher-wettability surface portion and results in a bulk movement of the impacting drop liquid. The final distance moved by the impacting drop from the junction line decreases with increasing impacting drop Weber number We. A fully theoretical model, employing a balance of forces acting at the drop contact line as well as energy conservation, is formulated to determine the variation, with We, of net horizontal drop velocity and subsequent movement of the impacting drop on the dual-textured surfaces.

  20. Clustering document fragments using background color and texture information

    NASA Astrophysics Data System (ADS)

    Chanda, Sukalpa; Franke, Katrin; Pal, Umapada

    2012-01-01

    Forensic analysis of questioned documents sometimes can be extensively data intensive. A forensic expert might need to analyze a heap of document fragments and in such cases to ensure reliability he/she should focus only on relevant evidences hidden in those document fragments. Relevant document retrieval needs finding of similar document fragments. One notion of obtaining such similar documents could be by using document fragment's physical characteristics like color, texture, etc. In this article we propose an automatic scheme to retrieve similar document fragments based on visual appearance of document paper and texture. Multispectral color characteristics using biologically inspired color differentiation techniques are implemented here. This is done by projecting document color characteristics to Lab color space. Gabor filter-based texture analysis is used to identify document texture. It is desired that document fragments from same source will have similar color and texture. For clustering similar document fragments of our test dataset we use a Self Organizing Map (SOM) of dimension 5×5, where the document color and texture information are used as features. We obtained an encouraging accuracy of 97.17% from 1063 test images.

  1. Potato tuber pectin structure is influenced by pectin methyl esterase activity and impacts on cooked potato texture.

    PubMed

    Ross, Heather A; Wright, Kathryn M; McDougall, Gordon J; Roberts, Alison G; Chapman, Sean N; Morris, Wayne L; Hancock, Robert D; Stewart, Derek; Tucker, Gregory A; James, Euan K; Taylor, Mark A

    2011-01-01

    Although cooked potato tuber texture is an important trait that influences consumer preference, a detailed understanding of tuber textural properties at the molecular level is lacking. Previous work has identified tuber pectin methyl esterase activity (PME) as a potential factor impacting on textural properties. In this study, tuber PME isoform and gene expression profiles have been determined in potato germplasm with differing textural properties as assessed using an amended wedge fracture method and a sloughing assay, revealing major differences between the potato types. Differences in pectin structure between potato types with different textural properties were revealed using monoclonal antibodies specific for different pectic epitopes. Chemical analysis of tuber pectin clearly demonstrated that, in tubers containing a higher level of total PME activity, there was a reduced degree of methylation of cell wall pectin and consistently higher peak force and work done values during the fracture of cooked tuber samples, demonstrating the link between PME activity, the degree of methylation of cell wall pectin, and cooked tuber textural properties.

  2. Potato tuber pectin structure is influenced by pectin methyl esterase activity and impacts on cooked potato texture

    PubMed Central

    Ross, Heather A.; Wright, Kathryn M.; McDougall, Gordon J.; Roberts, Alison G.; Chapman, Sean N.; Morris, Wayne L.; Hancock, Robert D.; Stewart, Derek; Tucker, Gregory A.; James, Euan K.; Taylor, Mark A.

    2011-01-01

    Although cooked potato tuber texture is an important trait that influences consumer preference, a detailed understanding of tuber textural properties at the molecular level is lacking. Previous work has identified tuber pectin methyl esterase activity (PME) as a potential factor impacting on textural properties. In this study, tuber PME isoform and gene expression profiles have been determined in potato germplasm with differing textural properties as assessed using an amended wedge fracture method and a sloughing assay, revealing major differences between the potato types. Differences in pectin structure between potato types with different textural properties were revealed using monoclonal antibodies specific for different pectic epitopes. Chemical analysis of tuber pectin clearly demonstrated that, in tubers containing a higher level of total PME activity, there was a reduced degree of methylation of cell wall pectin and consistently higher peak force and work done values during the fracture of cooked tuber samples, demonstrating the link between PME activity, the degree of methylation of cell wall pectin, and cooked tuber textural properties. PMID:20855456

  3. Microstructural and Textural Differences Induced by Water and Furnace Cooling in Commercially Pure Zr Annealed in the α + β Region

    NASA Astrophysics Data System (ADS)

    Chai, Linjiang; Wang, Tingting; Ren, Yi; Song, Bo; Guo, Ning; Chen, Liangyu

    2018-07-01

    In this work, a commercially pure Zr sheet with a typical bimodal basal texture was annealed in an α + β region and then subjected to different coolings (in water and furnace). Microstructures and textures of both the as-received and the heat-treated specimens were investigated by electron channeling contrast imaging and electron backscatter diffraction techniques. Results show that a duplex microstructure consisting of untransformed bulk α grains and twinned martensitic plates is produced in the water-cooled specimen, which possesses a weakened texture compared to the initial one. For the specimen cooled in furnace, however, a uniform microstructure fully comprised of coarser equiaxed grains with a strengthened texture is obtained. Analyses reveal that the rapid cooling in water could suppress variant selection behaviors during β → α transformation and allow α plates with scattered orientations to be nucleated inside β phases, contributing to the weakened texture. In contrast, during slow cooling in furnace, β boundaries would act as preferred nucleation sites of α embryos, resulting in a strong variant selection that accounts for the intensified texture.

  4. Twinning-detwinning behavior during cyclic deformation of magnesium alloy

    DOE PAGES

    Lee, Soo Yeol; Wang, Huamiao; Gharghouri, Michael A.

    2015-05-26

    In situ neutron diffraction has been used to examine the deformation mechanisms of a precipitation-hardened and extruded Mg-8.5wt.%Al alloy subjected to (i) compression followed by reverse tension (texture T1) and (ii) tension followed by reverse compression (texture T2). Two starting textures are used: (1) as-extruded texture, T1, in which the basal pole of most grains is normal to the extrusion axis and a small portion of grains are oriented with the basal pole parallel to the extrusion axis; (2) a reoriented texture, T2, in which the basal pole of most grains is parallel to the extrusion axis. For texture T1,more » the onset of extension twinning corresponds well with the macroscopic elastic-plastic transition during the initial compression stage. The non-linear macroscopic stress/strain behavior during unloading after compression is more significant than during unloading after tension. For texture T2, little detwinning occurs after the initial tension stage, but almost all of the twinned volumes are detwinned during loading in reverse compression.« less

  5. Microstructural and Textural Differences Induced by Water and Furnace Cooling in Commercially Pure Zr Annealed in the α + β Region

    NASA Astrophysics Data System (ADS)

    Chai, Linjiang; Wang, Tingting; Ren, Yi; Song, Bo; Guo, Ning; Chen, Liangyu

    2018-03-01

    In this work, a commercially pure Zr sheet with a typical bimodal basal texture was annealed in an α + β region and then subjected to different coolings (in water and furnace). Microstructures and textures of both the as-received and the heat-treated specimens were investigated by electron channeling contrast imaging and electron backscatter diffraction techniques. Results show that a duplex microstructure consisting of untransformed bulk α grains and twinned martensitic plates is produced in the water-cooled specimen, which possesses a weakened texture compared to the initial one. For the specimen cooled in furnace, however, a uniform microstructure fully comprised of coarser equiaxed grains with a strengthened texture is obtained. Analyses reveal that the rapid cooling in water could suppress variant selection behaviors during β → α transformation and allow α plates with scattered orientations to be nucleated inside β phases, contributing to the weakened texture. In contrast, during slow cooling in furnace, β boundaries would act as preferred nucleation sites of α embryos, resulting in a strong variant selection that accounts for the intensified texture.

  6. A Study for Texture Feature Extraction of High-Resolution Satellite Images Based on a Direction Measure and Gray Level Co-Occurrence Matrix Fusion Algorithm

    PubMed Central

    Zhang, Xin; Cui, Jintian; Wang, Weisheng; Lin, Chao

    2017-01-01

    To address the problem of image texture feature extraction, a direction measure statistic that is based on the directionality of image texture is constructed, and a new method of texture feature extraction, which is based on the direction measure and a gray level co-occurrence matrix (GLCM) fusion algorithm, is proposed in this paper. This method applies the GLCM to extract the texture feature value of an image and integrates the weight factor that is introduced by the direction measure to obtain the final texture feature of an image. A set of classification experiments for the high-resolution remote sensing images were performed by using support vector machine (SVM) classifier with the direction measure and gray level co-occurrence matrix fusion algorithm. Both qualitative and quantitative approaches were applied to assess the classification results. The experimental results demonstrated that texture feature extraction based on the fusion algorithm achieved a better image recognition, and the accuracy of classification based on this method has been significantly improved. PMID:28640181

  7. Effect of soil texture on the microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1980-01-01

    The intensity brightness temperature of the microwave emission from the soil is determined primarily by its dielectric properties. The large difference between the dielectric constant of water and that of dry soil produces a strong dependence of the soil's dielectric constant on its moisture content. This dependence is effected by the texture of the soil because the water molecules close to the particle surface are tightly bound and do not contribute significantly to the dielectric properties. Since this surface area is a function of the particle size distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy soils with larger particles; the dielectric properties will depend on soil texture. Laboratory measurements of the dielectric constant for soils are summarized. The dependence of the microwave emission on texture is demonstrated by measurements of brightness temperature from an aircraft platform for a wide range of soil textures. It is concluded that the effect of soil texture differences on the observed values can be normalized by expressing the soil moisture values as a percent field capacity for the soil.

  8. Automatic Texture Mapping of Architectural and Archaeological 3d Models

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Stallmann, D.

    2012-07-01

    Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  9. Associations Between PET Textural Features and GLUT1 Expression, and the Prognostic Significance of Textural Features in Lung Adenocarcinoma.

    PubMed

    Koh, Young Wha; Park, Seong Yong; Hyun, Seung Hyup; Lee, Su Jin

    2018-02-01

    We evaluated the association between positron emission tomography (PET) textural features and glucose transporter 1 (GLUT1) expression level and further investigated the prognostic significance of textural features in lung adenocarcinoma. We evaluated 105 adenocarcinoma patients. We extracted texture-based PET parameters of primary tumors. Conventional PET parameters were also measured. The relationships between PET parameters and GLUT1 expression levels were evaluated. The association between PET parameters and overall survival (OS) was assessed using Cox's proportional hazard regression models. In terms of PET textural features, tumors expressing high levels of GLUT1 exhibited significantly lower coarseness, contrast, complexity, and strength, but significantly higher busyness. On univariate analysis, the metabolic tumor volume, total lesion glycolysis, contrast, busyness, complexity, and strength were significant predictors of OS. Multivariate analysis showed that lower complexity (HR=2.017, 95%CI=1.032-3.942, p=0.040) was independently associated with poorer survival. PET textural features may aid risk stratification in lung adenocarcinoma patients. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Comparison of low-contrast detectability between two CT reconstruction algorithms using voxel-based 3D printed textured phantoms.

    PubMed

    Solomon, Justin; Ba, Alexandre; Bochud, François; Samei, Ehsan

    2016-12-01

    To use novel voxel-based 3D printed textured phantoms in order to compare low-contrast detectability between two reconstruction algorithms, FBP (filtered-backprojection) and SAFIRE (sinogram affirmed iterative reconstruction) and determine what impact background texture (i.e., anatomical noise) has on estimating the dose reduction potential of SAFIRE. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find CLB textures that were reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, four cylindrical phantoms (Textures A-C and uniform, 165 mm in diameter, and 30 mm height) were designed, each containing 20 low-contrast spherical signals (6 mm diameter at nominal contrast levels of ∼3.2, 5.2, 7.2, 10, and 14 HU with four repeats per signal). The phantoms were voxelized and input into a commercial multimaterial 3D printer (Object Connex 350), with custom software for voxel-based printing (using principles of digital dithering). Images of the textured phantoms and a corresponding uniform phantom were acquired at six radiation dose levels (SOMATOM Flash, Siemens Healthcare) and observer model detection performance (detectability index of a multislice channelized Hotelling observer) was estimated for each condition (5 contrasts × 6 doses × 2 reconstructions × 4 backgrounds = 240 total conditions). A multivariate generalized regression analysis was performed (linear terms, no interactions, random error term, log link function) to assess whether dose, reconstruction algorithm, signal contrast, and background type have statistically significant effects on detectability. Also, fitted curves of detectability (averaged across contrast levels) as a function of dose were constructed for each reconstruction algorithm and background texture. FBP and SAFIRE were compared for each background type to determine the improvement in detectability at a given dose, and the reduced dose at which SAFIRE had equivalent performance compared to FBP at 100% dose. Detectability increased with increasing radiation dose (P = 2.7 × 10 -59 ) and contrast level (P = 2.2 × 10 -86 ) and was higher in the uniform phantom compared to the textured phantoms (P = 6.9 × 10 -51 ). Overall, SAFIRE had higher d' compared to FBP (P = 0.02). The estimated dose reduction potential of SAFIRE was found to be 8%, 10%, 27%, and 8% for Texture-A, Texture-B, Texture-C and uniform phantoms. In all background types, detectability was higher with SAFIRE compared to FBP. However, the relative improvement observed from SAFIRE was highly dependent on the complexity of the background texture. Iterative algorithms such as SAFIRE should be assessed in the most realistic context possible.

  11. 7 CFR 51.772 - Fairly smooth texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Definitions § 51.772 Fairly smooth texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the variety and size of the fruit. “Fairly thin” means that the skin thickness does not...

  12. 7 CFR 51.772 - Fairly smooth texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Definitions § 51.772 Fairly smooth texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the variety and size of the fruit. “Fairly thin” means that the skin thickness does not...

  13. Manipulating topological states by imprinting non-collinear spin textures

    DOE PAGES

    Streubel, Robert; Han, Luyang; Im, Mi -Young; ...

    2015-03-05

    Topological magnetic states, such as chiral skyrmions, are of great scientific interest and show huge potential for novel spintronics applications, provided their topological charges can be fully controlled. So far skyrmionic textures have been observed in noncentrosymmetric crystalline materials with low symmetry and at low temperatures. We propose theoretically and demonstrate experimentally the design of spin textures with topological charge densities that can be tailored at ambient temperatures. Tuning the interlayer coupling in vertically stacked nanopatterned magnetic heterostructures, such as a model system of a Co/Pd multilayer coupled to Permalloy, the in-plane non-collinear spin texture of one layer can bemore » imprinted into the out-of-plane magnetised material. We observe distinct spin textures, e.g. vortices, magnetic swirls with tunable opening angle, donut states and skyrmion core configurations. We show that applying a small magnetic field, a reliable switching between topologically distinct textures can be achieved at remanence« less

  14. ATR applications of minimax entropy models of texture and shape

    NASA Astrophysics Data System (ADS)

    Zhu, Song-Chun; Yuille, Alan L.; Lanterman, Aaron D.

    2001-10-01

    Concepts from information theory have recently found favor in both the mainstream computer vision community and the military automatic target recognition community. In the computer vision literature, the principles of minimax entropy learning theory have been used to generate rich probabilitistic models of texture and shape. In addition, the method of types and large deviation theory has permitted the difficulty of various texture and shape recognition tasks to be characterized by 'order parameters' that determine how fundamentally vexing a task is, independent of the particular algorithm used. These information-theoretic techniques have been demonstrated using traditional visual imagery in applications such as simulating cheetah skin textures and such as finding roads in aerial imagery. We discuss their application to problems in the specific application domain of automatic target recognition using infrared imagery. We also review recent theoretical and algorithmic developments which permit learning minimax entropy texture models for infrared textures in reasonable timeframes.

  15. Mechanical Properties and Microstructural Evolution of Variable-Plane-Rolled Mg-3Al-1Zn Alloy

    NASA Astrophysics Data System (ADS)

    Zhu, Rong; Bian, Cunjian; Wu, Yanjun

    2017-04-01

    The microstructural evolution and mechanical properties of AZ31 magnesium alloy produced by variable-plane rolling (VPR) were investigated. Two types of weak textures were formed: basal texture in odd pass and double-peak basal texture in even pass. Dynamic recrystallization (DRX) was observed during the VPR treatment, and the nucleation of grains during DRX was dependent on the coalescence of subgrains. Three types of twins were observed in the VPR treatment: {10-12} extension twins, {10-13} contraction twins and {10-11}-{10-12} double twins. The {10-11}-{10-12} double twinning is the underlying mechanism in the formation of the double-peak texture. Tensile testing revealed improved strength without loss of ductility. The Hall-Petch relationship can be used to describe the strengths in any even pass with the same texture. The significant strengthening is ascribed to the refined grain, twin boundaries, texture hardening, and high dislocation density.

  16. A validated computational model for the design of surface textures in full-film lubricated sliding

    NASA Astrophysics Data System (ADS)

    Schuh, Jonathon; Lee, Yong Hoon; Allison, James; Ewoldt, Randy

    2016-11-01

    Our recent experimental work showed that asymmetry is needed for surface textures to decrease friction in full-film lubricated sliding (thrust bearings) with Newtonian fluids; textures reduce the shear load and produce a separating normal force. The sign of the separating normal force is not predicted by previous 1-D theories. Here we model the flow with the Reynolds equation in cylindrical coordinates, numerically implemented with a pseudo-spectral method. The model predictions match experiments, rationalize the sign of the normal force, and allow for design of surface texture geometry. To minimize sliding friction with angled cylindrical textures, an optimal angle of asymmetry β exists. The optimal angle depends on the film thickness but not the sliding velocity within the applicable range of the model. The model has also been used to optimize generalized surface texture topography while satisfying manufacturability constraints.

  17. Investigation of the tribology behaviour of the graphene nanosheets as oil additives on textured alloy cast iron surface

    NASA Astrophysics Data System (ADS)

    Zheng, Dan; Cai, Zhen-bing; Shen, Ming-xue; Li, Zheng-yang; Zhu, Min-hao

    2016-11-01

    Tribological properties of graphene nanosheets (GNS) as lubricating oil additives on textured surfaces were investigated using a UMT-2 tribotester. The lubricating fluids keeping a constant temperature of 100 °C were applied to a GCr15 steel ball and an RTCr2 alloy cast iron plate with various texture designs (original surface, dimple density of 22.1%, 19.6% and 44.2%). The oil with GNS adding showed good tribological properties (wear reduced 50%), especially on the textured surfaces (the reduction in wear was high at over 90%). A combined effect between GNS additives and laser surface texturing (LST) was revealed, which is not a simple superposition of the two factors mentioned. A mechanism is proposed to explain for these results -the graphene layers sheared at the sliding contact interfaces, and form a protective film, which is closely related with the GNS structures and surface texture patterns.

  18. Light extraction efficiency of GaN-based LED with pyramid texture by using ray path analysis.

    PubMed

    Pan, Jui-Wen; Wang, Chia-Shen

    2012-09-10

    We study three different gallium-nitride (GaN) based light emitting diode (LED) cases based on the different locations of the pyramid textures. In case 1, the pyramid texture is located on the sapphire top surface, in case 2, the pyramid texture is locate on the P-GaN top surface, while in case 3, the pyramid texture is located on both the sapphire and P-GaN top surfaces. We study the relationship between the light extraction efficiency (LEE) and angle of slant of the pyramid texture. The optimization of total LEE was highest for case 3 among the three cases. Moreover, the seven escape paths along which most of the escaped photon flux propagated were selected in a simulation of the LEDs. The seven escape paths were used to estimate the slant angle for the optimization of LEE and to precisely analyze the photon escape path.

  19. The use of an ion-beam source to alter the surface morphology of biological implant materials

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.

    1978-01-01

    An electron-bombardment ion-thruster was used as a neutralized-ion-beam sputtering source to texture the surfaces of biological implant materials. The materials investigated included 316 stainless steel; titanium-6% aluminum, 4% vanadium; cobalt-20% chromium, 15% tungsten; cobalt-35% nickel, 20% chromium, 10% molybdenum; polytetrafluoroethylene; polyoxymethylene; silicone and polyurethane copolymer; 32%-carbon-impregnated polyolefin; segmented polyurethane; silicone rubber; and alumina. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion-texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion-textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion-textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane have been obtained.

  20. Influence of Femtosecond Laser Parameters and Environment on Surface Texture Characteristics of Metals and Non-Metals - State of the Art

    NASA Astrophysics Data System (ADS)

    Bharatish, A.; Soundarapandian, S.

    2018-04-01

    Enhancing the surface functionality by ultrashort pulsed laser texturing has received the considerable attention from researchers in the past few decades. Femtosecond lasers are widely adopted since it provides high repeatability and reproducibility by minimizing the heat affected zone (HAZ) and other collateral damages to a great extent. The present paper reports some recent studies being made worldwide on femtosecond laser surface texturing of metals, ceramics, polymers, semiconductors, thinfilms and advanced nanocomposites. It presents the state of the art knowledge in femtosecond laser surface texturing and the potential of this technology to improve properties in terms of biological, tribological and wetting performance. Since the texture quality and functionality are enhanced by the proper selection of appropriate laser parameters and ambient conditions for individual application, reporting the influence of laser parameters on surface texture characteristics assume utmost importance.

  1. Influence of Femtosecond Laser Parameters and Environment on Surface Texture Characteristics of Metals and Non-Metals - State of the Art

    NASA Astrophysics Data System (ADS)

    Bharatish, A.; Soundarapandian, S.

    2018-06-01

    Enhancing the surface functionality by ultrashort pulsed laser texturing has received the considerable attention from researchers in the past few decades. Femtosecond lasers are widely adopted since it provides high repeatability and reproducibility by minimizing the heat affected zone (HAZ) and other collateral damages to a great extent. The present paper reports some recent studies being made worldwide on femtosecond laser surface texturing of metals, ceramics, polymers, semiconductors, thinfilms and advanced nanocomposites. It presents the state of the art knowledge in femtosecond laser surface texturing and the potential of this technology to improve properties in terms of biological, tribological and wetting performance. Since the texture quality and functionality are enhanced by the proper selection of appropriate laser parameters and ambient conditions for individual application, reporting the influence of laser parameters on surface texture characteristics assume utmost importance.

  2. Imaging Heterogeneity in Lung Cancer: Techniques, Applications, and Challenges.

    PubMed

    Bashir, Usman; Siddique, Muhammad Musib; Mclean, Emma; Goh, Vicky; Cook, Gary J

    2016-09-01

    Texture analysis involves the mathematic processing of medical images to derive sets of numeric quantities that measure heterogeneity. Studies on lung cancer have shown that texture analysis may have a role in characterizing tumors and predicting patient outcome. This article outlines the mathematic basis of and the most recent literature on texture analysis in lung cancer imaging. We also describe the challenges facing the clinical implementation of texture analysis. Texture analysis of lung cancer images has been applied successfully to FDG PET and CT scans. Different texture parameters have been shown to be predictive of the nature of disease and of patient outcome. In general, it appears that more heterogeneous tumors on imaging tend to be more aggressive and to be associated with poorer outcomes and that tumor heterogeneity on imaging decreases with treatment. Despite these promising results, there is a large variation in the reported data and strengths of association.

  3. Estimation of forest biomass using remote sensing

    NASA Astrophysics Data System (ADS)

    Sarker, Md. Latifur Rahman

    Forest biomass estimation is essential for greenhouse gas inventories, terrestrial carbon accounting and climate change modelling studies. The availability of new SAR, (C-band RADARSAT-2 and L-band PALSAR) and optical sensors (SPOT-5 and AVNIR-2) has opened new possibilities for biomass estimation because these new SAR sensors can provide data with varying polarizations, incidence angles and fine spatial resolutions. 'Therefore, this study investigated the potential of two SAR sensors (RADARSAT-2 with C-band and PALSAR with L-band) and two optical sensors (SPOT-5 and AVNIR2) for the estimation of biomass in Hong Kong. Three common major processing steps were used for data processing, namely (i) spectral reflectance/intensity, (ii) texture measurements and (iii) polarization or band ratios of texture parameters. Simple linear and stepwise multiple regression models were developed to establish a relationship between the image parameters and the biomass of field plots. The results demonstrate the ineffectiveness of raw data. However, significant improvements in performance (r2) (RADARSAT-2=0.78; PALSAR=0.679; AVNIR-2=0.786; SPOT-5=0.854; AVNIR-2 + SPOT-5=0.911) were achieved using texture parameters of all sensors. The performances were further improved and very promising performances (r2) were obtained using the ratio of texture parameters (RADARSAT-2=0.91; PALSAR=0.823; PALSAR two-date=0.921; AVNIR-2=0.899; SPOT-5=0.916; AVNIR-2 + SPOT-5=0.939). These performances suggest four main contributions arising from this research, namely (i) biomass estimation can be significantly improved by using texture parameters, (ii) further improvements can be obtained using the ratio of texture parameters, (iii) multisensor texture parameters and their ratios have more potential than texture from a single sensor, and (iv) biomass can be accurately estimated far beyond the previously perceived saturation levels of SAR and optical data using texture parameters or the ratios of texture parameters. A further important contribution resulting from the fusion of SAR & optical images produced accuracies (r2) of 0.706 and 0.77 from the simple fusion, and the texture processing of the fused image, respectively. Although these performances were not as attractive as the performances obtained from the other four processing steps, the wavelet fusion procedure improved the saturation level of the optical (AVNIR-2) image very significantly after fusion with SAR, image. Keywords: biomass, climate change, SAR, optical, multisensors, RADARSAT-2, PALSAR, AVNIR-2, SPOT-5, texture measurement, ratio of texture parameters, wavelets, fusion, saturation

  4. Computer Graphics Meets Image Fusion: the Power of Texture Baking to Simultaneously Visualise 3d Surface Features and Colour

    NASA Astrophysics Data System (ADS)

    Verhoeven, G. J.

    2017-08-01

    Since a few years, structure-from-motion and multi-view stereo pipelines have become omnipresent in the cultural heritage domain. The fact that such Image-Based Modelling (IBM) approaches are capable of providing a photo-realistic texture along the threedimensional (3D) digital surface geometry is often considered a unique selling point, certainly for those cases that aim for a visually pleasing result. However, this texture can very often also obscure the underlying geometrical details of the surface, making it very hard to assess the morphological features of the digitised artefact or scene. Instead of constantly switching between the textured and untextured version of the 3D surface model, this paper presents a new method to generate a morphology-enhanced colour texture for the 3D polymesh. The presented approach tries to overcome this switching between objects visualisations by fusing the original colour texture data with a specific depiction of the surface normals. Whether applied to the original 3D surface model or a lowresolution derivative, this newly generated texture does not solely convey the colours in a proper way but also enhances the smalland large-scale spatial and morphological features that are hard or impossible to perceive in the original textured model. In addition, the technique is very useful for low-end 3D viewers, since no additional memory and computing capacity are needed to convey relief details properly. Apart from simple visualisation purposes, the textured 3D models are now also better suited for on-surface interpretative mapping and the generation of line drawings.

  5. Texturization of as-cut p-type monocrystalline silicon wafer using different wet chemical solutions

    NASA Astrophysics Data System (ADS)

    Hashmi, Galib; Hasanuzzaman, Muhammad; Basher, Mohammad Khairul; Hoq, Mahbubul; Rahman, Md. Habibur

    2018-06-01

    Implementing texturization process on the monocrystalline silicon substrate reduces reflection and enhances light absorption of the substrate. Thus texturization is one of the key elements to increase the efficiency of solar cell. Considering as-cut monocrystalline silicon wafer as base substrate, in this work different concentrations of Na2CO3 and NaHCO3 solution, KOH-IPA (isopropyl alcohol) solution and tetramethylammonium hydroxide solution with different time intervals have been investigated for texturization process. Furthermore, saw damage removal process was conducted with 10% NaOH solution, 20 wt% KOH-13.33 wt% IPA solution and HF/nitric/acetic acid solution. The surface morphology of saw damage, saw damage removed surface and textured wafer were observed using optical microscope and field emission scanning electron microscopy. Texturization causes pyramidal micro structures on the surface of (100) oriented monocrystalline silicon wafer. The height of the pyramid on the silicon surface varies from 1.5 to 3.2 µm and the inclined planes of the pyramids are acute angle. Contact angle value indicates that the textured wafer's surface fall in between near-hydrophobic to hydrophobic range. With respect to base material absolute reflectance 1.049-0.75% within 250-800 nm wavelength region, 0.1-0.026% has been achieved within the same wavelength region when textured with 0.76 wt% KOH-4 wt% IPA solution for 20 min. Furthermore, an alternative route of using 1 wt% Na2CO3-0.2 wt% NaHCO3 solution for 50 min has been exploited in the texturization process.

  6. Use of a Textured Insole to Improve the Association Between Postural Balance and Ankle Discrimination in Young Male and Female Dancers.

    PubMed

    Steinberg, Nili; Waddington, Gordon; Adams, Roger; Karin, Janet; Tirosh, Oren

    2015-12-01

    Ballet dancers require a high level of postural balance (PB) and proprioception ability during performance. As textured insoles inserted into ballet shoes were found to improve proprioception ability, and better proprioceptive acuity was associated with better PB, the aim of the present study was to investigate whether the association between ankle inversion movement discrimination (AIMD) and PB changed following wearing textured insoles in young male and female dancers. Forty-four dancers from the Australian Ballet School, ages 14-19 yrs, were tested for static and dynamic PB and AIMD under two conditions: in ballet shoes, and in ballet shoes with textured insoles inserted. Female dancers demonstrated a significant inverse relationship between AIMD and static PB in the medio-lateral direction when wearing ballet shoes, but not when wearing textured insoles. Male dancers showed a non-monotonic relationship when tested with ballet shoes only, but a significant inverse relationship between AIMD and dynamic PB in the vertical direction and with the waist/head cross-correlation acceleration in the three movement directions when they were tested with textured insoles. Male dancers demonstrated an improved association between dynamic PB and proprioception ability when using textured insoles, suggesting that the increased afferent information from the plantar surface had a beneficial effect on proprioception feedback about their PB. Conversely, for female dancers, that association was present when wearing ballet shoes, but not when using textured insoles, suggesting that the increased afferent information for female dancers who already had high proprioception ability was "overloaded" by wearing the textured insoles.

  7. Low temperature texture development in Nd2Fe14B/α-Fe nanocomposite magnets via equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Besley, L.; Garitaonandia, J. S.; Molotnikov, A.; Kishimoto, H.; Kato, A.; Davies, C.; Suzuki, K.

    2018-05-01

    While suitable texture has been developed in Nd2Fe14B/α-Fe nanocomposites via thermomechanical processing methods such as die upsetting by incorporating low melting point eutectic Nd-Cu additives, significant grain coarsening occurs during this process due to the high temperature and long timescales involved, resulting in a loss of exchange coupling. Equal channel angular pressing (ECAP) is a severe plastic deformation technique which has been successfully used to produce a suitable texture in single-phase Nd2Fe14B at temperatures on the order of 500°C while preserving grain sizes on the order of 20-30nm. We investigate the development of texture in a commercial Nd2Fe14B/α-Fe nanocomposite alloy with added Nd90Cu10 produced via ECAP and then characterise it using texture x-ray diffraction and magnetic measurements. It is found that initial texture can be developed in this nanocomposite system at T = 520°C via ECAP. The average grain size of Nd2Fe14B as measured via X-ray diffraction after ECAP remains below 50nm with a developed texture. The effect of varying the amount of Nd90Cu10 additive is also investigated. It is found that with decreasing Nd90Cu10, the degree of texture is reduced while the volume fraction of α-Fe increases. This work demonstrates the development of texture in nanocomposite Nd2Fe14B/α-Fe with Nd-Cu additives whilst maintaining a grain size of approximately 50nm.

  8. 7 CFR 51.768 - Smooth texture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit. “Thin” means that the skin thickness does not average more than 3/8 inch (9.5 mm), on a central...

  9. 7 CFR 51.768 - Smooth texture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Smooth texture. Smooth texture means that the skin is thin and smooth for the variety and size of the fruit. “Thin” means that the skin thickness does not average more than 3/8 inch (9.5 mm), on a central...

  10. 7 CFR 51.772 - Fairly smooth texture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the variety and size of the fruit. “Fairly thin” means that the skin thickness does not average more than 1/2 inch (12.7...

  11. 7 CFR 51.772 - Fairly smooth texture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the variety and size of the fruit. “Fairly thin” means that the skin thickness does not average more than 1/2 inch (12.7...

  12. Strong, non-magnetic, cube textured alloy substrates

    DOEpatents

    Goyal, Amit [Knoxville, TN

    2011-02-01

    A warm-rolled, annealed, polycrystalline, cube-textured, {100}<100>, FCC-based alloy substrate is characterized by a yield strength greater than 200 MPa and a biaxial texture characterized by a FWHM of less than 15.degree. in all directions.

