Sample records for texture analysis algorithms

  1. Use of registration-based contour propagation in texture analysis for esophageal cancer pathologic response prediction

    NASA Astrophysics Data System (ADS)

    Yip, Stephen S. F.; Coroller, Thibaud P.; Sanford, Nina N.; Huynh, Elizabeth; Mamon, Harvey; Aerts, Hugo J. W. L.; Berbeco, Ross I.

    2016-01-01

    Change in PET-based textural features has shown promise in predicting cancer response to treatment. However, contouring tumour volumes on longitudinal scans is time-consuming. This study investigated the usefulness of contour propagation in texture analysis for the purpose of pathologic response prediction in esophageal cancer. Forty-five esophageal cancer patients underwent PET/CT scans before and after chemo-radiotherapy. Patients were classified into responders and non-responders after the surgery. Physician-defined tumour ROIs on pre-treatment PET were propagated onto the post-treatment PET using rigid and ten deformable registration algorithms. PET images were converted into 256 discrete values. Co-occurrence, run-length, and size zone matrix textures were computed within all ROIs. The relative difference of each texture at different treatment time-points was used to predict the pathologic responders. Their predictive value was assessed using the area under the receiver-operating-characteristic curve (AUC). Propagated ROIs from different algorithms were compared using Dice similarity index (DSI). Contours propagated by the fast-demons, fast-free-form and rigid algorithms did not fully capture the high FDG uptake regions of tumours. Fast-demons propagated ROIs had the least agreement with other contours (DSI  =  58%). Moderate to substantial overlap were found in the ROIs propagated by all other algorithms (DSI  =  69%-79%). Rigidly propagated ROIs with co-occurrence texture failed to significantly differentiate between responders and non-responders (AUC  =  0.58, q-value  =  0.33), while the differentiation was significant with other textures (AUC  =  0.71‒0.73, p  <  0.009). Among the deformable algorithms, fast-demons (AUC  =  0.68‒0.70, q-value  <  0.03) and fast-free-form (AUC  =  0.69‒0.74, q-value  <  0.04) were the least predictive. ROIs propagated by all other deformable algorithms with any texture significantly predicted pathologic responders (AUC  =  0.72‒0.78, q-value  <  0.01). Propagated ROIs using deformable registration for all textures can lead to accurate prediction of pathologic response, potentially expediting the temporal texture analysis process. However, fast-demons, fast-free-form, and rigid algorithms should be applied with care due to their inferior performance compared to other algorithms.

  2. Texture segmentation by genetic programming.

    PubMed

    Song, Andy; Ciesielski, Vic

    2008-01-01

    This paper describes a texture segmentation method using genetic programming (GP), which is one of the most powerful evolutionary computation algorithms. By choosing an appropriate representation texture, classifiers can be evolved without computing texture features. Due to the absence of time-consuming feature extraction, the evolved classifiers enable the development of the proposed texture segmentation algorithm. This GP based method can achieve a segmentation speed that is significantly higher than that of conventional methods. This method does not require a human expert to manually construct models for texture feature extraction. In an analysis of the evolved classifiers, it can be seen that these GP classifiers are not arbitrary. Certain textural regularities are captured by these classifiers to discriminate different textures. GP has been shown in this study as a feasible and a powerful approach for texture classification and segmentation, which are generally considered as complex vision tasks.

  3. Independent Component Analysis of Textures

    NASA Technical Reports Server (NTRS)

    Manduchi, Roberto; Portilla, Javier

    2000-01-01

    A common method for texture representation is to use the marginal probability densities over the outputs of a set of multi-orientation, multi-scale filters as a description of the texture. We propose a technique, based on Independent Components Analysis, for choosing the set of filters that yield the most informative marginals, meaning that the product over the marginals most closely approximates the joint probability density function of the filter outputs. The algorithm is implemented using a steerable filter space. Experiments involving both texture classification and synthesis show that compared to Principal Components Analysis, ICA provides superior performance for modeling of natural and synthetic textures.

  4. Automatic Texture Mapping of Architectural and Archaeological 3d Models

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Stallmann, D.

    2012-07-01

    Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  5. Automated condition-invariable neurite segmentation and synapse classification using textural analysis-based machine-learning algorithms

    PubMed Central

    Kandaswamy, Umasankar; Rotman, Ziv; Watt, Dana; Schillebeeckx, Ian; Cavalli, Valeria; Klyachko, Vitaly

    2013-01-01

    High-resolution live-cell imaging studies of neuronal structure and function are characterized by large variability in image acquisition conditions due to background and sample variations as well as low signal-to-noise ratio. The lack of automated image analysis tools that can be generalized for varying image acquisition conditions represents one of the main challenges in the field of biomedical image analysis. Specifically, segmentation of the axonal/dendritic arborizations in brightfield or fluorescence imaging studies is extremely labor-intensive and still performed mostly manually. Here we describe a fully automated machine-learning approach based on textural analysis algorithms for segmenting neuronal arborizations in high-resolution brightfield images of live cultured neurons. We compare performance of our algorithm to manual segmentation and show that it combines 90% accuracy, with similarly high levels of specificity and sensitivity. Moreover, the algorithm maintains high performance levels under a wide range of image acquisition conditions indicating that it is largely condition-invariable. We further describe an application of this algorithm to fully automated synapse localization and classification in fluorescence imaging studies based on synaptic activity. Textural analysis-based machine-learning approach thus offers a high performance condition-invariable tool for automated neurite segmentation. PMID:23261652

  6. Performance analysis of improved methodology for incorporation of spatial/spectral variability in synthetic hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Scanlan, Neil W.; Schott, John R.; Brown, Scott D.

    2004-01-01

    Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.

  7. Performance analysis of improved methodology for incorporation of spatial/spectral variability in synthetic hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Scanlan, Neil W.; Schott, John R.; Brown, Scott D.

    2003-12-01

    Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.

  8. TU-AB-BRA-12: Impact of Image Registration Algorithms On the Prediction of Pathological Response with Radiomic Textures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yip, S; Coroller, T; Niu, N

    2015-06-15

    Purpose: Tumor regions-of-interest (ROI) can be propagated from the pre-onto the post-treatment PET/CT images using image registration of their CT counterparts, providing an automatic way to compute texture features on longitudinal scans. This exploratory study assessed the impact of image registration algorithms on textures to predict pathological response. Methods: Forty-six esophageal cancer patients (1 tumor/patient) underwent PET/CT scans before and after chemoradiotherapy. Patients were classified into responders and non-responders after the surgery. Physician-defined tumor ROIs on pre-treatment PET were propagated onto the post-treatment PET using rigid and ten deformable registration algorithms. One co-occurrence, two run-length and size zone matrix texturesmore » were computed within all ROIs. The relative difference of each texture at different treatment time-points was used to predict the pathologic responders. Their predictive value was assessed using the area under the receiver-operating-characteristic curve (AUC). Propagated ROIs and texture quantification resulting from different algorithms were compared using overlap volume (OV) and coefficient of variation (CoV), respectively. Results: Tumor volumes were better captured by ROIs propagated by deformable rather than the rigid registration. The OV between rigidly and deformably propagated ROIs were 69%. The deformably propagated ROIs were found to be similar (OV∼80%) except for fast-demons (OV∼60%). Rigidly propagated ROIs with run-length matrix textures failed to significantly differentiate between responders and non-responders (AUC=0.65, p=0.07), while the differentiation was significant with other textures (AUC=0.69–0.72, p<0.03). Among the deformable algorithms, fast-demons was the least predictive (AUC=0.68–0.71, p<0.04). ROIs propagated by all other deformable algorithms with any texture significantly predicted pathologic responders (AUC=0.71–0.78, p<0.01) despite substantial variation in texture quantification (CoV>70%). Conclusion: Propagated ROIs using deformable registration for all textures can lead to accurate prediction of pathologic response, potentially expediting the temporal texture analysis process. However, rigid and fast-demons deformable algorithms are not recommended due to their inferior performance compared to other algorithms. The project was supported in part by a Kaye Scholar Award.« less

  9. The effectiveness of texture analysis for mapping forest land using the panchromatic bands of Landsat 7, SPOT, and IRS imagery

    Treesearch

    Michael L. Hoppus; Rachel I. Riemann; Andrew J. Lister; Mark V. Finco

    2002-01-01

    The panchromatic bands of Landsat 7, SPOT, and IRS satellite imagery provide an opportunity to evaluate the effectiveness of texture analysis of satellite imagery for mapping of land use/cover, especially forest cover. A variety of texture algorithms, including standard deviation, Ryherd-Woodcock minimum variance adaptive window, low pass etc., were applied to moving...

  10. Fast Image Texture Classification Using Decision Trees

    NASA Technical Reports Server (NTRS)

    Thompson, David R.

    2011-01-01

    Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.

  11. The effects of segmentation algorithms on the measurement of 18F-FDG PET texture parameters in non-small cell lung cancer.

    PubMed

    Bashir, Usman; Azad, Gurdip; Siddique, Muhammad Musib; Dhillon, Saana; Patel, Nikheel; Bassett, Paul; Landau, David; Goh, Vicky; Cook, Gary

    2017-12-01

    Measures of tumour heterogeneity derived from 18-fluoro-2-deoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) scans are increasingly reported as potential biomarkers of non-small cell lung cancer (NSCLC) for classification and prognostication. Several segmentation algorithms have been used to delineate tumours, but their effects on the reproducibility and predictive and prognostic capability of derived parameters have not been evaluated. The purpose of our study was to retrospectively compare various segmentation algorithms in terms of inter-observer reproducibility and prognostic capability of texture parameters derived from non-small cell lung cancer (NSCLC) 18 F-FDG PET/CT images. Fifty three NSCLC patients (mean age 65.8 years; 31 males) underwent pre-chemoradiotherapy 18 F-FDG PET/CT scans. Three readers segmented tumours using freehand (FH), 40% of maximum intensity threshold (40P), and fuzzy locally adaptive Bayesian (FLAB) algorithms. Intraclass correlation coefficient (ICC) was used to measure the inter-observer variability of the texture features derived by the three segmentation algorithms. Univariate cox regression was used on 12 commonly reported texture features to predict overall survival (OS) for each segmentation algorithm. Model quality was compared across segmentation algorithms using Akaike information criterion (AIC). 40P was the most reproducible algorithm (median ICC 0.9; interquartile range [IQR] 0.85-0.92) compared with FLAB (median ICC 0.83; IQR 0.77-0.86) and FH (median ICC 0.77; IQR 0.7-0.85). On univariate cox regression analysis, 40P found 2 out of 12 variables, i.e. first-order entropy and grey-level co-occurence matrix (GLCM) entropy, to be significantly associated with OS; FH and FLAB found 1, i.e., first-order entropy. For each tested variable, survival models for all three segmentation algorithms were of similar quality, exhibiting comparable AIC values with overlapping 95% CIs. Compared with both FLAB and FH, segmentation with 40P yields superior inter-observer reproducibility of texture features. Survival models generated by all three segmentation algorithms are of at least equivalent utility. Our findings suggest that a segmentation algorithm using a 40% of maximum threshold is acceptable for texture analysis of 18 F-FDG PET in NSCLC.

  12. Clustered-dot halftoning with direct binary search.

    PubMed

    Goyal, Puneet; Gupta, Madhur; Staelin, Carl; Fischer, Mani; Shacham, Omri; Allebach, Jan P

    2013-02-01

    In this paper, we present a new algorithm for aperiodic clustered-dot halftoning based on direct binary search (DBS). The DBS optimization framework has been modified for designing clustered-dot texture, by using filters with different sizes in the initialization and update steps of the algorithm. Following an intuitive explanation of how the clustered-dot texture results from this modified framework, we derive a closed-form cost metric which, when minimized, equivalently generates stochastic clustered-dot texture. An analysis of the cost metric and its influence on the texture quality is presented, which is followed by a modification to the cost metric to reduce computational cost and to make it more suitable for screen design.

  13. Application of the angle measure technique as image texture analysis method for the identification of uranium ore concentrate samples: New perspective in nuclear forensics.

    PubMed

    Fongaro, Lorenzo; Ho, Doris Mer Lin; Kvaal, Knut; Mayer, Klaus; Rondinella, Vincenzo V

    2016-05-15

    The identification of interdicted nuclear or radioactive materials requires the application of dedicated techniques. In this work, a new approach for characterizing powder of uranium ore concentrates (UOCs) is presented. It is based on image texture analysis and multivariate data modelling. 26 different UOCs samples were evaluated applying the Angle Measure Technique (AMT) algorithm to extract textural features on samples images acquired at 250× and 1000× magnification by Scanning Electron Microscope (SEM). At both magnifications, this method proved effective to classify the different types of UOC powder based on the surface characteristics that depend on particle size, homogeneity, and graininess and are related to the composition and processes used in the production facilities. Using the outcome data from the application of the AMT algorithm, the total explained variance was higher than 90% with Principal Component Analysis (PCA), while partial least square discriminant analysis (PLS-DA) applied only on the 14 black colour UOCs powder samples, allowed their classification only on the basis of their surface texture features (sensitivity>0.6; specificity>0.6). This preliminary study shows that this method was able to distinguish samples with similar composition, but obtained from different facilities. The mean angle spectral data obtained by the image texture analysis using the AMT algorithm can be considered as a specific fingerprint or signature of UOCs and could be used for nuclear forensic investigation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Appearance and characterization of fruit image textures for quality sorting using wavelet transform and genetic algorithms.

    PubMed

    Khoje, Suchitra

    2018-02-01

    Images of four qualities of mangoes and guavas are evaluated for color and textural features to characterize and classify them, and to model the fruit appearance grading. The paper discusses three approaches to identify most discriminating texture features of both the fruits. In the first approach, fruit's color and texture features are selected using Mahalanobis distance. A total of 20 color features and 40 textural features are extracted for analysis. Using Mahalanobis distance and feature intercorrelation analyses, one best color feature (mean of a* [L*a*b* color space]) and two textural features (energy a*, contrast of H*) are selected as features for Guava while two best color features (R std, H std) and one textural features (energy b*) are selected as features for mangoes with the highest discriminate power. The second approach studies some common wavelet families for searching the best classification model for fruit quality grading. The wavelet features extracted from five basic mother wavelets (db, bior, rbior, Coif, Sym) are explored to characterize fruits texture appearance. In third approach, genetic algorithm is used to select only those color and wavelet texture features that are relevant to the separation of the class, from a large universe of features. The study shows that image color and texture features which were identified using a genetic algorithm can distinguish between various qualities classes of fruits. The experimental results showed that support vector machine classifier is elected for Guava grading with an accuracy of 97.61% and artificial neural network is elected from Mango grading with an accuracy of 95.65%. The proposed method is nondestructive fruit quality assessment method. The experimental results has proven that Genetic algorithm along with wavelet textures feature has potential to discriminate fruit quality. Finally, it can be concluded that discussed method is an accurate, reliable, and objective tool to determine fruit quality namely Mango and Guava, and might be applicable to in-line sorting systems. © 2017 Wiley Periodicals, Inc.

  15. Visualization and Quantitative Analysis of Crack-Tip Plastic Zone in Pure Nickel

    NASA Astrophysics Data System (ADS)

    Kelton, Randall; Sola, Jalal Fathi; Meletis, Efstathios I.; Huang, Haiying

    2018-05-01

    Changes in surface morphology have long been thought to be associated with crack propagation in metallic materials. We have studied areal surface texture changes around crack tips in an attempt to understand the correlations between surface texture changes and crack growth behavior. Detailed profiling of the fatigue sample surface was carried out at short fatigue intervals. An image processing algorithm was developed to calculate the surface texture changes. Quantitative analysis of the crack-tip plastic zone, crack-arrested sites near triple points, and large surface texture changes associated with crack release from arrested locations was carried out. The results indicate that surface texture imaging enables visualization of the development of plastic deformation around a crack tip. Quantitative analysis of the surface texture changes reveals the effects of local microstructures on the crack growth behavior.

  16. Pet fur color and texture classification

    NASA Astrophysics Data System (ADS)

    Yen, Jonathan; Mukherjee, Debarghar; Lim, SukHwan; Tretter, Daniel

    2007-01-01

    Object segmentation is important in image analysis for imaging tasks such as image rendering and image retrieval. Pet owners have been known to be quite vocal about how important it is to render their pets perfectly. We present here an algorithm for pet (mammal) fur color classification and an algorithm for pet (animal) fur texture classification. Per fur color classification can be applied as a necessary condition for identifying the regions in an image that may contain pets much like the skin tone classification for human flesh detection. As a result of the evolution, fur coloration of all mammals is caused by a natural organic pigment called Melanin and Melanin has only very limited color ranges. We have conducted a statistical analysis and concluded that mammal fur colors can be only in levels of gray or in two colors after the proper color quantization. This pet fur color classification algorithm has been applied for peteye detection. We also present here an algorithm for animal fur texture classification using the recently developed multi-resolution directional sub-band Contourlet transform. The experimental results are very promising as these transforms can identify regions of an image that may contain fur of mammals, scale of reptiles and feather of birds, etc. Combining the color and texture classification, one can have a set of strong classifiers for identifying possible animals in an image.

  17. Comparison of low-contrast detectability between two CT reconstruction algorithms using voxel-based 3D printed textured phantoms.

    PubMed

    Solomon, Justin; Ba, Alexandre; Bochud, François; Samei, Ehsan

    2016-12-01

    To use novel voxel-based 3D printed textured phantoms in order to compare low-contrast detectability between two reconstruction algorithms, FBP (filtered-backprojection) and SAFIRE (sinogram affirmed iterative reconstruction) and determine what impact background texture (i.e., anatomical noise) has on estimating the dose reduction potential of SAFIRE. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find CLB textures that were reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, four cylindrical phantoms (Textures A-C and uniform, 165 mm in diameter, and 30 mm height) were designed, each containing 20 low-contrast spherical signals (6 mm diameter at nominal contrast levels of ∼3.2, 5.2, 7.2, 10, and 14 HU with four repeats per signal). The phantoms were voxelized and input into a commercial multimaterial 3D printer (Object Connex 350), with custom software for voxel-based printing (using principles of digital dithering). Images of the textured phantoms and a corresponding uniform phantom were acquired at six radiation dose levels (SOMATOM Flash, Siemens Healthcare) and observer model detection performance (detectability index of a multislice channelized Hotelling observer) was estimated for each condition (5 contrasts × 6 doses × 2 reconstructions × 4 backgrounds = 240 total conditions). A multivariate generalized regression analysis was performed (linear terms, no interactions, random error term, log link function) to assess whether dose, reconstruction algorithm, signal contrast, and background type have statistically significant effects on detectability. Also, fitted curves of detectability (averaged across contrast levels) as a function of dose were constructed for each reconstruction algorithm and background texture. FBP and SAFIRE were compared for each background type to determine the improvement in detectability at a given dose, and the reduced dose at which SAFIRE had equivalent performance compared to FBP at 100% dose. Detectability increased with increasing radiation dose (P = 2.7 × 10 -59 ) and contrast level (P = 2.2 × 10 -86 ) and was higher in the uniform phantom compared to the textured phantoms (P = 6.9 × 10 -51 ). Overall, SAFIRE had higher d' compared to FBP (P = 0.02). The estimated dose reduction potential of SAFIRE was found to be 8%, 10%, 27%, and 8% for Texture-A, Texture-B, Texture-C and uniform phantoms. In all background types, detectability was higher with SAFIRE compared to FBP. However, the relative improvement observed from SAFIRE was highly dependent on the complexity of the background texture. Iterative algorithms such as SAFIRE should be assessed in the most realistic context possible.

  18. Variations in algorithm implementation among quantitative texture analysis software packages

    NASA Astrophysics Data System (ADS)

    Foy, Joseph J.; Mitta, Prerana; Nowosatka, Lauren R.; Mendel, Kayla R.; Li, Hui; Giger, Maryellen L.; Al-Hallaq, Hania; Armato, Samuel G.

    2018-02-01

    Open-source texture analysis software allows for the advancement of radiomics research. Variations in texture features, however, result from discrepancies in algorithm implementation. Anatomically matched regions of interest (ROIs) that captured normal breast parenchyma were placed in the magnetic resonance images (MRI) of 20 patients at two time points. Six first-order features and six gray-level co-occurrence matrix (GLCM) features were calculated for each ROI using four texture analysis packages. Features were extracted using package-specific default GLCM parameters and using GLCM parameters modified to yield the greatest consistency among packages. Relative change in the value of each feature between time points was calculated for each ROI. Distributions of relative feature value differences were compared across packages. Absolute agreement among feature values was quantified by the intra-class correlation coefficient. Among first-order features, significant differences were found for max, range, and mean, and only kurtosis showed poor agreement. All six second-order features showed significant differences using package-specific default GLCM parameters, and five second-order features showed poor agreement; with modified GLCM parameters, no significant differences among second-order features were found, and all second-order features showed poor agreement. While relative texture change discrepancies existed across packages, these differences were not significant when consistent parameters were used.

  19. Statistical Signal Models and Algorithms for Image Analysis

    DTIC Science & Technology

    1984-10-25

    In this report, two-dimensional stochastic linear models are used in developing algorithms for image analysis such as classification, segmentation, and object detection in images characterized by textured backgrounds. These models generate two-dimensional random processes as outputs to which statistical inference procedures can naturally be applied. A common thread throughout our algorithms is the interpretation of the inference procedures in terms of linear prediction

  20. Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma.

    PubMed

    Hu, Leland S; Ning, Shuluo; Eschbacher, Jennifer M; Gaw, Nathan; Dueck, Amylou C; Smith, Kris A; Nakaji, Peter; Plasencia, Jonathan; Ranjbar, Sara; Price, Stephen J; Tran, Nhan; Loftus, Joseph; Jenkins, Robert; O'Neill, Brian P; Elmquist, William; Baxter, Leslie C; Gao, Fei; Frakes, David; Karis, John P; Zwart, Christine; Swanson, Kristin R; Sarkaria, Jann; Wu, Teresa; Mitchell, J Ross; Li, Jing

    2015-01-01

    Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM. We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set. We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients). Multi-parametric MRI and texture analysis can help characterize and visualize GBM's spatial histologic heterogeneity to identify regional tumor-rich biopsy targets.

  1. Vehicle Detection of Aerial Image Using TV-L1 Texture Decomposition

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wang, G.; Li, Y.; Huang, Y.

    2016-06-01

    Vehicle detection from high-resolution aerial image facilitates the study of the public traveling behavior on a large scale. In the context of road, a simple and effective algorithm is proposed to extract the texture-salient vehicle among the pavement surface. Texturally speaking, the majority of pavement surface changes a little except for the neighborhood of vehicles and edges. Within a certain distance away from the given vector of the road network, the aerial image is decomposed into a smoothly-varying cartoon part and an oscillatory details of textural part. The variational model of Total Variation regularization term and L1 fidelity term (TV-L1) is adopted to obtain the salient texture of vehicles and the cartoon surface of pavement. To eliminate the noise of texture decomposition, regions of pavement surface are refined by seed growing and morphological operation. Based on the shape saliency analysis of the central objects in those regions, vehicles are detected as the objects of rectangular shape saliency. The proposed algorithm is tested with a diverse set of aerial images that are acquired at various resolution and scenarios around China. Experimental results demonstrate that the proposed algorithm can detect vehicles at the rate of 71.5% and the false alarm rate of 21.5%, and that the speed is 39.13 seconds for a 4656 x 3496 aerial image. It is promising for large-scale transportation management and planning.

  2. Objective measurement of bread crumb texture

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Coles, Graeme D.

    1995-01-01

    Evaluation of bread crumb texture plays an important role in judging bread quality. This paper discusses the application of image analysis methods to the objective measurement of the visual texture of bread crumb. The application of Fast Fourier Transform and mathematical morphology methods have been discussed by the authors in their previous work, and a commercial bread texture measurement system has been developed. Based on the nature of bread crumb texture, we compare the advantages and disadvantages of the two methods, and a third method based on features derived directly from statistics of edge density in local windows of the bread image. The analysis of various methods and experimental results provides an insight into the characteristics of the bread texture image and interconnection between texture measurement algorithms. The usefulness of the application of general stochastic process modelling of texture is thus revealed; it leads to more reliable and accurate evaluation of bread crumb texture. During the development of these methods, we also gained useful insights into how subjective judges form opinions about bread visual texture. These are discussed here.

  3. Detection of pigment network in dermatoscopy images using texture analysis

    PubMed Central

    Anantha, Murali; Moss, Randy H.; Stoecker, William V.

    2011-01-01

    Dermatoscopy, also known as dermoscopy or epiluminescence microscopy (ELM), is a non-invasive, in vivo technique, which permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. ELM offers a completely new range of visual features. One such prominent feature is the pigment network. Two texture-based algorithms are developed for the detection of pigment network. These methods are applicable to various texture patterns in dermatoscopy images, including patterns that lack fine lines such as cobblestone, follicular, or thickened network patterns. Two texture algorithms, Laws energy masks and the neighborhood gray-level dependence matrix (NGLDM) large number emphasis, were optimized on a set of 155 dermatoscopy images and compared. Results suggest superiority of Laws energy masks for pigment network detection in dermatoscopy images. For both methods, a texel width of 10 pixels or approximately 0.22 mm is found for dermatoscopy images. PMID:15249068

  4. Measurement of Vibrated Bulk Density of Coke Particle Blends Using Image Texture Analysis

    NASA Astrophysics Data System (ADS)

    Azari, Kamran; Bogoya-Forero, Wilinthon; Duchesne, Carl; Tessier, Jayson

    2017-09-01

    A rapid and nondestructive machine vision sensor was developed for predicting the vibrated bulk density (VBD) of petroleum coke particles based on image texture analysis. It could be used for making corrective adjustments to a paste plant operation to reduce green anode variability (e.g., changes in binder demand). Wavelet texture analysis (WTA) and gray level co-occurrence matrix (GLCM) algorithms were used jointly for extracting the surface textural features of coke aggregates from images. These were correlated with the VBD using partial least-squares (PLS) regression. Coke samples of several sizes and from different sources were used to test the sensor. Variations in the coke surface texture introduced by coke size and source allowed for making good predictions of the VBD of individual coke samples and mixtures of them (blends involving two sources and different sizes). Promising results were also obtained for coke blends collected from an industrial-baked carbon anode manufacturer.

  5. Wavelet Analysis for RADARSAT Exploitation: Demonstration of Algorithms for Maritime Surveillance

    DTIC Science & Technology

    2007-02-01

    this study , we demonstrate wavelet analysis for exploitation of RADARSAT ocean imagery, including wind direction estimation, oceanic and atmospheric ...of image striations that can arise as a texture pattern caused by turbulent coherent structures in the marine atmospheric boundary layer. The image...associated change in the pattern texture (i.e., the nature of the turbulent atmospheric structures) across the front. Due to the large spatial scale of

  6. Texture-preserved penalized weighted least-squares reconstruction of low-dose CT image via image segmentation and high-order MRF modeling

    NASA Astrophysics Data System (ADS)

    Han, Hao; Zhang, Hao; Wei, Xinzhou; Moore, William; Liang, Zhengrong

    2016-03-01

    In this paper, we proposed a low-dose computed tomography (LdCT) image reconstruction method with the help of prior knowledge learning from previous high-quality or normal-dose CT (NdCT) scans. The well-established statistical penalized weighted least squares (PWLS) algorithm was adopted for image reconstruction, where the penalty term was formulated by a texture-based Gaussian Markov random field (gMRF) model. The NdCT scan was firstly segmented into different tissue types by a feature vector quantization (FVQ) approach. Then for each tissue type, a set of tissue-specific coefficients for the gMRF penalty was statistically learnt from the NdCT image via multiple-linear regression analysis. We also proposed a scheme to adaptively select the order of gMRF model for coefficients prediction. The tissue-specific gMRF patterns learnt from the NdCT image were finally used to form an adaptive MRF penalty for the PWLS reconstruction of LdCT image. The proposed texture-adaptive PWLS image reconstruction algorithm was shown to be more effective to preserve image textures than the conventional PWLS image reconstruction algorithm, and we further demonstrated the gain of high-order MRF modeling for texture-preserved LdCT PWLS image reconstruction.

  7. Automated kidney morphology measurements from ultrasound images using texture and edge analysis

    NASA Astrophysics Data System (ADS)

    Ravishankar, Hariharan; Annangi, Pavan; Washburn, Michael; Lanning, Justin

    2016-04-01

    In a typical ultrasound scan, a sonographer measures Kidney morphology to assess renal abnormalities. Kidney morphology can also help to discriminate between chronic and acute kidney failure. The caliper placements and volume measurements are often time consuming and an automated solution will help to improve accuracy, repeatability and throughput. In this work, we developed an automated Kidney morphology measurement solution from long axis Ultrasound scans. Automated kidney segmentation is challenging due to wide variability in kidney shape, size, weak contrast of the kidney boundaries and presence of strong edges like diaphragm, fat layers. To address the challenges and be able to accurately localize and detect kidney regions, we present a two-step algorithm that makes use of edge and texture information in combination with anatomical cues. First, we use an edge analysis technique to localize kidney region by matching the edge map with predefined templates. To accurately estimate the kidney morphology, we use textural information in a machine learning algorithm framework using Haar features and Gradient boosting classifier. We have tested the algorithm on 45 unseen cases and the performance against ground truth is measured by computing Dice overlap, % error in major and minor axis of kidney. The algorithm shows successful performance on 80% cases.

  8. Texture functions in image analysis: A computationally efficient solution

    NASA Technical Reports Server (NTRS)

    Cox, S. C.; Rose, J. F.

    1983-01-01

    A computationally efficient means for calculating texture measurements from digital images by use of the co-occurrence technique is presented. The calculation of the statistical descriptors of image texture and a solution that circumvents the need for calculating and storing a co-occurrence matrix are discussed. The results show that existing efficient algorithms for calculating sums, sums of squares, and cross products can be used to compute complex co-occurrence relationships directly from the digital image input.

  9. Detection of small bowel tumors in capsule endoscopy frames using texture analysis based on the discrete wavelet transform.

    PubMed

    Barbosa, Daniel J C; Ramos, Jaime; Lima, Carlos S

    2008-01-01

    Capsule endoscopy is an important tool to diagnose tumor lesions in the small bowel. The capsule endoscopic images possess vital information expressed by color and texture. This paper presents an approach based in the textural analysis of the different color channels, using the wavelet transform to select the bands with the most significant texture information. A new image is then synthesized from the selected wavelet bands, trough the inverse wavelet transform. The features of each image are based on second-order textural information, and they are used in a classification scheme using a multilayer perceptron neural network. The proposed methodology has been applied in real data taken from capsule endoscopic exams and reached 98.7% sensibility and 96.6% specificity. These results support the feasibility of the proposed algorithm.

  10. Neural net classification of liver ultrasonogram for quantitative evaluation of diffuse liver disease

    NASA Astrophysics Data System (ADS)

    Lee, Dong Hyuk; Kim, JongHyo; Kim, Hee C.; Lee, Yong W.; Min, Byong Goo

    1997-04-01

    There have been a number of studies on the quantitative evaluation of diffuse liver disease by using texture analysis technique. However, the previous studies have been focused on the classification between only normal and abnormal pattern based on textural properties, resulting in lack of clinically useful information about the progressive status of liver disease. Considering our collaborative research experience with clinical experts, we judged that not only texture information but also several shape properties are necessary in order to successfully classify between various states of disease with liver ultrasonogram. Nine image parameters were selected experimentally. One of these was texture parameter and others were shape parameters measured as length, area and curvature. We have developed a neural-net algorithm that classifies liver ultrasonogram into 9 categories of liver disease: 3 main category and 3 sub-steps for each. Nine parameters were collected semi- automatically from the user by using graphical user interface tool, and then processed to give a grade for each parameter. Classifying algorithm consists of two steps. At the first step, each parameter was graded into pre-defined levels using neural network. in the next step, neural network classifier determined disease status using graded nine parameters. We implemented a PC based computer-assist diagnosis workstation and installed it in radiology department of Seoul National University Hospital. Using this workstation we collected 662 cases during 6 months. Some of these were used for training and others were used for evaluating accuracy of the developed algorithm. As a conclusion, a liver ultrasonogram classifying algorithm was developed using both texture and shape parameters and neural network classifier. Preliminary results indicate that the proposed algorithm is useful for evaluation of diffuse liver disease.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, B; Yu, H; Jara, H

    Purpose: To compare enhanced Laws texture derived from parametric proton density (PD) maps to other MRI-based surrogate markers (T2, PD, ADC) in assessing degrees of liver fibrosis in a murine model of hepatic fibrosis using 11.7T scanner. Methods: This animal study was IACUC approved. Fourteen mice were divided into control (n=1) and experimental (n=13). The latter were fed a DDC-supplemented diet to induce hepatic fibrosis. Liver specimens were imaged using an 11.7T scanner; the parametric PD, T2, and ADC maps were generated from spin-echo pulsed field gradient and multi-echo spin-echo acquisitions. Enhanced Laws texture analysis was applied to the PDmore » maps: first, hepatic blood vessels and liver margins were segmented/removed using an automated dual-clustering algorithm; secondly, an optimal thresholding algorithm was applied to reduce the partial volume artifact; next, mean and stdev were corrected to minimize grayscale variation across images; finally, Laws texture was extracted. Degrees of fibrosis was assessed by an experienced pathologist and digital image analysis (%Area Fibrosis). Scatterplots comparing enhanced Laws texture, T2, PD, and ADC values to degrees of fibrosis were generated and correlation coefficients were calculated. Unenhanced Laws texture was also compared to assess the effectiveness of the proposed enhancements. Results: Hepatic fibrosis and the enhanced Laws texture were strongly correlated with higher %Area Fibrosis associated with higher Laws texture (r=0.89). Only a moderate correlation was detected between %Area Fibrosis and unenhanced Laws texture (r=0.70). Strong correlation also existed between ADC and %Area Fibrosis (r=0.86). Moderate correlations were seen between %Area Fibrosis and PD (r=0.65) and T2 (r=0.66). Conclusions: Higher degrees of hepatic fibrosis are associated with increased Laws texture. The proposed enhancements improve the accuracy of Laws texture. Enhanced Laws texture features are more accurate than PD and T2 in assessing fibrosis, and can potentially serve as an accurate surrogate marker for hepatic fibrosis.« less

  12. Defect Detection in Textures through the Use of Entropy as a Means for Automatically Selecting the Wavelet Decomposition Level.

    PubMed

    Navarro, Pedro J; Fernández-Isla, Carlos; Alcover, Pedro María; Suardíaz, Juan

    2016-07-27

    This paper presents a robust method for defect detection in textures, entropy-based automatic selection of the wavelet decomposition level (EADL), based on a wavelet reconstruction scheme, for detecting defects in a wide variety of structural and statistical textures. Two main features are presented. One of the new features is an original use of the normalized absolute function value (NABS) calculated from the wavelet coefficients derived at various different decomposition levels in order to identify textures where the defect can be isolated by eliminating the texture pattern in the first decomposition level. The second is the use of Shannon's entropy, calculated over detail subimages, for automatic selection of the band for image reconstruction, which, unlike other techniques, such as those based on the co-occurrence matrix or on energy calculation, provides a lower decomposition level, thus avoiding excessive degradation of the image, allowing a more accurate defect segmentation. A metric analysis of the results of the proposed method with nine different thresholding algorithms determined that selecting the appropriate thresholding method is important to achieve optimum performance in defect detection. As a consequence, several different thresholding algorithms depending on the type of texture are proposed.

  13. Classification Features of US Images Liver Extracted with Co-occurrence Matrix Using the Nearest Neighbor Algorithm

    NASA Astrophysics Data System (ADS)

    Moldovanu, Simona; Bibicu, Dorin; Moraru, Luminita; Nicolae, Mariana Carmen

    2011-12-01

    Co-occurrence matrix has been applied successfully for echographic images characterization because it contains information about spatial distribution of grey-scale levels in an image. The paper deals with the analysis of pixels in selected regions of interest of an US image of the liver. The useful information obtained refers to texture features such as entropy, contrast, dissimilarity and correlation extract with co-occurrence matrix. The analyzed US images were grouped in two distinct sets: healthy liver and steatosis (or fatty) liver. These two sets of echographic images of the liver build a database that includes only histological confirmed cases: 10 images of healthy liver and 10 images of steatosis liver. The healthy subjects help to compute four textural indices and as well as control dataset. We chose to study these diseases because the steatosis is the abnormal retention of lipids in cells. The texture features are statistical measures and they can be used to characterize irregularity of tissues. The goal is to extract the information using the Nearest Neighbor classification algorithm. The K-NN algorithm is a powerful tool to classify features textures by means of grouping in a training set using healthy liver, on the one hand, and in a holdout set using the features textures of steatosis liver, on the other hand. The results could be used to quantify the texture information and will allow a clear detection between health and steatosis liver.

  14. Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery.

    PubMed

    Li, Guiying; Lu, Dengsheng; Moran, Emilio; Hetrick, Scott

    2011-01-01

    This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms - maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes.

  15. Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery

    PubMed Central

    LI, GUIYING; LU, DENGSHENG; MORAN, EMILIO; HETRICK, SCOTT

    2011-01-01

    This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms – maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes. PMID:22368311

  16. Wavelet analysis enables system-independent texture analysis of optical coherence tomography images.

    PubMed

    Lingley-Papadopoulos, Colleen A; Loew, Murray H; Zara, Jason M

    2009-01-01

    Texture analysis for tissue characterization is a current area of optical coherence tomography (OCT) research. We discuss some of the differences between OCT systems and the effects those differences have on the resulting images and subsequent image analysis. In addition, as an example, two algorithms for the automatic recognition of bladder cancer are compared: one that was developed on a single system with no consideration for system differences, and one that was developed to address the issues associated with system differences. The first algorithm had a sensitivity of 73% and specificity of 69% when tested using leave-one-out cross-validation on data taken from a single system. When tested on images from another system with a different central wavelength, however, the method classified all images as cancerous regardless of the true pathology. By contrast, with the use of wavelet analysis and the removal of system-dependent features, the second algorithm reported sensitivity and specificity values of 87 and 58%, respectively, when trained on images taken with one imaging system and tested on images taken with another.

  17. Wavelet analysis enables system-independent texture analysis of optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Lingley-Papadopoulos, Colleen A.; Loew, Murray H.; Zara, Jason M.

    2009-07-01

    Texture analysis for tissue characterization is a current area of optical coherence tomography (OCT) research. We discuss some of the differences between OCT systems and the effects those differences have on the resulting images and subsequent image analysis. In addition, as an example, two algorithms for the automatic recognition of bladder cancer are compared: one that was developed on a single system with no consideration for system differences, and one that was developed to address the issues associated with system differences. The first algorithm had a sensitivity of 73% and specificity of 69% when tested using leave-one-out cross-validation on data taken from a single system. When tested on images from another system with a different central wavelength, however, the method classified all images as cancerous regardless of the true pathology. By contrast, with the use of wavelet analysis and the removal of system-dependent features, the second algorithm reported sensitivity and specificity values of 87 and 58%, respectively, when trained on images taken with one imaging system and tested on images taken with another.

  18. A Study for Texture Feature Extraction of High-Resolution Satellite Images Based on a Direction Measure and Gray Level Co-Occurrence Matrix Fusion Algorithm

    PubMed Central

    Zhang, Xin; Cui, Jintian; Wang, Weisheng; Lin, Chao

    2017-01-01

    To address the problem of image texture feature extraction, a direction measure statistic that is based on the directionality of image texture is constructed, and a new method of texture feature extraction, which is based on the direction measure and a gray level co-occurrence matrix (GLCM) fusion algorithm, is proposed in this paper. This method applies the GLCM to extract the texture feature value of an image and integrates the weight factor that is introduced by the direction measure to obtain the final texture feature of an image. A set of classification experiments for the high-resolution remote sensing images were performed by using support vector machine (SVM) classifier with the direction measure and gray level co-occurrence matrix fusion algorithm. Both qualitative and quantitative approaches were applied to assess the classification results. The experimental results demonstrated that texture feature extraction based on the fusion algorithm achieved a better image recognition, and the accuracy of classification based on this method has been significantly improved. PMID:28640181

  19. BCC skin cancer diagnosis based on texture analysis techniques

    NASA Astrophysics Data System (ADS)

    Chuang, Shao-Hui; Sun, Xiaoyan; Chang, Wen-Yu; Chen, Gwo-Shing; Huang, Adam; Li, Jiang; McKenzie, Frederic D.

    2011-03-01

    In this paper, we present a texture analysis based method for diagnosing the Basal Cell Carcinoma (BCC) skin cancer using optical images taken from the suspicious skin regions. We first extracted the Run Length Matrix and Haralick texture features from the images and used a feature selection algorithm to identify the most effective feature set for the diagnosis. We then utilized a Multi-Layer Perceptron (MLP) classifier to classify the images to BCC or normal cases. Experiments showed that detecting BCC cancer based on optical images is feasible. The best sensitivity and specificity we achieved on our data set were 94% and 95%, respectively.

  20. Single-Image Super-Resolution Based on Rational Fractal Interpolation.

    PubMed

    Zhang, Yunfeng; Fan, Qinglan; Bao, Fangxun; Liu, Yifang; Zhang, Caiming

    2018-08-01

    This paper presents a novel single-image super-resolution (SR) procedure, which upscales a given low-resolution (LR) input image to a high-resolution image while preserving the textural and structural information. First, we construct a new type of bivariate rational fractal interpolation model and investigate its analytical properties. This model has different forms of expression with various values of the scaling factors and shape parameters; thus, it can be employed to better describe image features than current interpolation schemes. Furthermore, this model combines the advantages of rational interpolation and fractal interpolation, and its effectiveness is validated through theoretical analysis. Second, we develop a single-image SR algorithm based on the proposed model. The LR input image is divided into texture and non-texture regions, and then, the image is interpolated according to the characteristics of the local structure. Specifically, in the texture region, the scaling factor calculation is the critical step. We present a method to accurately calculate scaling factors based on local fractal analysis. Extensive experiments and comparisons with the other state-of-the-art methods show that our algorithm achieves competitive performance, with finer details and sharper edges.

  1. Ultrasound image texture processing for evaluating fatty liver in peripartal dairy cows

    NASA Astrophysics Data System (ADS)

    Amin, Viren R.; Bobe, Gerd; Young, Jerry; Ametaj, Burim; Beitz, Donald

    2001-07-01

    The objective of this work is to characterize the liver ultrasound texture as it changes in diffuse disease of fatty liver. This technology could allow non-invasive diagnosis of fatty liver, a major metabolic disorder in early lactation dairy cows. More than 100 liver biopsies were taken from fourteen dairy cows, as a part of the USDA-funded study for effects of glucagon on prevention and treatment of fatty liver. Up to nine liver biopsies were taken from each cow during peripartal period of seven weeks and total lipid content was determined chemically. Just before each liver biopsy was taken, ultrasonic B-mode images were digitally captured using a 3.5 or 5 MHz transducer. Effort was made to capture images that were non-blurred, void of large blood vessels and multiple echoes, and of consistent texture. From each image, a region-of-interest of size 100-by-100 pixels was processed. Texture parameters were calculated using algorithms such as first and second order statistics, 2D Fourier transformation, co-occurrence matrix, and gradient analysis. Many cows had normal liver (3% to 6% total lipid) and a few had developed fatty liver with total lipid up to 15%. The selected texture parameters showed consistent change with changing lipid content and could potentially be used to diagnose early fatty liver non-invasively. The approach of texture analysis algorithms and initial results on their potential in evaluating total lipid percentage is presented here.

  2. Texture classification using autoregressive filtering

    NASA Technical Reports Server (NTRS)

    Lawton, W. M.; Lee, M.

    1984-01-01

    A general theory of image texture models is proposed and its applicability to the problem of scene segmentation using texture classification is discussed. An algorithm, based on half-plane autoregressive filtering, which optimally utilizes second order statistics to discriminate between texture classes represented by arbitrary wide sense stationary random fields is described. Empirical results of applying this algorithm to natural and sysnthesized scenes are presented and future research is outlined.

  3. SU-E-J-262: Variability in Texture Analysis of Gynecological Tumors in the Context of An 18F-FDG PET Adaptive Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrocki, J; Chino, J; Das, S

    Purpose: This study examines the effect on texture analysis due to variable reconstruction of PET images in the context of an adaptive FDG PET protocol for node positive gynecologic cancer patients. By measuring variability in texture features from baseline and intra-treatment PET-CT, we can isolate unreliable texture features due to large variation. Methods: A subset of seven patients with node positive gynecological cancers visible on PET was selected for this study. Prescribed dose varied between 45–50.4Gy, with a 55–70Gy boost to the PET positive nodes. A baseline and intratreatment (between 30–36Gy) PET-CT were obtained on a Siemens Biograph mCT. Eachmore » clinical PET image set was reconstructed 6 times using a TrueX+TOF algorithm with varying iterations and Gaussian filter. Baseline and intra-treatment primary GTVs were segmented using PET Edge (MIM Software Inc., Cleveland, OH), a semi-automatic gradient-based algorithm, on the clinical PET and transferred to the other reconstructed sets. Using an in-house MATLAB program, four 3D texture matrices describing relationships between voxel intensities in the GTV were generated: co-occurrence, run length, size zone, and neighborhood difference. From these, 39 textural features characterizing texture were calculated in addition to SUV histogram features. The percent variability among parameters was first calculated. Each reconstructed texture feature from baseline and intra-treatment per patient was normalized to the clinical baseline scan and compared using the Wilcoxon signed-rank test in order to isolate variations due to reconstruction parameters. Results: For the baseline scans, 13 texture features showed a mean range greater than 10%. For the intra scans, 28 texture features showed a mean range greater than 10%. Comparing baseline to intra scans, 25 texture features showed p <0.05. Conclusion: Variability due to different reconstruction parameters increased with treatment, however, the majority of texture features showed significant changes during treatment independent of reconstruction effects.« less

  4. Cest Analysis: Automated Change Detection from Very-High Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Ehlers, M.; Klonus, S.; Jarmer, T.; Sofina, N.; Michel, U.; Reinartz, P.; Sirmacek, B.

    2012-08-01

    A fast detection, visualization and assessment of change in areas of crisis or catastrophes are important requirements for coordination and planning of help. Through the availability of new satellites and/or airborne sensors with very high spatial resolutions (e.g., WorldView, GeoEye) new remote sensing data are available for a better detection, delineation and visualization of change. For automated change detection, a large number of algorithms has been proposed and developed. From previous studies, however, it is evident that to-date no single algorithm has the potential for being a reliable change detector for all possible scenarios. This paper introduces the Combined Edge Segment Texture (CEST) analysis, a decision-tree based cooperative suite of algorithms for automated change detection that is especially designed for the generation of new satellites with very high spatial resolution. The method incorporates frequency based filtering, texture analysis, and image segmentation techniques. For the frequency analysis, different band pass filters can be applied to identify the relevant frequency information for change detection. After transforming the multitemporal images via a fast Fourier transform (FFT) and applying the most suitable band pass filter, different methods are available to extract changed structures: differencing and correlation in the frequency domain and correlation and edge detection in the spatial domain. Best results are obtained using edge extraction. For the texture analysis, different 'Haralick' parameters can be calculated (e.g., energy, correlation, contrast, inverse distance moment) with 'energy' so far providing the most accurate results. These algorithms are combined with a prior segmentation of the image data as well as with morphological operations for a final binary change result. A rule-based combination (CEST) of the change algorithms is applied to calculate the probability of change for a particular location. CEST was tested with high-resolution satellite images of the crisis areas of Darfur (Sudan). CEST results are compared with a number of standard algorithms for automated change detection such as image difference, image ratioe, principal component analysis, delta cue technique and post classification change detection. The new combined method shows superior results averaging between 45% and 15% improvement in accuracy.

  5. Enhanced facial texture illumination normalization for face recognition.

    PubMed

    Luo, Yong; Guan, Ye-Peng

    2015-08-01

    An uncontrolled lighting condition is one of the most critical challenges for practical face recognition applications. An enhanced facial texture illumination normalization method is put forward to resolve this challenge. An adaptive relighting algorithm is developed to improve the brightness uniformity of face images. Facial texture is extracted by using an illumination estimation difference algorithm. An anisotropic histogram-stretching algorithm is proposed to minimize the intraclass distance of facial skin and maximize the dynamic range of facial texture distribution. Compared with the existing methods, the proposed method can more effectively eliminate the redundant information of facial skin and illumination. Extensive experiments show that the proposed method has superior performance in normalizing illumination variation and enhancing facial texture features for illumination-insensitive face recognition.

  6. Texture generation for use in synthetic infrared scenes

    NASA Astrophysics Data System (ADS)

    Ota, Clem Z.; Rollins, John M.; Bleiweiss, Max P.

    1996-06-01

    In the process of creating synthetic scenes for use in simulations/visualizations, texture is used as a surrogate to 'high' spatial definition. For example, if one were to measure the location of every blade of grass and all of the characteristics of each blade of grass in a lawn, then in the process of composing a scene of the lawn, it would be expected that the result would appear 'real;' however, because this process is excruciatingly laborious, various techniques have been devised to place the required details in the scene through the use of texturing. Experience gained during the recent Smart Weapons Operability Enhancement Joint Test and Evaluation (SWOE JT&E) has shown the need for higher fidelity texturing algorithms and a better parameterization of those that are in use. In this study, four aspects of the problem have been analyzed: texture extraction, texture insertion, texture metrics, and texture creation algorithms. The results of extracting real texture from an image, measuring it with a variety of metrics, and generating similar texture with three different algorithms is presented. These same metrics can be used to define clutter and to make comparisons between 'real' and synthetic (or artificial) scenes in an objective manner.

  7. Texture orientation-based algorithm for detecting infrared maritime targets.

    PubMed

    Wang, Bin; Dong, Lili; Zhao, Ming; Wu, Houde; Xu, Wenhai

    2015-05-20

    Infrared maritime target detection is a key technology for maritime target searching systems. However, in infrared maritime images (IMIs) taken under complicated sea conditions, background clutters, such as ocean waves, clouds or sea fog, usually have high intensity that can easily overwhelm the brightness of real targets, which is difficult for traditional target detection algorithms to deal with. To mitigate this problem, this paper proposes a novel target detection algorithm based on texture orientation. This algorithm first extracts suspected targets by analyzing the intersubband correlation between horizontal and vertical wavelet subbands of the original IMI on the first scale. Then the self-adaptive wavelet threshold denoising and local singularity analysis of the original IMI is combined to remove false alarms further. Experiments show that compared with traditional algorithms, this algorithm can suppress background clutter much better and realize better single-frame detection for infrared maritime targets. Besides, in order to guarantee accurate target extraction further, the pipeline-filtering algorithm is adopted to eliminate residual false alarms. The high practical value and applicability of this proposed strategy is backed strongly by experimental data acquired under different environmental conditions.

  8. Aural analysis of image texture via cepstral filtering and sonification

    NASA Astrophysics Data System (ADS)

    Rangayyan, Rangaraj M.; Martins, Antonio C. G.; Ruschioni, Ruggero A.

    1996-03-01

    Texture plays an important role in image analysis and understanding, with many applications in medical imaging and computer vision. However, analysis of texture by image processing is a rather difficult issue, with most techniques being oriented towards statistical analysis which may not have readily comprehensible perceptual correlates. We propose new methods for auditory display (AD) and sonification of (quasi-) periodic texture (where a basic texture element or `texton' is repeated over the image field) and random texture (which could be modeled as filtered or `spot' noise). Although the AD designed is not intended to be speech- like or musical, we draw analogies between the two types of texture mentioned above and voiced/unvoiced speech, and design a sonification algorithm which incorporates physical and perceptual concepts of texture and speech. More specifically, we present a method for AD of texture where the projections of the image at various angles (Radon transforms or integrals) are mapped to audible signals and played in sequence. In the case of random texture, the spectral envelopes of the projections are related to the filter spot characteristics, and convey the essential information for texture discrimination. In the case of periodic texture, the AD provides timber and pitch related to the texton and periodicity. In another procedure for sonification of periodic texture, we propose to first deconvolve the image using cepstral analysis to extract information about the texton and horizontal and vertical periodicities. The projections of individual textons at various angles are used to create a voiced-speech-like signal with each projection mapped to a basic wavelet, the horizontal period to pitch, and the vertical period to rhythm on a longer time scale. The sound pattern then consists of a serial, melody-like sonification of the patterns for each projection. We believe that our approaches provide the much-desired `natural' connection between the image data and the sounds generated. We have evaluated the sonification techniques with a number of synthetic textures. The sound patterns created have demonstrated the potential of the methods in distinguishing between different types of texture. We are investigating the application of these techniques to auditory analysis of texture in medical images such as magnetic resonance images.

  9. Cloud cover determination in polar regions from satellite imagery

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Key, J.

    1989-01-01

    The objectives are to develop a suitable validation data set for evaluating the effectiveness of the International Satellite Cloud Climatology Project (ISCCP) algorithm for cloud retrieval in polar regions, to identify limitations of current procedures and to explore potential means to remedy them using textural classifiers, and to compare synoptic cloud data from model runs with observations. Toward the first goal, a polar data set consisting of visible, thermal, and passive microwave data was developed. The AVHRR and SMMR data were digitally merged to a polar stereographic projection with an effective pixel size of 5 sq km. With this data set, two unconventional methods of classifying the imagery for the analysis of polar clouds and surfaces were examined: one based on fuzzy sets theory and another based on a trained neural network. An algorithm for cloud detection was developed from an early test version of the ISCCP algorithm. This algorithm includes the identification of surface types with passive microwave, then temporal tests at each pixel location in the cloud detection phase. Cloud maps and clear sky radiance composites for 5 day periods are produced. Algorithm testing and validation was done with both actural AVHRR/SMMR data, and simulated imagery. From this point in the algorithm, groups of cloud pixels are examined for their spectral and textural characteristics, and a procedure is developed for the analysis of cloud patterns utilizing albedo, IR temperature, and texture. In a completion of earlier work, empirical analyses of arctic cloud cover were explored through manual interpretations of DMSP imagery and compared to U.S. Air Force 3D-nephanalysis. Comparisons of observed cloudiness from existing climatologies to patterns computed by the GISS climate model were also made.

  10. Decorating surfaces with bidirectional texture functions.

    PubMed

    Zhou, Kun; Du, Peng; Wang, Lifeng; Matsushita, Yasuyuki; Shi, Jiaoying; Guo, Baining; Shum, Heung-Yeung

    2005-01-01

    We present a system for decorating arbitrary surfaces with bidirectional texture functions (BTF). Our system generates BTFs in two steps. First, we automatically synthesize a BTF over the target surface from a given BTF sample. Then, we let the user interactively paint BTF patches onto the surface such that the painted patches seamlessly integrate with the background patterns. Our system is based on a patch-based texture synthesis approach known as quilting. We present a graphcut algorithm for BTF synthesis on surfaces and the algorithm works well for a wide variety of BTF samples, including those which present problems for existing algorithms. We also describe a graphcut texture painting algorithm for creating new surface imperfections (e.g., dirt, cracks, scratches) from existing imperfections found in input BTF samples. Using these algorithms, we can decorate surfaces with real-world textures that have spatially-variant reflectance, fine-scale geometry details, and surfaces imperfections. A particularly attractive feature of BTF painting is that it allows us to capture imperfections of real materials and paint them onto geometry models. We demonstrate the effectiveness of our system with examples.

  11. Novel 3D Compression Methods for Geometry, Connectivity and Texture

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2016-06-01

    A large number of applications in medical visualization, games, engineering design, entertainment, heritage, e-commerce and so on require the transmission of 3D models over the Internet or over local networks. 3D data compression is an important requirement for fast data storage, access and transmission within bandwidth limitations. The Wavefront OBJ (object) file format is commonly used to share models due to its clear simple design. Normally each OBJ file contains a large amount of data (e.g. vertices and triangulated faces, normals, texture coordinates and other parameters) describing the mesh surface. In this paper we introduce a new method to compress geometry, connectivity and texture coordinates by a novel Geometry Minimization Algorithm (GM-Algorithm) in connection with arithmetic coding. First, each vertex ( x, y, z) coordinates are encoded to a single value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences between two adjacent vertex locations, which are compressed by arithmetic coding together with texture coordinates. We demonstrate the method on large data sets achieving compression ratios between 87 and 99 % without reduction in the number of reconstructed vertices and triangle faces. The decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with a number of commonly used 3D file formats such as VRML, OpenCTM and STL highlighting the performance and effectiveness of the proposed method.

  12. Accurate object tracking system by integrating texture and depth cues

    NASA Astrophysics Data System (ADS)

    Chen, Ju-Chin; Lin, Yu-Hang

    2016-03-01

    A robust object tracking system that is invariant to object appearance variations and background clutter is proposed. Multiple instance learning with a boosting algorithm is applied to select discriminant texture information between the object and background data. Additionally, depth information, which is important to distinguish the object from a complicated background, is integrated. We propose two depth-based models that can compensate texture information to cope with both appearance variants and background clutter. Moreover, in order to reduce the risk of drifting problem increased for the textureless depth templates, an update mechanism is proposed to select more precise tracking results to avoid incorrect model updates. In the experiments, the robustness of the proposed system is evaluated and quantitative results are provided for performance analysis. Experimental results show that the proposed system can provide the best success rate and has more accurate tracking results than other well-known algorithms.

  13. Texture classification of lung computed tomography images

    NASA Astrophysics Data System (ADS)

    Pheng, Hang See; Shamsuddin, Siti M.

    2013-03-01

    Current development of algorithms in computer-aided diagnosis (CAD) scheme is growing rapidly to assist the radiologist in medical image interpretation. Texture analysis of computed tomography (CT) scans is one of important preliminary stage in the computerized detection system and classification for lung cancer. Among different types of images features analysis, Haralick texture with variety of statistical measures has been used widely in image texture description. The extraction of texture feature values is essential to be used by a CAD especially in classification of the normal and abnormal tissue on the cross sectional CT images. This paper aims to compare experimental results using texture extraction and different machine leaning methods in the classification normal and abnormal tissues through lung CT images. The machine learning methods involve in this assessment are Artificial Immune Recognition System (AIRS), Naive Bayes, Decision Tree (J48) and Backpropagation Neural Network. AIRS is found to provide high accuracy (99.2%) and sensitivity (98.0%) in the assessment. For experiments and testing purpose, publicly available datasets in the Reference Image Database to Evaluate Therapy Response (RIDER) are used as study cases.

  14. Characterization of Urban Landscape Using Super-Resolution UAS Data, Multiple Textural Scales and Data-Mining Techniques

    NASA Astrophysics Data System (ADS)

    Voss, M.; Blundell, B.

    2015-12-01

    Characterization of urban environments is a high priority for the U.S. Army as battlespaces have transitioned from the predominantly open spaces of the 20th century to urban areas where soldiers have reduced situational awareness due to the diversity and density of their surroundings. Creating high-resolution urban terrain geospatial information will improve mission planning and soldier effectiveness. In this effort, super-resolution true-color imagery was collected with an Altivan NOVA unmanned aerial system over the Muscatatuck Urban Training Center near Butlerville, Indiana on September 16, 2014. Multispectral texture analysis using different algorithms was conducted for urban surface characterization at a variety of scales. Training samples extracted from the true-color and texture images. These data were processed using a variety of meta-algorithms with a decision tree classifier to create a high-resolution urban features map. In addition to improving accuracy over traditional image classification methods, this technique allowed the determination of the most significant textural scales in creating urban terrain maps for tactical exploitation.

  15. Segmentation Approach Towards Phase-Contrast Microscopic Images of Activated Sludge to Monitor the Wastewater Treatment.

    PubMed

    Khan, Muhammad Burhan; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Lai, Koon Chun

    2017-12-01

    Image processing and analysis is an effective tool for monitoring and fault diagnosis of activated sludge (AS) wastewater treatment plants. The AS image comprise of flocs (microbial aggregates) and filamentous bacteria. In this paper, nine different approaches are proposed for image segmentation of phase-contrast microscopic (PCM) images of AS samples. The proposed strategies are assessed for their effectiveness from the perspective of microscopic artifacts associated with PCM. The first approach uses an algorithm that is based on the idea that different color space representation of images other than red-green-blue may have better contrast. The second uses an edge detection approach. The third strategy, employs a clustering algorithm for the segmentation and the fourth applies local adaptive thresholding. The fifth technique is based on texture-based segmentation and the sixth uses watershed algorithm. The seventh adopts a split-and-merge approach. The eighth employs Kittler's thresholding. Finally, the ninth uses a top-hat and bottom-hat filtering-based technique. The approaches are assessed, and analyzed critically with reference to the artifacts of PCM. Gold approximations of ground truth images are prepared to assess the segmentations. Overall, the edge detection-based approach exhibits the best results in terms of accuracy, and the texture-based algorithm in terms of false negative ratio. The respective scenarios are explained for suitability of edge detection and texture-based algorithms.

  16. A detail enhancement and dynamic range adjustment algorithm for high dynamic range images

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Wang, Huachuang; Liang, Mingtao; Yu, Cong; Hu, Jinlong; Cheng, Hua

    2014-08-01

    Although high dynamic range (HDR) images contain large amounts of information, they have weak texture and low contrast. What's more, these images are difficult to be reproduced on low dynamic range displaying mediums. If much more information is to be acquired when these images are displayed on PCs, some specific transforms, such as compressing the dynamic range, enhancing the portions of little difference in original contrast and highlighting the texture details on the premise of keeping the parts of large contrast, are needed. To this ends, a multi-scale guided filter enhancement algorithm which derives from the single-scale guided filter based on the analysis of non-physical model is proposed in this paper. Firstly, this algorithm decomposes the original HDR images into base image and detail images of different scales, and then it adaptively selects a transform function which acts on the enhanced detail images and original images. By comparing the treatment effects of HDR images and low dynamic range (LDR) images of different scene features, it proves that this algorithm, on the basis of maintaining the hierarchy and texture details of images, not only improves the contrast and enhances the details of images, but also adjusts the dynamic range well. Thus, it is much suitable for human observation or analytical processing of machines.

  17. Human (Homo sapiens) facial attractiveness in relation to skin texture and color.

    PubMed

    Fink, B; Grammer, K; Thornhill, R

    2001-03-01

    The notion that surface texture may provide important information about the geometry of visible surfaces has attracted considerable attention for a long time. The present study shows that skin texture plays a significant role in the judgment of female facial beauty. Following research in clinical dermatology, the authors developed a computer program that implemented an algorithm based on co-occurrence matrices for the analysis of facial skin texture. Homogeneity and contrast features as well as color parameters were extracted out of stimulus faces. Attractiveness ratings of the images made by male participants relate positively to parameters of skin homogeneity. The authors propose that skin texture is a cue to fertility and health. In contrast to some previous studies, the authors found that dark skin, not light skin, was rated as most attractive.

  18. Study of texture stitching in 3D modeling of lidar point cloud based on per-pixel linear interpolation along loop line buffer

    NASA Astrophysics Data System (ADS)

    Xu, Jianxin; Liang, Hong

    2013-07-01

    Terrestrial laser scanning creates a point cloud composed of thousands or millions of 3D points. Through pre-processing, generating TINs, mapping texture, a 3D model of a real object is obtained. When the object is too large, the object is separated into some parts. This paper mainly focuses on problem of gray uneven of two adjacent textures' intersection. The new algorithm is presented in the paper, which is per-pixel linear interpolation along loop line buffer .The experiment data derives from point cloud of stone lion which is situated in front of west gate of Henan Polytechnic University. The model flow is composed of three parts. First, the large object is separated into two parts, and then each part is modeled, finally the whole 3D model of the stone lion is composed of two part models. When the two part models are combined, there is an obvious fissure line in the overlapping section of two adjacent textures for the two models. Some researchers decrease brightness value of all pixels for two adjacent textures by some algorithms. However, some algorithms are effect and the fissure line still exists. Gray uneven of two adjacent textures is dealt by the algorithm in the paper. The fissure line in overlapping section textures is eliminated. The gray transition in overlapping section become more smoothly.