  13. 7 CFR 51.772 - Fairly smooth texture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... texture. Fairly smooth texture means that the skin is fairly thin and not coarse for the variety and size of the fruit. “Fairly thin” means that the skin thickness does not average more than 1/2 inch (12.7...

  14. Texturing of concrete pavements : final report.

    DOT National Transportation Integrated Search

    1979-08-01

    During the month of June, 1973, the plastic concrete surface of a section of Interstate 10 in the Baton Rouge area was textured using several different texturing techniques, such as burlap drag, brooms and metal tines. The purpose of this experimenta...

  15. Effects of pavement surface texture on noise and frictional characteristics.

    DOT National Transportation Integrated Search

    1987-02-01

    An experimental modification of the transverse groove : surface texture of a section of an urban interstate highway was : performed by the Iowa Department of Transportation. Transverse : groove texturing is a design feature required by the Federal : ...

  16. Conveying 3D shape with texture: recent advances and experimental findings

    NASA Astrophysics Data System (ADS)

    Interrante, Victoria; Kim, Sunghee; Hagh-Shenas, Haleh

    2002-06-01

    If we could design the perfect texture pattern to apply to any smooth surface in order to enable observers to more accurately perceive the surface's shape in a static monocular image taken from an arbitrary generic viewpoint under standard lighting conditions, what would the characteristics of that texture pattern be? In order to gain insight into this question, our group has developed an efficient algorithm for synthesizing a high resolution texture pattern, derived from a provided 2D sample, over an arbitrary doubly curved surface in such a way that the orientation of the texture is constrained to follow a specified underlying vector field over the surface, at a per-pixel level, without evidence of seams or projective distortion artifacts. In this paper, we report the findings of a recent experiment in which we attempt to use this new texture synthesis method to assess the shape information carrying capacity of two different types of directional texture patterns (unidirectional and bi-directional) under three different orientation conditions (following the first principal direction, following a constant uniform direction, or swirling sinusoidally in the surface). In a four alternative forced choice task, we asked participants to identify the quadrant in which two B-spline surfaces, illuminated from different random directions and simultaneously and persistently displayed, differed in their shapes. We found, after all subjects had gained sufficient training in the task, that accuracy increased fairly consistently with increasing magnitude of surface shape disparity, but that the characteristics of this increase differed under the different texture orientation conditions. Subjects were able to more reliably perceive smaller shape differences when the surfaces were textured with a pattern whose orientation followed one of the principal directions than when the surfaces were textured with a pattern that either gradually swirled in the surface or followed a constant uniform direction in the tangent plane regardless of the surface shape characteristics. These findings appear to support our hypothesis that anisotropic textures aligned with the first principal direction may facilitate shape perception, for a generic view, by making more, reliable information about the extent of the surface curvature explicitly available to the observer than would be available if the texture pattern were oriented in any other way.

  17. Textural Evolution During Micro Direct Metal Deposition of NiTi Alloy

    NASA Astrophysics Data System (ADS)

    Khademzadeh, Saeed; Bariani, Paolo F.; Bruschi, Stefania

    2018-03-01

    In this research, a micro direct metal deposition process, newly developed as a potential method for micro additive manufacturing was used to fabricate NiTi builds. The effect of scanning strategy on grain growth and textural evolution was investigated using scanning electron microscope equipped with electron backscattered diffraction detector. Investigations showed that, the angle between the successive single tracks has an important role in grain size distribution and textural evolution of NiTi phase. Unidirectional laser beam scanning pattern developed a fiber texture; conversely, a backward and forward scanning pattern developed a strong < {100} > ‖‖ RD texture on the surface of NiTi cubic samples produced by micro direct metal deposition.

  18. Surface texturing of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Mirtich, M. J.; Sovey, J. S. (Inventor)

    1982-01-01

    A method is disclosed for improving surface texture for adhesive bonding, metal bonding, substrate plating, decal substrate preparation, and biomedical implant applications. The surface to be bonded is dusted in a controlled fashion to produce a disbursed layer of fine mesh particles which serve as masks. The surface texture is produced by impinging gas ions on the masked surface. The textured surface takes the form of pillars or cones. The bonding material, such as a liquid epoxy, flows between the pillars which results in a bond having increased strength. For bonding metals a thin film of metal is vapor or sputter deposited onto the textured surface. Electroplating or electroless plating is then used to increase the metal thickness in the desired amount.

  19. Textural Evolution During Micro Direct Metal Deposition of NiTi Alloy

    NASA Astrophysics Data System (ADS)

    Khademzadeh, Saeed; Bariani, Paolo F.; Bruschi, Stefania

    2018-07-01

    In this research, a micro direct metal deposition process, newly developed as a potential method for micro additive manufacturing was used to fabricate NiTi builds. The effect of scanning strategy on grain growth and textural evolution was investigated using scanning electron microscope equipped with electron backscattered diffraction detector. Investigations showed that, the angle between the successive single tracks has an important role in grain size distribution and textural evolution of NiTi phase. Unidirectional laser beam scanning pattern developed a fiber texture; conversely, a backward and forward scanning pattern developed a strong < {100} > ‖‖ RD texture on the surface of NiTi cubic samples produced by micro direct metal deposition.

  20. Revealing Grain Boundary Sliding from Textures of a Deformed Nanocrystalline Pd–Au Alloy

    PubMed Central

    Skrotzki, Werner; Zhao, Yajun; Pukenas, Aurimas; Birringer, Rainer

    2018-01-01

    Employing a recent modeling scheme for grain boundary sliding [Zhao et al. Adv. Eng. Mater. 2017, doi:10.1002/adem.201700212], crystallographic textures were simulated for nanocrystalline fcc metals deformed in shear compression. It is shown that, as grain boundary sliding increases, the texture strength decreases while the signature of the texture type remains the same. Grain boundary sliding affects the texture components differently with respect to intensity and angular position. A comparison of a simulation and an experiment on a Pd–10 atom % Au alloy with a 15 nm grain size reveals that, at room temperature, the predominant deformation mode is grain boundary sliding contributing to strain by about 60%. PMID:29370130

  1. Robustness of topological Hall effect of nontrivial spin textures

    NASA Astrophysics Data System (ADS)

    Jalil, Mansoor B. A.; Tan, Seng Ghee

    2014-05-01

    We analyze the topological Hall conductivity (THC) of topologically nontrivial spin textures like magnetic vortices and skyrmions and investigate its possible application in the readback for magnetic memory based on those spin textures. Under adiabatic conditions, such spin textures would theoretically yield quantized THC values, which are related to topological invariants such as the winding number and polarity, and as such are insensitive to fluctuations and smooth deformations. However, in a practical setting, the finite size of spin texture elements and the influence of edges may cause them to deviate from their ideal configurations. We calculate the degree of robustness of the THC output in practical magnetic memories in the presence of edge and finite size effects.

  2. Effect of texture on dielectric properties and thermal depoling of Bi4Ti3O12 ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Haixue; Reece, Michael J.; Liu, Jing; Shen, Zhijian; Kan, Yanmei; Wang, Peiling

    2006-10-01

    Ordinary fired Bi4Ti3O12 ceramics show a gradual reduction in their room temperature d33 after annealing at temperatures from room temperature to 450°C. Textured ceramics show a greater resistance to thermal depoling. At about 450°C there is a rapid drop of d33 for the textured materials, which may be a consequence of a phase transition. Between 500 and 650°C the d33 is stable. The depolarization is assisted by internal mechanical stresses. These stresses are smaller in textured materials, which explains the increasing resistance to thermal depoling with increasing texture.

  3. Impact-shocked zircons: Discovery of shock-induced textures reflecting increasing degrees of shock metamorphism

    NASA Technical Reports Server (NTRS)

    Bohor, B. F.; Betterton, W. J.; Krogh, T. E.

    1993-01-01

    Textural effects specifically characteristic of shock metamorphism in zircons from impact environments have not been reported previously. However, planar deformation features (PDF) due to shock metamorphism are well documented in quartz and other mineral grains from these same environments. An etching technique was developed that allows scanning electron microscope (SEM) visualization of PDF and other probable shock-induced textural features, such as granular (polycrystalline) texture, in zircons from a variety of impact shock environments. These textural features in shocked zircons from K/T boundary distal ejecta form a series related to increasing degrees of shock that should correlate with proportionate resetting of the U-Pb isotopic system.

  4. A numerical investigation of grain shape and crystallographic texture effects on the plastic strain localization in friction stir weld zones

    NASA Astrophysics Data System (ADS)

    Romanova, V.; Balokhonov, R.; Batukhtina, E.; Shakhidjanov, V.

    2015-10-01

    Crystal plasticity approaches were adopted to build models accounting for the microstructure and texture observed in different friction stir weld zones. To this end, a numerical investigation of crystallographic texture and grain shape effects on the plastic strain localization in a friction stir weld of an aluminum-base alloy was performed. The presence of texture was found to give rise to pronounced mesoscale plastic strain localization.

  5. Domain Engineered Magnetoelectric Thin Films for High Sensitivity Resonant Magnetic Field Sensors

    DTIC Science & Technology

    2011-12-01

    synthesis and texture analysis Sol-gel deposition and RF sputtering process was developed for deposition of PZT on Pt/Ti/Si02/Si (hereafter...well textured (i.e. with preferred crystalline orientation). To texture and obtain crack-free thick PZT RF films, we employed pre- treated substrates...and post-deposition annealing. One pre-treatment was the use of seed layer of textured PZT sol-gel thin film of thickness 65-85nm [1]. • Oean

  6. Phase and Texture Evolution in Chemically Derived PZT Thin Films on Pt Substrates

    DTIC Science & Technology

    2014-09-01

    function of heating rate. The FWHM of the Ill PZT texture components is sim 2978 Journal of the American Ceramic Society Mhin et al. Vol. 97, No. 9...Z39.18 ABSTRACT Phase and Texture Evolution in Chemically Derived PZT Thin Films on Pt Substrates Report Title The crystallization of lead zirconate...phase influencing texture evolution. The results suggest that PZT nucleates directly on Pt, which explains the observation of a more highly oriented

  7. Textural features for radar image analysis

    NASA Technical Reports Server (NTRS)

    Shanmugan, K. S.; Narayanan, V.; Frost, V. S.; Stiles, J. A.; Holtzman, J. C.

    1981-01-01

    Texture is seen as an important spatial feature useful for identifying objects or regions of interest in an image. While textural features have been widely used in analyzing a variety of photographic images, they have not been used in processing radar images. A procedure for extracting a set of textural features for characterizing small areas in radar images is presented, and it is shown that these features can be used in classifying segments of radar images corresponding to different geological formations.

  8. Effect of texturing on polarization switching dynamics in ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Zhukov, Sergey; Genenko, Yuri A.; Koruza, Jurij; Schultheiß, Jan; von Seggern, Heinz; Sakamoto, Wataru; Ichikawa, Hiroki; Murata, Tatsuro; Hayashi, Koichiro; Yogo, Toshinobu

    2016-01-01

    Highly (100),(001)-oriented (Ba0.85Ca0.15)TiO3 (BCT) lead-free piezoelectric ceramics were fabricated by the reactive templated grain growth method using a mixture of plate-like CaTiO3 and BaTiO3 particles. Piezoelectric properties of the ceramics with a high degree of texture were found to be considerably enhanced compared with the BCT ceramics with a low degree of texture. With increasing the Lotgering factor from 26% up to 94%, the piezoelectric properties develop towards the properties of a single crystal. The dynamics of polarization switching was studied over a broad time domain of 8 orders of magnitude and was found to strongly depend on the degree of orientation of the ceramics. Samples with a high degree of texture exhibited 2-3 orders of magnitude faster polarization switching, as compared with the ones with a low degree of texture. This was rationalized by means of the Inhomogeneous Field Mechanism model as a result of the narrower statistical distribution of the local electric field values in textured media, which promotes a more coherent switching process. The extracted microscopic parameters of switching revealed a decrease of the critical nucleus energy in systems with a high degree of texture providing more favorable switching conditions related to the enhanced ferroelectric properties of the textured material.

  9. Probing Majorana neutrino textures at DUNE

    NASA Astrophysics Data System (ADS)

    Bora, Kalpana; Borah, Debasish; Dutta, Debajyoti

    2017-10-01

    We study the possibility of probing different texture zero neutrino mass matrices at the long baseline neutrino experiment DUNE, particularly focusing on its sensitivity to the octant of atmospheric mixing angle θ23 and leptonic Dirac C P phase δcp. Assuming a diagonal charged lepton basis and Majorana nature of light neutrinos, we first classify the possible light neutrino mass matrices with one and two texture zeros and then numerically evaluate the parameter space which satisfies the texture zero conditions. Apart from using the latest global fit 3 σ values of neutrino oscillation parameters, we also use the latest bound on the sum of absolute neutrino masses (∑i |mi|) from the Planck mission data and the updated bound on effective neutrino mass Me e from neutrinoless double beta decay (0 ν β β ) experiments to find the allowed Majorana texture zero mass matrices. For the allowed texture zero mass matrices from all these constraints, we then feed the corresponding light neutrino parameter values satisfying the texture zero conditions into the numerical analysis in order to study the capability of DUNE to allow or exclude them once it starts taking data. We find that DUNE will be able to exclude some of these texture zero mass matrices which restrict (θ23-δcp) to a very specific range of values, depending on the values of the parameters that nature has chosen.

  10. Texture-dependent motion signals in primate middle temporal area

    PubMed Central

    Gharaei, Saba; Tailby, Chris; Solomon, Selina S; Solomon, Samuel G

    2013-01-01

    Neurons in the middle temporal (MT) area of primate cortex provide an important stage in the analysis of visual motion. For simple stimuli such as bars and plaids some neurons in area MT – pattern cells – seem to signal motion independent of contour orientation, but many neurons – component cells – do not. Why area MT supports both types of receptive field is unclear. To address this we made extracellular recordings from single units in area MT of anaesthetised marmoset monkeys and examined responses to two-dimensional images with a large range of orientations and spatial frequencies. Component and pattern cell response remained distinct during presentation of these complex spatial textures. Direction tuning curves were sharpest in component cells when a texture contained a narrow range of orientations, but were similar across all neurons for textures containing all orientations. Response magnitude of pattern cells, but not component cells, increased with the spatial bandwidth of the texture. In addition, response variability in all neurons was reduced when the stimulus was rich in spatial texture. Fisher information analysis showed that component cells provide more informative responses than pattern cells when a texture contains a narrow range of orientations, but pattern cells had more informative responses for broadband textures. Component cells and pattern cells may therefore coexist because they provide complementary and parallel motion signals. PMID:24000175

  11. Properties of hot-rolled sheets from ferritic steel with increased strength

    NASA Astrophysics Data System (ADS)

    Perlovich, Yu.; Isaenkova, M.; Dobrokhotov, P.; Stolbov, S.; Bannykh, O.; Bannykh, I.; Antsyferova, M.

    2017-10-01

    Sheets from ferritic steel 3 mm thick with increased strength after thermal hardening were studied by use of various X-ray methods and mechanical testing. Rolling of steel was carried out at 1100°C with rather great reductions per pass, so that plastic deformation of metal spread by the significant distance from the surface. The texture of sheet proved to have two sharply different layers: the inner layer of ˜40% thick with the usual rolling texture of BCC metals and the external layer with the rolling texture of FCC metals. At that, within the intermediate layer the texture is weakened. Texture formation within the external layer is conditioned by the process of dynamical deformation ageing: interstitial impurities from atmosphere block dislocations, prevent from their slip and at increased temperatures promote their collective climb. As a result, the direction of lattice rotation as well as the final rolling texture change. Due to texture layering, by impact testing of the sheet the plane of crack propagation must be changed when this crack reaches the inner layer, and then an additional energy for its further movement is required. Thermal hardening of the sheet retains the type of rolling texture, though results in some its scattering, but at the same time the breaking point of steel grows twice owing to formation of intermetallic particles.

  12. Cokriging of Electromagnetic Induction Soil Electrical Conductivity Measurements and Soil Textural Properties to Demarcate Sub-field Management Zones for Precision Irrigation.

    NASA Astrophysics Data System (ADS)

    Ding, R.; Cruz, L.; Whitney, J.; Telenko, D.; Oware, E. K.

    2017-12-01

    There is the growing need for the development of efficient irrigation management practices due to increasing irrigation water scarcity as a result of growing population and changing climate. Soil texture primarily controls the water-holding capacity of soils, which determines the amount of irrigation water that will be available to the plant. However, while there are significant variabilities in the textural properties of the soil across a field, conventional irrigation practices ignore the underlying variability in the soil properties, resulting in over- or under-irrigation. Over-irrigation leaches plant nutrients beyond the root-zone leading to fertilizer, energy, and water wastages with dire environmental consequences. Under-irrigation, in contrast, causes water stress of the plant, thereby reducing plant quality and yield. The goal of this project is to leverage soil textural map of a field to create water management zones (MZs) to guide site-specific precision irrigation. There is increasing application of electromagnetic induction methods to rapidly and inexpensively map spatially continuous soil properties in terms of the apparent electrical conductivity (ECa) of the soil. ECa is a measure of the bulk soil properties, including soil texture, moisture, salinity, and cation exchange capacity, making an ECa map a pseudo-soil map. Data for the project were collected from a farm site at Eden, NY. The objective is to leverage high-resolution ECa map to predict spatially dense soil textural properties from limited measurements of soil texture. Thus, after performing ECa mapping, we conducted particle-size analysis of soil samples to determine the textural properties of soils at selected locations across the field. We cokriged the high-resolution ECa measurements with the sparse soil textural data to estimate a soil texture map for the field. We conducted irrigation experiments at selected locations to calibrate representative water-holding capacities of each estimated soil textural unit. Estimated soil units with similar water-holding characteristics were merged to create sub-field water MZs to guide precision irrigation of each MZ, instructed by each MZ's calibrated water-holding properties.

  13. RIS4E at Kilauea's December 1974 Flow: Lava Flow Texture LiDAR Signatures

    NASA Astrophysics Data System (ADS)

    Whelley, P.; Garry, W. B.; Scheidt, S. P.; Bleacher, J. E.; Hamilton, C.

    2015-12-01

    High-resolution point clouds and digital terrain models (DTMs) are used to investigate lava textures on the Big Island of Hawaii. Lava texture (e.g., ´áā and pāhoehoe) depends significantly on eruption conditions, and it is therefore instructive, if accurately determined. In places where field investigations are prohibitive (e.g., on other planets and remote regions of Earth) lava texture must be assessed from remote sensing data. A reliable method for doing so remains elusive. The December 1974 flow from Kilauea, in the Kau desert, presents an excellent field site to develop techniques for identifying lava texture. The eruption is young and the textures are well preserved. We present results comparing properties of lava textures observed in Terrestrial Laser Scanning (TLS) data. The authors collected the TLS data during May 2014 and June 2015 field seasons. Scans are a quantitative representation of what a geologist, or robotic system, sees "on the ground" and provides "ground truth" for airborne or orbital remote sensing analysis by enabling key parameters of lava morphology to be quantified. While individual scans have a heterogeneous point density, multiple scans are merged such that sub-cm lava textures can be quantified. Results indicate that TLS-derived surface roughness (i.e., de-trended RMS roughness) is useful for differentiating lava textures and assists volcanologic interpretations. As many lava types are quite rough, it is not simply roughness that is the most advantageous parameter for differentiating lava textures; rather co-occurrence patterns in surface roughness are used. Gradually forming textures (e.g., pāhoehoe) are elevated in statistics that measure smoothness (e.g., homogeneity) while lava with disrupted crusts (e.g., slabby and platy flow) have more random distributions of roughness (i.e., high entropy). A similar technique will be used to analyze high-resolution DTMs of martian lava flows using High Resolution Imaging Science Experiment DTMs. This work will lead to faster and more reliable volcanic mapping efforts for planetary exploration as well as terrestrial geohazards.

  14. Electron backscatter diffraction study of deformation and recrystallization textures of individual phases in a cross-rolled duplex steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaid, Md; Bhattacharjee, P.P., E-mail: pinakib@iith.ac.in

    2014-10-15

    The evolution of microstructure and texture during cross-rolling and annealing was investigated by electron backscatter diffraction in a ferritic–austenitic duplex stainless steel. For this purpose an alloy with nearly equal volume fraction of the two phases was deformed by multi-pass cross-rolling process up to 90% reduction in thickness. The rolling and transverse directions were mutually interchanged in each pass by rotating the sample by 90° around the normal direction. In order to avoid deformation induced phase transformation and dynamic strain aging, the rolling was carried out at an optimized temperature of 898 K (625 °C) at the warm-deformation range. Themore » microstructure after cross warm-rolling revealed a lamellar structure with alternate arrangement of the bands of two phases. Strong brass and rotated brass components were observed in austenite in the steel after processing by cross warm-rolling. The ferrite in the cross warm-rolling processed steel showed remarkably strong RD-fiber (RD//< 011 >) component (001)< 011 >. The development of texture in the two phases after processing by cross warm-rolling could be explained by the stability of the texture components. During isothermal annealing of the 90% cross warm-rolling processed material the lamellar morphology was retained before collapse of the lamellar structure to the mutual interpenetration of the phase bands. Ferrite showed recovery resulting in annealing texture similar to the deformation texture. In contrast, the austenite showed primary recrystallization without preferential orientation selection leading to the retention of deformation texture. The evolution of deformation and annealing texture in the two phases of the steel was independent of one another. - Highlights: • Effect of cross warm-rolling on texture formation is studied in duplex steel. • Brass texture in austenite and (001)<110 > in ferrite are developed. • Ferrite shows recovery during annealing retaining the (001)<110 > component. • Austenite shows recrystallization during annealing retaining the deformation texture. • The deformation of recrystallization of two phases is independent of one other.« less

  15. Interior car noise created by textured pavement surfaces : final report.

    DOT National Transportation Integrated Search

    1975-01-01

    Because of widespread concern about the effect of textured pavement surfaces on interior car noise, sound pressure levels (SPL) were measured inside a test vehicle as it traversed 21 pavements with various textures. A linear regression analysis run o...

  16. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, Amit; Budai, John D.; Kroeger, Donald M.; Norton, David P.; Specht, Eliot D.; Christen, David K.

    1998-01-01

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon.

  17. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, Amit; Budai, John D.; Kroeger, Donald M.; Norton, David P.; Specht, Eliot D.; Christen, David K.

    1999-01-01

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon.

  18. Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study.

    PubMed

    Ortiz-Ramón, Rafael; Larroza, Andrés; Ruiz-España, Silvia; Arana, Estanislao; Moratal, David

    2018-05-14

    To examine the capability of MRI texture analysis to differentiate the primary site of origin of brain metastases following a radiomics approach. Sixty-seven untreated brain metastases (BM) were found in 3D T1-weighted MRI of 38 patients with cancer: 27 from lung cancer, 23 from melanoma and 17 from breast cancer. These lesions were segmented in 2D and 3D to compare the discriminative power of 2D and 3D texture features. The images were quantized using different number of gray-levels to test the influence of quantization. Forty-three rotation-invariant texture features were examined. Feature selection and random forest classification were implemented within a nested cross-validation structure. Classification was evaluated with the area under receiver operating characteristic curve (AUC) considering two strategies: multiclass and one-versus-one. In the multiclass approach, 3D texture features were more discriminative than 2D features. The best results were achieved for images quantized with 32 gray-levels (AUC = 0.873 ± 0.064) using the top four features provided by the feature selection method based on the p-value. In the one-versus-one approach, high accuracy was obtained when differentiating lung cancer BM from breast cancer BM (four features, AUC = 0.963 ± 0.054) and melanoma BM (eight features, AUC = 0.936 ± 0.070) using the optimal dataset (3D features, 32 gray-levels). Classification of breast cancer and melanoma BM was unsatisfactory (AUC = 0.607 ± 0.180). Volumetric MRI texture features can be useful to differentiate brain metastases from different primary cancers after quantizing the images with the proper number of gray-levels. • Texture analysis is a promising source of biomarkers for classifying brain neoplasms. • MRI texture features of brain metastases could help identifying the primary cancer. • Volumetric texture features are more discriminative than traditional 2D texture features.

  19. A texture-component Avrami model for predicting recrystallization textures, kinetics and grain size

    NASA Astrophysics Data System (ADS)

    Raabe, Dierk

    2007-03-01

    The study presents an analytical model for predicting crystallographic textures and the final grain size during primary static recrystallization of metals using texture components. The kinetics is formulated as a matrix variant of the Johnson-Mehl-Avrami-Kolmogorov equation. The matrix form is required since the kinetic and crystallographic evolution of the microstructure is described in terms of a limited set of growing (recrystallizing) and swept (deformed) texture components. The number of components required (5-10) defines the order of the matrix since the kinetic coupling occurs between all recrystallizing and all deformed components. Each such couple is characterized by corresponding values for the nucleation energy and grain boundary mobility. The values of these parameters can be obtained by analytical or numerical coarse graining according to a renormalization scheme which replaces many individual grains which grow via recrystallization in a deformed texture component by a single equivalent recrystallization texture component or by fitting to experimental data. Each deformed component is further characterized by an average stored deformation energy. Each element of the kinetic matrix, reflecting one of the possible couplings between a deformed and a recrystallizing texture component, is then derived in each time step by a set of two differential equations. The first equation describes the thermally activated nucleation and growth processes for the expanded (free) volume for a particular couple of a deformed and a recrystallizing texture component and the second equation is used for calculating the constrained (real) volume for that couple which corrects the free volume for those portions of the deformation component which were already swept. The new method is particularly developed for the fast and physically based process simulation of recrystallization textures with respect to processing. The present paper introduces the method and applies it to the primary recrystallization of low carbon steels.

  20. SU-F-R-32: Evaluation of MRI Acquisition Parameter Variations On Texture Feature Extraction Using ACR Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Y; Wang, J; Wang, C

    Purpose: To investigate the sensitivity of classic texture features to variations of MRI acquisition parameters. Methods: This study was performed on American College of Radiology (ACR) MRI Accreditation Program Phantom. MR imaging was acquired on a GE 750 3T scanner with XRM explain gradient, employing a T1-weighted images (TR/TE=500/20ms) with the following parameters as the reference standard: number of signal average (NEX) = 1, matrix size = 256×256, flip angle = 90°, slice thickness = 5mm. The effect of the acquisition parameters on texture features with and without non-uniformity correction were investigated respectively, while all the other parameters were keptmore » as reference standard. Protocol parameters were set as follows: (a). NEX = 0.5, 2 and 4; (b).Phase encoding steps = 128, 160 and 192; (c). Matrix size = 128×128, 192×192 and 512×512. 32 classic texture features were generated using the classic gray level run length matrix (GLRLM) and gray level co-occurrence matrix (GLCOM) from each image data set. Normalized range ((maximum-minimum)/mean) was calculated to determine variation among the scans with different protocol parameters. Results: For different NEX, 31 out of 32 texture features’ range are within 10%. For different phase encoding steps, 31 out of 32 texture features’ range are within 10%. For different acquisition matrix size without non-uniformity correction, 14 out of 32 texture features’ range are within 10%; for different acquisition matrix size with non-uniformity correction, 16 out of 32 texture features’ range are within 10%. Conclusion: Initial results indicated that those texture features that range within 10% are less sensitive to variations in T1-weighted MRI acquisition parameters. This might suggest that certain texture features might be more reliable to be used as potential biomarkers in MR quantitative image analysis.« less

  1. Spatial Anisotropies and Temporal Fluctuations in Extracellular Matrix Network Texture during Early Embryogenesis

    PubMed Central

    Loganathan, Rajprasad; Potetz, Brian R.; Rongish, Brenda J.; Little, Charles D.

    2012-01-01

    Early stages of vertebrate embryogenesis are characterized by a remarkable series of shape changes. The resulting morphological complexity is driven by molecular, cellular, and tissue-scale biophysical alterations. Operating at the cellular level, extracellular matrix (ECM) networks facilitate cell motility. At the tissue level, ECM networks provide material properties required to accommodate the large-scale deformations and forces that shape amniote embryos. In other words, the primordial biomaterial from which reptilian, avian, and mammalian embryos are molded is a dynamic composite comprised of cells and ECM. Despite its central importance during early morphogenesis we know little about the intrinsic micrometer-scale surface properties of primordial ECM networks. Here we computed, using avian embryos, five textural properties of fluorescently tagged ECM networks — (a) inertia, (b) correlation, (c) uniformity, (d) homogeneity, and (e) entropy. We analyzed fibronectin and fibrillin-2 as examples of fibrous ECM constituents. Our quantitative data demonstrated differences in the surface texture between the fibronectin and fibrillin-2 network in Day 1 (gastrulating) embryos, with the fibronectin network being relatively coarse compared to the fibrillin-2 network. Stage-specific regional anisotropy in fibronectin texture was also discovered. Relatively smooth fibronectin texture was exhibited in medial regions adjoining the primitive streak (PS) compared with the fibronectin network investing the lateral plate mesoderm (LPM), at embryonic stage 5. However, the texture differences had changed by embryonic stage 6, with the LPM fibronectin network exhibiting a relatively smooth texture compared with the medial PS-oriented network. Our data identify, and partially characterize, stage-specific regional anisotropy of fibronectin texture within tissues of a warm-blooded embryo. The data suggest that changes in ECM textural properties reflect orderly time-dependent rearrangements of a primordial biomaterial. We conclude that the ECM microenvironment changes markedly in time and space during the most important period of amniote morphogenesis—as determined by fluctuating textural properties. PMID:22693609

  2. Mechanical and chemical effects of ion-texturing biomedical polymers

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Cenkus, M. A.

    1979-01-01

    To determine whether sputter etching may provide substantial polymer surface texturing with insignificant changes in chemical and mechanical properties, an 8 cm beam diameter, electron bombardment, argon ion source was used to sputter etch (ion-texture process) nine biomedical polymers. The materials included silicone rubber, 32% carbon impregnated polyolefin, polyoxymethylene, polytetrafluoroethylene, ultrahigh molecular weight (UHMW) polyethylene, UHMW polyethylene with carbon fibers (10%), and several polyurethanes (bioelectric, segmented, and cross linked). Ion textured microtensile specimens of each material except UHMW polyethylene and UHMW polyethylene with 10% carbon fibers were used to determine the effect of ion texturing on tensile properties. Scanning electron microscopy was used to determine surface morphology changes, and electron spectroscopy for chemical analysis was used to analyze the near surface chemical changes that result from ion texturing. Ion energies of 500 eV with beam current densities ranging from 0.08 to 0.19 mA/sq cm were used to ion texture the various materials. Standard microtensile specimens of seven polymers were exposed to a saline environment for 24 hours prior to and during the tensile testing. The surface chemical changes resulting from sputter etching are minimal in spite of the often significant changes in the surface morphology.

  3. Texture Evolution During Laser Direct Metal Deposition of Ti-6Al-4V

    DOE PAGES

    Sridharan, Niyanth; Chaudhary, Anil; Nandwana, Peeyush; ...

    2016-01-20

    Titanium alloys are used in a wide variety of high performance applications and hence the processing of the titanium and the resulting microstructures after additive manufacturing has received significant attention. During additive manufacturing the processing route involves the transition from a liquid to solid state. The addition of successive layers results in a complex microstructure due to solid-state transformations. The current study focuses on understanding the phase transformations and relate it to the transformation texture in Ti-6Al-4V to identify conditions leading to a strong alpha transformation texture. The as deposited builds were characterized using optical microscopy and electron backscattered diffraction.more » The results showed columnar prior β grains with a martensitic structure after the deposition of a single layer. On subsequent depositions the martensitic microstructure decomposes to a colony and basketweave microstructure with a stronger transformation texture. The alpha texture with a colony and basketweave microstructure shows a stronger transformation texture as a result of variant selection. Thus by controlling the cooling rate of the build from the β transus it is possible to control the alpha transformation texture.« less

  4. Land use classification using texture information in ERTS-A MSS imagery

    NASA Technical Reports Server (NTRS)

    Haralick, R. M. (Principal Investigator); Shanmugam, K. S.; Bosley, R.

    1973-01-01

    The author has identified the following significant results. Preliminary digital analysis of ERTS-1 MSS imagery reveals that the textural features of the imagery are very useful for land use classification. A procedure for extracting the textural features of ERTS-1 imagery is presented and the results of a land use classification scheme based on the textural features are also presented. The land use classification algorithm using textural features was tested on a 5100 square mile area covered by part of an ERTS-1 MSS band 5 image over the California coastline. The image covering this area was blocked into 648 subimages of size 8.9 square miles each. Based on a color composite of the image set, a total of 7 land use categories were identified. These land use categories are: coastal forest, woodlands, annual grasslands, urban areas, large irrigated fields, small irrigated fields, and water. The automatic classifier was trained to identify the land use categories using only the textural characteristics of the subimages; 75 percent of the subimages were assigned correct identifications. Since texture and spectral features provide completely different kinds of information, a significant increase in identification accuracy will take place when both features are used together.