  19. Fast detection of vascular plaque in optical coherence tomography images using a reduced feature set

    NASA Astrophysics Data System (ADS)

    Prakash, Ammu; Ocana Macias, Mariano; Hewko, Mark; Sowa, Michael; Sherif, Sherif

    2018-03-01

    Optical coherence tomography (OCT) images are capable of detecting vascular plaque by using the full set of 26 Haralick textural features and a standard K-means clustering algorithm. However, the use of the full set of 26 textural features is computationally expensive and may not be feasible for real time implementation. In this work, we identified a reduced set of 3 textural feature which characterizes vascular plaque and used a generalized Fuzzy C-means clustering algorithm. Our work involves three steps: 1) the reduction of a full set 26 textural feature to a reduced set of 3 textural features by using genetic algorithm (GA) optimization method 2) the implementation of an unsupervised generalized clustering algorithm (Fuzzy C-means) on the reduced feature space, and 3) the validation of our results using histology and actual photographic images of vascular plaque. Our results show an excellent match with histology and actual photographic images of vascular tissue. Therefore, our results could provide an efficient pre-clinical tool for the detection of vascular plaque in real time OCT imaging.

  20. Efficient parallel implementation of active appearance model fitting algorithm on GPU.

    PubMed

    Wang, Jinwei; Ma, Xirong; Zhu, Yuanping; Sun, Jizhou

    2014-01-01

    The active appearance model (AAM) is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs) that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA) on the Nvidia's GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures.

  1. Efficient Parallel Implementation of Active Appearance Model Fitting Algorithm on GPU

    PubMed Central

    Wang, Jinwei; Ma, Xirong; Zhu, Yuanping; Sun, Jizhou

    2014-01-01

    The active appearance model (AAM) is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs) that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA) on the Nvidia's GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures. PMID:24723812

  2. An adaptive tensor voting algorithm combined with texture spectrum

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Su, Qing-tang; Lü, Gao-huan; Zhang, Xiao-feng; Liu, Yu-huan; He, An-zhi

    2015-01-01

    An adaptive tensor voting algorithm combined with texture spectrum is proposed. The image texture spectrum is used to get the adaptive scale parameter of voting field. Then the texture information modifies both the attenuation coefficient and the attenuation field so that we can use this algorithm to create more significant and correct structures in the original image according to the human visual perception. At the same time, the proposed method can improve the edge extraction quality, which includes decreasing the flocculent region efficiently and making image clear. In the experiment for extracting pavement cracks, the original pavement image is processed by the proposed method which is combined with the significant curve feature threshold procedure, and the resulted image displays the faint crack signals submerged in the complicated background efficiently and clearly.

  3. Modelling Nonlinear Dynamic Textures using Hybrid DWT-DCT and Kernel PCA with GPU

    NASA Astrophysics Data System (ADS)

    Ghadekar, Premanand Pralhad; Chopade, Nilkanth Bhikaji

    2016-12-01

    Most of the real-world dynamic textures are nonlinear, non-stationary, and irregular. Nonlinear motion also has some repetition of motion, but it exhibits high variation, stochasticity, and randomness. Hybrid DWT-DCT and Kernel Principal Component Analysis (KPCA) with YCbCr/YIQ colour coding using the Dynamic Texture Unit (DTU) approach is proposed to model a nonlinear dynamic texture, which provides better results than state-of-art methods in terms of PSNR, compression ratio, model coefficients, and model size. Dynamic texture is decomposed into DTUs as they help to extract temporal self-similarity. Hybrid DWT-DCT is used to extract spatial redundancy. YCbCr/YIQ colour encoding is performed to capture chromatic correlation. KPCA is applied to capture nonlinear motion. Further, the proposed algorithm is implemented on Graphics Processing Unit (GPU), which comprise of hundreds of small processors to decrease time complexity and to achieve parallelism.

  4. Object detection approach using generative sparse, hierarchical networks with top-down and lateral connections for combining texture/color detection and shape/contour detection

    DOEpatents

    Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.; Schultz, Peter F.; George, John S.

    2015-07-28

    An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using a combinatorial algorithm.

  5. Bridges between multiple-point geostatistics and texture synthesis: Review and guidelines for future research

    NASA Astrophysics Data System (ADS)

    Mariethoz, Gregoire; Lefebvre, Sylvain

    2014-05-01

    Multiple-Point Simulations (MPS) is a family of geostatistical tools that has received a lot of attention in recent years for the characterization of spatial phenomena in geosciences. It relies on the definition of training images to represent a given type of spatial variability, or texture. We show that the algorithmic tools used are similar in many ways to techniques developed in computer graphics, where there is a need to generate large amounts of realistic textures for applications such as video games and animated movies. Similarly to MPS, these texture synthesis methods use training images, or exemplars, to generate realistic-looking graphical textures. Both domains of multiple-point geostatistics and example-based texture synthesis present similarities in their historic development and share similar concepts. These disciplines have however remained separated, and as a result significant algorithmic innovations in each discipline have not been universally adopted. Texture synthesis algorithms present drastically increased computational efficiency, patterns reproduction and user control. At the same time, MPS developed ways to condition models to spatial data and to produce 3D stochastic realizations, which have not been thoroughly investigated in the field of texture synthesis. In this paper we review the possible links between these disciplines and show the potential and limitations of using concepts and approaches from texture synthesis in MPS. We also provide guidelines on how recent developments could benefit both fields of research, and what challenges remain open.

  6. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map.

    PubMed

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-09-11

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate.

  7. Object detection approach using generative sparse, hierarchical networks with top-down and lateral connections for combining texture/color detection and shape/contour detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.

    An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using amore » combinatorial algorithm.« less

  8. Multiresolution Local Binary Pattern texture analysis for false positive reduction in computerized detection of breast masses on mammograms

    NASA Astrophysics Data System (ADS)

    Choi, Jae Young; Kim, Dae Hoe; Choi, Seon Hyeong; Ro, Yong Man

    2012-03-01

    We investigated the feasibility of using multiresolution Local Binary Pattern (LBP) texture analysis to reduce falsepositive (FP) detection in a computerized mass detection framework. A new and novel approach for extracting LBP features is devised to differentiate masses and normal breast tissue on mammograms. In particular, to characterize the LBP texture patterns of the boundaries of masses, as well as to preserve the spatial structure pattern of the masses, two individual LBP texture patterns are then extracted from the core region and the ribbon region of pixels of the respective ROI regions, respectively. These two texture patterns are combined to produce the so-called multiresolution LBP feature of a given ROI. The proposed LBP texture analysis of the information in mass core region and its margin has clearly proven to be significant and is not sensitive to the precise location of the boundaries of masses. In this study, 89 mammograms were collected from the public MAIS database (DB). To perform a more realistic assessment of FP reduction process, the LBP texture analysis was applied directly to a total of 1,693 regions of interest (ROIs) automatically segmented by computer algorithm. Support Vector Machine (SVM) was applied for the classification of mass ROIs from ROIs containing normal tissue. Receiver Operating Characteristic (ROC) analysis was conducted to evaluate the classification accuracy and its improvement using multiresolution LBP features. With multiresolution LBP features, the classifier achieved an average area under the ROC curve, , z A of 0.956 during testing. In addition, the proposed LBP features outperform other state-of-the-arts features designed for false positive reduction.

  9. Time-frequency feature representation using multi-resolution texture analysis and acoustic activity detector for real-life speech emotion recognition.

    PubMed

    Wang, Kun-Ching

    2015-01-14

    The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI). In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII). The MRTII feature set is derived from multi-resolution texture analysis for characterization and classification of different emotions in a speech signal. The motivation is that we have to consider emotions have different intensity values in different frequency bands. In terms of human visual perceptual, the texture property on multi-resolution of emotional speech spectrogram should be a good feature set for emotion classification in speech. Furthermore, the multi-resolution analysis on texture can give a clearer discrimination between each emotion than uniform-resolution analysis on texture. In order to provide high accuracy of emotional discrimination especially in real-life, an acoustic activity detection (AAD) algorithm must be applied into the MRTII-based feature extraction. Considering the presence of many blended emotions in real life, in this paper make use of two corpora of naturally-occurring dialogs recorded in real-life call centers. Compared with the traditional Mel-scale Frequency Cepstral Coefficients (MFCC) and the state-of-the-art features, the MRTII features also can improve the correct classification rates of proposed systems among different language databases. Experimental results show that the proposed MRTII-based feature information inspired by human visual perception of the spectrogram image can provide significant classification for real-life emotional recognition in speech.

  10. Enhancement of Stereo Imagery by Artificial Texture Projection Generated Using a LIDAR

    NASA Astrophysics Data System (ADS)

    Veitch-Michaelis, Joshua; Muller, Jan-Peter; Walton, David; Storey, Jonathan; Foster, Michael; Crutchley, Benjamin

    2016-06-01

    Passive stereo imaging is capable of producing dense 3D data, but image matching algorithms generally perform poorly on images with large regions of homogenous texture due to ambiguous match costs. Stereo systems can be augmented with an additional light source that can project some form of unique texture onto surfaces in the scene. Methods include structured light, laser projection through diffractive optical elements, data projectors and laser speckle. Pattern projection using lasers has the advantage of producing images with a high signal to noise ratio. We have investigated the use of a scanning visible-beam LIDAR to simultaneously provide enhanced texture within the scene and to provide additional opportunities for data fusion in unmatched regions. The use of a LIDAR rather than a laser alone allows us to generate highly accurate ground truth data sets by scanning the scene at high resolution. This is necessary for evaluating different pattern projection schemes. Results from LIDAR generated random dots are presented and compared to other texture projection techniques. Finally, we investigate the use of image texture analysis to intelligently project texture where it is required while exploiting the texture available in the ambient light image.

  11. Quantitative Features of Liver Lesions, Lung Nodules, and Renal Stones at Multi-Detector Row CT Examinations: Dependency on Radiation Dose and Reconstruction Algorithm.

    PubMed

    Solomon, Justin; Mileto, Achille; Nelson, Rendon C; Roy Choudhury, Kingshuk; Samei, Ehsan

    2016-04-01

    To determine if radiation dose and reconstruction algorithm affect the computer-based extraction and analysis of quantitative imaging features in lung nodules, liver lesions, and renal stones at multi-detector row computed tomography (CT). Retrospective analysis of data from a prospective, multicenter, HIPAA-compliant, institutional review board-approved clinical trial was performed by extracting 23 quantitative imaging features (size, shape, attenuation, edge sharpness, pixel value distribution, and texture) of lesions on multi-detector row CT images of 20 adult patients (14 men, six women; mean age, 63 years; range, 38-72 years) referred for known or suspected focal liver lesions, lung nodules, or kidney stones. Data were acquired between September 2011 and April 2012. All multi-detector row CT scans were performed at two different radiation dose levels; images were reconstructed with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction (MBIR) algorithms. A linear mixed-effects model was used to assess the effect of radiation dose and reconstruction algorithm on extracted features. Among the 23 imaging features assessed, radiation dose had a significant effect on five, three, and four of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Adaptive statistical iterative reconstruction had a significant effect on three, one, and one of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). MBIR reconstruction had a significant effect on nine, 11, and 15 of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Of note, the measured size of lung nodules and renal stones with MBIR was significantly different than those for the other two algorithms (P < .002 for all comparisons). Although lesion texture was significantly affected by the reconstruction algorithm used (average of 3.33 features affected by MBIR throughout lesion types; P < .002, for all comparisons), no significant effect of the radiation dose setting was observed for all but one of the texture features (P = .002-.998). Radiation dose settings and reconstruction algorithms affect the extraction and analysis of quantitative imaging features in lesions at multi-detector row CT.

  12. FPGA Implementation of Generalized Hebbian Algorithm for Texture Classification

    PubMed Central

    Lin, Shiow-Jyu; Hwang, Wen-Jyi; Lee, Wei-Hao

    2012-01-01

    This paper presents a novel hardware architecture for principal component analysis. The architecture is based on the Generalized Hebbian Algorithm (GHA) because of its simplicity and effectiveness. The architecture is separated into three portions: the weight vector updating unit, the principal computation unit and the memory unit. In the weight vector updating unit, the computation of different synaptic weight vectors shares the same circuit for reducing the area costs. To show the effectiveness of the circuit, a texture classification system based on the proposed architecture is physically implemented by Field Programmable Gate Array (FPGA). It is embedded in a System-On-Programmable-Chip (SOPC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient design for attaining both high speed performance and low area costs. PMID:22778640

  13. Segmentation of anatomical branching structures based on texture features and conditional random field

    NASA Astrophysics Data System (ADS)

    Nuzhnaya, Tatyana; Bakic, Predrag; Kontos, Despina; Megalooikonomou, Vasileios; Ling, Haibin

    2012-02-01

    This work is a part of our ongoing study aimed at understanding a relation between the topology of anatomical branching structures with the underlying image texture. Morphological variability of the breast ductal network is associated with subsequent development of abnormalities in patients with nipple discharge such as papilloma, breast cancer and atypia. In this work, we investigate complex dependence among ductal components to perform segmentation, the first step for analyzing topology of ductal lobes. Our automated framework is based on incorporating a conditional random field with texture descriptors of skewness, coarseness, contrast, energy and fractal dimension. These features are selected to capture the architectural variability of the enhanced ducts by encoding spatial variations between pixel patches in galactographic image. The segmentation algorithm was applied to a dataset of 20 x-ray galactograms obtained at the Hospital of the University of Pennsylvania. We compared the performance of the proposed approach with fully and semi automated segmentation algorithms based on neural network classification, fuzzy-connectedness, vesselness filter and graph cuts. Global consistency error and confusion matrix analysis were used as accuracy measurements. For the proposed approach, the true positive rate was higher and the false negative rate was significantly lower compared to other fully automated methods. This indicates that segmentation based on CRF incorporated with texture descriptors has potential to efficiently support the analysis of complex topology of the ducts and aid in development of realistic breast anatomy phantoms.

  14. Detection and inpainting of facial wrinkles using texture orientation fields and Markov random field modeling.

    PubMed

    Batool, Nazre; Chellappa, Rama

    2014-09-01

    Facial retouching is widely used in media and entertainment industry. Professional software usually require a minimum level of user expertise to achieve the desirable results. In this paper, we present an algorithm to detect facial wrinkles/imperfection. We believe that any such algorithm would be amenable to facial retouching applications. The detection of wrinkles/imperfections can allow these skin features to be processed differently than the surrounding skin without much user interaction. For detection, Gabor filter responses along with texture orientation field are used as image features. A bimodal Gaussian mixture model (GMM) represents distributions of Gabor features of normal skin versus skin imperfections. Then, a Markov random field model is used to incorporate the spatial relationships among neighboring pixels for their GMM distributions and texture orientations. An expectation-maximization algorithm then classifies skin versus skin wrinkles/imperfections. Once detected automatically, wrinkles/imperfections are removed completely instead of being blended or blurred. We propose an exemplar-based constrained texture synthesis algorithm to inpaint irregularly shaped gaps left by the removal of detected wrinkles/imperfections. We present results conducted on images downloaded from the Internet to show the efficacy of our algorithms.

  15. Automatic T1 bladder tumor detection by using wavelet analysis in cystoscopy images

    NASA Astrophysics Data System (ADS)

    Freitas, Nuno R.; Vieira, Pedro M.; Lima, Estevão; Lima, Carlos S.

    2018-02-01

    Correct classification of cystoscopy images depends on the interpreter’s experience. Bladder cancer is a common lesion that can only be confirmed by biopsying the tissue, therefore, the automatic identification of tumors plays a significant role in early stage diagnosis and its accuracy. To our best knowledge, the use of white light cystoscopy images for bladder tumor diagnosis has not been reported so far. In this paper, a texture analysis based approach is proposed for bladder tumor diagnosis presuming that tumors change in tissue texture. As is well accepted by the scientific community, texture information is more present in the medium to high frequency range which can be selected by using a discrete wavelet transform (DWT). Tumor enhancement can be improved by using automatic segmentation, since a mixing with normal tissue is avoided under ideal conditions. The segmentation module proposed in this paper takes advantage of the wavelet decomposition tree to discard poor texture information in such a way that both steps of the proposed algorithm segmentation and classification share the same focus on texture. Multilayer perceptron and a support vector machine with a stratified ten-fold cross-validation procedure were used for classification purposes by using the hue-saturation-value (HSV), red-green-blue, and CIELab color spaces. Performances of 91% in sensitivity and 92.9% in specificity were obtained regarding HSV color by using both preprocessing and classification steps based on the DWT. The proposed method can achieve good performance on identifying bladder tumor frames. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis.

  16. Parameter optimization of parenchymal texture analysis for prediction of false-positive recalls from screening mammography

    NASA Astrophysics Data System (ADS)

    Ray, Shonket; Keller, Brad M.; Chen, Jinbo; Conant, Emily F.; Kontos, Despina

    2016-03-01

    This work details a methodology to obtain optimal parameter values for a locally-adaptive texture analysis algorithm that extracts mammographic texture features representative of breast parenchymal complexity for predicting falsepositive (FP) recalls from breast cancer screening with digital mammography. The algorithm has two components: (1) adaptive selection of localized regions of interest (ROIs) and (2) Haralick texture feature extraction via Gray- Level Co-Occurrence Matrices (GLCM). The following parameters were systematically varied: mammographic views used, upper limit of the ROI window size used for adaptive ROI selection, GLCM distance offsets, and gray levels (binning) used for feature extraction. Each iteration per parameter set had logistic regression with stepwise feature selection performed on a clinical screening cohort of 474 non-recalled women and 68 FP recalled women; FP recall prediction was evaluated using area under the curve (AUC) of the receiver operating characteristic (ROC) and associations between the extracted features and FP recall were assessed via odds ratios (OR). A default instance of mediolateral (MLO) view, upper ROI size limit of 143.36 mm (2048 pixels2), GLCM distance offset combination range of 0.07 to 0.84 mm (1 to 12 pixels) and 16 GLCM gray levels was set. The highest ROC performance value of AUC=0.77 [95% confidence intervals: 0.71-0.83] was obtained at three specific instances: the default instance, upper ROI window equal to 17.92 mm (256 pixels2), and gray levels set to 128. The texture feature of sum average was chosen as a statistically significant (p<0.05) predictor and associated with higher odds of FP recall for 12 out of 14 total instances.

  17. Space Object Classification Using Fused Features of Time Series Data

    NASA Astrophysics Data System (ADS)

    Jia, B.; Pham, K. D.; Blasch, E.; Shen, D.; Wang, Z.; Chen, G.

    In this paper, a fused feature vector consisting of raw time series and texture feature information is proposed for space object classification. The time series data includes historical orbit trajectories and asteroid light curves. The texture feature is derived from recurrence plots using Gabor filters for both unsupervised learning and supervised learning algorithms. The simulation results show that the classification algorithms using the fused feature vector achieve better performance than those using raw time series or texture features only.

  18. ATR applications of minimax entropy models of texture and shape

    NASA Astrophysics Data System (ADS)

    Zhu, Song-Chun; Yuille, Alan L.; Lanterman, Aaron D.

    2001-10-01

    Concepts from information theory have recently found favor in both the mainstream computer vision community and the military automatic target recognition community. In the computer vision literature, the principles of minimax entropy learning theory have been used to generate rich probabilitistic models of texture and shape. In addition, the method of types and large deviation theory has permitted the difficulty of various texture and shape recognition tasks to be characterized by 'order parameters' that determine how fundamentally vexing a task is, independent of the particular algorithm used. These information-theoretic techniques have been demonstrated using traditional visual imagery in applications such as simulating cheetah skin textures and such as finding roads in aerial imagery. We discuss their application to problems in the specific application domain of automatic target recognition using infrared imagery. We also review recent theoretical and algorithmic developments which permit learning minimax entropy texture models for infrared textures in reasonable timeframes.

  19. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map

    PubMed Central

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-01-01

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate. PMID:26378543

  20. Textural defect detect using a revised ant colony clustering algorithm

    NASA Astrophysics Data System (ADS)

    Zou, Chao; Xiao, Li; Wang, Bingwen

    2007-11-01

    We propose a totally novel method based on a revised ant colony clustering algorithm (ACCA) to explore the topic of textural defect detection. In this algorithm, our efforts are mainly made on the definition of local irregularity measurement and the implementation of the revised ACCA. The local irregular measurement defined evaluates the local textural inconsistency of each pixel against their mini-environment. In our revised ACCA, the behaviors of each ant are divided into two steps: release pheromone and act. The quantity of pheromone released is proportional to the irregularity measurement; the actions of the ants to act next are chosen independently of each other in a stochastic way according to some evaluated heuristic knowledge. The independency of ants implies the inherent parallel computation architecture of this algorithm. We apply the proposed method in some typical textural images with defects. From the series of pheromone distribution map (PDM), it can be clearly seen that the pheromone distribution approaches the textual defects gradually. By some post-processing, the final distribution of pheromone can demonstrate the shape and area of the defects well.

  1. Reliable Classification of Geologic Surfaces Using Texture Analysis

    NASA Astrophysics Data System (ADS)

    Foil, G.; Howarth, D.; Abbey, W. J.; Bekker, D. L.; Castano, R.; Thompson, D. R.; Wagstaff, K.

    2012-12-01

    Communication delays and bandwidth constraints are major obstacles for remote exploration spacecraft. Due to such restrictions, spacecraft could make use of onboard science data analysis to maximize scientific gain, through capabilities such as the generation of bandwidth-efficient representative maps of scenes, autonomous instrument targeting to exploit targets of opportunity between communications, and downlink prioritization to ensure fast delivery of tactically-important data. Of particular importance to remote exploration is the precision of such methods and their ability to reliably reproduce consistent results in novel environments. Spacecraft resources are highly oversubscribed, so any onboard data analysis must provide a high degree of confidence in its assessment. The TextureCam project is constructing a "smart camera" that can analyze surface images to autonomously identify scientifically interesting targets and direct narrow field-of-view instruments. The TextureCam instrument incorporates onboard scene interpretation and mapping to assist these autonomous science activities. Computer vision algorithms map scenes such as those encountered during rover traverses. The approach, based on a machine learning strategy, trains a statistical model to recognize different geologic surface types and then classifies every pixel in a new scene according to these categories. We describe three methods for increasing the precision of the TextureCam instrument. The first uses ancillary data to segment challenging scenes into smaller regions having homogeneous properties. These subproblems are individually easier to solve, preventing uncertainty in one region from contaminating those that can be confidently classified. The second involves a Bayesian approach that maximizes the likelihood of correct classifications by abstaining from ambiguous ones. We evaluate these two techniques on a set of images acquired during field expeditions in the Mojave Desert. Finally, the algorithm was expanded to perform robust texture classification across a wide range of lighting conditions. We characterize both the increase in precision achieved using different input data representations as well as the range of conditions under which reliable performance can be achieved. An ensemble learning approach is used to increase performance by leveraging the illumination-dependent statistics of an image. Our results show that the three algorithmic modifications lead to a significant increase in classification performance as well as an increase in precision using an adjustable and human-understandable metric of confidence.

  2. AgRISTARS. Supporting research: Algorithms for scene modelling

    NASA Technical Reports Server (NTRS)

    Rassbach, M. E. (Principal Investigator)

    1982-01-01

    The requirements for a comprehensive analysis of LANDSAT or other visual data scenes are defined. The development of a general model of a scene and a computer algorithm for finding the particular model for a given scene is discussed. The modelling system includes a boundary analysis subsystem, which detects all the boundaries and lines in the image and builds a boundary graph; a continuous variation analysis subsystem, which finds gradual variations not well approximated by a boundary structure; and a miscellaneous features analysis, which includes texture, line parallelism, etc. The noise reduction capabilities of this method and its use in image rectification and registration are discussed.

  3. A comparative analysis of image features between weave embroidered Thangka and piles embroidered Thangka

    NASA Astrophysics Data System (ADS)

    Li, Zhenjiang; Wang, Weilan

    2018-04-01

    Thangka is a treasure of Tibetan culture. In its digital protection, most of the current research focuses on the content of Thangka images, not the fabrication process. For silk embroidered Thangka of "Guo Tang", there are two craft methods, namely, weave embroidered and piles embroidered. The local texture of weave embroidered Thangka is rough, and that of piles embroidered Thangka is more smooth. In order to distinguish these two kinds of fabrication processes from images, a effectively segmentation algorithm of color blocks is designed firstly, and the obtained color blocks contain the local texture patterns of Thangka image; Secondly, the local texture features of the color block are extracted and screened; Finally, the selected features are analyzed experimentally. The experimental analysis shows that the proposed features can well reflect the difference between methods of weave embroidered and piles embroidered.

  4. Caracterisation des occupations du sol en milieu urbain par imagerie radar

    NASA Astrophysics Data System (ADS)

    Codjia, Claude

    This study aims to test the relevance of medium and high-resolution SAR images on the characterization of the types of land use in urban areas. To this end, we have relied on textural approaches based on second-order statistics. Specifically, we look for texture parameters most relevant for discriminating urban objects. We have used in this regard Radarsat-1 in fine polarization mode and Radarsat-2 HH fine mode in dual and quad polarization and ultrafine mode HH polarization. The land uses sought were dense building, medium density building, low density building, industrial and institutional buildings, low density vegetation, dense vegetation and water. We have identified nine texture parameters for analysis, grouped into families according to their mathematical definitions in a first step. The parameters of similarity / dissimilarity include Homogeneity, Contrast, the Differential Inverse Moment and Dissimilarity. The parameters of disorder are Entropy and the Second Angular Momentum. The Standard Deviation and Correlation are the dispersion parameters and the Average is a separate family. It is clear from experience that certain combinations of texture parameters from different family used in classifications yield good results while others produce kappa of very little interest. Furthermore, we realize that if the use of several texture parameters improves classifications, its performance ceils from three parameters. The calculation of correlations between the textures and their principal axes confirm the results. Despite the good performance of this approach based on the complementarity of texture parameters, systematic errors due to the cardinal effects remain on classifications. To overcome this problem, a radiometric compensation model was developed based on the radar cross section (SER). A radar simulation from the digital surface model of the environment allowed us to extract the building backscatter zones and to analyze the related backscatter. Thus, we were able to devise a strategy of compensation of cardinal effects solely based on the responses of the objects according to their orientation from the plane of illumination through the radar's beam. It appeared that a compensation algorithm based on the radar cross section was appropriate. Some examples of the application of this algorithm on HH polarized RADARSAT-2 images are presented as well. Application of this algorithm will allow considerable gains with regard to certain forms of automation (classification and segmentation) at the level of radar imagery thus generating a higher level of quality in regard to visual interpretation. Application of this algorithm on RADARSAT-1 and RADARSAT-2 images with HH, HV, VH, and VV polarisations helped make considerable gains and eliminate most of the classification errors due to the cardinal effects.

  5. Mammographic parenchymal texture as an imaging marker of hormonal activity: a comparative study between pre- and post-menopausal women

    NASA Astrophysics Data System (ADS)

    Daye, Dania; Bobo, Ezra; Baumann, Bethany; Ioannou, Antonios; Conant, Emily F.; Maidment, Andrew D. A.; Kontos, Despina

    2011-03-01

    Mammographic parenchymal texture patterns have been shown to be related to breast cancer risk. Yet, little is known about the biological basis underlying this association. Here, we investigate the potential of mammographic parenchymal texture patterns as an inherent phenotypic imaging marker of endogenous hormonal exposure of the breast tissue. Digital mammographic (DM) images in the cranio-caudal (CC) view of the unaffected breast from 138 women diagnosed with unilateral breast cancer were retrospectively analyzed. Menopause status was used as a surrogate marker of endogenous hormonal activity. Retroareolar 2.5cm2 ROIs were segmented from the post-processed DM images using an automated algorithm. Parenchymal texture features of skewness, coarseness, contrast, energy, homogeneity, grey-level spatial correlation, and fractal dimension were computed. Receiver operating characteristic (ROC) curve analysis was performed to evaluate feature classification performance in distinguishing between 72 pre- and 66 post-menopausal women. Logistic regression was performed to assess the independent effect of each texture feature in predicting menopause status. ROC analysis showed that texture features have inherent capacity to distinguish between pre- and post-menopausal statuses (AUC>0.5, p<0.05). Logistic regression including all texture features yielded an ROC curve with an AUC of 0.76. Addition of age at menarche, ethnicity, contraception use and hormonal replacement therapy (HRT) use lead to a modest model improvement (AUC=0.78) while texture features maintained significant contribution (p<0.05). The observed differences in parenchymal texture features between pre- and post- menopausal women suggest that mammographic texture can potentially serve as a surrogate imaging marker of endogenous hormonal activity.

  6. Cloud field classification based on textural features

    NASA Technical Reports Server (NTRS)

    Sengupta, Sailes Kumar

    1989-01-01

    An essential component in global climate research is accurate cloud cover and type determination. Of the two approaches to texture-based classification (statistical and textural), only the former is effective in the classification of natural scenes such as land, ocean, and atmosphere. In the statistical approach that was adopted, parameters characterizing the stochastic properties of the spatial distribution of grey levels in an image are estimated and then used as features for cloud classification. Two types of textural measures were used. One is based on the distribution of the grey level difference vector (GLDV), and the other on a set of textural features derived from the MaxMin cooccurrence matrix (MMCM). The GLDV method looks at the difference D of grey levels at pixels separated by a horizontal distance d and computes several statistics based on this distribution. These are then used as features in subsequent classification. The MaxMin tectural features on the other hand are based on the MMCM, a matrix whose (I,J)th entry give the relative frequency of occurrences of the grey level pair (I,J) that are consecutive and thresholded local extremes separated by a given pixel distance d. Textural measures are then computed based on this matrix in much the same manner as is done in texture computation using the grey level cooccurrence matrix. The database consists of 37 cloud field scenes from LANDSAT imagery using a near IR visible channel. The classification algorithm used is the well known Stepwise Discriminant Analysis. The overall accuracy was estimated by the percentage or correct classifications in each case. It turns out that both types of classifiers, at their best combination of features, and at any given spatial resolution give approximately the same classification accuracy. A neural network based classifier with a feed forward architecture and a back propagation training algorithm is used to increase the classification accuracy, using these two classes of features. Preliminary results based on the GLDV textural features alone look promising.

  7. Land use classification using texture information in ERTS-A MSS imagery

    NASA Technical Reports Server (NTRS)

    Haralick, R. M. (Principal Investigator); Shanmugam, K. S.; Bosley, R.

    1973-01-01

    The author has identified the following significant results. Preliminary digital analysis of ERTS-1 MSS imagery reveals that the textural features of the imagery are very useful for land use classification. A procedure for extracting the textural features of ERTS-1 imagery is presented and the results of a land use classification scheme based on the textural features are also presented. The land use classification algorithm using textural features was tested on a 5100 square mile area covered by part of an ERTS-1 MSS band 5 image over the California coastline. The image covering this area was blocked into 648 subimages of size 8.9 square miles each. Based on a color composite of the image set, a total of 7 land use categories were identified. These land use categories are: coastal forest, woodlands, annual grasslands, urban areas, large irrigated fields, small irrigated fields, and water. The automatic classifier was trained to identify the land use categories using only the textural characteristics of the subimages; 75 percent of the subimages were assigned correct identifications. Since texture and spectral features provide completely different kinds of information, a significant increase in identification accuracy will take place when both features are used together.

  8. Time-Frequency Feature Representation Using Multi-Resolution Texture Analysis and Acoustic Activity Detector for Real-Life Speech Emotion Recognition

    PubMed Central

    Wang, Kun-Ching

    2015-01-01

    The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI). In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII). The MRTII feature set is derived from multi-resolution texture analysis for characterization and classification of different emotions in a speech signal. The motivation is that we have to consider emotions have different intensity values in different frequency bands. In terms of human visual perceptual, the texture property on multi-resolution of emotional speech spectrogram should be a good feature set for emotion classification in speech. Furthermore, the multi-resolution analysis on texture can give a clearer discrimination between each emotion than uniform-resolution analysis on texture. In order to provide high accuracy of emotional discrimination especially in real-life, an acoustic activity detection (AAD) algorithm must be applied into the MRTII-based feature extraction. Considering the presence of many blended emotions in real life, in this paper make use of two corpora of naturally-occurring dialogs recorded in real-life call centers. Compared with the traditional Mel-scale Frequency Cepstral Coefficients (MFCC) and the state-of-the-art features, the MRTII features also can improve the correct classification rates of proposed systems among different language databases. Experimental results show that the proposed MRTII-based feature information inspired by human visual perception of the spectrogram image can provide significant classification for real-life emotional recognition in speech. PMID:25594590

  9. Automated labelling of cancer textures in colorectal histopathology slides using quasi-supervised learning.

    PubMed

    Onder, Devrim; Sarioglu, Sulen; Karacali, Bilge

    2013-04-01

    Quasi-supervised learning is a statistical learning algorithm that contrasts two datasets by computing estimate for the posterior probability of each sample in either dataset. This method has not been applied to histopathological images before. The purpose of this study is to evaluate the performance of the method to identify colorectal tissues with or without adenocarcinoma. Light microscopic digital images from histopathological sections were obtained from 30 colorectal radical surgery materials including adenocarcinoma and non-neoplastic regions. The texture features were extracted by using local histograms and co-occurrence matrices. The quasi-supervised learning algorithm operates on two datasets, one containing samples of normal tissues labelled only indirectly, and the other containing an unlabeled collection of samples of both normal and cancer tissues. As such, the algorithm eliminates the need for manually labelled samples of normal and cancer tissues for conventional supervised learning and significantly reduces the expert intervention. Several texture feature vector datasets corresponding to different extraction parameters were tested within the proposed framework. The Independent Component Analysis dimensionality reduction approach was also identified as the one improving the labelling performance evaluated in this series. In this series, the proposed method was applied to the dataset of 22,080 vectors with reduced dimensionality 119 from 132. Regions containing cancer tissue could be identified accurately having false and true positive rates up to 19% and 88% respectively without using manually labelled ground-truth datasets in a quasi-supervised strategy. The resulting labelling performances were compared to that of a conventional powerful supervised classifier using manually labelled ground-truth data. The supervised classifier results were calculated as 3.5% and 95% for the same case. The results in this series in comparison with the benchmark classifier, suggest that quasi-supervised image texture labelling may be a useful method in the analysis and classification of pathological slides but further study is required to improve the results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Texture analysis applied to second harmonic generation image data for ovarian cancer classification

    NASA Astrophysics Data System (ADS)

    Wen, Bruce L.; Brewer, Molly A.; Nadiarnykh, Oleg; Hocker, James; Singh, Vikas; Mackie, Thomas R.; Campagnola, Paul J.

    2014-09-01

    Remodeling of the extracellular matrix has been implicated in ovarian cancer. To quantitate the remodeling, we implement a form of texture analysis to delineate the collagen fibrillar morphology observed in second harmonic generation microscopy images of human normal and high grade malignant ovarian tissues. In the learning stage, a dictionary of "textons"-frequently occurring texture features that are identified by measuring the image response to a filter bank of various shapes, sizes, and orientations-is created. By calculating a representative model based on the texton distribution for each tissue type using a training set of respective second harmonic generation images, we then perform classification between images of normal and high grade malignant ovarian tissues. By optimizing the number of textons and nearest neighbors, we achieved classification accuracy up to 97% based on the area under receiver operating characteristic curves (true positives versus false positives). The local analysis algorithm is a more general method to probe rapidly changing fibrillar morphologies than global analyses such as FFT. It is also more versatile than other texture approaches as the filter bank can be highly tailored to specific applications (e.g., different disease states) by creating customized libraries based on common image features.

  11. 3D texture analysis for classification of second harmonic generation images of human ovarian cancer

    NASA Astrophysics Data System (ADS)

    Wen, Bruce; Campbell, Kirby R.; Tilbury, Karissa; Nadiarnykh, Oleg; Brewer, Molly A.; Patankar, Manish; Singh, Vikas; Eliceiri, Kevin. W.; Campagnola, Paul J.

    2016-10-01

    Remodeling of the collagen architecture in the extracellular matrix (ECM) has been implicated in ovarian cancer. To quantify these alterations we implemented a form of 3D texture analysis to delineate the fibrillar morphology observed in 3D Second Harmonic Generation (SHG) microscopy image data of normal (1) and high risk (2) ovarian stroma, benign ovarian tumors (3), low grade (4) and high grade (5) serous tumors, and endometrioid tumors (6). We developed a tailored set of 3D filters which extract textural features in the 3D image sets to build (or learn) statistical models of each tissue class. By applying k-nearest neighbor classification using these learned models, we achieved 83-91% accuracies for the six classes. The 3D method outperformed the analogous 2D classification on the same tissues, where we suggest this is due the increased information content. This classification based on ECM structural changes will complement conventional classification based on genetic profiles and can serve as an additional biomarker. Moreover, the texture analysis algorithm is quite general, as it does not rely on single morphological metrics such as fiber alignment, length, and width but their combined convolution with a customizable basis set.

  12. Cellular automata rule characterization and classification using texture descriptors

    NASA Astrophysics Data System (ADS)

    Machicao, Jeaneth; Ribas, Lucas C.; Scabini, Leonardo F. S.; Bruno, Odermir M.

    2018-05-01

    The cellular automata (CA) spatio-temporal patterns have attracted the attention from many researchers since it can provide emergent behavior resulting from the dynamics of each individual cell. In this manuscript, we propose an approach of texture image analysis to characterize and classify CA rules. The proposed method converts the CA spatio-temporal patterns into a gray-scale image. The gray-scale is obtained by creating a binary number based on the 8-connected neighborhood of each dot of the CA spatio-temporal pattern. We demonstrate that this technique enhances the CA rule characterization and allow to use different texture image analysis algorithms. Thus, various texture descriptors were evaluated in a supervised training approach aiming to characterize the CA's global evolution. Our results show the efficiency of the proposed method for the classification of the elementary CA (ECAs), reaching a maximum of 99.57% of accuracy rate according to the Li-Packard scheme (6 classes) and 94.36% for the classification of the 88 rules scheme. Moreover, within the image analysis context, we found a better performance of the method by means of a transformation of the binary states to a gray-scale.

  13. Monitoring of bone regeneration process by means of texture analysis

    NASA Astrophysics Data System (ADS)

    Kokkinou, E.; Boniatis, I.; Costaridou, L.; Saridis, A.; Panagiotopoulos, E.; Panayiotakis, G.

    2009-09-01

    An image analysis method is proposed for the monitoring of the regeneration of the tibial bone. For this purpose, 130 digitized radiographs of 13 patients, who had undergone tibial lengthening by the Ilizarov method, were studied. For each patient, 10 radiographs, taken at an equal number of postoperative successive time moments, were available. Employing available software, 3 Regions Of Interest (ROIs), corresponding to the: (a) upper, (b) central, and (c) lower aspect of the gap, where bone regeneration was expected to occur, were determined on each radiograph. Employing custom developed algorithms: (i) a number of textural features were generated from each of the ROIs, and (ii) a texture-feature based regression model was designed for the quantitative monitoring of the bone regeneration process. Statistically significant differences (p < 0.05) were derived for the initial and the final textural features values, generated from the first and the last postoperatively obtained radiographs, respectively. A quadratic polynomial regression equation fitted data adequately (r2 = 0.9, p < 0.001). The suggested method may contribute to the monitoring of the tibial bone regeneration process.

  14. Design and implementation of three-dimension texture mapping algorithm for panoramic system based on smart platform

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Zhou, Baotong; Zhang, Changnian

    2017-03-01

    Vehicle-mounted panoramic system is important safety assistant equipment for driving. However, traditional systems only render fixed top-down perspective view of limited view field, which may have potential safety hazard. In this paper, a texture mapping algorithm for 3D vehicle-mounted panoramic system is introduced, and an implementation of the algorithm utilizing OpenGL ES library based on Android smart platform is presented. Initial experiment results show that the proposed algorithm can render a good 3D panorama, and has the ability to change view point freely.

  15. Soil texture classification algorithm using RGB characteristics of soil images

    USDA-ARS?s Scientific Manuscript database

    Soil texture has an important influence on agriculture, affecting crop selection, movement of nutrients and water, soil electrical conductivity, and crop growth. Soil texture has traditionally been determined in the laboratory using pipette and hydrometer methods that require a considerable amount o...

  16. Analysis of hyperspectral scattering images using locally linear embedding algorithm for apple mealiness classification

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral scattering technique provides a means for assessing the structural and/or physical properties of apples. It could thus be useful for detection of apple mealiness, which is a symptom of physiological disorder, resulting in an undesirable texture and taste for apples and degrading their ...

  17. Detection of sub-kilometer craters in high resolution planetary images using shape and texture features

    NASA Astrophysics Data System (ADS)

    Bandeira, Lourenço; Ding, Wei; Stepinski, Tomasz F.

    2012-01-01

    Counting craters is a paramount tool of planetary analysis because it provides relative dating of planetary surfaces. Dating surfaces with high spatial resolution requires counting a very large number of small, sub-kilometer size craters. Exhaustive manual surveys of such craters over extensive regions are impractical, sparking interest in designing crater detection algorithms (CDAs). As a part of our effort to design a CDA, which is robust and practical for planetary research analysis, we propose a crater detection approach that utilizes both shape and texture features to identify efficiently sub-kilometer craters in high resolution panchromatic images. First, a mathematical morphology-based shape analysis is used to identify regions in an image that may contain craters; only those regions - crater candidates - are the subject of further processing. Second, image texture features in combination with the boosting ensemble supervised learning algorithm are used to accurately classify previously identified candidates into craters and non-craters. The design of the proposed CDA is described and its performance is evaluated using a high resolution image of Mars for which sub-kilometer craters have been manually identified. The overall detection rate of the proposed CDA is 81%, the branching factor is 0.14, and the overall quality factor is 72%. This performance is a significant improvement over the previous CDA based exclusively on the shape features. The combination of performance level and computational efficiency offered by this CDA makes it attractive for practical application.

  18. Exemplar-Based Image Inpainting Using a Modified Priority Definition.

    PubMed

    Deng, Liang-Jian; Huang, Ting-Zhu; Zhao, Xi-Le

    2015-01-01

    Exemplar-based algorithms are a popular technique for image inpainting. They mainly have two important phases: deciding the filling-in order and selecting good exemplars. Traditional exemplar-based algorithms are to search suitable patches from source regions to fill in the missing parts, but they have to face a problem: improper selection of exemplars. To improve the problem, we introduce an independent strategy through investigating the process of patches propagation in this paper. We first define a new separated priority definition to propagate geometry and then synthesize image textures, aiming to well recover image geometry and textures. In addition, an automatic algorithm is designed to estimate steps for the new separated priority definition. Comparing with some competitive approaches, the new priority definition can recover image geometry and textures well.

  19. Exemplar-Based Image Inpainting Using a Modified Priority Definition

    PubMed Central

    Deng, Liang-Jian; Huang, Ting-Zhu; Zhao, Xi-Le

    2015-01-01

    Exemplar-based algorithms are a popular technique for image inpainting. They mainly have two important phases: deciding the filling-in order and selecting good exemplars. Traditional exemplar-based algorithms are to search suitable patches from source regions to fill in the missing parts, but they have to face a problem: improper selection of exemplars. To improve the problem, we introduce an independent strategy through investigating the process of patches propagation in this paper. We first define a new separated priority definition to propagate geometry and then synthesize image textures, aiming to well recover image geometry and textures. In addition, an automatic algorithm is designed to estimate steps for the new separated priority definition. Comparing with some competitive approaches, the new priority definition can recover image geometry and textures well. PMID:26492491

  20. Game theory-based visual tracking approach focusing on color and texture features.

    PubMed

    Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Chen, Chuanhua; Wang, Xin

    2017-07-20

    It is difficult for a single-feature tracking algorithm to achieve strong robustness under a complex environment. To solve this problem, we proposed a multifeature fusion tracking algorithm that is based on game theory. By focusing on color and texture features as two gamers, this algorithm accomplishes tracking by using a mean shift iterative formula to search for the Nash equilibrium of the game. The contribution of different features is always keeping the state of optical balance, so that the algorithm can fully take advantage of feature fusion. According to the experiment results, this algorithm proves to possess good performance, especially under the condition of scene variation, target occlusion, and similar interference.

  1. The Influence of Texture Symmetry in Marker Pointing:. Experimenting with Humans and Algorithms

    NASA Astrophysics Data System (ADS)

    Cardaci, M.; Tabacchi, M. E.

    2012-12-01

    Symmetry plays a fundamental role in aiding the visual system, to organize its environmental stimuli and to detect visual patterns of natural and artificial objects. Various kinds of symmetry exist, and we will discuss how internal symmetry due to textures influences the choice of direction in visual tasks. Two experiments are presented: the first, with human subjects, deals with the effect of textures on preferences for a pointing direction. The second emulates the performances obtained in the first through the use of an algorithm based on a physic metaphor. Results from both experiments are shown and comment.

  2. MRI-Based Texture Analysis to Differentiate Sinonasal Squamous Cell Carcinoma from Inverted Papilloma.

    PubMed

    Ramkumar, S; Ranjbar, S; Ning, S; Lal, D; Zwart, C M; Wood, C P; Weindling, S M; Wu, T; Mitchell, J R; Li, J; Hoxworth, J M

    2017-05-01

    Because sinonasal inverted papilloma can harbor squamous cell carcinoma, differentiating these tumors is relevant. The objectives of this study were to determine whether MR imaging-based texture analysis can accurately classify cases of noncoexistent squamous cell carcinoma and inverted papilloma and to compare this classification performance with neuroradiologists' review. Adult patients who had inverted papilloma or squamous cell carcinoma resected were eligible (coexistent inverted papilloma and squamous cell carcinoma were excluded). Inclusion required tumor size of >1.5 cm and preoperative MR imaging with axial T1, axial T2, and axial T1 postcontrast sequences. Five well-established texture analysis algorithms were applied to an ROI from the largest tumor cross-section. For a training dataset, machine-learning algorithms were used to identify the most accurate model, and performance was also evaluated in a validation dataset. On the basis of 3 separate blinded reviews of the ROI, isolated tumor, and entire images, 2 neuroradiologists predicted tumor type in consensus. The inverted papilloma ( n = 24) and squamous cell carcinoma ( n = 22) cohorts were matched for age and sex, while squamous cell carcinoma tumor volume was larger ( P = .001). The best classification model achieved similar accuracies for training (17 squamous cell carcinomas, 16 inverted papillomas) and validation (7 squamous cell carcinomas, 6 inverted papillomas) datasets of 90.9% and 84.6%, respectively ( P = .537). For the combined training and validation cohorts, the machine-learning accuracy (89.1%) was better than that of the neuroradiologists' ROI review (56.5%, P = .0004) but not significantly different from the neuroradiologists' review of the tumors (73.9%, P = .060) or entire images (87.0%, P = .748). MR imaging-based texture analysis has the potential to differentiate squamous cell carcinoma from inverted papilloma and may, in the future, provide incremental information to the neuroradiologist. © 2017 by American Journal of Neuroradiology.

  3. Texture feature extraction based on wavelet transform and gray-level co-occurrence matrices applied to osteosarcoma diagnosis.

    PubMed

    Hu, Shan; Xu, Chao; Guan, Weiqiao; Tang, Yong; Liu, Yana

    2014-01-01

    Osteosarcoma is the most common malignant bone tumor among children and adolescents. In this study, image texture analysis was made to extract texture features from bone CR images to evaluate the recognition rate of osteosarcoma. To obtain the optimal set of features, Sym4 and Db4 wavelet transforms and gray-level co-occurrence matrices were applied to the image, with statistical methods being used to maximize the feature selection. To evaluate the performance of these methods, a support vector machine algorithm was used. The experimental results demonstrated that the Sym4 wavelet had a higher classification accuracy (93.44%) than the Db4 wavelet with respect to osteosarcoma occurrence in the epiphysis, whereas the Db4 wavelet had a higher classification accuracy (96.25%) for osteosarcoma occurrence in the diaphysis. Results including accuracy, sensitivity, specificity and ROC curves obtained using the wavelets were all higher than those obtained using the features derived from the GLCM method. It is concluded that, a set of texture features can be extracted from the wavelets and used in computer-aided osteosarcoma diagnosis systems. In addition, this study also confirms that multi-resolution analysis is a useful tool for texture feature extraction during bone CR image processing.

  4. Robust automatic line scratch detection in films.

    PubMed

    Newson, Alasdair; Almansa, Andrés; Gousseau, Yann; Pérez, Patrick

    2014-03-01

    Line scratch detection in old films is a particularly challenging problem due to the variable spatiotemporal characteristics of this defect. Some of the main problems include sensitivity to noise and texture, and false detections due to thin vertical structures belonging to the scene. We propose a robust and automatic algorithm for frame-by-frame line scratch detection in old films, as well as a temporal algorithm for the filtering of false detections. In the frame-by-frame algorithm, we relax some of the hypotheses used in previous algorithms in order to detect a wider variety of scratches. This step's robustness and lack of external parameters is ensured by the combined use of an a contrario methodology and local statistical estimation. In this manner, over-detection in textured or cluttered areas is greatly reduced. The temporal filtering algorithm eliminates false detections due to thin vertical structures by exploiting the coherence of their motion with that of the underlying scene. Experiments demonstrate the ability of the resulting detection procedure to deal with difficult situations, in particular in the presence of noise, texture, and slanted or partial scratches. Comparisons show significant advantages over previous work.

  5. Local spatial frequency analysis for computer vision

    NASA Technical Reports Server (NTRS)

    Krumm, John; Shafer, Steven A.

    1990-01-01

    A sense of vision is a prerequisite for a robot to function in an unstructured environment. However, real-world scenes contain many interacting phenomena that lead to complex images which are difficult to interpret automatically. Typical computer vision research proceeds by analyzing various effects in isolation (e.g., shading, texture, stereo, defocus), usually on images devoid of realistic complicating factors. This leads to specialized algorithms which fail on real-world images. Part of this failure is due to the dichotomy of useful representations for these phenomena. Some effects are best described in the spatial domain, while others are more naturally expressed in frequency. In order to resolve this dichotomy, we present the combined space/frequency representation which, for each point in an image, shows the spatial frequencies at that point. Within this common representation, we develop a set of simple, natural theories describing phenomena such as texture, shape, aliasing and lens parameters. We show these theories lead to algorithms for shape from texture and for dealiasing image data. The space/frequency representation should be a key aid in untangling the complex interaction of phenomena in images, allowing automatic understanding of real-world scenes.

  6. Identification of important image features for pork and turkey ham classification using colour and wavelet texture features and genetic selection.

    PubMed

    Jackman, Patrick; Sun, Da-Wen; Allen, Paul; Valous, Nektarios A; Mendoza, Fernando; Ward, Paddy

    2010-04-01

    A method to discriminate between various grades of pork and turkey ham was developed using colour and wavelet texture features. Image analysis methods originally developed for predicting the palatability of beef were applied to rapidly identify the ham grade. With high quality digital images of 50-94 slices per ham it was possible to identify the greyscale that best expressed the differences between the various ham grades. The best 10 discriminating image features were then found with a genetic algorithm. Using the best 10 image features, simple linear discriminant analysis models produced 100% correct classifications for both pork and turkey on both calibration and validation sets. 2009 Elsevier Ltd. All rights reserved.

  7. A semiautomatic segmentation method for prostate in CT images using local texture classification and statistical shape modeling.

    PubMed

    Shahedi, Maysam; Halicek, Martin; Guo, Rongrong; Zhang, Guoyi; Schuster, David M; Fei, Baowei

    2018-06-01

    Prostate segmentation in computed tomography (CT) images is useful for treatment planning and procedure guidance such as external beam radiotherapy and brachytherapy. However, because of the low, soft tissue contrast of CT images, manual segmentation of the prostate is a time-consuming task with high interobserver variation. In this study, we proposed a semiautomated, three-dimensional (3D) segmentation for prostate CT images using shape and texture analysis and we evaluated the method against manual reference segmentations. The prostate gland usually has a globular shape with a smoothly curved surface, and its shape could be accurately modeled or reconstructed having a limited number of well-distributed surface points. In a training dataset, using the prostate gland centroid point as the origin of a coordination system, we defined an intersubject correspondence between the prostate surface points based on the spherical coordinates. We applied this correspondence to generate a point distribution model for prostate shape using principal component analysis and to study the local texture difference between prostate and nonprostate tissue close to the different prostate surface subregions. We used the learned shape and texture characteristics of the prostate in CT images and then combined them with user inputs to segment a new image. We trained our segmentation algorithm using 23 CT images and tested the algorithm on two sets of 10 nonbrachytherapy and 37 postlow dose rate brachytherapy CT images. We used a set of error metrics to evaluate the segmentation results using two experts' manual reference segmentations. For both nonbrachytherapy and post-brachytherapy image sets, the average measured Dice similarity coefficient (DSC) was 88% and the average mean absolute distance (MAD) was 1.9 mm. The average measured differences between the two experts on both datasets were 92% (DSC) and 1.1 mm (MAD). The proposed, semiautomatic segmentation algorithm showed a fast, robust, and accurate performance for 3D prostate segmentation of CT images, specifically when no previous, intrapatient information, that is, previously segmented images, was available. The accuracy of the algorithm is comparable to the best performance results reported in the literature and approaches the interexpert variability observed in manual segmentation. © 2018 American Association of Physicists in Medicine.

  8. Parametric classification of handvein patterns based on texture features

    NASA Astrophysics Data System (ADS)

    Al Mahafzah, Harbi; Imran, Mohammad; Supreetha Gowda H., D.

    2018-04-01

    In this paper, we have developed Biometric recognition system adopting hand based modality Handvein,which has the unique pattern for each individual and it is impossible to counterfeit and fabricate as it is an internal feature. We have opted in choosing feature extraction algorithms such as LBP-visual descriptor, LPQ-blur insensitive texture operator, Log-Gabor-Texture descriptor. We have chosen well known classifiers such as KNN and SVM for classification. We have experimented and tabulated results of single algorithm recognition rate for Handvein under different distance measures and kernel options. The feature level fusion is carried out which increased the performance level.

  9. Poor textural image tie point matching via graph theory

    NASA Astrophysics Data System (ADS)

    Yuan, Xiuxiao; Chen, Shiyu; Yuan, Wei; Cai, Yang

    2017-07-01

    Feature matching aims to find corresponding points to serve as tie points between images. Robust matching is still a challenging task when input images are characterized by low contrast or contain repetitive patterns, occlusions, or homogeneous textures. In this paper, a novel feature matching algorithm based on graph theory is proposed. This algorithm integrates both geometric and radiometric constraints into an edge-weighted (EW) affinity tensor. Tie points are then obtained by high-order graph matching. Four pairs of poor textural images covering forests, deserts, bare lands, and urban areas are tested. For comparison, three state-of-the-art matching techniques, namely, scale-invariant feature transform (SIFT), speeded up robust features (SURF), and features from accelerated segment test (FAST), are also used. The experimental results show that the matching recall obtained by SIFT, SURF, and FAST varies from 0 to 35% in different types of poor textures. However, through the integration of both geometry and radiometry and the EW strategy, the recall obtained by the proposed algorithm is better than 50% in all four image pairs. The better matching recall improves the number of correct matches, dispersion, and positional accuracy.

  10. Exploring the Potential of High Resolution Remote Sensing Data for Mapping Vegetation and the Age Groups of Oil Palm Plantation

    NASA Astrophysics Data System (ADS)

    Kamiran, N.; Sarker, M. L. R.

    2014-02-01

    The land use/land cover transformation in Malaysia is enormous due to palm oil plantation which has provided huge economical benefits but also created a huge concern for carbon emission and biodiversity. Accurate information about oil palm plantation and the age of plantation is important for a sustainable production, estimation of carbon storage capacity, biodiversity and the climate model. However, the problem is that this information cannot be extracted easily due to the spectral signature for forest and age group of palm oil plantations is similar. Therefore, a noble approach "multi-scale and multi-texture algorithms" was used for mapping vegetation and different age groups of palm oil plantation using a high resolution panchromatic image (WorldView-1) considering the fact that pan imagery has a potential for more detailed and accurate mapping with an effective image processing technique. Seven texture algorithms of second-order Grey Level Co-occurrence Matrix (GLCM) with different scales (from 3×3 to 39×39) were used for texture generation. All texture parameters were classified step by step using a robust classifier "Artificial Neural Network (ANN)". Results indicate that single spectral band was unable to provide good result (overall accuracy = 34.92%), while higher overall classification accuracies (73.48%, 84.76% and 93.18%) were obtained when textural information from multi-scale and multi-texture approach were used in the classification algorithm.

  11. Watermarking textures in video games

    NASA Astrophysics Data System (ADS)

    Liu, Huajian; Berchtold, Waldemar; Schäfer, Marcel; Lieb, Patrick; Steinebach, Martin

    2014-02-01

    Digital watermarking is a promising solution to video game piracy. In this paper, based on the analysis of special challenges and requirements in terms of watermarking textures in video games, a novel watermarking scheme for DDS textures in video games is proposed. To meet the performance requirements in video game applications, the proposed algorithm embeds the watermark message directly in the compressed stream in DDS files and can be straightforwardly applied in watermark container technique for real-time embedding. Furthermore, the embedding approach achieves high watermark payload to handle collusion secure fingerprinting codes with extreme length. Hence, the scheme is resistant to collusion attacks, which is indispensable in video game applications. The proposed scheme is evaluated in aspects of transparency, robustness, security and performance. Especially, in addition to classical objective evaluation, the visual quality and playing experience of watermarked games is assessed subjectively in game playing.

  12. Developing an Automated Machine Learning Marine Oil Spill Detection System with Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Pinales, J. C.; Graber, H. C.; Hargrove, J. T.; Caruso, M. J.

    2016-02-01

    Previous studies have demonstrated the ability to detect and classify marine hydrocarbon films with spaceborne synthetic aperture radar (SAR) imagery. The dampening effects of hydrocarbon discharges on small surface capillary-gravity waves renders the ocean surface "radar dark" compared with the standard wind-borne ocean surfaces. Given the scope and impact of events like the Deepwater Horizon oil spill, the need for improved, automated and expedient monitoring of hydrocarbon-related marine anomalies has become a pressing and complex issue for governments and the extraction industry. The research presented here describes the development, training, and utilization of an algorithm that detects marine oil spills in an automated, semi-supervised manner, utilizing X-, C-, or L-band SAR data as the primary input. Ancillary datasets include related radar-borne variables (incidence angle, etc.), environmental data (wind speed, etc.) and textural descriptors. Shapefiles produced by an experienced human-analyst served as targets (validation) during the training portion of the investigation. Training and testing datasets were chosen for development and assessment of algorithm effectiveness as well as optimal conditions for oil detection in SAR data. The algorithm detects oil spills by following a 3-step methodology: object detection, feature extraction, and classification. Previous oil spill detection and classification methodologies such as machine learning algorithms, artificial neural networks (ANN), and multivariate classification methods like partial least squares-discriminant analysis (PLS-DA) are evaluated and compared. Statistical, transform, and model-based image texture techniques, commonly used for object mapping directly or as inputs for more complex methodologies, are explored to determine optimal textures for an oil spill detection system. The influence of the ancillary variables is explored, with a particular focus on the role of strong vs. weak wind forcing.

  13. A comparative study of new and current methods for dental micro-CT image denoising

    PubMed Central

    Lashgari, Mojtaba; Qin, Jie; Swain, Michael

    2016-01-01

    Objectives: The aim of the current study was to evaluate the application of two advanced noise-reduction algorithms for dental micro-CT images and to implement a comparative analysis of the performance of new and current denoising algorithms. Methods: Denoising was performed using gaussian and median filters as the current filtering approaches and the block-matching and three-dimensional (BM3D) method and total variation method as the proposed new filtering techniques. The performance of the denoising methods was evaluated quantitatively using contrast-to-noise ratio (CNR), edge preserving index (EPI) and blurring indexes, as well as qualitatively using the double-stimulus continuous quality scale procedure. Results: The BM3D method had the best performance with regard to preservation of fine textural features (CNREdge), non-blurring of the whole image (blurring index), the clinical visual score in images with very fine features and the overall visual score for all types of images. On the other hand, the total variation method provided the best results with regard to smoothing of images in texture-free areas (CNRTex-free) and in preserving the edges and borders of image features (EPI). Conclusions: The BM3D method is the most reliable technique for denoising dental micro-CT images with very fine textural details, such as shallow enamel lesions, in which the preservation of the texture and fine features is of the greatest importance. On the other hand, the total variation method is the technique of choice for denoising images without very fine textural details in which the clinician or researcher is interested mainly in anatomical features and structural measurements. PMID:26764583

  14. Interactive evolution of camouflage.

    PubMed

    Reynolds, Craig

    2011-01-01

    This article presents an abstract computation model of the evolution of camouflage in nature. The 2D model uses evolved textures for prey, a background texture representing the environment, and a visual predator. A human observer, acting as the predator, is shown a cohort of 10 evolved textures overlaid on the background texture. The observer clicks on the five most conspicuous prey to remove ("eat") them. These lower-fitness textures are removed from the population and replaced with newly bred textures. Biological morphogenesis is represented in this model by procedural texture synthesis. Nested expressions of generators and operators form a texture description language. Natural evolution is represented by genetic programming (GP), a variant of the genetic algorithm. GP searches the space of texture description programs for those that appear least conspicuous to the predator.

  15. Edge directed image interpolation with Bamberger pyramids

    NASA Astrophysics Data System (ADS)

    Rosiles, Jose Gerardo

    2005-08-01

    Image interpolation is a standard feature in digital image editing software, digital camera systems and printers. Classical methods for resizing produce blurred images with unacceptable quality. Bamberger Pyramids and filter banks have been successfully used for texture and image analysis. They provide excellent multiresolution and directional selectivity. In this paper we present an edge-directed image interpolation algorithm which takes advantage of the simultaneous spatial-directional edge localization at the subband level. The proposed algorithm outperform classical schemes like bilinear and bicubic schemes from the visual and numerical point of views.

  16. Very fast road database verification using textured 3D city models obtained from airborne imagery

    NASA Astrophysics Data System (ADS)

    Bulatov, Dimitri; Ziems, Marcel; Rottensteiner, Franz; Pohl, Melanie

    2014-10-01

    Road databases are known to be an important part of any geodata infrastructure, e.g. as the basis for urban planning or emergency services. Updating road databases for crisis events must be performed quickly and with the highest possible degree of automation. We present a semi-automatic algorithm for road verification using textured 3D city models, starting from aerial or even UAV-images. This algorithm contains two processes, which exchange input and output, but basically run independently from each other. These processes are textured urban terrain reconstruction and road verification. The first process contains a dense photogrammetric reconstruction of 3D geometry of the scene using depth maps. The second process is our core procedure, since it contains various methods for road verification. Each method represents a unique road model and a specific strategy, and thus is able to deal with a specific type of roads. Each method is designed to provide two probability distributions, where the first describes the state of a road object (correct, incorrect), and the second describes the state of its underlying road model (applicable, not applicable). Based on the Dempster-Shafer Theory, both distributions are mapped to a single distribution that refers to three states: correct, incorrect, and unknown. With respect to the interaction of both processes, the normalized elevation map and the digital orthophoto generated during 3D reconstruction are the necessary input - together with initial road database entries - for the road verification process. If the entries of the database are too obsolete or not available at all, sensor data evaluation enables classification of the road pixels of the elevation map followed by road map extraction by means of vectorization and filtering of the geometrically and topologically inconsistent objects. Depending on the time issue and availability of a geo-database for buildings, the urban terrain reconstruction procedure has semantic models of buildings, trees, and ground as output. Building s and ground are textured by means of available images. This facilitates the orientation in the model and the interactive verification of the road objects that where initially classified as unknown. The three main modules of the texturing algorithm are: Pose estimation (if the videos are not geo-referenced), occlusion analysis, and texture synthesis.