  5. Computerized Liquid Crystal Phase Identification by Neural Networks Analysis of Polarizing Microscopy Textures

    NASA Astrophysics Data System (ADS)

    Karaszi, Zoltan; Konya, Andrew; Dragan, Feodor; Jakli, Antal; CPIP/LCI; CS Dept. of Kent State University Collaboration

    Polarizing optical microscopy (POM) is traditionally the best-established method of studying liquid crystals, and using POM started already with Otto Lehman in 1890. An expert, who is familiar with the science of optics of anisotropic materials and typical textures of liquid crystals, can identify phases with relatively large confidence. However, for unambiguous identification usually other expensive and time-consuming experiments are needed. Replacement of the subjective and qualitative human eye-based liquid crystal texture analysis with quantitative computerized image analysis technique started only recently and were used to enhance the detection of smooth phase transitions, determine order parameter and birefringence of specific liquid crystal phases. We investigate if the computer can recognize and name the phase where the texture was taken. To judge the potential of reliable image recognition based on this procedure, we used 871 images of liquid crystal textures belonging to five main categories: Nematic, Smectic A, Smectic C, Cholesteric and Crystal, and used a Neural Network Clustering Technique included in the data mining software package in Java ``WEKA''. A neural network trained on a set of 827 LC textures classified the remaining 44 textures with 80% accuracy.

  6. Texture Evolution During Laser Direct Metal Deposition of Ti-6Al-4V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Niyanth; Chaudhary, Anil; Nandwana, Peeyush

    Titanium alloys are used in a wide variety of high performance applications and hence the processing of the titanium and the resulting microstructures after additive manufacturing has received significant attention. During additive manufacturing the processing route involves the transition from a liquid to solid state. The addition of successive layers results in a complex microstructure due to solid-state transformations. The current study focuses on understanding the phase transformations and relate it to the transformation texture in Ti-6Al-4V to identify conditions leading to a strong alpha transformation texture. The as deposited builds were characterized using optical microscopy and electron backscattered diffraction.more » The results showed columnar prior β grains with a martensitic structure after the deposition of a single layer. On subsequent depositions the martensitic microstructure decomposes to a colony and basketweave microstructure with a stronger transformation texture. The alpha texture with a colony and basketweave microstructure shows a stronger transformation texture as a result of variant selection. Thus by controlling the cooling rate of the build from the β transus it is possible to control the alpha transformation texture.« less

  7. Adjoint-based optimization of mechanical performance in polycrystalline materials and structures through texture control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Grace; Brown, Judith Alice; Bishop, Joseph E.

    The texture of a polycrystalline material refers to the preferred orientation of the grains within the material. In metallic materials, texture can significantly affect the mechanical properties such as elastic moduli, yield stress, strain hardening, and fracture toughness. Recent advances in additive manufacturing of metallic materials offer the possibility in the not too distant future of controlling the spatial variation of texture. In this work, we investigate the advantages, in terms of mechanical performance, of allowing the texture to vary spatially. We use an adjoint-based gradient optimization algorithm within a finite element solver (COMSOL) to optimize several engineering quantities ofmore » interest in a simple structure (hole in a plate) and loading (uniaxial tension) condition. As a first step to general texture optimization, we consider the idealized case of a pure fiber texture in which the homogenized properties are transversely isotropic. In this special case, the only spatially varying design variables are the three Euler angles that prescribe the orientation of the homogenized material at each point within the structure. This work paves a new way to design metallic materials for tunable mechanical properties at the microstructure level.« less

  8. Comparison of the properties of tonpilz transducers fabricated with 001 fiber-textured lead magnesium niobate-lead titanate ceramic and single crystals.

    PubMed

    Brosnan, Kristen H; Messing, Gary L; Markley, Douglas C; Meyer, Richard J

    2009-11-01

    Tonpilz transducers are fabricated from 001 fiber-textured 0.72Pb(Mg(1/3)Nb(2/3))O(3)-0.28PbTiO(3) (PMN-28PT) ceramics, obtained by the templated grain growth process, and PMN-28PT ceramic and Bridgman grown single crystals of the same composition. In-water characterization of single element transducers shows higher source levels, higher in-water coupling, and more usable bandwidth for the 81 vol % textured PMN-28PT device than for the ceramic PMN-28PT element. The 81 vol % textured PMN-28PT tonpilz element measured under large signals shows linearity in sound pressure levels up to 0.23 MV/m drive field but undergoes a phase transition due to a lowered transition temperature from the SrTiO(3) template particles. Although the textured ceramic performs well in this application, it could be further improved with compositional tailoring to raise the transition temperature and better processing to improve the texture quality. With these improvements textured piezoelectric ceramics will be viable options for medical ultrasound, actuators, and sonar applications because of their ease of processing, compositional homogeneity, and potentially lower cost than single crystal.

  9. Electric properties of a textured BiNaKTiO3 ceramic for energy harvesting system

    NASA Astrophysics Data System (ADS)

    Lim, D. H.; Song, T. K.; Lee, D. S.; Jeong, S. J.; Kim, Min-Soo; Song, Jae-Sung

    2012-01-01

    Piezoelectric ceramics with microstructural texturing were fabricated and evaluated to investigate their possibility for use in piezoelectric energy harvest devices in response to external mechanical impact. The microstructural evolution and properties of a Bi0.5(Na0.425K0.075) TiO3 (BNKT) ceramic material with platelike Bi4Ti3O12 (BiT) were investigated. The platelike Bi4Ti3O12 (BiT) was used as a template to induce grain growth under a proper heat treatment. The textured BNKTs were fabricated and heated at 1150 °C for 10 h. They exhibited <001>-oriented large grains and improved of ferroelectric properties. The textured microstructure was due to the occurrence of grain growth around the templates. When subjected to a low stress of 0.8 MPa, the textured BNKT had a slightly larger voltage and power than the randomly-oriented BNKT. Meanwhile, when high stresses over 2 MPa were applied, the voltage and the power of the textured specimen were larger than those of the randomly-oriented specimen. The microstructure textured along the <100> direction may contribute to the improved power generation.

  10. Fabrication and Piezoelectric Properties of Textured (Bi1/2K1/2)TiO3 Ferroelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Nagata, Hajime; Saitoh, Masahiro; Hiruma, Yuji; Takenaka, Tadashi

    2010-09-01

    Textured (Bi1/2K1/2)TiO3 (BKT) ceramics were prepared by a reactive templated grain growth (RTGG) method to improve their piezoelectric properties. Also, a hot-pressing (HP) method was modified on the basis of RTGG method to obtain dense ceramics and promote the grain orientation. The textured BKT ceramics prepared by the RTGG and HP methods exhibited a relatively high orientation factor F of 0.82 and a high density ratio of 95-99%. Scanning electron microscopy (SEM) micrographs of the textured HP-BKT indicated a textured and poreless microstructure. In addition, the resistivity of the textured HP-BKT was 1.73×1013 Ω·cm. The piezoelectric strain constant d33 determined by means of resonance and antiresonance method was 125 pC/N for the direction parallel to the sheet-stacking direction of the RTGG process. From the measurement of field-induced stain, the normalized d33* (=Smax/Emax) at 80 kV/cm were 127 and 238 pm/V on the randomly oriented and textured samples (F=0.82) for the (∥) direction, respectively.

  11. Instrumental textural perception of food and comparative biomaterials

    USDA-ARS?s Scientific Manuscript database

    Texture is an important food quality attribute affecting consumer acceptance. Consumers characterize texture as either crispy or crunchy, and the moisture content and internal structure of the products are significant factors in its perception. Exposing an extruded corn snack (ECS), an extruded biod...

  12. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, A.; Budai, J.D.; Kroeger, D.M.; Norton, D.P.; Specht, E.D.; Christen, D.K.

    1999-04-27

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon. 11 figs.

  13. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, A.; Budai, J.D.; Kroeger, D.M.; Norton, D.P.; Specht, E.D.; Christen, D.K.

    1998-04-21

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon. 11 figs.

  14. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, A.; Budai, J.D.; Kroeger, D.M.; Norton, D.P.; Specht, E.D.; Christen, D.K.

    1998-04-14

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon. 11 figs.

  15. Optical devices featuring textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC

    2011-10-11

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  16. Optical devices featuring textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC

    2012-08-07

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  17. Orientation selectivity based structure for texture classification

    NASA Astrophysics Data System (ADS)

    Wu, Jinjian; Lin, Weisi; Shi, Guangming; Zhang, Yazhong; Lu, Liu

    2014-10-01

    Local structure, e.g., local binary pattern (LBP), is widely used in texture classification. However, LBP is too sensitive to disturbance. In this paper, we introduce a novel structure for texture classification. Researches on cognitive neuroscience indicate that the primary visual cortex presents remarkable orientation selectivity for visual information extraction. Inspired by this, we investigate the orientation similarities among neighbor pixels, and propose an orientation selectivity based pattern for local structure description. Experimental results on texture classification demonstrate that the proposed structure descriptor is quite robust to disturbance.

  18. Standardizing texture and facies codes for a process-based classification of clastic sediment and rock

    USGS Publications Warehouse

    Farrell, K.M.; Harris, W.B.; Mallinson, D.J.; Culver, S.J.; Riggs, S.R.; Pierson, J.; ,; Lautier, J.C.

    2012-01-01

    Proposed here is a universally applicable, texturally based classification of clastic sediment that is independent from composition, cementation, and geologic environment, is closely allied to process sedimentology, and applies to all compartments in the source-to-sink system. The classification is contingent on defining the term "clastic" so that it is independent from composition or origin and includes any particles or grains that are subject to erosion, transportation, and deposition. Modifications to Folk's (1980) texturally based classification that include applying new assumptions and defining a broader array of textural fields are proposed to accommodate this. The revised ternary diagrams include additional textural fields that better define poorly sorted and coarse-grained deposits, so that all end members (gravel, sand, and mud size fractions) are included in textural codes. Revised textural fields, or classes, are based on a strict adherence to volumetric estimates of percentages of gravel, sand, and mud size grain populations, which by definition must sum to 100%. The new classification ensures that descriptors are applied consistently to all end members in the ternary diagram (gravel, sand, and mud) according to several rules, and that none of the end members are ignored. These modifications provide bases for standardizing vertical displays of texture in graphic logs, lithofacies codes, and their derivatives- hydrofacies. Hydrofacies codes are nondirectional permeability indicators that predict aquifer or reservoir potential. Folk's (1980) ternary diagram for fine-grained clastic sediments (sand, silt, and clay size fractions) is also revised to preserve consistency with the revised diagram for gravel, sand, and mud. Standardizing texture ensures that the principles of process sedimentology are consistently applied to compositionally variable rock sequences, such as mixed carbonate-siliciclastic ramp settings, and the extreme ends of depositional systems.

  19. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt.% Si electrical steel doped with cerium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hao-Ze, E-mail: lhzqq83@163.com; Liu, Hai-Tao; Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn

    A 0.3 mm thick non-oriented 6.5 wt.% Si electrical steel sheet doped with cerium is produced by twin-roll strip casting, hot rolling, warm rolling and annealing. A detailed study of the cerium precipitates in the as-cast strip, microstructure and texture evolution at different processing stages is carried out by electron probe micro-analysis, optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. Grain interior distributing precipitates identified as Ce-oxides, Ce-oxysulfides and Ce-phosphides, and boundary distributing Ce-oxides and Ce-phosphides are observed in the as-cast strip. The initial as-cast strip is characterized by a much finer solidification microstructure and dominated by obvious //ND texture through the strip thickness. After hot and warm rolling, inhomogeneous microstructure containing large amounts of in-grain shear bands is characterized by mixed < 110 >//RD and < 111 >//ND textures. The texture of the annealed sheet with a relatively large average grain size is far more optimized by the domination of the beneficial cube, rotated cube, (001)< 120 > to (001)< 130 > and Goss texture components, and the elimination of the detrimental γ-fiber texture, leading to a superior magnetic induction and improved iron loss. - Highlights: • An Fe–6.5 wt.% Si as-cast strip doped with cerium was produced. • A thin warm rolled sheet with limited edge cracks was obtained. • Microstructure and texture evolution at each stage were investigated. • Strong λ-fiber and Goss recrystallization textures were formed. • The magnetic properties of the annealed sheet were significantly improved.« less

  20. Validation of CBCT for the computation of textural biomarkers

    NASA Astrophysics Data System (ADS)

    Paniagua, Beatriz; Ruellas, Antonio C.; Benavides, Erika; Marron, Steve; Wolford, Larry; Cevidanes, Lucia

    2015-03-01

    Osteoarthritis (OA) is associated with significant pain and 42.6% of patients with TMJ disorders present with evidence of TMJ OA. However, OA diagnosis and treatment remain controversial, since there are no clear symptoms of the disease. The subchondral bone in the TMJ is believed to play a major role in the progression of OA. We hypothesize that the textural imaging biomarkers computed in high resolution Conebeam CT (hr- CBCT) and μCT scans are comparable. The purpose of this study is to test the feasibility of computing textural imaging biomarkers in-vivo using hr-CBCT, compared to those computed in μCT scans as our Gold Standard. Specimens of condylar bones obtained from condylectomies were scanned using μCT and hr- CBCT. Nine different textural imaging biomarkers (four co-occurrence features and five run-length features) from each pair of μCT and hr-CBCT were computed and compared. Pearson correlation coefficients were computed to compare textural biomarkers values of μCT and hr-CBCT. Four of the nine computed textural biomarkers showed a strong positive correlation between biomarkers computed in μCT and hr-CBCT. Higher correlations in Energy and Contrast, and in GLN (grey-level non-uniformity) and RLN (run length non-uniformity) indicate quantitative texture features can be computed reliably in hr-CBCT, when compared with μCT. The textural imaging biomarkers computed in-vivo hr-CBCT have captured the structure, patterns, contrast between neighboring regions and uniformity of healthy and/or pathologic subchondral bone. The ability to quantify bone texture non-invasively now makes it possible to evaluate the progression of subchondral bone alterations, in TMJ OA.

  1. Surface Textural Analysis of Quartz Grains from Modern Point Bar Deposits in Lower Reaches of the Yellow River

    NASA Astrophysics Data System (ADS)

    Cheng, Yong; Liu, Cong; Lu, Ping; Zhang, Yu; Nie, Qi; Wen, Yiming

    2018-01-01

    The surfaces of quartz grains contain characteristic textures formed during the process of transport, due to their stable physical and chemical properties. The surface textures include the information about source area, transporting force, sedimentary environment and evolution history of sediment. Surface textures of quartz grains from modern point bar deposits in the lower reaches of the Yellow River are observed and studied by scanning electron microscopy (SEM). Results indicate that there are 22 kinds of surface textures. The overall surface morphology of quartz grains shows short transporting time and distance and weak abrasive action of the river water. The combined surface textures caused by mechanical action indicate that quartz grains are transporting in a high-energy hydrodynamic condition and suffer a strong mechanical impact and abrasion. The common solution pits prove that the chemical property of transportation medium is very active and quartz grains receive an obvious chemical action. The combination of these surface textures can be an identification mark of fluvial environment, and that is: quartz grains are main subangular outline, whose roundness is higher with the farther motion distance; Surface fluctuation degree of quartz grains is relatively high, and gives priority to high and medium relief; V-shaped percussion marks are very abundant caused by mechanical action; The conchoidal of different sizes and steps are common-developed with paragenesis relationship; Solution pits are common-developed as well. The study makes up for the blank of surface textures analysis of quartz grains from modern fluvial deposits in China. It provides new ideas and evidence for studies of the sedimentary process and environmental significance, although the deep meanings of these micro textures remain to be further researched.

  2. Texture-Based Analysis of 100 MR Examinations of Head and Neck Tumors - Is It Possible to Discriminate Between Benign and Malignant Masses in a Multicenter Trial?

    PubMed

    Fruehwald-Pallamar, J; Hesselink, J R; Mafee, M F; Holzer-Fruehwald, L; Czerny, C; Mayerhoefer, M E

    2016-02-01

    To evaluate whether texture-based analysis of standard MRI sequences can help in the discrimination between benign and malignant head and neck tumors. The MR images of 100 patients with a histologically clarified head or neck mass, from two different institutions, were analyzed. Texture-based analysis was performed using texture analysis software, with region of interest measurements for 2 D and 3 D evaluation independently for all axial sequences. COC, RUN, GRA, ARM, and WAV features were calculated for all ROIs. 10 texture feature subsets were used for a linear discriminant analysis, in combination with k-nearest-neighbor classification. Benign and malignant tumors were compared with regard to texture-based values. There were differences in the images from different field-strength scanners, as well as from different vendors. For the differentiation of benign and malignant tumors, we found differences on STIR and T2-weighted images for 2 D, and on contrast-enhanced T1-TSE with fat saturation for 3 D evaluation. In a separate analysis of the subgroups 1.5 and 3 Tesla, more discriminating features were found. Texture-based analysis is a useful tool in the discrimination of benign and malignant tumors when performed on one scanner with the same protocol. We cannot recommend this technique for the use of multicenter studies with clinical data. 2 D/3 D texture-based analysis can be performed in head and neck tumors. Texture-based analysis can differentiate between benign and malignant masses. Analyzed MR images should originate from one scanner with an identical protocol. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Model for texture evolution in cold rolling of 2.4 wt.-% Si non-oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Wei, X.; Hojda, S.; Dierdorf, J.; Lohmar, J.; Hirt, G.

    2017-10-01

    Iron loss and limited magnetic flux density are constraints for NGO electrical steel used in highly efficient electrical machinery cores. The most important factors that affect these properties are the final microstructure and the texture of the NGO steel. Reviewing the whole process chain, cold rolling plays an important role because the recrystallization and grain growth during the final heat treatment can be strongly affected by the stored energy and microstructure of cold rolling, and some texture characteristics can be inherited as well. Therefore, texture evolution during cold rolling of NGO steel is worth a detailed investigation. In this paper, texture evolution in cold rolling of non-oriented (NGO) electrical steel is simulated with a crystal plasticity finite element method (CPFEM) model. In previous work, a CPFEM model has been implemented for simulating the texture evolution with periodic boundary conditions and a phenomenological constitutive law. In a first step the microstructure in the core of the workpiece was investigated and mapped to a representative volume element to predict the texture evolution. In this work an improved version of the CPFEM model is described that better reflects the texture evolution in cold rolling of NGO electrical steel containing 2.4 wt.-% Si. This is achieved by applying the deformation gradient and calibrating the flow curve within the CPFEM model. Moreover, the evolution of dislocation density is calculated and visualized in this model. An in depth comparison of the numerical and experimental results reveals, that the improved CPFEM model is able to represent the important characteristics of texture evolution in the core of the workpiece during cold rolling with high precision.

  4. Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase 18F-FET PET accuracy without dynamic scans.

    PubMed

    Lohmann, Philipp; Stoffels, Gabriele; Ceccon, Garry; Rapp, Marion; Sabel, Michael; Filss, Christian P; Kamp, Marcel A; Stegmayr, Carina; Neumaier, Bernd; Shah, Nadim J; Langen, Karl-Josef; Galldiks, Norbert

    2017-07-01

    We investigated the potential of textural feature analysis of O-(2-[ 18 F]fluoroethyl)-L-tyrosine ( 18 F-FET) PET to differentiate radiation injury from brain metastasis recurrence. Forty-seven patients with contrast-enhancing brain lesions (n = 54) on MRI after radiotherapy of brain metastases underwent dynamic 18 F-FET PET. Tumour-to-brain ratios (TBRs) of 18 F-FET uptake and 62 textural parameters were determined on summed images 20-40 min post-injection. Tracer uptake kinetics, i.e., time-to-peak (TTP) and patterns of time-activity curves (TAC) were evaluated on dynamic PET data from 0-50 min post-injection. Diagnostic accuracy of investigated parameters and combinations thereof to discriminate between brain metastasis recurrence and radiation injury was compared. Diagnostic accuracy increased from 81 % for TBR mean alone to 85 % when combined with the textural parameter Coarseness or Short-zone emphasis. The accuracy of TBR max alone was 83 % and increased to 85 % after combination with the textural parameters Coarseness, Short-zone emphasis, or Correlation. Analysis of TACs resulted in an accuracy of 70 % for kinetic pattern alone and increased to 83 % when combined with TBR max . Textural feature analysis in combination with TBRs may have the potential to increase diagnostic accuracy for discrimination between brain metastasis recurrence and radiation injury, without the need for dynamic 18 F-FET PET scans. • Textural feature analysis provides quantitative information about tumour heterogeneity • Textural features help improve discrimination between brain metastasis recurrence and radiation injury • Textural features might be helpful to further understand tumour heterogeneity • Analysis does not require a more time consuming dynamic PET acquisition.

  5. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir; Shamanian, Morteza; Eskandarian, Masoomeh

    In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreasedmore » the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.« less

  6. Computational study of textured ferroelectric polycrystals: Dielectric and piezoelectric properties of template-matrix composites

    NASA Astrophysics Data System (ADS)

    Zhou, Jie E.; Yan, Yongke; Priya, Shashank; Wang, Yu U.

    2017-01-01

    Quantitative relationships between processing, microstructure, and properties in textured ferroelectric polycrystals and the underlying responsible mechanisms are investigated by phase field modeling and computer simulation. This study focuses on three important aspects of textured ferroelectric ceramics: (i) grain microstructure evolution during templated grain growth processing, (ii) crystallographic texture development as a function of volume fraction and seed size of the templates, and (iii) dielectric and piezoelectric properties of the obtained template-matrix composites of textured polycrystals. Findings on the third aspect are presented here, while an accompanying paper of this work reports findings on the first two aspects. In this paper, the competing effects of crystallographic texture and template seed volume fraction on the dielectric and piezoelectric properties of ferroelectric polycrystals are investigated. The phase field model of ferroelectric composites consisting of template seeds embedded in matrix grains is developed to simulate domain evolution, polarization-electric field (P-E), and strain-electric field (ɛ-E) hysteresis loops. The coercive field, remnant polarization, dielectric permittivity, piezoelectric coefficient, and dissipation factor are studied as a function of grain texture and template seed volume fraction. It is found that, while crystallographic texture significantly improves the polycrystal properties towards those of single crystals, a higher volume fraction of template seeds tends to decrease the electromechanical properties, thus canceling the advantage of ferroelectric polycrystals textured by templated grain growth processing. This competing detrimental effect is shown to arise from the composite effect, where the template phase possesses material properties inferior to the matrix phase, causing mechanical clamping and charge accumulation at inter-phase interfaces between matrix and template inclusions. The computational results are compared with complementary experiments, where good agreement is obtained.

  7. Evolution of plastic anisotropy for high-strain-rate computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, S.K.; Maudlin, P.J.

    1994-12-01

    A model for anisotropic material strength, and for changes in the anisotropy due to plastic strain, is described. This model has been developed for use in high-rate, explicit, Lagrangian multidimensional continuum-mechanics codes. The model handles anisotropies in single-phase materials, in particular the anisotropies due to crystallographic texture--preferred orientations of the single-crystal grains. Textural anisotropies, and the changes in these anisotropies, depend overwhelmingly no the crystal structure of the material and on the deformation history. The changes, particularly for a complex deformations, are not amenable to simple analytical forms. To handle this problem, the material model described here includes a texturemore » code, or micromechanical calculation, coupled to a continuum code. The texture code updates grain orientations as a function of tensor plastic strain, and calculates the yield strength in different directions. A yield function is fitted to these yield points. For each computational cell in the continuum simulation, the texture code tracks a particular set of grain orientations. The orientations will change due to the tensor strain history, and the yield function will change accordingly. Hence, the continuum code supplies a tensor strain to the texture code, and the texture code supplies an updated yield function to the continuum code. Since significant texture changes require relatively large strains--typically, a few percent or more--the texture code is not called very often, and the increase in computer time is not excessive. The model was implemented, using a finite-element continuum code and a texture code specialized for hexagonal-close-packed crystal structures. The results for several uniaxial stress problems and an explosive-forming problem are shown.« less

  8. Analysis of the right-handed Majorana neutrino mass in an S U (4 )×S U (2 )L×S U (2 )R Pati-Salam model with democratic texture

    NASA Astrophysics Data System (ADS)

    Yang, Masaki J. S.

    2017-03-01

    In this paper, we attempt to build a unified model with the democratic texture, that has some unification between up-type Yukawa interactions Yν and Yu . Since the S3 L×S3 R flavor symmetry is chiral, the unified gauge group is assumed to be Pati-Salam type S U (4 )c×S U (2 )L×S U (2 )R. The breaking scheme of the flavor symmetry is considered to be S3 L×S3 R→S2 L×S2 R→0 . In this picture, the four-zero texture is desirable for realistic masses and mixings. This texture is realized by a specific representation for the second breaking of the S3 L×S3 R flavor symmetry. Assuming only renormalizable Yukawa interactions, type-I seesaw mechanism, and neglecting C P phases for simplicity, the right-handed neutrino mass matrix MR can be reconstructed from low energy input values. Numerical analysis shows that the texture of MR basically behaves like the "waterfall texture." Since MR tends to be the "cascade texture" in the democratic texture approach, a model with type-I seesaw and up-type Yukawa unification Yν≃Yu basically requires fine-tunings between parameters. Therefore, it seems to be more realistic to consider universal waterfall textures for both Yf and MR, e.g., by the radiative mass generation or the Froggatt-Nielsen mechanism. Moreover, analysis of eigenvalues shows that the lightest mass eigenvalue MR 1 is too light to achieve successful thermal leptogenesis. Although the resonant leptogenesis might be possible, it also requires fine-tunings of parameters.

  9. Growth and characterization of textured well-faceted ZnO on planar Si(100), planar Si(111), and textured Si(100) substrates for solar cell applications.

    PubMed

    Tsai, Chin-Yi; Lai, Jyong-Di; Feng, Shih-Wei; Huang, Chien-Jung; Chen, Chien-Hsun; Yang, Fann-Wei; Wang, Hsiang-Chen; Tu, Li-Wei

    2017-01-01

    In this work, textured, well-faceted ZnO materials grown on planar Si(100), planar Si(111), and textured Si(100) substrates by low-pressure chemical vapor deposition (LPCVD) were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and cathode luminescence (CL) measurements. The results show that ZnO grown on planar Si(100), planar Si(111), and textured Si(100) substrates favor the growth of ZnO(110) ridge-like, ZnO(002) pyramid-like, and ZnO(101) pyramidal-tip structures, respectively. This could be attributed to the constraints of the lattice mismatch between the ZnO and Si unit cells. The average grain size of ZnO on the planar Si(100) substrate is slightly larger than that on the planar Si(111) substrate, while both of them are much larger than that on the textured Si(100) substrate. The average grain sizes (about 10-50 nm) of the ZnO grown on the different silicon substrates decreases with the increase of their strains. These results are shown to strongly correlate with the results from the SEM, AFM, and CL as well. The reflectance spectra of these three samples show that the antireflection function provided by theses samples mostly results from the nanometer-scaled texture of the ZnO films, while the micrometer-scaled texture of the Si substrate has a limited contribution. The results of this work provide important information for optimized growth of textured and well-faceted ZnO grown on wafer-based silicon solar cells and can be utilized for efficiency enhancement and optimization of device materials and structures, such as heterojunction with intrinsic thin layer (HIT) solar cells.

  10. Development of Microstructure and Crystallographic Texture in a Double-Sided Friction Stir Welded Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Rahimi, S.; Wynne, B. P.; Baker, T. N.

    2017-01-01

    The evolution of microstructure and crystallographic texture has been investigated in double-sided friction stir welded microalloyed steel, using electron backscatter diffraction (EBSD). The microstructure analyses show that the center of stirred zone reached a temperature between Ac1 and Ac3 during FSW, resulting in a dual-phase austenitic/ ferritic microstructure. The temperatures in the thermo-mechanically affected zone and the overlapped area between the first and second weld pass did not exceed the Ac1. The shear generated by the rotation probe occurs in austenitic/ferritic phase field where the austenite portion of the microstructure is transformed to a bainitic ferrite, on cooling. Analysis of crystallographic textures with regard to shear flow lines generated by the probe tool shows the dominance of simple shear components across the whole weld. The austenite texture at Ac1 - Ac3 is dominated by the B { {1bar{1}2} }< 110rangle and bar{B} { {bar{1}1bar{2}} }< bar{1}bar{1}0rangle simple shear texture components, where the bainite phase textures formed on cooling were inherited from the shear textures of the austenite phase with relatively strong variant selection. The ferrite portion of the stirred zone and the ferrites in the thermo-mechanically affected zones and the overlapped area underwent shear deformation with textures dominated by the D1 { {bar{1}bar{1}2} }< 111rangle and D2 { {11bar{2}} }< 111rangle simple shear texture components. The formation of ultrafine equiaxed ferrite with submicron grain size has been observed in the overlapped area between the first and second weld pass. This is due to continuous dynamic strain-induced recrystallization as a result of simultaneous severe shear deformation and drastic undercooling.

  11. An automatically generated texture-based atlas of the lungs

    NASA Astrophysics Data System (ADS)

    Dicente Cid, Yashin; Puonti, Oula; Platon, Alexandra; Van Leemput, Koen; Müller, Henning; Poletti, Pierre-Alexandre

    2018-02-01

    Many pulmonary diseases can be characterized by visual abnormalities on lung CT scans. Some diseases manifest similar defects but require completely different treatments, as is the case for Pulmonary Hypertension (PH) and Pulmonary Embolism (PE): both present hypo- and hyper-perfused regions but with different distribution across the lung and require different treatment protocols. Finding these distributions by visual inspection is not trivial even for trained radiologists who currently use invasive catheterism to diagnose PH. A Computer-Aided Diagnosis (CAD) tool that could facilitate the non-invasive diagnosis of these diseases can benefit both the radiologists and the patients. Most of the visual differences in the parenchyma can be characterized using texture descriptors. Current CAD systems often use texture information but the texture is either computed in a patch-based fashion, or based on an anatomical division of the lung. The difficulty of precisely finding these divisions in abnormal lungs calls for new tools for obtaining new meaningful divisions of the lungs. In this paper we present a method for unsupervised segmentation of lung CT scans into subregions that are similar in terms of texture and spatial proximity. To this extent, we combine a previously validated Riesz-wavelet texture descriptor with a well-known superpixel segmentation approach that we extend to 3D. We demonstrate the feasibility and accuracy of our approach on a simulated texture dataset, and show preliminary results for CT scans of the lung comparing subjects suffering either from PH or PE. The resulting texture-based atlas of individual lungs can potentially help physicians in diagnosis or be used for studying common texture distributions related to other diseases.

  12. Parenchymal texture measures weighted by breast anatomy: preliminary optimization in a case-control study

    NASA Astrophysics Data System (ADS)

    Gastounioti, Aimilia; Keller, Brad M.; Hsieh, Meng-Kang; Conant, Emily F.; Kontos, Despina

    2016-03-01

    Growing evidence suggests that quantitative descriptors of the parenchymal texture patterns hold a valuable role in assessing an individual woman's risk for breast cancer. In this work, we assess the hypothesis that breast cancer risk factors are not uniformly expressed in the breast parenchymal tissue and, therefore, breast-anatomy-weighted parenchymal texture descriptors, where different breasts ROIs have non uniform contributions, may enhance breast cancer risk assessment. To this end, we introduce an automated breast-anatomy-driven methodology which generates a breast atlas, which is then used to produce a weight map that reinforces the contributions of the central and upper-outer breast areas. We incorporate this methodology to our previously validated lattice-based strategy for parenchymal texture analysis. In the framework of a pilot case-control study, including digital mammograms from 424 women, our proposed breast-anatomy-weighted texture descriptors are optimized and evaluated against non weighted texture features, using regression analysis with leave-one-out cross validation. The classification performance is assessed in terms of the area under the curve (AUC) of the receiver operating characteristic. The collective discriminatory capacity of the weighted texture features was maximized (AUC=0.87) when the central breast area was considered more important than the upperouter area, with significant performance improvement (DeLong's test, p-value<0.05) against the non-weighted texture features (AUC=0.82). Our results suggest that breast-anatomy-driven methodologies have the potential to further upgrade the promising role of parenchymal texture analysis in breast cancer risk assessment and may serve as a reference in the design of future studies towards image-driven personalized recommendations regarding women's cancer risk evaluation.

  13. Responses to Orientation Discontinuities in V1 and V2: Physiological Dissociations and Functional Implications

    PubMed Central

    Purpura, Keith P.; Victor, Jonathan D.

    2014-01-01

    Segmenting the visual image into objects is a crucial stage of visual processing. Object boundaries are typically associated with differences in luminance, but discontinuities in texture also play an important role. We showed previously that a subpopulation of neurons in V2 in anesthetized macaques responds to orientation discontinuities parallel to their receptive field orientation. Such single-cell responses could be a neurophysiological correlate of texture boundary detection. Neurons in V1, on the other hand, are known to have contextual response modulations such as iso-orientation surround suppression, which also produce responses to orientation discontinuities. Here, we use pseudorandom multiregion grating stimuli of two frame durations (20 and 40 ms) to probe and compare texture boundary responses in V1 and V2 in anesthetized macaque monkeys. In V1, responses to texture boundaries were observed for only the 40 ms frame duration and were independent of the orientation of the texture boundary. However, in transient V2 neurons, responses to such texture boundaries were robust for both frame durations and were stronger for boundaries parallel to the neuron's preferred orientation. The dependence of these processes on stimulus duration and orientation indicates that responses to texture boundaries in V2 arise independently of contextual modulations in V1. In addition, because the responses in transient V2 neurons are sensitive to the orientation of the texture boundary but those of V1 neurons are not, we suggest that V2 responses are the correlate of texture boundary detection, whereas contextual modulation in V1 serves other purposes, possibly related to orientation “pop-out.” PMID:24599456

  14. Precision of quantitative computed tomography texture analysis using image filtering: A phantom study for scanner variability.

    PubMed

    Yasaka, Koichiro; Akai, Hiroyuki; Mackin, Dennis; Court, Laurence; Moros, Eduardo; Ohtomo, Kuni; Kiryu, Shigeru

    2017-05-01

    Quantitative computed tomography (CT) texture analyses for images with and without filtration are gaining attention to capture the heterogeneity of tumors. The aim of this study was to investigate how quantitative texture parameters using image filtering vary among different computed tomography (CT) scanners using a phantom developed for radiomics studies.A phantom, consisting of 10 different cartridges with various textures, was scanned under 6 different scanning protocols using four CT scanners from four different vendors. CT texture analyses were performed for both unfiltered images and filtered images (using a Laplacian of Gaussian spatial band-pass filter) featuring fine, medium, and coarse textures. Forty-five regions of interest were placed for each cartridge (x) in a specific scan image set (y), and the average of the texture values (T(x,y)) was calculated. The interquartile range (IQR) of T(x,y) among the 6 scans was calculated for a specific cartridge (IQR(x)), while the IQR of T(x,y) among the 10 cartridges was calculated for a specific scan (IQR(y)), and the median IQR(y) was then calculated for the 6 scans (as the control IQR, IQRc). The median of their quotient (IQR(x)/IQRc) among the 10 cartridges was defined as the variability index (VI).The VI was relatively small for the mean in unfiltered images (0.011) and for standard deviation (0.020-0.044) and entropy (0.040-0.044) in filtered images. Skewness and kurtosis in filtered images featuring medium and coarse textures were relatively variable across different CT scanners, with VIs of 0.638-0.692 and 0.430-0.437, respectively.Various quantitative CT texture parameters are robust and variable among different scanners, and the behavior of these parameters should be taken into consideration.

  15. Validation of CBCT for the computation of textural biomarkers

    PubMed Central

    Paniagua, Beatriz; Ruellas, Antonio Carlos; Benavides, Erika; Marron, Steve; Woldford, Larry; Cevidanes, Lucia

    2015-01-01

    Osteoarthritis (OA) is associated with significant pain and 42.6% of patients with TMJ disorders present with evidence of TMJ OA. However, OA diagnosis and treatment remain controversial, since there are no clear symptoms of the disease. The subchondral bone in the TMJ is believed to play a major role in the progression of OA. We hypothesize that the textural imaging biomarkers computed in high resolution Conebeam CT (hr-CBCT) and μCT scans are comparable. The purpose of this study is to test the feasibility of computing textural imaging biomarkers in-vivo using hr-CBCT, compared to those computed in μCT scans as our Gold Standard. Specimens of condylar bones obtained from condylectomies were scanned using μCT and hr-CBCT. Nine different textural imaging biomarkers (four co-occurrence features and five run-length features) from each pair of μCT and hr-CBCT were computed and compared. Pearson correlation coefficients were computed to compare textural biomarkers values of μCT and hr-CBCT. Four of the nine computed textural biomarkers showed a strong positive correlation between biomarkers computed in μCT and hr-CBCT. Higher correlations in Energy and Contrast, and in GLN (grey-level non-uniformity) and RLN (run length non-uniformity) indicate quantitative texture features can be computed reliably in hr-CBCT, when compared with μCT. The textural imaging biomarkers computed in-vivo hr-CBCT have captured the structure, patterns, contrast between neighboring regions and uniformity of healthy and/or pathologic subchondral bone. The ability to quantify bone texture non-invasively now makes it possible to evaluate the progression of subchondral bone alterations, in TMJ OA. PMID:26085710

  16. Validation of CBCT for the computation of textural biomarkers.

    PubMed

    Paniagua, Beatriz; Ruellas, Antonio Carlos; Benavides, Erika; Marron, Steve; Woldford, Larry; Cevidanes, Lucia

    2015-03-17

    Osteoarthritis (OA) is associated with significant pain and 42.6% of patients with TMJ disorders present with evidence of TMJ OA. However, OA diagnosis and treatment remain controversial, since there are no clear symptoms of the disease. The subchondral bone in the TMJ is believed to play a major role in the progression of OA. We hypothesize that the textural imaging biomarkers computed in high resolution Conebeam CT (hr-CBCT) and μCT scans are comparable. The purpose of this study is to test the feasibility of computing textural imaging biomarkers in-vivo using hr-CBCT, compared to those computed in μCT scans as our Gold Standard. Specimens of condylar bones obtained from condylectomies were scanned using μCT and hr-CBCT. Nine different textural imaging biomarkers (four co-occurrence features and five run-length features) from each pair of μCT and hr-CBCT were computed and compared. Pearson correlation coefficients were computed to compare textural biomarkers values of μCT and hr-CBCT. Four of the nine computed textural biomarkers showed a strong positive correlation between biomarkers computed in μCT and hr-CBCT. Higher correlations in Energy and Contrast, and in GLN (grey-level non-uniformity) and RLN (run length non-uniformity) indicate quantitative texture features can be computed reliably in hr-CBCT, when compared with μCT. The textural imaging biomarkers computed in-vivo hr-CBCT have captured the structure, patterns, contrast between neighboring regions and uniformity of healthy and/or pathologic subchondral bone. The ability to quantify bone texture non-invasively now makes it possible to evaluate the progression of subchondral bone alterations, in TMJ OA.

  17. Enhanced Line Integral Convolution with Flow Feature Detection

    NASA Technical Reports Server (NTRS)

    Lane, David; Okada, Arthur

    1996-01-01

    The Line Integral Convolution (LIC) method, which blurs white noise textures along a vector field, is an effective way to visualize overall flow patterns in a 2D domain. The method produces a flow texture image based on the input velocity field defined in the domain. Because of the nature of the algorithm, the texture image tends to be blurry. This sometimes makes it difficult to identify boundaries where flow separation and reattachments occur. We present techniques to enhance LIC texture images and use colored texture images to highlight flow separation and reattachment boundaries. Our techniques have been applied to several flow fields defined in 3D curvilinear multi-block grids and scientists have found the results to be very useful.

  18. Texture and structure contribution to low-temperature plasticity enhancement of Mg-Al-Zn-Mn Alloy MA2-1hp after ECAP and annealing

    NASA Astrophysics Data System (ADS)

    Serebryany, V. N.; D'yakonov, G. S.; Kopylov, V. I.; Salishchev, G. A.; Dobatkin, S. V.

    2013-05-01

    Equal channel angular pressing (ECAP) in magnesium alloys due to severe plastic shear deformations provides both grain refinement and the slope of the initial basal texture at 40°-50° to the pressing direction. These changes in microstructure and texture contribute to the improvement of low-temperature plasticity of the alloys. Quantitative texture X-ray diffraction analysis and diffraction of backscattered electrons are used to study the main textural and structural factors responsible for enhanced low-temperature plasticity based on the example of magnesium alloy MA2-1hp of the Mg-Al-Zn-Mn system. The possible mechanisms of deformation that lead to this positive effect are discussed.

  19. Texture of Frozen Food

    NASA Astrophysics Data System (ADS)

    Wani, Kohmei

    Quantitative determination of textural quality of frozen food due to freezing and storage conditions is complicated,since the texture is consisted of multi-dimensiona1 factors. The author reviewed the importance of texture in food quality and the factors which is proposed by a priori estimation. New classification of expression words of textural properties by subjective evaluation and an application of four elements mechanical model for analysis of physical characteristics was studied on frozen meat patties. Combination of freezing-thawing condition on the subjective properties and physiochemical characteristics of beef lean meat and hamachi fish (Yellow-tail) meat was studied. Change of the plasticity and the deformability of these samples differed by freezing-thawing rate and cooking procedure. Also optimum freezing-thawing condition was differed from specimens.

  20. A comparison between Warner-Bratzler shear force measurement and texture profile analysis of meat and meat products: a review

    NASA Astrophysics Data System (ADS)

    Novaković, S.; Tomašević, I.

    2017-09-01

    Texture is one of the most important characteristics of meat and we can explain it as the human physiological-psychological awareness of a number of rheological and other properties of foods and their relations. In this paper, we discuss instrumental measurement of texture by Warner-Bratzler shear force (WBSF) and texture profile analysis (TPA). The conditions for using the device are detailed in WBSF measurements, and the influence of different parameters on the execution of the method and final results are shown. After that, the main disadvantages are reflected in the non-standardized method. Also, we introduce basic texture parameters which connect and separate TPA and WBSF methods and mention contemporary methods with their main advantage.

  1. Enhanced facial texture illumination normalization for face recognition.

    PubMed

    Luo, Yong; Guan, Ye-Peng

    2015-08-01

    An uncontrolled lighting condition is one of the most critical challenges for practical face recognition applications. An enhanced facial texture illumination normalization method is put forward to resolve this challenge. An adaptive relighting algorithm is developed to improve the brightness uniformity of face images. Facial texture is extracted by using an illumination estimation difference algorithm. An anisotropic histogram-stretching algorithm is proposed to minimize the intraclass distance of facial skin and maximize the dynamic range of facial texture distribution. Compared with the existing methods, the proposed method can more effectively eliminate the redundant information of facial skin and illumination. Extensive experiments show that the proposed method has superior performance in normalizing illumination variation and enhancing facial texture features for illumination-insensitive face recognition.

  2. Coupled crystal orientation-size effects on the strength of nano crystals

    PubMed Central

    Yuan, Rui; Beyerlein, Irene J.; Zhou, Caizhi

    2016-01-01

    We study the combined effects of grain size and texture on the strength of nanocrystalline copper (Cu) and nickel (Ni) using a crystal-plasticity based mechanics model. Within the model, slip occurs in discrete slip events exclusively by individual dislocations emitted statistically from the grain boundaries. We show that a Hall-Petch relationship emerges in both initially texture and non-textured materials and our values are in agreement with experimental measurements from numerous studies. We find that the Hall-Petch slope increases with texture strength, indicating that preferred orientations intensify the enhancements in strength that accompany grain size reductions. These findings reveal that texture is too influential to be neglected when analyzing and engineering grain size effects for increasing nanomaterial strength. PMID:27185364

  3. Application of inulin in cheese as prebiotic, fat replacer and texturizer: a review.

    PubMed

    Karimi, Reza; Azizi, Mohammad Hossein; Ghasemlou, Mehran; Vaziri, Moharam

    2015-03-30

    Inulin is a food ingredient that belongs to a class of carbohydrates known as fructans. Nutritionally it has functional properties and health-promoting effects that include reduced calorie value, dietary fiber and prebiotic effects. Inulin is increasingly used in industrially processed dairy and non-dairy products because it is a bulking agent for use in fat replacement, textural modification and organoleptic improvement. Addition of inulin to different kinds of cheese can be beneficial in the manufacture of a reduced- or low-fat, texturized, symbiotic product. This paper gives an overview of some aspects of the microstructural, textural, rheological, prebiotic and sensorial effects of inulin incorporated in cheese as fat replacer, prebiotic and texture modifier. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Soil texture classification algorithm using RGB characteristics of soil images

    USDA-ARS?s Scientific Manuscript database

    Soil texture has an important influence on agriculture, affecting crop selection, movement of nutrients and water, soil electrical conductivity, and crop growth. Soil texture has traditionally been determined in the laboratory using pipette and hydrometer methods that require a considerable amount o...

  5. Chemical constituents of Sweetpotato genotypes in relation to textural characteristics of processed French fries

    USDA-ARS?s Scientific Manuscript database

    Sweetpotato French fries (SPFF) are growing in popularity but limited information is available on SPFF textural properties in relation to chemical composition. This study aimed to investigate the relationship between chemical components of different sweetpotato varieties and textural characteristics...

  6. Cool Polar Bears: Dabbing on the Texture

    ERIC Educational Resources Information Center

    O'Connell, Jean

    2011-01-01

    In this article, the author describes how her second-graders created their cool polar bears. The students used the elements of shape and texture to create the bears. They used Monet's technique of dabbing paint so as to give the bear some texture on his fur.

  7. Finite element simulation of texture evolution and Swift effect in NiAl under torsion

    NASA Astrophysics Data System (ADS)

    Böhlke, Thomas; Glüge, Rainer; Klöden, Burghardt; Skrotzki, Werner; Bertram, Albrecht

    2007-09-01

    The texture evolution and the Swift effect in NiAl under torsion at 727 °C are studied by finite element simulations for two different initial textures. The material behaviour is modelled by an elastic-viscoplastic Taylor model. In order to overcome the well-known shortcomings of Taylor's approach, the texture evolution is also investigated by a representative volume element (RVE) with periodic boundary conditions and a compatible microstructure at the opposite faces of the RVE. Such a representative volume element takes into account the grain morphology and the grain interaction. The numerical results are compared with experimental data. It is shown that the modelling of a finite element based RVE leads to a better prediction of the final textures. However, the texture evolution path is not accounted for correctly. The simulated Swift effect depends much more on the initial orientation distribution than observed in experiment. Deviations between simulation and experiment may be due to continuous dynamic recrystallization.

  8. Changes of the water-holding capacity and microstructure of panga and tilapia surimi gels using different stabilizers and processing methods.

    PubMed

    Filomena-Ambrosio, Annamaria; Quintanilla-Carvajal, María Ximena; Ana-Puig; Hernando, Isabel; Hernández-Carrión, María; Sotelo-Díaz, Indira

    2016-01-01

    Surimi gel is a food product traditionally manufactured from marine species; it has functional features including a specific texture and a high protein concentration. The objective of this study was to evaluate and compare the effect of the ultrasound extraction protein method and different stabilizers on the water-holding capacity (WHC), texture, and microstructure of surimi from panga and tilapia to potentially increase the value of these species. For this purpose, WHC was determined and texture profile analysis, scanning electron microscopy, and texture image analysis were carried out. The results showed that the ultrasound method and the sodium citrate can be used to obtain surimi gels from panga and tilapia with optimal textural properties such as the hardness and chewiness. Moreover, image analysis is recommended as a quantitative and non-invasive technique to evaluate the microstructure and texture image properties of surimis prepared using different processing methods and stabilizers. © The Author(s) 2015.

  9. Tribological Properties of Surface-Textured and Plasma-Nitrided Pure Titanium Under Oil Lubrication Condition

    NASA Astrophysics Data System (ADS)

    Zhang, Baosen; Dong, Qiangsheng; Ba, Zhixin; Wang, Zhangzhong; Shi, Hancheng; Xue, Yanting

    2018-01-01

    Plasma nitriding was conducted as post-treatment for surface texture on pure titanium to obtain a continuous nitriding layer. Supersonic fine particles bombarding (SFPB) was carried out to prepare surface texture. The surface morphologies and chemical composition were analyzed using scanning electron microscope and energy disperse spectroscopy. The microstructures of modified layers were characterized by transmission electron microscope. The tribological properties of surface-textured and duplex-treated pure titanium under oil lubrication condition were systematically investigated in the ball-on-plate reciprocating mode. The effects of applied load and sliding velocity on the tribological behavior were analyzed. The results show that after duplex treatments, the grains size in modified layer becomes slightly larger, and hardness is obviously improved. Wear resistance of duplex-treated pure titanium is significantly improved referenced to untreated and surface-textured pure titanium, which is 3.22 times as much as untreated pure titanium and 2.15 times of that for surface-textured pure titanium, respectively.

  10. The von Mises stress distribution on the surface of UHMWPE with texture-shaped variation in the presence of normal load and dry sliding contact

    NASA Astrophysics Data System (ADS)

    Lestari, W. D.; Jamari, J.; Bayuseno, A. P.

    2017-04-01

    The texture shapes play a key role in the tribological performance of the surface material. This paper presents a study on the use of the 3D finite element method for surface stress analysis on the different texture shape under load and dry sliding contact. The five texture-shaped model was investigated in this work, namely square, circle, ellipse, triangle, and chevron. The result shown that the square shape has the highest value of von Mises resultant stress under static load. In contrast, the dry sliding contact on the triangle shape provided the highest von Mises stress distribution. The lowest value of von Mises stress can be found in the texture pattern of circle, square, and chevron under influence of load for 17 N, 30 N, and 50 N, respectively. Those texture patterns applied to surface of Ultra High Molecular Weight Polyethylene (UHMWPE) may have a strong effect on the reduction of wear rate and enhance tribological performance.

  11. Alluvial substrate mapping by automated texture segmentation of recreational-grade side scan sonar imagery.

    PubMed

    Hamill, Daniel; Buscombe, Daniel; Wheaton, Joseph M

    2018-01-01

    Side scan sonar in low-cost 'fishfinder' systems has become popular in aquatic ecology and sedimentology for imaging submerged riverbed sediment at coverages and resolutions sufficient to relate bed texture to grain-size. Traditional methods to map bed texture (i.e. physical samples) are relatively high-cost and low spatial coverage compared to sonar, which can continuously image several kilometers of channel in a few hours. Towards a goal of automating the classification of bed habitat features, we investigate relationships between substrates and statistical descriptors of bed textures in side scan sonar echograms of alluvial deposits. We develop a method for automated segmentation of bed textures into between two to five grain-size classes. Second-order texture statistics are used in conjunction with a Gaussian Mixture Model to classify the heterogeneous bed into small homogeneous patches of sand, gravel, and boulders with an average accuracy of 80%, 49%, and 61%, respectively. Reach-averaged proportions of these sediment types were within 3% compared to similar maps derived from multibeam sonar.

  12. Effect of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage.

    PubMed

    Chen, Long; Tian, Yaoqi; Tong, Qunyi; Zhang, Zipei; Jin, Zhengyu

    2017-01-01

    The effects of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage were investigated by low field-nuclear magnetic resonance (LF-NMR), scanning electron microscope (SEM), and texture profile analysis (TPA). The addition of pullulan reduced the transversal relaxation time of rice starch gels during cold storage. The microstructure of rice starch gel with 0.5% pullulan was denser and more uniform compared with that of rice starch without pullulan in each period of storage time. With regard to textural properties, 0.01% pullulan addition did not significantly change the texture of rice starch gels, while 0.5% pullulan addition appeared to reduce the hardness and retain the springiness of rice starch gels (P⩽0.05). The restriction effects of pullulan on water mobility and starch retrogradation were hypothesized to be mainly responsible for the water retention, gel structure maintenance, and modification of the textural attributes of rice starch gels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Textural and viscoelastic properties of pork frankfurters containing canola-olive oils, rice bran, and walnut.

    PubMed

    Álvarez, D; Xiong, Y L; Castillo, M; Payne, F A; Garrido, M D

    2012-09-01

    Textural, rheological and microstructural properties of frankfurters made with 20% pork backfat, 20% canola or 20% canola-olive (3:1) oils, including rice bran (RB) and walnut extract (WE) as macronutrients (2.5%) were investigated. Textural parameters, including hardness, gumminess and rupture-force, were highly (P<0.05) influenced by the fat-oil composition. Addition of RB or WE in vegetable oil emulsions improved textural consistency (P<0.05). However, RB addition reduced gelling capacity, suggesting antagonistic interactions between fiber and oil droplets. Vegetable oil addition favored gel network formation, and, when combined with WE, showed the highest improvement of gel elasticity. These textural and gelling properties were corroborated by frankfurter micrographs, which revealed interactions between vegetable oils, RB, or WE with protein matrix and fat globules affecting these parameters. The results suggest that functional plant-derived ingredients can be valuable to the modification of frankfurter formulations for improved nutrition and as well as textural quality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. [Study on objectively evaluating skin aging according to areas of skin texture].

    PubMed

    Shan, Gaixin; Gan, Ping; He, Ling; Sun, Lu; Li, Qiannan; Jiang, Zheng; He, Xiangqian

    2015-02-01

    Skin aging principles play important roles in skin disease diagnosis, the evaluation of skin cosmetic effect, forensic identification and age identification in sports competition, etc. This paper proposes a new method to evaluate the skin aging objectively and quantitatively by skin texture area. Firstly, the enlarged skin image was acquired. Then, the skin texture image was segmented by using the iterative threshold method, and the skin ridge image was extracted according to the watershed algorithm. Finally, the skin ridge areas of the skin texture were extracted. The experiment data showed that the average areas of skin ridges, of both men and women, had a good correlation with age (the correlation coefficient r of male was 0.938, and the correlation coefficient r of female was 0.922), and skin texture area and age regression curve showed that the skin texture area increased with age. Therefore, it is effective to evaluate skin aging objectively by the new method presented in this paper.

  15. Sound texture perception via statistics of the auditory periphery: Evidence from sound synthesis

    PubMed Central

    McDermott, Josh H.; Simoncelli, Eero P.

    2014-01-01

    Rainstorms, insect swarms, and galloping horses produce “sound textures” – the collective result of many similar acoustic events. Sound textures are distinguished by temporal homogeneity, suggesting they could be recognized with time-averaged statistics. To test this hypothesis, we processed real-world textures with an auditory model containing filters tuned for sound frequencies and their modulations, and measured statistics of the resulting decomposition. We then assessed the realism and recognizability of novel sounds synthesized to have matching statistics. Statistics of individual frequency channels, capturing spectral power and sparsity, generally failed to produce compelling synthetic textures. However, combining them with correlations between channels produced identifiable and natural-sounding textures. Synthesis quality declined if statistics were computed from biologically implausible auditory models. The results suggest that sound texture perception is mediated by relatively simple statistics of early auditory representations, presumably computed by downstream neural populations. The synthesis methodology offers a powerful tool for their further investigation. PMID:21903084

  16. Electric Arc and Electrochemical Surface Texturing Technologies

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Snyder, Scott A.

    1997-01-01

    Surface texturing of conductive materials can readily be accomplished by means of a moving electric arc which produces a plasma from the environmental gases as well as from the vaporized substrate and arc electrode materials. As the arc is forced to move across the substrate surface, a condensate from the plasma re-deposits an extremely rough surface which is intimately mixed and attached to the substrate material. The arc textured surfaces produce greatly enhanced thermal emittance and hold potential for use as high temperature radiator surfaces in space, as well as in systems which use radiative heat dissipation such as computer assisted tomography (CAT) scan systems. Electrochemical texturing of titanium alloys can be accomplished by using sodium chloride solutions along with ultrasonic agitation to produce a random distribution of craters on the surface. The crater size and density can be controlled to produce surface craters appropriately sized for direct bone in-growth of orthopaedic implants. Electric arc texturing and electrochemical texturing techniques, surface properties and potential applications will be presented.

  17. Combining multiple features for color texture classification

    NASA Astrophysics Data System (ADS)

    Cusano, Claudio; Napoletano, Paolo; Schettini, Raimondo

    2016-11-01

    The analysis of color and texture has a long history in image analysis and computer vision. These two properties are often considered as independent, even though they are strongly related in images of natural objects and materials. Correlation between color and texture information is especially relevant in the case of variable illumination, a condition that has a crucial impact on the effectiveness of most visual descriptors. We propose an ensemble of hand-crafted image descriptors designed to capture different aspects of color textures. We show that the use of these descriptors in a multiple classifiers framework makes it possible to achieve a very high classification accuracy in classifying texture images acquired under different lighting conditions. A powerful alternative to hand-crafted descriptors is represented by features obtained with deep learning methods. We also show how the proposed combining strategy hand-crafted and convolutional neural networks features can be used together to further improve the classification accuracy. Experimental results on a food database (raw food texture) demonstrate the effectiveness of the proposed strategy.

  18. Texture coarseness responsive neurons and their mapping in layer 2–3 of the rat barrel cortex in vivo

    PubMed Central

    Garion, Liora; Dubin, Uri; Rubin, Yoav; Khateb, Mohamed; Schiller, Yitzhak; Azouz, Rony; Schiller, Jackie

    2014-01-01

    Texture discrimination is a fundamental function of somatosensory systems, yet the manner by which texture is coded and spatially represented in the barrel cortex are largely unknown. Using in vivo two-photon calcium imaging in the rat barrel cortex during artificial whisking against different surface coarseness or controlled passive whisker vibrations simulating different coarseness, we show that layer 2–3 neurons within barrel boundaries differentially respond to specific texture coarsenesses, while only a minority of neurons responded monotonically with increased or decreased surface coarseness. Neurons with similar preferred texture coarseness were spatially clustered. Multi-contact single unit recordings showed a vertical columnar organization of texture coarseness preference in layer 2–3. These findings indicate that layer 2–3 neurons perform high hierarchical processing of tactile information, with surface coarseness embodied by distinct neuronal subpopulations that are spatially mapped onto the barrel cortex. DOI: http://dx.doi.org/10.7554/eLife.03405.001 PMID:25233151

  19. Vibratory tactile display for textures

    NASA Technical Reports Server (NTRS)

    Ikei, Yasushi; Ikeno, Akihisa; Fukuda, Shuichi

    1994-01-01

    We have developed a tactile display that produces vibratory stimulus to a fingertip in contact with a vibrating tactor matrix. The display depicts tactile surface textures while the user is exploring a virtual object surface. A piezoelectric actuator drives the individual tactor in accordance with both the finger movement and the surface texture being traced. Spatiotemporal display control schemes were examined for presenting the fundamental surface texture elements. The temporal duration of vibratory stimulus was experimentally optimized to simulate the adaptation process of cutaneous sensation. The selected duration time for presenting a single line edge agreed with the time threshold of tactile sensation. Then spatial stimulus disposition schemes were discussed for representation of other edge shapes. As an alternative means not relying on amplitude control, a method of augmented duration at the edge was investigated. Spatial resolution of the display was measured for the lines presented both in perpendicular and parallel to a finger axis. Discrimination of texture density was also measured on random dot textures.

  20. HOS cell adhesion on Ti6Al4V ELI texturized by CO2 laser

    NASA Astrophysics Data System (ADS)

    Sandoval-Amador, A.; Bayona–Alvarez, Y. M.; Carreño Garcia, H.; Escobar-Rivero, P.; Y Peña-Ballesteros, D.

    2017-12-01

    In this work, the response of HOS cells on Ti6Al4V ELI textured surfaces by a CO2 laser was evaluated. The test surfaces were; smooth Ti6Al4V, used as the control, and four textured surfaces with linear geometry. These four surfaces had different separation distances between textured lines, D1 (1000 microns), D2 (750 microns), D3 (500 microns) and D4 (250 microns). Toxicity of textured surfaces was assessed by MTT and the cellular adhesion test was performed using HOS ATCC CRL 1543 line cells. This test was done after 5 days of culture in a RPMI 1640 medium supplemented with 10% fetal bovine serum and 1% antibiotics. The results showed that the linear textures present 23% toxicity after 30 days of incubation, nevertheless, the adhesion tests results are inconclusive in such conditions and therefore the effect of the line separation on the cell adhesion cannot be determined.

  1. Texture evolution during nitinol martensite detwinning and phase transformation

    NASA Astrophysics Data System (ADS)

    Cai, S.; Schaffer, J. E.; Ren, Y.; Yu, C.

    2013-12-01

    Nitinol has been widely used to make medical devices for years due to its unique shape memory and superelastic properties. However, the texture of the nitinol wires has been largely ignored due to inherent complexity. In this study, in situ synchrotron X-ray diffraction has been carried out during uniaxial tensile testing to investigate the texture evolution of the nitinol wires during martensite detwinning, variant reorientation, and phase transformation. It was found that the thermal martensitic nitinol wire comprised primarily an axial (1¯20), (120), and (102)-fiber texture. Detwinning initially converted the (120) and (102) fibers to the (1¯20) fiber and progressed to a (1¯30)-fiber texture by rigid body rotation. At strains above 10%, the (1¯30)-fiber was shifted to the (110) fiber by (21¯0) deformation twinning. The austenitic wire exhibited an axial (334)-fiber, which transformed to the near-(1¯30) martensite texture after the stress-induced phase transformation.

  2. The effect of microstructure on the deformation modes and mechanical properties of Ti-6Al-2Nb-1Ta-0.8Mo: Part II. Equiaxed structures

    NASA Astrophysics Data System (ADS)

    Lin, Fu-Shiong; Starke, E. A.; Gysler, A.

    1984-10-01

    The Ti-6Al-2Nb-lTa-0.8Mo alloy was processed to develop both near-basal and transverse textures. Samples were annealed at different temperatures to vary the equiaxed alpha grain size and the thick-ness of the grain boundary beta, and subsequently quenched in order to transform the beta phase to either martensite, tempered martensite, or Widmanstätten alpha + beta. The effect of microstructure and texture on tensile properties and on fracture toughness was investigated. In addition, yield locus diagrams were constructed in order to study the texture strengthening effect. The yield strength was found to be strongly dependent on the thickness and Burgers relationship of the transformed beta phase surrounding the alpha grains. A texture hardening effect as large as 60 pct was found for the basal-texture material but only 15 pct for the transverse texture material. These variations are asso-ciated with differences in deformation behavior.

  3. The Effects of Soil Texture on the Ability of Human Remains Detection Dogs to Detect Buried Human Remains.

    PubMed

    Alexander, Michael B; Hodges, Theresa K; Wescott, Daniel J; Aitkenhead-Peterson, Jacqueline A

    2016-05-01

    Despite technological advances, human remains detection (HRD) dogs still remain one of the best tools for locating clandestine graves. However, soil texture may affect the escape of decomposition gases and therefore the effectiveness of HDR dogs. Six nationally credentialed HRD dogs (three HRD only and three cross-trained) were evaluated on novel buried human remains in contrasting soils, a clayey and a sandy soil. Search time and accuracy were compared for the clayey soil and sandy soil to assess odor location difficulty. Sandy soil (p < 0.001) yielded significantly faster trained response times, but no significant differences were found in performance accuracy between soil textures or training method. Results indicate soil texture may be significant factor in odor detection difficulty. Prior knowledge of soil texture and moisture may be useful for search management and planning. Appropriate adjustments to search segment sizes, sweep widths and search time allotment depending on soil texture may optimize successful detection. © 2016 American Academy of Forensic Sciences.

  4. Coastal modification of a scene employing multispectral images and vector operators.

    PubMed

    Lira, Jorge

    2017-05-01

    Changes in sea level, wind patterns, sea current patterns, and tide patterns have produced morphologic transformations in the coastline area of Tamaulipas Sate in North East Mexico. Such changes generated a modification of the coastline and variations of the texture-relief and texture of the continental area of Tamaulipas. Two high-resolution multispectral satellite Satellites Pour l'Observation de la Terre images were employed to quantify the morphologic change of such continental area. The images cover a time span close to 10 years. A variant of the principal component analysis was used to delineate the modification of the land-water line. To quantify changes in texture-relief and texture, principal component analysis was applied to the multispectral images. The first principal components of each image were modeled as a discrete bidimensional vector field. The divergence and Laplacian vector operators were applied to the discrete vector field. The divergence provided the change of texture, while the Laplacian produced the change of texture-relief in the area of study.

  5. Cloud cover analysis with Arctic Advanced Very High Resolution Radiometer data. II - Classification with spectral and textural measures

    NASA Technical Reports Server (NTRS)

    Key, J.