  17. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Justin, E-mail: justin.solomon@duke.edu; Samei, Ehsan

    2014-09-15

    Purpose: Quantum noise properties of CT images are generally assessed using simple geometric phantoms with uniform backgrounds. Such phantoms may be inadequate when assessing nonlinear reconstruction or postprocessing algorithms. The purpose of this study was to design anatomically informed textured phantoms and use the phantoms to assess quantum noise properties across two clinically available reconstruction algorithms, filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE). Methods: Two phantoms were designed to represent lung and soft-tissue textures. The lung phantom included intricate vessel-like structures along with embedded nodules (spherical, lobulated, and spiculated). The soft tissue phantom was designed based onmore » a three-dimensional clustered lumpy background with included low-contrast lesions (spherical and anthropomorphic). The phantoms were built using rapid prototyping (3D printing) technology and, along with a uniform phantom of similar size, were imaged on a Siemens SOMATOM Definition Flash CT scanner and reconstructed with FBP and SAFIRE. Fifty repeated acquisitions were acquired for each background type and noise was assessed by estimating pixel-value statistics, such as standard deviation (i.e., noise magnitude), autocorrelation, and noise power spectrum. Noise stationarity was also assessed by examining the spatial distribution of noise magnitude. The noise properties were compared across background types and between the two reconstruction algorithms. Results: In FBP and SAFIRE images, noise was globally nonstationary for all phantoms. In FBP images of all phantoms, and in SAFIRE images of the uniform phantom, noise appeared to be locally stationary (within a reasonably small region of interest). Noise was locally nonstationary in SAFIRE images of the textured phantoms with edge pixels showing higher noise magnitude compared to pixels in more homogenous regions. For pixels in uniform regions, noise magnitude was reduced by an average of 60% in SAFIRE images compared to FBP. However, for edge pixels, noise magnitude ranged from 20% higher to 40% lower in SAFIRE images compared to FBP. SAFIRE images of the lung phantom exhibited distinct regions with varying noise texture (i.e., noise autocorrelation/power spectra). Conclusions: Quantum noise properties observed in uniform phantoms may not be representative of those in actual patients for nonlinear reconstruction algorithms. Anatomical texture should be considered when evaluating the performance of CT systems that use such nonlinear algorithms.« less

  18. A research of selected textural features for detection of asbestos-cement roofing sheets using orthoimages

    NASA Astrophysics Data System (ADS)

    Książek, Judyta

    2015-10-01

    At present, there has been a great interest in the development of texture based image classification methods in many different areas. This study presents the results of research carried out to assess the usefulness of selected textural features for detection of asbestos-cement roofs in orthophotomap classification. Two different orthophotomaps of southern Poland (with ground resolution: 5 cm and 25 cm) were used. On both orthoimages representative samples for two classes: asbestos-cement roofing sheets and other roofing materials were selected. Estimation of texture analysis usefulness was conducted using machine learning methods based on decision trees (C5.0 algorithm). For this purpose, various sets of texture parameters were calculated in MaZda software. During the calculation of decision trees different numbers of texture parameters groups were considered. In order to obtain the best settings for decision trees models cross-validation was performed. Decision trees models with the lowest mean classification error were selected. The accuracy of the classification was held based on validation data sets, which were not used for the classification learning. For 5 cm ground resolution samples, the lowest mean classification error was 15.6%. The lowest mean classification error in the case of 25 cm ground resolution was 20.0%. The obtained results confirm potential usefulness of the texture parameter image processing for detection of asbestos-cement roofing sheets. In order to improve the accuracy another extended study should be considered in which additional textural features as well as spectral characteristics should be analyzed.

  19. Textured Image Segmentation

    DTIC Science & Technology

    1980-01-01

    descriminated by frequency domain features. It has been shown (201 that Fourier features provide useful information for aerial classification and for...Package for the Social. Sciences (SPSS). These descriminant algorithms are documented in Appendix C. Source textures are known, so that cluster

  20. Construction of Extended 3D Field of Views of the Internal Bladder Wall Surface: A Proof of Concept

    NASA Astrophysics Data System (ADS)

    Ben-Hamadou, Achraf; Daul, Christian; Soussen, Charles

    2016-09-01

    3D extended field of views (FOVs) of the internal bladder wall facilitate lesion diagnosis, patient follow-up and treatment traceability. In this paper, we propose a 3D image mosaicing algorithm guided by 2D cystoscopic video-image registration for obtaining textured FOV mosaics. In this feasibility study, the registration makes use of data from a 3D cystoscope prototype providing, in addition to each small FOV image, some 3D points located on the surface. This proof of concept shows that textured surfaces can be constructed with minimally modified cystoscopes. The potential of the method is demonstrated on numerical and real phantoms reproducing various surface shapes. Pig and human bladder textures are superimposed on phantoms with known shape and dimensions. These data allow for quantitative assessment of the 3D mosaicing algorithm based on the registration of images simulating bladder textures.

  1. Bayesian exploration for intelligent identification of textures.

    PubMed

    Fishel, Jeremy A; Loeb, Gerald E

    2012-01-01

    In order to endow robots with human-like abilities to characterize and identify objects, they must be provided with tactile sensors and intelligent algorithms to select, control, and interpret data from useful exploratory movements. Humans make informed decisions on the sequence of exploratory movements that would yield the most information for the task, depending on what the object may be and prior knowledge of what to expect from possible exploratory movements. This study is focused on texture discrimination, a subset of a much larger group of exploratory movements and percepts that humans use to discriminate, characterize, and identify objects. Using a testbed equipped with a biologically inspired tactile sensor (the BioTac), we produced sliding movements similar to those that humans make when exploring textures. Measurement of tactile vibrations and reaction forces when exploring textures were used to extract measures of textural properties inspired from psychophysical literature (traction, roughness, and fineness). Different combinations of normal force and velocity were identified to be useful for each of these three properties. A total of 117 textures were explored with these three movements to create a database of prior experience to use for identifying these same textures in future encounters. When exploring a texture, the discrimination algorithm adaptively selects the optimal movement to make and property to measure based on previous experience to differentiate the texture from a set of plausible candidates, a process we call Bayesian exploration. Performance of 99.6% in correctly discriminating pairs of similar textures was found to exceed human capabilities. Absolute classification from the entire set of 117 textures generally required a small number of well-chosen exploratory movements (median = 5) and yielded a 95.4% success rate. The method of Bayesian exploration developed and tested in this paper may generalize well to other cognitive problems.

  2. Bayesian Exploration for Intelligent Identification of Textures

    PubMed Central

    Fishel, Jeremy A.; Loeb, Gerald E.

    2012-01-01

    In order to endow robots with human-like abilities to characterize and identify objects, they must be provided with tactile sensors and intelligent algorithms to select, control, and interpret data from useful exploratory movements. Humans make informed decisions on the sequence of exploratory movements that would yield the most information for the task, depending on what the object may be and prior knowledge of what to expect from possible exploratory movements. This study is focused on texture discrimination, a subset of a much larger group of exploratory movements and percepts that humans use to discriminate, characterize, and identify objects. Using a testbed equipped with a biologically inspired tactile sensor (the BioTac), we produced sliding movements similar to those that humans make when exploring textures. Measurement of tactile vibrations and reaction forces when exploring textures were used to extract measures of textural properties inspired from psychophysical literature (traction, roughness, and fineness). Different combinations of normal force and velocity were identified to be useful for each of these three properties. A total of 117 textures were explored with these three movements to create a database of prior experience to use for identifying these same textures in future encounters. When exploring a texture, the discrimination algorithm adaptively selects the optimal movement to make and property to measure based on previous experience to differentiate the texture from a set of plausible candidates, a process we call Bayesian exploration. Performance of 99.6% in correctly discriminating pairs of similar textures was found to exceed human capabilities. Absolute classification from the entire set of 117 textures generally required a small number of well-chosen exploratory movements (median = 5) and yielded a 95.4% success rate. The method of Bayesian exploration developed and tested in this paper may generalize well to other cognitive problems. PMID:22783186

  3. Detection of pavement cracks using tiled fuzzy Hough transform

    NASA Astrophysics Data System (ADS)

    Mathavan, Senthan; Vaheesan, Kanapathippillai; Kumar, Akash; Chandrakumar, Chanjief; Kamal, Khurram; Rahman, Mujib; Stonecliffe-Jones, Martyn

    2017-09-01

    Surface cracks can be the bellwether of the failure of a road. Hence, crack detection is indispensable for the condition monitoring and quality control of road surfaces. Pavement images have high levels of intensity variation and texture content; hence, the crack detection is generally difficult. Moreover, shallow cracks are very low contrast, making their detection difficult. Therefore, studies on pavement crack detection are active even after years of research. The fuzzy Hough transform is employed, for the first time, to detect cracks from pavement images. A careful consideration is given to the fact that cracks consist of near straight segments embedded in a surface of considerable texture. In this regard, the fuzzy part of the algorithm tackles the segments that are not perfectly straight. Moreover, tiled detection helps reduce the contribution of texture and noise pixels to the accumulator array. The proposed algorithm is compared against a state-of-the-art algorithm for a number of crack datasets, demonstrating its strengths. Precision and recall values of more than 75% are obtained, on different image sets of varying textures and other effects, captured by industrial pavement imagers. The paper also recommends numerical values for parameters used in the proposed method.

  4. Local feature saliency classifier for real-time intrusion monitoring

    NASA Astrophysics Data System (ADS)

    Buch, Norbert; Velastin, Sergio A.

    2014-07-01

    We propose a texture saliency classifier to detect people in a video frame by identifying salient texture regions. The image is classified into foreground and background in real time. No temporal image information is used during the classification. The system is used for the task of detecting people entering a sterile zone, which is a common scenario for visual surveillance. Testing is performed on the Imagery Library for Intelligent Detection Systems sterile zone benchmark dataset of the United Kingdom's Home Office. The basic classifier is extended by fusing its output with simple motion information, which significantly outperforms standard motion tracking. A lower detection time can be achieved by combining texture classification with Kalman filtering. The fusion approach running at 10 fps gives the highest result of F1=0.92 for the 24-h test dataset. The paper concludes with a detailed analysis of the computation time required for the different parts of the algorithm.

  5. Missing texture reconstruction method based on error reduction algorithm using Fourier transform magnitude estimation scheme.

    PubMed

    Ogawa, Takahiro; Haseyama, Miki

    2013-03-01

    A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.

  6. Automatic small bowel tumor diagnosis by using multi-scale wavelet-based analysis in wireless capsule endoscopy images.

    PubMed

    Barbosa, Daniel C; Roupar, Dalila B; Ramos, Jaime C; Tavares, Adriano C; Lima, Carlos S

    2012-01-11

    Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.

  7. Extracting built-up areas from TerraSAR-X data using object-oriented classification method

    NASA Astrophysics Data System (ADS)

    Wang, SuYun; Sun, Z. C.

    2017-02-01

    Based on single-polarized TerraSAR-X, the approach generates homogeneous segments on an arbitrary number of scale levels by applying a region-growing algorithm which takes the intensity of backscatter and shape-related properties into account. The object-oriented procedure consists of three main steps: firstly, the analysis of the local speckle behavior in the SAR intensity data, leading to the generation of a texture image; secondly, a segmentation based on the intensity image; thirdly, the classification of each segment using the derived texture file and intensity information in order to identify and extract build-up areas. In our research, the distribution of BAs in Dongying City is derived from single-polarized TSX SM image (acquired on 17th June 2013) with average ground resolution of 3m using our proposed approach. By cross-validating the random selected validation points with geo-referenced field sites, Quick Bird high-resolution imagery, confusion matrices with statistical indicators are calculated and used for assessing the classification results. The results demonstrate that an overall accuracy 92.89 and a kappa coefficient of 0.85 could be achieved. We have shown that connect texture information with the analysis of the local speckle divergence, combining texture and intensity of construction extraction is feasible, efficient and rapid.

  8. Document image cleanup and binarization

    NASA Astrophysics Data System (ADS)

    Wu, Victor; Manmatha, Raghaven

    1998-04-01

    Image binarization is a difficult task for documents with text over textured or shaded backgrounds, poor contrast, and/or considerable noise. Current optical character recognition (OCR) and document analysis technology do not handle such documents well. We have developed a simple yet effective algorithm for document image clean-up and binarization. The algorithm consists of two basic steps. In the first step, the input image is smoothed using a low-pass filter. The smoothing operation enhances the text relative to any background texture. This is because background texture normally has higher frequency than text does. The smoothing operation also removes speckle noise. In the second step, the intensity histogram of the smoothed image is computed and a threshold automatically selected as follows. For black text, the first peak of the histogram corresponds to text. Thresholding the image at the value of the valley between the first and second peaks of the histogram binarizes the image well. In order to reliably identify the valley, the histogram is smoothed by a low-pass filter before the threshold is computed. The algorithm has been applied to some 50 images from a wide variety of source: digitized video frames, photos, newspapers, advertisements in magazines or sales flyers, personal checks, etc. There are 21820 characters and 4406 words in these images. 91 percent of the characters and 86 percent of the words are successfully cleaned up and binarized. A commercial OCR was applied to the binarized text when it consisted of fonts which were OCR recognizable. The recognition rate was 84 percent for the characters and 77 percent for the words.

  9. Segmentation and classification of brain images using firefly and hybrid kernel-based support vector machine

    NASA Astrophysics Data System (ADS)

    Selva Bhuvaneswari, K.; Geetha, P.

    2017-05-01

    Magnetic resonance imaging segmentation refers to a process of assigning labels to set of pixels or multiple regions. It plays a major role in the field of biomedical applications as it is widely used by the radiologists to segment the medical images input into meaningful regions. In recent years, various brain tumour detection techniques are presented in the literature. The entire segmentation process of our proposed work comprises three phases: threshold generation with dynamic modified region growing phase, texture feature generation phase and region merging phase. by dynamically changing two thresholds in the modified region growing approach, the first phase of the given input image can be performed as dynamic modified region growing process, in which the optimisation algorithm, firefly algorithm help to optimise the two thresholds in modified region growing. After obtaining the region growth segmented image using modified region growing, the edges can be detected with edge detection algorithm. In the second phase, the texture feature can be extracted using entropy-based operation from the input image. In region merging phase, the results obtained from the texture feature-generation phase are combined with the results of dynamic modified region growing phase and similar regions are merged using a distance comparison between regions. After identifying the abnormal tissues, the classification can be done by hybrid kernel-based SVM (Support Vector Machine). The performance analysis of the proposed method will be carried by K-cross fold validation method. The proposed method will be implemented in MATLAB with various images.

  10. Modeling of skin cancer dermatoscopy images

    NASA Astrophysics Data System (ADS)

    Iralieva, Malica B.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Zakharov, Valery P.

    2018-04-01

    An early identified cancer is more likely to effective respond to treatment and has a less expensive treatment as well. Dermatoscopy is one of general diagnostic techniques for skin cancer early detection that allows us in vivo evaluation of colors and microstructures on skin lesions. Digital phantoms with known properties are required during new instrument developing to compare sample's features with data from the instrument. An algorithm for image modeling of skin cancer is proposed in the paper. Steps of the algorithm include setting shape, texture generation, adding texture and normal skin background setting. The Gaussian represents the shape, and then the texture generation based on a fractal noise algorithm is responsible for spatial chromophores distributions, while the colormap applied to the values corresponds to spectral properties. Finally, a normal skin image simulated by mixed Monte Carlo method using a special online tool is added as a background. Varying of Asymmetry, Borders, Colors and Diameter settings is shown to be fully matched to the ABCD clinical recognition algorithm. The asymmetry is specified by setting different standard deviation values of Gaussian in different parts of image. The noise amplitude is increased to set the irregular borders score. Standard deviation is changed to determine size of the lesion. Colors are set by colormap changing. The algorithm for simulating different structural elements is required to match with others recognition algorithms.

  11. Brain tissue analysis using texture features based on optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Lenz, Marcel; Krug, Robin; Dillmann, Christopher; Gerhardt, Nils C.; Welp, Hubert; Schmieder, Kirsten; Hofmann, Martin R.

    2018-02-01

    Brain tissue differentiation is highly demanded in neurosurgeries, i.e. tumor resection. Exact navigation during the surgery is essential in order to guarantee best life quality afterwards. So far, no suitable method has been found that perfectly covers this demands. With optical coherence tomography (OCT), fast three dimensional images can be obtained in vivo and contactless with a resolution of 1-15 μm. With these specifications OCT is a promising tool to support neurosurgeries. Here, we investigate ex vivo samples of meningioma, healthy white and healthy gray matter in a preliminary study towards in vivo brain tumor removal assistance. Raw OCT images already display structural variations for different tissue types, especially meningioma. But, in order to achieve neurosurgical guidance directly during resection, an automated differentiation approach is desired. For this reason, we employ different texture feature based algorithms, perform a Principal Component Analysis afterwards and then train a Support Vector Machine classifier. In the future we will try different combinations of texture features and perform in vivo measurements in order to validate our findings.

  12. BlobContours: adapting Blobworld for supervised color- and texture-based image segmentation

    NASA Astrophysics Data System (ADS)

    Vogel, Thomas; Nguyen, Dinh Quyen; Dittmann, Jana

    2006-01-01

    Extracting features is the first and one of the most crucial steps in recent image retrieval process. While the color features and the texture features of digital images can be extracted rather easily, the shape features and the layout features depend on reliable image segmentation. Unsupervised image segmentation, often used in image analysis, works on merely syntactical basis. That is, what an unsupervised segmentation algorithm can segment is only regions, but not objects. To obtain high-level objects, which is desirable in image retrieval, human assistance is needed. Supervised image segmentations schemes can improve the reliability of segmentation and segmentation refinement. In this paper we propose a novel interactive image segmentation technique that combines the reliability of a human expert with the precision of automated image segmentation. The iterative procedure can be considered a variation on the Blobworld algorithm introduced by Carson et al. from EECS Department, University of California, Berkeley. Starting with an initial segmentation as provided by the Blobworld framework, our algorithm, namely BlobContours, gradually updates it by recalculating every blob, based on the original features and the updated number of Gaussians. Since the original algorithm has hardly been designed for interactive processing we had to consider additional requirements for realizing a supervised segmentation scheme on the basis of Blobworld. Increasing transparency of the algorithm by applying usercontrolled iterative segmentation, providing different types of visualization for displaying the segmented image and decreasing computational time of segmentation are three major requirements which are discussed in detail.

  13. Stereo-Based Region-Growing using String Matching

    NASA Technical Reports Server (NTRS)

    Mandelbaum, Robert; Mintz, Max

    1995-01-01

    We present a novel stereo algorithm based on a coarse texture segmentation preprocessing phase. Matching is performed using a string comparison. Matching sub-strings correspond to matching sequences of textures. Inter-scanline clustering of matching sub-strings yields regions of matching texture. The shape of these regions yield information concerning object's height, width and azimuthal position relative to the camera pair. Hence, rather than the standard dense depth map, the output of this algorithm is a segmentation of objects in the scene. Such a format is useful for the integration of stereo with other sensor modalities on a mobile robotic platform. It is also useful for localization; the height and width of a detected object may be used for landmark recognition, while depth and relative azimuthal location determine pose. The algorithm does not rely on the monotonicity of order of image primitives. Occlusions, exposures, and foreshortening effects are not problematic. The algorithm can deal with certain types of transparencies. It is computationally efficient, and very amenable to parallel implementation. Further, the epipolar constraints may be relaxed to some small but significant degree. A version of the algorithm has been implemented and tested on various types of images. It performs best on random dot stereograms, on images with easily filtered backgrounds (as in synthetic images), and on real scenes with uncontrived backgrounds.

  14. Accelerating Time-Varying Hardware Volume Rendering Using TSP Trees and Color-Based Error Metrics

    NASA Technical Reports Server (NTRS)

    Ellsworth, David; Chiang, Ling-Jen; Shen, Han-Wei; Kwak, Dochan (Technical Monitor)

    2000-01-01

    This paper describes a new hardware volume rendering algorithm for time-varying data. The algorithm uses the Time-Space Partitioning (TSP) tree data structure to identify regions within the data that have spatial or temporal coherence. By using this coherence, the rendering algorithm can improve performance when the volume data is larger than the texture memory capacity by decreasing the amount of textures required. This coherence can also allow improved speed by appropriately rendering flat-shaded polygons instead of textured polygons, and by not rendering transparent regions. To reduce the polygonization overhead caused by the use of the hierarchical data structure, we introduce an optimization method using polygon templates. The paper also introduces new color-based error metrics, which more accurately identify coherent regions compared to the earlier scalar-based metrics. By showing experimental results from runs using different data sets and error metrics, we demonstrate that the new methods give substantial improvements in volume rendering performance.

  15. Automatic detection of blood versus non-blood regions on intravascular ultrasound (IVUS) images using wavelet packet signatures

    NASA Astrophysics Data System (ADS)

    Katouzian, Amin; Baseri, Babak; Konofagou, Elisa E.; Laine, Andrew F.

    2008-03-01

    Intravascular ultrasound (IVUS) has been proven a reliable imaging modality that is widely employed in cardiac interventional procedures. It can provide morphologic as well as pathologic information on the occluded plaques in the coronary arteries. In this paper, we present a new technique using wavelet packet analysis that differentiates between blood and non-blood regions on the IVUS images. We utilized the multi-channel texture segmentation algorithm based on the discrete wavelet packet frames (DWPF). A k-mean clustering algorithm was deployed to partition the extracted textural features into blood and non-blood in an unsupervised fashion. Finally, the geometric and statistical information of the segmented regions was used to estimate the closest set of pixels to the lumen border and a spline curve was fitted to the set. The presented algorithm may be helpful in delineating the lumen border automatically and more reliably prior to the process of plaque characterization, especially with 40 MHz transducers, where appearance of the red blood cells renders the border detection more challenging, even manually. Experimental results are shown and they are quantitatively compared with manually traced borders by an expert. It is concluded that our two dimensional (2-D) algorithm, which is independent of the cardiac and catheter motions performs well in both in-vivo and in-vitro cases.

  16. Design, fabrication, and implementation of voxel-based 3D printed textured phantoms for task-based image quality assessment in CT

    NASA Astrophysics Data System (ADS)

    Solomon, Justin; Ba, Alexandre; Diao, Andrew; Lo, Joseph; Bier, Elianna; Bochud, François; Gehm, Michael; Samei, Ehsan

    2016-03-01

    In x-ray computed tomography (CT), task-based image quality studies are typically performed using uniform background phantoms with low-contrast signals. Such studies may have limited clinical relevancy for modern non-linear CT systems due to possible influence of background texture on image quality. The purpose of this study was to design and implement anatomically informed textured phantoms for task-based assessment of low-contrast detection. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find the CLB parameters that were most reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, a cylinder phantom (165 mm in diameter and 30 mm height) was designed, containing 20 low-contrast spherical signals (6 mm in diameter at targeted contrast levels of ~3.2, 5.2, 7.2, 10, and 14 HU, 4 repeats per signal). The phantom was voxelized and input into a commercial multi-material 3D printer (Object Connex 350), with custom software for voxel-based printing. Using principles of digital half-toning and dithering, the 3D printer was programmed to distribute two base materials (VeroWhite and TangoPlus, nominal voxel size of 42x84x30 microns) to achieve the targeted spatial distribution of x-ray attenuation properties. The phantom was used for task-based image quality assessment of a clinically available iterative reconstruction algorithm (Sinogram Affirmed Iterative Reconstruction, SAFIRE) using a channelized Hotelling observer paradigm. Images of the textured phantom and a corresponding uniform phantom were acquired at six dose levels and observer model performance was estimated for each condition (5 contrasts x 6 doses x 2 reconstructions x 2 backgrounds = 120 total conditions). Based on the observer model results, the dose reduction potential of SAFIRE was computed and compared between the uniform and textured phantom. The dose reduction potential of SAFIRE was found to be 23% based on the uniform phantom and 17% based on the textured phantom. This discrepancy demonstrates the need to consider background texture when assessing non-linear reconstruction algorithms.

  17. Texture Mixing via Universal Simulation

    DTIC Science & Technology

    2005-08-01

    classes and universal simulation. Based on the well-known Lempel and Ziv (LZ) universal compression scheme, the universal type class of a one...length that produce the same tree (dictionary) under the Lempel - Ziv (LZ) incre- mental parsing defined in the well-known LZ78 universal compression ...the well known Lempel - Ziv parsing algorithm . The goal is not just to synthesize mixed textures, but to understand what texture is. We are currently

  18. Fast segmentation of industrial quality pavement images using Laws texture energy measures and k -means clustering

    NASA Astrophysics Data System (ADS)

    Mathavan, Senthan; Kumar, Akash; Kamal, Khurram; Nieminen, Michael; Shah, Hitesh; Rahman, Mujib

    2016-09-01

    Thousands of pavement images are collected by road authorities daily for condition monitoring surveys. These images typically have intensity variations and texture nonuniformities that make their segmentation challenging. The automated segmentation of such pavement images is crucial for accurate, thorough, and expedited health monitoring of roads. In the pavement monitoring area, well-known texture descriptors, such as gray-level co-occurrence matrices and local binary patterns, are often used for surface segmentation and identification. These, despite being the established methods for texture discrimination, are inherently slow. This work evaluates Laws texture energy measures as a viable alternative for pavement images for the first time. k-means clustering is used to partition the feature space, limiting the human subjectivity in the process. Data classification, hence image segmentation, is performed by the k-nearest neighbor method. Laws texture energy masks are shown to perform well with resulting accuracy and precision values of more than 80%. The implementations of the algorithm, in both MATLAB® and OpenCV/C++, are extensively compared against the state of the art for execution speed, clearly showing the advantages of the proposed method. Furthermore, the OpenCV-based segmentation shows a 100% increase in processing speed when compared to the fastest algorithm available in literature.

  19. A new computer aided diagnosis system for evaluation of chronic liver disease with ultrasound shear wave elastography imaging.

    PubMed

    Gatos, Ilias; Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Theotokas, Ioannis; Zoumpoulis, Pavlos; Loupas, Thanasis; Hazle, John D; Kagadis, George C

    2016-03-01

    Classify chronic liver disease (CLD) from ultrasound shear-wave elastography (SWE) imaging by means of a computer aided diagnosis (CAD) system. The proposed algorithm employs an inverse mapping technique (red-green-blue to stiffness) to quantify 85 SWE images (54 healthy and 31 with CLD). Texture analysis is then applied involving the automatic calculation of 330 first and second order textural features from every transformed stiffness value map to determine functional features that characterize liver elasticity and describe liver condition for all available stages. Consequently, a stepwise regression analysis feature selection procedure is utilized toward a reduced feature subset that is fed into the support vector machines (SVMs) classification algorithm in the design of the CAD system. With regard to the mapping procedure accuracy, the stiffness map values had an average difference of 0.01 ± 0.001 kPa compared to the quantification results derived from the color-box provided by the built-in software of the ultrasound system. Highest classification accuracy from the SVM model was 87.0% with sensitivity and specificity values of 83.3% and 89.1%, respectively. Receiver operating characteristic curves analysis gave an area under the curve value of 0.85 with [0.77-0.89] confidence interval. The proposed CAD system employing color to stiffness mapping and classification algorithms offered superior results, comparing the already published clinical studies. It could prove to be of value to physicians improving the diagnostic accuracy of CLD and can be employed as a second opinion tool for avoiding unnecessary invasive procedures.

  20. Graph run-length matrices for histopathological image segmentation.

    PubMed

    Tosun, Akif Burak; Gunduz-Demir, Cigdem

    2011-03-01

    The histopathological examination of tissue specimens is essential for cancer diagnosis and grading. However, this examination is subject to a considerable amount of observer variability as it mainly relies on visual interpretation of pathologists. To alleviate this problem, it is very important to develop computational quantitative tools, for which image segmentation constitutes the core step. In this paper, we introduce an effective and robust algorithm for the segmentation of histopathological tissue images. This algorithm incorporates the background knowledge of the tissue organization into segmentation. For this purpose, it quantifies spatial relations of cytological tissue components by constructing a graph and uses this graph to define new texture features for image segmentation. This new texture definition makes use of the idea of gray-level run-length matrices. However, it considers the runs of cytological components on a graph to form a matrix, instead of considering the runs of pixel intensities. Working with colon tissue images, our experiments demonstrate that the texture features extracted from "graph run-length matrices" lead to high segmentation accuracies, also providing a reasonable number of segmented regions. Compared with four other segmentation algorithms, the results show that the proposed algorithm is more effective in histopathological image segmentation.

  1. Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features.

    PubMed

    Szantoi, Zoltan; Escobedo, Francisco J; Abd-Elrahman, Amr; Pearlstine, Leonard; Dewitt, Bon; Smith, Scot

    2015-05-01

    Mapping of wetlands (marsh vs. swamp vs. upland) is a common remote sensing application.Yet, discriminating between similar freshwater communities such as graminoid/sedge fromremotely sensed imagery is more difficult. Most of this activity has been performed using medium to low resolution imagery. There are only a few studies using highspatial resolutionimagery and machine learning image classification algorithms for mapping heterogeneouswetland plantcommunities. This study addresses this void by analyzing whether machine learning classifierssuch as decisiontrees (DT) and artificial neural networks (ANN) can accurately classify graminoid/sedgecommunities usinghigh resolution aerial imagery and image texture data in the Everglades National Park, Florida.In addition tospectral bands, the normalized difference vegetation index, and first- and second-order texturefeatures derivedfrom the near-infrared band were analyzed. Classifier accuracies were assessed using confusiontablesand the calculated kappa coefficients of the resulting maps. The results indicated that an ANN(multilayerperceptron based on backpropagation) algorithm produced a statistically significantly higheraccuracy(82.04%) than the DT (QUEST) algorithm (80.48%) or the maximum likelihood (80.56%)classifier (α<0.05). Findings show that using multiple window sizes provided the best results. First-ordertexture featuresalso provided computational advantages and results that were not significantly different fromthose usingsecond-order texture features.

  2. Detection of neovascularization based on fractal and texture analysis with interaction effects in diabetic retinopathy.

    PubMed

    Lee, Jack; Zee, Benny Chung Ying; Li, Qing

    2013-01-01

    Diabetic retinopathy is a major cause of blindness. Proliferative diabetic retinopathy is a result of severe vascular complication and is visible as neovascularization of the retina. Automatic detection of such new vessels would be useful for the severity grading of diabetic retinopathy, and it is an important part of screening process to identify those who may require immediate treatment for their diabetic retinopathy. We proposed a novel new vessels detection method including statistical texture analysis (STA), high order spectrum analysis (HOS), fractal analysis (FA), and most importantly we have shown that by incorporating their associated interactions the accuracy of new vessels detection can be greatly improved. To assess its performance, the sensitivity, specificity and accuracy (AUC) are obtained. They are 96.3%, 99.1% and 98.5% (99.3%), respectively. It is found that the proposed method can improve the accuracy of new vessels detection significantly over previous methods. The algorithm can be automated and is valuable to detect relatively severe cases of diabetic retinopathy among diabetes patients.

  3. Predicting Future Morphological Changes of Lesions from Radiotracer Uptake in 18F-FDG-PET Images

    PubMed Central

    Bagci, Ulas; Yao, Jianhua; Miller-Jaster, Kirsten; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We introduce a novel computational framework to enable automated identification of texture and shape features of lesions on 18F-FDG-PET images through a graph-based image segmentation method. The proposed framework predicts future morphological changes of lesions with high accuracy. The presented methodology has several benefits over conventional qualitative and semi-quantitative methods, due to its fully quantitative nature and high accuracy in each step of (i) detection, (ii) segmentation, and (iii) feature extraction. To evaluate our proposed computational framework, thirty patients received 2 18F-FDG-PET scans (60 scans total), at two different time points. Metastatic papillary renal cell carcinoma, cerebellar hemongioblastoma, non-small cell lung cancer, neurofibroma, lymphomatoid granulomatosis, lung neoplasm, neuroendocrine tumor, soft tissue thoracic mass, nonnecrotizing granulomatous inflammation, renal cell carcinoma with papillary and cystic features, diffuse large B-cell lymphoma, metastatic alveolar soft part sarcoma, and small cell lung cancer were included in this analysis. The radiotracer accumulation in patients' scans was automatically detected and segmented by the proposed segmentation algorithm. Delineated regions were used to extract shape and textural features, with the proposed adaptive feature extraction framework, as well as standardized uptake values (SUV) of uptake regions, to conduct a broad quantitative analysis. Evaluation of segmentation results indicates that our proposed segmentation algorithm has a mean dice similarity coefficient of 85.75±1.75%. We found that 28 of 68 extracted imaging features were correlated well with SUVmax (p<0.05), and some of the textural features (such as entropy and maximum probability) were superior in predicting morphological changes of radiotracer uptake regions longitudinally, compared to single intensity feature such as SUVmax. We also found that integrating textural features with SUV measurements significantly improves the prediction accuracy of morphological changes (Spearman correlation coefficient = 0.8715, p<2e-16). PMID:23431398

  4. Detection of Coronal Mass Ejections Using Multiple Features and Space-Time Continuity

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Yin, Jian-qin; Lin, Jia-ben; Feng, Zhi-quan; Zhou, Jin

    2017-07-01

    Coronal Mass Ejections (CMEs) release tremendous amounts of energy in the solar system, which has an impact on satellites, power facilities and wireless transmission. To effectively detect a CME in Large Angle Spectrometric Coronagraph (LASCO) C2 images, we propose a novel algorithm to locate the suspected CME regions, using the Extreme Learning Machine (ELM) method and taking into account the features of the grayscale and the texture. Furthermore, space-time continuity is used in the detection algorithm to exclude the false CME regions. The algorithm includes three steps: i) define the feature vector which contains textural and grayscale features of a running difference image; ii) design the detection algorithm based on the ELM method according to the feature vector; iii) improve the detection accuracy rate by using the decision rule of the space-time continuum. Experimental results show the efficiency and the superiority of the proposed algorithm in the detection of CMEs compared with other traditional methods. In addition, our algorithm is insensitive to most noise.

  5. Automatic brain MR image denoising based on texture feature-based artificial neural networks.

    PubMed

    Chang, Yu-Ning; Chang, Herng-Hua

    2015-01-01

    Noise is one of the main sources of quality deterioration not only for visual inspection but also in computerized processing in brain magnetic resonance (MR) image analysis such as tissue classification, segmentation and registration. Accordingly, noise removal in brain MR images is important for a wide variety of subsequent processing applications. However, most existing denoising algorithms require laborious tuning of parameters that are often sensitive to specific image features and textures. Automation of these parameters through artificial intelligence techniques will be highly beneficial. In the present study, an artificial neural network associated with image texture feature analysis is proposed to establish a predictable parameter model and automate the denoising procedure. In the proposed approach, a total of 83 image attributes were extracted based on four categories: 1) Basic image statistics. 2) Gray-level co-occurrence matrix (GLCM). 3) Gray-level run-length matrix (GLRLM) and 4) Tamura texture features. To obtain the ranking of discrimination in these texture features, a paired-samples t-test was applied to each individual image feature computed in every image. Subsequently, the sequential forward selection (SFS) method was used to select the best texture features according to the ranking of discrimination. The selected optimal features were further incorporated into a back propagation neural network to establish a predictable parameter model. A wide variety of MR images with various scenarios were adopted to evaluate the performance of the proposed framework. Experimental results indicated that this new automation system accurately predicted the bilateral filtering parameters and effectively removed the noise in a number of MR images. Comparing to the manually tuned filtering process, our approach not only produced better denoised results but also saved significant processing time.

  6. Classification of fresh and frozen-thawed pork muscles using visible and near infrared hyperspectral imaging and textural analysis.

    PubMed

    Pu, Hongbin; Sun, Da-Wen; Ma, Ji; Cheng, Jun-Hu

    2015-01-01

    The potential of visible and near infrared hyperspectral imaging was investigated as a rapid and nondestructive technique for classifying fresh and frozen-thawed meats by integrating critical spectral and image features extracted from hyperspectral images in the region of 400-1000 nm. Six feature wavelengths (400, 446, 477, 516, 592 and 686 nm) were identified using uninformative variable elimination and successive projections algorithm. Image textural features of the principal component images from hyperspectral images were obtained using histogram statistics (HS), gray level co-occurrence matrix (GLCM) and gray level-gradient co-occurrence matrix (GLGCM). By these spectral and textural features, probabilistic neural network (PNN) models for classification of fresh and frozen-thawed pork meats were established. Compared with the models using the optimum wavelengths only, optimum wavelengths with HS image features, and optimum wavelengths with GLCM image features, the model integrating optimum wavelengths with GLGCM gave the highest classification rate of 93.14% and 90.91% for calibration and validation sets, respectively. Results indicated that the classification accuracy can be improved by combining spectral features with textural features and the fusion of critical spectral and textural features had better potential than single spectral extraction in classifying fresh and frozen-thawed pork meat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Lung texture in serial thoracic CT scans: Assessment of change introduced by image registration1

    PubMed Central

    Cunliffe, Alexandra R.; Al-Hallaq, Hania A.; Labby, Zacariah E.; Pelizzari, Charles A.; Straus, Christopher; Sensakovic, William F.; Ludwig, Michelle; Armato, Samuel G.

    2012-01-01

    Purpose: The aim of this study was to quantify the effect of four image registration methods on lung texture features extracted from serial computed tomography (CT) scans obtained from healthy human subjects. Methods: Two chest CT scans acquired at different time points were collected retrospectively for each of 27 patients. Following automated lung segmentation, each follow-up CT scan was registered to the baseline scan using four algorithms: (1) rigid, (2) affine, (3) B-splines deformable, and (4) demons deformable. The registration accuracy for each scan pair was evaluated by measuring the Euclidean distance between 150 identified landmarks. On average, 1432 spatially matched 32 × 32-pixel region-of-interest (ROI) pairs were automatically extracted from each scan pair. First-order, fractal, Fourier, Laws’ filter, and gray-level co-occurrence matrix texture features were calculated in each ROI, for a total of 140 features. Agreement between baseline and follow-up scan ROI feature values was assessed by Bland–Altman analysis for each feature; the range spanned by the 95% limits of agreement of feature value differences was calculated and normalized by the average feature value to obtain the normalized range of agreement (nRoA). Features with small nRoA were considered “registration-stable.” The normalized bias for each feature was calculated from the feature value differences between baseline and follow-up scans averaged across all ROIs in every patient. Because patients had “normal” chest CT scans, minimal change in texture feature values between scan pairs was anticipated, with the expectation of small bias and narrow limits of agreement. Results: Registration with demons reduced the Euclidean distance between landmarks such that only 9% of landmarks were separated by ≥1 mm, compared with rigid (98%), affine (95%), and B-splines (90%). Ninety-nine of the 140 (71%) features analyzed yielded nRoA > 50% for all registration methods, indicating that the majority of feature values were perturbed following registration. Nineteen of the features (14%) had nRoA < 15% following demons registration, indicating relative feature value stability. Student's t-tests showed that the nRoA of these 19 features was significantly larger when rigid, affine, or B-splines registration methods were used compared with demons registration. Demons registration yielded greater normalized bias in feature value change than B-splines registration, though this difference was not significant (p = 0.15). Conclusions: Demons registration provided higher spatial accuracy between matched anatomic landmarks in serial CT scans than rigid, affine, or B-splines algorithms. Texture feature changes calculated in healthy lung tissue from serial CT scans were smaller following demons registration compared with all other algorithms. Though registration altered the values of the majority of texture features, 19 features remained relatively stable after demons registration, indicating their potential for detecting pathologic change in serial CT scans. Combined use of accurate deformable registration using demons and texture analysis may allow for quantitative evaluation of local changes in lung tissue due to disease progression or treatment response. PMID:22894392

  8. Land use/land cover mapping using multi-scale texture processing of high resolution data

    NASA Astrophysics Data System (ADS)

    Wong, S. N.; Sarker, M. L. R.

    2014-02-01

    Land use/land cover (LULC) maps are useful for many purposes, and for a long time remote sensing techniques have been used for LULC mapping using different types of data and image processing techniques. In this research, high resolution satellite data from IKONOS was used to perform land use/land cover mapping in Johor Bahru city and adjacent areas (Malaysia). Spatial image processing was carried out using the six texture algorithms (mean, variance, contrast, homogeneity, entropy, and GLDV angular second moment) with five difference window sizes (from 3×3 to 11×11). Three different classifiers i.e. Maximum Likelihood Classifier (MLC), Artificial Neural Network (ANN) and Supported Vector Machine (SVM) were used to classify the texture parameters of different spectral bands individually and all bands together using the same training and validation samples. Results indicated that texture parameters of all bands together generally showed a better performance (overall accuracy = 90.10%) for land LULC mapping, however, single spectral band could only achieve an overall accuracy of 72.67%. This research also found an improvement of the overall accuracy (OA) using single-texture multi-scales approach (OA = 89.10%) and single-scale multi-textures approach (OA = 90.10%) compared with all original bands (OA = 84.02%) because of the complementary information from different bands and different texture algorithms. On the other hand, all of the three different classifiers have showed high accuracy when using different texture approaches, but SVM generally showed higher accuracy (90.10%) compared to MLC (89.10%) and ANN (89.67%) especially for the complex classes such as urban and road.

  9. Deep Convolutional Framelet Denosing for Low-Dose CT via Wavelet Residual Network.

    PubMed

    Kang, Eunhee; Chang, Won; Yoo, Jaejun; Ye, Jong Chul

    2018-06-01

    Model-based iterative reconstruction algorithms for low-dose X-ray computed tomography (CT) are computationally expensive. To address this problem, we recently proposed a deep convolutional neural network (CNN) for low-dose X-ray CT and won the second place in 2016 AAPM Low-Dose CT Grand Challenge. However, some of the textures were not fully recovered. To address this problem, here we propose a novel framelet-based denoising algorithm using wavelet residual network which synergistically combines the expressive power of deep learning and the performance guarantee from the framelet-based denoising algorithms. The new algorithms were inspired by the recent interpretation of the deep CNN as a cascaded convolution framelet signal representation. Extensive experimental results confirm that the proposed networks have significantly improved performance and preserve the detail texture of the original images.

  10. A feature-preserving hair removal algorithm for dermoscopy images.

    PubMed

    Abbas, Qaisar; Garcia, Irene Fondón; Emre Celebi, M; Ahmad, Waqar

    2013-02-01

    Accurate segmentation and repair of hair-occluded information from dermoscopy images are challenging tasks for computer-aided detection (CAD) of melanoma. Currently, many hair-restoration algorithms have been developed, but most of these fail to identify hairs accurately and their removal technique is slow and disturbs the lesion's pattern. In this article, a novel hair-restoration algorithm is presented, which has a capability to preserve the skin lesion features such as color and texture and able to segment both dark and light hairs. Our algorithm is based on three major steps: the rough hairs are segmented using a matched filtering with first derivative of gaussian (MF-FDOG) with thresholding that generate strong responses for both dark and light hairs, refinement of hairs by morphological edge-based techniques, which are repaired through a fast marching inpainting method. Diagnostic accuracy (DA) and texture-quality measure (TQM) metrics are utilized based on dermatologist-drawn manual hair masks that were used as a ground truth to evaluate the performance of the system. The hair-restoration algorithm is tested on 100 dermoscopy images. The comparisons have been done among (i) linear interpolation, inpainting by (ii) non-linear partial differential equation (PDE), and (iii) exemplar-based repairing techniques. Among different hair detection and removal techniques, our proposed algorithm obtained the highest value of DA: 93.3% and TQM: 90%. The experimental results indicate that the proposed algorithm is highly accurate, robust and able to restore hair pixels without damaging the lesion texture. This method is fully automatic and can be easily integrated into a CAD system. © 2011 John Wiley & Sons A/S.

  11. Morphological image analysis for classification of gastrointestinal tissues using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Garcia-Allende, P. Beatriz; Amygdalos, Iakovos; Dhanapala, Hiruni; Goldin, Robert D.; Hanna, George B.; Elson, Daniel S.

    2012-01-01

    Computer-aided diagnosis of ophthalmic diseases using optical coherence tomography (OCT) relies on the extraction of thickness and size measures from the OCT images, but such defined layers are usually not observed in emerging OCT applications aimed at "optical biopsy" such as pulmonology or gastroenterology. Mathematical methods such as Principal Component Analysis (PCA) or textural analyses including both spatial textural analysis derived from the two-dimensional discrete Fourier transform (DFT) and statistical texture analysis obtained independently from center-symmetric auto-correlation (CSAC) and spatial grey-level dependency matrices (SGLDM), as well as, quantitative measurements of the attenuation coefficient have been previously proposed to overcome this problem. We recently proposed an alternative approach consisting of a region segmentation according to the intensity variation along the vertical axis and a pure statistical technology for feature quantification. OCT images were first segmented in the axial direction in an automated manner according to intensity. Afterwards, a morphological analysis of the segmented OCT images was employed for quantifying the features that served for tissue classification. In this study, a PCA processing of the extracted features is accomplished to combine their discriminative power in a lower number of dimensions. Ready discrimination of gastrointestinal surgical specimens is attained demonstrating that the approach further surpasses the algorithms previously reported and is feasible for tissue classification in the clinical setting.

  12. Self-recovery reversible image watermarking algorithm

    PubMed Central

    Sun, He; Gao, Shangbing; Jin, Shenghua

    2018-01-01

    The integrity of image content is essential, although most watermarking algorithms can achieve image authentication but not automatically repair damaged areas or restore the original image. In this paper, a self-recovery reversible image watermarking algorithm is proposed to recover the tampered areas effectively. First of all, the original image is divided into homogeneous blocks and non-homogeneous blocks through multi-scale decomposition, and the feature information of each block is calculated as the recovery watermark. Then, the original image is divided into 4×4 non-overlapping blocks classified into smooth blocks and texture blocks according to image textures. Finally, the recovery watermark generated by homogeneous blocks and error-correcting codes is embedded into the corresponding smooth block by mapping; watermark information generated by non-homogeneous blocks and error-correcting codes is embedded into the corresponding non-embedded smooth block and the texture block via mapping. The correlation attack is detected by invariant moments when the watermarked image is attacked. To determine whether a sub-block has been tampered with, its feature is calculated and the recovery watermark is extracted from the corresponding block. If the image has been tampered with, it can be recovered. The experimental results show that the proposed algorithm can effectively recover the tampered areas with high accuracy and high quality. The algorithm is characterized by sound visual quality and excellent image restoration. PMID:29920528

  13. Shape from texture: an evaluation of visual cues

    NASA Astrophysics Data System (ADS)

    Mueller, Wolfgang; Hildebrand, Axel

    1994-05-01

    In this paper an integrated approach is presented to understand and control the influence of texture on shape perception. Following Gibson's hypotheses, which states that texture is a mathematically and psychological sufficient stimulus for surface perception, we evaluate different perceptual cues. Starting out from a perception-based texture classification introduced by Tamura et al., we build up a uniform sampled parameter space. For the synthesis of some of our textures we use the texture description language HiLDTe. To acquire the desired texture specification we take advantage of a genetic algorithm. Employing these textures we practice a number of psychological tests to evaluate the significance of the different texture features. A comprehension of the results derived from the psychological tests is done to constitute new shape analyzing techniques. Since the vanishing point seems to be an important visual cue we introduce the Hough transform. A prospective of future work within the field of visual computing is provided within the final section.

  14. Tug-of-war lacunarity—A novel approach for estimating lacunarity

    NASA Astrophysics Data System (ADS)

    Reiss, Martin A.; Lemmerer, Birgit; Hanslmeier, Arnold; Ahammer, Helmut

    2016-11-01

    Modern instrumentation provides us with massive repositories of digital images that will likely only increase in the future. Therefore, it has become increasingly important to automatize the analysis of digital images, e.g., with methods from pattern recognition. These methods aim to quantify the visual appearance of captured textures with quantitative measures. As such, lacunarity is a useful multi-scale measure of texture's heterogeneity but demands high computational efforts. Here we investigate a novel approach based on the tug-of-war algorithm, which estimates lacunarity in a single pass over the image. We computed lacunarity for theoretical and real world sample images, and found that the investigated approach is able to estimate lacunarity with low uncertainties. We conclude that the proposed method combines low computational efforts with high accuracy, and that its application may have utility in the analysis of high-resolution images.

  15. Classification of Korla fragrant pears using NIR hyperspectral imaging analysis

    NASA Astrophysics Data System (ADS)

    Rao, Xiuqin; Yang, Chun-Chieh; Ying, Yibin; Kim, Moon S.; Chao, Kuanglin

    2012-05-01

    Korla fragrant pears are small oval pears characterized by light green skin, crisp texture, and a pleasant perfume for which they are named. Anatomically, the calyx of a fragrant pear may be either persistent or deciduous; the deciduouscalyx fruits are considered more desirable due to taste and texture attributes. Chinese packaging standards require that packed cases of fragrant pears contain 5% or less of the persistent-calyx type. Near-infrared hyperspectral imaging was investigated as a potential means for automated sorting of pears according to calyx type. Hyperspectral images spanning the 992-1681 nm region were acquired using an EMCCD-based laboratory line-scan imaging system. Analysis of the hyperspectral images was performed to select wavebands useful for identifying persistent-calyx fruits and for identifying deciduous-calyx fruits. Based on the selected wavebands, an image-processing algorithm was developed that targets automated classification of Korla fragrant pears into the two categories for packaging purposes.

  16. [An improved medical image fusion algorithm and quality evaluation].

    PubMed

    Chen, Meiling; Tao, Ling; Qian, Zhiyu

    2009-08-01

    Medical image fusion is of very important value for application in medical image analysis and diagnosis. In this paper, the conventional method of wavelet fusion is improved,so a new algorithm of medical image fusion is presented and the high frequency and low frequency coefficients are studied respectively. When high frequency coefficients are chosen, the regional edge intensities of each sub-image are calculated to realize adaptive fusion. The choice of low frequency coefficient is based on the edges of images, so that the fused image preserves all useful information and appears more distinctly. We apply the conventional and the improved fusion algorithms based on wavelet transform to fuse two images of human body and also evaluate the fusion results through a quality evaluation method. Experimental results show that this algorithm can effectively retain the details of information on original images and enhance their edge and texture features. This new algorithm is better than the conventional fusion algorithm based on wavelet transform.

  17. Embedded wavelet packet transform technique for texture compression

    NASA Astrophysics Data System (ADS)

    Li, Jin; Cheng, Po-Yuen; Kuo, C.-C. Jay

    1995-09-01

    A highly efficient texture compression scheme is proposed in this research. With this scheme, energy compaction of texture images is first achieved by the wavelet packet transform, and an embedding approach is then adopted for the coding of the wavelet packet transform coefficients. By comparing the proposed algorithm with the JPEG standard, FBI wavelet/scalar quantization standard and the EZW scheme with extensive experimental results, we observe a significant improvement in the rate-distortion performance and visual quality.

  18. Multi-texture local ternary pattern for face recognition

    NASA Astrophysics Data System (ADS)

    Essa, Almabrok; Asari, Vijayan

    2017-05-01

    In imagery and pattern analysis domain a variety of descriptors have been proposed and employed for different computer vision applications like face detection and recognition. Many of them are affected under different conditions during the image acquisition process such as variations in illumination and presence of noise, because they totally rely on the image intensity values to encode the image information. To overcome these problems, a novel technique named Multi-Texture Local Ternary Pattern (MTLTP) is proposed in this paper. MTLTP combines the edges and corners based on the local ternary pattern strategy to extract the local texture features of the input image. Then returns a spatial histogram feature vector which is the descriptor for each image that we use to recognize a human being. Experimental results using a k-nearest neighbors classifier (k-NN) on two publicly available datasets justify our algorithm for efficient face recognition in the presence of extreme variations of illumination/lighting environments and slight variation of pose conditions.

  19. Skin cancer texture analysis of OCT images based on Haralick, fractal dimension, Markov random field features, and the complex directional field features

    NASA Astrophysics Data System (ADS)

    Raupov, Dmitry S.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Zakharov, Valery P.; Khramov, Alexander G.

    2016-10-01

    In this paper, we propose a report about our examining of the validity of OCT in identifying changes using a skin cancer texture analysis compiled from Haralick texture features, fractal dimension, Markov random field method and the complex directional features from different tissues. Described features have been used to detect specific spatial characteristics, which can differentiate healthy tissue from diverse skin cancers in cross-section OCT images (B- and/or C-scans). In this work, we used an interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in OCT images. The Haralick texture features as contrast, correlation, energy, and homogeneity have been calculated in various directions. A box-counting method is performed to evaluate fractal dimension of skin probes. Markov random field have been used for the quality enhancing of the classifying. Additionally, we used the complex directional field calculated by the local gradient methodology to increase of the assessment quality of the diagnosis method. Our results demonstrate that these texture features may present helpful information to discriminate tumor from healthy tissue. The experimental data set contains 488 OCT-images with normal skin and tumors as Basal Cell Carcinoma (BCC), Malignant Melanoma (MM) and Nevus. All images were acquired from our laboratory SD-OCT setup based on broadband light source, delivering an output power of 20 mW at the central wavelength of 840 nm with a bandwidth of 25 nm. We obtained sensitivity about 97% and specificity about 73% for a task of discrimination between MM and Nevus.

  20. A new method for shape and texture classification of orthopedic wear nanoparticles.

    PubMed

    Zhang, Dongning; Page, Janet R; Kavanaugh, Aaron E; Billi, Fabrizio

    2012-09-27

    Detailed morphologic analysis of particles produced during wear of orthopedic implants is important in determining a correlation among material, wear, and biological effects. However, the use of simple shape descriptors is insufficient to categorize the data and to compare the nature of wear particles generated by different implants. An approach based on Discrete Fourier Transform (DFT) is presented for describing particle shape and surface texture. Four metal-on-metal bearing couples were tested in an orbital wear simulator under standard and adverse (steep-angled cups) wear simulator conditions. Digitized Scanning Electron Microscope (SEM) images of the wear particles were imported into MATLAB to carry out Fourier descriptor calculations via a specifically developed algorithm. The descriptors were then used for studying particle characteristics (shape and texture) as well as for cluster classification. Analysis of the particles demonstrated the validity of the proposed model by showing that steep-angle Co-Cr wear particles were more asymmetric, compressed, extended, triangular, square, and roughened at 3 Mc than after 0.25 Mc. In contrast, particles from standard angle samples were only more compressed and extended after 3 Mc compared to 0.25 Mc. Cluster analysis revealed that the 0.25 Mc steep-angle particle distribution was a subset of the 3 Mc distribution.

  1. Area-delay trade-offs of texture decompressors for a graphics processing unit

    NASA Astrophysics Data System (ADS)

    Novoa Súñer, Emilio; Ituero, Pablo; López-Vallejo, Marisa

    2011-05-01

    Graphics Processing Units have become a booster for the microelectronics industry. However, due to intellectual property issues, there is a serious lack of information on implementation details of the hardware architecture that is behind GPUs. For instance, the way texture is handled and decompressed in a GPU to reduce bandwidth usage has never been dealt with in depth from a hardware point of view. This work addresses a comparative study on the hardware implementation of different texture decompression algorithms for both conventional (PCs and video game consoles) and mobile platforms. Circuit synthesis is performed targeting both a reconfigurable hardware platform and a 90nm standard cell library. Area-delay trade-offs have been extensively analyzed, which allows us to compare the complexity of decompressors and thus determine suitability of algorithms for systems with limited hardware resources.

  2. Hyperspectral remote sensing image retrieval system using spectral and texture features.

    PubMed

    Zhang, Jing; Geng, Wenhao; Liang, Xi; Li, Jiafeng; Zhuo, Li; Zhou, Qianlan

    2017-06-01

    Although many content-based image retrieval systems have been developed, few studies have focused on hyperspectral remote sensing images. In this paper, a hyperspectral remote sensing image retrieval system based on spectral and texture features is proposed. The main contributions are fourfold: (1) considering the "mixed pixel" in the hyperspectral image, endmembers as spectral features are extracted by an improved automatic pixel purity index algorithm, then the texture features are extracted with the gray level co-occurrence matrix; (2) similarity measurement is designed for the hyperspectral remote sensing image retrieval system, in which the similarity of spectral features is measured with the spectral information divergence and spectral angle match mixed measurement and in which the similarity of textural features is measured with Euclidean distance; (3) considering the limited ability of the human visual system, the retrieval results are returned after synthesizing true color images based on the hyperspectral image characteristics; (4) the retrieval results are optimized by adjusting the feature weights of similarity measurements according to the user's relevance feedback. The experimental results on NASA data sets can show that our system can achieve comparable superior retrieval performance to existing hyperspectral analysis schemes.

  3. Mean curvature and texture constrained composite weighted random walk algorithm for optic disc segmentation towards glaucoma screening.

    PubMed

    Panda, Rashmi; Puhan, N B; Panda, Ganapati

    2018-02-01

    Accurate optic disc (OD) segmentation is an important step in obtaining cup-to-disc ratio-based glaucoma screening using fundus imaging. It is a challenging task because of the subtle OD boundary, blood vessel occlusion and intensity inhomogeneity. In this Letter, the authors propose an improved version of the random walk algorithm for OD segmentation to tackle such challenges. The algorithm incorporates the mean curvature and Gabor texture energy features to define the new composite weight function to compute the edge weights. Unlike the deformable model-based OD segmentation techniques, the proposed algorithm remains unaffected by curve initialisation and local energy minima problem. The effectiveness of the proposed method is verified with DRIVE, DIARETDB1, DRISHTI-GS and MESSIDOR database images using the performance measures such as mean absolute distance, overlapping ratio, dice coefficient, sensitivity, specificity and precision. The obtained OD segmentation results and quantitative performance measures show robustness and superiority of the proposed algorithm in handling the complex challenges in OD segmentation.

  4. Surface defect detection in tiling Industries using digital image processing methods: analysis and evaluation.

    PubMed

    Karimi, Mohammad H; Asemani, Davud

    2014-05-01

    Ceramic and tile industries should indispensably include a grading stage to quantify the quality of products. Actually, human control systems are often used for grading purposes. An automatic grading system is essential to enhance the quality control and marketing of the products. Since there generally exist six different types of defects originating from various stages of tile manufacturing lines with distinct textures and morphologies, many image processing techniques have been proposed for defect detection. In this paper, a survey has been made on the pattern recognition and image processing algorithms which have been used to detect surface defects. Each method appears to be limited for detecting some subgroup of defects. The detection techniques may be divided into three main groups: statistical pattern recognition, feature vector extraction and texture/image classification. The methods such as wavelet transform, filtering, morphology and contourlet transform are more effective for pre-processing tasks. Others including statistical methods, neural networks and model-based algorithms can be applied to extract the surface defects. Although, statistical methods are often appropriate for identification of large defects such as Spots, but techniques such as wavelet processing provide an acceptable response for detection of small defects such as Pinhole. A thorough survey is made in this paper on the existing algorithms in each subgroup. Also, the evaluation parameters are discussed including supervised and unsupervised parameters. Using various performance parameters, different defect detection algorithms are compared and evaluated. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Multifractal texture estimation for detection and segmentation of brain tumors.

    PubMed

    Islam, Atiq; Reza, Syed M S; Iftekharuddin, Khan M

    2013-11-01

    A stochastic model for characterizing tumor texture in brain magnetic resonance (MR) images is proposed. The efficacy of the model is demonstrated in patient-independent brain tumor texture feature extraction and tumor segmentation in magnetic resonance images (MRIs). Due to complex appearance in MRI, brain tumor texture is formulated using a multiresolution-fractal model known as multifractional Brownian motion (mBm). Detailed mathematical derivation for mBm model and corresponding novel algorithm to extract spatially varying multifractal features are proposed. A multifractal feature-based brain tumor segmentation method is developed next. To evaluate efficacy, tumor segmentation performance using proposed multifractal feature is compared with that using Gabor-like multiscale texton feature. Furthermore, novel patient-independent tumor segmentation scheme is proposed by extending the well-known AdaBoost algorithm. The modification of AdaBoost algorithm involves assigning weights to component classifiers based on their ability to classify difficult samples and confidence in such classification. Experimental results for 14 patients with over 300 MRIs show the efficacy of the proposed technique in automatic segmentation of tumors in brain MRIs. Finally, comparison with other state-of-the art brain tumor segmentation works with publicly available low-grade glioma BRATS2012 dataset show that our segmentation results are more consistent and on the average outperforms these methods for the patients where ground truth is made available.

  6. Multifractal Texture Estimation for Detection and Segmentation of Brain Tumors

    PubMed Central

    Islam, Atiq; Reza, Syed M. S.

    2016-01-01

    A stochastic model for characterizing tumor texture in brain magnetic resonance (MR) images is proposed. The efficacy of the model is demonstrated in patient-independent brain tumor texture feature extraction and tumor segmentation in magnetic resonance images (MRIs). Due to complex appearance in MRI, brain tumor texture is formulated using a multiresolution-fractal model known as multifractional Brownian motion (mBm). Detailed mathematical derivation for mBm model and corresponding novel algorithm to extract spatially varying multifractal features are proposed. A multifractal feature-based brain tumor segmentation method is developed next. To evaluate efficacy, tumor segmentation performance using proposed multifractal feature is compared with that using Gabor-like multiscale texton feature. Furthermore, novel patient-independent tumor segmentation scheme is proposed by extending the well-known AdaBoost algorithm. The modification of AdaBoost algorithm involves assigning weights to component classifiers based on their ability to classify difficult samples and confidence in such classification. Experimental results for 14 patients with over 300 MRIs show the efficacy of the proposed technique in automatic segmentation of tumors in brain MRIs. Finally, comparison with other state-of-the art brain tumor segmentation works with publicly available low-grade glioma BRATS2012 dataset show that our segmentation results are more consistent and on the average outperforms these methods for the patients where ground truth is made available. PMID:23807424

  7. Detecting perceptual groupings in textures by continuity considerations

    NASA Technical Reports Server (NTRS)

    Greene, Richard J.

    1990-01-01

    A generalization is presented for the second derivative of a Gaussian D(sup 2)G operator to apply to problems of perceptual organization involving textures. Extensions to other problems of perceptual organization are evident and a new research direction can be established. The technique presented is theoretically pleasing since it has the potential of unifying the entire area of image segmentation under the mathematical notion of continuity and presents a single algorithm to form perceptual groupings where many algorithms existed previously. The eventual impact on both the approach and technique of image processing segmentation operations could be significant.

  8. Application of texture analysis method for classification of benign and malignant thyroid nodules in ultrasound images.

    PubMed

    Abbasian Ardakani, Ali; Gharbali, Akbar; Mohammadi, Afshin

    2015-01-01

    The aim of this study was to evaluate computer aided diagnosis (CAD) system with texture analysis (TA) to improve radiologists' accuracy in identification of thyroid nodules as malignant or benign. A total of 70 cases (26 benign and 44 malignant) were analyzed in this study. We extracted up to 270 statistical texture features as a descriptor for each selected region of interests (ROIs) in three normalization schemes (default, 3s and 1%-99%). Then features by the lowest probability of classification error and average correlation coefficients (POE+ACC), and Fisher coefficient (Fisher) eliminated to 10 best and most effective features. These features were analyzed under standard and nonstandard states. For TA of the thyroid nodules, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA) were applied. First Nearest-Neighbour (1-NN) classifier was performed for the features resulting from PCA and LDA. NDA features were classified by artificial neural network (A-NN). Receiver operating characteristic (ROC) curve analysis was used for examining the performance of TA methods. The best results were driven in 1-99% normalization with features extracted by POE+ACC algorithm and analyzed by NDA with the area under the ROC curve ( Az) of 0.9722 which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Our results indicate that TA is a reliable method, can provide useful information help radiologist in detection and classification of benign and malignant thyroid nodules.

  9. Advanced Ecosystem Mapping Techniques for Large Arctic Study Domains Using Calibrated High-Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Macander, M. J.; Frost, G. V., Jr.