    1990-01-01

    The spectral and textural characteristics of polar clouds and surfaces for a 7-day summer series of AVHRR data in two Arctic locations are examined, and the results used in the development of a cloud classification procedure for polar satellite data. Since spatial coherence and texture sensitivity tests indicate that a joint spectral-textural analysis based on the same cell size is inappropriate, cloud detection with AVHRR data and surface identification with passive microwave data are first done on the pixel level as described by Key and Barry (1989). Next, cloud patterns within 250-sq-km regions are described, then the spectral and local textural characteristics of cloud patterns in the image are determined and each cloud pixel is classified by statistical methods. Results indicate that both spectral and textural features can be utilized in the classification of cloudy pixels, although spectral features are most useful for the discrimination between cloud classes.

  6. Texture and anisotropy in the bismuth sodium titanate system

    NASA Astrophysics Data System (ADS)

    Fancher, Christoher M.

    Bi0.5Na0.5TiO3 has received interest as a potential replacement for lead containing ferroelectrics. However, the piezoelectric response of pure Bi0.5Na0.5TiO 3 does not compare to the strong piezoelectric response of lead based piezoelectrics. To increase the piezoelectric response, Bi0.5Na 0.5TiO3 has been alloyed with BaTiO3 and K 0.5Na0.5NbO3. Another route to enhance the response is to take advantage of the anisotropic properties by inducing a preferred crystallographic orientation. Both routes were used to investigate the effect a crystallographic texture has on the strain response of Bi0.5Na 0.5TiO3-based ceramics. A crystallographic texture was induced by templated grain growth of pure phase Bi0.5Na0.5TiO3 templates using the tape casting method to orient template particles relative to the tape cast normal. Sintered Bi0.5Na0.5TiO3-based materials developed a strong (00l)pc fiber texture relative to the tape cast normal, with no preferential alignment relative to the tape cast plane. Textured Bi0.5Na0.5TiO3-(5)BaTiO3 showed a piezoelectric response of 245 pC/N, a better than 50% enhancement from the 150 pC/N response of randomly oriented samples. The Bi0.5Na0.5TiO3-(5)BaTiO3-(2)K 0.5Na0.5NbO3 (x,y) system has been shown to undergo electric-field-induced phase transformation from a pseudocubic to polar phase. For (7,2) a strong 8.7 multiples of a random distribution (MRD) crystallographic texture increased the macroscopic strain response by 50%. Applying the electric field perpendicular to the fiber texture axis reduces the macroscopic strain response of textured (7,2) by 17%. The affect field direction has on the electric-field-induced phase transformations of textured (7,2) was investigated using in situ electric field dependent diffraction. In situ diffraction data showed the high strain response of textured (7,2) can be attributed to a reversible pseudocubic to tetragonal transformation. The field-induced tetragonal phase nucleates preferentially with a strong c-axis alignment in the electric field direction, ferroelastic domain texture. In situ diffraction data suggests the origin of the reduction in strain associated with a field applied perpendicular to the fiber texture axis is the result of a shorter induced lattice spacing and lower domain texture.

  7. Texture discrimination and multi-unit recording in the rat vibrissal nerve

    PubMed Central

    Albarracín, Ana L; Farfán, Fernando D; Felice, Carmelo J; Décima, Emilio E

    2006-01-01

    Background Rats distinguish objects differing in surface texture by actively moving their vibrissae. In this paper we characterized some aspects of texture sensing in anesthetized rats during active touch. We analyzed the multifiber discharge from a deep vibrissal nerve when the vibrissa sweeps materials (wood, metal, acrylic, sandpaper) having different textures. We polished these surfaces with sandpaper (P1000) to obtain close degrees of roughness and we induced vibrissal movement with two-branch facial nerve stimulation. We also consider the change in pressure against the vibrissa as a way to improve the tactile information acquisition. The signals were compared with a reference signal (control) – vibrissa sweeping the air – and were analyzed with the Root Mean Square (RMS) and the Power Spectrum Density (PSD). Results We extracted the information about texture discrimination hidden in the population activity of one vibrissa innervation, using the RMS values and the PSD. The pressure level 3 produced the best differentiation for RMS values and it could represent the "optimum" vibrissal pressure for texture discrimination. The frequency analysis (PSD) provided information only at low-pressure levels and showed that the differences are not related to the roughness of the materials but could be related to other texture parameters. Conclusion Our results suggest that the physical properties of different materials could be transduced by the trigeminal sensory system of rats, as are shown by amplitude and frequency changes. Likewise, varying the pressure could represent a behavioral strategy that improves the information acquisition for texture discrimination. PMID:16719904

  8. A research of selected textural features for detection of asbestos-cement roofing sheets using orthoimages

    NASA Astrophysics Data System (ADS)

    Książek, Judyta

    2015-10-01

    At present, there has been a great interest in the development of texture based image classification methods in many different areas. This study presents the results of research carried out to assess the usefulness of selected textural features for detection of asbestos-cement roofs in orthophotomap classification. Two different orthophotomaps of southern Poland (with ground resolution: 5 cm and 25 cm) were used. On both orthoimages representative samples for two classes: asbestos-cement roofing sheets and other roofing materials were selected. Estimation of texture analysis usefulness was conducted using machine learning methods based on decision trees (C5.0 algorithm). For this purpose, various sets of texture parameters were calculated in MaZda software. During the calculation of decision trees different numbers of texture parameters groups were considered. In order to obtain the best settings for decision trees models cross-validation was performed. Decision trees models with the lowest mean classification error were selected. The accuracy of the classification was held based on validation data sets, which were not used for the classification learning. For 5 cm ground resolution samples, the lowest mean classification error was 15.6%. The lowest mean classification error in the case of 25 cm ground resolution was 20.0%. The obtained results confirm potential usefulness of the texture parameter image processing for detection of asbestos-cement roofing sheets. In order to improve the accuracy another extended study should be considered in which additional textural features as well as spectral characteristics should be analyzed.

  9. Introduction of new food textures during complementary feeding: Observations in France.

    PubMed

    Marduel Boulanger, A; Vernet, M

    2018-01-01

    Complementary feeding plays a crucial role in the development of infants and toddlers and studies suggest benefits specific to the introduction of food textures. Evaluate the recommendations given to parents, their practices, and their attitudes towards the introduction of food textures during complementary feeding in France. This was a cross-sectional pilot study conducted in 2013. One hundred and eighty-one parents with at least one child aged 6-36 months living in France completed an ad hoc questionnaire. Eighty-eight percent of the parents surveyed received oral information on complementary feeding, but only 46% received such information on the introduction of food textures. Pediatricians were the most frequently listed source of oral information on complementary feeding. More than half the parents also looked for additional information in books and on the internet. While oral recommendations matched parents' practices, they seemed to occur at a later age compared to infants' physiological ability to handle new textures. The quality of information on food texture advice available in paper and electronic formats evaluated using a 4-point scale was found to be limited. Introducing new food texture was spontaneously reported as the most common difficulty in complementary feeding (16%). Fear of choking when first introducing food pieces was reported by 54% of the parents. The parents' lack of information on the introduction of food textures, as well as their fear that their child may choke, should encourage providing new recommendations in France. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Feasibility of opportunistic osteoporosis screening in routine contrast-enhanced multi detector computed tomography (MDCT) using texture analysis.

    PubMed

    Mookiah, M R K; Rohrmeier, A; Dieckmeyer, M; Mei, K; Kopp, F K; Noel, P B; Kirschke, J S; Baum, T; Subburaj, K

    2018-04-01

    This study investigated the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis. The results showed an acceptable reproducibility of texture features, and these features could discriminate healthy/osteoporotic fracture cohort with an accuracy of 83%. This aim of this study is to investigate the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis. We performed texture analysis at the spine in routine MDCT exams and investigated the effect of intravenous contrast medium (IVCM) (n = 7), slice thickness (n = 7), the long-term reproducibility (n = 9), and the ability to differentiate healthy/osteoporotic fracture cohort (n = 9 age and gender matched pairs). Eight texture features were extracted using gray level co-occurrence matrix (GLCM). The independent sample t test was used to rank the features of healthy/fracture cohort and classification was performed using support vector machine (SVM). The results revealed significant correlations between texture parameters derived from MDCT scans with and without IVCM (r up to 0.91) slice thickness of 1 mm versus 2 and 3 mm (r up to 0.96) and scan-rescan (r up to 0.59). The performance of the SVM classifier was evaluated using 10-fold cross-validation and revealed an average classification accuracy of 83%. Opportunistic osteoporosis screening at the spine using specific texture parameters (energy, entropy, and homogeneity) and SVM can be performed in routine contrast-enhanced MDCT exams.

  11. Texture discrimination and multi-unit recording in the rat vibrissal nerve.

    PubMed

    Albarracín, Ana L; Farfán, Fernando D; Felice, Carmelo J; Décima, Emilio E

    2006-05-23

    Rats distinguish objects differing in surface texture by actively moving their vibrissae. In this paper we characterized some aspects of texture sensing in anesthetized rats during active touch. We analyzed the multifiber discharge from a deep vibrissal nerve when the vibrissa sweeps materials (wood, metal, acrylic, sandpaper) having different textures. We polished these surfaces with sandpaper (P1000) to obtain close degrees of roughness and we induced vibrissal movement with two-branch facial nerve stimulation. We also consider the change in pressure against the vibrissa as a way to improve the tactile information acquisition. The signals were compared with a reference signal (control)--vibrissa sweeping the air--and were analyzed with the Root Mean Square (RMS) and the Power Spectrum Density (PSD). We extracted the information about texture discrimination hidden in the population activity of one vibrissa innervation, using the RMS values and the PSD. The pressure level 3 produced the best differentiation for RMS values and it could represent the "optimum" vibrissal pressure for texture discrimination. The frequency analysis (PSD) provided information only at low-pressure levels and showed that the differences are not related to the roughness of the materials but could be related to other texture parameters. Our results suggest that the physical properties of different materials could be transduced by the trigeminal sensory system of rats, as are shown by amplitude and frequency changes. Likewise, varying the pressure could represent a behavioral strategy that improves the information acquisition for texture discrimination.

  12. Cutaneous texture discrimination following transection of the dorsal spinal column in monkeys.

    PubMed

    Vierck, C J; Cooper, B Y

    1998-01-01

    Transection of the dorsal spinal column in monkeys has been shown to impair discrimination of the frequency or duration of repetitive tactile stimulation, without recovery over extended periods of postoperative testing. These deficits would be likely to prevent discrimination between textures presented passively and in sequence, if repetitive temporal sequences were distinguishing features of the textures. However, previous investigations of texture discrimination after dorsal column section did not obtain a deficit on tests involving active palpation of sandpaper surfaces. In the present study, rows of raised dots were stroked across the glabrous skin of one foot so that temporal entrainment of neural activity would constitute a prominent cue. The rows were oriented mediolaterally, and the textures moved proximodistally across the skin surface (varying the spacing between the rows). Four monkeys were trained to release a lever when the rougher of two textures was in contact with the skin, and the rough texture was preceded by one to three passes of a smooth texture. Stable levels of preoperative performance ranged from 78.6 to 85.7% correct responses. After interruption of the ipsilateral dorsal column, each monkey was impaired over at least 2 months of testing. One animal did not show evidence of recovery; two recovered partially from the initial deficit; and one returned to preoperative levels of performance after extensive retraining. These results are interpreted in terms of aberrant inhibitory influences which result from repetitive stimulation after a dorsal column lesion.

  13. Correcting intensity loss errors in the absence of texture-free reference samples during pole figure measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, Ahmed A., E-mail: asaleh@uow.edu.au

    Even with the use of X-ray polycapillary lenses, sample tilting during pole figure measurement results in a decrease in the recorded X-ray intensity. The magnitude of this error is affected by the sample size and/or the finite detector size. These errors can be typically corrected by measuring the intensity loss as a function of the tilt angle using a texture-free reference sample (ideally made of the same alloy as the investigated material). Since texture-free reference samples are not readily available for all alloys, the present study employs an empirical procedure to estimate the correction curve for a particular experimental configuration.more » It involves the use of real texture-free reference samples that pre-exist in any X-ray diffraction laboratory to first establish the empirical correlations between X-ray intensity, sample tilt and their Bragg angles and thereafter generate correction curves for any Bragg angle. It will be shown that the empirically corrected textures are in very good agreement with the experimentally corrected ones. - Highlights: •Sample tilting during X-ray pole figure measurement leads to intensity loss errors. •Texture-free reference samples are typically used to correct the pole figures. •An empirical correction procedure is proposed in the absence of reference samples. •The procedure relies on reference samples that pre-exist in any texture laboratory. •Experimentally and empirically corrected textures are in very good agreement.« less

  14. Effects of Textured Insoles on Balance in People with Parkinson’s Disease

    PubMed Central

    Qiu, Feng; Cole, Michael H.; Davids, Keith W.; Hennig, Ewald M.; Silburn, Peter A.; Netscher, Heather; Kerr, Graham K.

    2013-01-01

    Background Degradation of the somatosensory system has been implicated in postural instability and increased falls risk for older people and Parkinson’s disease (PD) patients. Here we demonstrate that textured insoles provide a passive intervention that is an inexpensive and accessible means to enhance the somatosensory input from the plantar surface of the feet. Methods 20 healthy older adults (controls) and 20 participants with PD were recruited for the study. We evaluated effects of manipulating somatosensory information from the plantar surface of the feet using textured insoles. Participants performed standing tests, on two different surfaces (firm and foam), under three footwear conditions: 1) barefoot; 2) smooth insoles; and 3) textured insoles. Standing balance was evaluated using a force plate yielding data on the range of anterior-posterior and medial-lateral sway, as well as standard deviations for anterior-posterior and medial-lateral sway. Results On the firm surface with eyes open both the smooth and textured insoles reduced medial-lateral sway in the PD group to a similar level as the controls. Only the textured insole decreased medial-lateral sway and medial-lateral sway standard deviation in the PD group on both surfaces, with and without visual input. Greatest benefits were observed in the PD group while wearing the textured insoles, and when standing on the foam surface with eyes closed. Conclusions Data suggested that textured insoles may provide a low-cost means of improving postural stability in high falls-risk groups, such as people with PD. PMID:24349486

  15. Saturated hydraulic conductivity of US soils grouped according to textural class and bulk density

    USDA-ARS?s Scientific Manuscript database

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  16. Saturated hydraulic conductivity of US soils grouped according textural class and bulk density

    USDA-ARS?s Scientific Manuscript database

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  17. Performance analysis of improved methodology for incorporation of spatial/spectral variability in synthetic hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Scanlan, Neil W.; Schott, John R.; Brown, Scott D.

    2004-01-01

    Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.

  18. Development and testing of texture discriminators for the analysis of trabecular bone in proximal femur radiographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, M. B.; Carballido-Gamio, J.; Fritscher, K.

    2009-11-15

    Purpose: Texture analysis of femur radiographs may serve as a potential low cost technique to predict osteoporotic fracture risk and has received considerable attention in the past years. A further application of this technique may be the measurement of the quality of specific bone compartments to provide useful information for treatment of bone fractures. Two challenges of texture analysis are the selection of the best suitable texture measure and reproducible placement of regions of interest (ROIs). The goal of this in vitro study was to automatically place ROIs in radiographs of proximal femur specimens and to calculate correlations between variousmore » different texture analysis methods and the femurs' anchorage strength. Methods: Radiographs were obtained from 14 femoral specimens and bone mineral density (BMD) was measured in the femoral neck. Biomechanical testing was performed to assess the anchorage strength in terms of failure load, breakaway torque, and number of cycles. Images were segmented using a framework that is based on the usage of level sets and statistical in-shape models. Five ROIs were automatically placed in the head, upper and lower neck, trochanteric, and shaft compartment in an atlas subject. All other subjects were registered rigidly, affinely, and nonlinearly, and the resulting transformation was used to map the five ROIs onto the individual femora. Results: In each ROI, texture features were extracted using gray level co-occurence matrices (GLCM), third-order GLCM, morphological gradients (MGs), Minkowski dimensions (MDs), Minkowski functionals (MFs), Gaussian Markov random fields, and scaling index method (SIM). Coefficients of determination for each texture feature with parameters of anchorage strength were computed. In a stepwise multiregression analysis, the most predictive parameters were identified in different models. Texture features were highly correlated with anchorage strength estimated by the failure load of up to R{sup 2}=0.61 (MF and MG features, p<0.01) and were partially independent of BMD. The correlations were dependent on the choice of the ROI and the texture measure. The best predictive multiregression model for failure load R{sub adj}{sup 2}=0.86 (p<0.001) included a set of recently developed texture methods (MF and SIM) but excluded bone mineral density and commonly used texture measures. Conclusions: The results suggest that texture information contained in trabecular bone structure visualized on radiographs may predict whether an implant anchorage can be used and may determine the local bone quality from preoperative radiographs.« less

  19. Performance analysis of improved methodology for incorporation of spatial/spectral variability in synthetic hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Scanlan, Neil W.; Schott, John R.; Brown, Scott D.

    2003-12-01

    Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.

  20. Mechanisms of Cdc42-mediated rat MSC differentiation on micro/nano-textured topography.

    PubMed

    Li, Guangwen; Song, Yanyan; Shi, Mengqi; Du, Yuanhong; Wang, Wei; Zhang, Yumei

    2017-02-01

    Micro/nano-textured titanium surface topography promotes osteoblast differentiation and the Wnt/β-catenin signaling pathway. However, the response of rat bone mesenchymal stem cells (MSCs) to micro/nano-textured topography, and the underlying mechanisms of its effects, are not well understood. We hypothesized that cell division cycle 42 protein (Cdc42), a key member of the Rho GTPases family, may regulate rat MSCs morphology and osteogenic differentiation by micro/nano-textured topography, and that crosstalk between Cdc42 and Wnt/β-catenin is the underlying mechanism. To confirm the hypothesis, we first tested rat MSCs' morphology, cytoskeleton, and osteogenic differentiation on micro/nano-textured topography. We then examined the cells' Wnt pathway and Cdc42 signaling activity. The results show that micro/nano-textured topography enhances MSCs' osteogenic differentiation. In addition, the cells' morphology and cytoskeletal reorganization were dramatically different on smooth surfaces and micropitted/nanotubular topography. Ligands of the canonical Wnt pathway, as well as accumulation of β-catenin in the nucleus, were up-regulated by micro/nano-textured topography. Cdc42 protein expression was markedly increased under these conditions; conversely, Cdc42 silencing significantly depressed the enhancement of MSCs osteogenic differentiation by micro/nano-textured topography. Moreover, Cdc42si attenuated p-GSK3β activation and resulted in β-catenin cytoplasmic degradation on the micro/nano-textured topography. Our results indicate that Cdc42 is a key modulator of rat MSCs morphology and cytoskeletal reorganization, and that crosstalk between Cdc42 and Wnt/β-catenin signaling though GSK3β regulates MSCs osteogenic differentiation by implant topographical cues. Topographical modification at micro- and nanoscale is widely applied to enhance the tissue integration properties of biomaterials. However, the response of bone mesenchymal stem cells (MSCs) to the micro/nano-textured topography and the underlying mechanisms are not well understood. This study shows that the micropitted/nanotubular hierarchical topography produced by etching and anodic oxidation treatment drives fusiform cell morphology, cytoskeletal reorganization as well as better MSCs osteogenic differentiation. The cross-talk between Cdc42 pathway and Wnt/β-catenin pathway though GSK3β modulates the osteoinductive effect of the micro/nano-textured topography on MSCs. This finding sheds light on a novel mechanism involved in micro/nano-textured surface-mediated MSCs osteogenic differentiation and is a major step in the development of new surface modifications aiming to accelerate and enhance the process of osseointegration. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. 3D Flow Visualization Using Texture Advection

    NASA Technical Reports Server (NTRS)

    Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.

  2. A laboratory experiment in evaluating means of imparting a harsh texture to portland cement concrete surfaces.

    DOT National Transportation Integrated Search

    1970-01-01

    The purpose of this study was to explore methods of obtaining a rough, durable texture on test slabs fabricated in the laboratory in an attempt to provide high skid resistance. The exploration involved the investigation of types of texture, time of t...

  3. Assessing quality of citizen scientists’ soil texture estimates to evaluate land potential

    USDA-ARS?s Scientific Manuscript database

    Texture influences nearly all soil processes and is often the most measured parameter in soil science. Estimating soil texture is a universal and fundamental practice applied by resource scientists to classify and understand the behavior and management of soil systems. While trained soil scientist c...

  4. Measurement of food texture by an acoustic vibration method

    NASA Astrophysics Data System (ADS)

    Sakurai, Naoki; Taniwaki, Mitsuru; Iwatani, Shin-ichiro; Akimoto, Hidemi

    2011-09-01

    Food texture was measured by a new acoustic vibration method. A piezoelectric sensor sandwiched between a probe and piston was inserted into a food sample by delivery of silicon oil to a cylinder by a pump. Vibration emitted from the food sample on insertion of the probe was monitored by voltage outputs of the sensor. The voltage signals were passed through 19 half octave bands to calculate texture index for each band. The texture index was defined as vibration energy of the probe caused by the food rupture and/or breakage per unit time.

  5. The promise and limits of PET texture analysis.

    PubMed

    Cheng, Nai-Ming; Fang, Yu-Hua Dean; Yen, Tzu-Chen

    2013-11-01

    Metabolic heterogeneity is a recognized characteristic of malignant tumors. Positron emission tomography (PET) texture analysis evaluated intratumoral heterogeneity in the uptake of (18)F-fluorodeoxyglucose. There were recent evidences that PET textural features were of prognostic significance in patients with different solid tumors. Unfortunately, there are still crucial standardization challenges to transform PET texture parameters from their current use as research tools into the arena of validated technologies for use in oncology practice. Testing its generalizability, robustness, consistency, and limitations is necessary before implementing it in daily patient care.

  6. Simultaneous constraint and phase conversion processing of oxide superconductors

    DOEpatents

    Li, Qi; Thompson, Elliott D.; Riley, Jr., Gilbert N.; Hellstrom, Eric E.; Larbalestier, David C.; DeMoranville, Kenneth L.; Parrell, Jeffrey A.; Reeves, Jodi L.

    2003-04-29

    A method of making an oxide superconductor article includes subjecting an oxide superconductor precursor to a texturing operation to orient grains of the oxide superconductor precursor to obtain a highly textured precursor; and converting the textured oxide superconducting precursor into an oxide superconductor, while simultaneously applying a force to the precursor which at least matches the expansion force experienced by the precursor during phase conversion to the oxide superconductor. The density and the degree of texture of the oxide superconductor precursor are retained during phase conversion. The constraining force may be applied isostatically.

  7. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOEpatents

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  8. Texture-Based Correspondence Display

    NASA Technical Reports Server (NTRS)

    Gerald-Yamasaki, Michael

    2004-01-01

    Texture-based correspondence display is a methodology to display corresponding data elements in visual representations of complex multidimensional, multivariate data. Texture is utilized as a persistent medium to contain a visual representation model and as a means to create multiple renditions of data where color is used to identify correspondence. Corresponding data elements are displayed over a variety of visual metaphors in a normal rendering process without adding extraneous linking metadata creation and maintenance. The effectiveness of visual representation for understanding data is extended to the expression of the visual representation model in texture.

  9. A Fourier-based textural feature extraction procedure

    NASA Technical Reports Server (NTRS)

    Stromberg, W. D.; Farr, T. G.

    1986-01-01

    A procedure is presented to discriminate and characterize regions of uniform image texture. The procedure utilizes textural features consisting of pixel-by-pixel estimates of the relative emphases of annular regions of the Fourier transform. The utility and derivation of the features are described through presentation of a theoretical justification of the concept followed by a heuristic extension to a real environment. Two examples are provided that validate the technique on synthetic images and demonstrate its applicability to the discrimination of geologic texture in a radar image of a tropical vegetated area.

  10. Evolution of solidification texture during additive manufacturing.

    PubMed

    Wei, H L; Mazumder, J; DebRoy, T

    2015-11-10

    Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six <100> preferred growth directions in face centered cubic alloys. Therefore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numerical modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components.

  11. Surface Texturing of Polyimide Composite by Micro-Ultrasonic Machining

    NASA Astrophysics Data System (ADS)

    Qu, N. S.; Zhang, T.; Chen, X. L.

    2018-03-01

    In this study, micro-dimples were prepared on a polyimide composite surface to obtain the dual benefits of polymer materials and surface texture. Micro-ultrasonic machining is employed for the first time for micro-dimple fabrication on polyimide composite surfaces. Surface textures of simple patterns were fabricated successfully with dimple depths of 150 μm, side lengths of 225-425 μm, and area ratios of 10-30%. The friction coefficient of the micro-dimple surfaces with side lengths of 325 or 425 μm could be increased by up to 100% of that of non-textured surfaces, alongside a significant enhancement of wear resistance. The results show that surface texturing of polyimide composite can be applied successfully to increase the friction coefficient and reduce wear, thereby contributing to a large output torque.

  12. Estimating spatially distributed soil texture using time series of thermal remote sensing - a case study in central Europe

    NASA Astrophysics Data System (ADS)

    Müller, Benjamin; Bernhardt, Matthias; Jackisch, Conrad; Schulz, Karsten

    2016-09-01

    For understanding water and solute transport processes, knowledge about the respective hydraulic properties is necessary. Commonly, hydraulic parameters are estimated via pedo-transfer functions using soil texture data to avoid cost-intensive measurements of hydraulic parameters in the laboratory. Therefore, current soil texture information is only available at a coarse spatial resolution of 250 to 1000 m. Here, a method is presented to derive high-resolution (15 m) spatial topsoil texture patterns for the meso-scale Attert catchment (Luxembourg, 288 km2) from 28 images of ASTER (advanced spaceborne thermal emission and reflection radiometer) thermal remote sensing. A principle component analysis of the images reveals the most dominant thermal patterns (principle components, PCs) that are related to 212 fractional soil texture samples. Within a multiple linear regression framework, distributed soil texture information is estimated and related uncertainties are assessed. An overall root mean squared error (RMSE) of 12.7 percentage points (pp) lies well within and even below the range of recent studies on soil texture estimation, while requiring sparser sample setups and a less diverse set of basic spatial input. This approach will improve the generation of spatially distributed topsoil maps, particularly for hydrologic modeling purposes, and will expand the usage of thermal remote sensing products.

  13. Yield asymmetry design of magnesium alloys by integrated computational materials engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Joshi, Vineet; Lavender, Curt

    2013-11-01

    Deformation asymmetry of magnesium alloys is an important factor on machine design in the automobile industry. Represented by the ratio of compressive yield stress (CYS) against tensile yield stress (TYS), deformation asymmetry is strongly related to texture and grain size. A polycrystalline viscoplasticity model, modified intermediate Φ-model, is used to predict the deformation behavior of magnesium alloys with different grain sizes. Validated with experimental results, integrated computational materials engineering is applied to find out the route in achieving desired asymmetry via thermomechanical processing. For example, CYS/TYS in rolled texture is smaller than 1 under different loading directions. In other textures,more » such as extruded texture, CYS/TYS is large along the normal direction. Starting from rolled texture, asymmetry will increase to close to 1 along the rolling direction after being compressed to a strain of 0.2. Our modified Φ-model also shows that grain refinement increases CYS/TYS. Along with texture control, grain refinement also can optimize the yield asymmetry. After the grain size decreases to a critical value, CYS/TYS reaches to 1 because CYS increases much faster than TYS. By tailoring the microstructure using texture control and grain refinement, it is achievable to optimize yield asymmetry in wrought magnesium alloys.« less

  14. Direct Volume Rendering with Shading via Three-Dimensional Textures

    NASA Technical Reports Server (NTRS)

    VanGelder, Allen; Kim, Kwansik

    1996-01-01

    A new and easy-to-implement method for direct volume rendering that uses 3D texture maps for acceleration, and incorporates directional lighting, is described. The implementation, called Voltx, produces high-quality images at nearly interactive speeds on workstations with hardware support for three-dimensional texture maps. Previously reported methods did not incorporate a light model, and did not address issues of multiple texture maps for large volumes. Our research shows that these extensions impact performance by about a factor of ten. Voltx supports orthographic, perspective, and stereo views. This paper describes the theory and implementation of this technique, and compares it to the shear-warp factorization approach. A rectilinear data set is converted into a three-dimensional texture map containing color and opacity information. Quantized normal vectors and a lookup table provide efficiency. A new tesselation of the sphere is described, which serves as the basis for normal-vector quantization. A new gradient-based shading criterion is described, in which the gradient magnitude is interpreted in the context of the field-data value and the material classification parameters, and not in isolation. In the rendering phase, the texture map is applied to a stack of parallel planes, which effectively cut the texture into many slabs. The slabs are composited to form an image.

  15. Wetting state and maximum spreading factor of microdroplets impacting on superhydrophobic textured surfaces with anisotropic arrays of pillars

    NASA Astrophysics Data System (ADS)

    Kwon, Dae Hee; Huh, Hyung Kyu; Lee, Sang Joon

    2013-07-01

    The dynamic behaviors of microdroplets that impact on textured surfaces with various patterns of microscale pillars are experimentally investigated in this study. A piezoelectric inkjet is used to generate the microdroplets that have a diameter of less than 46 μm and a controlled Weber number. The impact and spreading dynamics of an individual droplet are captured by using a high-speed imaging system. The anisotropic and directional wettability and the wetting states on the textured surfaces with anisotropically arranged pillars are revealed for the first time in this study. The impalement transition from the Cassie-Baxter state to the partially impaled state is evaluated by balancing the wetting pressure P wet and the capillary pressure P C even on the anisotropic textured surfaces. The maximum spreading factor is measured and compared with the theoretical prediction to elucidate the wettability of the textured surfaces. For a given Weber number, the maximum spreading factor decreases as the texture area fraction of the textured surface decreases. In addition, the maximum spreading factors along the direction of longer inter-pillar spacing always have smaller values than those along the direction of shorter inter-pillar spacing when a droplet impacts on the anisotropic arrays of pillars.

  16. Synthesized interstitial lung texture for use in anthropomorphic computational phantoms

    NASA Astrophysics Data System (ADS)

    Becchetti, Marc F.; Solomon, Justin B.; Segars, W. Paul; Samei, Ehsan

    2016-04-01

    A realistic model of the anatomical texture from the pulmonary interstitium was developed with the goal of extending the capability of anthropomorphic computational phantoms (e.g., XCAT, Duke University), allowing for more accurate image quality assessment. Contrast-enhanced, high dose, thorax images for a healthy patient from a clinical CT system (Discovery CT750HD, GE healthcare) with thin (0.625 mm) slices and filtered back- projection (FBP) were used to inform the model. The interstitium which gives rise to the texture was defined using 24 volumes of interest (VOIs). These VOIs were selected manually to avoid vasculature, bronchi, and bronchioles. A small scale Hessian-based line filter was applied to minimize the amount of partial-volumed supernumerary vessels and bronchioles within the VOIs. The texture in the VOIs was characterized using 8 Haralick and 13 gray-level run length features. A clustered lumpy background (CLB) model with added noise and blurring to match CT system was optimized to resemble the texture in the VOIs using a genetic algorithm with the Mahalanobis distance as a similarity metric between the texture features. The most similar CLB model was then used to generate the interstitial texture to fill the lung. The optimization improved the similarity by 45%. This will substantially enhance the capabilities of anthropomorphic computational phantoms, allowing for more realistic CT simulations.

  17. Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters.

    PubMed

    Brynolfsson, Patrik; Nilsson, David; Torheim, Turid; Asklund, Thomas; Karlsson, Camilla Thellenberg; Trygg, Johan; Nyholm, Tufve; Garpebring, Anders

    2017-06-22

    In recent years, texture analysis of medical images has become increasingly popular in studies investigating diagnosis, classification and treatment response assessment of cancerous disease. Despite numerous applications in oncology and medical imaging in general, there is no consensus regarding texture analysis workflow, or reporting of parameter settings crucial for replication of results. The aim of this study was to assess how sensitive Haralick texture features of apparent diffusion coefficient (ADC) MR images are to changes in five parameters related to image acquisition and pre-processing: noise, resolution, how the ADC map is constructed, the choice of quantization method, and the number of gray levels in the quantized image. We found that noise, resolution, choice of quantization method and the number of gray levels in the quantized images had a significant influence on most texture features, and that the effect size varied between different features. Different methods for constructing the ADC maps did not have an impact on any texture feature. Based on our results, we recommend using images with similar resolutions and noise levels, using one quantization method, and the same number of gray levels in all quantized images, to make meaningful comparisons of texture feature results between different subjects.