    2015-12-01

    Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (<=2 m) imagery and ongoing advances in computing power and analysis tools raises the prospect of performing ecosystem mapping at fine spatial scales over large study domains. Here we demonstrate cutting-edge mapping approaches over a ~35,000 km² study area on Alaska's North Slope using calibrated and atmospherically-corrected mosaics of high-resolution WorldView-2 and GeoEye-1 imagery: (1) an a priori spectral approach incorporating the Satellite Imagery Automatic Mapper (SIAM) algorithms; (2) image segmentation techniques; and (3) texture metrics. The SIAM spectral approach classifies radiometrically-calibrated imagery to general vegetation density categories and non-vegetated classes. The SIAM classes were developed globally and their applicability in arctic tundra environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.

  10. The 3D-based scaling index algorithm to optimize structure analysis of trabecular bone in postmenopausal women with and without osteoporotic spine fractures

    NASA Astrophysics Data System (ADS)

    Muller, Dirk; Monetti, Roberto A.; Bohm, Holger F.; Bauer, Jan; Rummeny, Ernst J.; Link, Thomas M.; Rath, Christoph W.

    2004-05-01

    The scaling index method (SIM) is a recently proposed non-linear technique to extract texture measures for the quantitative characterisation of the trabecular bone structure in high resolution magnetic resonance imaging (HR-MRI). The three-dimensional tomographic images are interpreted as a point distribution in a state space where each point (voxel) is defined by its x, y, z coordinates and the grey value. The SIM estimates local scaling properties to describe the nonlinear morphological features in this four-dimensional point distribution. Thus, it can be used for differentiating between cluster-, rod-, sheet-like and unstructured (background) image components, which makes it suitable for quantifying the microstructure of human cancellous bone. The SIM was applied to high resolution magnetic resonance images of the distal radius in patients with and without osteoporotic spine fractures in order to quantify the deterioration of bone structure. Using the receiver operator characteristic (ROC) analysis the diagnostic performance of this texture measure in differentiating patients with and without fractures was compared with bone mineral density (BMD). The SIM demonstrated the best area under the curve (AUC) value for discriminating the two groups. The reliability of our new texture measure and the validity of our results were assessed by applying bootstrapping resampling methods. The results of this study show that trabecular structure measures derived from HR-MRI of the radius in a clinical setting using a recently proposed algorithm based on a local 3D scaling index method can significantly improve the diagnostic performance in differentiating postmenopausal women with and without osteoporotic spine fractures.

  11. Adaptive weighted local textural features for illumination, expression, and occlusion invariant face recognition

    NASA Astrophysics Data System (ADS)

    Cui, Chen; Asari, Vijayan K.

    2014-03-01

    Biometric features such as fingerprints, iris patterns, and face features help to identify people and restrict access to secure areas by performing advanced pattern analysis and matching. Face recognition is one of the most promising biometric methodologies for human identification in a non-cooperative security environment. However, the recognition results obtained by face recognition systems are a affected by several variations that may happen to the patterns in an unrestricted environment. As a result, several algorithms have been developed for extracting different facial features for face recognition. Due to the various possible challenges of data captured at different lighting conditions, viewing angles, facial expressions, and partial occlusions in natural environmental conditions, automatic facial recognition still remains as a difficult issue that needs to be resolved. In this paper, we propose a novel approach to tackling some of these issues by analyzing the local textural descriptions for facial feature representation. The textural information is extracted by an enhanced local binary pattern (ELBP) description of all the local regions of the face. The relationship of each pixel with respect to its neighborhood is extracted and employed to calculate the new representation. ELBP reconstructs a much better textural feature extraction vector from an original gray level image in different lighting conditions. The dimensionality of the texture image is reduced by principal component analysis performed on each local face region. Each low dimensional vector representing a local region is now weighted based on the significance of the sub-region. The weight of each sub-region is determined by employing the local variance estimate of the respective region, which represents the significance of the region. The final facial textural feature vector is obtained by concatenating the reduced dimensional weight sets of all the modules (sub-regions) of the face image. Experiments conducted on various popular face databases show promising performance of the proposed algorithm in varying lighting, expression, and partial occlusion conditions. Four databases were used for testing the performance of the proposed system: Yale Face database, Extended Yale Face database B, Japanese Female Facial Expression database, and CMU AMP Facial Expression database. The experimental results in all four databases show the effectiveness of the proposed system. Also, the computation cost is lower because of the simplified calculation steps. Research work is progressing to investigate the effectiveness of the proposed face recognition method on pose-varying conditions as well. It is envisaged that a multilane approach of trained frameworks at different pose bins and an appropriate voting strategy would lead to a good recognition rate in such situation.

  12. Research and implementation of finger-vein recognition algorithm

    NASA Astrophysics Data System (ADS)

    Pang, Zengyao; Yang, Jie; Chen, Yilei; Liu, Yin

    2017-06-01

    In finger vein image preprocessing, finger angle correction and ROI extraction are important parts of the system. In this paper, we propose an angle correction algorithm based on the centroid of the vein image, and extract the ROI region according to the bidirectional gray projection method. Inspired by the fact that features in those vein areas have similar appearance as valleys, a novel method was proposed to extract center and width of palm vein based on multi-directional gradients, which is easy-computing, quick and stable. On this basis, an encoding method was designed to determine the gray value distribution of texture image. This algorithm could effectively overcome the edge of the texture extraction error. Finally, the system was equipped with higher robustness and recognition accuracy by utilizing fuzzy threshold determination and global gray value matching algorithm. Experimental results on pairs of matched palm images show that, the proposed method has a EER with 3.21% extracts features at the speed of 27ms per image. It can be concluded that the proposed algorithm has obvious advantages in grain extraction efficiency, matching accuracy and algorithm efficiency.

  13. Enhanced Line Integral Convolution with Flow Feature Detection

    NASA Technical Reports Server (NTRS)

    Lane, David; Okada, Arthur

    1996-01-01

    The Line Integral Convolution (LIC) method, which blurs white noise textures along a vector field, is an effective way to visualize overall flow patterns in a 2D domain. The method produces a flow texture image based on the input velocity field defined in the domain. Because of the nature of the algorithm, the texture image tends to be blurry. This sometimes makes it difficult to identify boundaries where flow separation and reattachments occur. We present techniques to enhance LIC texture images and use colored texture images to highlight flow separation and reattachment boundaries. Our techniques have been applied to several flow fields defined in 3D curvilinear multi-block grids and scientists have found the results to be very useful.

  14. Texture Analysis of Chaotic Coupled Map Lattices Based Image Encryption Algorithm

    NASA Astrophysics Data System (ADS)

    Khan, Majid; Shah, Tariq; Batool, Syeda Iram

    2014-09-01

    As of late, data security is key in different enclosures like web correspondence, media frameworks, therapeutic imaging, telemedicine and military correspondence. In any case, a large portion of them confronted with a few issues, for example, the absence of heartiness and security. In this letter, in the wake of exploring the fundamental purposes of the chaotic trigonometric maps and the coupled map lattices, we have presented the algorithm of chaos-based image encryption based on coupled map lattices. The proposed mechanism diminishes intermittent impact of the ergodic dynamical systems in the chaos-based image encryption. To assess the security of the encoded image of this scheme, the association of two nearby pixels and composition peculiarities were performed. This algorithm tries to minimize the problems arises in image encryption.

  15. Performance improvements of wavelength-shifting-fiber neutron detectors using high-resolution positioning algorithms

    DOE PAGES

    Wang, C. L.

    2016-05-17

    On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less

  16. New method for predicting estrogen receptor status utilizing breast MRI texture kinetic analysis

    NASA Astrophysics Data System (ADS)

    Chaudhury, Baishali; Hall, Lawrence O.; Goldgof, Dmitry B.; Gatenby, Robert A.; Gillies, Robert; Drukteinis, Jennifer S.

    2014-03-01

    Magnetic Resonance Imaging (MRI) of breast cancer typically shows that tumors are heterogeneous with spatial variations in blood flow and cell density. Here, we examine the potential link between clinical tumor imaging and the underlying evolutionary dynamics behind heterogeneity in the cellular expression of estrogen receptors (ER) in breast cancer. We assume, in an evolutionary environment, that ER expression will only occur in the presence of significant concentrations of estrogen, which is delivered via the blood stream. Thus, we hypothesize, the expression of ER in breast cancer cells will correlate with blood flow on gadolinium enhanced breast MRI. To test this hypothesis, we performed quantitative analysis of blood flow on dynamic contrast enhanced MRI (DCE-MRI) and correlated it with the ER status of the tumor. Here we present our analytic methods, which utilize a novel algorithm to analyze 20 volumetric DCE-MRI breast cancer tumors. The algorithm generates post initial enhancement (PIE) maps from DCE-MRI and then performs texture features extraction from the PIE map, feature selection, and finally classification of tumors into ER positive and ER negative status. The combined gray level co-occurrence matrices, gray level run length matrices and local binary pattern histogram features allow quantification of breast tumor heterogeneity. The algorithm predicted ER expression with an accuracy of 85% using a Naive Bayes classifier in leave-one-out cross-validation. Hence, we conclude that our data supports the hypothesis that imaging characteristics can, through application of evolutionary principles, provide insights into the cellular and molecular properties of cancer cells.

  17. Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing.

    PubMed

    Vatsa, Mayank; Singh, Richa; Noore, Afzel

    2008-08-01

    This paper proposes algorithms for iris segmentation, quality enhancement, match score fusion, and indexing to improve both the accuracy and the speed of iris recognition. A curve evolution approach is proposed to effectively segment a nonideal iris image using the modified Mumford-Shah functional. Different enhancement algorithms are concurrently applied on the segmented iris image to produce multiple enhanced versions of the iris image. A support-vector-machine-based learning algorithm selects locally enhanced regions from each globally enhanced image and combines these good-quality regions to create a single high-quality iris image. Two distinct features are extracted from the high-quality iris image. The global textural feature is extracted using the 1-D log polar Gabor transform, and the local topological feature is extracted using Euler numbers. An intelligent fusion algorithm combines the textural and topological matching scores to further improve the iris recognition performance and reduce the false rejection rate, whereas an indexing algorithm enables fast and accurate iris identification. The verification and identification performance of the proposed algorithms is validated and compared with other algorithms using the CASIA Version 3, ICE 2005, and UBIRIS iris databases.

  18. Man-made objects cuing in satellite imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skurikhin, Alexei N

    2009-01-01

    We present a multi-scale framework for man-made structures cuing in satellite image regions. The approach is based on a hierarchical image segmentation followed by structural analysis. A hierarchical segmentation produces an image pyramid that contains a stack of irregular image partitions, represented as polygonized pixel patches, of successively reduced levels of detail (LOOs). We are jumping off from the over-segmented image represented by polygons attributed with spectral and texture information. The image is represented as a proximity graph with vertices corresponding to the polygons and edges reflecting polygon relations. This is followed by the iterative graph contraction based on Boruvka'smore » Minimum Spanning Tree (MST) construction algorithm. The graph contractions merge the patches based on their pairwise spectral and texture differences. Concurrently with the construction of the irregular image pyramid, structural analysis is done on the agglomerated patches. Man-made object cuing is based on the analysis of shape properties of the constructed patches and their spatial relations. The presented framework can be used as pre-scanning tool for wide area monitoring to quickly guide the further analysis to regions of interest.« less

  19. Computer-assisted liver graft steatosis assessment via learning-based texture analysis.

    PubMed

    Moccia, Sara; Mattos, Leonardo S; Patrini, Ilaria; Ruperti, Michela; Poté, Nicolas; Dondero, Federica; Cauchy, François; Sepulveda, Ailton; Soubrane, Olivier; De Momi, Elena; Diaspro, Alberto; Cesaretti, Manuela

    2018-05-23

    Fast and accurate graft hepatic steatosis (HS) assessment is of primary importance for lowering liver dysfunction risks after transplantation. Histopathological analysis of biopsied liver is the gold standard for assessing HS, despite being invasive and time consuming. Due to the short time availability between liver procurement and transplantation, surgeons perform HS assessment through clinical evaluation (medical history, blood tests) and liver texture visual analysis. Despite visual analysis being recognized as challenging in the clinical literature, few efforts have been invested to develop computer-assisted solutions for HS assessment. The objective of this paper is to investigate the automatic analysis of liver texture with machine learning algorithms to automate the HS assessment process and offer support for the surgeon decision process. Forty RGB images of forty different donors were analyzed. The images were captured with an RGB smartphone camera in the operating room (OR). Twenty images refer to livers that were accepted and 20 to discarded livers. Fifteen randomly selected liver patches were extracted from each image. Patch size was [Formula: see text]. This way, a balanced dataset of 600 patches was obtained. Intensity-based features (INT), histogram of local binary pattern ([Formula: see text]), and gray-level co-occurrence matrix ([Formula: see text]) were investigated. Blood-sample features (Blo) were included in the analysis, too. Supervised and semisupervised learning approaches were investigated for feature classification. The leave-one-patient-out cross-validation was performed to estimate the classification performance. With the best-performing feature set ([Formula: see text]) and semisupervised learning, the achieved classification sensitivity, specificity, and accuracy were 95, 81, and 88%, respectively. This research represents the first attempt to use machine learning and automatic texture analysis of RGB images from ubiquitous smartphone cameras for the task of graft HS assessment. The results suggest that is a promising strategy to develop a fully automatic solution to assist surgeons in HS assessment inside the OR.

  20. Skin cancer texture analysis of OCT images based on Haralick, fractal dimension and the complex directional field features

    NASA Astrophysics Data System (ADS)

    Raupov, Dmitry S.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Kornilin, Dmitry V.; Zakharov, Valery P.; Khramov, Alexander G.

    2016-04-01

    Optical coherence tomography (OCT) is usually employed for the measurement of tumor topology, which reflects structural changes of a tissue. We investigated the possibility of OCT in detecting changes using a computer texture analysis method based on Haralick texture features, fractal dimension and the complex directional field method from different tissues. These features were used to identify special spatial characteristics, which differ healthy tissue from various skin cancers in cross-section OCT images (B-scans). Speckle reduction is an important pre-processing stage for OCT image processing. In this paper, an interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in OCT images was used. The Haralick texture feature set includes contrast, correlation, energy, and homogeneity evaluated in different directions. A box-counting method is applied to compute fractal dimension of investigated tissues. Additionally, we used the complex directional field calculated by the local gradient methodology to increase of the assessment quality of the diagnosis method. The complex directional field (as well as the "classical" directional field) can help describe an image as set of directions. Considering to a fact that malignant tissue grows anisotropically, some principal grooves may be observed on dermoscopic images, which mean possible existence of principal directions on OCT images. Our results suggest that described texture features may provide useful information to differentiate pathological from healthy patients. The problem of recognition melanoma from nevi is decided in this work due to the big quantity of experimental data (143 OCT-images include tumors as Basal Cell Carcinoma (BCC), Malignant Melanoma (MM) and Nevi). We have sensitivity about 90% and specificity about 85%. Further research is warranted to determine how this approach may be used to select the regions of interest automatically.

  1. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.

    PubMed

    Kim, Ye-seul; Park, Hye-suk; Lee, Haeng-Hwa; Choi, Young-Wook; Choi, Jae-Gu; Kim, Hak Hee; Kim, Hee-Joung

    2016-02-01

    Digital breast tomosynthesis (DBT) is a recently developed system for three-dimensional imaging that offers the potential to reduce the false positives of mammography by preventing tissue overlap. Many qualitative evaluations of digital breast tomosynthesis were previously performed by using a phantom with an unrealistic model and with heterogeneous background and noise, which is not representative of real breasts. The purpose of the present work was to compare reconstruction algorithms for DBT by using various breast phantoms; validation was also performed by using patient images. DBT was performed by using a prototype unit that was optimized for very low exposures and rapid readout. Three algorithms were compared: a back-projection (BP) algorithm, a filtered BP (FBP) algorithm, and an iterative expectation maximization (EM) algorithm. To compare the algorithms, three types of breast phantoms (homogeneous background phantom, heterogeneous background phantom, and anthropomorphic breast phantom) were evaluated, and clinical images were also reconstructed by using the different reconstruction algorithms. The in-plane image quality was evaluated based on the line profile and the contrast-to-noise ratio (CNR), and out-of-plane artifacts were evaluated by means of the artifact spread function (ASF). Parenchymal texture features of contrast and homogeneity were computed based on reconstructed images of an anthropomorphic breast phantom. The clinical images were studied to validate the effect of reconstruction algorithms. The results showed that the CNRs of masses reconstructed by using the EM algorithm were slightly higher than those obtained by using the BP algorithm, whereas the FBP algorithm yielded much lower CNR due to its high fluctuations of background noise. The FBP algorithm provides the best conspicuity for larger calcifications by enhancing their contrast and sharpness more than the other algorithms; however, in the case of small-size and low-contrast microcalcifications, the FBP reduced detectability due to its increased noise. The EM algorithm yielded high conspicuity for both microcalcifications and masses and yielded better ASFs in terms of the full width at half maximum. The higher contrast and lower homogeneity in terms of texture analysis were shown in FBP algorithm than in other algorithms. The patient images using the EM algorithm resulted in high visibility of low-contrast mass with clear border. In this study, we compared three reconstruction algorithms by using various kinds of breast phantoms and patient cases. Future work using these algorithms and considering the type of the breast and the acquisition techniques used (e.g., angular range, dose distribution) should include the use of actual patients or patient-like phantoms to increase the potential for practical applications.

  2. Prediction of pork quality parameters by applying fractals and data mining on MRI.

    PubMed

    Caballero, Daniel; Pérez-Palacios, Trinidad; Caro, Andrés; Amigo, José Manuel; Dahl, Anders B; ErsbØll, Bjarne K; Antequera, Teresa

    2017-09-01

    This work firstly investigates the use of MRI, fractal algorithms and data mining techniques to determine pork quality parameters non-destructively. The main objective was to evaluate the capability of fractal algorithms (Classical Fractal algorithm, CFA; Fractal Texture Algorithm, FTA and One Point Fractal Texture Algorithm, OPFTA) to analyse MRI in order to predict quality parameters of loin. In addition, the effect of the sequence acquisition of MRI (Gradient echo, GE; Spin echo, SE and Turbo 3D, T3D) and the predictive technique of data mining (Isotonic regression, IR and Multiple linear regression, MLR) were analysed. Both fractal algorithm, FTA and OPFTA are appropriate to analyse MRI of loins. The sequence acquisition, the fractal algorithm and the data mining technique seems to influence on the prediction results. For most physico-chemical parameters, prediction equations with moderate to excellent correlation coefficients were achieved by using the following combinations of acquisition sequences of MRI, fractal algorithms and data mining techniques: SE-FTA-MLR, SE-OPFTA-IR, GE-OPFTA-MLR, SE-OPFTA-MLR, with the last one offering the best prediction results. Thus, SE-OPFTA-MLR could be proposed as an alternative technique to determine physico-chemical traits of fresh and dry-cured loins in a non-destructive way with high accuracy. Copyright © 2017. Published by Elsevier Ltd.

  3. Reconstructing Buildings with Discontinuities and Roof Overhangs from Oblique Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Frommholz, D.; Linkiewicz, M.; Meissner, H.; Dahlke, D.

    2017-05-01

    This paper proposes a two-stage method for the reconstruction of city buildings with discontinuities and roof overhangs from oriented nadir and oblique aerial images. To model the structures the input data is transformed into a dense point cloud, segmented and filtered with a modified marching cubes algorithm to reduce the positional noise. Assuming a monolithic building the remaining vertices are initially projected onto a 2D grid and passed to RANSAC-based regression and topology analysis to geometrically determine finite wall, ground and roof planes. If this should fail due to the presence of discontinuities the regression will be repeated on a 3D level by traversing voxels within the regularly subdivided bounding box of the building point set. For each cube a planar piece of the current surface is approximated and expanded. The resulting segments get mutually intersected yielding both topological and geometrical nodes and edges. These entities will be eliminated if their distance-based affiliation to the defining point sets is violated leaving a consistent building hull including its structural breaks. To add the roof overhangs the computed polygonal meshes are projected onto the digital surface model derived from the point cloud. Their shapes are offset equally along the edge normals with subpixel accuracy by detecting the zero-crossings of the second-order directional derivative in the gradient direction of the height bitmap and translated back into world space to become a component of the building. As soon as the reconstructed objects are finished the aerial images are further used to generate a compact texture atlas for visualization purposes. An optimized atlas bitmap is generated that allows perspectivecorrect multi-source texture mapping without prior rectification involving a partially parallel placement algorithm. Moreover, the texture atlases undergo object-based image analysis (OBIA) to detect window areas which get reintegrated into the building models. To evaluate the performance of the proposed method a proof-of-concept test on sample structures obtained from real-world data of Heligoland/Germany has been conducted. It revealed good reconstruction accuracy in comparison to the cadastral map, a speed-up in texture atlas optimization and visually attractive render results.

  4. Bayesian Fusion of Color and Texture Segmentations

    NASA Technical Reports Server (NTRS)

    Manduchi, Roberto

    2000-01-01

    In many applications one would like to use information from both color and texture features in order to segment an image. We propose a novel technique to combine "soft" segmentations computed for two or more features independently. Our algorithm merges models according to a mean entropy criterion, and allows to choose the appropriate number of classes for the final grouping. This technique also allows to improve the quality of supervised classification based on one feature (e.g. color) by merging information from unsupervised segmentation based on another feature (e.g., texture.)

  5. Focal liver lesions segmentation and classification in nonenhanced T2-weighted MRI.

    PubMed

    Gatos, Ilias; Tsantis, Stavros; Karamesini, Maria; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Hazle, John D; Kagadis, George C

    2017-07-01

    To automatically segment and classify focal liver lesions (FLLs) on nonenhanced T2-weighted magnetic resonance imaging (MRI) scans using a computer-aided diagnosis (CAD) algorithm. 71 FLLs (30 benign lesions, 19 hepatocellular carcinomas, and 22 metastases) on T2-weighted MRI scans were delineated by the proposed CAD scheme. The FLL segmentation procedure involved wavelet multiscale analysis to extract accurate edge information and mean intensity values for consecutive edges computed using horizontal and vertical analysis that were fed into the subsequent fuzzy C-means algorithm for final FLL border extraction. Texture information for each extracted lesion was derived using 42 first- and second-order textural features from grayscale value histogram, co-occurrence, and run-length matrices. Twelve morphological features were also extracted to capture any shape differentiation between classes. Feature selection was performed with stepwise multilinear regression analysis that led to a reduced feature subset. A multiclass Probabilistic Neural Network (PNN) classifier was then designed and used for lesion classification. PNN model evaluation was performed using the leave-one-out (LOO) method and receiver operating characteristic (ROC) curve analysis. The mean overlap between the automatically segmented FLLs and the manual segmentations performed by radiologists was 0.91 ± 0.12. The highest classification accuracies in the PNN model for the benign, hepatocellular carcinoma, and metastatic FLLs were 94.1%, 91.4%, and 94.1%, respectively, with sensitivity/specificity values of 90%/97.3%, 89.5%/92.2%, and 90.9%/95.6% respectively. The overall classification accuracy for the proposed system was 90.1%. Our diagnostic system using sophisticated FLL segmentation and classification algorithms is a powerful tool for routine clinical MRI-based liver evaluation and can be a supplement to contrast-enhanced MRI to prevent unnecessary invasive procedures. © 2017 American Association of Physicists in Medicine.

  6. Content-aware dark image enhancement through channel division.

    PubMed

    Rivera, Adin Ramirez; Ryu, Byungyong; Chae, Oksam

    2012-09-01

    The current contrast enhancement algorithms occasionally result in artifacts, overenhancement, and unnatural effects in the processed images. These drawbacks increase for images taken under poor illumination conditions. In this paper, we propose a content-aware algorithm that enhances dark images, sharpens edges, reveals details in textured regions, and preserves the smoothness of flat regions. The algorithm produces an ad hoc transformation for each image, adapting the mapping functions to each image's characteristics to produce the maximum enhancement. We analyze the contrast of the image in the boundary and textured regions, and group the information with common characteristics. These groups model the relations within the image, from which we extract the transformation functions. The results are then adaptively mixed, by considering the human vision system characteristics, to boost the details in the image. Results show that the algorithm can automatically process a wide range of images-e.g., mixed shadow and bright areas, outdoor and indoor lighting, and face images-without introducing artifacts, which is an improvement over many existing methods.

  7. Automated Texture Analysis and Determination of Fibre Orientation of Heart Tissue: A Morphometric Study.

    PubMed

    Zach, Bernhard; Hofer, Ernst; Asslaber, Martin; Ahammer, Helmut

    2016-01-01

    The human heart has a heterogeneous structure, which is characterized by different cell types and their spatial configurations. The physical structure, especially the fibre orientation and the interstitial fibrosis, determines the electrical excitation and in further consequence the contractility in macroscopic as well as in microscopic areas. Modern image processing methods and parameters could be used to describe the image content and image texture. In most cases the description of the texture is not satisfying because the fibre orientation, detected with common algorithms, is biased by elements such as fibrocytes or endothelial nuclei. The goal of this work is to figure out if cardiac tissue can be analysed and classified on a microscopic level by automated image processing methods with a focus on an accurate detection of the fibre orientation. Quantitative parameters for identification of textures of different complexity or pathological attributes inside the heart were determined. The focus was set on the detection of the fibre orientation, which was calculated on the basis of the cardiomyocytes' nuclei. It turned out that the orientation of these nuclei corresponded with a high precision to the fibre orientation in the image plane. Additionally, these nuclei also indicated very well the inclination of the fibre.

  8. Live texturing of augmented reality characters from colored drawings.

    PubMed

    Magnenat, Stéphane; Ngo, Dat Tien; Zünd, Fabio; Ryffel, Mattia; Noris, Gioacchino; Rothlin, Gerhard; Marra, Alessia; Nitti, Maurizio; Fua, Pascal; Gross, Markus; Sumner, Robert W

    2015-11-01

    Coloring books capture the imagination of children and provide them with one of their earliest opportunities for creative expression. However, given the proliferation and popularity of digital devices, real-world activities like coloring can seem unexciting, and children become less engaged in them. Augmented reality holds unique potential to impact this situation by providing a bridge between real-world activities and digital enhancements. In this paper, we present an augmented reality coloring book App in which children color characters in a printed coloring book and inspect their work using a mobile device. The drawing is detected and tracked, and the video stream is augmented with an animated 3-D version of the character that is textured according to the child's coloring. This is possible thanks to several novel technical contributions. We present a texturing process that applies the captured texture from a 2-D colored drawing to both the visible and occluded regions of a 3-D character in real time. We develop a deformable surface tracking method designed for colored drawings that uses a new outlier rejection algorithm for real-time tracking and surface deformation recovery. We present a content creation pipeline to efficiently create the 2-D and 3-D content. And, finally, we validate our work with two user studies that examine the quality of our texturing algorithm and the overall App experience.

  9. PCTO-SIM: Multiple-point geostatistical modeling using parallel conditional texture optimization

    NASA Astrophysics Data System (ADS)

    Pourfard, Mohammadreza; Abdollahifard, Mohammad J.; Faez, Karim; Motamedi, Sayed Ahmad; Hosseinian, Tahmineh

    2017-05-01

    Multiple-point Geostatistics is a well-known general statistical framework by which complex geological phenomena have been modeled efficiently. Pixel-based and patch-based are two major categories of these methods. In this paper, the optimization-based category is used which has a dual concept in texture synthesis as texture optimization. Our extended version of texture optimization uses the energy concept to model geological phenomena. While honoring the hard point, the minimization of our proposed cost function forces simulation grid pixels to be as similar as possible to training images. Our algorithm has a self-enrichment capability and creates a richer training database from a sparser one through mixing the information of all surrounding patches of the simulation nodes. Therefore, it preserves pattern continuity in both continuous and categorical variables very well. It also shows a fuzzy result in its every realization similar to the expected result of multi realizations of other statistical models. While the main core of most previous Multiple-point Geostatistics methods is sequential, the parallel main core of our algorithm enabled it to use GPU efficiently to reduce the CPU time. One new validation method for MPS has also been proposed in this paper.

  10. Compression Algorithm Analysis of In-Situ (S)TEM Video: Towards Automatic Event Detection and Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teuton, Jeremy R.; Griswold, Richard L.; Mehdi, Beata L.

    Precise analysis of both (S)TEM images and video are time and labor intensive processes. As an example, determining when crystal growth and shrinkage occurs during the dynamic process of Li dendrite deposition and stripping involves manually scanning through each frame in the video to extract a specific set of frames/images. For large numbers of images, this process can be very time consuming, so a fast and accurate automated method is desirable. Given this need, we developed software that uses analysis of video compression statistics for detecting and characterizing events in large data sets. This software works by converting the datamore » into a series of images which it compresses into an MPEG-2 video using the open source “avconv” utility [1]. The software does not use the video itself, but rather analyzes the video statistics from the first pass of the video encoding that avconv records in the log file. This file contains statistics for each frame of the video including the frame quality, intra-texture and predicted texture bits, forward and backward motion vector resolution, among others. In all, avconv records 15 statistics for each frame. By combining different statistics, we have been able to detect events in various types of data. We have developed an interactive tool for exploring the data and the statistics that aids the analyst in selecting useful statistics for each analysis. Going forward, an algorithm for detecting and possibly describing events automatically can be written based on statistic(s) for each data type.« less

  11. Robust lung identification in MSCT via controlled flooding and shape constraints: dealing with anatomical and pathological specificity

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Tarando, Sebastian; Brillet, Pierre-Yves; Grenier, Philippe A.

    2016-03-01

    Correct segmentation and labeling of lungs in thorax MSCT is a requirement in pulmonary/respiratory disease analysis as a basis for further processing or direct quantitative measures: lung texture classification, respiratory functional simulations, intrapulmonary vascular remodeling evaluation, detection of pleural effusion or subpleural opacities, are only few clinical applications related to this requirement. Whereas lung segmentation appears trivial for normal anatomo-pathological conditions, the presence of disease may complicate this task for fully-automated algorithms. The challenges come either from regional changes of lung texture opacity or from complex anatomic configurations (e.g., thin septum between lungs making difficult proper lung separation). They make difficult or even impossible the use of classic algorithms based on adaptive thresholding, 3-D connected component analysis and shape regularization. The objective of this work is to provide a robust segmentation approach of the pulmonary field, with individualized labeling of the lungs, able to overcome the mentioned limitations. The proposed approach relies on 3-D mathematical morphology and exploits the concept of controlled relief flooding (to identify contrasted lung areas) together with patient-specific shape properties for peripheral dense tissue detection. Tested on a database of 40 MSCT of pathological lungs, the proposed approach showed correct identification of lung areas with high sensitivity and specificity in locating peripheral dense opacities.

  12. Texture analysis with statistical methods for wheat ear extraction

    NASA Astrophysics Data System (ADS)

    Bakhouche, M.; Cointault, F.; Gouton, P.

    2007-01-01

    In agronomic domain, the simplification of crop counting, necessary for yield prediction and agronomic studies, is an important project for technical institutes such as Arvalis. Although the main objective of our global project is to conceive a mobile robot for natural image acquisition directly in a field, Arvalis has proposed us first to detect by image processing the number of wheat ears in images before to count them, which will allow to obtain the first component of the yield. In this paper we compare different texture image segmentation techniques based on feature extraction by first and higher order statistical methods which have been applied on our images. The extracted features are used for unsupervised pixel classification to obtain the different classes in the image. So, the K-means algorithm is implemented before the choice of a threshold to highlight the ears. Three methods have been tested in this feasibility study with very average error of 6%. Although the evaluation of the quality of the detection is visually done, automatic evaluation algorithms are currently implementing. Moreover, other statistical methods of higher order will be implemented in the future jointly with methods based on spatio-frequential transforms and specific filtering.

  13. Assessment of risk of femoral neck fracture with radiographic texture parameters: a retrospective study.

    PubMed

    Thevenot, Jérôme; Hirvasniemi, Jukka; Pulkkinen, Pasi; Määttä, Mikko; Korpelainen, Raija; Saarakkala, Simo; Jämsä, Timo

    2014-07-01

    To investigate whether femoral neck fracture can be predicted retrospectively on the basis of clinical radiographs by using the combined analysis of bone geometry, textural analysis of trabecular bone, and bone mineral density (BMD). Formal ethics committee approval was obtained for the study, and all participants gave informed written consent. Pelvic radiographs and proximal femur BMD measurements were obtained in 53 women aged 79-82 years in 2006. By 2012, 10 of these patients had experienced a low-impact femoral neck fracture. A Laplacian-based semiautomatic custom algorithm was applied to the radiographs to calculate the texture parameters along the trabecular fibers in the lower neck area for all subjects. Intra- and interobserver reproducibility was calculated by using the root mean square average coefficient of variation to evaluate the robustness of the method. The best predictors of hip fracture were entropy (P = .007; reproducibility coefficient of variation < 1%), the neck-shaft angle (NSA) (P = .017), and the BMD (P = .13). For prediction of fracture, the area under the receiver operating characteristic curve was 0.753 for entropy, 0.608 for femoral neck BMD, and 0.698 for NSA. The area increased to 0.816 when entropy and NSA were combined and to 0.902 when entropy, NSA, and BMD were combined. Textural analysis of pelvic radiographs enables discrimination of patients at risk for femoral neck fracture, and our results show the potential of this conventional imaging method to yield better prediction than that achieved with dual-energy x-ray absorptiometry-based BMD. The combination of the entropy parameter with NSA and BMD can further enhance predictive accuracy. © RSNA, 2014.

  14. Multi-institutional validation of a novel textural analysis tool for preoperative stratification of suspected thyroid tumors on diffusion-weighted MRI.

    PubMed

    Brown, Anna M; Nagala, Sidhartha; McLean, Mary A; Lu, Yonggang; Scoffings, Daniel; Apte, Aditya; Gonen, Mithat; Stambuk, Hilda E; Shaha, Ashok R; Tuttle, R Michael; Deasy, Joseph O; Priest, Andrew N; Jani, Piyush; Shukla-Dave, Amita; Griffiths, John

    2016-04-01

    Ultrasound-guided fine needle aspirate cytology fails to diagnose many malignant thyroid nodules; consequently, patients may undergo diagnostic lobectomy. This study assessed whether textural analysis (TA) could noninvasively stratify thyroid nodules accurately using diffusion-weighted MRI (DW-MRI). This multi-institutional study examined 3T DW-MRI images obtained with spin echo echo planar imaging sequences. The training data set included 26 patients from Cambridge, United Kingdom, and the test data set included 18 thyroid cancer patients from Memorial Sloan Kettering Cancer Center (New York, New York, USA). Apparent diffusion coefficients (ADCs) were compared over regions of interest (ROIs) defined on thyroid nodules. TA, linear discriminant analysis (LDA), and feature reduction were performed using the 21 MaZda-generated texture parameters that best distinguished benign and malignant ROIs. Training data set mean ADC values were significantly different for benign and malignant nodules (P = 0.02) with a sensitivity and specificity of 70% and 63%, respectively, and a receiver operator characteristic (ROC) area under the curve (AUC) of 0.73. The LDA model of the top 21 textural features correctly classified 89/94 DW-MRI ROIs with 92% sensitivity, 96% specificity, and an AUC of 0.97. This algorithm correctly classified 16/18 (89%) patients in the independently obtained test set of thyroid DW-MRI scans. TA classifies thyroid nodules with high sensitivity and specificity on multi-institutional DW-MRI data sets. This method requires further validation in a larger prospective study. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  15. SU-D-12A-02: DeTECT, a Method to Enhance Soft Tissue Contrast From Mega Voltage CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, K; Gou, S; Qi, S

    Purpose: MVCT images have been used on TomoTherapy system to align patients based on bony anatomies but its usefulness for soft tissue registration, delineation and adaptive radiation therapy is severely limited due to minimal photoelectric interaction and prominent presence of noise resulting from low detector quantum efficiency of megavoltage x-rays. We aim to utilize a non-local means denoising method and texture analysis to recover the soft tissue information for MVCT. Methods: A block matching 3D (BM3D) algorithm was adapted to reduce the noise while keeping the texture information of the MVCT images. BM3D is an imaging denoising algorithm developed frommore » non-local means methods. BM3D additionally creates 3D groups by stacking 2D patches by the order of similarity. 3D denoising operation is then performed. The resultant 3D group is inversely transformed back to 2D images. In this study, BM3D was applied to MVCT images of a CT quality phantom, a head and neck and a prostate patient. Following denoising, imaging texture was enhanced to create the denoised and texture enhanced CT (DeTECT). Results: The original MVCT images show prevalent noise and poor soft tissue contrast. By applying BM3D denoising and texture enhancement, all MVCT images show remarkable improvements. For the phantom, the contrast to noise ratio for the low contrast plug was improved from 2.2 to 13.1 without compromising line pair conspicuity. For the head and neck patient, the lymph nodes and vein in the carotid space inconspicuous in the original MVCT image becomes highly visible in DeTECT. For the prostate patient, the boundary between the bladder and the prostate in the original MVCT is successfully recovered. Both results are visually validated by kVCT images of the corresponding patients. Conclusion: DeTECT showed the promise to drastically improve the soft tissue contrast of MVCT for image guided radiotherapy and adaptive radiotherapy.« less

  16. Gender classification system in uncontrolled environments

    NASA Astrophysics Data System (ADS)

    Zeng, Pingping; Zhang, Yu-Jin; Duan, Fei

    2011-01-01

    Most face analysis systems available today perform mainly on restricted databases of images in terms of size, age, illumination. In addition, it is frequently assumed that all images are frontal and unconcealed. Actually, in a non-guided real-time supervision, the face pictures taken may often be partially covered and with head rotation less or more. In this paper, a special system supposed to be used in real-time surveillance with un-calibrated camera and non-guided photography is described. It mainly consists of five parts: face detection, non-face filtering, best-angle face selection, texture normalization, and gender classification. Emphases are focused on non-face filtering and best-angle face selection parts as well as texture normalization. Best-angle faces are figured out by PCA reconstruction, which equals to an implicit face alignment and results in a huge increase of the accuracy for gender classification. Dynamic skin model and a masked PCA reconstruction algorithm are applied to filter out faces detected in error. In order to fully include facial-texture and shape-outline features, a hybrid feature that is a combination of Gabor wavelet and PHoG (pyramid histogram of gradients) was proposed to equitable inner texture and outer contour. Comparative study on the effects of different non-face filtering and texture masking methods in the context of gender classification by SVM is reported through experiments on a set of UT (a company name) face images, a large number of internet images and CAS (Chinese Academy of Sciences) face database. Some encouraging results are obtained.

  17. Modeling uncertainty and correlation in soil properties using Restricted Pairing and implications for ensemble-based hillslope-scale soil moisture and temperature estimation

    NASA Astrophysics Data System (ADS)

    Flores, A. N.; Entekhabi, D.; Bras, R. L.

    2007-12-01

    Soil hydraulic and thermal properties (SHTPs) affect both the rate of moisture redistribution in the soil column and the volumetric soil water capacity. Adequately constraining these properties through field and lab analysis to parameterize spatially-distributed hydrology models is often prohibitively expensive. Because SHTPs vary significantly at small spatial scales individual soil samples are also only reliably indicative of local conditions, and these properties remain a significant source of uncertainty in soil moisture and temperature estimation. In ensemble-based soil moisture data assimilation, uncertainty in the model-produced prior estimate due to associated uncertainty in SHTPs must be taken into account to avoid under-dispersive ensembles. To treat SHTP uncertainty for purposes of supplying inputs to a distributed watershed model we use the restricted pairing (RP) algorithm, an extension of Latin Hypercube (LH) sampling. The RP algorithm generates an arbitrary number of SHTP combinations by sampling the appropriate marginal distributions of the individual soil properties using the LH approach, while imposing a target rank correlation among the properties. A previously-published meta- database of 1309 soils representing 12 textural classes is used to fit appropriate marginal distributions to the properties and compute the target rank correlation structure, conditioned on soil texture. Given categorical soil textures, our implementation of the RP algorithm generates an arbitrarily-sized ensemble of realizations of the SHTPs required as input to the TIN-based Realtime Integrated Basin Simulator with vegetation dynamics (tRIBS+VEGGIE) distributed parameter ecohydrology model. Soil moisture ensembles simulated with RP- generated SHTPs exhibit less variance than ensembles simulated with SHTPs generated by a scheme that neglects correlation among properties. Neglecting correlation among SHTPs can lead to physically unrealistic combinations of parameters that exhibit implausible hydrologic behavior when input to the tRIBS+VEGGIE model.

  18. Analysis and Recognition of Curve Type as The Basis of Object Recognition in Image

    NASA Astrophysics Data System (ADS)

    Nugraha, Nurma; Madenda, Sarifuddin; Indarti, Dina; Dewi Agushinta, R.; Ernastuti

    2016-06-01

    An object in an image when analyzed further will show the characteristics that distinguish one object with another object in an image. Characteristics that are used in object recognition in an image can be a color, shape, pattern, texture and spatial information that can be used to represent objects in the digital image. The method has recently been developed for image feature extraction on objects that share characteristics curve analysis (simple curve) and use the search feature of chain code object. This study will develop an algorithm analysis and the recognition of the type of curve as the basis for object recognition in images, with proposing addition of complex curve characteristics with maximum four branches that will be used for the process of object recognition in images. Definition of complex curve is the curve that has a point of intersection. By using some of the image of the edge detection, the algorithm was able to do the analysis and recognition of complex curve shape well.

  19. Unsupervised texture image segmentation by improved neural network ART2

    NASA Technical Reports Server (NTRS)

    Wang, Zhiling; Labini, G. Sylos; Mugnuolo, R.; Desario, Marco

    1994-01-01

    We here propose a segmentation algorithm of texture image for a computer vision system on a space robot. An improved adaptive resonance theory (ART2) for analog input patterns is adapted to classify the image based on a set of texture image features extracted by a fast spatial gray level dependence method (SGLDM). The nonlinear thresholding functions in input layer of the neural network have been constructed by two parts: firstly, to reduce the effects of image noises on the features, a set of sigmoid functions is chosen depending on the types of the feature; secondly, to enhance the contrast of the features, we adopt fuzzy mapping functions. The cluster number in output layer can be increased by an autogrowing mechanism constantly when a new pattern happens. Experimental results and original or segmented pictures are shown, including the comparison between this approach and K-means algorithm. The system written in C language is performed on a SUN-4/330 sparc-station with an image board IT-150 and a CCD camera.

  20. A portable low-cost 3D point cloud acquiring method based on structure light

    NASA Astrophysics Data System (ADS)

    Gui, Li; Zheng, Shunyi; Huang, Xia; Zhao, Like; Ma, Hao; Ge, Chao; Tang, Qiuxia

    2018-03-01

    A fast and low-cost method of acquiring 3D point cloud data is proposed in this paper, which can solve the problems of lack of texture information and low efficiency of acquiring point cloud data with only one pair of cheap cameras and projector. Firstly, we put forward a scene adaptive design method of random encoding pattern, that is, a coding pattern is projected onto the target surface in order to form texture information, which is favorable for image matching. Subsequently, we design an efficient dense matching algorithm that fits the projected texture. After the optimization of global algorithm and multi-kernel parallel development with the fusion of hardware and software, a fast acquisition system of point-cloud data is accomplished. Through the evaluation of point cloud accuracy, the results show that point cloud acquired by the method proposed in this paper has higher precision. What`s more, the scanning speed meets the demand of dynamic occasion and has better practical application value.

  1. Hybrid ANN optimized artificial fish swarm algorithm based classifier for classification of suspicious lesions in breast DCE-MRI

    NASA Astrophysics Data System (ADS)

    Janaki Sathya, D.; Geetha, K.

    2017-12-01

    Automatic mass or lesion classification systems are developed to aid in distinguishing between malignant and benign lesions present in the breast DCE-MR images, the systems need to improve both the sensitivity and specificity of DCE-MR image interpretation in order to be successful for clinical use. A new classifier (a set of features together with a classification method) based on artificial neural networks trained using artificial fish swarm optimization (AFSO) algorithm is proposed in this paper. The basic idea behind the proposed classifier is to use AFSO algorithm for searching the best combination of synaptic weights for the neural network. An optimal set of features based on the statistical textural features is presented. The investigational outcomes of the proposed suspicious lesion classifier algorithm therefore confirm that the resulting classifier performs better than other such classifiers reported in the literature. Therefore this classifier demonstrates that the improvement in both the sensitivity and specificity are possible through automated image analysis.

  2. Computer aided diagnosis based on medical image processing and artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Stoitsis, John; Valavanis, Ioannis; Mougiakakou, Stavroula G.; Golemati, Spyretta; Nikita, Alexandra; Nikita, Konstantina S.

    2006-12-01

    Advances in imaging technology and computer science have greatly enhanced interpretation of medical images, and contributed to early diagnosis. The typical architecture of a Computer Aided Diagnosis (CAD) system includes image pre-processing, definition of region(s) of interest, features extraction and selection, and classification. In this paper, the principles of CAD systems design and development are demonstrated by means of two examples. The first one focuses on the differentiation between symptomatic and asymptomatic carotid atheromatous plaques. For each plaque, a vector of texture and motion features was estimated, which was then reduced to the most robust ones by means of ANalysis of VAriance (ANOVA). Using fuzzy c-means, the features were then clustered into two classes. Clustering performances of 74%, 79%, and 84% were achieved for texture only, motion only, and combinations of texture and motion features, respectively. The second CAD system presented in this paper supports the diagnosis of focal liver lesions and is able to characterize liver tissue from Computed Tomography (CT) images as normal, hepatic cyst, hemangioma, and hepatocellular carcinoma. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of neural network classifiers. The achieved classification performance was 100%, 93.75% and 90.63% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.

  3. [Study on objectively evaluating skin aging according to areas of skin texture].

    PubMed

    Shan, Gaixin; Gan, Ping; He, Ling; Sun, Lu; Li, Qiannan; Jiang, Zheng; He, Xiangqian

    2015-02-01

    Skin aging principles play important roles in skin disease diagnosis, the evaluation of skin cosmetic effect, forensic identification and age identification in sports competition, etc. This paper proposes a new method to evaluate the skin aging objectively and quantitatively by skin texture area. Firstly, the enlarged skin image was acquired. Then, the skin texture image was segmented by using the iterative threshold method, and the skin ridge image was extracted according to the watershed algorithm. Finally, the skin ridge areas of the skin texture were extracted. The experiment data showed that the average areas of skin ridges, of both men and women, had a good correlation with age (the correlation coefficient r of male was 0.938, and the correlation coefficient r of female was 0.922), and skin texture area and age regression curve showed that the skin texture area increased with age. Therefore, it is effective to evaluate skin aging objectively by the new method presented in this paper.

  4. Deep-learning derived features for lung nodule classification with limited datasets

    NASA Astrophysics Data System (ADS)

    Thammasorn, P.; Wu, W.; Pierce, L. A.; Pipavath, S. N.; Lampe, P. D.; Houghton, A. M.; Haynor, D. R.; Chaovalitwongse, W. A.; Kinahan, P. E.

    2018-02-01

    Only a few percent of indeterminate nodules found in lung CT images are cancer. However, enabling earlier diagnosis is important to avoid invasive procedures or long-time surveillance to those benign nodules. We are evaluating a classification framework using radiomics features derived with a machine learning approach from a small data set of indeterminate CT lung nodule images. We used a retrospective analysis of 194 cases with pulmonary nodules in the CT images with or without contrast enhancement from lung cancer screening clinics. The nodules were contoured by a radiologist and texture features of the lesion were calculated. In addition, sematic features describing shape were categorized. We also explored a Multiband network, a feature derivation path that uses a modified convolutional neural network (CNN) with a Triplet Network. This was trained to create discriminative feature representations useful for variable-sized nodule classification. The diagnostic accuracy was evaluated for multiple machine learning algorithms using texture, shape, and CNN features. In the CT contrast-enhanced group, the texture or semantic shape features yielded an overall diagnostic accuracy of 80%. Use of a standard deep learning network in the framework for feature derivation yielded features that substantially underperformed compared to texture and/or semantic features. However, the proposed Multiband approach of feature derivation produced results similar in diagnostic accuracy to the texture and semantic features. While the Multiband feature derivation approach did not outperform the texture and/or semantic features, its equivalent performance indicates promise for future improvements to increase diagnostic accuracy. Importantly, the Multiband approach adapts readily to different size lesions without interpolation, and performed well with relatively small amount of training data.

  5. Automated vehicle detection in forward-looking infrared imagery.

    PubMed

    Der, Sandor; Chan, Alex; Nasrabadi, Nasser; Kwon, Heesung

    2004-01-10

    We describe an algorithm for the detection and clutter rejection of military vehicles in forward-looking infrared (FLIR) imagery. The detection algorithm is designed to be a prescreener that selects regions for further analysis and uses a spatial anomaly approach that looks for target-sized regions of the image that differ in texture, brightness, edge strength, or other spatial characteristics. The features are linearly combined to form a confidence image that is thresholded to find likely target locations. The clutter rejection portion uses target-specific information extracted from training samples to reduce the false alarms of the detector. The outputs of the clutter rejecter and detector are combined by a higher-level evidence integrator to improve performance over simple concatenation of the detector and clutter rejecter. The algorithm has been applied to a large number of FLIR imagery sets, and some of these results are presented here.

  6. Regional shape-based feature space for segmenting biomedical images using neural networks

    NASA Astrophysics Data System (ADS)

    Sundaramoorthy, Gopal; Hoford, John D.; Hoffman, Eric A.

    1993-07-01

    In biomedical images, structure of interest, particularly the soft tissue structures, such as the heart, airways, bronchial and arterial trees often have grey-scale and textural characteristics similar to other structures in the image, making it difficult to segment them using only gray- scale and texture information. However, these objects can be visually recognized by their unique shapes and sizes. In this paper we discuss, what we believe to be, a novel, simple scheme for extracting features based on regional shapes. To test the effectiveness of these features for image segmentation (classification), we use an artificial neural network and a statistical cluster analysis technique. The proposed shape-based feature extraction algorithm computes regional shape vectors (RSVs) for all pixels that meet a certain threshold criteria. The distance from each such pixel to a boundary is computed in 8 directions (or in 26 directions for a 3-D image). Together, these 8 (or 26) values represent the pixel's (or voxel's) RSV. All RSVs from an image are used to train a multi-layered perceptron neural network which uses these features to 'learn' a suitable classification strategy. To clearly distinguish the desired object from other objects within an image, several examples from inside and outside the desired object are used for training. Several examples are presented to illustrate the strengths and weaknesses of our algorithm. Both synthetic and actual biomedical images are considered. Future extensions to this algorithm are also discussed.

  7. Algorithms for Haptic Rendering of 3D Objects

    NASA Technical Reports Server (NTRS)

    Basdogan, Cagatay; Ho, Chih-Hao; Srinavasan, Mandayam

    2003-01-01

    Algorithms have been developed to provide haptic rendering of three-dimensional (3D) objects in virtual (that is, computationally simulated) environments. The goal of haptic rendering is to generate tactual displays of the shapes, hardnesses, surface textures, and frictional properties of 3D objects in real time. Haptic rendering is a major element of the emerging field of computer haptics, which invites comparison with computer graphics. We have already seen various applications of computer haptics in the areas of medicine (surgical simulation, telemedicine, haptic user interfaces for blind people, and rehabilitation of patients with neurological disorders), entertainment (3D painting, character animation, morphing, and sculpting), mechanical design (path planning and assembly sequencing), and scientific visualization (geophysical data analysis and molecular manipulation).

  8. Reconstruction of a digital core containing clay minerals based on a clustering algorithm.

    PubMed

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  9. Accuracy and variability of texture-based radiomics features of lung lesions across CT imaging conditions

    NASA Astrophysics Data System (ADS)

    Zheng, Yuese; Solomon, Justin; Choudhury, Kingshuk; Marin, Daniele; Samei, Ehsan

    2017-03-01

    Texture analysis for lung lesions is sensitive to changing imaging conditions but these effects are not well understood, in part, due to a lack of ground-truth phantoms with realistic textures. The purpose of this study was to explore the accuracy and variability of texture features across imaging conditions by comparing imaged texture features to voxel-based 3D printed textured lesions for which the true values are known. The seven features of interest were based on the Grey Level Co-Occurrence Matrix (GLCM). The lesion phantoms were designed with three shapes (spherical, lobulated, and spiculated), two textures (homogenous and heterogeneous), and two sizes (diameter < 1.5 cm and 1.5 cm < diameter < 3 cm), resulting in 24 lesions (with a second replica of each). The lesions were inserted into an anthropomorphic thorax phantom (Multipurpose Chest Phantom N1, Kyoto Kagaku) and imaged using a commercial CT system (GE Revolution) at three CTDI levels (0.67, 1.42, and 5.80 mGy), three reconstruction algorithms (FBP, IR-2, IR-4), four reconstruction kernel types (standard, soft, edge), and two slice thicknesses (0.6 mm and 5 mm). Another repeat scan was performed. Texture features from these images were extracted and compared to the ground truth feature values by percent relative error. The variability across imaging conditions was calculated by standard deviation across a certain imaging condition for all heterogeneous lesions. The results indicated that the acquisition method has a significant influence on the accuracy and variability of extracted features and as such, feature quantities are highly susceptible to imaging parameter choices. The most influential parameters were slice thickness and reconstruction kernels. Thin slice thickness and edge reconstruction kernel overall produced more accurate and more repeatable results. Some features (e.g., Contrast) were more accurately quantified under conditions that render higher spatial frequencies (e.g., thinner slice thickness and sharp kernels), while others (e.g., Homogeneity) showed more accurate quantification under conditions that render smoother images (e.g., higher dose and smoother kernels). Care should be exercised is relating texture features between cases of varied acquisition protocols, with need to cross calibration dependent on the feature of interest.

  10. Automatic segmentation of psoriasis lesions

    NASA Astrophysics Data System (ADS)

    Ning, Yang; Shi, Chenbo; Wang, Li; Shu, Chang

    2014-10-01

    The automatic segmentation of psoriatic lesions is widely researched these years. It is an important step in Computer-aid methods of calculating PASI for estimation of lesions. Currently those algorithms can only handle single erythema or only deal with scaling segmentation. In practice, scaling and erythema are often mixed together. In order to get the segmentation of lesions area - this paper proposes an algorithm based on Random forests with color and texture features. The algorithm has three steps. The first step, the polarized light is applied based on the skin's Tyndall-effect in the imaging to eliminate the reflection and Lab color space are used for fitting the human perception. The second step, sliding window and its sub windows are used to get textural feature and color feature. In this step, a feature of image roughness has been defined, so that scaling can be easily separated from normal skin. In the end, Random forests will be used to ensure the generalization ability of the algorithm. This algorithm can give reliable segmentation results even the image has different lighting conditions, skin types. In the data set offered by Union Hospital, more than 90% images can be segmented accurately.

  11. Pattern recognition analysis of polar clouds during summer and winter

    NASA Technical Reports Server (NTRS)

    Ebert, Elizabeth E.

    1992-01-01

    A pattern recognition algorithm is demonstrated which classifies eighteen surface and cloud types in high-latitude AVHRR imagery based on several spectral and textural features, then estimates the cloud properties (fractional coverage, albedo, and brightness temperature) using a hybrid histogram and spatial coherence technique. The summertime version of the algorithm uses both visible and infrared data (AVHRR channels 1-4), while the wintertime version uses only infrared data (AVHRR channels 3-5). Three days of low-resolution AVHRR imagery from the Arctic and Antarctic during January and July 1984 were analyzed for cloud type and fractional coverage. The analysis showed significant amounts of high cloudiness in the Arctic during one day in winter. The Antarctic summer scene was characterized by heavy cloud cover in the southern ocean and relatively clear conditions in the continental interior. A large region of extremely low brightness temperatures in East Antarctica during winter suggests the presence of polar stratospheric cloud.

  12. PET textural features stability and pattern discrimination power for radiomics analysis: An "ad-hoc" phantoms study.

    PubMed

    Presotto, L; Bettinardi, V; De Bernardi, E; Belli, M L; Cattaneo, G M; Broggi, S; Fiorino, C

    2018-06-01

    The analysis of PET images by textural features, also known as radiomics, shows promising results in tumor characterization. However, radiomic metrics (RMs) analysis is currently not standardized and the impact of the whole processing chain still needs deep investigation. We characterized the impact on RM values of: i) two discretization methods, ii) acquisition statistics, and iii) reconstruction algorithm. The influence of tumor volume and standardized-uptake-value (SUV) on RM was also investigated. The Chang-Gung-Image-Texture-Analysis (CGITA) software was used to calculate 39 RMs using phantom data. Thirty noise realizations were acquired to measure statistical effect size indicators for each RM. The parameter η 2 (fraction of variance explained by the nuisance factor) was used to assess the effect of categorical variables, considering η 2  < 20% and 20% < η 2  < 40% as representative of a "negligible" and a "small" dependence respectively. The Cohen's d was used as discriminatory power to quantify the separation of two distributions. We found the discretization method based on fixed-bin-number (FBN) to outperform the one based on fixed-bin-size in units of SUV (FBS), as the latter shows a higher SUV dependence, with 30 RMs showing η 2  > 20%. FBN was also less influenced by the acquisition and reconstruction setup:with FBN 37 RMs had η 2  < 40%, only 20 with FBS. Most RMs showed a good discriminatory power among heterogeneous PET signals (for FBN: 29 out of 39 RMs with d > 3). For RMs analysis, FBN should be preferred. A group of 21 RMs was suggested for PET radiomics analysis. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: I, theoretical foundations.

    PubMed

    Pezzotti, Giuseppe; Zhu, Wenliang; Boffelli, Marco; Adachi, Tetsuya; Ichioka, Hiroaki; Yamamoto, Toshiro; Marunaka, Yoshinori; Kanamura, Narisato

    2015-05-01

    The Raman spectroscopic method has quantitatively been applied to the analysis of local crystallographic orientation in both single-crystal hydroxyapatite and human teeth. Raman selection rules for all the vibrational modes of the hexagonal structure were expanded into explicit functions of Euler angles in space and six Raman tensor elements (RTE). A theoretical treatment has also been put forward according to the orientation distribution function (ODF) formalism, which allows one to resolve the statistical orientation patterns of the nm-sized hydroxyapatite crystallite comprised in the Raman microprobe. Close-form solutions could be obtained for the Euler angles and their statistical distributions resolved with respect to the direction of the average texture axis. Polarized Raman spectra from single-crystalline hydroxyapatite and textured polycrystalline (teeth enamel) samples were compared, and a validation of the proposed Raman method could be obtained through confirming the agreement between RTE values obtained from different samples.

  14. Computerized multiple image analysis on mammograms: performance improvement of nipple identification for registration of multiple views using texture convergence analyses

    NASA Astrophysics Data System (ADS)

    Zhou, Chuan; Chan, Heang-Ping; Sahiner, Berkman; Hadjiiski, Lubomir M.; Paramagul, Chintana

    2004-05-01

    Automated registration of multiple mammograms for CAD depends on accurate nipple identification. We developed two new image analysis techniques based on geometric and texture convergence analyses to improve the performance of our previously developed nipple identification method. A gradient-based algorithm is used to automatically track the breast boundary. The nipple search region along the boundary is then defined by geometric convergence analysis of the breast shape. Three nipple candidates are identified by detecting the changes along the gray level profiles inside and outside the boundary and the changes in the boundary direction. A texture orientation-field analysis method is developed to estimate the fourth nipple candidate based on the convergence of the tissue texture pattern towards the nipple. The final nipple location is determined from the four nipple candidates by a confidence analysis. Our training and test data sets consisted of 419 and 368 randomly selected mammograms, respectively. The nipple location identified on each image by an experienced radiologist was used as the ground truth. For 118 of the training and 70 of the test images, the radiologist could not positively identify the nipple, but provided an estimate of its location. These were referred to as invisible nipple images. In the training data set, 89.37% (269/301) of the visible nipples and 81.36% (96/118) of the invisible nipples could be detected within 1 cm of the truth. In the test data set, 92.28% (275/298) of the visible nipples and 67.14% (47/70) of the invisible nipples were identified within 1 cm of the truth. In comparison, our previous nipple identification method without using the two convergence analysis techniques detected 82.39% (248/301), 77.12% (91/118), 89.93% (268/298) and 54.29% (38/70) of the nipples within 1 cm of the truth for the visible and invisible nipples in the training and test sets, respectively. The results indicate that the nipple on mammograms can be detected accurately. This will be an important step towards automatic multiple image analysis for CAD techniques.

  15. Automatic Image Registration of Multimodal Remotely Sensed Data with Global Shearlet Features

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2015-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone.

  16. Automatic Image Registration of Multi-Modal Remotely Sensed Data with Global Shearlet Features

    PubMed Central

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2017-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone. PMID:29123329

  17. Diagnostic Performance of Mammographic Texture Analysis in the Differential Diagnosis of Benign and Malignant Breast Tumors.

    PubMed

    Li, Zhiming; Yu, Lan; Wang, Xin; Yu, Haiyang; Gao, Yuanxiang; Ren, Yande; Wang, Gang; Zhou, Xiaoming

    2017-11-09

    The purpose of this study was to investigate the diagnostic performance of mammographic texture analysis in the differential diagnosis of benign and malignant breast tumors. Digital mammography images were obtained from the Picture Archiving and Communication System at our institute. Texture features of mammographic images were calculated. Mann-Whitney U test was used to identify differences between the benign and malignant group. The receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic performance of texture features. Significant differences of texture features of histogram, gray-level co-occurrence matrix (GLCM) and run length matrix (RLM) were found between the benign and malignant breast group (P < .05). The area under the ROC (AUROC) of histogram, GLCM, and RLM were 0.800, 0.787, and 0.761, with no differences between them (P > .05). The AUROCs of imaging-based diagnosis, texture analysis, and imaging-based diagnosis combined with texture analysis were 0.873, 0.863, and 0.961, respectively. When imaging-based diagnosis was combined with texture analysis, the AUROC was higher than that of imaging-based diagnosis or texture analysis (P < .05). Mammographic texture analysis is a reliable technique for differential diagnosis of benign and malignant breast tumors. Furthermore, the combination of imaging-based diagnosis and texture analysis can significantly improve diagnostic performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Wavelet-based image analysis system for soil texture analysis

    NASA Astrophysics Data System (ADS)

    Sun, Yun; Long, Zhiling; Jang, Ping-Rey; Plodinec, M. John

    2003-05-01

    Soil texture is defined as the relative proportion of clay, silt and sand found in a given soil sample. It is an important physical property of soil that affects such phenomena as plant growth and agricultural fertility. Traditional methods used to determine soil texture are either time consuming (hydrometer), or subjective and experience-demanding (field tactile evaluation). Considering that textural patterns observed at soil surfaces are uniquely associated with soil textures, we propose an innovative approach to soil texture analysis, in which wavelet frames-based features representing texture contents of soil images are extracted and categorized by applying a maximum likelihood criterion. The soil texture analysis system has been tested successfully with an accuracy of 91% in classifying soil samples into one of three general categories of soil textures. In comparison with the common methods, this wavelet-based image analysis approach is convenient, efficient, fast, and objective.

  19. Predicting the Coupling Properties of Axially-Textured Materials.

    PubMed

    Fuentes-Cobas, Luis E; Muñoz-Romero, Alejandro; Montero-Cabrera, María E; Fuentes-Montero, Luis; Fuentes-Montero, María E

    2013-10-30

    A description of methods and computer programs for the prediction of "coupling properties" in axially-textured polycrystals is presented. Starting data are the single-crystal properties, texture and stereography. The validity and proper protocols for applying the Voigt, Reuss and Hill approximations to estimate coupling properties effective values is analyzed. Working algorithms for predicting mentioned averages are given. Bunge's symmetrized spherical harmonics expansion of orientation distribution functions, inverse pole figures and (single and polycrystals) physical properties is applied in all stages of the proposed methodology. The established mathematical route has been systematized in a working computer program. The discussion of piezoelectricity in a representative textured ferro-piezoelectric ceramic illustrates the application of the proposed methodology. Polycrystal coupling properties, predicted by the suggested route, are fairly close to experimentally measured ones.