  18. Role of a texture gradient in the perception of relative size.

    PubMed

    Tozawa, Junko

    2010-01-01

    Two theories regarding the role of a texture gradient in the perception of the relative size of objects are compared. Relational theory states that relative size is directly specified by the projective ratio of the numbers of texture elements spanned by objects. Distance calibration theory assumes that relative size is a product of visual angle and distance, once the distance is specified by the texture. Experiment 1 involved three variables: background (no texture, texture gradient patterns), the ratio of heights of the comparison stimulus to a standard (three levels), and angular vertical separation of the standard stimulus below the horizon (two levels). The effect of the retinal length of the comparison stimulus was examined in experiment 2. In both experiments, participants judged both the apparent size and distance of a comparison stimulus relative to a standard stimulus. Results suggest that the cues selected by observers to judge relative size were to some degree different from those used to judge relative distance. Relative size was strongly affected by a texture gradient and the retinal length of a comparison stimulus whereas relative distance perception was affected by relative height. When dominant cues that specify size are different from those which specify distance, relational theory might provide a better account of relative size perception than distance calibration theory.

  19. Discriminating Majorana neutrino textures in light of the baryon asymmetry

    NASA Astrophysics Data System (ADS)

    Borah, Manikanta; Borah, Debasish; Das, Mrinal Kumar

    2015-06-01

    We study all possible texture zeros in the Majorana neutrino mass matrix which are allowed from neutrino oscillation as well as cosmology data when the charged lepton mass matrix is assumed to take the diagonal form. In the case of one-zero texture, we write down the Majorana phases which are assumed to be equal and the lightest neutrino mass as a function of the Dirac C P phase. In the case of two-zero texture, we numerically evaluate all the three C P phases and lightest neutrino mass by solving four real constraint equations. We then constrain texture zero mass matrices from the requirement of producing correct baryon asymmetry through the mechanism of leptogenesis by assuming the Dirac neutrino mass matrix to be diagonal. Adopting a type I seesaw framework, we consider the C P -violating out of equilibrium decay of the lightest right-handed neutrino as the source of lepton asymmetry. Apart from discriminating between the texture zero mass matrices and light neutrino mass hierarchy, we also constrain the Dirac and Majorana C P phases so that the observed baryon asymmetry can be produced. In two-zero texture, we further constrain the diagonal form of the Dirac neutrino mass matrix from the requirement of producing correct baryon asymmetry.

  20. Grid-texture mechanisms in human vision: Contrast detection of regular sparse micro-patterns requires specialist templates.

    PubMed

    Baker, Daniel H; Meese, Tim S

    2016-07-27

    Previous work has shown that human vision performs spatial integration of luminance contrast energy, where signals are squared and summed (with internal noise) over area at detection threshold. We tested that model here in an experiment using arrays of micro-pattern textures that varied in overall stimulus area and sparseness of their target elements, where the contrast of each element was normalised for sensitivity across the visual field. We found a power-law improvement in performance with stimulus area, and a decrease in sensitivity with sparseness. While the contrast integrator model performed well when target elements constituted 50-100% of the target area (replicating previous results), observers outperformed the model when texture elements were sparser than this. This result required the inclusion of further templates in our model, selective for grids of various regular texture densities. By assuming a MAX operation across these noisy mechanisms the model also accounted for the increase in the slope of the psychometric function that occurred as texture density decreased. Thus, for the first time, mechanisms that are selective for texture density have been revealed at contrast detection threshold. We suggest that these mechanisms have a role to play in the perception of visual textures.

  1. Grid-texture mechanisms in human vision: Contrast detection of regular sparse micro-patterns requires specialist templates

    PubMed Central

    Baker, Daniel H.; Meese, Tim S.

    2016-01-01

    Previous work has shown that human vision performs spatial integration of luminance contrast energy, where signals are squared and summed (with internal noise) over area at detection threshold. We tested that model here in an experiment using arrays of micro-pattern textures that varied in overall stimulus area and sparseness of their target elements, where the contrast of each element was normalised for sensitivity across the visual field. We found a power-law improvement in performance with stimulus area, and a decrease in sensitivity with sparseness. While the contrast integrator model performed well when target elements constituted 50–100% of the target area (replicating previous results), observers outperformed the model when texture elements were sparser than this. This result required the inclusion of further templates in our model, selective for grids of various regular texture densities. By assuming a MAX operation across these noisy mechanisms the model also accounted for the increase in the slope of the psychometric function that occurred as texture density decreased. Thus, for the first time, mechanisms that are selective for texture density have been revealed at contrast detection threshold. We suggest that these mechanisms have a role to play in the perception of visual textures. PMID:27460430

  2. A procedure for classifying textural facies in gravel‐bed rivers

    USGS Publications Warehouse

    Buffington, John M.; Montgomery, David R.

    1999-01-01

    Textural patches (i.e., grain‐size facies) are commonly observed in gravel‐bed channels and are of significance for both physical and biological processes at subreach scales. We present a general framework for classifying textural patches that allows modification for particular study goals, while maintaining a basic degree of standardization. Textures are classified using a two‐tier system of ternary diagrams that identifies the relative abundance of major size classes and subcategories of the dominant size. An iterative procedure of visual identification and quantitative grain‐size measurement is used. A field test of our classification indicates that it affords reasonable statistical discrimination of median grain size and variance of bed‐surface textures. We also explore the compromise between classification simplicity and accuracy. We find that statistically meaningful textural discrimination requires use of both tiers of our classification. Furthermore, we find that simplified variants of the two‐tier scheme are less accurate but may be more practical for field studies which do not require a high level of textural discrimination or detailed description of grain‐size distributions. Facies maps provide a natural template for stratifying other physical and biological measurements and produce a retrievable and versatile database that can be used as a component of channel monitoring efforts.

  3. Mining textural knowledge in biological images: Applications, methods and trends.

    PubMed

    Di Cataldo, Santa; Ficarra, Elisa

    2017-01-01

    Texture analysis is a major task in many areas of computer vision and pattern recognition, including biological imaging. Indeed, visual textures can be exploited to distinguish specific tissues or cells in a biological sample, to highlight chemical reactions between molecules, as well as to detect subcellular patterns that can be evidence of certain pathologies. This makes automated texture analysis fundamental in many applications of biomedicine, such as the accurate detection and grading of multiple types of cancer, the differential diagnosis of autoimmune diseases, or the study of physiological processes. Due to their specific characteristics and challenges, the design of texture analysis systems for biological images has attracted ever-growing attention in the last few years. In this paper, we perform a critical review of this important topic. First, we provide a general definition of texture analysis and discuss its role in the context of bioimaging, with examples of applications from the recent literature. Then, we review the main approaches to automated texture analysis, with special attention to the methods of feature extraction and encoding that can be successfully applied to microscopy images of cells or tissues. Our aim is to provide an overview of the state of the art, as well as a glimpse into the latest and future trends of research in this area.

  4. Separate channels for processing form, texture, and color: evidence from FMRI adaptation and visual object agnosia.

    PubMed

    Cavina-Pratesi, C; Kentridge, R W; Heywood, C A; Milner, A D

    2010-10-01

    Previous neuroimaging research suggests that although object shape is analyzed in the lateral occipital cortex, surface properties of objects, such as color and texture, are dealt with in more medial areas, close to the collateral sulcus (CoS). The present study sought to determine whether there is a single medial region concerned with surface properties in general or whether instead there are multiple foci independently extracting different surface properties. We used stimuli varying in their shape, texture, or color, and tested healthy participants and 2 object-agnosic patients, in both a discrimination task and a functional MR adaptation paradigm. We found a double dissociation between medial and lateral occipitotemporal cortices in processing surface (texture or color) versus geometric (shape) properties, respectively. In Experiment 2, we found that the medial occipitotemporal cortex houses separate foci for color (within anterior CoS and lingual gyrus) and texture (caudally within posterior CoS). In addition, we found that areas selective for shape, texture, and color individually were quite distinct from those that respond to all of these features together (shape and texture and color). These latter areas appear to correspond to those associated with the perception of complex stimuli such as faces and places.

  5. Using Neutron Diffraction to Investigate Texture Evolution During Consolidation of Deuterated Triaminotrinitrobenzene (d-TATB) Explosive Powder

    DOE PAGES

    Luscher, Darby J.; Yeager, John D.; Clausen, Bjørn; ...

    2017-05-14

    Triaminotrinitrobenzene (TATB) is a highly anisotropic molecular crystal used in several plastic-bonded explosive (PBX) formulations. A complete understanding of the orientation distribution of TATB particles throughout a PBX charge is required to understand spatially variable, anisotropic macroscale properties of the charge. Although texture of these materials can be measured after they have been subjected to mechanical or thermal loads, measuring texture evolution in situ is important in order to identify mechanisms of crystal deformation and reorientation used to better inform thermomechanical models. Neutron diffraction measurements were used to estimate crystallographic reorientation while deuterated TATB (d-TATB) powder was consolidated into amore » cylindrical pellet via a uniaxial die-pressing operation at room temperature. Both the final texture of the pressed pellet and the in situ evolution of texture during pressing were measured, showing that the d-TATB grains reorient such that (001) poles become preferentially aligned with the pressing direction. A compaction model is used to predict the evolution of texture in the pellet during the pressing process, finding that the original model overpredicted the texture strength compared to these measurements. The theory was extended to account for initial particle shape and pore space, bringing the results into good agreement with the data.« less

  6. Pectin engineering to modify product quality in potato.

    PubMed

    Ross, Heather A; Morris, Wayne L; Ducreux, Laurence J M; Hancock, Robert D; Verrall, Susan R; Morris, Jenny A; Tucker, Gregory A; Stewart, Derek; Hedley, Pete E; McDougall, Gordon J; Taylor, Mark A

    2011-10-01

    Although processed potato tuber texture is an important trait that influences consumer preference, a detailed understanding of tuber textural properties at the molecular level is lacking. Previous work has identified tuber pectin methyl esterase (PME) activity as a potential factor impacting on textural properties, and the expression of a gene encoding an isoform of PME (PEST1) was associated with cooked tuber textural properties. In this study, a transgenic approach was undertaken to investigate further the impact of the PEST1 gene. Antisense and over-expressing potato lines were generated. In over-expressing lines, tuber PME activity was enhanced by up to 2.3-fold; whereas in antisense lines, PME activity was decreased by up to 62%. PME isoform analysis indicated that the PEST1 gene encoded one isoform of PME. Analysis of cell walls from tubers from the over-expressing lines indicated that the changes in PME activity resulted in a decrease in pectin methylation. Analysis of processed tuber texture demonstrated that the reduced level of pectin methylation in the over-expressing transgenic lines was associated with a firmer processed texture. Thus, there is a clear link between PME activity, pectin methylation and processed tuber textural properties. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  7. Effects of Texture and Grain Size on the Yield Strength of ZK61 Alloy Rods Processed by Cyclic Extrusion and Compression

    PubMed Central

    Zhang, Lixin; Zhang, Wencong; Cao, Biao; Chen, Wenzhen; Duan, Junpeng; Cui, Guorong

    2017-01-01

    The ZK61 alloy rods with different grain sizes and crystallographic texture were successfully fabricated by cyclic extrusion and compression (CEC). Their room-temperature tension & compression yield strength displayed a significant dependence on grain size and texture, essentially attributed to {10-12} twinning. The texture variations were characterized by the angle θ between the c-axis of the grain and the extrusion direction (ED) during the process. The contour map of room-temperature yield strength as a function of grain size and the angle θ was obtained. It showed that both the tension yield strength and the compression yield strength of ZK61 alloy were fully consistent with the Hall-Patch relationship at a certain texture, but the change trends of the tension yield strength and the compression yield strength were completely opposite at the same grain size while texture altered. The friction stresses of different deformation modes calculated based on the texture confirmed the tension yield strength of the CECed ZK61 alloy rods, which was determined by both the basal slip and the tension twinning slip during the tension deformation at room temperature, while the compression yield strength was mainly determined by the basal slip during the compression deformation. PMID:29072616

  8. Calcium and zirconium as texture modifiers during rolling and annealing of magnesium–zinc alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohlen, Jan, E-mail: jan.bohlen@hzg.de; Wendt, Joachim; Nienaber, Maria

    2015-03-15

    Rolling experiments were carried out on a ternary Mg–Zn–Ca alloy and its modification with zirconium. Short time annealing of as-rolled sheets is used to reveal the microstructure and texture development. The texture of the as-rolled sheets can be characterised by basal pole figures with split peak towards the rolling direction (RD) and a broad transverse angular spread of basal planes towards the transverse direction (TD). During annealing the RD split peaks as well as orientations in the sheet plane vanish whereas the distribution of orientations tilted towards the TD remains. It is shown in EBSD measurements that during rolling bandsmore » of twin containing structures form. During subsequent annealing basal orientations close to the sheet plane vanish based on a grain nucleation and growth mechanism of recrystallisation. Orientations with tilt towards the TD remain in grains that do not undergo such a mechanism. The addition of Zr delays texture weakening. - Highlights: • Ca in Mg–Zn-alloys contributes to a significant texture weakening during rolling and annealing. • Grain nucleation and growth in structures consisting of twins explain a texture randomisation during annealing. • Grains with transverse tilt of basal planes preferentially do not undergo a grain nucleation and growth mechanism. • Zr delays the microstructure and texture development.« less

  9. Using Neutron Diffraction to Investigate Texture Evolution During Consolidation of Deuterated Triaminotrinitrobenzene (d-TATB) Explosive Powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luscher, Darby J.; Yeager, John D.; Clausen, Bjørn

    Triaminotrinitrobenzene (TATB) is a highly anisotropic molecular crystal used in several plastic-bonded explosive (PBX) formulations. A complete understanding of the orientation distribution of TATB particles throughout a PBX charge is required to understand spatially variable, anisotropic macroscale properties of the charge. Although texture of these materials can be measured after they have been subjected to mechanical or thermal loads, measuring texture evolution in situ is important in order to identify mechanisms of crystal deformation and reorientation used to better inform thermomechanical models. Neutron diffraction measurements were used to estimate crystallographic reorientation while deuterated TATB (d-TATB) powder was consolidated into amore » cylindrical pellet via a uniaxial die-pressing operation at room temperature. Both the final texture of the pressed pellet and the in situ evolution of texture during pressing were measured, showing that the d-TATB grains reorient such that (001) poles become preferentially aligned with the pressing direction. A compaction model is used to predict the evolution of texture in the pellet during the pressing process, finding that the original model overpredicted the texture strength compared to these measurements. The theory was extended to account for initial particle shape and pore space, bringing the results into good agreement with the data.« less

  10. Modeling the microstructural changes during hot tandem rolling of AA5 XXX aluminum alloys: Part II. Textural evolution

    NASA Astrophysics Data System (ADS)

    Wells, M. A.; Samarasekera, I. V.; Brimacombe, J. K.; Hawbolt, E. B.; Lloyd, D. J.

    1998-06-01

    In Part II of this article, the experimental work undertaken to measure the effect of deformation parameters (temperature, strain, and strain rate) on the texture formation during hot deformation and the evolution during subsequent recrystallization is described. In addition, the isothermal kinetics of development of individual texture components were also determined. A neutron diffractometer was used to measure the texture in the as-hot-deformed aluminum samples, and the samples were then heat treated in a 400 °C salt bath for various lengths of time, with the texture being remeasured at various stages in the recrystallization process. Using data from the experimental program, the texture evolution during recrystallization was modeled by applying a modified form of the Avrami equation. Results indicated that, of the deformation parameters studied, textural development was most sensitive to the deformation temperature for both alloys. In addition, modeling results revealed that the Cu component ({112} <111>) was the first to recrystallize, typically followed by the S ({123} <634>) and Bs ({110} <112>) components. This is in agreement with earlier work which indicated that the Bs component was the hardest to recrystallize, possibly because it is able to deform on very few slip systems and, hence, the dislocation interaction may be low.

  11. Microstructure and Texture Evolution in a Yttrium-Containing ZM31 Alloy: Effect of Pre- and Post-deformation Annealing

    NASA Astrophysics Data System (ADS)

    Tahreen, N.; Zhang, D. F.; Pan, F. S.; Jiang, X. Q.; Li, D. Y.; Chen, D. L.

    2016-12-01

    Microstructure and texture evolution of as-extruded ZM31 magnesium alloys with different amounts of yttrium (Y) during pre- and post-deformation annealing were examined with special attention given to the effect of Y on recrystallization. It was observed that the extruded ZM31 alloys exhibited a basal texture with the basal planes parallel to the extrusion direction (ED). The compression of the extruded alloys in the ED to a strain amount of 10 pct resulted in c-axes of hcp unit cells rotating toward the anti-compression direction due to the occurrence of extension twinning. Annealing of the extruded alloys altered the microstructure and texture, and the subsequent compression after annealing showed a relatively weak texture and a lower degree of twinning. A reverse procedure of pre-compression and subsequent annealing was found to further weaken the texture with a more scattered distribution of orientations and to lead to the vanishing of the original basal texture. With increasing Y content, both the extent of extension twinning during compression and the fraction of recrystallization during annealing decreased due to the role of Y present in the substitutional solid solution and in the second-phase particles, leading to a significant increase in the compressive yield strength.

  12. Cross-Modal Associations between Sounds and Drink Tastes/Textures: A Study with Spontaneous Production of Sound-Symbolic Words.

    PubMed

    Sakamoto, Maki; Watanabe, Junji

    2016-03-01

    Many languages have a word class whose speech sounds are linked to sensory experiences. Several recent studies have demonstrated cross-modal associations (or correspondences) between sounds and gustatory sensations by asking participants to match predefined sound-symbolic words (e.g., "maluma/takete") with the taste/texture of foods. Here, we further explore cross-modal associations using the spontaneous production of words and semantic ratings of sensations. In the experiment, after drinking liquids, participants were asked to express their taste/texture using Japanese sound-symbolic words, and at the same time, to evaluate it in terms of criteria expressed by adjectives. Because the Japanese language has a large vocabulary of sound-symbolic words, and Japanese people frequently use them to describe taste/texture, analyzing a variety of Japanese sound-symbolic words spontaneously produced to express taste/textures might enable us to explore the mechanism of taste/texture categorization. A hierarchical cluster analysis based on the relationship between linguistic sounds and taste/texture evaluations revealed the structure of sensation categories. The results indicate that an emotional evaluation like pleasant/unpleasant is the primary cluster in gustation. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Correlation between sensory and instrumental measurements of standard and crisp-texture southern highbush blueberries (Vaccinium corymbosum L. interspecific hybrids)

    PubMed Central

    Blaker, Kendra M; Plotto, Anne; Baldwin, Elizabeth A; Olmstead, James W

    2014-01-01

    BACKGROUND Fruit texture is a primary selection trait in southern highbush blueberry (SHB) breeding to increase fresh fruit postharvest quality and consumer acceptance. A novel crisp fruit texture has recently been identified among SHB germplasm. In this study, we developed a common set of descriptors that align sensory evaluation of blueberry fruit texture with instrumental measures that could be used for quantitative measurements during pre- and postharvest evaluation. RESULTS Sensory and instrumental characteristics were measured in 36 and 49 genotypes in 2010 and 2011, respectively. A trained sensory panel evaluated fresh fruit based on five common textural attributes in 2010 and 2011: bursting energy, flesh firmness, skin toughness, juiciness and mealiness. Instrumental measures of compression and bioyield forces were significantly different among cultivars and correlated with sensory scores for bursting energy, flesh firmness and skin toughness (R > 0.7, except skin toughness in 2011), but correlations with sensory scores for juiciness and mealiness were low (R < 0.4). CONCLUSION The results of sensory and instrumental measures supported the use of both compression and bioyield force measures in distinguishing crisp from standard-texture genotypes, and suggest that crisp texture in SHB is related to the sensory perception of bursting energy, flesh firmness and skin toughness. PMID:24619938

  14. Comparison of growth texture in round Bi2212 and flat Bi2223 wires and its relation to high critical current density development

    DOE PAGES

    Kametani, F.; Jiang, J.; Matras, M.; ...

    2015-02-10

    Why Bi₂Sr₂CaCu₂O x (Bi2212) allows high critical current density J c in round wires rather than only in the anisotropic tape form demanded by all other high temperature superconductors is important for future magnet applications. Here we compare the local texture of state-of-the-art Bi2212 and Bi2223 ((Bi,Pb)₂Sr₂Ca₂Cu₃O₁₀), finding that round wire Bi2212 generates a dominant a-axis growth texture that also enforces a local biaxial texture (FWHM <15°) while simultaneously allowing the c-axes of its polycrystals to rotate azimuthally along and about the filament axis so as to generate macroscopically isotropic behavior. By contrast Bi2223 shows only a uniaxial (FWHM <15°)more » c-axis texture perpendicular to the tape plane without any in-plane texture. Consistent with these observations, a marked, field-increasing, field-decreasing J c(H) hysteresis characteristic of weak-linked systems appears in Bi2223 but is absent in Bi2212 round wire. Growth-induced texture on cooling from the melt step of the Bi2212 J c optimization process appears to be the key step in generating this highly desirable microstructure.« less

  15. Characterisation of group behaviour surface texturing with multi-layers fitting method

    NASA Astrophysics Data System (ADS)

    Kang, Zhengyang; Fu, Yonghong; Ji, Jinghu; Wang, Hao

    2016-07-01

    Surface texturing was widely applied in improving the tribological properties of mechanical components, but study of measurement of this technology was still insufficient. This study proposed the multi-layers fitting (MLF) method to characterise the dimples array texture surface. Based on the synergistic effect among the dimples, the 3D morphology of texture surface was rebuilt by 2D stylus profiler in the MLF method. The feasible regions of texture patterns and sensitive parameters were confirmed by non-linear programming, and the processing software of MLF method was developed based on the Matlab®. The characterisation parameters system of dimples was defined mathematically, and the accuracy of MLF method was investigated by comparison experiment. The surface texture specimens were made by laser surface texturing technology, in which high consistency of dimples' size and distribution was achieved. Then, 2D profiles of different dimples were captured by employing Hommel-T1000 stylus profiler, and the data were further processed by MLF software to rebuild 3D morphology of single dimple. The experiment results indicated that the MLF characterisation results were similar to those of Wyko T1100, the white light interference microscope. It was also found that the stability of MLF characterisation results highly depended on the number of captured cross-sections.

  16. Inferring pterosaur diets through quantitative 3D textural analysis of tooth microwear in extant analogues

    NASA Astrophysics Data System (ADS)

    Bestwick, Jordan; Unwin, David; Butler, Richard; Henderson, Don; Purnell, Mark

    2017-04-01

    Pterosaurs (Pterosauria) were a successful group of Mesozoic flying reptiles. For 150 million years they were integral components of terrestrial and coastal ecosystems, yet their feeding ecology remains poorly constrained. Postulated pterosaur diets include insectivory, piscivory and/or carnivory, but many dietary hypotheses are speculative and/or based on little evidence, highlighting the need for alternative approaches to provide robust data. One method involves quantitative analysis of the micron-scale 3D textures of worn pterosaur tooth surfaces - dental microwear texture analysis. Microwear is produced as scratches and chips generated by food items create characteristic tooth surface textures. Microwear analysis has never been applied to pterosaurs, but we might expect microwear textures to differ between pterosaurs with different diets. An important step in investigating pterosaur microwear is to examine microwear from extant organisms with known diets to provide a comparative data set. This has been achieved through analysis of non-occlusal microwear textures in extant bats, crocodilians and monitor lizards, clades within which species exhibit insectivorous, piscivorous and carnivorous diets. The results - the first test of the hypothesis that non-occlusal microwear textures in these extant clades vary with diet - provide the context for the first robust quantitative tests of pterosaur diets.

  17. Texture Analysis of Poly-Adenylated mRNA Staining Following Global Brain Ischemia and Reperfusion

    PubMed Central

    Szymanski, Jeffrey J.; Jamison, Jill T.; DeGracia, Donald J.

    2011-01-01

    Texture analysis provides a means to quantify complex changes in microscope images. We previously showed that cytoplasmic poly-adenylated mRNAs form mRNA granules in post-ischemic neurons and that these granules correlated with protein synthesis inhibition and hence cell death. Here we utilized the texture analysis software MaZda to quantify mRNA granules in photomicrographs of the pyramidal cell layer of rat hippocampal region CA3 around 1 hour of reperfusion after 10 min of normothermic global cerebral ischemia. At 1 hour reperfusion, we observed variations in the texture of mRNA granules amongst samples that were readily quantified by texture analysis. Individual sample variation was consistent with the interpretation that animal-to-animal variations in mRNA granules reflected the time-course of mRNA granule formation. We also used texture analysis to quantify the effect of cycloheximide, given either before or after brain ischemia, on mRNA granules. If administered before ischemia, cycloheximide inhibited mRNA granule formation, but if administered after ischemia did not prevent mRNA granulation, indicating mRNA granule formation is dependent on dissociation of polysomes. We conclude that texture analysis is an effective means for quantifying the complex morphological changes induced in neurons by brain ischemia and reperfusion. PMID:21477879

  18. Dynamic recrystallization and texture evolution of Mg–Y–Zn alloy during hot extrusion process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, L.B.; Li, X.; Guangzhou Research Institute of Non-ferrous Metals, Guangzhou 510651

    2014-06-01

    The microstructure and texture evolution of Mg{sub 98.5}Y{sub 1}Zn{sub 0.5} and Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} (atomic percent) alloys during hot extrusion were systematically investigated. The coarse LPSO phases with higher volume fraction (∼ 57%) suppressed the twinning generation in the initial stage of extrusion, and accelerated the dynamic recrystallization through the particle deformation zones. Therefore, the volume fraction of DRXed grains in as-extruded Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} alloy was much higher than that of Mg{sub 98.5}Y{sub 1}Zn{sub 0.5} alloy. The intensive recrystallization process resulted in the conventional basal texture weakening, although the texture evolution was mainly dominated by flow behavior.more » The dynamic recrystallization behavior in Mg{sub 92.5}Y{sub 5}Zn{sub 2.5} alloy restricted the formation of deformation texture, and thus the more random texture was observed during the whole extrusion process. - Highlights: • The densely coarse LPSO phases suppressed the twinning deformation. • Coarse LPSO phases induced the particle stimulated nucleation effect. • Dynamic recrystallization resulted in the basal texture weakening effect.« less

  19. A standardised protocol for texture feature analysis of endoscopic images in gynaecological cancer.

    PubMed

    Neofytou, Marios S; Tanos, Vasilis; Pattichis, Marios S; Pattichis, Constantinos S; Kyriacou, Efthyvoulos C; Koutsouris, Dimitris D

    2007-11-29

    In the development of tissue classification methods, classifiers rely on significant differences between texture features extracted from normal and abnormal regions. Yet, significant differences can arise due to variations in the image acquisition method. For endoscopic imaging of the endometrium, we propose a standardized image acquisition protocol to eliminate significant statistical differences due to variations in: (i) the distance from the tissue (panoramic vs close up), (ii) difference in viewing angles and (iii) color correction. We investigate texture feature variability for a variety of targets encountered in clinical endoscopy. All images were captured at clinically optimum illumination and focus using 720 x 576 pixels and 24 bits color for: (i) a variety of testing targets from a color palette with a known color distribution, (ii) different viewing angles, (iv) two different distances from a calf endometrial and from a chicken cavity. Also, human images from the endometrium were captured and analysed. For texture feature analysis, three different sets were considered: (i) Statistical Features (SF), (ii) Spatial Gray Level Dependence Matrices (SGLDM), and (iii) Gray Level Difference Statistics (GLDS). All images were gamma corrected and the extracted texture feature values were compared against the texture feature values extracted from the uncorrected images. Statistical tests were applied to compare images from different viewing conditions so as to determine any significant differences. For the proposed acquisition procedure, results indicate that there is no significant difference in texture features between the panoramic and close up views and between angles. For a calibrated target image, gamma correction provided an acquired image that was a significantly better approximation to the original target image. In turn, this implies that the texture features extracted from the corrected images provided for better approximations to the original images. Within the proposed protocol, for human ROIs, we have found that there is a large number of texture features that showed significant differences between normal and abnormal endometrium. This study provides a standardized protocol for avoiding any significant texture feature differences that may arise due to variability in the acquisition procedure or the lack of color correction. After applying the protocol, we have found that significant differences in texture features will only be due to the fact that the features were extracted from different types of tissue (normal vs abnormal).

  20. TU-AB-BRA-12: Impact of Image Registration Algorithms On the Prediction of Pathological Response with Radiomic Textures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yip, S; Coroller, T; Niu, N

    2015-06-15

    Purpose: Tumor regions-of-interest (ROI) can be propagated from the pre-onto the post-treatment PET/CT images using image registration of their CT counterparts, providing an automatic way to compute texture features on longitudinal scans. This exploratory study assessed the impact of image registration algorithms on textures to predict pathological response. Methods: Forty-six esophageal cancer patients (1 tumor/patient) underwent PET/CT scans before and after chemoradiotherapy. Patients were classified into responders and non-responders after the surgery. Physician-defined tumor ROIs on pre-treatment PET were propagated onto the post-treatment PET using rigid and ten deformable registration algorithms. One co-occurrence, two run-length and size zone matrix texturesmore » were computed within all ROIs. The relative difference of each texture at different treatment time-points was used to predict the pathologic responders. Their predictive value was assessed using the area under the receiver-operating-characteristic curve (AUC). Propagated ROIs and texture quantification resulting from different algorithms were compared using overlap volume (OV) and coefficient of variation (CoV), respectively. Results: Tumor volumes were better captured by ROIs propagated by deformable rather than the rigid registration. The OV between rigidly and deformably propagated ROIs were 69%. The deformably propagated ROIs were found to be similar (OV∼80%) except for fast-demons (OV∼60%). Rigidly propagated ROIs with run-length matrix textures failed to significantly differentiate between responders and non-responders (AUC=0.65, p=0.07), while the differentiation was significant with other textures (AUC=0.69–0.72, p<0.03). Among the deformable algorithms, fast-demons was the least predictive (AUC=0.68–0.71, p<0.04). ROIs propagated by all other deformable algorithms with any texture significantly predicted pathologic responders (AUC=0.71–0.78, p<0.01) despite substantial variation in texture quantification (CoV>70%). Conclusion: Propagated ROIs using deformable registration for all textures can lead to accurate prediction of pathologic response, potentially expediting the temporal texture analysis process. However, rigid and fast-demons deformable algorithms are not recommended due to their inferior performance compared to other algorithms. The project was supported in part by a Kaye Scholar Award.« less

  1. Characterization of Breast Implant Surfaces, Shapes, and Biomechanics: A Comparison of High Cohesive Anatomically Shaped Textured Silicone, Breast Implants from Three Different Manufacturers.

    PubMed

    Atlan, Michael; Bigerelle, Maxence; Larreta-garde, Véronique; Hindié, Mathilde; Hedén, Per

    2016-02-01

    Several companies offer anatomically shaped breast implants but differences among manufacturers are often misunderstood. The shell texture is a crucial parameter for anatomically shaped implants to prevent rotation and to decrease the risk of capsular contracture, even though concerns have recently been raised concerning the complications associated with textured breast implants. The aim of this study was to characterize differences in terms of texture, cell adhesion, shape, and stiffness between some commonly used anatomically shaped implants from three different manufacturers. Five commercially available anatomically shaped breast implants from 3 different manufacturers (Allergan, Mentor, and Sebbin) were used. Scanning electron microscopy, X-ray microtomography, and scanning mechanical microscopy were used to characterize the shell texture. Human fibroblast adhesion onto the shells was evaluated. 3D models of the implants were obtained using CT-scan acquisitions to analyze their shape. Implant stiffness was evaluated using a tractiometer. Major differences were observed in the topography of the textures of the shells, but this was not conveyed by a statistically significant fibroblast adhesion difference. However, fibroblasts adhered better on anatomically shaped textured implants than on smooth implants (p < 0.01). Our work pointed out differences in the Biocell® texture in comparison with older studies. The 3D analysis showed significant shape differences between the anatomically shaped implants of the 3 companies, despite similar dimensions. Implant stiffness was comparable among the 3 brands. Each texture had its specific topography, and this work is the first description of Sebbin anatomic breast implant texturation. Moreover, major discrepancies were found in the analysis of the Biocell® texture when comparing our results with previous reports. These differences may have clinical implications and are discussed. This study also highlighted major shape differences among breast implants from different manufacturers, which is quite counterintuitive. The clinical impact of these differences however needs further investigation. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  2. Spinifex-textured komatiites in the south border of the Carajas ridge, Selva Greenstone belt, Carajás Province, Brazil

    NASA Astrophysics Data System (ADS)

    Siepierski, Lincoln; Ferreira Filho, Cesar Fonseca

    2016-03-01

    Spinifex-textured komatiites in the Selva greenstone belt are the first unequivocal examples of komatiites in the Transition Subdomain of the Carajás Mineral Province. Outcrops of spinifex-textured komatiites, located ∼1.5 km to the south of the Carajás ridge, were discovered during regional exploration for Ni-Cu-(PGE) sulfide deposits by VALE. They are associated with a 3.8 km long unit consisting of variable types of ultramafic rocks (talc schist, serpentinite and spinifex-textured komatiite). This ultramafic unit follows the steep dipping NW-SE trending Selva greenstone belt composed mainly by quartz-chlorite schists (interpreted as metasediments) and chlorite-actinolite schists (interpreted as metabasalts). Greenschist facies metamorphic parageneses characterize all rock types in the Selva greenstone belt. The komatiitic rocks in the Selva belt comprise a sequence of flows consisting of an upper spinifex-textured layer and a lower olivine cumulate layer. Although the spinifex and cumulus textures are well preserved in the field, the primary mineralogy of the komatiites has been completely replaced by greenschist facies metamorphic minerals. Platy olivine spinifex texture, consisting of an array of roughly parallel olivine plates, and random spinifex texture, consisting of randomly oriented olivine plates, are the most common primary volcanic textures in komatiites in the Selva greenstone belt. Platy and random spinifex texture is defined by former plates of olivine replaced by serpentine with minor actinolite, chlorite and magnetite, alternating with former matrix replaced by abundant actinolite and minor chlorite, talc, serpentine, and magnetite. The domains between olivine plates in both platy and random spinifex-textured rocks contain irregular arrays of fine-grained parallel crystals, representing primary fine-grained "quench" clinopyroxene crystals replaced by actinolite. Spinifex-textured komatiites have MgO contents bracket between 22.8 and 26.9 wt.%, and cumulate textured komatiites have MgO contents up to 40.6 wt.%. When plotted vs MgO contents, most major and minor elements fall on well-defined linear trends indicating control by olivine fractionation or accumulation. Komatiites from the Selva and Seringa (located in the Rio Maria Domain) belts are Al-undepleted with Al2O3/TiO2 ratios close to 20. Results for CaO, Na2O, and REE suggest that these elements were mobile and their abundances have been modified during metasomatic alteration. REE contents in some samples are very high (up to 40 times primitive mantle values) and REE patterns vary from flat (La/YbMN ∼ 1) to highly enriched in LREE (La/YbMN up to ∼ 10). The REE mobility may be related to hydrothermal alteration associated to Cu-Au mineralization in the region. The identification of spinifex-textured komatiites close to the Carajás Basin suggests the continuation of 3.0-2.9 Ga greenstone belts of the Rio Maria Domain within the Transition Subdomain, and enlarges the area with potential to host komatiite-associated Ni-Cu-PGE deposits.

  3. Viscous anisotropy of textured olivine aggregates: 2. Micromechanical model

    NASA Astrophysics Data System (ADS)

    Hansen, Lars N.; Conrad, Clinton P.; Boneh, Yuval; Skemer, Philip; Warren, Jessica M.; Kohlstedt, David L.

    2016-10-01

    The significant viscous anisotropy that results from crystallographic alignment (texture) of olivine grains in deformed upper mantle rocks strongly influences a large variety of geodynamic processes. Our ability to explore the effects of anisotropic viscosity in simulations of these processes requires a mechanical model that can predict the magnitude of anisotropy and its evolution. Unfortunately, existing models of olivine textural evolution and viscous anisotropy are calibrated for relatively small deformations and simple strain paths, making them less general than desired for many large-scale geodynamic scenarios. Here we develop a new set of micromechanical models to describe the mechanical behavior and textural evolution of olivine through a large range of strains and complex strain histories. For the mechanical behavior, we explore two extreme scenarios, one in which each grain experiences the same stress tensor (Sachs model) and one in which each grain undergoes a strain rate as close as possible to the macroscopic strain rate (pseudo-Taylor model). For the textural evolution, we develop a new model in which the director method is used to control the rate of grain rotation and the available slip systems in olivine are used to control the axis of rotation. Only recently has enough laboratory data on the deformation of olivine become available to calibrate these models. We use these new data to conduct inversions for the best parameters to characterize both the mechanical and textural evolution models. These inversions demonstrate that the calibrated pseudo-Taylor model best reproduces the mechanical observations. Additionally, the pseudo-Taylor textural evolution model can reasonably reproduce the observed texture strength, shape, and orientation after large and complex deformations. A quantitative comparison between our calibrated models and previously published models reveals that our new models excel in predicting the magnitude of viscous anisotropy and the details of the textural evolution. In addition, we demonstrate that the mechanical and textural evolution models can be coupled and used to reproduce mechanical evolution during large-strain torsion tests. This set of models therefore provides a new geodynamic tool for incorporating viscous anisotropy into large-scale numerical simulations.

  4. SU-E-J-249: Characterization of Gynecological Tumor Heterogeneity Using Texture Analysis in the Context of An 18F-FDG PET Adaptive Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrocki, J; Chino, J; Craciunescu, O

    Purpose: We propose a method to examine gynecological tumor heterogeneity using texture analysis in the context of an adaptive PET protocol in order to establish if texture metrics from baseline PET-CT predict tumor response better than SUV metrics alone as well as determine texture features correlating with tumor response during radiation therapy. Methods: This IRB approved protocol included 29 women with node positive gynecological cancers visible on FDG-PET treated with EBRT to the PET positive nodes. A baseline and intra-treatment PET-CT was obtained. Tumor outcome was determined based on RECIST on posttreatment PET-CT. Primary GTVs were segmented using 40% thresholdmore » and a semi-automatic gradient-based contouring tool, PET Edge (MIM Software Inc., Cleveland, OH). SUV histogram features, Metabolic Volume (MV), and Total Lesion Glycolysis (TLG) were calculated. Four 3D texture matrices describing local and regional relationships between voxel intensities in the GTV were generated: co-occurrence, run length, size zone, and neighborhood difference. From these, 39 texture features were calculated. Prognostic power of baseline features derived from gradientbased and threshold GTVs were determined using the Wilcoxon rank-sum test. Receiver Operating Characteristics and logistic regression was performed using JMP (SAS Institute Inc., Cary, NC) to find probabilities of predicting response. Changes in features during treatment were determined using the Wilcoxon signed-rank test. Results: Of the 29 patients, there were 16 complete responders, 7 partial responders, and 6 non-responders. Comparing CR/PR vs. NR for gradient-based GTVs, 7 texture values, TLG, and SUV kurtosis had a p < 0.05. Threshold GTVs yielded 4 texture features and TLG with p < 0.05. From baseline to intra-treatment, 14 texture features, SUVmean, SUVmax, MV, and TLG changed with p < 0.05. Conclusion: Texture analysis of PET imaged gynecological tumors is an effective method for early prognosis and should be used complimentary to SUV metrics, especially when using gradient based segmentation.« less

  5. Prognostic Value and Reproducibility of Pretreatment CT Texture Features in Stage III Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, David V.; Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas; Tucker, Susan L.

    2014-11-15

    Purpose: To determine whether pretreatment CT texture features can improve patient risk stratification beyond conventional prognostic factors (CPFs) in stage III non-small cell lung cancer (NSCLC). Methods and Materials: We retrospectively reviewed 91 cases with stage III NSCLC treated with definitive chemoradiation therapy. All patients underwent pretreatment diagnostic contrast enhanced computed tomography (CE-CT) followed by 4-dimensional CT (4D-CT) for treatment simulation. We used the average-CT and expiratory (T50-CT) images from the 4D-CT along with the CE-CT for texture extraction. Histogram, gradient, co-occurrence, gray tone difference, and filtration-based techniques were used for texture feature extraction. Penalized Cox regression implementing cross-validation wasmore » used for covariate selection and modeling. Models incorporating texture features from the 33 image types and CPFs were compared to those with models incorporating CPFs alone for overall survival (OS), local-regional control (LRC), and freedom from distant metastases (FFDM). Predictive Kaplan-Meier curves were generated using leave-one-out cross-validation. Patients were stratified based on whether their predicted outcome was above or below the median. Reproducibility of texture features was evaluated using test-retest scans from independent patients and quantified using concordance correlation coefficients (CCC). We compared models incorporating the reproducibility seen on test-retest scans to our original models and determined the classification reproducibility. Results: Models incorporating both texture features and CPFs demonstrated a significant improvement in risk stratification compared to models using CPFs alone for OS (P=.046), LRC (P=.01), and FFDM (P=.005). The average CCCs were 0.89, 0.91, and 0.67 for texture features extracted from the average-CT, T50-CT, and CE-CT, respectively. Incorporating reproducibility within our models yielded 80.4% (±3.7% SD), 78.3% (±4.0% SD), and 78.8% (±3.9% SD) classification reproducibility in terms of OS, LRC, and FFDM, respectively. Conclusions: Pretreatment tumor texture may provide prognostic information beyond that obtained from CPFs. Models incorporating feature reproducibility achieved classification rates of ∼80%. External validation would be required to establish texture as a prognostic factor.« less

  6. Control of crystallographic texture and surface morphology of Pt/Tio2 templates for enhanced PZT thin film texture.

    PubMed

    Fox, Austin J; Drawl, Bill; Fox, Glen R; Gibbons, Brady J; Trolier-McKinstry, Susan

    2015-01-01

    Optimized processing conditions for Pt/TiO2/SiO2/Si templating electrodes were investigated. These electrodes are used to obtain [111] textured thin film lead zirconate titanate (Pb[ZrxTi1-x ]O3 0 ≤ x ≤ 1) (PZT). Titanium deposited by dc magnetron sputtering yields [0001] texture on a thermally oxidized Si wafer. It was found that by optimizing deposition time, pressure, power, and the chamber pre-conditioning, the Ti texture could be maximized while maintaining low surface roughness. When oxidized, titanium yields [100]-oriented rutile. This seed layer has as low as a 4.6% lattice mismatch with [111] Pt; thus, it is possible to achieve strongly oriented [111] Pt. The quality of the orientation and surface roughness of the TiO2 and the Ti directly affect the achievable Pt texture and surface morphology. A transition between optimal crystallographic texture and the smoothest templating surface occurs at approximately 30 nm of original Ti thickness (45 nm TiO2). This corresponds to 0.5 nm (2 nm for TiO2) rms roughness as determined by atomic force microscopy and a full-width at half-maximum (FWHM) of the rocking curve 0002 (200) peak of 5.5/spl degrees/ (3.1/spl degrees/ for TiO2). A Pb[Zr0.52Ti 0.48]O3 layer was deposited and shown to template from the textured Pt electrode, with a maximum [111] Lotgering factor of 87% and a minimum 111 FWHM of 2.4/spl degrees/ at approximately 30 nm of original Ti.

  7. Quantitative phase and texture angularity analysis of brain white matter lesions in multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Baxandall, Shalese; Sharma, Shrushrita; Zhai, Peng; Pridham, Glen; Zhang, Yunyan

    2018-03-01

    Structural changes to nerve fiber tracts are extremely common in neurological diseases such as multiple sclerosis (MS). Accurate quantification is vital. However, while nerve fiber damage is often seen as multi-focal lesions in magnetic resonance imaging (MRI), measurement through visual perception is limited. Our goal was to characterize the texture pattern of the lesions in MRI and determine how texture orientation metrics relate to lesion structure using two new methods: phase congruency and multi-resolution spatial-frequency analysis. The former aims to optimize the detection of the `edges and corners' of a structure, and the latter evaluates both the radial and angular distributions of image texture associated with the various forming scales of a structure. The radial texture spectra were previously confirmed to measure the severity of nerve fiber damage, and were thus included for validation. All measures were also done in the control brain white matter for comparison. Using clinical images of MS patients, we found that both phase congruency and weighted mean phase detected invisible lesion patterns and were significantly greater in lesions, suggesting higher structure complexity, than the control tissue. Similarly, multi-angular spatial-frequency analysis detected much higher texture across the whole frequency spectrum in lesions than the control areas. Such angular complexity was consistent with findings from radial texture. Analysis of the phase and texture alignment may prove to be a useful new approach for assessing invisible changes in lesions using clinical MRI and thereby lead to improved management of patients with MS and similar disorders.

  8. Slippage on a particle-laden liquid-gas interface in textured microchannels

    NASA Astrophysics Data System (ADS)

    Gaddam, Anvesh; Agrawal, Amit; Joshi, Suhas S.; Thompson, Mark C.

    2018-03-01

    Despite numerous investigations in the literature on slip flows in textured microchannels, experimental results were seldom in agreement with the theory. It is conjectured that contamination of the liquid-gas interface by impurities might be one of the sources of this discrepancy. However, the effect of impurities on slippage at the liquid-gas interface is neither understood nor previously reported. To this end, this work presents numerical investigation on the flow past a liquid-gas interface embedded with solid particles in textured microchannels. Initially, we present numerical simulations past transverse ribs with cylindrical particles on the liquid-gas interface. A reduction in effective slip length (or slip loss) with respect to the particle-free interface as a function of gas fraction, constriction ratio, and particle position was quantified. A significant slip loss (˜20-80%) was induced, owing to acceleration-deceleration cycles experienced by the liquid advecting across the particle-laden liquid-gas interface. Even a small number of solid particles adsorbed on a liquid-gas interface were shown to reduce the effective slip length considerably. This renders a textured microchannel with the particle-laden interface to be ineffective as compared to a completely wetted textured microchannel under certain conditions. Furthermore, a flow past two bi-dimensional textures, viz. posts and holes, with their interfaces embedded with spherical particles was also simulated. Our results show that texture configurations with an unbounded liquid-gas interface can mitigate the detrimental effects of particles adsorbed at the interface. The results presented here will help guide in designing efficient textured surfaces in future.

  9. Land use/land cover mapping using multi-scale texture processing of high resolution data

    NASA Astrophysics Data System (ADS)

    Wong, S. N.; Sarker, M. L. R.

    2014-02-01

    Land use/land cover (LULC) maps are useful for many purposes, and for a long time remote sensing techniques have been used for LULC mapping using different types of data and image processing techniques. In this research, high resolution satellite data from IKONOS was used to perform land use/land cover mapping in Johor Bahru city and adjacent areas (Malaysia). Spatial image processing was carried out using the six texture algorithms (mean, variance, contrast, homogeneity, entropy, and GLDV angular second moment) with five difference window sizes (from 3×3 to 11×11). Three different classifiers i.e. Maximum Likelihood Classifier (MLC), Artificial Neural Network (ANN) and Supported Vector Machine (SVM) were used to classify the texture parameters of different spectral bands individually and all bands together using the same training and validation samples. Results indicated that texture parameters of all bands together generally showed a better performance (overall accuracy = 90.10%) for land LULC mapping, however, single spectral band could only achieve an overall accuracy of 72.67%. This research also found an improvement of the overall accuracy (OA) using single-texture multi-scales approach (OA = 89.10%) and single-scale multi-textures approach (OA = 90.10%) compared with all original bands (OA = 84.02%) because of the complementary information from different bands and different texture algorithms. On the other hand, all of the three different classifiers have showed high accuracy when using different texture approaches, but SVM generally showed higher accuracy (90.10%) compared to MLC (89.10%) and ANN (89.67%) especially for the complex classes such as urban and road.

  10. X-ray diffraction analysis of residual stresses in textured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Dobročka, E.; Novák, P.; Búc, D.; Harmatha, L.; Murín, J.

    2017-02-01

    Residual stresses are commonly generated in thin films during the deposition process and can influence the film properties. Among a number of techniques developed for stress analysis, X-ray diffraction methods, especially the grazing incidence set-up, are of special importance due to their capability to analyze the stresses in very thin layers as well as to investigate the depth variation of the stresses. In this contribution a method combining multiple {hkl} and multiple χ modes of X-ray diffraction stress analysis in grazing incidence set-up is used for the measurement of residual stress in strongly textured ZnO thin films. The method improves the precision of the stress evaluation in textured samples. Because the measurements are performed at very low incidence angles, the effect of refraction of X-rays on the measured stress is analyzed in details for the general case of non-coplanar geometry. It is shown that this effect cannot be neglected if the angle of incidence approaches the critical angle. The X-ray stress factors are calculated for hexagonal fiber-textured ZnO for the Reuss model of grain-interaction and the effect of texture on the stress factors is analyzed. The texture in the layer is modelled by Gaussian distribution function. Numerical results indicate that in the process of stress evaluation the Reuss model can be replaced by much simpler crystallite group method if the standard deviation of Gaussian describing the texture is less than 6°. The results can be adapted for fiber-textured films of various hexagonal materials.

  11. Mapping quantitative trait loci for a unique 'super soft' kernel trait in soft white wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat (Triticum sp.) kernel texture is an important factor affecting milling, flour functionality, and end-use quality. Kernel texture is normally characterized as either hard or soft, the two major classes of texture. However, further variation is typically encountered in each class. Soft wheat var...

  12. Substrate With Low Secondary Emissions

    NASA Technical Reports Server (NTRS)

    Jensen, Kenneth A. (Inventor); Curren, Arthur N. (Inventor); Roman, Robert F. (Inventor)

    2000-01-01

    The present invention is directed to a method and apparatus for producing a highly -textured surface on a copper substrate -with only extremely small amounts of texture-inducing seeding or masking material. The texture-inducing seeding material is delivered to the copper substrate electrically switching the seeding material in and out of a circuit loop.

  13. Pen Textures Can Get "Hairy"

    ERIC Educational Resources Information Center

    Laird, Shirley

    2010-01-01

    The author likes to have her middle school students work with pens, patterns and textures. Because she was tired of the usual texture project she had been using, Shirley Laird began looking for a new approach. While searching for an inspiration, she ran across some old calendars that had excellent photos of teddy bears dressed up in different…

  14. The effects of varying the tire cap ply, sidewall filler height and pavement surface texture on tire/pavement noise generation

    DOT National Transportation Integrated Search

    2003-02-01

    In order to better understand the effect of tire carcass construction and pavement texture on tire/pavement noise generation, a measurement program was conducted on a group of four automobile tires on three pavement textures. The tires included all c...

  15. 7 CFR 52.3184 - Grades of dried prunes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... be affected by: Off-color. End cracks. 1 Skin or flesh Mold. Poor texture. Skin or flesh damage. 2..., by weight, may be affected by: Off-color. Poor texture. Mold. Decay. Poor texture. End cracks. Dirt. End cracks. Skin or flesh Foreign material. Skin or flesh damage. 2 damage. 2 Fermentation. Insect...

  16. 7 CFR 52.3184 - Grades of dried prunes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... be affected by: Off-color. End cracks. 1 Skin or flesh Mold. Poor texture. Skin or flesh damage. 2..., by weight, may be affected by: Off-color. Poor texture. Mold. Decay. Poor texture. End cracks. Dirt. End cracks. Skin or flesh Foreign material. Skin or flesh damage. 2 damage. 2 Fermentation. Insect...

  17. How much fertilizer nitrogen does sugarcane need?

    USDA-ARS?s Scientific Manuscript database

    Nitrogen rate recommendations for sugarcane in Louisiana take into account crop age (plant cane or stubble) and soil texture (light or heavy). Recommended rates in the 1950s ranged from 40 pounds N/A for plant cane on light-textured soil to 100 pounds of N/A for stubble cane on heavy-textured soil a...

  18. Alluvial substrate mapping by automated texture segmentation of recreational-grade side scan sonar imagery

    PubMed Central

    Buscombe, Daniel; Wheaton, Joseph M.

    2018-01-01

    Side scan sonar in low-cost ‘fishfinder’ systems has become popular in aquatic ecology and sedimentology for imaging submerged riverbed sediment at coverages and resolutions sufficient to relate bed texture to grain-size. Traditional methods to map bed texture (i.e. physical samples) are relatively high-cost and low spatial coverage compared to sonar, which can continuously image several kilometers of channel in a few hours. Towards a goal of automating the classification of bed habitat features, we investigate relationships between substrates and statistical descriptors of bed textures in side scan sonar echograms of alluvial deposits. We develop a method for automated segmentation of bed textures into between two to five grain-size classes. Second-order texture statistics are used in conjunction with a Gaussian Mixture Model to classify the heterogeneous bed into small homogeneous patches of sand, gravel, and boulders with an average accuracy of 80%, 49%, and 61%, respectively. Reach-averaged proportions of these sediment types were within 3% compared to similar maps derived from multibeam sonar. PMID:29538449

  19. New Process for the Goss Texture Formation and Magnetic Property in Silicon Steel Sheet by Hot Asymmetric Rolling and Annealing

    NASA Astrophysics Data System (ADS)

    Nam, Su Kwon; Kim, Gwang-Hee; Lee, Dong Nyung; Kim, Insoo

    2018-03-01

    The shear deformation texture of bcc metals is characterized by the Goss orientation, or {110}<001>, which is a highly useful orientation for grain-oriented silicon steels because it gives rise to high magnetic permeability along the <100> direction. To obtain the Goss texture, or {110}<001>, in silicon steel sheets, a silicon steel sheet was subjected to an 89 pct reduction in thickness via asymmetric rolling at 750 °C. This step resulted in the well-developed Goss texture. When multiple asymmetrically rolled steel sheets were subsequently annealed, one at 900 °C for 1 hour and the other at 1200 °C for a short period of 5 minutes in a box furnace with air atmosphere, a strong Goss texture was developed in the silicon steel sheets. The texture was measured via X-ray diffraction and electron backscatter diffraction. The magnetization curve of each specimen was measured by the vibrating sample magnetometer and the measured magnetization curve showed the typical soft magnetic characteristics.

  20. Nanostructured GaAs solar cells via metal-assisted chemical etching of emitter layers.

    PubMed

    Song, Yunwon; Choi, Keorock; Jun, Dong-Hwan; Oh, Jungwoo

    2017-10-02

    GaAs solar cells with nanostructured emitter layers were fabricated via metal-assisted chemical etching. Au nanoparticles produced via thermal treatment of Au thin films were used as etch catalysts to texture an emitter surface with nanohole structures. Epi-wafers with emitter layers 0.5, 1.0, and 1.5 um in thickness were directly textured and a window layer removal process was performed before metal catalyst deposition. A nanohole-textured emitter layer provides effective light trapping capabilities, reducing the surface reflection of a textured solar cell by 11.0%. However, because the nanostructures have high surface area to volume ratios and large numbers of defects, various photovoltaic properties were diminished by high recombination losses. Thus, we have studied the application of nanohole structures to GaAs emitter solar cells and investigated the cells' antireflection and photovoltaic properties as a function of the nanohole structure and emitter thickness. Due to decreased surface reflection and improved shunt resistance, the solar cell efficiency increased from 4.25% for non-textured solar cells to 7.15% for solar cells textured for 5 min.

  1. Novel chromatin texture features for the classification of pap smears

    NASA Astrophysics Data System (ADS)

    Bejnordi, Babak E.; Moshavegh, Ramin; Sujathan, K.; Malm, Patrik; Bengtsson, Ewert; Mehnert, Andrew

    2013-03-01

    This paper presents a set of novel structural texture features for quantifying nuclear chromatin patterns in cells on a conventional Pap smear. The features are derived from an initial segmentation of the chromatin into bloblike texture primitives. The results of a comprehensive feature selection experiment, including the set of proposed structural texture features and a range of different cytology features drawn from the literature, show that two of the four top ranking features are structural texture features. They also show that a combination of structural and conventional features yields a classification performance of 0.954±0.019 (AUC±SE) for the discrimination of normal (NILM) and abnormal (LSIL and HSIL) slides. The results of a second classification experiment, using only normal-appearing cells from both normal and abnormal slides, demonstrates that a single structural texture feature measuring chromatin margination yields a classification performance of 0.815±0.019. Overall the results demonstrate the efficacy of the proposed structural approach and that it is possible to detect malignancy associated changes (MACs) in Papanicoloau stain.

  2. Scanning electron microscopy combined with image processing technique: Analysis of microstructure, texture and tenderness in Semitendinous and Gluteus Medius bovine muscles.

    PubMed

    Pieniazek, Facundo; Messina, Valeria

    2016-11-01

    In this study the effect of freeze drying on the microstructure, texture, and tenderness of Semitendinous and Gluteus Medius bovine muscles were analyzed applying Scanning Electron Microscopy combined with image analysis. Samples were analyzed by Scanning Electron Microscopy at different magnifications (250, 500, and 1,000×). Texture parameters were analyzed by Texture analyzer and by image analysis. Tenderness by Warner-Bratzler shear force. Significant differences (p < 0.05) were obtained for image and instrumental texture features. A linear trend with a linear correlation was applied for instrumental and image features. Image texture features calculated from Gray Level Co-occurrence Matrix (homogeneity, contrast, entropy, correlation and energy) at 1,000× in both muscles had high correlations with instrumental features (chewiness, hardness, cohesiveness, and springiness). Tenderness showed a positive correlation in both muscles with image features (energy and homogeneity). Combing Scanning Electron Microscopy with image analysis can be a useful tool to analyze quality parameters in meat.Summary SCANNING 38:727-734, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  3. FAST TRACK COMMUNICATION: Directional annealing-induced texture in melt-spun (Sm12Co88)99Nb1 alloy

    NASA Astrophysics Data System (ADS)

    Jayaraman, T. V.; Rogge, P.; Shield, J. E.

    2010-07-01

    Developing texture in nanocrystalline permanent magnet alloys is of significant importance. Directional annealing is shown to produce texture in the permanent magnet alloy (Sm12Co88)99Nb1. Melt spinning produced isotropic grain structures of the hard magnetic metastable SmCo7 phase, with grain sizes of ~300 nm. Conventional annealing of melt-spun (Sm12Co88)99Nb1 alloy produced Sm2Co17 phase with random crystallographic orientation. Directional annealing of melt-spun (Sm12Co88)99Nb1 alloy, with appropriate combinations of annealing temperature and translational velocity, produced Sm2Co17 phase with (0 0 0 6) in-plane texture, as determined by x-ray diffraction analysis and magnetic measurements. The magnetization results show out-of-plane remanence higher than the in-plane remanence resulting in the degree of 'magnetic' texture in the order of 25-40%. Coercivity values above 2 kOe were maintained. The texture development via directional annealing while minimizing exposure to elevated temperatures provides a new route to anisotropic high-energy permanent magnets.

  4. Retaining {1 0 0} texture from initial columnar grains in 6.5 wt% Si electrical steels

    NASA Astrophysics Data System (ADS)

    Liang, Ruiyang; Yang, Ping; Mao, Weimin

    2017-11-01

    6.5 wt% Si electrical steel is a superior soft magnetic material with excellent magnetic properties which highly depends on texture. In this study, based on the heredity of 〈0 0 1〉 orientation in columnar grains, columnar grains are used as the initial material to prepare non-oriented 6.5 wt% Si electrical steel with excellent magnetic properties. EBSD and XRD techniques are adopted to explore the structure and texture evolution during hot rolling, warm rolling, cold rolling and annealing. The results show that, due to the heredity of "structure and texture" from the initial strong {1 0 0} columnar grains, annealed sheet with {1 0 0}〈0 0 1〉 texture had better magnetic properties, which can be used as non-oriented high-silicon electrical steel. Both preferred cube grain nucleation in deformed {1 1 3}〈3 6 1〉 grains in subsurface and coarse {1 0 0}〈0 0 1〉 deformed grains in center layer show the effect of initial columnar grains with {1 0 0} texture.

  5. Texture classification of lung computed tomography images

    NASA Astrophysics Data System (ADS)

    Pheng, Hang See; Shamsuddin, Siti M.

    2013-03-01

    Current development of algorithms in computer-aided diagnosis (CAD) scheme is growing rapidly to assist the radiologist in medical image interpretation. Texture analysis of computed tomography (CT) scans is one of important preliminary stage in the computerized detection system and classification for lung cancer. Among different types of images features analysis, Haralick texture with variety of statistical measures has been used widely in image texture description. The extraction of texture feature values is essential to be used by a CAD especially in classification of the normal and abnormal tissue on the cross sectional CT images. This paper aims to compare experimental results using texture extraction and different machine leaning methods in the classification normal and abnormal tissues through lung CT images. The machine learning methods involve in this assessment are Artificial Immune Recognition System (AIRS), Naive Bayes, Decision Tree (J48) and Backpropagation Neural Network. AIRS is found to provide high accuracy (99.2%) and sensitivity (98.0%) in the assessment. For experiments and testing purpose, publicly available datasets in the Reference Image Database to Evaluate Therapy Response (RIDER) are used as study cases.

  6. Equal channel angular extrusion for bulk processing of Fe–Co–2V soft magnetic alloys, part II: Texture analysis and magnetic properties

    DOE PAGES

    Kustas, Andrew B.; Michael, Joseph R.; Susan, Don F.; ...

    2018-06-04

    In Part I, equal channel angular extrusion (ECAE) was demonstrated as a novel, simple-shear deformation process for producing bulk forms of the low ductility Fe–Co–2V (Hiperco 50A®) soft ferromagnetic alloy with refined grain sizes. Microstructures and mechanical properties were discussed. In this Part II contribution, the crystallographic textures and quasi-static magnetic properties of ECAE-processed Hiperco were characterized. The textures were of a simple-shear character defined by partial {110} and <111> fibers inclined relative to the extrusion direction, in agreement with the expectations for simple-shear deformation textures of BCC metals. These textures were observed throughout all processing conditions and only slightlymore » reduced in intensity by subsequent recrystallization heat treatments. Characterization of the magnetic properties revealed a lower coercivity and higher permeability for ECAE-processed Hiperco specimens relative to the conventionally processed and annealed Hiperco bar. In conclusion, the effects of the resultant microstructure and texture on the coercivity and permeability magnetic properties are discussed.« less

  7. Equal channel angular extrusion for bulk processing of Fe–Co–2V soft magnetic alloys, part II: Texture analysis and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kustas, Andrew B.; Michael, Joseph R.; Susan, Don F.

    In Part I, equal channel angular extrusion (ECAE) was demonstrated as a novel, simple-shear deformation process for producing bulk forms of the low ductility Fe–Co–2V (Hiperco 50A®) soft ferromagnetic alloy with refined grain sizes. Microstructures and mechanical properties were discussed. In this Part II contribution, the crystallographic textures and quasi-static magnetic properties of ECAE-processed Hiperco were characterized. The textures were of a simple-shear character defined by partial {110} and <111> fibers inclined relative to the extrusion direction, in agreement with the expectations for simple-shear deformation textures of BCC metals. These textures were observed throughout all processing conditions and only slightlymore » reduced in intensity by subsequent recrystallization heat treatments. Characterization of the magnetic properties revealed a lower coercivity and higher permeability for ECAE-processed Hiperco specimens relative to the conventionally processed and annealed Hiperco bar. In conclusion, the effects of the resultant microstructure and texture on the coercivity and permeability magnetic properties are discussed.« less

  8. Grain Refinement and Texture Mitigation in Low Boron Containing TiAl-Alloys

    NASA Astrophysics Data System (ADS)

    Hecht, Ulrike; Witusiewicz, Victor T.

    2017-12-01

    Controlling the grain size and texture of lamellar TiAl-alloys is essential for well-balanced creep and fatigue properties. Excellent refinement and texture mitigation are achieved in aluminum lean alloys by low boron additions of 0.2 at.%. This amount is sufficient to promote in situ formation of ultrafine borides during the last stages of body centered cubic (BCC) solidification. The borides subsequently serve as nucleation sites for hexagonal close packed (HCP) during the BCC-HCP phase transformation. Bridgman solidification experiments with alloy Ti-43Al-8Nb-0.2C-0.2B were performed under a different growth velocity, i.e., cooling rate, to evaluate the HCP grain size distribution and texture. For slow-to-moderate cooling rates, about 65% of HCP grains are randomly oriented, despite the pronounced texture of the parent BCC phase resulting from directional solidification. For high cooling rates, obtained by quenching, texture mitigation is less pronounced. Only 28% of the HCP grains are randomly oriented, the majority being crystallographic variants of the Burgers orientation relationship.