  20. Predicting the Coupling Properties of Axially-Textured Materials

    PubMed Central

    Fuentes-Cobas, Luis E.; Muñoz-Romero, Alejandro; Montero-Cabrera, María E.; Fuentes-Montero, Luis; Fuentes-Montero, María E.

    2013-01-01

    A description of methods and computer programs for the prediction of “coupling properties” in axially-textured polycrystals is presented. Starting data are the single-crystal properties, texture and stereography. The validity and proper protocols for applying the Voigt, Reuss and Hill approximations to estimate coupling properties effective values is analyzed. Working algorithms for predicting mentioned averages are given. Bunge’s symmetrized spherical harmonics expansion of orientation distribution functions, inverse pole figures and (single and polycrystals) physical properties is applied in all stages of the proposed methodology. The established mathematical route has been systematized in a working computer program. The discussion of piezoelectricity in a representative textured ferro-piezoelectric ceramic illustrates the application of the proposed methodology. Polycrystal coupling properties, predicted by the suggested route, are fairly close to experimentally measured ones. PMID:28788370

  1. Breast histopathology image segmentation using spatio-colour-texture based graph partition method.

    PubMed

    Belsare, A D; Mushrif, M M; Pangarkar, M A; Meshram, N

    2016-06-01

    This paper proposes a novel integrated spatio-colour-texture based graph partitioning method for segmentation of nuclear arrangement in tubules with a lumen or in solid islands without a lumen from digitized Hematoxylin-Eosin stained breast histology images, in order to automate the process of histology breast image analysis to assist the pathologists. We propose a new similarity based super pixel generation method and integrate it with texton representation to form spatio-colour-texture map of Breast Histology Image. Then a new weighted distance based similarity measure is used for generation of graph and final segmentation using normalized cuts method is obtained. The extensive experiments carried shows that the proposed algorithm can segment nuclear arrangement in normal as well as malignant duct in breast histology tissue image. For evaluation of the proposed method the ground-truth image database of 100 malignant and nonmalignant breast histology images is created with the help of two expert pathologists and the quantitative evaluation of proposed breast histology image segmentation has been performed. It shows that the proposed method outperforms over other methods. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  2. Nonuniform multiview color texture mapping of image sequence and three-dimensional model for faded cultural relics with sift feature points

    NASA Astrophysics Data System (ADS)

    Li, Na; Gong, Xingyu; Li, Hongan; Jia, Pengtao

    2018-01-01

    For faded relics, such as Terracotta Army, the 2D-3D registration between an optical camera and point cloud model is an important part for color texture reconstruction and further applications. This paper proposes a nonuniform multiview color texture mapping for the image sequence and the three-dimensional (3D) model of point cloud collected by Handyscan3D. We first introduce nonuniform multiview calibration, including the explanation of its algorithm principle and the analysis of its advantages. We then establish transformation equations based on sift feature points for the multiview image sequence. At the same time, the selection of nonuniform multiview sift feature points is introduced in detail. Finally, the solving process of the collinear equations based on multiview perspective projection is given with three steps and the flowchart. In the experiment, this method is applied to the color reconstruction of the kneeling figurine, Tangsancai lady, and general figurine. These results demonstrate that the proposed method provides an effective support for the color reconstruction of the faded cultural relics and be able to improve the accuracy of 2D-3D registration between the image sequence and the point cloud model.

  3. Classification of grass pollen through the quantitative analysis of surface ornamentation and texture.

    PubMed

    Mander, Luke; Li, Mao; Mio, Washington; Fowlkes, Charless C; Punyasena, Surangi W

    2013-11-07

    Taxonomic identification of pollen and spores uses inherently qualitative descriptions of morphology. Consequently, identifications are restricted to categories that can be reliably classified by multiple analysts, resulting in the coarse taxonomic resolution of the pollen and spore record. Grass pollen represents an archetypal example; it is not routinely identified below family level. To address this issue, we developed quantitative morphometric methods to characterize surface ornamentation and classify grass pollen grains. This produces a means of quantifying morphological features that are traditionally described qualitatively. We used scanning electron microscopy to image 240 specimens of pollen from 12 species within the grass family (Poaceae). We classified these species by developing algorithmic features that quantify the size and density of sculptural elements on the pollen surface, and measure the complexity of the ornamentation they form. These features yielded a classification accuracy of 77.5%. In comparison, a texture descriptor based on modelling the statistical distribution of brightness values in image patches yielded a classification accuracy of 85.8%, and seven human subjects achieved accuracies between 68.33 and 81.67%. The algorithmic features we developed directly relate to biologically meaningful features of grass pollen morphology, and could facilitate direct interpretation of unsupervised classification results from fossil material.

  4. Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours.

    PubMed

    Fetit, Ahmed E; Novak, Jan; Peet, Andrew C; Arvanitits, Theodoros N

    2015-09-01

    The aim of this study was to assess the efficacy of three-dimensional texture analysis (3D TA) of conventional MR images for the classification of childhood brain tumours in a quantitative manner. The dataset comprised pre-contrast T1 - and T2-weighted MRI series obtained from 48 children diagnosed with brain tumours (medulloblastoma, pilocytic astrocytoma and ependymoma). 3D and 2D TA were carried out on the images using first-, second- and higher order statistical methods. Six supervised classification algorithms were trained with the most influential 3D and 2D textural features, and their performances in the classification of tumour types, using the two feature sets, were compared. Model validation was carried out using the leave-one-out cross-validation (LOOCV) approach, as well as stratified 10-fold cross-validation, in order to provide additional reassurance. McNemar's test was used to test the statistical significance of any improvements demonstrated by 3D-trained classifiers. Supervised learning models trained with 3D textural features showed improved classification performances to those trained with conventional 2D features. For instance, a neural network classifier showed 12% improvement in area under the receiver operator characteristics curve (AUC) and 19% in overall classification accuracy. These improvements were statistically significant for four of the tested classifiers, as per McNemar's tests. This study shows that 3D textural features extracted from conventional T1 - and T2-weighted images can improve the diagnostic classification of childhood brain tumours. Long-term benefits of accurate, yet non-invasive, diagnostic aids include a reduction in surgical procedures, improvement in surgical and therapy planning, and support of discussions with patients' families. It remains necessary, however, to extend the analysis to a multicentre cohort in order to assess the scalability of the techniques used. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Introduction to Vector Field Visualization

    NASA Technical Reports Server (NTRS)

    Kao, David; Shen, Han-Wei

    2010-01-01

    Vector field visualization techniques are essential to help us understand the complex dynamics of flow fields. These can be found in a wide range of applications such as study of flows around an aircraft, the blood flow in our heart chambers, ocean circulation models, and severe weather predictions. The vector fields from these various applications can be visually depicted using a number of techniques such as particle traces and advecting textures. In this tutorial, we present several fundamental algorithms in flow visualization including particle integration, particle tracking in time-dependent flows, and seeding strategies. For flows near surfaces, a wide variety of synthetic texture-based algorithms have been developed to depict near-body flow features. The most common approach is based on the Line Integral Convolution (LIC) algorithm. There also exist extensions of LIC to support more flexible texture generations for 3D flow data. This tutorial reviews these algorithms. Tensor fields are found in several real-world applications and also require the aid of visualization to help users understand their data sets. Examples where one can find tensor fields include mechanics to see how material respond to external forces, civil engineering and geomechanics of roads and bridges, and the study of neural pathway via diffusion tensor imaging. This tutorial will provide an overview of the different tensor field visualization techniques, discuss basic tensor decompositions, and go into detail on glyph based methods, deformation based methods, and streamline based methods. Practical examples will be used when presenting the methods; and applications from some case studies will be used as part of the motivation.

  6. Cell Motility Dynamics: A Novel Segmentation Algorithm to Quantify Multi-Cellular Bright Field Microscopy Images

    PubMed Central

    Zaritsky, Assaf; Natan, Sari; Horev, Judith; Hecht, Inbal; Wolf, Lior; Ben-Jacob, Eshel; Tsarfaty, Ilan

    2011-01-01

    Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena. We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating enhanced quantitative analyses and better understanding of cell motility. We present MultiCellSeg, a segmentation algorithm to separate between multi-cellular and background regions for bright field images, which is based on classification of local patches within an image: a cascade of Support Vector Machines (SVMs) is applied using basic image features. Post processing includes additional classification and graph-cut segmentation to reclassify erroneous regions and refine the segmentation. This approach leads to a parameter-free and robust algorithm. Comparison to an alternative algorithm on wound healing assay images demonstrates its superiority. The proposed approach was used to evaluate common cell migration models such as wound healing and scatter assay. It was applied to quantify the acceleration effect of Hepatocyte growth factor/scatter factor (HGF/SF) on healing rate in a time lapse confocal microscopy wound healing assay and demonstrated that the healing rate is linear in both treated and untreated cells, and that HGF/SF accelerates the healing rate by approximately two-fold. A novel fully automated, accurate, zero-parameters method to classify and score scatter-assay images was developed and demonstrated that multi-cellular texture is an excellent descriptor to measure HGF/SF-induced cell scattering. We show that exploitation of textural information from differential interference contrast (DIC) images on the multi-cellular level can prove beneficial for the analyses of wound healing and scatter assays. The proposed approach is generic and can be used alone or alongside traditional fluorescence single-cell processing to perform objective, accurate quantitative analyses for various biological applications. PMID:22096600

  7. Cell motility dynamics: a novel segmentation algorithm to quantify multi-cellular bright field microscopy images.

    PubMed

    Zaritsky, Assaf; Natan, Sari; Horev, Judith; Hecht, Inbal; Wolf, Lior; Ben-Jacob, Eshel; Tsarfaty, Ilan

    2011-01-01

    Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena. We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating enhanced quantitative analyses and better understanding of cell motility. We present MultiCellSeg, a segmentation algorithm to separate between multi-cellular and background regions for bright field images, which is based on classification of local patches within an image: a cascade of Support Vector Machines (SVMs) is applied using basic image features. Post processing includes additional classification and graph-cut segmentation to reclassify erroneous regions and refine the segmentation. This approach leads to a parameter-free and robust algorithm. Comparison to an alternative algorithm on wound healing assay images demonstrates its superiority. The proposed approach was used to evaluate common cell migration models such as wound healing and scatter assay. It was applied to quantify the acceleration effect of Hepatocyte growth factor/scatter factor (HGF/SF) on healing rate in a time lapse confocal microscopy wound healing assay and demonstrated that the healing rate is linear in both treated and untreated cells, and that HGF/SF accelerates the healing rate by approximately two-fold. A novel fully automated, accurate, zero-parameters method to classify and score scatter-assay images was developed and demonstrated that multi-cellular texture is an excellent descriptor to measure HGF/SF-induced cell scattering. We show that exploitation of textural information from differential interference contrast (DIC) images on the multi-cellular level can prove beneficial for the analyses of wound healing and scatter assays. The proposed approach is generic and can be used alone or alongside traditional fluorescence single-cell processing to perform objective, accurate quantitative analyses for various biological applications.

  8. Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm.

    PubMed

    Al Ajmi, Eiman; Forghani, Behzad; Reinhold, Caroline; Bayat, Maryam; Forghani, Reza

    2018-06-01

    There is a rich amount of quantitative information in spectral datasets generated from dual-energy CT (DECT). In this study, we compare the performance of texture analysis performed on multi-energy datasets to that of virtual monochromatic images (VMIs) at 65 keV only, using classification of the two most common benign parotid neoplasms as a testing paradigm. Forty-two patients with pathologically proven Warthin tumour (n = 25) or pleomorphic adenoma (n = 17) were evaluated. Texture analysis was performed on VMIs ranging from 40 to 140 keV in 5-keV increments (multi-energy analysis) or 65-keV VMIs only, which is typically considered equivalent to single-energy CT. Random forest (RF) models were constructed for outcome prediction using separate randomly selected training and testing sets or the entire patient set. Using multi-energy texture analysis, tumour classification in the independent testing set had accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 92%, 86%, 100%, 100%, and 83%, compared to 75%, 57%, 100%, 100%, and 63%, respectively, for single-energy analysis. Multi-energy texture analysis demonstrates superior performance compared to single-energy texture analysis of VMIs at 65 keV for classification of benign parotid tumours. • We present and validate a paradigm for texture analysis of DECT scans. • Multi-energy dataset texture analysis is superior to single-energy dataset texture analysis. • DECT texture analysis has high accura\\cy for diagnosis of benign parotid tumours. • DECT texture analysis with machine learning can enhance non-invasive diagnostic tumour evaluation.

  9. Adjoint-based optimization of mechanical performance in polycrystalline materials and structures through texture control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Grace; Brown, Judith Alice; Bishop, Joseph E.

    The texture of a polycrystalline material refers to the preferred orientation of the grains within the material. In metallic materials, texture can significantly affect the mechanical properties such as elastic moduli, yield stress, strain hardening, and fracture toughness. Recent advances in additive manufacturing of metallic materials offer the possibility in the not too distant future of controlling the spatial variation of texture. In this work, we investigate the advantages, in terms of mechanical performance, of allowing the texture to vary spatially. We use an adjoint-based gradient optimization algorithm within a finite element solver (COMSOL) to optimize several engineering quantities ofmore » interest in a simple structure (hole in a plate) and loading (uniaxial tension) condition. As a first step to general texture optimization, we consider the idealized case of a pure fiber texture in which the homogenized properties are transversely isotropic. In this special case, the only spatially varying design variables are the three Euler angles that prescribe the orientation of the homogenized material at each point within the structure. This work paves a new way to design metallic materials for tunable mechanical properties at the microstructure level.« less

  10. Deep learning and texture-based semantic label fusion for brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Vidyaratne, L.; Alam, M.; Shboul, Z.; Iftekharuddin, K. M.

    2018-02-01

    Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.

  11. Deep Learning and Texture-Based Semantic Label Fusion for Brain Tumor Segmentation.

    PubMed

    Vidyaratne, L; Alam, M; Shboul, Z; Iftekharuddin, K M

    2018-01-01

    Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.

  12. Identification and classification of similar looking food grains

    NASA Astrophysics Data System (ADS)

    Anami, B. S.; Biradar, Sunanda D.; Savakar, D. G.; Kulkarni, P. V.

    2013-01-01

    This paper describes the comparative study of Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers by taking a case study of identification and classification of four pairs of similar looking food grains namely, Finger Millet, Mustard, Soyabean, Pigeon Pea, Aniseed, Cumin-seeds, Split Greengram and Split Blackgram. Algorithms are developed to acquire and process color images of these grains samples. The developed algorithms are used to extract 18 colors-Hue Saturation Value (HSV), and 42 wavelet based texture features. Back Propagation Neural Network (BPNN)-based classifier is designed using three feature sets namely color - HSV, wavelet-texture and their combined model. SVM model for color- HSV model is designed for the same set of samples. The classification accuracies ranging from 93% to 96% for color-HSV, ranging from 78% to 94% for wavelet texture model and from 92% to 97% for combined model are obtained for ANN based models. The classification accuracy ranging from 80% to 90% is obtained for color-HSV based SVM model. Training time required for the SVM based model is substantially lesser than ANN for the same set of images.

  13. Correlating objective and subjective evaluation of texture appearance with applications to camera phone imaging

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan B.; Coppola, Stephen M.; Jin, Elaine W.; Chen, Ying; Clark, James H.; Mauer, Timothy A.

    2009-01-01

    Texture appearance is an important component of photographic image quality as well as object recognition. Noise cleaning algorithms are used to decrease sensor noise of digital images, but can hinder texture elements in the process. The Camera Phone Image Quality (CPIQ) initiative of the International Imaging Industry Association (I3A) is developing metrics to quantify texture appearance. Objective and subjective experimental results of the texture metric development are presented in this paper. Eight levels of noise cleaning were applied to ten photographic scenes that included texture elements such as faces, landscapes, architecture, and foliage. Four companies (Aptina Imaging, LLC, Hewlett-Packard, Eastman Kodak Company, and Vista Point Technologies) have performed psychophysical evaluations of overall image quality using one of two methods of evaluation. Both methods presented paired comparisons of images on thin film transistor liquid crystal displays (TFT-LCD), but the display pixel pitch and viewing distance differed. CPIQ has also been developing objective texture metrics and targets that were used to analyze the same eight levels of noise cleaning. The correlation of the subjective and objective test results indicates that texture perception can be modeled with an objective metric. The two methods of psychophysical evaluation exhibited high correlation despite the differences in methodology.

  14. Texture segmentation of non-cooperative spacecrafts images based on wavelet and fractal dimension

    NASA Astrophysics Data System (ADS)

    Wu, Kanzhi; Yue, Xiaokui

    2011-06-01

    With the increase of on-orbit manipulations and space conflictions, missions such as tracking and capturing the target spacecrafts are aroused. Unlike cooperative spacecrafts, fixing beacons or any other marks on the targets is impossible. Due to the unknown shape and geometry features of non-cooperative spacecraft, in order to localize the target and obtain the latitude, we need to segment the target image and recognize the target from the background. The data and errors during the following procedures such as feature extraction and matching can also be reduced. Multi-resolution analysis of wavelet theory reflects human beings' recognition towards images from low resolution to high resolution. In addition, spacecraft is the only man-made object in the image compared to the natural background and the differences will be certainly observed between the fractal dimensions of target and background. Combined wavelet transform and fractal dimension, in this paper, we proposed a new segmentation algorithm for the images which contains complicated background such as the universe and planet surfaces. At first, Daubechies wavelet basis is applied to decompose the image in both x axis and y axis, thus obtain four sub-images. Then, calculate the fractal dimensions in four sub-images using different methods; after analyzed the results of fractal dimensions in sub-images, we choose Differential Box Counting in low resolution image as the principle to segment the texture which has the greatest divergences between different sub-images. This paper also presents the results of experiments by using the algorithm above. It is demonstrated that an accurate texture segmentation result can be obtained using the proposed technique.

  15. Preliminary evaluation of a fully automated quantitative framework for characterizing general breast tissue histology via color histogram and color texture analysis

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Gastounioti, Aimilia; Batiste, Rebecca C.; Kontos, Despina; Feldman, Michael D.

    2016-03-01

    Visual characterization of histologic specimens is known to suffer from intra- and inter-observer variability. To help address this, we developed an automated framework for characterizing digitized histology specimens based on a novel application of color histogram and color texture analysis. We perform a preliminary evaluation of this framework using a set of 73 trichrome-stained, digitized slides of normal breast tissue which were visually assessed by an expert pathologist in terms of the percentage of collagenous stroma, stromal collagen density, duct-lobular unit density and the presence of elastosis. For each slide, our algorithm automatically segments the tissue region based on the lightness channel in CIELAB colorspace. Within each tissue region, a color histogram feature vector is extracted using a common color palette for trichrome images generated with a previously described method. Then, using a whole-slide, lattice-based methodology, color texture maps are generated using a set of color co-occurrence matrix statistics: contrast, correlation, energy and homogeneity. The extracted features sets are compared to the visually assessed tissue characteristics. Overall, the extracted texture features have high correlations to both the percentage of collagenous stroma (r=0.95, p<0.001) and duct-lobular unit density (r=0.71, p<0.001) seen in the tissue samples, and several individual features were associated with either collagen density and/or the presence of elastosis (p<=0.05). This suggests that the proposed framework has promise as a means to quantitatively extract descriptors reflecting tissue-level characteristics and thus could be useful in detecting and characterizing histological processes in digitized histology specimens.

  16. Nonlinear histogram binning for quantitative analysis of lung tissue fibrosis in high-resolution CT data

    NASA Astrophysics Data System (ADS)

    Zavaletta, Vanessa A.; Bartholmai, Brian J.; Robb, Richard A.

    2007-03-01

    Diffuse lung diseases, such as idiopathic pulmonary fibrosis (IPF), can be characterized and quantified by analysis of volumetric high resolution CT scans of the lungs. These data sets typically have dimensions of 512 x 512 x 400. It is too subjective and labor intensive for a radiologist to analyze each slice and quantify regional abnormalities manually. Thus, computer aided techniques are necessary, particularly texture analysis techniques which classify various lung tissue types. Second and higher order statistics which relate the spatial variation of the intensity values are good discriminatory features for various textures. The intensity values in lung CT scans range between [-1024, 1024]. Calculation of second order statistics on this range is too computationally intensive so the data is typically binned between 16 or 32 gray levels. There are more effective ways of binning the gray level range to improve classification. An optimal and very efficient way to nonlinearly bin the histogram is to use a dynamic programming algorithm. The objective of this paper is to show that nonlinear binning using dynamic programming is computationally efficient and improves the discriminatory power of the second and higher order statistics for more accurate quantification of diffuse lung disease.

  17. Introducing two Random Forest based methods for cloud detection in remote sensing images

    NASA Astrophysics Data System (ADS)

    Ghasemian, Nafiseh; Akhoondzadeh, Mehdi

    2018-07-01

    Cloud detection is a necessary phase in satellite images processing to retrieve the atmospheric and lithospheric parameters. Currently, some cloud detection methods based on Random Forest (RF) model have been proposed but they do not consider both spectral and textural characteristics of the image. Furthermore, they have not been tested in the presence of snow/ice. In this paper, we introduce two RF based algorithms, Feature Level Fusion Random Forest (FLFRF) and Decision Level Fusion Random Forest (DLFRF) to incorporate visible, infrared (IR) and thermal spectral and textural features (FLFRF) including Gray Level Co-occurrence Matrix (GLCM) and Robust Extended Local Binary Pattern (RELBP_CI) or visible, IR and thermal classifiers (DLFRF) for highly accurate cloud detection on remote sensing images. FLFRF first fuses visible, IR and thermal features. Thereafter, it uses the RF model to classify pixels to cloud, snow/ice and background or thick cloud, thin cloud and background. DLFRF considers visible, IR and thermal features (both spectral and textural) separately and inserts each set of features to RF model. Then, it holds vote matrix of each run of the model. Finally, it fuses the classifiers using the majority vote method. To demonstrate the effectiveness of the proposed algorithms, 10 Terra MODIS and 15 Landsat 8 OLI/TIRS images with different spatial resolutions are used in this paper. Quantitative analyses are based on manually selected ground truth data. Results show that after adding RELBP_CI to input feature set cloud detection accuracy improves. Also, the average cloud kappa values of FLFRF and DLFRF on MODIS images (1 and 0.99) are higher than other machine learning methods, Linear Discriminate Analysis (LDA), Classification And Regression Tree (CART), K Nearest Neighbor (KNN) and Support Vector Machine (SVM) (0.96). The average snow/ice kappa values of FLFRF and DLFRF on MODIS images (1 and 0.85) are higher than other traditional methods. The quantitative values on Landsat 8 images show similar trend. Consequently, while SVM and K-nearest neighbor show overestimation in predicting cloud and snow/ice pixels, our Random Forest (RF) based models can achieve higher cloud, snow/ice kappa values on MODIS and thin cloud, thick cloud and snow/ice kappa values on Landsat 8 images. Our algorithms predict both thin and thick cloud on Landsat 8 images while the existing cloud detection algorithm, Fmask cannot discriminate them. Compared to the state-of-the-art methods, our algorithms have acquired higher average cloud and snow/ice kappa values for different spatial resolutions.

  18. Feature extraction for face recognition via Active Shape Model (ASM) and Active Appearance Model (AAM)

    NASA Astrophysics Data System (ADS)

    Iqtait, M.; Mohamad, F. S.; Mamat, M.

    2018-03-01

    Biometric is a pattern recognition system which is used for automatic recognition of persons based on characteristics and features of an individual. Face recognition with high recognition rate is still a challenging task and usually accomplished in three phases consisting of face detection, feature extraction, and expression classification. Precise and strong location of trait point is a complicated and difficult issue in face recognition. Cootes proposed a Multi Resolution Active Shape Models (ASM) algorithm, which could extract specified shape accurately and efficiently. Furthermore, as the improvement of ASM, Active Appearance Models algorithm (AAM) is proposed to extracts both shape and texture of specified object simultaneously. In this paper we give more details about the two algorithms and give the results of experiments, testing their performance on one dataset of faces. We found that the ASM is faster and gains more accurate trait point location than the AAM, but the AAM gains a better match to the texture.

  19. Stereo matching algorithm based on double components model

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao; Ou, Kejun; Zhao, Jianxin; Mou, Xingang

    2018-03-01

    The tiny wires are the great threat to the safety of the UAV flight. Because they have only several pixels isolated far from the background, while most of the existing stereo matching methods require a certain area of the support region to improve the robustness, or assume the depth dependence of the neighboring pixels to meet requirement of global or semi global optimization method. So there will be some false alarms even failures when images contains tiny wires. A new stereo matching algorithm is approved in the paper based on double components model. According to different texture types the input image is decomposed into two independent component images. One contains only sparse wire texture image and another contains all remaining parts. Different matching schemes are adopted for each component image pairs. Experiment proved that the algorithm can effectively calculate the depth image of complex scene of patrol UAV, which can detect tiny wires besides the large size objects. Compared with the current mainstream method it has obvious advantages.

  20. SU-E-J-113: Effects of Deformable Registration On First-Order Texture Maps Calculated From Thoracic Lung CT Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C; Cunliffe, A; Al-Hallaq, H

    Purpose: To determine the stability of eight first-order texture features following the deformable registration of serial computed tomography (CT) scans. Methods: CT scans at two different time points from 10 patients deemed to have no lung abnormalities by a radiologist were collected. Following lung segmentation using an in-house program, texture maps were calculated from 32×32-pixel regions of interest centered at every pixel in the lungs. The texture feature value of the ROI was assigned to the center pixel of the ROI in the corresponding location of the texture map. Pixels in the square ROI not contained within the segmented lungmore » were not included in the calculation. To quantify the agreement between ROI texture features in corresponding pixels of the baseline and follow-up texture maps, the Fraunhofer MEVIS EMPIRE10 deformable registration algorithm was used to register the baseline and follow-up scans. Bland-Altman analysis was used to compare registered scan pairs by computing normalized bias (nBias), defined as the feature value change normalized to the mean feature value, and normalized range of agreement (nRoA), defined as the range spanned by the 95% limits of agreement normalized to the mean feature value. Results: Each patient’s scans contained between 6.8–15.4 million ROIs. All of the first-order features investigated were found to have an nBias value less than 0.04% and an nRoA less than 19%, indicating that the variability introduced by deformable registration was low. Conclusion: The eight first-order features investigated were found to be registration stable. Changes in CT texture maps could allow for temporal-spatial evaluation of the evolution of lung abnormalities relating to a variety of diseases on a patient-by-patient basis. SGA and HA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology. Research reported in this publication was supported by the National Institute Of General Medical Sciences of the National Institutes of Health under Award Number R25GM109439.« less

  1. Unified algorithm of cone optics to compute solar flux on central receiver

    NASA Astrophysics Data System (ADS)

    Grigoriev, Victor; Corsi, Clotilde

    2017-06-01

    Analytical algorithms to compute flux distribution on central receiver are considered as a faster alternative to ray tracing. They have quite too many modifications, with HFLCAL and UNIZAR being the most recognized and verified. In this work, a generalized algorithm is presented which is valid for arbitrary sun shape of radial symmetry. Heliostat mirrors can have a nonrectangular profile, and the effects of shading and blocking, strong defocusing and astigmatism can be taken into account. The algorithm is suitable for parallel computing and can benefit from hardware acceleration of polygon texturing.

  2. A photoacoustic imaging reconstruction method based on directional total variation with adaptive directivity.

    PubMed

    Wang, Jin; Zhang, Chen; Wang, Yuanyuan

    2017-05-30

    In photoacoustic tomography (PAT), total variation (TV) based iteration algorithm is reported to have a good performance in PAT image reconstruction. However, classical TV based algorithm fails to preserve the edges and texture details of the image because it is not sensitive to the direction of the image. Therefore, it is of great significance to develop a new PAT reconstruction algorithm to effectively solve the drawback of TV. In this paper, a directional total variation with adaptive directivity (DDTV) model-based PAT image reconstruction algorithm, which weightedly sums the image gradients based on the spatially varying directivity pattern of the image is proposed to overcome the shortcomings of TV. The orientation field of the image is adaptively estimated through a gradient-based approach. The image gradients are weighted at every pixel based on both its anisotropic direction and another parameter, which evaluates the estimated orientation field reliability. An efficient algorithm is derived to solve the iteration problem associated with DDTV and possessing directivity of the image adaptively updated for each iteration step. Several texture images with various directivity patterns are chosen as the phantoms for the numerical simulations. The 180-, 90- and 30-view circular scans are conducted. Results obtained show that the DDTV-based PAT reconstructed algorithm outperforms the filtered back-projection method (FBP) and TV algorithms in the quality of reconstructed images with the peak signal-to-noise rations (PSNR) exceeding those of TV and FBP by about 10 and 18 dB, respectively, for all cases. The Shepp-Logan phantom is studied with further discussion of multimode scanning, convergence speed, robustness and universality aspects. In-vitro experiments are performed for both the sparse-view circular scanning and linear scanning. The results further prove the effectiveness of the DDTV, which shows better results than that of the TV with sharper image edges and clearer texture details. Both numerical simulation and in vitro experiments confirm that the DDTV provides a significant quality improvement of PAT reconstructed images for various directivity patterns.

  3. Information extraction and transmission techniques for spaceborne synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Frost, V. S.; Yurovsky, L.; Watson, E.; Townsend, K.; Gardner, S.; Boberg, D.; Watson, J.; Minden, G. J.; Shanmugan, K. S.

    1984-01-01

    Information extraction and transmission techniques for synthetic aperture radar (SAR) imagery were investigated. Four interrelated problems were addressed. An optimal tonal SAR image classification algorithm was developed and evaluated. A data compression technique was developed for SAR imagery which is simple and provides a 5:1 compression with acceptable image quality. An optimal textural edge detector was developed. Several SAR image enhancement algorithms have been proposed. The effectiveness of each algorithm was compared quantitatively.

  4. An artifacts removal post-processing for epiphyseal region-of-interest (EROI) localization in automated bone age assessment (BAA)

    PubMed Central

    2011-01-01

    Background Segmentation is the most crucial part in the computer-aided bone age assessment. A well-known type of segmentation performed in the system is adaptive segmentation. While providing better result than global thresholding method, the adaptive segmentation produces a lot of unwanted noise that could affect the latter process of epiphysis extraction. Methods A proposed method with anisotropic diffusion as pre-processing and a novel Bounded Area Elimination (BAE) post-processing algorithm to improve the algorithm of ossification site localization technique are designed with the intent of improving the adaptive segmentation result and the region-of interest (ROI) localization accuracy. Results The results are then evaluated by quantitative analysis and qualitative analysis using texture feature evaluation. The result indicates that the image homogeneity after anisotropic diffusion has improved averagely on each age group for 17.59%. Results of experiments showed that the smoothness has been improved averagely 35% after BAE algorithm and the improvement of ROI localization has improved for averagely 8.19%. The MSSIM has improved averagely 10.49% after performing the BAE algorithm on the adaptive segmented hand radiograph. Conclusions The result indicated that hand radiographs which have undergone anisotropic diffusion have greatly reduced the noise in the segmented image and the result as well indicated that the BAE algorithm proposed is capable of removing the artifacts generated in adaptive segmentation. PMID:21952080

  5. A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle

    PubMed Central

    Huang, Kuo-Yi; Ye, Yu-Ting

    2015-01-01

    In this study, we present an application of neural network and image processing techniques for detecting the defects of an internal micro-spray nozzle. The defect regions were segmented by Canny edge detection, a randomized algorithm for detecting circles and a circle inspection (CI) algorithm. The gray level co-occurrence matrix (GLCM) was further used to evaluate the texture features of the segmented region. These texture features (contrast, entropy, energy), color features (mean and variance of gray level) and geometric features (distance variance, mean diameter and diameter ratio) were used in the classification procedures. A back-propagation neural network classifier was employed to detect the defects of micro-spray nozzles. The methodology presented herein effectively works for detecting micro-spray nozzle defects to an accuracy of 90.71%. PMID:26131678

  6. A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle.

    PubMed

    Huang, Kuo-Yi; Ye, Yu-Ting

    2015-06-29

    In this study, we present an application of neural network and image processing techniques for detecting the defects of an internal micro-spray nozzle. The defect regions were segmented by Canny edge detection, a randomized algorithm for detecting circles and a circle inspection (CI) algorithm. The gray level co-occurrence matrix (GLCM) was further used to evaluate the texture features of the segmented region. These texture features (contrast, entropy, energy), color features (mean and variance of gray level) and geometric features (distance variance, mean diameter and diameter ratio) were used in the classification procedures. A back-propagation neural network classifier was employed to detect the defects of micro-spray nozzles. The methodology presented herein effectively works for detecting micro-spray nozzle defects to an accuracy of 90.71%.

  7. Document reconstruction by layout analysis of snippets

    NASA Astrophysics Data System (ADS)

    Kleber, Florian; Diem, Markus; Sablatnig, Robert

    2010-02-01

    Document analysis is done to analyze entire forms (e.g. intelligent form analysis, table detection) or to describe the layout/structure of a document. Also skew detection of scanned documents is performed to support OCR algorithms that are sensitive to skew. In this paper document analysis is applied to snippets of torn documents to calculate features for the reconstruction. Documents can either be destroyed by the intention to make the printed content unavailable (e.g. tax fraud investigation, business crime) or due to time induced degeneration of ancient documents (e.g. bad storage conditions). Current reconstruction methods for manually torn documents deal with the shape, inpainting and texture synthesis techniques. In this paper the possibility of document analysis techniques of snippets to support the matching algorithm by considering additional features are shown. This implies a rotational analysis, a color analysis and a line detection. As a future work it is planned to extend the feature set with the paper type (blank, checked, lined), the type of the writing (handwritten vs. machine printed) and the text layout of a snippet (text size, line spacing). Preliminary results show that these pre-processing steps can be performed reliably on a real dataset consisting of 690 snippets.

  8. Machine learning for a Toolkit for Image Mining

    NASA Technical Reports Server (NTRS)

    Delanoy, Richard L.

    1995-01-01

    A prototype user environment is described that enables a user with very limited computer skills to collaborate with a computer algorithm to develop search tools (agents) that can be used for image analysis, creating metadata for tagging images, searching for images in an image database on the basis of image content, or as a component of computer vision algorithms. Agents are learned in an ongoing, two-way dialogue between the user and the algorithm. The user points to mistakes made in classification. The algorithm, in response, attempts to discover which image attributes are discriminating between objects of interest and clutter. It then builds a candidate agent and applies it to an input image, producing an 'interest' image highlighting features that are consistent with the set of objects and clutter indicated by the user. The dialogue repeats until the user is satisfied. The prototype environment, called the Toolkit for Image Mining (TIM) is currently capable of learning spectral and textural patterns. Learning exhibits rapid convergence to reasonable levels of performance and, when thoroughly trained, Fo appears to be competitive in discrimination accuracy with other classification techniques.

  9. The Extraction of Terrace in the Loess Plateau Based on radial method

    NASA Astrophysics Data System (ADS)

    Liu, W.; Li, F.

    2016-12-01

    The terrace of Loess Plateau, as a typical kind of artificial landform and an important measure of soil and water conservation, its positioning and automatic extraction will simplify the work of land use investigation. The existing methods of terrace extraction mainly include visual interpretation and automatic extraction. The manual method is used in land use investigation, but it is time-consuming and laborious. Researchers put forward some automatic extraction methods. For example, Fourier transform method can recognize terrace and find accurate position from frequency domain image, but it is more affected by the linear objects in the same direction of terrace; Texture analysis method is simple and have a wide range application of image processing. The disadvantage of texture analysis method is unable to recognize terraces' edge; Object-oriented is a new method of image classification, but when introduce it to terrace extracting, fracture polygons will be the most serious problem and it is difficult to explain its geological meaning. In order to positioning the terraces, we use high- resolution remote sensing image to extract and analyze the gray value of the pixels which the radial went through. During the recognition process, we firstly use the DEM data analysis or by manual selecting, to roughly confirm the position of peak points; secondly, take each of the peak points as the center to make radials in all directions; finally, extracting the gray values of the pixels which the radials went through, and analyzing its changing characteristics to confirm whether the terrace exists. For the purpose of getting accurate position of terrace, terraces' discontinuity, extension direction, ridge width, image processing algorithm, remote sensing image illumination and other influence factors were fully considered when designing the algorithms.

  10. Tracking Algorithm of Multiple Pedestrians Based on Particle Filters in Video Sequences

    PubMed Central

    Liu, Yun; Wang, Chuanxu; Zhang, Shujun; Cui, Xuehong

    2016-01-01

    Pedestrian tracking is a critical problem in the field of computer vision. Particle filters have been proven to be very useful in pedestrian tracking for nonlinear and non-Gaussian estimation problems. However, pedestrian tracking in complex environment is still facing many problems due to changes of pedestrian postures and scale, moving background, mutual occlusion, and presence of pedestrian. To surmount these difficulties, this paper presents tracking algorithm of multiple pedestrians based on particle filters in video sequences. The algorithm acquires confidence value of the object and the background through extracting a priori knowledge thus to achieve multipedestrian detection; it adopts color and texture features into particle filter to get better observation results and then automatically adjusts weight value of each feature according to current tracking environment. During the process of tracking, the algorithm processes severe occlusion condition to prevent drift and loss phenomena caused by object occlusion and associates detection results with particle state to propose discriminated method for object disappearance and emergence thus to achieve robust tracking of multiple pedestrians. Experimental verification and analysis in video sequences demonstrate that proposed algorithm improves the tracking performance and has better tracking results. PMID:27847514

  11. A Comparative Analysis of Machine Learning with WorldView-2 Pan-Sharpened Imagery for Tea Crop Mapping

    PubMed Central

    Chuang, Yung-Chung Matt; Shiu, Yi-Shiang

    2016-01-01

    Tea is an important but vulnerable economic crop in East Asia, highly impacted by climate change. This study attempts to interpret tea land use/land cover (LULC) using very high resolution WorldView-2 imagery of central Taiwan with both pixel and object-based approaches. A total of 80 variables derived from each WorldView-2 band with pan-sharpening, standardization, principal components and gray level co-occurrence matrix (GLCM) texture indices transformation, were set as the input variables. For pixel-based image analysis (PBIA), 34 variables were selected, including seven principal components, 21 GLCM texture indices and six original WorldView-2 bands. Results showed that support vector machine (SVM) had the highest tea crop classification accuracy (OA = 84.70% and KIA = 0.690), followed by random forest (RF), maximum likelihood algorithm (ML), and logistic regression analysis (LR). However, the ML classifier achieved the highest classification accuracy (OA = 96.04% and KIA = 0.887) in object-based image analysis (OBIA) using only six variables. The contribution of this study is to create a new framework for accurately identifying tea crops in a subtropical region with real-time high-resolution WorldView-2 imagery without field survey, which could further aid agriculture land management and a sustainable agricultural product supply. PMID:27128915

  12. A Comparative Analysis of Machine Learning with WorldView-2 Pan-Sharpened Imagery for Tea Crop Mapping.

    PubMed

    Chuang, Yung-Chung Matt; Shiu, Yi-Shiang

    2016-04-26

    Tea is an important but vulnerable economic crop in East Asia, highly impacted by climate change. This study attempts to interpret tea land use/land cover (LULC) using very high resolution WorldView-2 imagery of central Taiwan with both pixel and object-based approaches. A total of 80 variables derived from each WorldView-2 band with pan-sharpening, standardization, principal components and gray level co-occurrence matrix (GLCM) texture indices transformation, were set as the input variables. For pixel-based image analysis (PBIA), 34 variables were selected, including seven principal components, 21 GLCM texture indices and six original WorldView-2 bands. Results showed that support vector machine (SVM) had the highest tea crop classification accuracy (OA = 84.70% and KIA = 0.690), followed by random forest (RF), maximum likelihood algorithm (ML), and logistic regression analysis (LR). However, the ML classifier achieved the highest classification accuracy (OA = 96.04% and KIA = 0.887) in object-based image analysis (OBIA) using only six variables. The contribution of this study is to create a new framework for accurately identifying tea crops in a subtropical region with real-time high-resolution WorldView-2 imagery without field survey, which could further aid agriculture land management and a sustainable agricultural product supply.

  13. Simulating Soft Shadows with Graphics Hardware,

    DTIC Science & Technology

    1997-01-15

    This radiance texture is analogous to the mesh of radiosity values computed in a radiosity algorithm. Unlike a radiosity algorithm, however, our...discretely. Several researchers have explored continuous visibility methods for soft shadow computation and radiosity mesh generation. With this approach...times of several seconds [9]. Most radiosity methods discretize each surface into a mesh of elements and then use discrete methods such as ray

  14. Texture analysis based on the Hermite transform for image classification and segmentation

    NASA Astrophysics Data System (ADS)

    Estudillo-Romero, Alfonso; Escalante-Ramirez, Boris; Savage-Carmona, Jesus

    2012-06-01

    Texture analysis has become an important task in image processing because it is used as a preprocessing stage in different research areas including medical image analysis, industrial inspection, segmentation of remote sensed imaginary, multimedia indexing and retrieval. In order to extract visual texture features a texture image analysis technique is presented based on the Hermite transform. Psychovisual evidence suggests that the Gaussian derivatives fit the receptive field profiles of mammalian visual systems. The Hermite transform describes locally basic texture features in terms of Gaussian derivatives. Multiresolution combined with several analysis orders provides detection of patterns that characterizes every texture class. The analysis of the local maximum energy direction and steering of the transformation coefficients increase the method robustness against the texture orientation. This method presents an advantage over classical filter bank design because in the latter a fixed number of orientations for the analysis has to be selected. During the training stage, a subset of the Hermite analysis filters is chosen in order to improve the inter-class separability, reduce dimensionality of the feature vectors and computational cost during the classification stage. We exhaustively evaluated the correct classification rate of real randomly selected training and testing texture subsets using several kinds of common used texture features. A comparison between different distance measurements is also presented. Results of the unsupervised real texture segmentation using this approach and comparison with previous approaches showed the benefits of our proposal.

  15. Texture operator for snow particle classification into snowflake and graupel

    NASA Astrophysics Data System (ADS)

    Nurzyńska, Karolina; Kubo, Mamoru; Muramoto, Ken-ichiro

    2012-11-01

    In order to improve the estimation of precipitation, the coefficients of Z-R relation should be determined for each snow type. Therefore, it is necessary to identify the type of falling snow. Consequently, this research addresses a problem of snow particle classification into snowflake and graupel in an automatic manner (as these types are the most common in the study region). Having correctly classified precipitation events, it is believed that it will be possible to estimate the related parameters accurately. The automatic classification system presented here describes the images with texture operators. Some of them are well-known from the literature: first order features, co-occurrence matrix, grey-tone difference matrix, run length matrix, and local binary pattern, but also a novel approach to design simple local statistic operators is introduced. In this work the following texture operators are defined: mean histogram, min-max histogram, and mean-variance histogram. Moreover, building a feature vector, which is based on the structure created in many from mentioned algorithms is also suggested. For classification, the k-nearest neighbourhood classifier was applied. The results showed that it is possible to achieve correct classification accuracy above 80% by most of the techniques. The best result of 86.06%, was achieved for operator built from a structure achieved in the middle stage of the co-occurrence matrix calculation. Next, it was noticed that describing an image with two texture operators does not improve the classification results considerably. In the best case the correct classification efficiency was 87.89% for a pair of texture operators created from local binary pattern and structure build in a middle stage of grey-tone difference matrix calculation. This also suggests that the information gathered by each texture operator is redundant. Therefore, the principal component analysis was applied in order to remove the unnecessary information and additionally reduce the length of the feature vectors. The improvement of the correct classification efficiency for up to 100% is possible for methods: min-max histogram, texture operator built from structure achieved in a middle stage of co-occurrence matrix calculation, texture operator built from a structure achieved in a middle stage of grey-tone difference matrix creation, and texture operator based on a histogram, when the feature vector stores 99% of initial information.

  16. Features versus context: An approach for precise and detailed detection and delineation of faces and facial features.

    PubMed

    Ding, Liya; Martinez, Aleix M

    2010-11-01

    The appearance-based approach to face detection has seen great advances in the last several years. In this approach, we learn the image statistics describing the texture pattern (appearance) of the object class we want to detect, e.g., the face. However, this approach has had limited success in providing an accurate and detailed description of the internal facial features, i.e., eyes, brows, nose, and mouth. In general, this is due to the limited information carried by the learned statistical model. While the face template is relatively rich in texture, facial features (e.g., eyes, nose, and mouth) do not carry enough discriminative information to tell them apart from all possible background images. We resolve this problem by adding the context information of each facial feature in the design of the statistical model. In the proposed approach, the context information defines the image statistics most correlated with the surroundings of each facial component. This means that when we search for a face or facial feature, we look for those locations which most resemble the feature yet are most dissimilar to its context. This dissimilarity with the context features forces the detector to gravitate toward an accurate estimate of the position of the facial feature. Learning to discriminate between feature and context templates is difficult, however, because the context and the texture of the facial features vary widely under changing expression, pose, and illumination, and may even resemble one another. We address this problem with the use of subclass divisions. We derive two algorithms to automatically divide the training samples of each facial feature into a set of subclasses, each representing a distinct construction of the same facial component (e.g., closed versus open eyes) or its context (e.g., different hairstyles). The first algorithm is based on a discriminant analysis formulation. The second algorithm is an extension of the AdaBoost approach. We provide extensive experimental results using still images and video sequences for a total of 3,930 images. We show that the results are almost as good as those obtained with manual detection.

  17. Description of textures by a structural analysis.

    PubMed

    Tomita, F; Shirai, Y; Tsuji, S

    1982-02-01

    A structural analysis system for describing natural textures is introduced. The analyzer automatically extracts the texture elements in an input image, measures their properties, classifies them into some distinctive classes (one ``ground'' class and some ``figure'' classes), and computes the distributions of the gray level, the shape, and the placement of the texture elements in each class. These descriptions are used for classification of texture images. An analysis-by-synthesis method for evaluating texture analyzers is also presented. We propose a synthesizer which generates a texture image based on the descriptions. By comparing the reconstructed image with the original one, we can see what information is preserved and what is lost in the descriptions.

  18. Synthesized interstitial lung texture for use in anthropomorphic computational phantoms

    NASA Astrophysics Data System (ADS)

    Becchetti, Marc F.; Solomon, Justin B.; Segars, W. Paul; Samei, Ehsan

    2016-04-01

    A realistic model of the anatomical texture from the pulmonary interstitium was developed with the goal of extending the capability of anthropomorphic computational phantoms (e.g., XCAT, Duke University), allowing for more accurate image quality assessment. Contrast-enhanced, high dose, thorax images for a healthy patient from a clinical CT system (Discovery CT750HD, GE healthcare) with thin (0.625 mm) slices and filtered back- projection (FBP) were used to inform the model. The interstitium which gives rise to the texture was defined using 24 volumes of interest (VOIs). These VOIs were selected manually to avoid vasculature, bronchi, and bronchioles. A small scale Hessian-based line filter was applied to minimize the amount of partial-volumed supernumerary vessels and bronchioles within the VOIs. The texture in the VOIs was characterized using 8 Haralick and 13 gray-level run length features. A clustered lumpy background (CLB) model with added noise and blurring to match CT system was optimized to resemble the texture in the VOIs using a genetic algorithm with the Mahalanobis distance as a similarity metric between the texture features. The most similar CLB model was then used to generate the interstitial texture to fill the lung. The optimization improved the similarity by 45%. This will substantially enhance the capabilities of anthropomorphic computational phantoms, allowing for more realistic CT simulations.

  19. Karyometry detects subvisual differences in chromatin organization state between cribriform and flat high-grade prostatic intraepithelial neoplasia.

    PubMed

    Montironi, Rodolfo; Thompson, Deborah; Scarpelli, Marina; Mazzucchelli, Roberta; Peketi, Prasanthi; Hamilton, Peter W; Bostwick, David G; Bartels, Peter H

    2004-08-01

    This digital texture analysis-based study evaluates the chromatin organization state in flat and cribriform high-grade prostatic intraepithelial neoplasia (PIN), in the adjacent normal looking secretory epithelium and in the co-occurring adenocarcinoma. Digital texture analysis (karyometry) was carried out on hematoxylin and eosin-stained sections from 24 radical prostatectomy specimens with high-grade PIN (12 with flat and 12 with cribriform architectural pattern, respectively) and cancer. Quantification was also conducted on the normal looking secretory epithelium. Discriminant analysis and the nonsupervised learning algorithm P-index were used to identify suitable subsets of features useful for the discrimination and classification of pathological groups and to explore multivariate data structure in the pathological subgroups. The average nuclear abnormality increases monotonically from the histologically normal appearing secretory epithelium to high-grade PIN and to adenocarcinoma. The nuclei from the so-called perimeter compartment of the flat high-grade PIN lesions show a higher nuclear abnormality compared to the nuclei of the cribriform high-grade PINs. Discriminant analysis shows that flat and cribriform high-grade PINs fall into two populations. Processing by the nonsupervised learning algorithm P-index revealed the existence of three well-defined, distinct subpopulations of nuclei of different chromatin phenotype. In the flat high-grade PIN lesions the proportions of nuclei in the three subpopulations are 16.5% (low abnormality), 25.0% (mid abnormality) and 58.5% (high abnormality), respectively. In the cribriform high-grade PIN lesions, 100% of the nuclei are in the mid-abnormality subpopulation. These differences are also discernible in the co-occurring adenocarcinoma and the histologically normal appearing secretory epithelium. To conclude, karyometry and statistical analysis detect the existence of distinct cell subpopulations of different chromatin packaging and phenotype, with the nuclei from the flat high-grade PIN lesions, adjacent normal looking epithelium and co-occurring adenocarcinoma expressing a greater nuclear abnormality than in the specimens with cribriform high-grade PIN.

  20. Model-Based Learning of Local Image Features for Unsupervised Texture Segmentation

    NASA Astrophysics Data System (ADS)

    Kiechle, Martin; Storath, Martin; Weinmann, Andreas; Kleinsteuber, Martin

    2018-04-01

    Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this work, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs a segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images.

  1. Efficient video-equipped fire detection approach for automatic fire alarm systems

    NASA Astrophysics Data System (ADS)

    Kang, Myeongsu; Tung, Truong Xuan; Kim, Jong-Myon

    2013-01-01

    This paper proposes an efficient four-stage approach that automatically detects fire using video capabilities. In the first stage, an approximate median method is used to detect video frame regions involving motion. In the second stage, a fuzzy c-means-based clustering algorithm is employed to extract candidate regions of fire from all of the movement-containing regions. In the third stage, a gray level co-occurrence matrix is used to extract texture parameters by tracking red-colored objects in the candidate regions. These texture features are, subsequently, used as inputs of a back-propagation neural network to distinguish between fire and nonfire. Experimental results indicate that the proposed four-stage approach outperforms other fire detection algorithms in terms of consistently increasing the accuracy of fire detection in both indoor and outdoor test videos.

  2. Research of second harmonic generation images based on texture analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Li, Yan; Gong, Haiming; Zhu, Xiaoqin; Huang, Zufang; Chen, Guannan

    2014-09-01

    Texture analysis plays a crucial role in identifying objects or regions of interest in an image. It has been applied to a variety of medical image processing, ranging from the detection of disease and the segmentation of specific anatomical structures, to differentiation between healthy and pathological tissues. Second harmonic generation (SHG) microscopy as a potential noninvasive tool for imaging biological tissues has been widely used in medicine, with reduced phototoxicity and photobleaching. In this paper, we clarified the principles of texture analysis including statistical, transform, structural and model-based methods and gave examples of its applications, reviewing studies of the technique. Moreover, we tried to apply texture analysis to the SHG images for the differentiation of human skin scar tissues. Texture analysis method based on local binary pattern (LBP) and wavelet transform was used to extract texture features of SHG images from collagen in normal and abnormal scars, and then the scar SHG images were classified into normal or abnormal ones. Compared with other texture analysis methods with respect to the receiver operating characteristic analysis, LBP combined with wavelet transform was demonstrated to achieve higher accuracy. It can provide a new way for clinical diagnosis of scar types. At last, future development of texture analysis in SHG images were discussed.

  3. Coherent multiscale image processing using dual-tree quaternion wavelets.

    PubMed

    Chan, Wai Lam; Choi, Hyeokho; Baraniuk, Richard G

    2008-07-01

    The dual-tree quaternion wavelet transform (QWT) is a new multiscale analysis tool for geometric image features. The QWT is a near shift-invariant tight frame representation whose coefficients sport a magnitude and three phases: two phases encode local image shifts while the third contains image texture information. The QWT is based on an alternative theory for the 2-D Hilbert transform and can be computed using a dual-tree filter bank with linear computational complexity. To demonstrate the properties of the QWT's coherent magnitude/phase representation, we develop an efficient and accurate procedure for estimating the local geometrical structure of an image. We also develop a new multiscale algorithm for estimating the disparity between a pair of images that is promising for image registration and flow estimation applications. The algorithm features multiscale phase unwrapping, linear complexity, and sub-pixel estimation accuracy.

  4. Dual-model automatic detection of nerve-fibres in corneal confocal microscopy images.

    PubMed

    Dabbah, M A; Graham, J; Petropoulos, I; Tavakoli, M; Malik, R A

    2010-01-01

    Corneal Confocal Microscopy (CCM) imaging is a non-invasive surrogate of detecting, quantifying and monitoring diabetic peripheral neuropathy. This paper presents an automated method for detecting nerve-fibres from CCM images using a dual-model detection algorithm and compares the performance to well-established texture and feature detection methods. The algorithm comprises two separate models, one for the background and another for the foreground (nerve-fibres), which work interactively. Our evaluation shows significant improvement (p approximately 0) in both error rate and signal-to-noise ratio of this model over the competitor methods. The automatic method is also evaluated in comparison with manual ground truth analysis in assessing diabetic neuropathy on the basis of nerve-fibre length, and shows a strong correlation (r = 0.92). Both analyses significantly separate diabetic patients from control subjects (p approximately 0).

  5. Magnetization-prepared rapid acquisition with gradient echo magnetic resonance imaging signal and texture features for the prediction of mild cognitive impairment to Alzheimer's disease progression.

    PubMed

    Martinez-Torteya, Antonio; Rodriguez-Rojas, Juan; Celaya-Padilla, José M; Galván-Tejada, Jorge I; Treviño, Victor; Tamez-Peña, Jose

    2014-10-01

    Early diagnoses of Alzheimer's disease (AD) would confer many benefits. Several biomarkers have been proposed to achieve such a task, where features extracted from magnetic resonance imaging (MRI) have played an important role. However, studies have focused exclusively on morphological characteristics. This study aims to determine whether features relating to the signal and texture of the image could predict mild cognitive impairment (MCI) to AD progression. Clinical, biological, and positron emission tomography information and MRI images of 62 subjects from the AD neuroimaging initiative were used in this study, extracting 4150 features from each MRI. Within this multimodal database, a feature selection algorithm was used to obtain an accurate and small logistic regression model, generated by a methodology that yielded a mean blind test accuracy of 0.79. This model included six features, five of them obtained from the MRI images, and one obtained from genotyping. A risk analysis divided the subjects into low-risk and high-risk groups according to a prognostic index. The groups were statistically different ([Formula: see text]). These results demonstrated that MRI features related to both signal and texture add MCI to AD predictive power, and supported the ongoing notion that multimodal biomarkers outperform single-modality ones.

  6. [Assessment of skin aging grading based on computer vision].

    PubMed

    Li, Lingyu; Xue, Jinxia; He, Xiangqian; Zhang, Sheng; Fan, Chu

    2017-06-01

    Skin aging is the most intuitive and obvious sign of the human aging processes. Qualitative and quantitative determination of skin aging is of particular importance for the evaluation of human aging and anti-aging treatment effects. To solve the problem of subjectivity of conventional skin aging grading methods, the self-organizing map (SOM) network was used to explore an automatic method for skin aging grading. First, the ventral forearm skin images were obtained by a portable digital microscope and two texture parameters, i.e. , mean width of skin furrows and the number of intersections were extracted by image processing algorithm. Then, the values of texture parameters were taken as inputs of SOM network to train the network. The experimental results showed that the network achieved an overall accuracy of 80.8%, compared with the aging grading results by human graders. The designed method appeared to be rapid and objective, which can be used for quantitative analysis of skin images, and automatic assessment of skin aging grading.

  7. Generalizing roughness: experiments with flow-oriented roughness

    NASA Astrophysics Data System (ADS)

    Trevisani, Sebastiano

    2015-04-01

    Surface texture analysis applied to High Resolution Digital Terrain Models (HRDTMs) improves the capability to characterize fine-scale morphology and permits the derivation of useful morphometric indexes. An important indicator to be taken into account in surface texture analysis is surface roughness, which can have a discriminant role in the detection of different geomorphic processes and factors. The evaluation of surface roughness is generally performed considering it as an isotropic surface parameter (e.g., Cavalli, 2008; Grohmann, 2011). However, surface texture has often an anisotropic character, which means that surface roughness could change according to the considered direction. In some applications, for example involving surface flow processes, the anisotropy of roughness should be taken into account (e.g., Trevisani, 2012; Smith, 2014). Accordingly, we test the application of a flow-oriented directional measure of roughness, computed considering surface gravity-driven flow. For the calculation of flow-oriented roughness we use both classical variogram-based roughness (e.g., Herzfeld,1996; Atkinson, 2000) as well as an ad-hoc developed robust modification of variogram (i.e. MAD, Trevisani, 2014). The presented approach, based on a D8 algorithm, shows the potential impact of considering directionality in the calculation of roughness indexes. The use of flow-oriented roughness could improve the definition of effective proxies of impedance to flow. Preliminary results on the integration of directional roughness operators with morphometric-based models, are promising and can be extended to more complex approaches. Atkinson, P.M., Lewis, P., 2000. Geostatistical classification for remote sensing: an introduction. Computers & Geosciences 26, 361-371. Cavalli, M. & Marchi, L. 2008, "Characterization of the surface morphology of an alpine alluvial fan using airborne LiDAR", Natural Hazards and Earth System Science, vol. 8, no. 2, pp. 323-333. Grohmann, C.H., Smith, M.J., Riccomini, C., 2011. Multiscale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience and Remote Sensing 49, 1220-1213. Herzfeld, U.C., Higginson, C.A., 1996. Automated geostatistical seafloor classification - Principles, parameters, feature vectors, and discrimination criteria. Computers and Geosciences, 22 (1), pp. 35-52. Smith, M.W. 2014, "Roughness in the Earth Sciences", Earth-Science Reviews, vol. 136, pp. 202-225. Trevisani, S., Cavalli, M. & Marchi, L. 2012, "Surface texture analysis of a high-resolution DTM: Interpreting an alpine basin", Geomorphology, vol. 161-162, pp. 26-39. Trevisani S., Rocca M., 2014. Geomorphometric analysis of fine-scale morphology for extensive areas: a new surface-texture operator. Geophysical Research Abstracts, Vol. 16, EGU2014-5612, 2014. EGU General Assembly 2014.

  8. MO-FG-204-04: How Iterative Reconstruction Algorithms Affect the NPS of CT Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G; Liu, X; Dodge, C

    2015-06-15

    Purpose: To evaluate how the third generation model based iterative reconstruction (MBIR) compares with filtered back-projection (FBP), adaptive statistical iterative reconstruction (ASiR), and the second generation MBIR based on noise power spectrum (NPS) analysis over a wide range of clinically applicable dose levels. Methods: The Catphan 600 CTP515 module, surrounded by an oval, fat-equivalent ring to mimic patient size/shape, was scanned on a GE HD750 CT scanner at 1, 2, 3, 6, 12 and 19mGy CTDIvol levels with typical patient scan parameters: 120kVp, 0.8s, 40mm beam width, large SFOV, 0.984 pitch and reconstructed thickness 2.5mm (VEO3.0: Abd/Pelvis with Texture andmore » NR05). At each CTDIvol level, 10 repeated scans were acquired for achieving sufficient data sampling. The images were reconstructed using Standard kernel with FBP; 20%, 40% and 70% ASiR; and two versions of MBIR (VEO2.0 and 3.0). For evaluating the effect of the ROI spatial location to the Result of NPS, 4 ROI groups were categorized based on their distances from the center of the phantom. Results: VEO3.0 performed inferiorly comparing to VEO2.0 over all dose levels. On the other hand, at low dose levels (less than 3 mGy), it clearly outperformed ASiR and FBP, in NPS values. Therefore, the lower the dose level, the relative performance of MBIR improves. However, the shapes of the NPS show substantial differences in horizontal and vertical sampling dimensions. These differences may determine the characteristics of the noise/texture features in images, and hence, play an important role in image interpretation. Conclusion: The third generation MBIR did not improve over the second generation MBIR in term of NPS analysis. The overall performance of both versions of MBIR improved as compared to other reconstruction algorithms when dose was reduced. The shapes of the NPS curves provided additional value for future characterization of the image noise/texture features.« less

  9. An Improved Iris Recognition Algorithm Based on Hybrid Feature and ELM

    NASA Astrophysics Data System (ADS)

    Wang, Juan

    2018-03-01

    The iris image is easily polluted by noise and uneven light. This paper proposed an improved extreme learning machine (ELM) based iris recognition algorithm with hybrid feature. 2D-Gabor filters and GLCM is employed to generate a multi-granularity hybrid feature vector. 2D-Gabor filter and GLCM feature work for capturing low-intermediate frequency and high frequency texture information, respectively. Finally, we utilize extreme learning machine for iris recognition. Experimental results reveal our proposed ELM based multi-granularity iris recognition algorithm (ELM-MGIR) has higher accuracy of 99.86%, and lower EER of 0.12% under the premise of real-time performance. The proposed ELM-MGIR algorithm outperforms other mainstream iris recognition algorithms.

  10. Parenchymal Texture Analysis in Digital Breast Tomosynthesis for Breast Cancer Risk Estimation: A Preliminary Study

    PubMed Central

    Kontos, Despina; Bakic, Predrag R.; Carton, Ann-Katherine; Troxel, Andrea B.; Conant, Emily F.; Maidment, Andrew D.A.

    2009-01-01

    Rationale and Objectives Studies have demonstrated a relationship between mammographic parenchymal texture and breast cancer risk. Although promising, texture analysis in mammograms is limited by tissue superimposition. Digital breast tomosynthesis (DBT) is a novel tomographic x-ray breast imaging modality that alleviates the effect of tissue superimposition, offering superior parenchymal texture visualization compared to mammography. Our study investigates the potential advantages of DBT parenchymal texture analysis for breast cancer risk estimation. Materials and Methods DBT and digital mammography (DM) images of 39 women were analyzed. Texture features, shown in studies with mammograms to correlate with cancer risk, were computed from the retroareolar breast region. We compared the relative performance of DBT and DM texture features in correlating with two measures of breast cancer risk: (i) the Gail and Claus risk estimates, and (ii) mammographic breast density. Linear regression was performed to model the association between texture features and increasing levels of risk. Results No significant correlation was detected between parenchymal texture and the Gail and Claus risk estimates. Significant correlations were observed between texture features and breast density. Overall, the DBT texture features demonstrated stronger correlations with breast percent density (PD) than DM (p ≤0.05). When dividing our study population in groups of increasing breast PD, the DBT texture features appeared to be more discriminative, having regression lines with overall lower p-values, steeper slopes, and higher R2 estimates. Conclusion Although preliminary, our results suggest that DBT parenchymal texture analysis could provide more accurate characterization of breast density patterns, which could ultimately improve breast cancer risk estimation. PMID:19201357

  11. Texture analysis of clinical radiographs using radon transform on a local scale for differentiation between post-menopausal women with and without hip fracture

    NASA Astrophysics Data System (ADS)

    Boehm, Holger F.; Körner, Markus; Baumert, Bernhard; Linsenmaier, Ulrich; Reiser, Maximilian

    2011-03-01

    Osteoporosis is a chronic condition characterized by demineralization and destruction of bone tissue. Fractures associated with the disease are becoming an increasingly relevant issue for public health institutions. Prediction of fracture risk is a major focus research and, over the years, has been approched by various methods. Still, bone mineral density (BMD) obtained by dual-energy X-ray absorptiometry (DXA) remains the clinical gold-standard for diagnosis and follow-up of osteoporosis. However, DXA is restricted to specialized diagnostic centers and there exists considerable overlap in BMD results between populations of individuals with and without fractures. Clinically far more available than DXA is conventional x-ray imaging depicting trabecular bone structure in great detail. In this paper, we demonstrate that bone structure depicted by clinical radiographs can be analysed quantitatively by parameters obtained from the Radon Transform (RT). RT is a global analysis-tool for detection of predefined, parameterized patterns, e.g. straight lines or struts, representing suitable approximations of trabecular bone texture. The proposed algorithm differentiates between patients with and without fractures of the hip by application of various texture-metrics based on the Radon-Transform to standard x-ray images of the proximal femur. We consider three different regions-of-interest in the proximal femur (femoral head, neck, and inter-trochanteric area), and conduct an analysis with respect to correct classification of the fracture status. Performance of the novel approach is compared to DXA. We draw the conclusion that performance of RT is comparable to DXA and may become a useful supplement to densitometry for the prediction of fracture risk.

  12. Epidermis area detection for immunofluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dovganich, Andrey; Krylov, Andrey; Nasonov, Andrey; Makhneva, Natalia

    2018-04-01

    We propose a novel image segmentation method for immunofluorescence microscopy images of skin tissue for the diagnosis of various skin diseases. The segmentation is based on machine learning algorithms. The feature vector is filled by three groups of features: statistical features, Laws' texture energy measures and local binary patterns. The images are preprocessed for better learning. Different machine learning algorithms have been used and the best results have been obtained with random forest algorithm. We use the proposed method to detect the epidermis region as a part of pemphigus diagnosis system.

  13. Identification of cultivated land using remote sensing images based on object-oriented artificial bee colony algorithm

    NASA Astrophysics Data System (ADS)

    Li, Nan; Zhu, Xiufang

    2017-04-01

    Cultivated land resources is the key to ensure food security. Timely and accurate access to cultivated land information is conducive to a scientific planning of food production and management policies. The GaoFen 1 (GF-1) images have high spatial resolution and abundant texture information and thus can be used to identify fragmentized cultivated land. In this paper, an object-oriented artificial bee colony algorithm was proposed for extracting cultivated land from GF-1 images. Firstly, the GF-1 image was segmented by eCognition software and some samples from the segments were manually identified into 2 types (cultivated land and non-cultivated land). Secondly, the artificial bee colony (ABC) algorithm was used to search for classification rules based on the spectral and texture information extracted from the image objects. Finally, the extracted classification rules were used to identify the cultivated land area on the image. The experiment was carried out in Hongze area, Jiangsu Province using wide field-of-view sensor on the GF-1 satellite image. The total precision of classification result was 94.95%, and the precision of cultivated land was 92.85%. The results show that the object-oriented ABC algorithm can overcome the defect of insufficient spectral information in GF-1 images and obtain high precision in cultivated identification.

  14. Imaging Heterogeneity in Lung Cancer: Techniques, Applications, and Challenges.

    PubMed

    Bashir, Usman; Siddique, Muhammad Musib; Mclean, Emma; Goh, Vicky; Cook, Gary J

    2016-09-01

    Texture analysis involves the mathematic processing of medical images to derive sets of numeric quantities that measure heterogeneity. Studies on lung cancer have shown that texture analysis may have a role in characterizing tumors and predicting patient outcome. This article outlines the mathematic basis of and the most recent literature on texture analysis in lung cancer imaging. We also describe the challenges facing the clinical implementation of texture analysis. Texture analysis of lung cancer images has been applied successfully to FDG PET and CT scans. Different texture parameters have been shown to be predictive of the nature of disease and of patient outcome. In general, it appears that more heterogeneous tumors on imaging tend to be more aggressive and to be associated with poorer outcomes and that tumor heterogeneity on imaging decreases with treatment. Despite these promising results, there is a large variation in the reported data and strengths of association.

  15. Prostate-specific membrane antigen PET/MRI validation of MR textural analysis for detection of transition zone prostate cancer.

    PubMed

    Bates, Anthony; Miles, Kenneth

    2017-12-01

    To validate MR textural analysis (MRTA) for detection of transition zone (TZ) prostate cancer through comparison with co-registered prostate-specific membrane antigen (PSMA) PET-MR. Retrospective analysis was performed for 30 men who underwent simultaneous PSMA PET-MR imaging for staging of prostate cancer. Thirty texture features were derived from each manually contoured T2-weighted, transaxial, prostatic TZ using texture analysis software that applies a spatial band-pass filter and quantifies texture through histogram analysis. Texture features of the TZ were compared to PSMA expression on the corresponding PET images. The Benjamini-Hochberg correction controlled the false discovery rate at <5%. Eighty-eight T2-weighted images in 18 patients demonstrated abnormal PSMA expression within the TZ on PET-MR. 123 images were PSMA negative. Based on the corrected p-value of 0.005, significant differences between PSMA positive and negative slices were found for 16 texture parameters: Standard deviation and mean of positive pixels for all spatial filters (p = <0.0001 for both at all spatial scaling factor (SSF) values) and mean intensity following filtration for SSF 3-6 mm (p = 0.0002-0.0018). Abnormal expression of PSMA within the TZ is associated with altered texture on T2-weighted MR, providing validation of MRTA for the detection of TZ prostate cancer. • Prostate transition zone (TZ) MR texture analysis may assist in prostate cancer detection. • Abnormal transition zone PSMA expression correlates with altered texture on T2-weighted MR. • TZ with abnormal PSMA expression demonstrates significantly reduced MI, SD and MPP.

  16. Free-viewpoint video of human actors using multiple handheld Kinects.

    PubMed

    Ye, Genzhi; Liu, Yebin; Deng, Yue; Hasler, Nils; Ji, Xiangyang; Dai, Qionghai; Theobalt, Christian

    2013-10-01

    We present an algorithm for creating free-viewpoint video of interacting humans using three handheld Kinect cameras. Our method reconstructs deforming surface geometry and temporal varying texture of humans through estimation of human poses and camera poses for every time step of the RGBZ video. Skeletal configurations and camera poses are found by solving a joint energy minimization problem, which optimizes the alignment of RGBZ data from all cameras, as well as the alignment of human shape templates to the Kinect data. The energy function is based on a combination of geometric correspondence finding, implicit scene segmentation, and correspondence finding using image features. Finally, texture recovery is achieved through jointly optimization on spatio-temporal RGB data using matrix completion. As opposed to previous methods, our algorithm succeeds on free-viewpoint video of human actors under general uncontrolled indoor scenes with potentially dynamic background, and it succeeds even if the cameras are moving.

  17. Investigation on improved infrared image detail enhancement algorithm based on adaptive histogram statistical stretching and gradient filtering

    NASA Astrophysics Data System (ADS)

    Zeng, Bangze; Zhu, Youpan; Li, Zemin; Hu, Dechao; Luo, Lin; Zhao, Deli; Huang, Juan

    2014-11-01

    Duo to infrared image with low contrast, big noise and unclear visual effect, target is very difficult to observed and identified. This paper presents an improved infrared image detail enhancement algorithm based on adaptive histogram statistical stretching and gradient filtering (AHSS-GF). Based on the fact that the human eyes are very sensitive to the edges and lines, the author proposed to extract the details and textures by using the gradient filtering. New histogram could be acquired by calculating the sum of original histogram based on fixed window. With the minimum value for cut-off point, author carried on histogram statistical stretching. After the proper weights given to the details and background, the detail-enhanced results could be acquired finally. The results indicate image contrast could be improved and the details and textures could be enhanced effectively as well.

  18. Fingerprint recognition of alien invasive weeds based on the texture character and machine learning

    NASA Astrophysics Data System (ADS)

    Yu, Jia-Jia; Li, Xiao-Li; He, Yong; Xu, Zheng-Hao

    2008-11-01

    Multi-spectral imaging technique based on texture analysis and machine learning was proposed to discriminate alien invasive weeds with similar outline but different categories. The objectives of this study were to investigate the feasibility of using Multi-spectral imaging, especially the near-infrared (NIR) channel (800 nm+/-10 nm) to find the weeds' fingerprints, and validate the performance with specific eigenvalues by co-occurrence matrix. Veronica polita Pries, Veronica persica Poir, longtube ground ivy, Laminum amplexicaule Linn. were selected in this study, which perform different effect in field, and are alien invasive species in China. 307 weed leaves' images were randomly selected for the calibration set, while the remaining 207 samples for the prediction set. All images were pretreated by Wallis filter to adjust the noise by uneven lighting. Gray level co-occurrence matrix was applied to extract the texture character, which shows density, randomness correlation, contrast and homogeneity of texture with different algorithms. Three channels (green channel by 550 nm+/-10 nm, red channel by 650 nm+/-10 nm and NIR channel by 800 nm+/-10 nm) were respectively calculated to get the eigenvalues.Least-squares support vector machines (LS-SVM) was applied to discriminate the categories of weeds by the eigenvalues from co-occurrence matrix. Finally, recognition ratio of 83.35% by NIR channel was obtained, better than the results by green channel (76.67%) and red channel (69.46%). The prediction results of 81.35% indicated that the selected eigenvalues reflected the main characteristics of weeds' fingerprint based on multi-spectral (especially by NIR channel) and LS-SVM model.

  19. Pigmented skin lesion detection using random forest and wavelet-based texture

    NASA Astrophysics Data System (ADS)

    Hu, Ping; Yang, Tie-jun

    2016-10-01

    The incidence of cutaneous malignant melanoma, a disease of worldwide distribution and is the deadliest form of skin cancer, has been rapidly increasing over the last few decades. Because advanced cutaneous melanoma is still incurable, early detection is an important step toward a reduction in mortality. Dermoscopy photographs are commonly used in melanoma diagnosis and can capture detailed features of a lesion. A great variability exists in the visual appearance of pigmented skin lesions. Therefore, in order to minimize the diagnostic errors that result from the difficulty and subjectivity of visual interpretation, an automatic detection approach is required. The objectives of this paper were to propose a hybrid method using random forest and Gabor wavelet transformation to accurately differentiate which part belong to lesion area and the other is not in a dermoscopy photographs and analyze segmentation accuracy. A random forest classifier consisting of a set of decision trees was used for classification. Gabor wavelets transformation are the mathematical model of visual cortical cells of mammalian brain and an image can be decomposed into multiple scales and multiple orientations by using it. The Gabor function has been recognized as a very useful tool in texture analysis, due to its optimal localization properties in both spatial and frequency domain. Texture features based on Gabor wavelets transformation are found by the Gabor filtered image. Experiment results indicate the following: (1) the proposed algorithm based on random forest outperformed the-state-of-the-art in pigmented skin lesions detection (2) and the inclusion of Gabor wavelet transformation based texture features improved segmentation accuracy significantly.

  20. Texture-Based Analysis of 100 MR Examinations of Head and Neck Tumors - Is It Possible to Discriminate Between Benign and Malignant Masses in a Multicenter Trial?

    PubMed

    Fruehwald-Pallamar, J; Hesselink, J R; Mafee, M F; Holzer-Fruehwald, L; Czerny, C; Mayerhoefer, M E

    2016-02-01

    To evaluate whether texture-based analysis of standard MRI sequences can help in the discrimination between benign and malignant head and neck tumors. The MR images of 100 patients with a histologically clarified head or neck mass, from two different institutions, were analyzed. Texture-based analysis was performed using texture analysis software, with region of interest measurements for 2 D and 3 D evaluation independently for all axial sequences. COC, RUN, GRA, ARM, and WAV features were calculated for all ROIs. 10 texture feature subsets were used for a linear discriminant analysis, in combination with k-nearest-neighbor classification. Benign and malignant tumors were compared with regard to texture-based values. There were differences in the images from different field-strength scanners, as well as from different vendors. For the differentiation of benign and malignant tumors, we found differences on STIR and T2-weighted images for 2 D, and on contrast-enhanced T1-TSE with fat saturation for 3 D evaluation. In a separate analysis of the subgroups 1.5 and 3 Tesla, more discriminating features were found. Texture-based analysis is a useful tool in the discrimination of benign and malignant tumors when performed on one scanner with the same protocol. We cannot recommend this technique for the use of multicenter studies with clinical data. 2 D/3 D texture-based analysis can be performed in head and neck tumors. Texture-based analysis can differentiate between benign and malignant masses. Analyzed MR images should originate from one scanner with an identical protocol. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Effect of the wooden breast condition on shear force and texture profile analysis of raw and cooked broiler pectoralis major

    USDA-ARS?s Scientific Manuscript database

    The objective was to characterize texture properties of raw and cooked broiler fillets (Pectoralis major) with the wooden breast condition (WBC) using the instrumental texture techniques of Meullenet-Owens Razor Shear (MORS) and Texture Profile Analysis (TPA). Deboned (3 h post-mortem) broiler fille...

  2. Cell segmentation in time-lapse fluorescence microscopy with temporally varying sub-cellular fusion protein patterns.

    PubMed

    Bunyak, Filiz; Palaniappan, Kannappan; Chagin, Vadim; Cardoso, M

    2009-01-01

    Fluorescently tagged proteins such as GFP-PCNA produce rich dynamically varying textural patterns of foci distributed in the nucleus. This enables the behavioral study of sub-cellular structures during different phases of the cell cycle. The varying punctuate patterns of fluorescence, drastic changes in SNR, shape and position during mitosis and abundance of touching cells, however, require more sophisticated algorithms for reliable automatic cell segmentation and lineage analysis. Since the cell nuclei are non-uniform in appearance, a distribution-based modeling of foreground classes is essential. The recently proposed graph partitioning active contours (GPAC) algorithm supports region descriptors and flexible distance metrics. We extend GPAC for fluorescence-based cell segmentation using regional density functions and dramatically improve its efficiency for segmentation from O(N(4)) to O(N(2)), for an image with N(2) pixels, making it practical and scalable for high throughput microscopy imaging studies.

  3. Chemometric approach to texture profile analysis of kombucha fermented milk products.

    PubMed

    Malbaša, Radomir; Jevrić, Lidija; Lončar, Eva; Vitas, Jasmina; Podunavac-Kuzmanović, Sanja; Milanović, Spasenija; Kovačević, Strahinja

    2015-09-01

    In the present work, relationships between the textural characteristics of fermented milk products obtained by kombucha inoculums with various teas were investigated by using chemometric analysis. The presented data which describe numerically the textural characteristics (firmness, consistency, cohesiveness and index of viscosity) were analysed. The quadratic correlation was determined between the textural characteristics of fermented milk products obtained at fermentation temperatures of 40 and 43 °C, using milk with 0.8, 1.6 and 2.8% milk fat and kombucha inoculums cultivated on the extracts of peppermint, stinging nettle, wild thyme and winter savory. Hierarchical cluster analysis (HCA) was performed to identify the similarities among the fermented products. The best mathematical models predicting the textural characteristics of investigated samples were developed. The results of this study indicate that textural characteristics of sample based on winter savory have a significant effect on textural characteristics of samples based on peppermint, stinging nettle and wild thyme, which can be very useful in the determination of products texture profile.

  4. Adaptive kernel regression for freehand 3D ultrasound reconstruction

    NASA Astrophysics Data System (ADS)

    Alshalalfah, Abdel-Latif; Daoud, Mohammad I.; Al-Najar, Mahasen

    2017-03-01

    Freehand three-dimensional (3D) ultrasound imaging enables low-cost and flexible 3D scanning of arbitrary-shaped organs, where the operator can freely move a two-dimensional (2D) ultrasound probe to acquire a sequence of tracked cross-sectional images of the anatomy. Often, the acquired 2D ultrasound images are irregularly and sparsely distributed in the 3D space. Several 3D reconstruction algorithms have been proposed to synthesize 3D ultrasound volumes based on the acquired 2D images. A challenging task during the reconstruction process is to preserve the texture patterns in the synthesized volume and ensure that all gaps in the volume are correctly filled. This paper presents an adaptive kernel regression algorithm that can effectively reconstruct high-quality freehand 3D ultrasound volumes. The algorithm employs a kernel regression model that enables nonparametric interpolation of the voxel gray-level values. The kernel size of the regression model is adaptively adjusted based on the characteristics of the voxel that is being interpolated. In particular, when the algorithm is employed to interpolate a voxel located in a region with dense ultrasound data samples, the size of the kernel is reduced to preserve the texture patterns. On the other hand, the size of the kernel is increased in areas that include large gaps to enable effective gap filling. The performance of the proposed algorithm was compared with seven previous interpolation approaches by synthesizing freehand 3D ultrasound volumes of a benign breast tumor. The experimental results show that the proposed algorithm outperforms the other interpolation approaches.

  5. Single image super resolution algorithm based on edge interpolation in NSCT domain

    NASA Astrophysics Data System (ADS)

    Zhang, Mengqun; Zhang, Wei; He, Xinyu

    2017-11-01

    In order to preserve the texture and edge information and to improve the space resolution of single frame, a superresolution algorithm based on Contourlet (NSCT) is proposed. The original low resolution image is transformed by NSCT, and the directional sub-band coefficients of the transform domain are obtained. According to the scale factor, the high frequency sub-band coefficients are amplified by the interpolation method based on the edge direction to the desired resolution. For high frequency sub-band coefficients with noise and weak targets, Bayesian shrinkage is used to calculate the threshold value. The coefficients below the threshold are determined by the correlation among the sub-bands of the same scale to determine whether it is noise and de-noising. The anisotropic diffusion filter is used to effectively enhance the weak target in the low contrast region of the target and background. Finally, the high-frequency sub-band is amplified by the bilinear interpolation method to the desired resolution, and then combined with the high-frequency subband coefficients after de-noising and small target enhancement, the NSCT inverse transform is used to obtain the desired resolution image. In order to verify the effectiveness of the proposed algorithm, the proposed algorithm and several common image reconstruction methods are used to test the synthetic image, motion blurred image and hyperspectral image, the experimental results show that compared with the traditional single resolution algorithm, the proposed algorithm can obtain smooth edges and good texture features, and the reconstructed image structure is well preserved and the noise is suppressed to some extent.

  6. A new framework for an electrophotographic printer model

    NASA Astrophysics Data System (ADS)

    Colon-Lopez, Fermin A.

    Digital halftoning is a printing technology that creates the illusion of continuous tone images for printing devices such as electrophotographic printers that can only produce a limited number of tone levels. Digital halftoning works because the human visual system has limited spatial resolution which blurs the printed dots of the halftone image, creating the gray sensation of a continuous tone image. Because the printing process is imperfect it introduces distortions to the halftone image. The quality of the printed image depends, among other factors, on the complex interactions between the halftone image, the printer characteristics, the colorant, and the printing substrate. Printer models are used to assist in the development of new types of halftone algorithms that are designed to withstand the effects of printer distortions. For example, model-based halftone algorithms optimize the halftone image through an iterative process that integrates a printer model within the algorithm. The two main goals of a printer model are to provide accurate estimates of the tone and of the spatial characteristics of the printed halftone pattern. Various classes of printer models, from simple tone calibrations to complex mechanistic models, have been reported in the literature. Existing models have one or more of the following limiting factors: they only predict tone reproduction, they depend on the halftone pattern, they require complex calibrations or complex calculations, they are printer specific, they reproduce unrealistic dot structures, and they are unable to adapt responses to new data. The two research objectives of this dissertation are (1) to introduce a new framework for printer modeling and (2) to demonstrate the feasibility of such a framework in building an electrophotographic printer model. The proposed framework introduces the concept of modeling a printer as a texture transformation machine. The basic premise is that modeling the texture differences between the output printed images and the input images encompasses all printing distortions. The feasibility of the framework was tested with a case study modeling a monotone electrophotographic printer. The printer model was implemented as a bank of feed-forward neural networks, each one specialized in modeling a group of textural features of the printed halftone pattern. The textural features were obtained using a parametric representation of texture developed from a multiresolution decomposition proposed by other researchers. The textural properties of halftone patterns were analyzed and the key texture parameters to be modeled by the bank were identified. Guidelines for the multiresolution texture decomposition and the model operational parameters and operational limits were established. A method for the selection of training sets based on the morphological properties of the halftone patterns was also developed. The model is fast and has the capability to continue to learn with additional training. The model can be easily implemented because it only requires a calibrated scanner. The model was tested with halftone patterns representing a range of spatial characteristics found in halftoning. Results show that the model provides accurate predictions for the tone and the spatial characteristics when modeling halftone patterns individually and it provides close approximations when modeling multiple halftone patterns simultaneously. The success of the model justifies continued research of this new printer model framework.

  7. Measurement, modeling and perception of painted surfaces: A Multi-scale Analysis of the Touch-up Problem

    NASA Astrophysics Data System (ADS)

    Kalghatgi, Suparna Kishore

    Real-world surfaces typically have geometric features at a range of spatial scales. At the microscale, opaque surfaces are often characterized by bidirectional reflectance distribution functions (BRDF), which describes how a surface scatters incident light. At the mesoscale, surfaces often exhibit visible texture -- stochastic or patterned arrangements of geometric features that provide visual information about surface properties such as roughness, smoothness, softness, etc. These textures also affect how light is scattered by the surface, but the effects are at a different spatial scale than those captured by the BRDF. Through this research, we investigate how microscale and mesoscale surface properties interact to contribute to overall surface appearance. This behavior is also the cause of the well-known "touch-up problem" in the paint industry, where two regions coated with exactly the same paint, look different in color, gloss and/or texture because of differences in application methods. At first, samples were created by applying latex paint to standard wallboard surfaces. Two application methods- spraying and rolling were used. The BRDF and texture properties of the samples were measured, which revealed differences at both the microscale and mesoscale. This data was then used as input for a physically-based image synthesis algorithm, to generate realistic images of the surfaces under different viewing conditions. In order to understand the factors that govern touch-up visibility, psychophysical tests were conducted using calibrated, digital photographs of the samples as stimuli. Images were presented in pairs and a two alternative forced choice design was used for the experiments. These judgments were then used as data for a Thurstonian scaling analysis to produce psychophysical scales of visibility, which helped determine the effect of paint formulation, application methods, and viewing and illumination conditions on the touch-up problem. The results can be used as base data towards development of a psychophysical model that relates physical differences in paint formulation and application methods to visual differences in surface appearance.

  8. Vessel Classification in Cosmo-Skymed SAR Data Using Hierarchical Feature Selection

    NASA Astrophysics Data System (ADS)

    Makedonas, A.; Theoharatos, C.; Tsagaris, V.; Anastasopoulos, V.; Costicoglou, S.

    2015-04-01

    SAR based ship detection and classification are important elements of maritime monitoring applications. Recently, high-resolution SAR data have opened new possibilities to researchers for achieving improved classification results. In this work, a hierarchical vessel classification procedure is presented based on a robust feature extraction and selection scheme that utilizes scale, shape and texture features in a hierarchical way. Initially, different types of feature extraction algorithms are implemented in order to form the utilized feature pool, able to represent the structure, material, orientation and other vessel type characteristics. A two-stage hierarchical feature selection algorithm is utilized next in order to be able to discriminate effectively civilian vessels into three distinct types, in COSMO-SkyMed SAR images: cargos, small ships and tankers. In our analysis, scale and shape features are utilized in order to discriminate smaller types of vessels present in the available SAR data, or shape specific vessels. Then, the most informative texture and intensity features are incorporated in order to be able to better distinguish the civilian types with high accuracy. A feature selection procedure that utilizes heuristic measures based on features' statistical characteristics, followed by an exhaustive research with feature sets formed by the most qualified features is carried out, in order to discriminate the most appropriate combination of features for the final classification. In our analysis, five COSMO-SkyMed SAR data with 2.2m x 2.2m resolution were used to analyse the detailed characteristics of these types of ships. A total of 111 ships with available AIS data were used in the classification process. The experimental results show that this method has good performance in ship classification, with an overall accuracy reaching 83%. Further investigation of additional features and proper feature selection is currently in progress.

  9. Adaptive Electronic Camouflage Using Texture Synthesis

    DTIC Science & Technology

    2012-04-01

    algorithm begins by computing the GLCMs, GIN and GOUT , of the input image (e.g., image of local environment) and output image (randomly generated...respectively. The algorithm randomly selects a pixel from the output image and cycles its gray-level through all values. For each value, GOUT is updated...The value of the selected pixel is permanently changed to the gray-level value that minimizes the error between GIN and GOUT . Without selecting a

  10. Texture analysis of apparent diffusion coefficient maps for treatment response assessment in prostate cancer bone metastases-A pilot study.

    PubMed

    Reischauer, Carolin; Patzwahl, René; Koh, Dow-Mu; Froehlich, Johannes M; Gutzeit, Andreas

    2018-04-01

    To evaluate whole-lesion volumetric texture analysis of apparent diffusion coefficient (ADC) maps for assessing treatment response in prostate cancer bone metastases. Texture analysis is performed in 12 treatment-naïve patients with 34 metastases before treatment and at one, two, and three months after the initiation of androgen deprivation therapy. Four first-order and 19 second-order statistical texture features are computed on the ADC maps in each lesion at every time point. Repeatability, inter-patient variability, and changes in the feature values under therapy are investigated. Spearman rank's correlation coefficients are calculated across time to demonstrate the relationship between the texture features and the serum prostate specific antigen (PSA) levels. With few exceptions, the texture features exhibited moderate to high precision. At the same time, Friedman's tests revealed that all first-order and second-order statistical texture features changed significantly in response to therapy. Thereby, the majority of texture features showed significant changes in their values at all post-treatment time points relative to baseline. Bivariate analysis detected significant correlations between the great majority of texture features and the serum PSA levels. Thereby, three first-order and six second-order statistical features showed strong correlations with the serum PSA levels across time. The findings in the present work indicate that whole-tumor volumetric texture analysis may be utilized for response assessment in prostate cancer bone metastases. The approach may be used as a complementary measure for treatment monitoring in conjunction with averaged ADC values. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Using geometrical, textural, and contextual information of land parcels for classification of detailed urban land use

    USGS Publications Warehouse

    Wu, S.-S.; Qiu, X.; Usery, E.L.; Wang, L.

    2009-01-01

    Detailed urban land use data are important to government officials, researchers, and businesspeople for a variety of purposes. This article presents an approach to classifying detailed urban land use based on geometrical, textural, and contextual information of land parcels. An area of 6 by 14 km in Austin, Texas, with land parcel boundaries delineated by the Travis Central Appraisal District of Travis County, Texas, is tested for the approach. We derive fifty parcel attributes from relevant geographic information system (GIS) and remote sensing data and use them to discriminate among nine urban land uses: single family, multifamily, commercial, office, industrial, civic, open space, transportation, and undeveloped. Half of the 33,025 parcels in the study area are used as training data for land use classification and the other half are used as testing data for accuracy assessment. The best result with a decision tree classification algorithm has an overall accuracy of 96 percent and a kappa coefficient of 0.78, and two naive, baseline models based on the majority rule and the spatial autocorrelation rule have overall accuracy of 89 percent and 79 percent, respectively. The algorithm is relatively good at classifying single-family, multifamily, commercial, open space, and undeveloped land uses and relatively poor at classifying office, industrial, civic, and transportation land uses. The most important attributes for land use classification are the geometrical attributes, particularly those related to building areas. Next are the contextual attributes, particularly those relevant to the spatial relationship between buildings, then the textural attributes, particularly the semivariance texture statistic from 0.61-m resolution images.

  12. Multiple feature fusion via covariance matrix for visual tracking

    NASA Astrophysics Data System (ADS)

    Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Wang, Xin; Sun, Hui

    2018-04-01

    Aiming at the problem of complicated dynamic scenes in visual target tracking, a multi-feature fusion tracking algorithm based on covariance matrix is proposed to improve the robustness of the tracking algorithm. In the frame-work of quantum genetic algorithm, this paper uses the region covariance descriptor to fuse the color, edge and texture features. It also uses a fast covariance intersection algorithm to update the model. The low dimension of region covariance descriptor, the fast convergence speed and strong global optimization ability of quantum genetic algorithm, and the fast computation of fast covariance intersection algorithm are used to improve the computational efficiency of fusion, matching, and updating process, so that the algorithm achieves a fast and effective multi-feature fusion tracking. The experiments prove that the proposed algorithm can not only achieve fast and robust tracking but also effectively handle interference of occlusion, rotation, deformation, motion blur and so on.

  13. Integrating fuzzy object based image analysis and ant colony optimization for road extraction from remotely sensed images

    NASA Astrophysics Data System (ADS)

    Maboudi, Mehdi; Amini, Jalal; Malihi, Shirin; Hahn, Michael

    2018-04-01

    Updated road network as a crucial part of the transportation database plays an important role in various applications. Thus, increasing the automation of the road extraction approaches from remote sensing images has been the subject of extensive research. In this paper, we propose an object based road extraction approach from very high resolution satellite images. Based on the object based image analysis, our approach incorporates various spatial, spectral, and textural objects' descriptors, the capabilities of the fuzzy logic system for handling the uncertainties in road modelling, and the effectiveness and suitability of ant colony algorithm for optimization of network related problems. Four VHR optical satellite images which are acquired by Worldview-2 and IKONOS satellites are used in order to evaluate the proposed approach. Evaluation of the extracted road networks shows that the average completeness, correctness, and quality of the results can reach 89%, 93% and 83% respectively, indicating that the proposed approach is applicable for urban road extraction. We also analyzed the sensitivity of our algorithm to different ant colony optimization parameter values. Comparison of the achieved results with the results of four state-of-the-art algorithms and quantifying the robustness of the fuzzy rule set demonstrate that the proposed approach is both efficient and transferable to other comparable images.

  14. MitoGen: A Framework for Generating 3D Synthetic Time-Lapse Sequences of Cell Populations in Fluorescence Microscopy.

    PubMed

    Svoboda, David; Ulman, Vladimir

    2017-01-01

    The proper analysis of biological microscopy images is an important and complex task. Therefore, it requires verification of all steps involved in the process, including image segmentation and tracking algorithms. It is generally better to verify algorithms with computer-generated ground truth datasets, which, compared to manually annotated data, nowadays have reached high quality and can be produced in large quantities even for 3D time-lapse image sequences. Here, we propose a novel framework, called MitoGen, which is capable of generating ground truth datasets with fully 3D time-lapse sequences of synthetic fluorescence-stained cell populations. MitoGen shows biologically justified cell motility, shape and texture changes as well as cell divisions. Standard fluorescence microscopy phenomena such as photobleaching, blur with real point spread function (PSF), and several types of noise, are simulated to obtain realistic images. The MitoGen framework is scalable in both space and time. MitoGen generates visually plausible data that shows good agreement with real data in terms of image descriptors and mean square displacement (MSD) trajectory analysis. Additionally, it is also shown in this paper that four publicly available segmentation and tracking algorithms exhibit similar performance on both real and MitoGen-generated data. The implementation of MitoGen is freely available.

  15. Conjoint representation of texture ensemble and location in the parahippocampal place area.

    PubMed

    Park, Jeongho; Park, Soojin

    2017-04-01

    Texture provides crucial information about the category or identity of a scene. Nonetheless, not much is known about how the texture information in a scene is represented in the brain. Previous studies have shown that the parahippocampal place area (PPA), a scene-selective part of visual cortex, responds to simple patches of texture ensemble. However, in natural scenes textures exist in spatial context within a scene. Here we tested two hypotheses that make different predictions on how textures within a scene context are represented in the PPA. The Texture-Only hypothesis suggests that the PPA represents texture ensemble (i.e., the kind of texture) as is, irrespective of its location in the scene. On the other hand, the Texture and Location hypothesis suggests that the PPA represents texture and its location within a scene (e.g., ceiling or wall) conjointly. We tested these two hypotheses across two experiments, using different but complementary methods. In experiment 1 , by using multivoxel pattern analysis (MVPA) and representational similarity analysis, we found that the representational similarity of the PPA activation patterns was significantly explained by the Texture-Only hypothesis but not by the Texture and Location hypothesis. In experiment 2 , using a repetition suppression paradigm, we found no repetition suppression for scenes that had the same texture ensemble but differed in location (supporting the Texture and Location hypothesis). On the basis of these results, we propose a framework that reconciles contrasting results from MVPA and repetition suppression and draw conclusions about how texture is represented in the PPA. NEW & NOTEWORTHY This study investigates how the parahippocampal place area (PPA) represents texture information within a scene context. We claim that texture is represented in the PPA at multiple levels: the texture ensemble information at the across-voxel level and the conjoint information of texture and its location at the within-voxel level. The study proposes a working hypothesis that reconciles contrasting results from multivoxel pattern analysis and repetition suppression, suggesting that the methods are complementary to each other but not necessarily interchangeable. Copyright © 2017 the American Physiological Society.

  16. Real-Time High-Dynamic Range Texture Mapping

    DTIC Science & Technology

    2001-01-01

    the renderings produced by radiosity and global illumination algorithms. As a particular example, Greg Ward’s RADIANCE synthetic imaging system [32...in soft- ware only. [26] presented a technique for performing Ward’s tone reproduction algo- rithm interactively to visualize radiosity solutions

  17. Magnetization-prepared rapid acquisition with gradient echo magnetic resonance imaging signal and texture features for the prediction of mild cognitive impairment to Alzheimer’s disease progression

    PubMed Central

    Martinez-Torteya, Antonio; Rodriguez-Rojas, Juan; Celaya-Padilla, José M.; Galván-Tejada, Jorge I.; Treviño, Victor; Tamez-Peña, Jose

    2014-01-01

    Abstract. Early diagnoses of Alzheimer’s disease (AD) would confer many benefits. Several biomarkers have been proposed to achieve such a task, where features extracted from magnetic resonance imaging (MRI) have played an important role. However, studies have focused exclusively on morphological characteristics. This study aims to determine whether features relating to the signal and texture of the image could predict mild cognitive impairment (MCI) to AD progression. Clinical, biological, and positron emission tomography information and MRI images of 62 subjects from the AD neuroimaging initiative were used in this study, extracting 4150 features from each MRI. Within this multimodal database, a feature selection algorithm was used to obtain an accurate and small logistic regression model, generated by a methodology that yielded a mean blind test accuracy of 0.79. This model included six features, five of them obtained from the MRI images, and one obtained from genotyping. A risk analysis divided the subjects into low-risk and high-risk groups according to a prognostic index. The groups were statistically different (p-value=2.04e−11). These results demonstrated that MRI features related to both signal and texture add MCI to AD predictive power, and supported the ongoing notion that multimodal biomarkers outperform single-modality ones. PMID:26158047

  18. MRI signal and texture features for the prediction of MCI to Alzheimer's disease progression

    NASA Astrophysics Data System (ADS)

    Martínez-Torteya, Antonio; Rodríguez-Rojas, Juan; Celaya-Padilla, José M.; Galván-Tejada, Jorge I.; Treviño, Victor; Tamez-Peña, José G.

    2014-03-01

    An early diagnosis of Alzheimer's disease (AD) confers many benefits. Several biomarkers from different information modalities have been proposed for the prediction of MCI to AD progression, where features extracted from MRI have played an important role. However, studies have focused almost exclusively in the morphological characteristics of the images. This study aims to determine whether features relating to the signal and texture of the image could add predictive power. Baseline clinical, biological and PET information, and MP-RAGE images for 62 subjects from the Alzheimer's Disease Neuroimaging Initiative were used in this study. Images were divided into 83 regions and 50 features were extracted from each one of these. A multimodal database was constructed, and a feature selection algorithm was used to obtain an accurate and small logistic regression model, which achieved a cross-validation accuracy of 0.96. These model included six features, five of them obtained from the MP-RAGE image, and one obtained from genotyping. A risk analysis divided the subjects into low-risk and high-risk groups according to a prognostic index, showing that both groups are statistically different (p-value of 2.04e-11). The results demonstrate that MRI features related to both signal and texture, add MCI to AD predictive power, and support the idea that multimodal biomarkers outperform single-modality biomarkers.

  19. Cascaded Amplitude Modulations in Sound Texture Perception.

    PubMed

    McWalter, Richard; Dau, Torsten

    2017-01-01

    Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as "beating" in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures-stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.

  20. Sea ice type dynamics in the Arctic based on Sentinel-1 Data

    NASA Astrophysics Data System (ADS)

    Babiker, Mohamed; Korosov, Anton; Park, Jeong-Won

    2017-04-01

    Sea ice observation from satellites has been carried out for more than four decades and is one of the most important applications of EO data in operational monitoring as well as in climate change studies. Several sensors and retrieval methods have been developed and successfully utilized to measure sea ice area, concentration, drift, type, thickness, etc [e.g. Breivik et al., 2009]. Today operational sea ice monitoring and analysis is fully dependent on use of satellite data. However, new and improved satellite systems, such as multi-polarisation Synthetic Apperture Radar (SAR), require further studies to develop more advanced and automated sea ice monitoring methods. In addition, the unprecedented volume of data available from recently launched Sentinel missions provides both challenges and opportunities for studying sea ice dynamics. In this study we investigate sea ice type dynamics in the Fram strait based on Sentinel-1 A, B SAR data. Series of images for the winter season are classified into 4 ice types (young ice, first year ice, multiyear ice and leads) using the new algorithm developed by us for sea ice classification, which is based on segmentation, GLCM calculation, Haralick texture feature extraction, unsupervised and supervised classifications and Support Vector Machine (SVM) [Zakhvatkina et al., 2016; Korosov et al., 2016]. This algorithm is further improved by applying thermal and scalloping noise removal [Park et al. 2016]. Sea ice drift is retrieved from the same series of Sentinel-1 images using the newly developed algorithm based on combination of feature tracking and pattern matching [Mukenhuber et al., 2016]. Time series of these two products (sea ice type and sea ice drift) are combined in order to study sea ice deformation processes at small scales. Zones of sea ice convergence and divergence identified from sea ice drift are compared with ridges and leads identified from texture features. That allows more specific interpretation of SAR imagery and more accurate automatic classification. In addition, the map of four ice types calculated using the texture features from one SAR image is propagated forward using the sea ice drift vectors. The propagated ice type is compared with ice type derived from the next image. The comparison identifies changes in ice type which occurred during drift and allows to reduce uncertainties in sea ice type calculation.

  1. X-ray texture analysis of paper coating pigments and the correlation with chemical composition analysis

    NASA Astrophysics Data System (ADS)

    Roine, J.; Tenho, M.; Murtomaa, M.; Lehto, V.-P.; Kansanaho, R.

    2007-10-01

    The present research experiments the applicability of x-ray texture analysis in investigating the properties of paper coatings. The preferred orientations of kaolin, talc, ground calcium carbonate, and precipitated calcium carbonate particles used in four different paper coatings were determined qualitatively based on the measured crystal orientation data. The extent of the orientation, namely, the degree of the texture of each pigment, was characterized quantitatively using a single parameter. As a result, the effect of paper calendering is clearly seen as an increase on the degree of texture of the coating pigments. The effect of calendering on the preferred orientation of kaolin was also evident in an independent energy dispersive spectrometer analysis on micrometer scale and an electron spectroscopy for chemical analysis on nanometer scale. Thus, the present work proves x-ray texture analysis to be a potential research tool for characterizing the properties of paper coating layers.

  2. An Active Patch Model for Real World Texture and Appearance Classification

    PubMed Central

    Mao, Junhua; Zhu, Jun; Yuille, Alan L.

    2014-01-01

    This paper addresses the task of natural texture and appearance classification. Our goal is to develop a simple and intuitive method that performs at state of the art on datasets ranging from homogeneous texture (e.g., material texture), to less homogeneous texture (e.g., the fur of animals), and to inhomogeneous texture (the appearance patterns of vehicles). Our method uses a bag-of-words model where the features are based on a dictionary of active patches. Active patches are raw intensity patches which can undergo spatial transformations (e.g., rotation and scaling) and adjust themselves to best match the image regions. The dictionary of active patches is required to be compact and representative, in the sense that we can use it to approximately reconstruct the images that we want to classify. We propose a probabilistic model to quantify the quality of image reconstruction and design a greedy learning algorithm to obtain the dictionary. We classify images using the occurrence frequency of the active patches. Feature extraction is fast (about 100 ms per image) using the GPU. The experimental results show that our method improves the state of the art on a challenging material texture benchmark dataset (KTH-TIPS2). To test our method on less homogeneous or inhomogeneous images, we construct two new datasets consisting of appearance image patches of animals and vehicles cropped from the PASCAL VOC dataset. Our method outperforms competing methods on these datasets. PMID:25531013

  3. Discrimination of isotrigon textures using the Rényi entropy of Allan variances.

    PubMed

    Gabarda, Salvador; Cristóbal, Gabriel

    2008-09-01

    We present a computational algorithm for isotrigon texture discrimination. The aim of this method consists in discriminating isotrigon textures against a binary random background. The extension of the method to the problem of multitexture discrimination is considered as well. The method relies on the fact that the information content of time or space-frequency representations of signals, including images, can be readily analyzed by means of generalized entropy measures. In such a scenario, the Rényi entropy appears as an effective tool, given that Rényi measures can be used to provide information about a local neighborhood within an image. Localization is essential for comparing images on a pixel-by-pixel basis. Discrimination is performed through a local Rényi entropy measurement applied on a spatially oriented 1-D pseudo-Wigner distribution (PWD) of the test image. The PWD is normalized so that it may be interpreted as a probability distribution. Prior to the calculation of the texture's PWD, a preprocessing filtering step replaces the original texture with its localized spatially oriented Allan variances. The anisotropic structure of the textures, as revealed by the Allan variances, turns out to be crucial later to attain a high discrimination by the extraction of Rényi entropy measures. The method has been empirically evaluated with a family of isotrigon textures embedded in a binary random background. The extension to the case of multiple isotrigon mosaics has also been considered. Discrimination results are compared with other existing methods.

  4. Texture Analysis of Poly-Adenylated mRNA Staining Following Global Brain Ischemia and Reperfusion

    PubMed Central

    Szymanski, Jeffrey J.; Jamison, Jill T.; DeGracia, Donald J.

    2011-01-01

    Texture analysis provides a means to quantify complex changes in microscope images. We previously showed that cytoplasmic poly-adenylated mRNAs form mRNA granules in post-ischemic neurons and that these granules correlated with protein synthesis inhibition and hence cell death. Here we utilized the texture analysis software MaZda to quantify mRNA granules in photomicrographs of the pyramidal cell layer of rat hippocampal region CA3 around 1 hour of reperfusion after 10 min of normothermic global cerebral ischemia. At 1 hour reperfusion, we observed variations in the texture of mRNA granules amongst samples that were readily quantified by texture analysis. Individual sample variation was consistent with the interpretation that animal-to-animal variations in mRNA granules reflected the time-course of mRNA granule formation. We also used texture analysis to quantify the effect of cycloheximide, given either before or after brain ischemia, on mRNA granules. If administered before ischemia, cycloheximide inhibited mRNA granule formation, but if administered after ischemia did not prevent mRNA granulation, indicating mRNA granule formation is dependent on dissociation of polysomes. We conclude that texture analysis is an effective means for quantifying the complex morphological changes induced in neurons by brain ischemia and reperfusion. PMID:21477879

  5. Computer-aided diagnosis of liver tumors on computed tomography images.

    PubMed

    Chang, Chin-Chen; Chen, Hong-Hao; Chang, Yeun-Chung; Yang, Ming-Yang; Lo, Chung-Ming; Ko, Wei-Chun; Lee, Yee-Fan; Liu, Kao-Lang; Chang, Ruey-Feng

    2017-07-01

    Liver cancer is the tenth most common cancer in the USA, and its incidence has been increasing for several decades. Early detection, diagnosis, and treatment of the disease are very important. Computed tomography (CT) is one of the most common and robust imaging techniques for the detection of liver cancer. CT scanners can provide multiple-phase sequential scans of the whole liver. In this study, we proposed a computer-aided diagnosis (CAD) system to diagnose liver cancer using the features of tumors obtained from multiphase CT images. A total of 71 histologically-proven liver tumors including 49 benign and 22 malignant lesions were evaluated with the proposed CAD system to evaluate its performance. Tumors were identified by the user and then segmented using a region growing algorithm. After tumor segmentation, three kinds of features were obtained for each tumor, including texture, shape, and kinetic curve. The texture was quantified using 3 dimensional (3-D) texture data of the tumor based on the grey level co-occurrence matrix (GLCM). Compactness, margin, and an elliptic model were used to describe the 3-D shape of the tumor. The kinetic curve was established from each phase of tumor and represented as variations in density between each phase. Backward elimination was used to select the best combination of features, and binary logistic regression analysis was used to classify the tumors with leave-one-out cross validation. The accuracy and sensitivity for the texture were 71.82% and 68.18%, respectively, which were better than for the shape and kinetic curve under closed specificity. Combining all of the features achieved the highest accuracy (58/71, 81.69%), sensitivity (18/22, 81.82%), and specificity (40/49, 81.63%). The Az value of combining all features was 0.8713. Combining texture, shape, and kinetic curve features may be able to differentiate benign from malignant tumors in the liver using our proposed CAD system. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Can we trust the calculation of texture indices of CT images? A phantom study.

    PubMed

    Caramella, Caroline; Allorant, Adrien; Orlhac, Fanny; Bidault, Francois; Asselain, Bernard; Ammari, Samy; Jaranowski, Patricia; Moussier, Aurelie; Balleyguier, Corinne; Lassau, Nathalie; Pitre-Champagnat, Stephanie

    2018-04-01

    Texture analysis is an emerging tool in the field of medical imaging analysis. However, many issues have been raised in terms of its use in assessing patient images and it is crucial to harmonize and standardize this new imaging measurement tool. This study was designed to evaluate the reliability of texture indices of CT images on a phantom including a reproducibility study, to assess the discriminatory capacity of indices potentially relevant in CT medical images and to determine their redundancy. For the reproducibility and discriminatory analysis, eight identical CT acquisitions were performed on a phantom including one homogeneous insert and two close heterogeneous inserts. Texture indices were selected for their high reproducibility and capability of discriminating different textures. For the redundancy analysis, 39 acquisitions of the same phantom were performed using varying acquisition parameters and a correlation matrix was used to explore the 2 × 2 relationships. LIFEx software was used to explore 34 different parameters including first order and texture indices. Only eight indices of 34 exhibited high reproducibility and discriminated textures from each other. Skewness and kurtosis from histogram were independent from the six other indices but were intercorrelated, the other six indices correlated in diverse degrees (entropy, dissimilarity, and contrast of the co-occurrence matrix, contrast of the Neighborhood Gray Level difference matrix, SZE, ZLNU of the Gray-Level Size Zone Matrix). Care should be taken when using texture analysis as a tool to characterize CT images because changes in quantitation may be primarily due to internal variability rather than from real physio-pathological effects. Some textural indices appear to be sufficiently reliable and capable to discriminate close textures on CT images. © 2018 American Association of Physicists in Medicine.

  7. Extraction and textural characterization of above-ground areas from aerial stereo pairs: a quality assessment

    NASA Astrophysics Data System (ADS)

    Baillard, C.; Dissard, O.; Jamet, O.; Maître, H.

    Above-ground analysis is a key point to the reconstruction of urban scenes, but it is a difficult task because of the diversity of the involved objects. We propose a new method to above-ground extraction from an aerial stereo pair, which does not require any assumption about object shape or nature. A Digital Surface Model is first produced by a stereoscopic matching stage preserving discontinuities, and then processed by a region-based Markovian classification algorithm. The produced above-ground areas are finally characterized as man-made or natural according to the grey level information. The quality of the results is assessed and discussed.

  8. Music Structure Analysis from Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Dannenberg, Roger B.; Goto, Masataka

    Music is full of structure, including sections, sequences of distinct musical textures, and the repetition of phrases or entire sections. The analysis of music audio relies upon feature vectors that convey information about music texture or pitch content. Texture generally refers to the average spectral shape and statistical fluctuation, often reflecting the set of sounding instruments, e.g., strings, vocal, or drums. Pitch content reflects melody and harmony, which is often independent of texture. Structure is found in several ways. Segment boundaries can be detected by observing marked changes in locally averaged texture.

  9. Combined radiogrammetry and texture analysis for early diagnosis of osteoporosis using Indian and Swiss data.

    PubMed

    Areeckal, Anu Shaju; Kamath, Jagannath; Zawadynski, Sophie; Kocher, Michel; S, Sumam David

    2018-05-26

    Osteoporosis is a bone disorder characterized by bone loss and decreased bone strength. The most widely used technique for detection of osteoporosis is the measurement of bone mineral density (BMD) using dual energy X-ray absorptiometry (DXA). But DXA scans are expensive and not widely available in low-income economies. In this paper, we propose a low cost pre-screening tool for the detection of low bone mass, using cortical radiogrammetry of third metacarpal bone and trabecular texture analysis of distal radius from hand and wrist radiographs. An automatic segmentation algorithm to automatically locate and segment the third metacarpal bone and distal radius region of interest (ROI) is proposed. Cortical measurements such as combined cortical thickness (CCT), cortical area (CA), percent cortical area (PCA) and Barnett Nordin index (BNI) were taken from the shaft of third metacarpal bone. Texture analysis of trabecular network at the distal radius was performed using features obtained from histogram, gray level Co-occurrence matrix (GLCM) and morphological gradient method (MGM). The significant cortical and texture features were selected using independent sample t-test and used to train classifiers to classify healthy subjects and people with low bone mass. The proposed pre-screening tool was validated on two ethnic groups, Indian sample population and Swiss sample population. Data of 134 subjects from Indian sample population and 65 subjects from Swiss sample population were analysed. The proposed automatic segmentation approach shows a detection accuracy of 86% in detecting the third metacarpal bone shaft and 90% in accurately locating the distal radius ROI. Comparison of the automatic radiogrammetry to the ground truth provided by experts show a mean absolute error of 0.04 mm for cortical width of healthy group, 0.12 mm for cortical width of low bone mass group, 0.22 mm for medullary width of healthy group, and 0.26 mm for medullary width of low bone mass group. Independent sample t-test was used to select the most discriminant features, to be used as input for training the classifiers. Pearson correlation analysis of the extracted features with DXA-BMD of lumbar spine (DXA-LS) shows significantly high correlation values. Classifiers were trained with the most significant features in the Indian and Swiss sample data. Weighted KNN classifier shows the best test accuracy of 78% for Indian sample data and 100% for Swiss sample data. Hence, combined automatic radiogrammetry and texture analysis is shown to be an effective low cost pre-screening tool for early diagnosis of osteoporosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Recognition of skin melanoma through dermoscopic image analysis

    NASA Astrophysics Data System (ADS)

    Gómez, Catalina; Herrera, Diana Sofia

    2017-11-01

    Melanoma skin cancer diagnosis can be challenging due to the similarities of the early stage symptoms with regular moles. Standardized visual parameters can be determined and characterized to suspect a melanoma cancer type. The automation of this diagnosis could have an impact in the medical field by providing a tool to support the specialists with high accuracy. The objective of this study is to develop an algorithm trained to distinguish a highly probable melanoma from a non-dangerous mole by the segmentation and classification of dermoscopic mole images. We evaluate our approach on the dataset provided by the International Skin Imaging Collaboration used in the International Challenge Skin Lesion Analysis Towards Melanoma Detection. For the segmentation task, we apply a preprocessing algorithm and use Otsu's thresholding in the best performing color space; the average Jaccard Index in the test dataset is 70.05%. For the subsequent classification stage, we use joint histograms in the YCbCr color space, a RBF Gaussian SVM trained with five features concerning circularity and irregularity of the segmented lesion, and the Gray Level Co-occurrence matrix features for texture analysis. These features are combined to obtain an Average Classification Accuracy of 63.3% in the test dataset.

  11. Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase 18F-FET PET accuracy without dynamic scans.

    PubMed

    Lohmann, Philipp; Stoffels, Gabriele; Ceccon, Garry; Rapp, Marion; Sabel, Michael; Filss, Christian P; Kamp, Marcel A; Stegmayr, Carina; Neumaier, Bernd; Shah, Nadim J; Langen, Karl-Josef; Galldiks, Norbert

    2017-07-01

    We investigated the potential of textural feature analysis of O-(2-[ 18 F]fluoroethyl)-L-tyrosine ( 18 F-FET) PET to differentiate radiation injury from brain metastasis recurrence. Forty-seven patients with contrast-enhancing brain lesions (n = 54) on MRI after radiotherapy of brain metastases underwent dynamic 18 F-FET PET. Tumour-to-brain ratios (TBRs) of 18 F-FET uptake and 62 textural parameters were determined on summed images 20-40 min post-injection. Tracer uptake kinetics, i.e., time-to-peak (TTP) and patterns of time-activity curves (TAC) were evaluated on dynamic PET data from 0-50 min post-injection. Diagnostic accuracy of investigated parameters and combinations thereof to discriminate between brain metastasis recurrence and radiation injury was compared. Diagnostic accuracy increased from 81 % for TBR mean alone to 85 % when combined with the textural parameter Coarseness or Short-zone emphasis. The accuracy of TBR max alone was 83 % and increased to 85 % after combination with the textural parameters Coarseness, Short-zone emphasis, or Correlation. Analysis of TACs resulted in an accuracy of 70 % for kinetic pattern alone and increased to 83 % when combined with TBR max . Textural feature analysis in combination with TBRs may have the potential to increase diagnostic accuracy for discrimination between brain metastasis recurrence and radiation injury, without the need for dynamic 18 F-FET PET scans. • Textural feature analysis provides quantitative information about tumour heterogeneity • Textural features help improve discrimination between brain metastasis recurrence and radiation injury • Textural features might be helpful to further understand tumour heterogeneity • Analysis does not require a more time consuming dynamic PET acquisition.

  12. Accuracy in breast shape alignment with 3D surface fitting algorithms.

    PubMed

    Riboldi, Marco; Gierga, David P; Chen, George T Y; Baroni, Guido

    2009-04-01

    Surface imaging is in use in radiotherapy clinical practice for patient setup optimization and monitoring. Breast alignment is accomplished by searching for a tentative spatial correspondence between the reference and daily surface shape models. In this study, the authors quantify whole breast shape alignment by relying on texture features digitized on 3D surface models. Texture feature localization was validated through repeated measurements in a silicone breast phantom, mounted on a high precision mechanical stage. Clinical investigations on breast shape alignment included 133 fractions in 18 patients treated with accelerated partial breast irradiation. The breast shape was detected with a 3D video based surface imaging system so that breathing was compensated. An in-house algorithm for breast alignment, based on surface fitting constrained by nipple matching (constrained surface fitting), was applied. Results were compared with a commercial software where no constraints are utilized (unconstrained surface fitting). Texture feature localization was validated within 2 mm in each anatomical direction. Clinical data show that unconstrained surface fitting achieves adequate accuracy in most cases, though nipple mismatch is considerably higher than residual surface distances (3.9 mm vs 0.6 mm on average). Outliers beyond 1 cm can be experienced as the result of a degenerate surface fit, where unconstrained surface fitting is not sufficient to establish spatial correspondence. In the constrained surface fitting algorithm, average surface mismatch within 1 mm was obtained when nipple position was forced to match in the [1.5; 5] mm range. In conclusion, optimal results can be obtained by trading off the desired overall surface congruence vs matching of selected landmarks (constraint). Constrained surface fitting is put forward to represent an improvement in setup accuracy for those applications where whole breast positional reproducibility is an issue.

  13. Cascaded Amplitude Modulations in Sound Texture Perception

    PubMed Central

    McWalter, Richard; Dau, Torsten

    2017-01-01

    Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches. PMID:28955191

  14. Automated artifact detection and removal for improved tensor estimation in motion-corrupted DTI data sets using the combination of local binary patterns and 2D partial least squares.

    PubMed

    Zhou, Zhenyu; Liu, Wei; Cui, Jiali; Wang, Xunheng; Arias, Diana; Wen, Ying; Bansal, Ravi; Hao, Xuejun; Wang, Zhishun; Peterson, Bradley S; Xu, Dongrong

    2011-02-01

    Signal variation in diffusion-weighted images (DWIs) is influenced both by thermal noise and by spatially and temporally varying artifacts, such as rigid-body motion and cardiac pulsation. Motion artifacts are particularly prevalent when scanning difficult patient populations, such as human infants. Although some motion during data acquisition can be corrected using image coregistration procedures, frequently individual DWIs are corrupted beyond repair by sudden, large amplitude motion either within or outside of the imaging plane. We propose a novel approach to identify and reject outlier images automatically using local binary patterns (LBP) and 2D partial least square (2D-PLS) to estimate diffusion tensors robustly. This method uses an enhanced LBP algorithm to extract texture features from a local texture feature of the image matrix from the DWI data. Because the images have been transformed to local texture matrices, we are able to extract discriminating information that identifies outliers in the data set by extending a traditional one-dimensional PLS algorithm to a two-dimension operator. The class-membership matrix in this 2D-PLS algorithm is adapted to process samples that are image matrix, and the membership matrix thus represents varying degrees of importance of local information within the images. We also derive the analytic form of the generalized inverse of the class-membership matrix. We show that this method can effectively extract local features from brain images obtained from a large sample of human infants to identify images that are outliers in their textural features, permitting their exclusion from further processing when estimating tensors using the DWIs. This technique is shown to be superior in performance when compared with visual inspection and other common methods to address motion-related artifacts in DWI data. This technique is applicable to correct motion artifact in other magnetic resonance imaging (MRI) techniques (e.g., the bootstrapping estimation) that use univariate or multivariate regression methods to fit MRI data to a pre-specified model. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Mining textural knowledge in biological images: Applications, methods and trends.

    PubMed

    Di Cataldo, Santa; Ficarra, Elisa

    2017-01-01

    Texture analysis is a major task in many areas of computer vision and pattern recognition, including biological imaging. Indeed, visual textures can be exploited to distinguish specific tissues or cells in a biological sample, to highlight chemical reactions between molecules, as well as to detect subcellular patterns that can be evidence of certain pathologies. This makes automated texture analysis fundamental in many applications of biomedicine, such as the accurate detection and grading of multiple types of cancer, the differential diagnosis of autoimmune diseases, or the study of physiological processes. Due to their specific characteristics and challenges, the design of texture analysis systems for biological images has attracted ever-growing attention in the last few years. In this paper, we perform a critical review of this important topic. First, we provide a general definition of texture analysis and discuss its role in the context of bioimaging, with examples of applications from the recent literature. Then, we review the main approaches to automated texture analysis, with special attention to the methods of feature extraction and encoding that can be successfully applied to microscopy images of cells or tissues. Our aim is to provide an overview of the state of the art, as well as a glimpse into the latest and future trends of research in this area.

  16. Inferring pterosaur diets through quantitative 3D textural analysis of tooth microwear in extant analogues

    NASA Astrophysics Data System (ADS)

    Bestwick, Jordan; Unwin, David; Butler, Richard; Henderson, Don; Purnell, Mark

    2017-04-01

    Pterosaurs (Pterosauria) were a successful group of Mesozoic flying reptiles. For 150 million years they were integral components of terrestrial and coastal ecosystems, yet their feeding ecology remains poorly constrained. Postulated pterosaur diets include insectivory, piscivory and/or carnivory, but many dietary hypotheses are speculative and/or based on little evidence, highlighting the need for alternative approaches to provide robust data. One method involves quantitative analysis of the micron-scale 3D textures of worn pterosaur tooth surfaces - dental microwear texture analysis. Microwear is produced as scratches and chips generated by food items create characteristic tooth surface textures. Microwear analysis has never been applied to pterosaurs, but we might expect microwear textures to differ between pterosaurs with different diets. An important step in investigating pterosaur microwear is to examine microwear from extant organisms with known diets to provide a comparative data set. This has been achieved through analysis of non-occlusal microwear textures in extant bats, crocodilians and monitor lizards, clades within which species exhibit insectivorous, piscivorous and carnivorous diets. The results - the first test of the hypothesis that non-occlusal microwear textures in these extant clades vary with diet - provide the context for the first robust quantitative tests of pterosaur diets.

  17. SU-E-E-16: The Application of Texture Analysis for Differentiation of Central Cancer From Atelectasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, M; Fan, T; Duan, J

    2015-06-15

    Purpose: Prospectively assess the potential utility of texture analysis for differentiation of central cancer from atelectasis. Methods: 0 consecutive central lung cancer patients who were referred for CT imaging and PET-CT were enrolled. Radiotherapy doctor delineate the tumor and atelectasis according to the fusion imaging based on CT image and PET-CT image. The texture parameters (such as energy, correlation, sum average, difference average, difference entropy), were obtained respectively to quantitatively discriminate tumor and atelectasis based on gray level co-occurrence matrix (GLCM) Results: The texture analysis results showed that the parameters of correlation and sum average had an obviously statistical significance(P<0.05).more » Conclusion: the results of this study indicate that texture analysis may be useful for the differentiation of central lung cancer and atelectasis.« less

  18. Structural analysis of natural textures.

    PubMed

    Vilnrotter, F M; Nevatia, R; Price, K E

    1986-01-01

    Many textures can be described structurally, in terms of the individual textural elements and their spatial relationships. This paper describes a system to generate useful descriptions of natural textures in these terms. The basic approach is to determine an initial, partial description of the elements using edge features. This description controls the extraction of the texture elements. The elements are grouped by type, and spatial relationships between elements are computed. The descriptions are shown to be useful for recognition of the textures, and for reconstruction of periodic textures.

  19. 3D skin surface reconstruction from a single image by merging global curvature and local texture using the guided filtering for 3D haptic palpation.

    PubMed

    Lee, K; Kim, M; Kim, K

    2018-05-11

    Skin surface evaluation has been studied using various imaging techniques. However, all these studies had limited impact because they were performed using visual exam only. To improve on this scenario with haptic feedback, we propose 3D reconstruction of the skin surface using a single image. Unlike extant 3D skin surface reconstruction algorithms, we utilize the local texture and global curvature regions, combining the results for reconstruction. The first entails the reconstruction of global curvature, achieved by bilateral filtering that removes noise on the surface while maintaining the edge (ie, furrow) to obtain the overall curvature. The second entails the reconstruction of local texture, representing the fine wrinkles of the skin, using an advanced form of bilateral filtering. The final image is then composed by merging the two reconstructed images. We tested the curvature reconstruction part by comparing the resulting curvatures with measured values from real phantom objects while local texture reconstruction was verified by measuring skin surface roughness. Then, we showed the reconstructed result of our proposed algorithm via the reconstruction of various real skin surfaces. The experimental results demonstrate that our approach is a promising technology to reconstruct an accurate skin surface with a single skin image. We proposed 3D skin surface reconstruction using only a single camera. We highlighted the utility of global curvature, which has not been considered important in the past. Thus, we proposed a new method for 3D reconstruction that can be used for 3D haptic palpation, dividing the concepts of local and global regions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Image matching for digital close-range stereo photogrammetry based on constraints of Delaunay triangulated network and epipolar-line

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Sheng, Y. H.; Li, Y. Q.; Han, B.; Liang, Ch.; Sha, W.