  9. Mechanical properties and corrosion behavior of Mg-HAP composites.

    PubMed

    Campo, R Del; Savoini, B; Muñoz, A; Monge, M A; Garcés, G

    2014-11-01

    Mg and Mg-HAP composites containing 5, 10 and 15 wt% of hydroxyapatite have been produced following a powder metallurgy route that consists of mixing raw powders and consolidation by extrusion. The microstructure, texture, mechanical behavior and resistance to corrosion under a PBS solution have been studied. Addition of HAP increases the microhardness of the composites, however the yield strength under compression slightly decreases. Texture analyses reveal a fiber texture for pure Mg that is weakened increasing the HAP fraction. This texture promotes twinning and softening of Mg and Mg-5HAP during the initial deformation stages. Mg-10HAP and Mg-15HAP present a strain-hardening dependence showing no softening. The volume fraction of HAP particles weakens the texture and favors the activation of secondary slip systems. Corrosion experiments in PBS solution have shown that Mg-5HAP exhibits the best resistance to corrosion. Texture and porosity appear to be the main material features controlling the corrosion rates of Mg-HAP composites under the present conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Bone texture analysis on dental radiographic images: results with several angulated radiographs on the same region of interest

    NASA Astrophysics Data System (ADS)

    Amouriq, Yves; Guedon, Jeanpierre; Normand, Nicolas; Arlicot, Aurore; Benhdech, Yassine; Weiss, Pierre

    2011-03-01

    Bone microarchitecture is the predictor of bone quality or bone disease. It can only be measured on a bone biopsy, which is invasive and not available for all clinical situations. Texture analysis on radiographs is a common way to investigate bone microarchitecture. But relationship between three-dimension histomorphometric parameters and two-dimension texture parameters is not always well known, with poor results. The aim of this study is to performed angulated radiographs of the same region of interest and see if a better relationship between texture analysis on several radiographs and histomorphometric parameters can be developed. Computed radiography images of dog (Beagle) mandible section in molar regions were compared with high-resolution micro-CT (Computed-Tomograph) volumes. Four radiographs with 27° angle (up, down, left, right, using Rinn ring and customized arm positioning system) were performed from initial radiograph position. Bone texture parameters were calculated on all images. Texture parameters were also computed from new images obtained by difference between angulated images. Results of fractal values in different trabecular areas give some caracterisation of bone microarchitecture.

  11. Evolution of solidification texture during additive manufacturing

    PubMed Central

    Wei, H. L.; Mazumder, J.; DebRoy, T.

    2015-01-01

    Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six <100> preferred growth directions in face centered cubic alloys. Therefore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numerical modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components. PMID:26553246

  12. The effects of phase on the perception of 3D shape from texture: psychophysics and modeling.

    PubMed

    Thaler, Lore; Todd, James T; Dijkstra, Tjeerd M H

    2007-02-01

    Two experiments are reported in which observers judged the apparent shapes of elliptical cylinders with eight different textures that were presented with scrambled and unscrambled phase spectra. The results revealed that the apparent depths of these surfaces varied linearly with the ground truth in all conditions, and that the overall magnitude of surface relief was systematically underestimated. In general, the apparent depth of a surface is significantly attenuated when the phase spectrum of its texture is randomly scrambled, though the magnitude of this effect varies for different types of texture. A new computational model of 3D shape from texture is proposed in which apparent depth is estimated from the relative density of edges in different local regions of an image, and the predictions of this model are highly correlated with the observers' judgments.

  13. Effect of phase composition on crystal texture formation in hot deformed nanocrystalline SmCo5 magnets

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Yue, Ming; Xu, Xiaochang; Zhang, Hongguo; Zhang, Dongtao; Zhang, Xuefeng; Zhang, Jiuxing

    2018-05-01

    In the present study, bulk anisotropic nanocrystalline SmCo5 magnets were prepared by hot press and subsequent hot deformation method. Effect of phase composition on texture and magnetic properties are presented, based on which the mechanism of plastic deformation and texture formation during the hot deformation process is discussed. The SmCo5 magnets were prepared by hot deformation, excessive Sm of 2.5 wt% and 10 wt% was added to compensate the weight loss due to Sm evaporation. Our analyses reveal that the phase composition is one of the most important parameters that determine the texture of SmCo5 magnets. It is therefore suggested that the existence of 2:17 phase and its phase transformation undermined the crystal texture formation as well as the magnetic properties of nanocrystalline SmCo5 magnets.

  14. Human (Homo sapiens) facial attractiveness in relation to skin texture and color.

    PubMed

    Fink, B; Grammer, K; Thornhill, R

    2001-03-01

    The notion that surface texture may provide important information about the geometry of visible surfaces has attracted considerable attention for a long time. The present study shows that skin texture plays a significant role in the judgment of female facial beauty. Following research in clinical dermatology, the authors developed a computer program that implemented an algorithm based on co-occurrence matrices for the analysis of facial skin texture. Homogeneity and contrast features as well as color parameters were extracted out of stimulus faces. Attractiveness ratings of the images made by male participants relate positively to parameters of skin homogeneity. The authors propose that skin texture is a cue to fertility and health. In contrast to some previous studies, the authors found that dark skin, not light skin, was rated as most attractive.

  15. Evolution of solidification texture during additive manufacturing

    DOE PAGES

    Wei, H. L.; Mazumder, J.; DebRoy, T.

    2015-11-10

    Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six <100> preferred growth directions in face centered cubic alloys. Furthermore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numericalmore » modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components.« less

  16. Textured micrometer scale templates as light managing fabrication platform for organic solar cells

    DOEpatents

    Chaudhary, Sumit; Ho, Kai-Ming; Park, Joong-Mok; Nalwa, Kanwar Singh; Leung, Wai Y.

    2016-07-26

    A three-dimensional, microscale-textured, grating-shaped organic solar cell geometry. The solar cells are fabricated on gratings to give them a three-dimensional texture that provides enhanced light absorption. Introduction of microscale texturing has a positive effect on the overall power conversion efficiency of the devices. This grating-based solar cell having a grating of pre-determined pitch and height has shown improved power-conversion efficiency over a conventional flat solar cell. The improvement in efficiency is accomplished by homogeneous coverage of the grating with uniform thickness of the active layer, which is attributed to a sufficiently high pitch and low height of the underlying gratings. Also the microscale texturing leads to suppressed reflection of incident light due to the efficient coupling of the incident light into modes that are guided in the active layer.

  17. Strong piezoelectric anisotropy d15/d33 in ⟨111⟩ textured Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Yongke; Priya, Shashank

    2015-08-01

    The shear mode piezoelectric properties of Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 (PMN-PZT) ceramic with 72% ⟨111⟩ texture were investigated. The piezoelectric anisotropic factor d15/d33 was as high as 8.5 in ⟨111⟩ textured ceramic as compared to 2.0 in random counterpart. The high d15/d33 indicates the "rotator" ferroelectric characteristics of PMN-PZT system and suggests that the large shear piezoelectric response contributes towards the high longitudinal piezoelectric response (d33) in non-polar direction (d33 = 1100 pC/N in ⟨001⟩ textured ceramic vs. d33 = 112 pC/N in ⟨111⟩ textured ceramic).

  18. Structure and electrical properties of <001> textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Ye, S. K.; Fuh, J. Y. H.; Lu, L.

    2012-06-01

    <001> textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) lead-free piezoelectric ceramics were prepared by templated-grain growth method using BaTiO3 as template. The degree of orientation and the microstructure of the ceramics with different amount of template were investigated. The electrical properties of the textured-ceramics in the optimized condition were dramatically enhanced compared with randomly-oriented BCTZ ceramics. The textured BCTZ ceramics showed high piezoelectric constants d33 = 470 pC/N and d31 = -170 pC/N, and high electromechanical coupling factors kp = 44% and k31 = 22%. In addition, the Curie point of the textured ceramics revealed an increase with the template content.

  19. Classification and recognition of texture collagen obtaining by multiphoton microscope with neural network analysis

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Peng, Yuanyuan; Hu, Liangjun; Zhang, Xiaoman; Li, Hui

    2016-01-01

    Second harmonic generation microscopy (SHGM) was used to monitor the process of chronological aging skin in vivo. The collagen structures of mice model with different ages were obtained using SHGM. Then, texture feature with contrast, correlation and entropy were extracted and analysed using the grey level co-occurrence matrix. At last, the neural network tool of Matlab was applied to train the texture of collagen in different statues during the aging process. And the simulation of mice collagen texture was carried out. The results indicated that the classification accuracy reach 85%. Results demonstrated that the proposed approach effectively detected the target object in the collagen texture image during the chronological aging process and the analysis tool based on neural network applied the skin of classification and feature extraction method is feasible.

  20. SU-E-E-16: The Application of Texture Analysis for Differentiation of Central Cancer From Atelectasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, M; Fan, T; Duan, J

    2015-06-15

    Purpose: Prospectively assess the potential utility of texture analysis for differentiation of central cancer from atelectasis. Methods: 0 consecutive central lung cancer patients who were referred for CT imaging and PET-CT were enrolled. Radiotherapy doctor delineate the tumor and atelectasis according to the fusion imaging based on CT image and PET-CT image. The texture parameters (such as energy, correlation, sum average, difference average, difference entropy), were obtained respectively to quantitatively discriminate tumor and atelectasis based on gray level co-occurrence matrix (GLCM) Results: The texture analysis results showed that the parameters of correlation and sum average had an obviously statistical significance(P<0.05).more » Conclusion: the results of this study indicate that texture analysis may be useful for the differentiation of central lung cancer and atelectasis.« less

  1. Method for forming a nano-textured substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Sangmoo; Hu, Liangbing; Cui, Yi

    A method for forming a nano-textured surface on a substrate is disclosed. An illustrative embodiment of the present invention comprises dispensing of a nanoparticle ink of nanoparticles and solvent onto the surface of a substrate, distributing the ink to form substantially uniform, liquid nascent layer of the ink, and enabling the solvent to evaporate from the nanoparticle ink thereby inducing the nanoparticles to assemble into an texture layer. Methods in accordance with the present invention enable rapid formation of large-area substrates having a nano-textured surface. Embodiments of the present invention are well suited for texturing substrates using high-speed, large scale,more » roll-to-roll coating equipment, such as that used in office product, film coating, and flexible packaging applications. Further, embodiments of the present invention are well suited for use with rigid or flexible substrates.« less

  2. Plastics and beaches: a degrading relationship.

    PubMed

    Corcoran, Patricia L; Biesinger, Mark C; Grifi, Meriem

    2009-01-01

    Plastic debris in Earth's oceans presents a serious environmental issue because breakdown by chemical weathering and mechanical erosion is minimal at sea. Following deposition on beaches, plastic materials are exposed to UV radiation and physical processes controlled by wind, current, wave and tide action. Plastic particles from Kauai's beaches were sampled to determine relationships between composition, surface textures, and plastics degradation. SEM images indicated that beach plastics feature both mechanically eroded and chemically weathered surface textures. Granular oxidation textures were concentrated along mechanically weakened fractures and along the margins of the more rounded plastic particles. Particles with oxidation textures also produced the most intense peaks in the lower wavenumber region of FTIR spectra. The textural results suggest that plastic debris is particularly conducive to both chemical and mechanical breakdown in beach environments, which cannot be said for plastics in other natural settings on Earth.

  3. Detection of small bowel tumors in capsule endoscopy frames using texture analysis based on the discrete wavelet transform.

    PubMed

    Barbosa, Daniel J C; Ramos, Jaime; Lima, Carlos S

    2008-01-01

    Capsule endoscopy is an important tool to diagnose tumor lesions in the small bowel. The capsule endoscopic images possess vital information expressed by color and texture. This paper presents an approach based in the textural analysis of the different color channels, using the wavelet transform to select the bands with the most significant texture information. A new image is then synthesized from the selected wavelet bands, trough the inverse wavelet transform. The features of each image are based on second-order textural information, and they are used in a classification scheme using a multilayer perceptron neural network. The proposed methodology has been applied in real data taken from capsule endoscopic exams and reached 98.7% sensibility and 96.6% specificity. These results support the feasibility of the proposed algorithm.

  4. Relationship between trabecular texture features of CT images and an amount of bone cement volume injection in percutaneous vertebroplasty

    NASA Astrophysics Data System (ADS)

    Tack, Gye Rae; Choi, Hyung Guen; Shin, Kyu-Chul; Lee, Sung J.

    2001-06-01

    Percutaneous vertebroplasty is a surgical procedure that was introduced for the treatment of compression fracture of the vertebrae. This procedure includes puncturing vertebrae and filling with polymethylmethacrylate (PMMA). Recent studies have shown that the procedure could provide structural reinforcement for the osteoporotic vertebrae while being minimally invasive and safe with immediate pain relief. However, treatment failures due to disproportionate PMMA volume injection have been reported as one of complications in vertebroplasty. It is believed that control of PMMA volume is one of the most critical factors that can reduce the incidence of complications. In this study, appropriate amount of PMMA volume was assessed based on the imaging data of a given patient under the following hypotheses: (1) a relationship can be drawn between the volume of PMMA injection and textural features of the trabecular bone in preoperative CT images and (2) the volume of PMMA injection can be estimated based on 3D reconstruction of postoperative CT images. Gray-level run length analysis was used to determine the textural features of the trabecular bone. The width of trabecular (T-texture) and the width of intertrabecular spaces (I-texture) were calculated. The correlation between PMMA volume and textural features of patient's CT images was also examined to evaluate the appropriate PMMA amount. Results indicated that there was a strong correlation between the actual PMMA injection volume and the area of the intertrabecular space and that of trabecular bone calculated from the CT image (correlation coefficient, requals0.96 and requals-0.95, respectively). T- texture (requals-0.93) did correlate better with the actual PMMA volume more than the I-texture (requals0.57). Therefore, it was demonstrated that appropriate PMMA injection volume could be predicted based on the textural analysis for better clinical management of the osteoporotic spine.

  5. TU-F-12A-05: Sensitivity of Textural Features to 3D Vs. 4D FDG-PET/CT Imaging in NSCLC Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, F; Nyflot, M; Bowen, S

    2014-06-15

    Purpose: Neighborhood Gray-level difference matrices (NGLDM) based texture parameters extracted from conventional (3D) 18F-FDG PET scans in patients with NSCLC have been previously shown to associate with response to chemoradiation and poorer patient outcome. However, the change in these parameters when utilizing respiratory-correlated (4D) FDG-PET scans has not yet been characterized for NSCLC. The Objectives: of this study was to assess the extent to which NGLDM-based texture parameters on 4D PET images vary with reference to values derived from 3D scans in NSCLC. Methods: Eight patients with newly diagnosed NSCLC treated with concomitant chemoradiotherapy were included in this study. 4Dmore » PET scans were reconstructed with OSEM-IR in 5 respiratory phase-binned images and corresponding CT data of each phase were employed for attenuation correction. NGLDM-based texture features, consisting of coarseness, contrast, busyness, complexity and strength, were evaluated for gross tumor volumes defined on 3D/4D PET scans by radiation oncologists. Variation of the obtained texture parameters over the respiratory cycle were examined with respect to values extracted from 3D scans. Results: Differences between texture parameters derived from 4D scans at different respiratory phases and those extracted from 3D scans ranged from −30% to 13% for coarseness, −12% to 40% for contrast, −5% to 50% for busyness, −7% to 38% for complexity, and −43% to 20% for strength. Furthermore, no evident correlations were observed between respiratory phase and 4D scan texture parameters. Conclusion: Results of the current study showed that NGLDM-based texture parameters varied considerably based on choice of 3D PET and 4D PET reconstruction of NSCLC patient images, indicating that standardized image acquisition and analysis protocols need to be established for clinical studies, especially multicenter clinical trials, intending to validate prognostic values of texture features for NSCLC.« less

  6. Spatial prediction of soil texture in region Centre (France) from summary data

    NASA Astrophysics Data System (ADS)

    Dobarco, Mercedes Roman; Saby, Nicolas; Paroissien, Jean-Baptiste; Orton, Tom G.

    2015-04-01

    Soil texture is a key controlling factor of important soil functions like water and nutrient holding capacity, retention of pollutants, drainage, soil biodiversity, and C cycling. High resolution soil texture maps enhance our understanding of the spatial distribution of soil properties and provide valuable information for decision making and crop management, environmental protection, and hydrological planning. We predicted the soil texture of agricultural topsoils in the Region Centre (France) combining regression and area-to-point kriging. Soil texture data was collected from the French soil-test database (BDAT), which is populated with soil analysis performed by farmers' demand. To protect the anonymity of the farms the data was treated by commune. In a first step, summary statistics of environmental covariates by commune were used to develop prediction models with Cubist, boosted regression trees, and random forests. In a second step the residuals of each individual observation were summarized by commune and kriged following the method developed by Orton et al. (2012). This approach allowed to include non-linear relationships among covariates and soil texture while accounting for the uncertainty on areal means in the area-to-point kriging step. Independent validation of the models was done using data from the systematic soil monitoring network of French soils. Future work will compare the performance of these models with a non-stationary variance geostatistical model using the most important covariates and summary statistics of texture data. The results will inform on whether the later and statistically more-challenging approach improves significantly texture predictions or whether the more simple area-to-point regression kriging can offer satisfactory results. The application of area-to-point regression kriging at national level using BDAT data has the potential to improve soil texture predictions for agricultural topsoils, especially when combined with existing maps (i.e., model ensemble).

  7. Effect of texture randomization on the slip and interfacial robustness in turbulent flows over superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Seo, Jongmin; Mani, Ali

    2018-04-01

    Superhydrophobic surfaces demonstrate promising potential for skin friction reduction in naval and hydrodynamic applications. Recent developments of superhydrophobic surfaces aiming for scalable applications use random distribution of roughness, such as spray coating and etched process. However, most previous analyses of the interaction between flows and superhydrophobic surfaces studied periodic geometries that are economically feasible only in laboratory-scale experiments. In order to assess the drag reduction effectiveness as well as interfacial robustness of superhydrophobic surfaces with randomly distributed textures, we conduct direct numerical simulations of turbulent flows over randomly patterned interfaces considering a range of texture widths w+≈4 -26 , and solid fractions ϕs=11 %-25 % . Slip and no-slip boundary conditions are implemented in a pattern, modeling the presence of gas-liquid interfaces and solid elements. Our results indicate that slip of randomly distributed textures under turbulent flows is about 30 % less than those of surfaces with aligned features of the same size. In the small texture size limit w+≈4 , the slip length of the randomly distributed textures in turbulent flows is well described by a previously introduced Stokes flow solution of randomly distributed shear-free holes. By comparing DNS results for patterned slip and no-slip boundary against the corresponding homogenized slip length boundary conditions, we show that turbulent flows over randomly distributed posts can be represented by an isotropic slip length in streamwise and spanwise direction. The average pressure fluctuation on a gas pocket is similar to that of the aligned features with the same texture size and gas fraction, but the maximum interface deformation at the leading edge of the roughness element is about twice as large when the textures are randomly distributed. The presented analyses provide insights on implications of texture randomness on drag reduction performance and robustness of superhydrophobic surfaces.

  8. Texture descriptions of lunar surface derived from LOLA data: Kilometer-scale roughness and entropy maps

    NASA Astrophysics Data System (ADS)

    Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Wu, Zhongchen; Ni, Yuheng; Zhao, Haowei

    2015-11-01

    The lunar global texture maps of roughness and entropy are derived at kilometer scales from Digital Elevation Models (DEMs) data obtained by Lunar Orbiter Laser Altimeter (LOLA) aboard on Lunar Reconnaissance Orbiter (LRO) spacecraft. We use statistical moments of a gray-level histogram of elevations in a neighborhood to compute the roughness and entropy value. Our texture descriptors measurements are shown in global maps at multi-sized square neighborhoods, whose length of side is 3, 5, 10, 20, 40 and 80 pixels, respectively. We found that large-scale topographical changes can only be displayed in maps with longer side of neighborhood, but the small scale global texture maps are more disorderly and unsystematic because of more complicated textures' details. Then, the frequency curves of texture maps are made out, whose shapes and distributions are changing as the spatial scales increases. Entropy frequency curve with minimum 3-pixel scale has large fluctuations and six peaks. According to this entropy curve we can classify lunar surface into maria, highlands, different parts of craters preliminarily. The most obvious textures in the middle-scale roughness and entropy maps are the two typical morphological units, smooth maria and rough highlands. For the impact crater, its roughness and entropy value are characterized by a multiple-ring structure obviously, and its different parts have different texture results. In the last, we made a 2D scatter plot between the two texture results of typical lunar maria and highlands. There are two clusters with largest dot density which are corresponded to the lunar highlands and maria separately. In the lunar mare regions (cluster A), there is a high correlation between roughness and entropy, but in the highlands (Cluster B), the entropy shows little change. This could be subjected to different geological processes of maria and highlands forming different landforms.

  9. In situ x-ray diffraction observation of multiple texture turnovers in sputtered Cr films

    NASA Astrophysics Data System (ADS)

    Zhao, Z. B.; Rek, Z. U.; Yalisove, S. M.; Bilello, J. C.

    2004-11-01

    A series of Cr films were deposited onto native oxides of (100) Si substrates via a confocal deposition geometry in a magnetron sputter chamber. The film growth chamber was incorporated with an in situ x-ray diffraction system, which allowed the collection of x-ray diffraction data on the growing film in a quasi real time fashion without interruption of film deposition. The in situ x-ray diffraction, coupled with other ex situ characterization techniques, was used to study structural evolutions of the Cr films deposited at various Ar pressures. It was observed that the evolution of the crystallographic structures of Cr films was very sensitive to both deposition conditions and film thickness. With the confocal deposition geometry, the Cr films developed various types of out-of-plane textures. In addition to the (110) and (100) types of textures commonly reported for vapor deposited Cr films, the (111) and (112) types of textures were also observed. The film deposited at low Ar pressure (2 mTorr) developed strong (111) type texture. With the increase in either Ar pressure or film thickness, the Cr films tended to develop (112) and (100) types of texture. At high Ar pressures (>10 mTorr), several changes in texture type with increasing film thickness were observed. The sequence can be described as (110)-->(112)-->(100). The strong tendency for these films to ultimately assume the (100) type of texture could be related to significant rises in substrate temperatures during the late stages of film growth with high Ar pressures. The observation of the multiple texture type changes suggests that the evolution of Cr films is controlled by complex growth kinetics. The competitive growth of grains with different orientations can be altered not only by controllable deposition parameters such as Ar pressure, but also by the variations of in situ film attributes (e.g., residual stress and substrate temperature) occurring concurrently with film growth.

  10. Identifying prognostic intratumor heterogeneity using pre- and post-radiotherapy 18F-FDG PET images for pancreatic cancer patients.

    PubMed

    Yue, Yong; Osipov, Arsen; Fraass, Benedick; Sandler, Howard; Zhang, Xiao; Nissen, Nicholas; Hendifar, Andrew; Tuli, Richard

    2017-02-01

    To stratify risks of pancreatic adenocarcinoma (PA) patients using pre- and post-radiotherapy (RT) PET/CT images, and to assess the prognostic value of texture variations in predicting therapy response of patients. Twenty-six PA patients treated with RT from 2011-2013 with pre- and post-treatment 18F-FDG-PET/CT scans were identified. Tumor locoregional texture was calculated using 3D kernel-based approach, and texture variations were identified by fitting discrepancies of texture maps of pre- and post-treatment images. A total of 48 texture and clinical variables were identified and evaluated for association with overall survival (OS). The prognostic heterogeneity features were selected using lasso/elastic net regression, and further were evaluated by multivariate Cox analysis. Median age was 69 y (range, 46-86 y). The texture map and temporal variations between pre- and post-treatment were well characterized by histograms and statistical fitting. The lasso analysis identified seven predictors (age, node stage, post-RT SUVmax, variations of homogeneity, variance, sum mean, and cluster tendency). The multivariate Cox analysis identified five significant variables: age, node stage, variations of homogeneity, variance, and cluster tendency (with P=0.020, 0.040, 0.065, 0.078, and 0.081, respectively). The patients were stratified into two groups based on the risk score of multivariate analysis with log-rank P=0.001: a low risk group (n=11) with a longer mean OS (29.3 months) and higher texture variation (>30%), and a high risk group (n=15) with a shorter mean OS (17.7 months) and lower texture variation (<15%). Locoregional metabolic texture response provides a feasible approach for evaluating and predicting clinical outcomes following treatment of PA with RT. The proposed method can be used to stratify patient risk and help select appropriate treatment strategies for individual patients toward implementing response-driven adaptive RT.

  11. SU-F-R-40: Robustness Test of Computed Tomography Textures of Lung Tissues to Varying Scanning Protocols Using a Realistic Phantom Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S; Markel, D; Hegyi, G

    2016-06-15

    Purpose: The reliability of computed tomography (CT) textures is an important element of radiomics analysis. This study investigates the dependency of lung CT textures on different breathing phases and changes in CT image acquisition protocols in a realistic phantom setting. Methods: We investigated 11 CT texture features for radiation-induced lung disease from 3 categories (first-order, grey level co-ocurrence matrix (GLCM), and Law’s filter). A biomechanical swine lung phantom was scanned at two breathing phases (inhale/exhale) and two scanning protocols set for PET/CT and diagnostic CT scanning. Lung volumes acquired from the CT images were divided into 2-dimensional sub-regions with amore » grid spacing of 31 mm. The distribution of the evaluated texture features from these sub-regions were compared between the two scanning protocols and two breathing phases. The significance of each factor on feature values were tested at 95% significance level using analysis of covariance (ANCOVA) model with interaction terms included. Robustness of a feature to a scanning factor was defined as non-significant dependence on the factor. Results: Three GLCM textures (variance, sum entropy, difference entropy) were robust to breathing changes. Two GLCM (variance, sum entropy) and 3 Law’s filter textures (S5L5, E5L5, W5L5) were robust to scanner changes. Moreover, the two GLCM textures (variance, sum entropy) were consistent across all 4 scanning conditions. First-order features, especially Hounsfield unit intensity features, presented the most drastic variation up to 39%. Conclusion: Amongst the studied features, GLCM and Law’s filter texture features were more robust than first-order features. However, the majority of the features were modified by either breathing phase or scanner changes, suggesting a need for calibration when retrospectively comparing scans obtained at different conditions. Further investigation is necessary to identify the sensitivity of individual image acquisition parameters.« less

  12. Investigation into the Effects of Textural Properties on Cuttability Performance of a Chisel Tool

    NASA Astrophysics Data System (ADS)

    Tumac, Deniz; Copur, Hanifi; Balci, Cemal; Er, Selman; Avunduk, Emre

    2018-04-01

    The main objective of this study is to investigate the effect of textural properties of stones on cutting performance of a standard chisel tool. Therewithal, the relationships between textural properties and cutting performance parameters and physical and mechanical properties were statistically analyzed. For this purpose, physical and mechanical property tests and mineralogical and petrographic analyses were carried out on eighteen natural stone samples, which can be grouped into three fundamentally different geological origins, i.e., metamorphic, igneous, and sedimentary. Then, texture coefficient analyses were performed on the samples. To determine the cuttability of the stones; the samples were cut with a portable linear cutting machine using a standard chisel tool at different depths of cut in unrelieved (non-interactive) cutting mode. The average and maximum forces (normal and cutting) and specific energy were measured, and the obtained values were correlated with texture coefficient, packing weighting, and grain size. With reference to the relation between depth of cut and cutting performance of the chisel tool for three types of natural stone groups, specific energy decreases with increasing depth of cut, and cutting forces increase in proportion to the depth of cut. The same is observed for the relationship between packing weighting and both of specific energy and cutter forces. On the other hand, specific energy and the forces decrease while grain size increases. Based on the findings of the present study, texture coefficient has strong correlation with specific energy. Generally, the lower depth of cut values in cutting tests shows higher and more reliable correlations with texture coefficient than the increased depth of cut. The results of cutting tests show also that, at a lower depth of cut (less than 1.5 mm), even stronger correlations can be observed between texture coefficient and cutting performance. Experimental studies indicate that cutting performance of chisel tools can be predicted based on texture coefficients of the natural stones.

  13. Method of Forming Textured Silicon Substrate by Maskless Cryogenic Etching

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y. (Inventor); Homyk, Andrew P. (Inventor)

    2014-01-01

    Disclosed herein is a textured substrate comprising a base comprising silicon, the base having a plurality of needle like structures depending away from the base, wherein at least one of the needle like structures has a depth of greater than or equal to about 50 micrometers determined perpendicular to the base, and wherein at least one of the needle like structures has a width of less than or equal to about 50 micrometers determined parallel to the base. An anode and a lithium ion battery comprising the textured substrate, and a method of producing the textured substrate are also disclosed.

  14. Texture-based segmentation of temperate-zone woodland in panchromatic IKONOS imagery

    NASA Astrophysics Data System (ADS)

    Gagnon, Langis; Bugnet, Pierre; Cavayas, Francois

    2003-08-01

    We have performed a study to identify optimal texture parameters for woodland segmentation in a highly non-homogeneous urban area from a temperate-zone panchromatic IKONOS image. Texture images are produced with the sum- and difference-histograms depend on two parameters: window size f and displacement step p. The four texture features yielding the best discrimination between classes are the mean, contrast, correlation and standard deviation. The f-p combinations 17-1, 17-2, 35-1 and 35-2 are those which give the best performance, with an average classification rate of 90%.

  15. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOEpatents

    Sankar, Sambasivan; Goyal, Amit; Barnett, Scott A.; Kim, Ilwon; Kroeger, Donald M.

    2004-08-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metal and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layers. In some embodiments the article further comprises electromagnetic devices which may be super conducting properties.

  16. Ion sputter textured graphite electrode plates

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Forman, R.; Sovey, J. S.; Wintucky, E. G. (Inventor)

    1983-01-01

    A specially textured surface of pyrolytic graphite exhibits extremely low yields of secondary electrons and reduced numbers of reflected primary electrons after impingement of high energy primary electrons. Electrode plates of this material are used in multistage depressed collectors. An ion flux having an energy between 500 iV and 1000 iV and a current density between 1.0 mA/sq cm and 6.0 mA/sq cm produces surface roughening or texturing which is in the form of needles or spires. Such textured surfaces are especially useful as anode collector plates in high tube devices.

  17. Graphene as transparent electrode in Si solar cells: A dry transfer method

    NASA Astrophysics Data System (ADS)

    Zang, Yuan; Li, Lian-bi; Chu, Qing; Pu, Hongbin; Hu, Jichao; Jin, Haili; Zhang, Yan

    2018-06-01

    This paper present an experimental study on a new dry transfer method of graphene applied as transparent conducting electrode in textured silicon solar cells. Raman spectra of dry exfoliated graphene indicated a monolayer graphene was transferred onto textured Si cells and the dry exfoliated graphene with better crystalline quality is attained. Photovoltaic result shows the short circuit current of the dry transferred graphene on texture Si solar cell has an increase of 28% compared to the wet transferred graphene. It proves the possibility of dry transferred graphene as transparent conducting electrode in textured Si solar cell applications.

  18. Tactile texture and friction of soft sponge surfaces.

    PubMed

    Takahashi, Akira; Suzuki, Makoto; Imai, Yumi; Nonomura, Yoshimune

    2015-06-01

    We evaluated the tactile texture and frictional properties of five soft sponges with various cell sizes. The frictional forces were measured by a friction meter containing a contact probe with human-finger-like geometry and mechanical properties. When the subjects touched these sponges with their fingers, hard-textured sponges were deemed unpleasant. This tactile feeling changed with friction factors including friction coefficients, their temporal patterns, as well as mechanical and shape factors. These findings provide useful information on how to control the tactile textures of various sponges. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Textural evolution of partially-molten planetary materials in microgravity

    NASA Technical Reports Server (NTRS)

    Watson, E. B.

    1987-01-01

    Recent Earth-based experiments examining the textural evolution of partially-molten rocks have revealed two important ways in which surface energy considerations affect magma. An initial experimental program addressing surface-energy effects on partially-molten materials in microgravity would involve simple, isothermal treatment of natural samples (meteorites, perioditic komatiite) at preselected temperatures in the melting range. Textural evolution would be assessed by time studies in which the only experiment variable would be run duration. Textural characterization of each sample would be done by quenching, recover, and sectioning for generally later, computer-aided interpretation of features.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Shashaank; Belianinov, Alex; Okatan, Mahmut B

    (001)pc textured K0.5Na0.5NbO3 (KNN) ceramic was found to exhibit a 65% improvement in the longitudinal piezoelectric response as compared to its random counterpart. Piezoresponse force microscopy study revealed the existence of larger 180 and non-180 domains for textured ceramic as compared to that of the random ceramic. Improvement in piezoresponse by the development of (001)pc texture is discussed in terms of the crystallographic nature of KNN and domain morphology. A comparative analysis performed with a rhombohedral composition suggested that the improvement in longitudinal piezoresponse of polycrystalline ceramics by the development of (001)pc texture is limited by the crystal structure.

Top