    2006-10-01

    In the field of digital photogrammetry and computer vision, the determination of conjugate points in a stereo image pair, referred to as "image matching," is the critical step to realize automatic surveying and recognition. Traditional matching methods encounter some problems in the digital close-range stereo photogrammetry, because the change of gray-scale or texture is not obvious in the close-range stereo images. The main shortcoming of traditional matching methods is that geometric information of matching points is not fully used, which will lead to wrong matching results in regions with poor texture. To fully use the geometry and gray-scale information, a new stereo image matching algorithm is proposed in this paper considering the characteristics of digital close-range photogrammetry. Compared with the traditional matching method, the new algorithm has three improvements on image matching. Firstly, shape factor, fuzzy maths and gray-scale projection are introduced into the design of synthetical matching measure. Secondly, the topology connecting relations of matching points in Delaunay triangulated network and epipolar-line are used to decide matching order and narrow the searching scope of conjugate point of the matching point. Lastly, the theory of parameter adjustment with constraint is introduced into least square image matching to carry out subpixel level matching under epipolar-line constraint. The new algorithm is applied to actual stereo images of a building taken by digital close-range photogrammetric system. The experimental result shows that the algorithm has a higher matching speed and matching accuracy than pyramid image matching algorithm based on gray-scale correlation.

  1. The effects of variations in parameters and algorithm choices on calculated radiomics feature values: initial investigations and comparisons to feature variability across CT image acquisition conditions

    NASA Astrophysics Data System (ADS)

    Emaminejad, Nastaran; Wahi-Anwar, Muhammad; Hoffman, John; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael

    2018-02-01

    Translation of radiomics into clinical practice requires confidence in its interpretations. This may be obtained via understanding and overcoming the limitations in current radiomic approaches. Currently there is a lack of standardization in radiomic feature extraction. In this study we examined a few factors that are potential sources of inconsistency in characterizing lung nodules, such as 1)different choices of parameters and algorithms in feature calculation, 2)two CT image dose levels, 3)different CT reconstruction algorithms (WFBP, denoised WFBP, and Iterative). We investigated the effect of variation of these factors on entropy textural feature of lung nodules. CT images of 19 lung nodules identified from our lung cancer screening program were identified by a CAD tool and contours provided. The radiomics features were extracted by calculating 36 GLCM based and 4 histogram based entropy features in addition to 2 intensity based features. A robustness index was calculated across different image acquisition parameters to illustrate the reproducibility of features. Most GLCM based and all histogram based entropy features were robust across two CT image dose levels. Denoising of images slightly improved robustness of some entropy features at WFBP. Iterative reconstruction resulted in improvement of robustness in a fewer times and caused more variation in entropy feature values and their robustness. Within different choices of parameters and algorithms texture features showed a wide range of variation, as much as 75% for individual nodules. Results indicate the need for harmonization of feature calculations and identification of optimum parameters and algorithms in a radiomics study.

  2. Texture analysis at neutron diffractometer STRESS-SPEC

    NASA Astrophysics Data System (ADS)

    Brokmeier, H.-G.; Gan, W. M.; Randau, C.; Völler, M.; Rebelo-Kornmeier, J.; Hofmann, M.

    2011-06-01

    In response to the development of new materials and the application of materials and components in advanced technologies, non-destructive measurement methods of textures and residual stresses have gained worldwide significance in recent years. The materials science neutron diffractometer STRESS-SPEC at FRM II (Garching, Germany) is designed to be applied equally to texture and residual stress analyses by virtue of its very flexible configuration. Due to the high penetration capabilities of neutrons and the high neutron flux of STRESS-SPEC it allows a combined analysis of global texture, local texture, strain pole figure and FWHM pole figure in a wide variety of materials including metals, alloys, composites, ceramics and geological materials. Especially, the analysis of texture gradients in bulk materials using neutron diffraction has advantages over laboratory X-rays and EBSD for many scientific cases. Moreover, neutron diffraction is favourable for coarse-grained materials, where bulk information averaged over texture inhomogeneities is needed, and also stands out due to easy sample preparation. In future, the newly developed robot system for STRESS-SPEC will allow much more flexibility than an Eulerian cradle as on standard instruments. Five recent measurements are shown to demonstrate the wide range of possible texture applications at STRESS-SPEC diffractometer.

  3. A Novel Hyperspectral Microscopic Imaging System for Evaluating Fresh Degree of Pork.

    PubMed

    Xu, Yi; Chen, Quansheng; Liu, Yan; Sun, Xin; Huang, Qiping; Ouyang, Qin; Zhao, Jiewen

    2018-04-01

    This study proposed a rapid microscopic examination method for pork freshness evaluation by using the self-assembled hyperspectral microscopic imaging (HMI) system with the help of feature extraction algorithm and pattern recognition methods. Pork samples were stored for different days ranging from 0 to 5 days and the freshness of samples was divided into three levels which were determined by total volatile basic nitrogen (TVB-N) content. Meanwhile, hyperspectral microscopic images of samples were acquired by HMI system and processed by the following steps for the further analysis. Firstly, characteristic hyperspectral microscopic images were extracted by using principal component analysis (PCA) and then texture features were selected based on the gray level co-occurrence matrix (GLCM). Next, features data were reduced dimensionality by fisher discriminant analysis (FDA) for further building classification model. Finally, compared with linear discriminant analysis (LDA) model and support vector machine (SVM) model, good back propagation artificial neural network (BP-ANN) model obtained the best freshness classification with a 100 % accuracy rating based on the extracted data. The results confirm that the fabricated HMI system combined with multivariate algorithms has ability to evaluate the fresh degree of pork accurately in the microscopic level, which plays an important role in animal food quality control.

  4. A Novel Hyperspectral Microscopic Imaging System for Evaluating Fresh Degree of Pork

    PubMed Central

    Xu, Yi; Chen, Quansheng; Liu, Yan; Sun, Xin; Huang, Qiping; Ouyang, Qin; Zhao, Jiewen

    2018-01-01

    Abstract This study proposed a rapid microscopic examination method for pork freshness evaluation by using the self-assembled hyperspectral microscopic imaging (HMI) system with the help of feature extraction algorithm and pattern recognition methods. Pork samples were stored for different days ranging from 0 to 5 days and the freshness of samples was divided into three levels which were determined by total volatile basic nitrogen (TVB-N) content. Meanwhile, hyperspectral microscopic images of samples were acquired by HMI system and processed by the following steps for the further analysis. Firstly, characteristic hyperspectral microscopic images were extracted by using principal component analysis (PCA) and then texture features were selected based on the gray level co-occurrence matrix (GLCM). Next, features data were reduced dimensionality by fisher discriminant analysis (FDA) for further building classification model. Finally, compared with linear discriminant analysis (LDA) model and support vector machine (SVM) model, good back propagation artificial neural network (BP-ANN) model obtained the best freshness classification with a 100 % accuracy rating based on the extracted data. The results confirm that the fabricated HMI system combined with multivariate algorithms has ability to evaluate the fresh degree of pork accurately in the microscopic level, which plays an important role in animal food quality control. PMID:29805285

  5. LiveWire interactive boundary extraction algorithm based on Haar wavelet transform and control point set direction search

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Zhang, Jun; Tian, Jinwen

    2015-12-01

    Based on deep analysis of the LiveWire interactive boundary extraction algorithm, a new algorithm focusing on improving the speed of LiveWire algorithm is proposed in this paper. Firstly, the Haar wavelet transform is carried on the input image, and the boundary is extracted on the low resolution image obtained by the wavelet transform of the input image. Secondly, calculating LiveWire shortest path is based on the control point set direction search by utilizing the spatial relationship between the two control points users provide in real time. Thirdly, the search order of the adjacent points of the starting node is set in advance. An ordinary queue instead of a priority queue is taken as the storage pool of the points when optimizing their shortest path value, thus reducing the complexity of the algorithm from O[n2] to O[n]. Finally, A region iterative backward projection method based on neighborhood pixel polling has been used to convert dual-pixel boundary of the reconstructed image to single-pixel boundary after Haar wavelet inverse transform. The algorithm proposed in this paper combines the advantage of the Haar wavelet transform and the advantage of the optimal path searching method based on control point set direction search. The former has fast speed of image decomposition and reconstruction and is more consistent with the texture features of the image and the latter can reduce the time complexity of the original algorithm. So that the algorithm can improve the speed in interactive boundary extraction as well as reflect the boundary information of the image more comprehensively. All methods mentioned above have a big role in improving the execution efficiency and the robustness of the algorithm.

  6. Image-Based 3D Face Modeling System

    NASA Astrophysics Data System (ADS)

    Park, In Kyu; Zhang, Hui; Vezhnevets, Vladimir

    2005-12-01

    This paper describes an automatic system for 3D face modeling using frontal and profile images taken by an ordinary digital camera. The system consists of four subsystems including frontal feature detection, profile feature detection, shape deformation, and texture generation modules. The frontal and profile feature detection modules automatically extract the facial parts such as the eye, nose, mouth, and ear. The shape deformation module utilizes the detected features to deform the generic head mesh model such that the deformed model coincides with the detected features. A texture is created by combining the facial textures augmented from the input images and the synthesized texture and mapped onto the deformed generic head model. This paper provides a practical system for 3D face modeling, which is highly automated by aggregating, customizing, and optimizing a bunch of individual computer vision algorithms. The experimental results show a highly automated process of modeling, which is sufficiently robust to various imaging conditions. The whole model creation including all the optional manual corrections takes only 2[InlineEquation not available: see fulltext.]3 minutes.

  7. Surface Texture-Induced Enhancement of Optical and Photoelectrochemical Activity of Cu2ZnSnS4 Photocathodes

    NASA Astrophysics Data System (ADS)

    Sarswat, Prashant K.; Deka, Nipon; Jagan Mohan Rao, S.; Free, Michael L.; Kumar, Gagan

    2017-08-01

    The objective of this work is to understand and improve the photocatalytic activity of Cu2ZnSnS4 (CZTS) through postgrowth modification techniques to create surface textures. This objective can be achieved using a combination of solvents, etching agents, and anodization techniques. One of the most effective surface treatments for enhancing the surface properties of photovoltaic materials is formation of nanoscale flakes, although other surface modifications were also evaluated. The superior performance of textured films can be attributed to enhanced surface area of absorber material exposed to electrolyte, ZnS deficiency, and high catalytic activity due to reduced charge-transfer resistance. Fine-tuning of ion flux and electrolyte stoichiometry can be used to create a controlled growth algorithm for CZTS thin films. The resulting information can be utilized to optimize film properties. The utility of nanostructured or engineered surfaces was evaluated using photoelectrochemical measurements. Finite-difference time-domain (FDTD)-assisted simulations were conducted for selected texturing, revealing enhanced surface area of absorbing medium that ultimately resulted in greater power loss of light in the medium.

  8. Large-Scale Point-Cloud Visualization through Localized Textured Surface Reconstruction.

    PubMed

    Arikan, Murat; Preiner, Reinhold; Scheiblauer, Claus; Jeschke, Stefan; Wimmer, Michael

    2014-09-01

    In this paper, we introduce a novel scene representation for the visualization of large-scale point clouds accompanied by a set of high-resolution photographs. Many real-world applications deal with very densely sampled point-cloud data, which are augmented with photographs that often reveal lighting variations and inaccuracies in registration. Consequently, the high-quality representation of the captured data, i.e., both point clouds and photographs together, is a challenging and time-consuming task. We propose a two-phase approach, in which the first (preprocessing) phase generates multiple overlapping surface patches and handles the problem of seamless texture generation locally for each patch. The second phase stitches these patches at render-time to produce a high-quality visualization of the data. As a result of the proposed localization of the global texturing problem, our algorithm is more than an order of magnitude faster than equivalent mesh-based texturing techniques. Furthermore, since our preprocessing phase requires only a minor fraction of the whole data set at once, we provide maximum flexibility when dealing with growing data sets.

  9. SU-E-J-110: A Novel Level Set Active Contour Algorithm for Multimodality Joint Segmentation/Registration Using the Jensen-Rényi Divergence.

    PubMed

    Markel, D; Naqa, I El; Freeman, C; Vallières, M

    2012-06-01

    To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. It was found that JR divergence when used for segmentation has an improved robustness to noise compared to using mutual information, or other entropy-based metrics. The MI metric failed at around 2/3 the noise power than the JR divergence. The JR divergence metric is useful for the task of joint segmentation/registration of multimodality images and shows improved results compared entropy based metric. The algorithm can be easily modified to incorporate non-intensity based images, which would allow applications into multi-modality and texture analysis. © 2012 American Association of Physicists in Medicine.

  10. Predicting neo-adjuvant chemotherapy response and progression-free survival of locally advanced breast cancer using textural features of intratumoral heterogeneity on F-18 FDG PET/CT and diffusion-weighted MR imaging.

    PubMed

    Yoon, Hai-Jeon; Kim, Yemi; Chung, Jin; Kim, Bom Sahn

    2018-03-30

    Predicting response to neo-adjuvant chemotherapy (NAC) and survival in locally advanced breast cancer (LABC) is important. This study investigated the prognostic value of tumor heterogeneity evaluated with textural analysis through F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) and diffusion-weighted imaging (DWI). We enrolled 83 patients with LABC who had completed NAC and curative surgery. Tumor texture indices from pretreatment FDG PET and DWI were extracted from histogram analysis and 7 different parent matrices: co-occurrence matrix, the voxel-alignment matrix, neighborhood intensity difference matrix, intensity size-zone matrix (ISZM), normalized gray-level co-occurrence matrix (NGLCM), neighboring gray-level dependence matrix (NGLDM), and texture spectrum matrix. The predictive values of textural features were tested regarding both pathologic NAC response and progression-free survival. Among 83 patients, 46 were pathologic responders, while 37 were nonresponders. The PET texture indices from 7 parent matrices, DWI texture indices from histogram, and 1 parent matrix (NGLCM) showed significant differences according to NAC response. On multivariable analysis, number nonuniformity of PET extracted from the NGLDM was an independent predictor of pathologic response (P = .009). During a median follow-up period of 17.3 months, 14 patients experienced recurrence. High-intensity zone emphasis (HIZE) and high-intensity short-zone emphasis (HISZE) from PET extracted from ISZM were significant textural predictors (P = .011 and P = .033). On Cox regression analysis, only HIZE was a significant predictor of recurrence (P = .027), while HISZE showed borderline significance (P = .107). Tumor texture indices are useful for NAC response prediction in LABC. Moreover, PET texture indices can help to predict disease recurrence. © 2018 Wiley Periodicals, Inc.

  11. Perceptual compression of magnitude-detected synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Werness, Susan A.

    1994-01-01

    A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.

  12. Despeckling Polsar Images Based on Relative Total Variation Model

    NASA Astrophysics Data System (ADS)

    Jiang, C.; He, X. F.; Yang, L. J.; Jiang, J.; Wang, D. Y.; Yuan, Y.

    2018-04-01

    Relatively total variation (RTV) algorithm, which can effectively decompose structure information and texture in image, is employed in extracting main structures of the image. However, applying the RTV directly to polarimetric SAR (PolSAR) image filtering will not preserve polarimetric information. A new RTV approach based on the complex Wishart distribution is proposed considering the polarimetric properties of PolSAR. The proposed polarization RTV (PolRTV) algorithm can be used for PolSAR image filtering. The L-band Airborne SAR (AIRSAR) San Francisco data is used to demonstrate the effectiveness of the proposed algorithm in speckle suppression, structural information preservation, and polarimetric property preservation.

  13. Integrated Graphics Operations and Analysis Lab Development of Advanced Computer Graphics Algorithms

    NASA Technical Reports Server (NTRS)

    Wheaton, Ira M.

    2011-01-01

    The focus of this project is to aid the IGOAL in researching and implementing algorithms for advanced computer graphics. First, this project focused on porting the current International Space Station (ISS) Xbox experience to the web. Previously, the ISS interior fly-around education and outreach experience only ran on an Xbox 360. One of the desires was to take this experience and make it into something that can be put on NASA s educational site for anyone to be able to access. The current code works in the Unity game engine which does have cross platform capability but is not 100% compatible. The tasks for an intern to complete this portion consisted of gaining familiarity with Unity and the current ISS Xbox code, porting the Xbox code to the web as is, and modifying the code to work well as a web application. In addition, a procedurally generated cloud algorithm will be developed. Currently, the clouds used in AGEA animations and the Xbox experiences are a texture map. The desire is to create a procedurally generated cloud algorithm to provide dynamically generated clouds for both AGEA animations and the Xbox experiences. This task consists of gaining familiarity with AGEA and the plug-in interface, developing the algorithm, creating an AGEA plug-in to implement the algorithm inside AGEA, and creating a Unity script to implement the algorithm for the Xbox. This portion of the project was unable to be completed in the time frame of the internship; however, the IGOAL will continue to work on it in the future.

  14. A neural network detection model of spilled oil based on the texture analysis of SAR image

    NASA Astrophysics Data System (ADS)

    An, Jubai; Zhu, Lisong

    2006-01-01

    A Radial Basis Function Neural Network (RBFNN) Model is investigated for the detection of spilled oil based on the texture analysis of SAR imagery. In this paper, to take the advantage of the abundant texture information of SAR imagery, the texture features are extracted by both wavelet transform and the Gray Level Co-occurrence matrix. The RBFNN Model is fed with a vector of these texture features. The RBFNN Model is trained and tested by the sample data set of the feature vectors. Finally, a SAR image is classified by this model. The classification results of a spilled oil SAR image show that the classification accuracy for oil spill is 86.2 by the RBFNN Model using both wavelet texture and gray texture, while the classification accuracy for oil spill is 78.0 by same RBFNN Model using only wavelet texture as the input of this RBFNN model. The model using both wavelet transform and the Gray Level Co-occurrence matrix is more effective than that only using wavelet texture. Furthermore, it keeps the complicated proximity and has a good performance of classification.

  15. MRI Texture Analysis of Background Parenchymal Enhancement of the Breast

    PubMed Central

    Woo, Jun; Amano, Maki; Yanagisawa, Fumi; Yamamoto, Hiroshi; Tani, Mayumi

    2017-01-01

    Purpose The purpose of this study was to determine texture parameters reflecting the background parenchymal enhancement (BPE) of the breast, which were acquired using texture analysis (TA). Methods We investigated 52 breasts of the 26 subjects who underwent dynamic contrast-enhanced MRI. One experienced reader scored BPE visually (i.e., minimal, mild, moderate, and marked). TA, including 12 texture parameters, was performed to distinguish the BPE scores quantitatively. Relationships between the visual BPE scores and texture parameters were evaluated using analysis of variance and receiver operating characteristic analysis. Results The variance and skewness of signal intensity were useful for differentiating between moderate and mild or minimal BPE or between mild and minimal BPE, respectively, with the cutoff value of 356.7 for variance and that of 0.21 for skewness. Some TA features could be useful for defining breast lesions from the BPE. Conclusion TA may be useful for quantifying the BPE of the breast. PMID:28812015

  16. 78 FR 20667 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ..., et al. Visualization of biological texture using correlation coefficient images. J Biomed Opt. 2006.... Development Stage: Early-stage In vitro data available Inventors: Paolo Lusso and David J. Auerbach (NIAID... algorithms to visualize regions of statistical similarity in the image have been developed. Though the...

  17. Structural texture similarity metrics for image analysis and retrieval.

    PubMed

    Zujovic, Jana; Pappas, Thrasyvoulos N; Neuhoff, David L

    2013-07-01

    We develop new metrics for texture similarity that accounts for human visual perception and the stochastic nature of textures. The metrics rely entirely on local image statistics and allow substantial point-by-point deviations between textures that according to human judgment are essentially identical. The proposed metrics extend the ideas of structural similarity and are guided by research in texture analysis-synthesis. They are implemented using a steerable filter decomposition and incorporate a concise set of subband statistics, computed globally or in sliding windows. We conduct systematic tests to investigate metric performance in the context of "known-item search," the retrieval of textures that are "identical" to the query texture. This eliminates the need for cumbersome subjective tests, thus enabling comparisons with human performance on a large database. Our experimental results indicate that the proposed metrics outperform peak signal-to-noise ratio (PSNR), structural similarity metric (SSIM) and its variations, as well as state-of-the-art texture classification metrics, using standard statistical measures.

  18. Surface inspection of flat products by means of texture analysis: on-line implementation using neural networks

    NASA Astrophysics Data System (ADS)

    Fernandez, Carlos; Platero, Carlos; Campoy, Pascual; Aracil, Rafael

    1994-11-01

    This paper describes some texture-based techniques that can be applied to quality assessment of flat products continuously produced (metal strips, wooden surfaces, cork, textile products, ...). Since the most difficult task is that of inspecting for product appearance, human-like inspection ability is required. A common feature to all these products is the presence of non- deterministic texture on their surfaces. Two main subjects are discussed: statistical techniques for both surface finishing determination and surface defect analysis as well as real-time implementation for on-line inspection in high-speed applications. For surface finishing determination a Gray Level Difference technique is presented to perform over low resolution images, that is, no-zoomed images. Defect analysis is performed by means of statistical texture analysis over defective portions of the surface. On-line implementation is accomplished by means of neural networks. When a defect arises, textural analysis is applied which result in a data-vector, acting as input of a neural net, previously trained in a supervised way. This approach tries to reach on-line performance in automated visual inspection applications when texture is presented in flat product surfaces.

  19. Scanning electron microscopy combined with image processing technique: Analysis of microstructure, texture and tenderness in Semitendinous and Gluteus Medius bovine muscles.

    PubMed

    Pieniazek, Facundo; Messina, Valeria

    2016-11-01

    In this study the effect of freeze drying on the microstructure, texture, and tenderness of Semitendinous and Gluteus Medius bovine muscles were analyzed applying Scanning Electron Microscopy combined with image analysis. Samples were analyzed by Scanning Electron Microscopy at different magnifications (250, 500, and 1,000×). Texture parameters were analyzed by Texture analyzer and by image analysis. Tenderness by Warner-Bratzler shear force. Significant differences (p < 0.05) were obtained for image and instrumental texture features. A linear trend with a linear correlation was applied for instrumental and image features. Image texture features calculated from Gray Level Co-occurrence Matrix (homogeneity, contrast, entropy, correlation and energy) at 1,000× in both muscles had high correlations with instrumental features (chewiness, hardness, cohesiveness, and springiness). Tenderness showed a positive correlation in both muscles with image features (energy and homogeneity). Combing Scanning Electron Microscopy with image analysis can be a useful tool to analyze quality parameters in meat.Summary SCANNING 38:727-734, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  20. Theory of Image Analysis and Recognition.

    DTIC Science & Technology

    1983-01-24

    Stanley M. Dunn, "Texture Classification with Change Point Statistics," TR- 1082 , July 1981. 97. R. Chellappa, "Synthesis of Textures Using Simultane...July 1981. 96. Stanley M. Dunn, "Texture Classification with Change Point Statistics," TR- 1082 , July 1981. * 97. R. Chellappa, "Synthesis of Textures

  1. Instrumental texture characteristics of broiler pectoralis major with the woody breast condition

    USDA-ARS?s Scientific Manuscript database

    The objective was to characterize texture properties of raw and cooked broiler fillets (pectoralis major) with the woody breast condition (WBC) using instrumental texture techniques Meullenet-Owens Razor Shear (MORS) and texture profile analysis (TPA). Deboned (3 h postmortem) broiler fillets were c...

  2. Information-Theoretic Performance Analysis of Sensor Networks via Markov Modeling of Time Series Data.

    PubMed

    Li, Yue; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Yue Li; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Wettergren, Thomas A; Li, Yue; Ray, Asok; Jha, Devesh K

    2018-06-01

    This paper presents information-theoretic performance analysis of passive sensor networks for detection of moving targets. The proposed method falls largely under the category of data-level information fusion in sensor networks. To this end, a measure of information contribution for sensors is formulated in a symbolic dynamics framework. The network information state is approximately represented as the largest principal component of the time series collected across the network. To quantify each sensor's contribution for generation of the information content, Markov machine models as well as x-Markov (pronounced as cross-Markov) machine models, conditioned on the network information state, are constructed; the difference between the conditional entropies of these machines is then treated as an approximate measure of information contribution by the respective sensors. The x-Markov models represent the conditional temporal statistics given the network information state. The proposed method has been validated on experimental data collected from a local area network of passive sensors for target detection, where the statistical characteristics of environmental disturbances are similar to those of the target signal in the sense of time scale and texture. A distinctive feature of the proposed algorithm is that the network decisions are independent of the behavior and identity of the individual sensors, which is desirable from computational perspectives. Results are presented to demonstrate the proposed method's efficacy to correctly identify the presence of a target with very low false-alarm rates. The performance of the underlying algorithm is compared with that of a recent data-driven, feature-level information fusion algorithm. It is shown that the proposed algorithm outperforms the other algorithm.

  3. Quantitative Analysis of the Cervical Texture by Ultrasound and Correlation with Gestational Age.

    PubMed

    Baños, Núria; Perez-Moreno, Alvaro; Migliorelli, Federico; Triginer, Laura; Cobo, Teresa; Bonet-Carne, Elisenda; Gratacos, Eduard; Palacio, Montse

    2017-01-01

    Quantitative texture analysis has been proposed to extract robust features from the ultrasound image to detect subtle changes in the textures of the images. The aim of this study was to evaluate the feasibility of quantitative cervical texture analysis to assess cervical tissue changes throughout pregnancy. This was a cross-sectional study including singleton pregnancies between 20.0 and 41.6 weeks of gestation from women who delivered at term. Cervical length was measured, and a selected region of interest in the cervix was delineated. A model to predict gestational age based on features extracted from cervical images was developed following three steps: data splitting, feature transformation, and regression model computation. Seven hundred images, 30 per gestational week, were included for analysis. There was a strong correlation between the gestational age at which the images were obtained and the estimated gestational age by quantitative analysis of the cervical texture (R = 0.88). This study provides evidence that quantitative analysis of cervical texture can extract features from cervical ultrasound images which correlate with gestational age. Further research is needed to evaluate its applicability as a biomarker of the risk of spontaneous preterm birth, as well as its role in cervical assessment in other clinical situations in which cervical evaluation might be relevant. © 2016 S. Karger AG, Basel.

  4. Mammographic texture synthesis using genetic programming and clustered lumpy background

    NASA Astrophysics Data System (ADS)

    Castella, Cyril; Kinkel, Karen; Descombes, François; Eckstein, Miguel P.; Sottas, Pierre-Edouard; Verdun, Francis R.; Bochud, François O.

    2006-03-01

    In this work we investigated the digital synthesis of images which mimic real textures observed in mammograms. Such images could be produced in an unlimited number with tunable statistical properties in order to study human performance and model observer performance in perception experiments. We used the previously developed clustered lumpy background (CLB) technique and optimized its parameters with a genetic algorithm (GA). In order to maximize the realism of the textures, we combined the GA objective approach with psychophysical experiments involving the judgments of radiologists. Thirty-six statistical features were computed and averaged, over 1000 real mammograms regions of interest. The same features were measured for the synthetic textures, and the Mahalanobis distance was used to quantify the similarity of the features between the real and synthetic textures. The similarity, as measured by the Mahalanobis distance, was used as GA fitness function for evolving the free CLB parameters. In the psychophysical approach, experienced radiologists were asked to qualify the realism of synthetic images by considering typical structures that are expected to be found on real mammograms: glandular and fatty areas, and fiber crossings. Results show that CLB images found via optimization with GA are significantly closer to real mammograms than previously published images. Moreover, the psychophysical experiments confirm that all the above mentioned structures are reproduced well on the generated images. This means that we can generate an arbitrary large database of textures mimicking mammograms with traceable statistical properties.

  5. Content-Adaptive Sketch Portrait Generation by Decompositional Representation Learning.

    PubMed

    Zhang, Dongyu; Lin, Liang; Chen, Tianshui; Wu, Xian; Tan, Wenwei; Izquierdo, Ebroul

    2017-01-01

    Sketch portrait generation benefits a wide range of applications such as digital entertainment and law enforcement. Although plenty of efforts have been dedicated to this task, several issues still remain unsolved for generating vivid and detail-preserving personal sketch portraits. For example, quite a few artifacts may exist in synthesizing hairpins and glasses, and textural details may be lost in the regions of hair or mustache. Moreover, the generalization ability of current systems is somewhat limited since they usually require elaborately collecting a dictionary of examples or carefully tuning features/components. In this paper, we present a novel representation learning framework that generates an end-to-end photo-sketch mapping through structure and texture decomposition. In the training stage, we first decompose the input face photo into different components according to their representational contents (i.e., structural and textural parts) by using a pre-trained convolutional neural network (CNN). Then, we utilize a branched fully CNN for learning structural and textural representations, respectively. In addition, we design a sorted matching mean square error metric to measure texture patterns in the loss function. In the stage of sketch rendering, our approach automatically generates structural and textural representations for the input photo and produces the final result via a probabilistic fusion scheme. Extensive experiments on several challenging benchmarks suggest that our approach outperforms example-based synthesis algorithms in terms of both perceptual and objective metrics. In addition, the proposed method also has better generalization ability across data set without additional training.

  6. Changes of the water-holding capacity and microstructure of panga and tilapia surimi gels using different stabilizers and processing methods.

    PubMed

    Filomena-Ambrosio, Annamaria; Quintanilla-Carvajal, María Ximena; Ana-Puig; Hernando, Isabel; Hernández-Carrión, María; Sotelo-Díaz, Indira

    2016-01-01

    Surimi gel is a food product traditionally manufactured from marine species; it has functional features including a specific texture and a high protein concentration. The objective of this study was to evaluate and compare the effect of the ultrasound extraction protein method and different stabilizers on the water-holding capacity (WHC), texture, and microstructure of surimi from panga and tilapia to potentially increase the value of these species. For this purpose, WHC was determined and texture profile analysis, scanning electron microscopy, and texture image analysis were carried out. The results showed that the ultrasound method and the sodium citrate can be used to obtain surimi gels from panga and tilapia with optimal textural properties such as the hardness and chewiness. Moreover, image analysis is recommended as a quantitative and non-invasive technique to evaluate the microstructure and texture image properties of surimis prepared using different processing methods and stabilizers. © The Author(s) 2015.

  7. Improved GSO Optimized ESN Soft-Sensor Model of Flotation Process Based on Multisource Heterogeneous Information Fusion

    PubMed Central

    Wang, Jie-sheng; Han, Shuang; Shen, Na-na

    2014-01-01

    For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, an echo state network (ESN) based fusion soft-sensor model optimized by the improved glowworm swarm optimization (GSO) algorithm is proposed. Firstly, the color feature (saturation and brightness) and texture features (angular second moment, sum entropy, inertia moment, etc.) based on grey-level co-occurrence matrix (GLCM) are adopted to describe the visual characteristics of the flotation froth image. Then the kernel principal component analysis (KPCA) method is used to reduce the dimensionality of the high-dimensional input vector composed by the flotation froth image characteristics and process datum and extracts the nonlinear principal components in order to reduce the ESN dimension and network complex. The ESN soft-sensor model of flotation process is optimized by the GSO algorithm with congestion factor. Simulation results show that the model has better generalization and prediction accuracy to meet the online soft-sensor requirements of the real-time control in the flotation process. PMID:24982935

  8. Hot-spot selection and evaluation methods for whole slice images of meningiomas and oligodendrogliomas.

    PubMed

    Swiderska, Zaneta; Markiewicz, Tomasz; Grala, Bartlomiej; Slodkowska, Janina

    2015-01-01

    The paper presents a combined method for an automatic hot-spot areas selection based on penalty factor in the whole slide images to support the pathomorphological diagnostic procedure. The studied slides represent the meningiomas and oligodendrogliomas tumor on the basis of the Ki-67/MIB-1 immunohistochemical reaction. It allows determining the tumor proliferation index as well as gives an indication to the medical treatment and prognosis. The combined method based on mathematical morphology, thresholding, texture analysis and classification is proposed and verified. The presented algorithm includes building a specimen map, elimination of hemorrhages from them, two methods for detection of hot-spot fields with respect to an introduced penalty factor. Furthermore, we propose localization concordance measure to evaluation localization of hot spot selection by the algorithms in respect to the expert's results. Thus, the results of the influence of the penalty factor are presented and discussed. It was found that the best results are obtained for 0.2 value of them. They confirm effectiveness of applied approach.

  9. Texture analysis of pulmonary parenchyma in normal and emphysematous lung

    NASA Astrophysics Data System (ADS)

    Uppaluri, Renuka; Mitsa, Theophano; Hoffman, Eric A.; McLennan, Geoffrey; Sonka, Milan

    1996-04-01

    Tissue characterization using texture analysis is gaining increasing importance in medical imaging. We present a completely automated method for discriminating between normal and emphysematous regions from CT images. This method involves extracting seventeen features which are based on statistical, hybrid and fractal texture models. The best subset of features is derived from the training set using the divergence technique. A minimum distance classifier is used to classify the samples into one of the two classes--normal and emphysema. Sensitivity and specificity and accuracy values achieved were 80% or greater in most cases proving that texture analysis holds great promise in identifying emphysema.

  10. Extraction of texture features with a multiresolution neural network

    NASA Astrophysics Data System (ADS)

    Lepage, Richard; Laurendeau, Denis; Gagnon, Roger A.

    1992-09-01

    Texture is an important surface characteristic. Many industrial materials such as wood, textile, or paper are best characterized by their texture. Detection of defaults occurring on such materials or classification for quality control anD matching can be carried out through careful texture analysis. A system for the classification of pieces of wood used in the furniture industry is proposed. This paper is concerned with a neural network implementation of the features extraction and classification components of the proposed system. Texture appears differently depending at which spatial scale it is observed. A complete description of a texture thus implies an analysis at several spatial scales. We propose a compact pyramidal representation of the input image for multiresolution analysis. The feature extraction system is implemented on a multilayer artificial neural network. Each level of the pyramid, which is a representation of the input image at a given spatial resolution scale, is mapped into a layer of the neural network. A full resolution texture image is input at the base of the pyramid and a representation of the texture image at multiple resolutions is generated by the feedforward pyramid structure of the neural network. The receptive field of each neuron at a given pyramid level is preprogrammed as a discrete Gaussian low-pass filter. Meaningful characteristics of the textured image must be extracted if a good resolving power of the classifier must be achieved. Local dominant orientation is the principal feature which is extracted from the textured image. Local edge orientation is computed with a Sobel mask at four orientation angles (multiple of (pi) /4). The resulting intrinsic image, that is, the local dominant orientation image, is fed to the texture classification neural network. The classification network is a three-layer feedforward back-propagation neural network.

  11. Using evolutionary computation to optimize an SVM used in detecting buried objects in FLIR imagery

    NASA Astrophysics Data System (ADS)

    Paino, Alex; Popescu, Mihail; Keller, James M.; Stone, Kevin

    2013-06-01

    In this paper we describe an approach for optimizing the parameters of a Support Vector Machine (SVM) as part of an algorithm used to detect buried objects in forward looking infrared (FLIR) imagery captured by a camera installed on a moving vehicle. The overall algorithm consists of a spot-finding procedure (to look for potential targets) followed by the extraction of several features from the neighborhood of each spot. The features include local binary pattern (LBP) and histogram of oriented gradients (HOG) as these are good at detecting texture classes. Finally, we project and sum each hit into UTM space along with its confidence value (obtained from the SVM), producing a confidence map for ROC analysis. In this work, we use an Evolutionary Computation Algorithm (ECA) to optimize various parameters involved in the system, such as the combination of features used, parameters on the Canny edge detector, the SVM kernel, and various HOG and LBP parameters. To validate our approach, we compare results obtained from an SVM using parameters obtained through our ECA technique with those previously selected by hand through several iterations of "guess and check".

  12. An iterated Laplacian based semi-supervised dimensionality reduction for classification of breast cancer on ultrasound images.

    PubMed

    Liu, Xiao; Shi, Jun; Zhou, Shichong; Lu, Minhua

    2014-01-01

    The dimensionality reduction is an important step in ultrasound image based computer-aided diagnosis (CAD) for breast cancer. A newly proposed l2,1 regularized correntropy algorithm for robust feature selection (CRFS) has achieved good performance for noise corrupted data. Therefore, it has the potential to reduce the dimensions of ultrasound image features. However, in clinical practice, the collection of labeled instances is usually expensive and time costing, while it is relatively easy to acquire the unlabeled or undetermined instances. Therefore, the semi-supervised learning is very suitable for clinical CAD. The iterated Laplacian regularization (Iter-LR) is a new regularization method, which has been proved to outperform the traditional graph Laplacian regularization in semi-supervised classification and ranking. In this study, to augment the classification accuracy of the breast ultrasound CAD based on texture feature, we propose an Iter-LR-based semi-supervised CRFS (Iter-LR-CRFS) algorithm, and then apply it to reduce the feature dimensions of ultrasound images for breast CAD. We compared the Iter-LR-CRFS with LR-CRFS, original supervised CRFS, and principal component analysis. The experimental results indicate that the proposed Iter-LR-CRFS significantly outperforms all other algorithms.

  13. Feasibility of opportunistic osteoporosis screening in routine contrast-enhanced multi detector computed tomography (MDCT) using texture analysis.

    PubMed

    Mookiah, M R K; Rohrmeier, A; Dieckmeyer, M; Mei, K; Kopp, F K; Noel, P B; Kirschke, J S; Baum, T; Subburaj, K

    2018-04-01

    This study investigated the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis. The results showed an acceptable reproducibility of texture features, and these features could discriminate healthy/osteoporotic fracture cohort with an accuracy of 83%. This aim of this study is to investigate the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis. We performed texture analysis at the spine in routine MDCT exams and investigated the effect of intravenous contrast medium (IVCM) (n = 7), slice thickness (n = 7), the long-term reproducibility (n = 9), and the ability to differentiate healthy/osteoporotic fracture cohort (n = 9 age and gender matched pairs). Eight texture features were extracted using gray level co-occurrence matrix (GLCM). The independent sample t test was used to rank the features of healthy/fracture cohort and classification was performed using support vector machine (SVM). The results revealed significant correlations between texture parameters derived from MDCT scans with and without IVCM (r up to 0.91) slice thickness of 1 mm versus 2 and 3 mm (r up to 0.96) and scan-rescan (r up to 0.59). The performance of the SVM classifier was evaluated using 10-fold cross-validation and revealed an average classification accuracy of 83%. Opportunistic osteoporosis screening at the spine using specific texture parameters (energy, entropy, and homogeneity) and SVM can be performed in routine contrast-enhanced MDCT exams.

  14. Automated analysis of art object surfaces using time-averaged digital speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Lukomski, Michal; Krzemien, Leszek

    2013-05-01

    Technical development and practical evaluation of a laboratory built, out-of-plane digital speckle pattern interferometer (DSPI) are reported. The instrument was used for non-invasive, non-contact detection and characterization of early-stage damage, like fracturing and layer separation, of painted objects of art. A fully automated algorithm was developed for recording and analysis of vibrating objects utilizing continuous-wave laser light. The algorithm uses direct, numerical fitting or Hilbert transformation for an independent, quantitative evaluation of the Bessel function at every point of the investigated surface. The procedure does not require phase modulation and thus can be implemented within any, even the simplest, DSPI apparatus. The proposed deformation analysis is fast and computationally inexpensive. Diagnosis of physical state of the surface of a panel painting attributed to Nicolaus Haberschrack (a late-mediaeval painter active in Krakow) from the collection of the National Museum in Krakow is presented as an example of an in situ application of the developed methodology. It has allowed the effectiveness of the deformation analysis to be evaluated for the surface of a real painting (heterogeneous colour and texture) in a conservation studio where vibration level was considerably higher than in the laboratory. It has been established that the methodology, which offers automatic analysis of the interferometric fringe patterns, has a considerable potential to facilitate and render more precise the condition surveys of works of art.

  15. Noisy image magnification with total variation regularization and order-changed dictionary learning

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Chang, Zhiguo; Fan, Jiulun; Zhao, Xiaoqiang; Wu, Xiaomin; Wang, Yanzi

    2015-12-01

    Noisy low resolution (LR) images are always obtained in real applications, but many existing image magnification algorithms can not get good result from a noisy LR image. We propose a two-step image magnification algorithm to solve this problem. The proposed algorithm takes the advantages of both regularization-based method and learning-based method. The first step is based on total variation (TV) regularization and the second step is based on sparse representation. In the first step, we add a constraint on the TV regularization model to magnify the LR image and at the same time to suppress the noise in it. In the second step, we propose an order-changed dictionary training algorithm to train the dictionaries which is dominated by texture details. Experimental results demonstrate that the proposed algorithm performs better than many other algorithms when the noise is not serious. The proposed algorithm can also provide better visual quality on natural LR images.

  16. A novel image retrieval algorithm based on PHOG and LSH

    NASA Astrophysics Data System (ADS)

    Wu, Hongliang; Wu, Weimin; Peng, Jiajin; Zhang, Junyuan

    2017-08-01

    PHOG can describe the local shape of the image and its relationship between the spaces. The using of PHOG algorithm to extract image features in image recognition and retrieval and other aspects have achieved good results. In recent years, locality sensitive hashing (LSH) algorithm has been superior to large-scale data in solving near-nearest neighbor problems compared with traditional algorithms. This paper presents a novel image retrieval algorithm based on PHOG and LSH. First, we use PHOG to extract the feature vector of the image, then use L different LSH hash table to reduce the dimension of PHOG texture to index values and map to different bucket, and finally extract the corresponding value of the image in the bucket for second image retrieval using Manhattan distance. This algorithm can adapt to the massive image retrieval, which ensures the high accuracy of the image retrieval and reduces the time complexity of the retrieval. This algorithm is of great significance.

  17. Conveying 3D shape with texture: recent advances and experimental findings

    NASA Astrophysics Data System (ADS)

    Interrante, Victoria; Kim, Sunghee; Hagh-Shenas, Haleh

    2002-06-01

    If we could design the perfect texture pattern to apply to any smooth surface in order to enable observers to more accurately perceive the surface's shape in a static monocular image taken from an arbitrary generic viewpoint under standard lighting conditions, what would the characteristics of that texture pattern be? In order to gain insight into this question, our group has developed an efficient algorithm for synthesizing a high resolution texture pattern, derived from a provided 2D sample, over an arbitrary doubly curved surface in such a way that the orientation of the texture is constrained to follow a specified underlying vector field over the surface, at a per-pixel level, without evidence of seams or projective distortion artifacts. In this paper, we report the findings of a recent experiment in which we attempt to use this new texture synthesis method to assess the shape information carrying capacity of two different types of directional texture patterns (unidirectional and bi-directional) under three different orientation conditions (following the first principal direction, following a constant uniform direction, or swirling sinusoidally in the surface). In a four alternative forced choice task, we asked participants to identify the quadrant in which two B-spline surfaces, illuminated from different random directions and simultaneously and persistently displayed, differed in their shapes. We found, after all subjects had gained sufficient training in the task, that accuracy increased fairly consistently with increasing magnitude of surface shape disparity, but that the characteristics of this increase differed under the different texture orientation conditions. Subjects were able to more reliably perceive smaller shape differences when the surfaces were textured with a pattern whose orientation followed one of the principal directions than when the surfaces were textured with a pattern that either gradually swirled in the surface or followed a constant uniform direction in the tangent plane regardless of the surface shape characteristics. These findings appear to support our hypothesis that anisotropic textures aligned with the first principal direction may facilitate shape perception, for a generic view, by making more, reliable information about the extent of the surface curvature explicitly available to the observer than would be available if the texture pattern were oriented in any other way.

  18. Computerized Liquid Crystal Phase Identification by Neural Networks Analysis of Polarizing Microscopy Textures

    NASA Astrophysics Data System (ADS)

    Karaszi, Zoltan; Konya, Andrew; Dragan, Feodor; Jakli, Antal; CPIP/LCI; CS Dept. of Kent State University Collaboration

    Polarizing optical microscopy (POM) is traditionally the best-established method of studying liquid crystals, and using POM started already with Otto Lehman in 1890. An expert, who is familiar with the science of optics of anisotropic materials and typical textures of liquid crystals, can identify phases with relatively large confidence. However, for unambiguous identification usually other expensive and time-consuming experiments are needed. Replacement of the subjective and qualitative human eye-based liquid crystal texture analysis with quantitative computerized image analysis technique started only recently and were used to enhance the detection of smooth phase transitions, determine order parameter and birefringence of specific liquid crystal phases. We investigate if the computer can recognize and name the phase where the texture was taken. To judge the potential of reliable image recognition based on this procedure, we used 871 images of liquid crystal textures belonging to five main categories: Nematic, Smectic A, Smectic C, Cholesteric and Crystal, and used a Neural Network Clustering Technique included in the data mining software package in Java ``WEKA''. A neural network trained on a set of 827 LC textures classified the remaining 44 textures with 80% accuracy.

  19. Rock classification based on resistivity patterns in electrical borehole wall images

    NASA Astrophysics Data System (ADS)

    Linek, Margarete; Jungmann, Matthias; Berlage, Thomas; Pechnig, Renate; Clauser, Christoph

    2007-06-01

    Electrical borehole wall images represent grey-level-coded micro-resistivity measurements at the borehole wall. Different scientific methods have been implemented to transform image data into quantitative log curves. We introduce a pattern recognition technique applying texture analysis, which uses second-order statistics based on studying the occurrence of pixel pairs. We calculate so-called Haralick texture features such as contrast, energy, entropy and homogeneity. The supervised classification method is used for assigning characteristic texture features to different rock classes and assessing the discriminative power of these image features. We use classifiers obtained from training intervals to characterize the entire image data set recovered in ODP hole 1203A. This yields a synthetic lithology profile based on computed texture data. We show that Haralick features accurately classify 89.9% of the training intervals. We obtained misclassification for vesicular basaltic rocks. Hence, further image analysis tools are used to improve the classification reliability. We decompose the 2D image signal by the application of wavelet transformation in order to enhance image objects horizontally, diagonally and vertically. The resulting filtered images are used for further texture analysis. This combined classification based on Haralick features and wavelet transformation improved our classification up to a level of 98%. The application of wavelet transformation increases the consistency between standard logging profiles and texture-derived lithology. Texture analysis of borehole wall images offers the potential to facilitate objective analysis of multiple boreholes with the same lithology.

  20. Textural Maturity Analysis and Sedimentary Environment Discrimination Based on Grain Shape Data

    NASA Astrophysics Data System (ADS)

    Tunwal, M.; Mulchrone, K. F.; Meere, P. A.

    2017-12-01

    Morphological analysis of clastic sedimentary grains is an important source of information regarding the processes involved in their formation, transportation and deposition. However, a standardised approach for quantitative grain shape analysis is generally lacking. In this contribution we report on a study where fully automated image analysis techniques were applied to loose sediment samples collected from glacial, aeolian, beach and fluvial environments. A range of shape parameters are evaluated for their usefulness in textural characterisation of populations of grains. The utility of grain shape data in ranking textural maturity of samples within a given sedimentary environment is evaluated. Furthermore, discrimination of sedimentary environment on the basis of grain shape information is explored. The data gathered demonstrates a clear progression in textural maturity in terms of roundness, angularity, irregularity, fractal dimension, convexity, solidity and rectangularity. Textural maturity can be readily categorised using automated grain shape parameter analysis. However, absolute discrimination between different depositional environments on the basis of shape parameters alone is less certain. For example, the aeolian environment is quite distinct whereas fluvial, glacial and beach samples are inherently variable and tend to overlap each other in terms of textural maturity. This is most likely due to a collection of similar processes and sources operating within these environments. This study strongly demonstrates the merit of quantitative population-based shape parameter analysis of texture and indicates that it can play a key role in characterising both loose and consolidated sediments. This project is funded by the Irish Petroleum Infrastructure Programme (www.pip.ie)

  1. The promise and limits of PET texture analysis.

    PubMed

    Cheng, Nai-Ming; Fang, Yu-Hua Dean; Yen, Tzu-Chen

    2013-11-01

    Metabolic heterogeneity is a recognized characteristic of malignant tumors. Positron emission tomography (PET) texture analysis evaluated intratumoral heterogeneity in the uptake of (18)F-fluorodeoxyglucose. There were recent evidences that PET textural features were of prognostic significance in patients with different solid tumors. Unfortunately, there are still crucial standardization challenges to transform PET texture parameters from their current use as research tools into the arena of validated technologies for use in oncology practice. Testing its generalizability, robustness, consistency, and limitations is necessary before implementing it in daily patient care.

  2. Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hori, Yasuaki; Yasuno, Yoshiaki; Sakai, Shingo; Matsumoto, Masayuki; Sugawara, Tomoko; Madjarova, Violeta; Yamanari, Masahiro; Makita, Shuichi; Yasui, Takeshi; Araki, Tsutomu; Itoh, Masahide; Yatagai, Toyohiko

    2006-03-01

    A set of fully automated algorithms that is specialized for analyzing a three-dimensional optical coherence tomography (OCT) volume of human skin is reported. The algorithm set first determines the skin surface of the OCT volume, and a depth-oriented algorithm provides the mean epidermal thickness, distribution map of the epidermis, and a segmented volume of the epidermis. Subsequently, an en face shadowgram is produced by an algorithm to visualize the infundibula in the skin with high contrast. The population and occupation ratio of the infundibula are provided by a histogram-based thresholding algorithm and a distance mapping algorithm. En face OCT slices at constant depths from the sample surface are extracted, and the histogram-based thresholding algorithm is again applied to these slices, yielding a three-dimensional segmented volume of the infundibula. The dermal attenuation coefficient is also calculated from the OCT volume in order to evaluate the skin texture. The algorithm set examines swept-source OCT volumes of the skins of several volunteers, and the results show the high stability, portability and reproducibility of the algorithm.

  3. The Impact of Optimal Respiratory Gating and Image Noise on Evaluation of Intratumor Heterogeneity on 18F-FDG PET Imaging of Lung Cancer.

    PubMed

    Grootjans, Willem; Tixier, Florent; van der Vos, Charlotte S; Vriens, Dennis; Le Rest, Catherine C; Bussink, Johan; Oyen, Wim J G; de Geus-Oei, Lioe-Fee; Visvikis, Dimitris; Visser, Eric P

    2016-11-01

    Accurate measurement of intratumor heterogeneity using parameters of texture on PET images is essential for precise characterization of cancer lesions. In this study, we investigated the influence of respiratory motion and varying noise levels on quantification of textural parameters in patients with lung cancer. We used an optimal-respiratory-gating algorithm on the list-mode data of 60 lung cancer patients who underwent 18 F-FDG PET. The images were reconstructed using a duty cycle of 35% (percentage of the total acquired PET data). In addition, nongated images of varying statistical quality (using 35% and 100% of the PET data) were reconstructed to investigate the effects of image noise. Several global image-derived indices and textural parameters (entropy, high-intensity emphasis, zone percentage, and dissimilarity) that have been associated with patient outcome were calculated. The clinical impact of optimal respiratory gating and image noise on assessment of intratumor heterogeneity was evaluated using Cox regression models, with overall survival as the outcome measure. The threshold for statistical significance was adjusted for multiple comparisons using Bonferroni correction. In the lower lung lobes, respiratory motion significantly affected quantification of intratumor heterogeneity for all textural parameters (P < 0.007) except entropy (P > 0.007). The mean increase in entropy, dissimilarity, zone percentage, and high-intensity emphasis was 1.3% ± 1.5% (P = 0.02), 11.6% ± 11.8% (P = 0.006), 2.3% ± 2.2% (P = 0.002), and 16.8% ± 17.2% (P = 0.006), respectively. No significant differences were observed for lesions in the upper lung lobes (P > 0.007). Differences in the statistical quality of the PET images affected the textural parameters less than respiratory motion, with no significant difference observed. The median follow-up time was 35 mo (range, 7-39 mo). In multivariate analysis for overall survival, total lesion glycolysis and high-intensity emphasis were the two most relevant image-derived indices and were considered to be independent significant covariates for the model regardless of the image type considered. The tested textural parameters are robust in the presence of respiratory motion artifacts and varying levels of image noise. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  4. A 3D Hermite-based multiscale local active contour method with elliptical shape constraints for segmentation of cardiac MR and CT volumes.

    PubMed

    Barba-J, Leiner; Escalante-Ramírez, Boris; Vallejo Venegas, Enrique; Arámbula Cosío, Fernando

    2018-05-01

    Analysis of cardiac images is a fundamental task to diagnose heart problems. Left ventricle (LV) is one of the most important heart structures used for cardiac evaluation. In this work, we propose a novel 3D hierarchical multiscale segmentation method based on a local active contour (AC) model and the Hermite transform (HT) for LV analysis in cardiac magnetic resonance (MR) and computed tomography (CT) volumes in short axis view. Features such as directional edges, texture, and intensities are analyzed using the multiscale HT space. A local AC model is configured using the HT coefficients and geometrical constraints. The endocardial and epicardial boundaries are used for evaluation. Segmentation of the endocardium is controlled using elliptical shape constraints. The final endocardial shape is used to define the geometrical constraints for segmentation of the epicardium. We follow the assumption that epicardial and endocardial shapes are similar in volumes with short axis view. An initialization scheme based on a fuzzy C-means algorithm and mathematical morphology was designed. The algorithm performance was evaluated using cardiac MR and CT volumes in short axis view demonstrating the feasibility of the proposed method.

  5. Algorithmic commonalities in the parallel environment

    NASA Technical Reports Server (NTRS)

    Mcanulty, Michael A.; Wainer, Michael S.

    1987-01-01

    The ultimate aim of this project was to analyze procedures from substantially different application areas to discover what is either common or peculiar in the process of conversion to the Massively Parallel Processor (MPP). Three areas were identified: molecular dynamic simulation, production systems (rule systems), and various graphics and vision algorithms. To date, only selected graphics procedures have been investigated. They are the most readily available, and produce the most visible results. These include simple polygon patch rendering, raycasting against a constructive solid geometric model, and stochastic or fractal based textured surface algorithms. Only the simplest of conversion strategies, mapping a major loop to the array, has been investigated so far. It is not entirely satisfactory.

  6. A cascade method for TFT-LCD defect detection

    NASA Astrophysics Data System (ADS)

    Yi, Songsong; Wu, Xiaojun; Yu, Zhiyang; Mo, Zhuoya

    2017-07-01

    In this paper, we propose a novel cascade detection algorithm which focuses on point and line defects on TFT-LCD. At the first step of the algorithm, we use the gray level difference of su-bimage to segment the abnormal area. The second step is based on phase only transform (POT) which corresponds to the Discrete Fourier Transform (DFT), normalized by the magnitude. It can remove regularities like texture and noise. After that, we improve the method of setting regions of interest (ROI) with the method of edge segmentation and polar transformation. The algorithm has outstanding performance in both computation speed and accuracy. It can solve most of the defect detections including dark point, light point, dark line, etc.

  7. Virtual environments for scene of crime reconstruction and analysis

    NASA Astrophysics Data System (ADS)

    Howard, Toby L. J.; Murta, Alan D.; Gibson, Simon

    2000-02-01

    This paper describes research conducted in collaboration with Greater Manchester Police (UK), to evalute the utility of Virtual Environments for scene of crime analysis, forensic investigation, and law enforcement briefing and training. We present an illustrated case study of the construction of a high-fidelity virtual environment, intended to match a particular real-life crime scene as closely as possible. We describe and evaluate the combination of several approaches including: the use of the Manchester Scene Description Language for constructing complex geometrical models; the application of a radiosity rendering algorithm with several novel features based on human perceptual consideration; texture extraction from forensic photography; and experiments with interactive walkthroughs and large-screen stereoscopic display of the virtual environment implemented using the MAVERIK system. We also discuss the potential applications of Virtual Environment techniques in the Law Enforcement and Forensic communities.

  8. Characterization and analysis of Porous, Brittle solid structures by X-ray micro computed tomography

    NASA Astrophysics Data System (ADS)

    Lin, C. L.; Videla, A. R.; Yu, Q.; Miller, J. D.

    2010-12-01

    The internal structure of porous, brittle solid structures, such as porous rock, foam metal and wallboard, is extremely complex. For example, in the case of wallboard, the air bubble size and the thickness/composition of the wall structure are spatial parameters that vary significantly and influence mechanical, thermal, and acoustical properties. In this regard, the complex geometry and the internal texture of material, such as wallboard, is characterized and analyzed in 3-D using cone beam x-ray micro computed tomography. Geometrical features of the porous brittle structure are quantitatively analyzed based on calibration of the x-ray linear attenuation coefficient, use of a 3-D watershed algorithm, and use of a 3-D skeletonization procedure. Several examples of the 3-D analysis for porous, wallboard structures are presented and the results discussed.

  9. Flightspeed Integral Image Analysis Toolkit

    NASA Technical Reports Server (NTRS)

    Thompson, David R.

    2009-01-01

    The Flightspeed Integral Image Analysis Toolkit (FIIAT) is a C library that provides image analysis functions in a single, portable package. It provides basic low-level filtering, texture analysis, and subwindow descriptor for applications dealing with image interpretation and object recognition. Designed with spaceflight in mind, it addresses: Ease of integration (minimal external dependencies) Fast, real-time operation using integer arithmetic where possible (useful for platforms lacking a dedicated floatingpoint processor) Written entirely in C (easily modified) Mostly static memory allocation 8-bit image data The basic goal of the FIIAT library is to compute meaningful numerical descriptors for images or rectangular image regions. These n-vectors can then be used directly for novelty detection or pattern recognition, or as a feature space for higher-level pattern recognition tasks. The library provides routines for leveraging training data to derive descriptors that are most useful for a specific data set. Its runtime algorithms exploit a structure known as the "integral image." This is a caching method that permits fast summation of values within rectangular regions of an image. This integral frame facilitates a wide range of fast image-processing functions. This toolkit has applicability to a wide range of autonomous image analysis tasks in the space-flight domain, including novelty detection, object and scene classification, target detection for autonomous instrument placement, and science analysis of geomorphology. It makes real-time texture and pattern recognition possible for platforms with severe computational restraints. The software provides an order of magnitude speed increase over alternative software libraries currently in use by the research community. FIIAT can commercially support intelligent video cameras used in intelligent surveillance. It is also useful for object recognition by robots or other autonomous vehicles

  10. Automated Texture Classification of the Mawrth Vallis Landing Site Region

    NASA Astrophysics Data System (ADS)

    Parente, M.; Bayley, L.; Hunkins, L.; McKeown, N. K.; Bishop, J. L.

    2009-12-01

    Supervised classification techniques have been developed to discriminate geomorphologic units in HiRISE images of Mawrth Vallis on Mars, one of the MSL candidate landing sites. A variety of clay minerals that indicate water was once present have been identified in the ancient bedrock at Mawrth Vallis [1-7]. These clay-rich rocks exhibit distinct surface textures in HiRISE images, where the nontronite-bearing unit consists of two primary textures: 2-5 m irregular inverted polygons and irregular parallel fracture sets ([8,13], Fig. b-c). In contrast, the montmorillonite-bearing unit consists of 0.5-1.5 m regular polygons ([8,13], Fig. e). We also characterized dunes (Fig. d), and the spectrally unremarkable caprock unit (Fig. a). Classification of these textures was performed by extracting discriminatory features from gray-level run length matrices (GLRLMs) [9], gray-level co-occurrence matrices (GLCMs) [10], and semivariograms [11] calculated for small blocks of data in HiRISE images. Preliminary results using an algorithm containing eight of these classification features produced a texture classification technique that is 85 percent accurate. The discriminant analysis (e.g. [12]) classifier we used modeled a linear discriminant function for each class based on the training feature vectors for that class. The test vector with the largest value for its discriminant function was then assigned to each class. We assumed linear functions were acceptable for small training sets and we performed automated selection in order to identify the most discriminative features for the textures in Mawrth Vallis. Continued efforts are underway to test and refine this procedure in order to optimize texture recognition on a broader collection of textures, representing additional surface components from Mawrth Vallis and other landing sites on Mars. [1] Bibring, J.-P., et al. (2005) Science, 307, 1576-1581. [2] Poulet, F., et al. (2005) Nature, 438, 632-627. [3] Bishop, J. L., et al. (2008) Science, 321, 830-833. [4] Wray, J. J., et al. (2008) GRL, 35, L12202. [5] Loizeau, D., et al. (2009) Icarus, (in press). [6] McKeown, N. K., et al. (2009) JGR- Planets, (in press). [7] Noe Dobrea, E. Z., et al. (2009) JGR- Planets, (in revision). [8] McKeown, N. K. et al. (2009) LPSC abs. #2433. [9] Galloway, M. M., (1975),Computer Graphics and Image Processing 4, 172-179. [10] Haralick, R. M., (1973) IEEE Trans. on Systems, Man and Cybernetics 3, 610-621. [11] Curran, P. J., Remote Sensing of Environment 24, 493-507, 1988. [12] Hastie T., et al. (2005), The elements of statistical learning. Springer. [13] McKeown, N. K., et al. (2009) AGU

  11. Texture analysis of Napoleonic War Era copper bolts

    NASA Astrophysics Data System (ADS)

    Malamud, Florencia; Northover, Shirley; James, Jon; Northover, Peter; Kelleher, Joe

    2016-04-01

    Neutron diffraction techniques are suitable for volume texture analyses due to high penetration of thermal neutrons in most materials. We have implemented a new data analysis methodology that employed the spatial resolution achievable by a time-of-flight neutron strain scanner to non-destructively determine the crystallographic texture at selected locations within a macroscopic sample. The method is based on defining the orientation distribution function of the crystallites from several incomplete pole figures, and it has been implemented on ENGIN-X, a neutron strain scanner at the Isis Facility in the UK. Here, we demonstrate the application of this new texture analysis methodology in determining the crystallographic texture at selected locations within museum quality archaeological objects up to 1 m in length. The results were verified using samples of similar, but less valuable, objects by comparing the results of applying this method with those obtained using both electron backscatter diffraction and X-ray diffraction on their cross sections.

  12. Research on HDR image fusion algorithm based on Laplace pyramid weight transform with extreme low-light CMOS

    NASA Astrophysics Data System (ADS)

    Guan, Wen; Li, Li; Jin, Weiqi; Qiu, Su; Zou, Yan

    2015-10-01

    Extreme-Low-Light CMOS has been widely applied in the field of night-vision as a new type of solid image sensor. But if the illumination in the scene has drastic changes or the illumination is too strong, Extreme-Low-Light CMOS can't both clearly present the high-light scene and low-light region. According to the partial saturation problem in the field of night-vision, a HDR image fusion algorithm based on the Laplace Pyramid was researched. The overall gray value and the contrast of the low light image is very low. We choose the fusion strategy based on regional average gradient for the top layer of the long exposure image and short exposure image, which has rich brightness and textural features. The remained layers which represent the edge feature information of the target are based on the fusion strategy based on regional energy. In the process of source image reconstruction with Laplacian pyramid image, we compare the fusion results with four kinds of basal images. The algorithm is tested using Matlab and compared with the different fusion strategies. We use information entropy, average gradient and standard deviation these three objective evaluation parameters for the further analysis of the fusion result. Different low illumination environment experiments show that the algorithm in this paper can rapidly get wide dynamic range while keeping high entropy. Through the verification of this algorithm features, there is a further application prospect of the optimized algorithm. Keywords: high dynamic range imaging, image fusion, multi-exposure image, weight coefficient, information fusion, Laplacian pyramid transform.

  13. Volume illustration of muscle from diffusion tensor images.

    PubMed

    Chen, Wei; Yan, Zhicheng; Zhang, Song; Crow, John Allen; Ebert, David S; McLaughlin, Ronald M; Mullins, Katie B; Cooper, Robert; Ding, Zi'ang; Liao, Jun

    2009-01-01

    Medical illustration has demonstrated its effectiveness to depict salient anatomical features while hiding the irrelevant details. Current solutions are ineffective for visualizing fibrous structures such as muscle, because typical datasets (CT or MRI) do not contain directional details. In this paper, we introduce a new muscle illustration approach that leverages diffusion tensor imaging (DTI) data and example-based texture synthesis techniques. Beginning with a volumetric diffusion tensor image, we reformulate it into a scalar field and an auxiliary guidance vector field to represent the structure and orientation of a muscle bundle. A muscle mask derived from the input diffusion tensor image is used to classify the muscle structure. The guidance vector field is further refined to remove noise and clarify structure. To simulate the internal appearance of the muscle, we propose a new two-dimensional example based solid texture synthesis algorithm that builds a solid texture constrained by the guidance vector field. Illustrating the constructed scalar field and solid texture efficiently highlights the global appearance of the muscle as well as the local shape and structure of the muscle fibers in an illustrative fashion. We have applied the proposed approach to five example datasets (four pig hearts and a pig leg), demonstrating plausible illustration and expressiveness.

  14. Real-time photorealistic stereoscopic rendering of fire

    NASA Astrophysics Data System (ADS)

    Rose, Benjamin M.; McAllister, David F.

    2007-02-01

    We propose a method for real-time photorealistic stereo rendering of the natural phenomenon of fire. Applications include the use of virtual reality in fire fighting, military training, and entertainment. Rendering fire in real-time presents a challenge because of the transparency and non-static fluid-like behavior of fire. It is well known that, in general, methods that are effective for monoscopic rendering are not necessarily easily extended to stereo rendering because monoscopic methods often do not provide the depth information necessary to produce the parallax required for binocular disparity in stereoscopic rendering. We investigate the existing techniques used for monoscopic rendering of fire and discuss their suitability for extension to real-time stereo rendering. Methods include the use of precomputed textures, dynamic generation of textures, and rendering models resulting from the approximation of solutions of fluid dynamics equations through the use of ray-tracing algorithms. We have found that in order to attain real-time frame rates, our method based on billboarding is effective. Slicing is used to simulate depth. Texture mapping or 2D images are mapped onto polygons and alpha blending is used to treat transparency. We can use video recordings or prerendered high-quality images of fire as textures to attain photorealistic stereo.

  15. Inline inspection of textured plastics surfaces

    NASA Astrophysics Data System (ADS)

    Michaeli, Walter; Berdel, Klaus

    2011-02-01

    This article focuses on the inspection of plastics web materials exhibiting irregular textures such as imitation wood or leather. They are produced in a continuous process at high speed. In this process, various defects occur sporadically. However, current inspection systems for plastics surfaces are able to inspect unstructured products or products with regular, i.e., highly periodic, textures, only. The proposed inspection algorithm uses the local binary pattern operator for texture feature extraction. For classification, semisupervised as well as supervised approaches are used. A simple concept for semisupervised classification is presented and applied for defect detection. The resulting defect-maps are presented to the operator. He assigns class labels that are used to train the supervised classifier in order to distinguish between different defect types. A concept for parallelization is presented allowing the efficient use of standard multicore processor PC hardware. Experiments with images of a typical product acquired in an industrial setting show a detection rate of 97% while achieving a false alarm rate below 1%. Real-time tests show that defects can be reliably detected even at haul-off speeds of 30 m/min. Further applications of the presented concept can be found in the inspection of other materials.

  16. Combined use of remote sensing and seismic observations to infer geologically recent crustal deformation, active faulting, and stress fields. [California and Pennsylvania

    NASA Technical Reports Server (NTRS)

    Alexander, S. S. (Principal Investigator)

    1982-01-01

    Characteristic traits for earthquakes associated with strike-slip motion in Central California and the Salton Sea area, as revealed in ground based studies and LANDSAT imagery, were compared. The mapped lineaments are found to be oriented in several dominant directions. One direction is the same as the trend of the San Andreas fault. The other directions differ from area to area and may reflect the stresses of earlier geologic processes. The pattern of lineament orientations is significantly LANDSAT MSS data, SEASAT synthetic aperture radar data, and magnetic field data from the South Mountain area west of Gettysburg, Pennsylvania were registered to match each other in spatial position and merged. Pattern recognition techniques were applied to the composite data set to determine its utility in recognizing different rock types and structures in vegetated terrain around South Mountain. With the use of a texture algorithm to enhance geologic features, a classification of the entire area was made. A test of the correlation between SAR tone and texture, LANDSAT tone and texture, and magnetic field data revealed no tone or texture measures linking any two of the original data sets.

  17. Computerized morphometry as an aid in distinguishing recurrent versus nonrecurrent meningiomas.

    PubMed

    Noy, Shawna; Vlodavsky, Euvgeni; Klorin, Geula; Drumea, Karen; Ben Izhak, Ofer; Shor, Eli; Sabo, Edmond

    2011-06-01

    To use novel digital and morphometric methods to identify variables able to better predict the recurrence of intracranial meningiomas. Histologic images from 30 previously diagnosed meningioma tumors that recurred over 10 years of follow-up were consecutively selected from the Rambam Pathology Archives. Images were captured and morphometrically analyzed. Novel algorithms of digital pattern recognition using Fourier transformation and fractal and nuclear texture analyses were applied to evaluate the overall growth pattern complexity of the tumors, as well as the chromatin texture of individual tumor nuclei. The extracted parameters were then correlated with patient prognosis. Kaplan-Meier analyses revealed statistically significant associations between tumor morphometric parameters and recurrence times. Tumors with less nuclear orientation, more nuclear density, higher fractal dimension, and less regular chromatin textures tended to recur faster than those with a higher degree of nuclear order, less pattern complexity, lower density, and more homogeneous chromatin nuclear textures (p < 0.01). To our knowledge, these digital morphometric methods were used for the first time to accurately predict tumor recurrence in patients with intracranial meningiomas. The use of these methods may bring additional valuable information to the clinician regarding the optimal management of these patients.

  18. A subjective study and an objective metric to quantify the granularity level of textures

    NASA Astrophysics Data System (ADS)

    Subedar, Mahesh M.; Karam, Lina J.

    2015-03-01

    Texture granularity is an important visual characteristic that is useful in a variety of applications, including analysis, recognition, and compression, to name a few. A texture granularity measure can be used to quantify the perceived level of texture granularity. The granularity level of the textures is influenced by the size of the texture primitives. A primitive is defined as the smallest recognizable repetitive object in the texture. If the texture has large primitives then the perceived granularity level tends to be lower as compared to a texture with smaller primitives. In this work we are presenting a texture granularity database referred as GranTEX which consists of 30 textures with varying levels of primitive sizes and granularity levels. The GranTEX database consists of both natural and man-made textures. A subjective study is conducted to measure the perceived granularity level of textures present in the GranTEX database. An objective metric that automatically measures the perceived granularity level of textures is also presented as part of this work. It is shown that the proposed granularity metric correlates well with the subjective granularity scores.

  19. Quantitative phase and texture angularity analysis of brain white matter lesions in multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Baxandall, Shalese; Sharma, Shrushrita; Zhai, Peng; Pridham, Glen; Zhang, Yunyan

    2018-03-01

    Structural changes to nerve fiber tracts are extremely common in neurological diseases such as multiple sclerosis (MS). Accurate quantification is vital. However, while nerve fiber damage is often seen as multi-focal lesions in magnetic resonance imaging (MRI), measurement through visual perception is limited. Our goal was to characterize the texture pattern of the lesions in MRI and determine how texture orientation metrics relate to lesion structure using two new methods: phase congruency and multi-resolution spatial-frequency analysis. The former aims to optimize the detection of the `edges and corners' of a structure, and the latter evaluates both the radial and angular distributions of image texture associated with the various forming scales of a structure. The radial texture spectra were previously confirmed to measure the severity of nerve fiber damage, and were thus included for validation. All measures were also done in the control brain white matter for comparison. Using clinical images of MS patients, we found that both phase congruency and weighted mean phase detected invisible lesion patterns and were significantly greater in lesions, suggesting higher structure complexity, than the control tissue. Similarly, multi-angular spatial-frequency analysis detected much higher texture across the whole frequency spectrum in lesions than the control areas. Such angular complexity was consistent with findings from radial texture. Analysis of the phase and texture alignment may prove to be a useful new approach for assessing invisible changes in lesions using clinical MRI and thereby lead to improved management of patients with MS and similar disorders.

  20. Large Scale Textured Mesh Reconstruction from Mobile Mapping Images and LIDAR Scans

    NASA Astrophysics Data System (ADS)

    Boussaha, M.; Vallet, B.; Rives, P.

    2018-05-01

    The representation of 3D geometric and photometric information of the real world is one of the most challenging and extensively studied research topics in the photogrammetry and robotics communities. In this paper, we present a fully automatic framework for 3D high quality large scale urban texture mapping using oriented images and LiDAR scans acquired by a terrestrial Mobile Mapping System (MMS). First, the acquired points and images are sliced into temporal chunks ensuring a reasonable size and time consistency between geometry (points) and photometry (images). Then, a simple, fast and scalable 3D surface reconstruction relying on the sensor space topology is performed on each chunk after an isotropic sampling of the point cloud obtained from the raw LiDAR scans. Finally, the algorithm proposed in (Waechter et al., 2014) is adapted to texture the reconstructed surface with the images acquired simultaneously, ensuring a high quality texture with no seams and global color adjustment. We evaluate our full pipeline on a dataset of 17 km of acquisition in Rouen, France resulting in nearly 2 billion points and 40000 full HD images. We are able to reconstruct and texture the whole acquisition in less than 30 computing hours, the entire process being highly parallel as each chunk can be processed independently in a separate thread or computer.

  1. Processing, properties, and application of textured 0.72lead(magnesium niobate)-0.28lead titanate ceramics

    NASA Astrophysics Data System (ADS)

    Brosnan, Kristen H.

    In this study, XRD and electron backscatter diffraction (EBSD) techniques were used to characterize the fiber texture in oriented PMN-28PT and the intensity data were fit with a texture model (the March-Dollase equation) that describes the texture in terms of texture fraction (f), and the width of the orientation distribution (r). EBSD analysis confirmed the <001> orientation of the microstructure, with no distinguishable randomly oriented, fine grain matrix. Although XRD rocking curve and EBSD data analysis gave similar f and r values, XRD rocking curve analysis was the most efficient and gave a complete description of texture fraction and texture orientation (f = 0.81 and r = 0.21, respectively). XRD rocking curve analysis was the preferred approach for characterization of the texture volume and the orientation distribution of texture in fiber-oriented PMN-PT. The dielectric, piezoelectric and electromechanical properties for random ceramic, 69 vol% textured, 81 vol% textured, and single crystal PMN-28PT were fully characterized and compared. The room temperature dielectric constant at 1 kHz for highly textured PMN-28PT was epsilonr ≥ 3600 with low dielectric loss (tan delta = 0.004). The temperature dependence of the dielectric constant for 81 vol% textured ceramic followed a similar trend as the single crystal PMN-28PT up to the rhombohedral to tetragonal transition temperature (TRT) at 104°C. 81 vol% textured PMN-28PT consistently displayed 60 to 65% of the single crystal PMN-28PT piezoelectric coefficient (d33) and 1.5 to 3.0 times greater than the random ceramic d33 (measured by Berlincourt meter, unipolar strain-field curves, IEEE standard resonance method, and laser vibrometry). The 81 vol% textured PMN-28PT displayed similarly low piezoelectric hysteresis as single crystal PMN-28PT measured by strain-field curves at 5 kV/cm. 81 vol% textured PMN-28PT and single crystal PMN-28PT displayed similar mechanical quality factors of QM = 74 and 76, respectively. The electromechanical coupling (k 33) of 81 vol% textured PMN-28PT (k33 = 0.79) was a significant fraction of single crystal (k33 = 0.91) and was higher than a commercial PMN-PT ceramic (k33 ˜ 0.74). The nonlinearity of the dielectric and piezoelectric response were investigated in textured ceramics and single crystal PMN-28PT using the Rayleigh approach. The reversible piezoelectric coefficient was found to increase significantly and the hysteretic contribution to the piezoelectric coefficient decreased significantly with an increase in texture volume. This indicates that increasing the texture volume decreases the non-180° domain wall contribution to the piezoelectric response in PMN-28PT. Finally, 81 vol% textured ceramics were also integrated into a Navy SONAR transducer design. In-water characterization of the transducers showed higher source levels, higher in-water coupling, higher acoustic intensity, and more bandwidth for the 81 vol% textured PMN-28PT tonpilz single elements compared to the ceramic PMN-28PT tonpilz element. In addition, an 81 vol% textured PMN-28PT tonpilz element showed large scale linearity in sound pressure levels as a function of drive level under high drive conditions (up to 2.33 kV/cm). The maximum electromechanical coupling obtained by the 81 vol% textured PMN-28PT transducer under high drive conditions was keff = 0.69. However, the resonance frequency shifted significantly during high drive tests (Deltafs = -19% at 3.7 kV/cm), evidence of a "soft" characteristic of the 81 vol% textured PMN-28PT, possibly caused by Sr2+ from the template particles. The results suggest there are limitations on the preload compressive stress (and thus drive level) for these textured ceramics, but this could be addressed with compositional modifications. The dielectric, piezoelectric and electromechanical properties have been significantly improved in textured PMN-PT ceramics of this study. Furthermore, scale-up in processing for incorporation into devices of highly textured ceramics with reproducible texture (and hence narrow properties distribution) was achieved in these materials. SONAR applications could benefit from textured ceramic parts because of their ease of processing, compositional homogeneity and potentially lower cost. (Abstract shortened by UMI.)

  2. Analysis of Texture Using the Fractal Model

    NASA Technical Reports Server (NTRS)

    Navas, William; Espinosa, Ramon Vasquez

    1997-01-01

    Properties such as the fractal dimension (FD) can be used for feature extraction and classification of regions within an image. The FD measures the degree of roughness of a surface, so this number is used to characterize a particular region, in order to differentiate it from another. There are two basic approaches discussed in the literature to measure FD: the blanket method, and the box counting method. Both attempt to measure FD by estimating the change in surface area with respect to the change in resolution. We tested both methods but box counting resulted computationally faster and gave better results. Differential Box Counting (DBC) was used to segment a collage containing three textures. The FD is independent of directionality and brightness so five features were used derived from the original image to account for directionality and gray level biases. FD can not be measured on a point, so we use a window that slides across the image giving values of FD to the pixel on the center of the window. Windowing blurs the boundaries of adjacent classes, so an edge-preserving, feature-smoothing algorithm is used to improve classification within segments and to make the boundaries sharper. Segmentation using DBC was 90.8910 accurate.

  3. A comprehensive analysis of earthquake damage patterns using high dimensional model representation feature selection

    NASA Astrophysics Data System (ADS)

    Taşkin Kaya, Gülşen

    2013-10-01

    Recently, earthquake damage assessment using satellite images has been a very popular ongoing research direction. Especially with the availability of very high resolution (VHR) satellite images, a quite detailed damage map based on building scale has been produced, and various studies have also been conducted in the literature. As the spatial resolution of satellite images increases, distinguishability of damage patterns becomes more cruel especially in case of using only the spectral information during classification. In order to overcome this difficulty, textural information needs to be involved to the classification to improve the visual quality and reliability of damage map. There are many kinds of textural information which can be derived from VHR satellite images depending on the algorithm used. However, extraction of textural information and evaluation of them have been generally a time consuming process especially for the large areas affected from the earthquake due to the size of VHR image. Therefore, in order to provide a quick damage map, the most useful features describing damage patterns needs to be known in advance as well as the redundant features. In this study, a very high resolution satellite image after Iran, Bam earthquake was used to identify the earthquake damage. Not only the spectral information, textural information was also used during the classification. For textural information, second order Haralick features were extracted from the panchromatic image for the area of interest using gray level co-occurrence matrix with different size of windows and directions. In addition to using spatial features in classification, the most useful features representing the damage characteristic were selected with a novel feature selection method based on high dimensional model representation (HDMR) giving sensitivity of each feature during classification. The method called HDMR was recently proposed as an efficient tool to capture the input-output relationships in high-dimensional systems for many problems in science and engineering. The HDMR method is developed to improve the efficiency of the deducing high dimensional behaviors. The method is formed by a particular organization of low dimensional component functions, in which each function is the contribution of one or more input variables to the output variables.

  4. Performance comparison of classifiers for differentiation among obstructive lung diseases based on features of texture analysis at HRCT

    NASA Astrophysics Data System (ADS)

    Lee, Youngjoo; Seo, Joon Beom; Kang, Bokyoung; Kim, Dongil; Lee, June Goo; Kim, Song Soo; Kim, Namkug; Kang, Suk Ho

    2007-03-01

    The performance of classification algorithms for differentiating among obstructive lung diseases based on features from texture analysis using HRCT (High Resolution Computerized Tomography) images was compared. HRCT can provide accurate information for the detection of various obstructive lung diseases, including centrilobular emphysema, panlobular emphysema and bronchiolitis obliterans. Features on HRCT images can be subtle, however, particularly in the early stages of disease, and image-based diagnosis is subject to inter-observer variation. To automate the diagnosis and improve the accuracy, we compared three types of automated classification systems, naÃve Bayesian classifier, ANN (Artificial Neural Net) and SVM (Support Vector Machine), based on their ability to differentiate among normal lung and three types of obstructive lung diseases. To assess the performance and cross-validation of these three classifiers, 5 folding methods with 5 randomly chosen groups were used. For a more robust result, each validation was repeated 100 times. SVM showed the best performance, with 86.5% overall sensitivity, significantly different from the other classifiers (one way ANOVA, p<0.01). We address the characteristics of each classifier affecting performance and the issue of which classifier is the most suitable for clinical applications, and propose an appropriate method to choose the best classifier and determine its optimal parameters for optimal disease discrimination. These results can be applied to classifiers for differentiation of other diseases.

  5. Bone texture analysis on dental radiographic images: results with several angulated radiographs on the same region of interest

    NASA Astrophysics Data System (ADS)

    Amouriq, Yves; Guedon, Jeanpierre; Normand, Nicolas; Arlicot, Aurore; Benhdech, Yassine; Weiss, Pierre

    2011-03-01

    Bone microarchitecture is the predictor of bone quality or bone disease. It can only be measured on a bone biopsy, which is invasive and not available for all clinical situations. Texture analysis on radiographs is a common way to investigate bone microarchitecture. But relationship between three-dimension histomorphometric parameters and two-dimension texture parameters is not always well known, with poor results. The aim of this study is to performed angulated radiographs of the same region of interest and see if a better relationship between texture analysis on several radiographs and histomorphometric parameters can be developed. Computed radiography images of dog (Beagle) mandible section in molar regions were compared with high-resolution micro-CT (Computed-Tomograph) volumes. Four radiographs with 27° angle (up, down, left, right, using Rinn ring and customized arm positioning system) were performed from initial radiograph position. Bone texture parameters were calculated on all images. Texture parameters were also computed from new images obtained by difference between angulated images. Results of fractal values in different trabecular areas give some caracterisation of bone microarchitecture.

  6. A comparison between Warner-Bratzler shear force measurement and texture profile analysis of meat and meat products: a review

    NASA Astrophysics Data System (ADS)

    Novaković, S.; Tomašević, I.

    2017-09-01

    Texture is one of the most important characteristics of meat and we can explain it as the human physiological-psychological awareness of a number of rheological and other properties of foods and their relations. In this paper, we discuss instrumental measurement of texture by Warner-Bratzler shear force (WBSF) and texture profile analysis (TPA). The conditions for using the device are detailed in WBSF measurements, and the influence of different parameters on the execution of the method and final results are shown. After that, the main disadvantages are reflected in the non-standardized method. Also, we introduce basic texture parameters which connect and separate TPA and WBSF methods and mention contemporary methods with their main advantage.

  7. TU-A-12A-07: CT-Based Biomarkers to Characterize Lung Lesion: Effects of CT Dose, Slice Thickness and Reconstruction Algorithm Based Upon a Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, B; Tan, Y; Tsai, W

    2014-06-15

    Purpose: Radiogenomics promises the ability to study cancer tumor genotype from the phenotype obtained through radiographic imaging. However, little attention has been paid to the sensitivity of image features, the image-based biomarkers, to imaging acquisition techniques. This study explores the impact of CT dose, slice thickness and reconstruction algorithm on measuring image features using a thorax phantom. Methods: Twentyfour phantom lesions of known volume (1 and 2mm), shape (spherical, elliptical, lobular and spicular) and density (-630, -10 and +100 HU) were scanned on a GE VCT at four doses (25, 50, 100, and 200 mAs). For each scan, six imagemore » series were reconstructed at three slice thicknesses of 5, 2.5 and 1.25mm with continuous intervals, using the lung and standard reconstruction algorithms. The lesions were segmented with an in-house 3D algorithm. Fifty (50) image features representing lesion size, shape, edge, and density distribution/texture were computed. Regression method was employed to analyze the effect of CT dose, slice of thickness and reconstruction algorithm on these features adjusting 3 confounding factors (size, density and shape of phantom lesions). Results: The coefficients of CT dose, slice thickness and reconstruction algorithm are presented in Table 1 in the supplementary material. No significant difference was found between the image features calculated on low dose CT scans (25mAs and 50mAs). About 50% texture features were found statistically different between low doses and high doses (100 and 200mAs). Significant differences were found for almost all features when calculated on 1.25mm, 2.5mm, and 5mm slice thickness images. Reconstruction algorithms significantly affected all density-based image features, but not morphological features. Conclusions: There is a great need to standardize the CT imaging protocols for radiogenomics study because CT dose, slice thickness and reconstruction algorithm impact quantitative image features to various degrees as our study has shown.« less

  8. Multi-scale learning based segmentation of glands in digital colonrectal pathology images.

    PubMed

    Gao, Yi; Liu, William; Arjun, Shipra; Zhu, Liangjia; Ratner, Vadim; Kurc, Tahsin; Saltz, Joel; Tannenbaum, Allen

    2016-02-01

    Digital histopathological images provide detailed spatial information of the tissue at micrometer resolution. Among the available contents in the pathology images, meso-scale information, such as the gland morphology, texture, and distribution, are useful diagnostic features. In this work, focusing on the colon-rectal cancer tissue samples, we propose a multi-scale learning based segmentation scheme for the glands in the colon-rectal digital pathology slides. The algorithm learns the gland and non-gland textures from a set of training images in various scales through a sparse dictionary representation. After the learning step, the dictionaries are used collectively to perform the classification and segmentation for the new image.

  9. GPU acceleration for digitally reconstructed radiographs using bindless texture objects and CUDA/OpenGL interoperability.

    PubMed

    Abdellah, Marwan; Eldeib, Ayman; Owis, Mohamed I

    2015-01-01

    This paper features an advanced implementation of the X-ray rendering algorithm that harnesses the giant computing power of the current commodity graphics processors to accelerate the generation of high resolution digitally reconstructed radiographs (DRRs). The presented pipeline exploits the latest features of NVIDIA Graphics Processing Unit (GPU) architectures, mainly bindless texture objects and dynamic parallelism. The rendering throughput is substantially improved by exploiting the interoperability mechanisms between CUDA and OpenGL. The benchmarks of our optimized rendering pipeline reflect its capability of generating DRRs with resolutions of 2048(2) and 4096(2) at interactive and semi interactive frame-rates using an NVIDIA GeForce 970 GTX device.

  10. Multi-scale learning based segmentation of glands in digital colonrectal pathology images

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Liu, William; Arjun, Shipra; Zhu, Liangjia; Ratner, Vadim; Kurc, Tahsin; Saltz, Joel; Tannenbaum, Allen

    2016-03-01

    Digital histopathological images provide detailed spatial information of the tissue at micrometer resolution. Among the available contents in the pathology images, meso-scale information, such as the gland morphology, texture, and distribution, are useful diagnostic features. In this work, focusing on the colon-rectal cancer tissue samples, we propose a multi-scale learning based segmentation scheme for the glands in the colon-rectal digital pathology slides. The algorithm learns the gland and non-gland textures from a set of training images in various scales through a sparse dictionary representation. After the learning step, the dictionaries are used collectively to perform the classification and segmentation for the new image.

  11. Dynamic biometric identification from multiple views using the GLBP-TOP method.

    PubMed

    Wang, Yu; Shen, Xuanjing; Chen, Haipeng; Zhai, Yujie

    2014-01-01

    To realize effective and rapid dynamic biometric identification with low computational complexity, a video-based facial texture program that extracts local binary patterns from three orthogonal planes in the frequency domain of the Gabor transform (GLBP-TOP) was proposed. Firstly, each normalized face was transformed by Gabor wavelet to get the enhanced Gabor magnitude map, and then the LBP-TOP operator was applied to the maps to extract video texture. Finally, weighted Chi square statistics based on the Fisher Criterion were used to realize the identification. The proposed algorithm was proved effective through the biometric experiments using the Honda/UCSD database, and was robust against changes of illumination and expressions.

  12. Contact-free palm-vein recognition based on local invariant features.

    PubMed

    Kang, Wenxiong; Liu, Yang; Wu, Qiuxia; Yue, Xishun

    2014-01-01

    Contact-free palm-vein recognition is one of the most challenging and promising areas in hand biometrics. In view of the existing problems in contact-free palm-vein imaging, including projection transformation, uneven illumination and difficulty in extracting exact ROIs, this paper presents a novel recognition approach for contact-free palm-vein recognition that performs feature extraction and matching on all vein textures distributed over the palm surface, including finger veins and palm veins, to minimize the loss of feature information. First, a hierarchical enhancement algorithm, which combines a DOG filter and histogram equalization, is adopted to alleviate uneven illumination and to highlight vein textures. Second, RootSIFT, a more stable local invariant feature extraction method in comparison to SIFT, is adopted to overcome the projection transformation in contact-free mode. Subsequently, a novel hierarchical mismatching removal algorithm based on neighborhood searching and LBP histograms is adopted to improve the accuracy of feature matching. Finally, we rigorously evaluated the proposed approach using two different databases and obtained 0.996% and 3.112% Equal Error Rates (EERs), respectively, which demonstrate the effectiveness of the proposed approach.

  13. Contact-Free Palm-Vein Recognition Based on Local Invariant Features

    PubMed Central

    Kang, Wenxiong; Liu, Yang; Wu, Qiuxia; Yue, Xishun

    2014-01-01

    Contact-free palm-vein recognition is one of the most challenging and promising areas in hand biometrics. In view of the existing problems in contact-free palm-vein imaging, including projection transformation, uneven illumination and difficulty in extracting exact ROIs, this paper presents a novel recognition approach for contact-free palm-vein recognition that performs feature extraction and matching on all vein textures distributed over the palm surface, including finger veins and palm veins, to minimize the loss of feature information. First, a hierarchical enhancement algorithm, which combines a DOG filter and histogram equalization, is adopted to alleviate uneven illumination and to highlight vein textures. Second, RootSIFT, a more stable local invariant feature extraction method in comparison to SIFT, is adopted to overcome the projection transformation in contact-free mode. Subsequently, a novel hierarchical mismatching removal algorithm based on neighborhood searching and LBP histograms is adopted to improve the accuracy of feature matching. Finally, we rigorously evaluated the proposed approach using two different databases and obtained 0.996% and 3.112% Equal Error Rates (EERs), respectively, which demonstrate the effectiveness of the proposed approach. PMID:24866176

  14. Advanced texture filtering: a versatile framework for reconstructing multi-dimensional image data on heterogeneous architectures

    NASA Astrophysics Data System (ADS)

    Zellmann, Stefan; Percan, Yvonne; Lang, Ulrich

    2015-01-01

    Reconstruction of 2-d image primitives or of 3-d volumetric primitives is one of the most common operations performed by the rendering components of modern visualization systems. Because this operation is often aided by GPUs, reconstruction is typically restricted to first-order interpolation. With the advent of in situ visualization, the assumption that rendering algorithms are in general executed on GPUs is however no longer adequate. We thus propose a framework that provides versatile texture filtering capabilities: up to third-order reconstruction using various types of cubic filtering and interpolation primitives; cache-optimized algorithms that integrate seamlessly with GPGPU rendering or with software rendering that was optimized for cache-friendly "Structure of Array" (SoA) access patterns; a memory management layer (MML) that gracefully hides the complexities of extra data copies necessary for memory access optimizations such as swizzling, for rendering on GPGPUs, or for reconstruction schemes that rely on pre-filtered data arrays. We prove the effectiveness of our software architecture by integrating it into and validating it using the open source direct volume rendering (DVR) software DeskVOX.

  15. A Community Database of Quartz Microstructures: Can we make measurements that constrain rheology?

    NASA Astrophysics Data System (ADS)

    Toy, Virginia; Peternell, Mark; Morales, Luiz; Kilian, Ruediger

    2014-05-01

    Rheology can be explored by performing deformation experiments, and by examining resultant microstructures and textures as links to naturally deformed rocks. Certain deformation processes are assumed to result in certain microstructures or textures, of which some might be uniquely indicative, while most cannot be unequivocally used to interpret the deformation mechanism and hence rheology. Despite our lack of a sufficient understanding of microstructure and texture forming processes, huge advances in texture measurements and quantification of microstructural parameters have been made. Unfortunately, there are neither standard procedures nor a common consensus on interpretation of many parameters (e.g. texture, grain size, shape preferred orientation). Textures (crystallographic preferred orientations) have been extensively correlated to the interpretation of deformation mechanisms. For example the strength of textures can be measured either from the orientation distribution function (e.g. the J-index (Bunge, 1983) or texture entropy (Hielscher et al., 2007) or via the intensity of polefigures. However, there are various ways to identify a representative volume, to measure, to process the data and to calculate an odf and texture descriptors, which restricts their use as a comparative and diagnostic measurement. Microstructural parameters such as grain size, grain shape descriptors and fabric descriptors are similarly used to deduce and quantify deformation mechanisms. However there is very little consensus on how to measure and calculate some of these very important parameters, e.g. grain size which makes comparison of a vast amount of precious data in the literature very difficult. We propose establishing a community database of a standard set of such measurements, made using typical samples of different types of quartz rocks through standard methods of microstructural and texture quantification. We invite suggestions and discussion from the community about the worth of proposed parameters, methodology and usefulness and willingness to contribute to a database with free access of the community. We further invite institutions to participate on a benchmark analysis of a set of 'standard' thin sections. Bunge, H.J. 1983, Texture Analysis in Materials Science: mathematical methods. Butterworth-Heinemann, 593pp. Hielscher, R., Schaeben, H., Chateigner, D., 2007, On the entropy to texture index relationship in quantitative texture analysis: Journal of Applied Crystallography 40, 371-375.

  16. Research on multi - channel interactive virtual assembly system for power equipment under the “VR+” era

    NASA Astrophysics Data System (ADS)

    Ren, Yilong; Duan, Xitong; Wu, Lei; He, Jin; Xu, Wu

    2017-06-01

    With the development of the “VR+” era, the traditional virtual assembly system of power equipment has been unable to satisfy our growing needs. In this paper, based on the analysis of the traditional virtual assembly system of electric power equipment and the application of VR technology in the virtual assembly system of electric power equipment in our country, this paper puts forward the scheme of establishing the virtual assembly system of power equipment: At first, we should obtain the information of power equipment, then we should using OpenGL and multi texture technology to build 3D solid graphics library. After the completion of three-dimensional modeling, we can use the dynamic link library DLL package three-dimensional solid graphics generation program to realize the modularization of power equipment model library and power equipment model library generated hidden algorithm. After the establishment of 3D power equipment model database, we set up the virtual assembly system of 3D power equipment to separate the assembly operation of the power equipment from the space. At the same time, aiming at the deficiency of the traditional gesture recognition algorithm, we propose a gesture recognition algorithm based on improved PSO algorithm for BP neural network data glove. Finally, the virtual assembly system of power equipment can really achieve multi-channel interaction function.

  17. Extracting contours of oval-shaped objects by Hough transform and minimal path algorithms

    NASA Astrophysics Data System (ADS)

    Tleis, Mohamed; Verbeek, Fons J.

    2014-04-01

    Circular and oval-like objects are very common in cell and micro biology. These objects need to be analyzed, and to that end, digitized images from the microscope are used so as to come to an automated analysis pipeline. It is essential to detect all the objects in an image as well as to extract the exact contour of each individual object. In this manner it becomes possible to perform measurements on these objects, i.e. shape and texture features. Our measurement objective is achieved by probing contour detection through dynamic programming. In this paper we describe a method that uses Hough transform and two minimal path algorithms to detect contours of (ovoid-like) objects. These algorithms are based on an existing grey-weighted distance transform and a new algorithm to extract the circular shortest path in an image. The methods are tested on an artificial dataset of a 1000 images, with an F1-score of 0.972. In a case study with yeast cells, contours from our methods were compared with another solution using Pratt's figure of merit. Results indicate that our methods were more precise based on a comparison with a ground-truth dataset. As far as yeast cells are concerned, the segmentation and measurement results enable, in future work, to retrieve information from different developmental stages of the cell using complex features.

  18. Microstructure, crystallographic texture and mechanical properties of friction stir welded AA2017A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, M.M.Z., E-mail: mohamed_ahmed4@s-petrol.suez.edu.eg; Department of Metallurgical and Materials Engineering, Suez Canal University, Suez 43721; Wynne, B.P.

    2012-02-15

    In this study a thick section (20 mm) friction stir welded AA2017A-T451 has been characterized in terms of microstructure, crystallographic texture and mechanical properties. For microstructural analysis both optical and scanning electron microscopes have been used. A detailed crystallographic texture analysis has been carried out using the electron back scattering diffraction technique. Crystallographic texture has been examined in both shoulder and probe affected regions of the weld NG. An entirely weak texture is observed at the shoulder affected region which is mainly explained by the effect of the sequential multi pass deformation experienced by both tool probe and tool shoulder.more » The texture in the probe dominated region at the AS side of the weld is relatively weak but still assembles the simple shear texture of FCC metals with B/B{sup Macron} and C components existing across the whole map. However, the texture is stronger at the RS than at the AS of the weld, mainly dominated byB/B{sup Macron} components and with C component almost absent across the map. An alternating bands between (B) components and (B{sup Macron }) component are observed only at the AS side of the weld. - Highlights: Black-Right-Pointing-Pointer Detailed investigation of microstructure and crystallographic texture. Black-Right-Pointing-Pointer The grain size is varied from the top to the bottom of the NG. Black-Right-Pointing-Pointer An entirely weak texture is observed at the shoulder affected region. Black-Right-Pointing-Pointer The texture in the probe affected region is dominated by simple shear texture.« less

  19. Textural states of a hot-worked MA2-1 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Serebryany, V. N.; Kochubei, A. Ya.; Kurtasov, S. F.; Mel'Nikov, K. E.

    2007-02-01

    Quantitative texture analysis is used to study texture formation in an MA2-1 magnesium alloy subjected to axisymmetric upsetting at temperatures of 250-450°C and strain rates of 10-4-100 -1. The deformed structure is examined by optical microscopy, and the results obtained are used to plot the structural-state diagram of the alloy after 50% upsetting. The experimental textures are compared with the textures calculated in terms of a thermoactivation model.

  20. Multi Texture Analysis of Colorectal Cancer Continuum Using Multispectral Imagery

    PubMed Central

    Chaddad, Ahmad; Desrosiers, Christian; Bouridane, Ahmed; Toews, Matthew; Hassan, Lama; Tanougast, Camel

    2016-01-01

    Purpose This paper proposes to characterize the continuum of colorectal cancer (CRC) using multiple texture features extracted from multispectral optical microscopy images. Three types of pathological tissues (PT) are considered: benign hyperplasia, intraepithelial neoplasia and carcinoma. Materials and Methods In the proposed approach, the region of interest containing PT is first extracted from multispectral images using active contour segmentation. This region is then encoded using texture features based on the Laplacian-of-Gaussian (LoG) filter, discrete wavelets (DW) and gray level co-occurrence matrices (GLCM). To assess the significance of textural differences between PT types, a statistical analysis based on the Kruskal-Wallis test is performed. The usefulness of texture features is then evaluated quantitatively in terms of their ability to predict PT types using various classifier models. Results Preliminary results show significant texture differences between PT types, for all texture features (p-value < 0.01). Individually, GLCM texture features outperform LoG and DW features in terms of PT type prediction. However, a higher performance can be achieved by combining all texture features, resulting in a mean classification accuracy of 98.92%, sensitivity of 98.12%, and specificity of 99.67%. Conclusions These results demonstrate the efficiency and effectiveness of combining multiple texture features for characterizing the continuum of CRC and discriminating between pathological tissues in multispectral images. PMID:26901134

  1. Development and testing of texture discriminators for the analysis of trabecular bone in proximal femur radiographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, M. B.; Carballido-Gamio, J.; Fritscher, K.

    2009-11-15

    Purpose: Texture analysis of femur radiographs may serve as a potential low cost technique to predict osteoporotic fracture risk and has received considerable attention in the past years. A further application of this technique may be the measurement of the quality of specific bone compartments to provide useful information for treatment of bone fractures. Two challenges of texture analysis are the selection of the best suitable texture measure and reproducible placement of regions of interest (ROIs). The goal of this in vitro study was to automatically place ROIs in radiographs of proximal femur specimens and to calculate correlations between variousmore » different texture analysis methods and the femurs' anchorage strength. Methods: Radiographs were obtained from 14 femoral specimens and bone mineral density (BMD) was measured in the femoral neck. Biomechanical testing was performed to assess the anchorage strength in terms of failure load, breakaway torque, and number of cycles. Images were segmented using a framework that is based on the usage of level sets and statistical in-shape models. Five ROIs were automatically placed in the head, upper and lower neck, trochanteric, and shaft compartment in an atlas subject. All other subjects were registered rigidly, affinely, and nonlinearly, and the resulting transformation was used to map the five ROIs onto the individual femora. Results: In each ROI, texture features were extracted using gray level co-occurence matrices (GLCM), third-order GLCM, morphological gradients (MGs), Minkowski dimensions (MDs), Minkowski functionals (MFs), Gaussian Markov random fields, and scaling index method (SIM). Coefficients of determination for each texture feature with parameters of anchorage strength were computed. In a stepwise multiregression analysis, the most predictive parameters were identified in different models. Texture features were highly correlated with anchorage strength estimated by the failure load of up to R{sup 2}=0.61 (MF and MG features, p<0.01) and were partially independent of BMD. The correlations were dependent on the choice of the ROI and the texture measure. The best predictive multiregression model for failure load R{sub adj}{sup 2}=0.86 (p<0.001) included a set of recently developed texture methods (MF and SIM) but excluded bone mineral density and commonly used texture measures. Conclusions: The results suggest that texture information contained in trabecular bone structure visualized on radiographs may predict whether an implant anchorage can be used and may determine the local bone quality from preoperative radiographs.« less

  2. Classification of glioblastoma and metastasis for neuropathology intraoperative diagnosis: a multi-resolution textural approach to model the background

    NASA Astrophysics Data System (ADS)

    Ahmad Fauzi, Mohammad Faizal; Gokozan, Hamza Numan; Elder, Brad; Puduvalli, Vinay K.; Otero, Jose J.; Gurcan, Metin N.

    2014-03-01

    Brain cancer surgery requires intraoperative consultation by neuropathology to guide surgical decisions regarding the extent to which the tumor undergoes gross total resection. In this context, the differential diagnosis between glioblastoma and metastatic cancer is challenging as the decision must be made during surgery in a short time-frame (typically 30 minutes). We propose a method to classify glioblastoma versus metastatic cancer based on extracting textural features from the non-nuclei region of cytologic preparations. For glioblastoma, these regions of interest are filled with glial processes between the nuclei, which appear as anisotropic thin linear structures. For metastasis, these regions correspond to a more homogeneous appearance, thus suitable texture features can be extracted from these regions to distinguish between the two tissue types. In our work, we use the Discrete Wavelet Frames to characterize the underlying texture due to its multi-resolution capability in modeling underlying texture. The textural characterization is carried out in primarily the non-nuclei regions after nuclei regions are segmented by adapting our visually meaningful decomposition segmentation algorithm to this problem. k-nearest neighbor method was then used to classify the features into glioblastoma or metastasis cancer class. Experiment on 53 images (29 glioblastomas and 24 metastases) resulted in average accuracy as high as 89.7% for glioblastoma, 87.5% for metastasis and 88.7% overall. Further studies are underway to incorporate nuclei region features into classification on an expanded dataset, as well as expanding the classification to more types of cancers.

  3. Multi-Depth-Map Raytracing for Efficient Large-Scene Reconstruction.

    PubMed

    Arikan, Murat; Preiner, Reinhold; Wimmer, Michael

    2016-02-01

    With the enormous advances of the acquisition technology over the last years, fast processing and high-quality visualization of large point clouds have gained increasing attention. Commonly, a mesh surface is reconstructed from the point cloud and a high-resolution texture is generated over the mesh from the images taken at the site to represent surface materials. However, this global reconstruction and texturing approach becomes impractical with increasing data sizes. Recently, due to its potential for scalability and extensibility, a method for texturing a set of depth maps in a preprocessing and stitching them at runtime has been proposed to represent large scenes. However, the rendering performance of this method is strongly dependent on the number of depth maps and their resolution. Moreover, for the proposed scene representation, every single depth map has to be textured by the images, which in practice heavily increases processing costs. In this paper, we present a novel method to break these dependencies by introducing an efficient raytracing of multiple depth maps. In a preprocessing phase, we first generate high-resolution textured depth maps by rendering the input points from image cameras and then perform a graph-cut based optimization to assign a small subset of these points to the images. At runtime, we use the resulting point-to-image assignments (1) to identify for each view ray which depth map contains the closest ray-surface intersection and (2) to efficiently compute this intersection point. The resulting algorithm accelerates both the texturing and the rendering of the depth maps by an order of magnitude.

  4. Crop identification of SAR data using digital textural analysis

    NASA Technical Reports Server (NTRS)

    Nuesch, D. R.

    1983-01-01

    After preprocessing SEASAT SAR data which included slant to ground range transformation, registration to LANDSAT MSS data and appropriate filtering of the raw SAR data to minimize coherent speckle, textural features were developed based upon the spatial gray level dependence method (SGLDM) to compute entropy and inertia as textural measures. It is indicated that the consideration of texture features are very important in SAR data analysis. The SEASAT SAR data are useful for the improvement of field boundary definitions and for an earlier season estimate of corn and soybean area location than is supported by LANDSAT alone.

  5. Utility of texture analysis for quantifying hepatic fibrosis on proton density MRI.

    PubMed

    Yu, HeiShun; Buch, Karen; Li, Baojun; O'Brien, Michael; Soto, Jorge; Jara, Hernan; Anderson, Stephan W

    2015-11-01

    To evaluate the potential utility of texture analysis of proton density maps for quantifying hepatic fibrosis in a murine model of hepatic fibrosis. Following Institutional Animal Care and Use Committee (IACUC) approval, a dietary model of hepatic fibrosis was used and 15 ex vivo murine liver tissues were examined. All images were acquired using a 30 mm bore 11.7T magnetic resonance imaging (MRI) scanner with a multiecho spin-echo sequence. A texture analysis was employed extracting multiple texture features including histogram-based, gray-level co-occurrence matrix-based (GLCM), gray-level run-length-based features (GLRL), gray level gradient matrix (GLGM), and Laws' features. Texture features were correlated with histopathologic and digital image analysis of hepatic fibrosis. Histogram features demonstrated very weak to moderate correlations (r = -0.29 to 0.51) with hepatic fibrosis. GLCM features correlation and contrast demonstrated moderate-to-strong correlations (r = -0.71 and 0.59, respectively) with hepatic fibrosis. Moderate correlations were seen between hepatic fibrosis and the GLRL feature short run low gray-level emphasis (SRLGE) (r = -0. 51). GLGM features demonstrate very weak to weak correlations with hepatic fibrosis (r = -0.27 to 0.09). Moderate correlations were seen between hepatic fibrosis and Laws' features L6 and L7 (r = 0.58). This study demonstrates the utility of texture analysis applied to proton density MRI in a murine liver fibrosis model and validates the potential utility of texture-based features for the noninvasive, quantitative assessment of hepatic fibrosis. © 2015 Wiley Periodicals, Inc.

  6. Pectin engineering to modify product quality in potato.

    PubMed

    Ross, Heather A; Morris, Wayne L; Ducreux, Laurence J M; Hancock, Robert D; Verrall, Susan R; Morris, Jenny A; Tucker, Gregory A; Stewart, Derek; Hedley, Pete E; McDougall, Gordon J; Taylor, Mark A

    2011-10-01

    Although processed potato tuber texture is an important trait that influences consumer preference, a detailed understanding of tuber textural properties at the molecular level is lacking. Previous work has identified tuber pectin methyl esterase (PME) activity as a potential factor impacting on textural properties, and the expression of a gene encoding an isoform of PME (PEST1) was associated with cooked tuber textural properties. In this study, a transgenic approach was undertaken to investigate further the impact of the PEST1 gene. Antisense and over-expressing potato lines were generated. In over-expressing lines, tuber PME activity was enhanced by up to 2.3-fold; whereas in antisense lines, PME activity was decreased by up to 62%. PME isoform analysis indicated that the PEST1 gene encoded one isoform of PME. Analysis of cell walls from tubers from the over-expressing lines indicated that the changes in PME activity resulted in a decrease in pectin methylation. Analysis of processed tuber texture demonstrated that the reduced level of pectin methylation in the over-expressing transgenic lines was associated with a firmer processed texture. Thus, there is a clear link between PME activity, pectin methylation and processed tuber textural properties. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  7. New durum wheat with soft kernel texture: end-use quality analysis of the Hardness locus in Triticum turgidum ssp. durum

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which precludes conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft whit...

  8. SU-F-R-18: Updates to the Computational Environment for Radiological Research for Image Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apte, Aditya P.; Deasy, Joseph O.

    2016-06-15

    Purpose: To present new tools in CERR for Texture Analysis and Visualization. Method: (1) Quantitative Image Analysis: We added the ability to compute Haralick texture features based on local neighbourhood. The Texture features depend on many parameters used in their derivation. For example: (a) directionality, (b) quantization of image, (c) patch-size for the neighborhood, (d) handling of the edge voxels within the region of interest, (e) Averaging co-occurance matrix vs texture features for different directions etc. A graphical user interface was built to set these parameters and then visualize their impact on the resulting texture maps. The entire functionality wasmore » written in Matlab. Array indexing was used to speed up the texture calculation. The computation speed is very competitive with the ITK library. Moreover, our implementation works with multiple CPUs and the computation time can be further reduced by using multiple processor threads. In order to reduce the Haralick texture maps into scalar features, we propose the use of Texture Volume Histograms. This lets users make use of the entire distribution of texture values within the region of interest rather than using just the mean and the standard deviations. (2) Qualitative/Visualization tools: The derived texture maps are stored as a new scan (derived) within CERR’s planC data structure. A display that compares various scans was built to show the raw image and the derived texture maps side-by-side. These images are positionally linked and can be navigated together. CERR’s graphics handling was updated and sped-up to be compatible with the newer Matlab versions. As a result, the users can use (a) different window levels and colormaps for different viewports, (b) click-and-drag or use mouse scroll-wheel to navigate slices. Results: The new features and updates are available via https://www.github.com/adityaapte/cerr . Conclusion: Features added to CERR increase its utility in Radiomics and Outcomes modeling.« less

  9. Texture analysis of medical images for radiotherapy applications

    PubMed Central

    Rizzo, Giovanna

    2017-01-01

    The high-throughput extraction of quantitative information from medical images, known as radiomics, has grown in interest due to the current necessity to quantitatively characterize tumour heterogeneity. In this context, texture analysis, consisting of a variety of mathematical techniques that can describe the grey-level patterns of an image, plays an important role in assessing the spatial organization of different tissues and organs. For these reasons, the potentiality of texture analysis in the context of radiotherapy has been widely investigated in several studies, especially for the prediction of the treatment response of tumour and normal tissues. Nonetheless, many different factors can affect the robustness, reproducibility and reliability of textural features, thus limiting the impact of this technique. In this review, an overview of the most recent works that have applied texture analysis in the context of radiotherapy is presented, with particular focus on the assessment of tumour and tissue response to radiations. Preliminary, the main factors that have an influence on features estimation are discussed, highlighting the need of more standardized image acquisition and reconstruction protocols and more accurate methods for region of interest identification. Despite all these limitations, texture analysis is increasingly demonstrating its ability to improve the characterization of intratumour heterogeneity and the prediction of clinical outcome, although prospective studies and clinical trials are required to draw a more complete picture of the full potential of this technique. PMID:27885836

  10. Some distinguishing characteristics of contour and texture phenomena in images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1992-01-01

    The development of generalized contour/texture discrimination techniques is a central element necessary for machine vision recognition and interpretation of arbitrary images. Here, the visual perception of texture, selected studies of texture analysis in machine vision, and diverse small samples of contour and texture are all used to provide insights into the fundamental characteristics of contour and texture. From these, an experimental discrimination scheme is developed and tested on a battery of natural images. The visual perception of texture defined fine texture as a subclass which is interpreted as shading and is distinct from coarse figural similarity textures. Also, perception defined the smallest scale for contour/texture discrimination as eight to nine visual acuity units. Three contour/texture discrimination parameters were found to be moderately successful for this scale discrimination: (1) lightness change in a blurred version of the image, (2) change in lightness change in the original image, and (3) percent change in edge counts relative to local maximum.

  11. Quantitative Ultrasound Using Texture Analysis of Myofascial Pain Syndrome in the Trapezius.

    PubMed

    Kumbhare, Dinesh A; Ahmed, Sara; Behr, Michael G; Noseworthy, Michael D

    2018-01-01

    Objective-The objective of this study is to assess the discriminative ability of textural analyses to assist in the differentiation of the myofascial trigger point (MTrP) region from normal regions of skeletal muscle. Also, to measure the ability to reliably differentiate between three clinically relevant groups: healthy asymptomatic, latent MTrPs, and active MTrP. Methods-18 and 19 patients were identified with having active and latent MTrPs in the trapezius muscle, respectively. We included 24 healthy volunteers. Images were obtained by research personnel, who were blinded with respect to the clinical status of the study participant. Histograms provided first-order parameters associated with image grayscale. Haralick, Galloway, and histogram-related features were used in texture analysis. Blob analysis was conducted on the regions of interest (ROIs). Principal component analysis (PCA) was performed followed by multivariate analysis of variance (MANOVA) to determine the statistical significance of the features. Results-92 texture features were analyzed for factorability using Bartlett's test of sphericity, which was significant. The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.94. PCA demonstrated rotated eigenvalues of the first eight components (each comprised of multiple texture features) explained 94.92% of the cumulative variance in the ultrasound image characteristics. The 24 features identified by PCA were included in the MANOVA as dependent variables, and the presence of a latent or active MTrP or healthy muscle were independent variables. Conclusion-Texture analysis techniques can discriminate between the three clinically relevant groups.

  12. Effect of slice thickness on brain magnetic resonance image texture analysis

    PubMed Central

    2010-01-01

    Background The accuracy of texture analysis in clinical evaluation of magnetic resonance images depends considerably on imaging arrangements and various image quality parameters. In this paper, we study the effect of slice thickness on brain tissue texture analysis using a statistical approach and classification of T1-weighted images of clinically confirmed multiple sclerosis patients. Methods We averaged the intensities of three consecutive 1-mm slices to simulate 3-mm slices. Two hundred sixty-four texture parameters were calculated for both the original and the averaged slices. Wilcoxon's signed ranks test was used to find differences between the regions of interest representing white matter and multiple sclerosis plaques. Linear and nonlinear discriminant analyses were applied with several separate training and test sets to determine the actual classification accuracy. Results Only moderate differences in distributions of the texture parameter value for 1-mm and simulated 3-mm-thick slices were found. Our study also showed that white matter areas are well separable from multiple sclerosis plaques even if the slice thickness differs between training and test sets. Conclusions Three-millimeter-thick magnetic resonance image slices acquired with a 1.5 T clinical magnetic resonance scanner seem to be sufficient for texture analysis of multiple sclerosis plaques and white matter tissue. PMID:20955567

  13. Derivation of cloud-free-region atmospheric motion vectors from FY-2E thermal infrared imagery

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhui; Sui, Xinxiu; Zhang, Qing; Yang, Lu; Zhao, Hang; Tang, Min; Zhan, Yizhe; Zhang, Zhiguo

    2017-02-01

    The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference (NEdT) performance of FY-2E split window (10.3-11.5 μm, 11.6-12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference (SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases, generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 hPa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors.

  14. A methodology for comprehensive breast cancer Ki67 labeling index with intra-tumor heterogeneity appraisal based on hexagonal tiling of digital image analysis data.

    PubMed

    Plancoulaine, Benoit; Laurinaviciene, Aida; Herlin, Paulette; Besusparis, Justinas; Meskauskas, Raimundas; Baltrusaityte, Indra; Iqbal, Yasir; Laurinavicius, Arvydas

    2015-10-19

    Digital image analysis (DIA) enables higher accuracy, reproducibility, and capacity to enumerate cell populations by immunohistochemistry; however, the most unique benefits may be obtained by evaluating the spatial distribution and intra-tissue variance of markers. The proliferative activity of breast cancer tissue, estimated by the Ki67 labeling index (Ki67 LI), is a prognostic and predictive biomarker requiring robust measurement methodologies. We performed DIA on whole-slide images (WSI) of 302 surgically removed Ki67-stained breast cancer specimens; the tumour classifier algorithm was used to automatically detect tumour tissue but was not trained to distinguish between invasive and non-invasive carcinoma cells. The WSI DIA-generated data were subsampled by hexagonal tiling (HexT). Distribution and texture parameters were compared to conventional WSI DIA and pathology report data. Factor analysis of the data set, including total numbers of tumor cells, the Ki67 LI and Ki67 distribution, and texture indicators, extracted 4 factors, identified as entropy, proliferation, bimodality, and cellularity. The factor scores were further utilized in cluster analysis, outlining subcategories of heterogeneous tumors with predominant entropy, bimodality, or both at different levels of proliferative activity. The methodology also allowed the visualization of Ki67 LI heterogeneity in tumors and the automated detection and quantitative evaluation of Ki67 hotspots, based on the upper quintile of the HexT data, conceptualized as the "Pareto hotspot". We conclude that systematic subsampling of DIA-generated data into HexT enables comprehensive Ki67 LI analysis that reflects aspects of intra-tumor heterogeneity and may serve as a methodology to improve digital immunohistochemistry in general.

  15. Interior car noise created by textured pavement surfaces : final report.

    DOT National Transportation Integrated Search

    1975-01-01

    Because of widespread concern about the effect of textured pavement surfaces on interior car noise, sound pressure levels (SPL) were measured inside a test vehicle as it traversed 21 pavements with various textures. A linear regression analysis run o...

  16. Clustering document fragments using background color and texture information

    NASA Astrophysics Data System (ADS)

    Chanda, Sukalpa; Franke, Katrin; Pal, Umapada

    2012-01-01

    Forensic analysis of questioned documents sometimes can be extensively data intensive. A forensic expert might need to analyze a heap of document fragments and in such cases to ensure reliability he/she should focus only on relevant evidences hidden in those document fragments. Relevant document retrieval needs finding of similar document fragments. One notion of obtaining such similar documents could be by using document fragment's physical characteristics like color, texture, etc. In this article we propose an automatic scheme to retrieve similar document fragments based on visual appearance of document paper and texture. Multispectral color characteristics using biologically inspired color differentiation techniques are implemented here. This is done by projecting document color characteristics to Lab color space. Gabor filter-based texture analysis is used to identify document texture. It is desired that document fragments from same source will have similar color and texture. For clustering similar document fragments of our test dataset we use a Self Organizing Map (SOM) of dimension 5×5, where the document color and texture information are used as features. We obtained an encouraging accuracy of 97.17% from 1063 test images.

  17. Associations Between PET Textural Features and GLUT1 Expression, and the Prognostic Significance of Textural Features in Lung Adenocarcinoma.

    PubMed

    Koh, Young Wha; Park, Seong Yong; Hyun, Seung Hyup; Lee, Su Jin

    2018-02-01

    We evaluated the association between positron emission tomography (PET) textural features and glucose transporter 1 (GLUT1) expression level and further investigated the prognostic significance of textural features in lung adenocarcinoma. We evaluated 105 adenocarcinoma patients. We extracted texture-based PET parameters of primary tumors. Conventional PET parameters were also measured. The relationships between PET parameters and GLUT1 expression levels were evaluated. The association between PET parameters and overall survival (OS) was assessed using Cox's proportional hazard regression models. In terms of PET textural features, tumors expressing high levels of GLUT1 exhibited significantly lower coarseness, contrast, complexity, and strength, but significantly higher busyness. On univariate analysis, the metabolic tumor volume, total lesion glycolysis, contrast, busyness, complexity, and strength were significant predictors of OS. Multivariate analysis showed that lower complexity (HR=2.017, 95%CI=1.032-3.942, p=0.040) was independently associated with poorer survival. PET textural features may aid risk stratification in lung adenocarcinoma patients. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. A signature dissimilarity measure for trabecular bone texture in knee radiographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloszynski, T.; Podsiadlo, P.; Stachowiak, G. W.

    Purpose: The purpose of this study is to develop a dissimilarity measure for the classification of trabecular bone (TB) texture in knee radiographs. Problems associated with the traditional extraction and selection of texture features and with the invariance to imaging conditions such as image size, anisotropy, noise, blur, exposure, magnification, and projection angle were addressed. Methods: In the method developed, called a signature dissimilarity measure (SDM), a sum of earth mover's distances calculated for roughness and orientation signatures is used to quantify dissimilarities between textures. Scale-space theory was used to ensure scale and rotation invariance. The effects of image size,more » anisotropy, noise, and blur on the SDM developed were studied using computer generated fractal texture images. The invariance of the measure to image exposure, magnification, and projection angle was studied using x-ray images of human tibia head. For the studies, Mann-Whitney tests with significance level of 0.01 were used. A comparison study between the performances of a SDM based classification system and other two systems in the classification of Brodatz textures and the detection of knee osteoarthritis (OA) were conducted. The other systems are based on weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHARM) and local binary patterns (LBP). Results: Results obtained indicate that the SDM developed is invariant to image exposure (2.5-30 mA s), magnification (x1.00-x1.35), noise associated with film graininess and quantum mottle (<25%), blur generated by a sharp film screen, and image size (>64x64 pixels). However, the measure is sensitive to changes in projection angle (>5 deg.), image anisotropy (>30 deg.), and blur generated by a regular film screen. For the classification of Brodatz textures, the SDM based system produced comparable results to the LBP system. For the detection of knee OA, the SDM based system achieved 78.8% classification accuracy and outperformed the WND-CHARM system (64.2%). Conclusions: The SDM is well suited for the classification of TB texture images in knee OA detection and may be useful for the texture classification of medical images in general.« less

  19. The neutron texture diffractometer at the China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Li, Mei-Juan; Liu, Xiao-Long; Liu, Yun-Tao; Tian, Geng-Fang; Gao, Jian-Bo; Yu, Zhou-Xiang; Li, Yu-Qing; Wu, Li-Qi; Yang, Lin-Feng; Sun, Kai; Wang, Hong-Li; Santisteban, J. r.; Chen, Dong-Feng

    2016-03-01

    The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)

  20. Differentiation of Enhancing Glioma and Primary Central Nervous System Lymphoma by Texture-Based Machine Learning.

    PubMed

    Alcaide-Leon, P; Dufort, P; Geraldo, A F; Alshafai, L; Maralani, P J; Spears, J; Bharatha, A

    2017-06-01

    Accurate preoperative differentiation of primary central nervous system lymphoma and enhancing glioma is essential to avoid unnecessary neurosurgical resection in patients with primary central nervous system lymphoma. The purpose of the study was to evaluate the diagnostic performance of a machine-learning algorithm by using texture analysis of contrast-enhanced T1-weighted images for differentiation of primary central nervous system lymphoma and enhancing glioma. Seventy-one adult patients with enhancing gliomas and 35 adult patients with primary central nervous system lymphomas were included. The tumors were manually contoured on contrast-enhanced T1WI, and the resulting volumes of interest were mined for textural features and subjected to a support vector machine-based machine-learning protocol. Three readers classified the tumors independently on contrast-enhanced T1WI. Areas under the receiver operating characteristic curves were estimated for each reader and for the support vector machine classifier. A noninferiority test for diagnostic accuracy based on paired areas under the receiver operating characteristic curve was performed with a noninferiority margin of 0.15. The mean areas under the receiver operating characteristic curve were 0.877 (95% CI, 0.798-0.955) for the support vector machine classifier; 0.878 (95% CI, 0.807-0.949) for reader 1; 0.899 (95% CI, 0.833-0.966) for reader 2; and 0.845 (95% CI, 0.757-0.933) for reader 3. The mean area under the receiver operating characteristic curve of the support vector machine classifier was significantly noninferior to the mean area under the curve of reader 1 ( P = .021), reader 2 ( P = .035), and reader 3 ( P = .007). Support vector machine classification based on textural features of contrast-enhanced T1WI is noninferior to expert human evaluation in the differentiation of primary central nervous system lymphoma and enhancing glioma. © 2017 by American Journal of Neuroradiology.

  1. Multispectral selective near-perfect light absorption by graphene monolayer using aperiodic multilayer microstructures

    NASA Astrophysics Data System (ADS)

    Zand, Iman; Dalir, Hamed; Chen, Ray T.; Dowling, Jonathan P.

    2018-03-01

    We investigate one-dimensional aperiodic multilayer microstructures in order to achieve near-total absorptions at preselected wavelengths in a graphene monolayer. The proposed structures are designed using a genetic optimization algorithm coupled to a transfer matrix code. Coupled-mode-theory analysis, consistent with transfer matrix method results, indicates the existence of a critical coupling in the graphene monolayer for perfect absorptions. Our findings show that the near-total-absorption peaks are highly tunable and can be controlled simultaneously or independently in a wide range of wavelengths in the near-infrared and visible ranges. The proposed approach is metal-free, does not require surface texturing or patterning, and can be also applied for other two-dimensional materials.

  2. Comparison of 2D and 3D wavelet features for TLE lateralization

    NASA Astrophysics Data System (ADS)

    Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost; Patel, Suresh

    2004-04-01

    Intensity and volume features of the hippocampus from MR images of the brain are known to be useful in detecting the abnormality and consequently candidacy of the hippocampus for temporal lobe epilepsy surgery. However, currently, intracranial EEG exams are required to determine the abnormal hippocampus. These exams are lengthy, painful and costly. The aim of this study is to evaluate texture characteristics of the hippocampi from MR images to help physicians determine the candidate hippocampus for surgery. We studied the MR images of 20 epileptic patients. Intracranial EEG results as well as surgery outcome were used as gold standard. The hippocampi were manually segmented by an expert from T1-weighted MR images. Then the segmented regions were mapped on the corresponding FLAIR images for texture analysis. We calculate the average energy features from 2D wavelet transform of each slice of hippocampus as well as the energy features produced by 3D wavelet transform of the whole hippocampus volume. The 2D wavelet transform is calculated both from the original slices as well as from the slices perpendicular to the principal axis of the hippocampus. In order to calculate the 3D wavelet transform we first rotate each hippocampus to fit it in a rectangular prism and then fill the empty area by extrapolating the intensity values. We combine the resulting features with volume feature and compare their ability to distinguish between normal and abnormal hippocampi using linear classifier and fuzzy c-means clustering algorithm. Experimental results show that the texture features can correctly classify the hippocampi.

  3. Hyperspectral Imaging Analysis for the Classification of Soil Types and the Determination of Soil Total Nitrogen

    PubMed Central

    Jia, Shengyao; Li, Hongyang; Wang, Yanjie; Tong, Renyuan; Li, Qing

    2017-01-01

    Soil is an important environment for crop growth. Quick and accurately access to soil nutrient content information is a prerequisite for scientific fertilization. In this work, hyperspectral imaging (HSI) technology was applied for the classification of soil types and the measurement of soil total nitrogen (TN) content. A total of 183 soil samples collected from Shangyu City (People’s Republic of China), were scanned by a near-infrared hyperspectral imaging system with a wavelength range of 874–1734 nm. The soil samples belonged to three major soil types typical of this area, including paddy soil, red soil and seashore saline soil. The successive projections algorithm (SPA) method was utilized to select effective wavelengths from the full spectrum. Pattern texture features (energy, contrast, homogeneity and entropy) were extracted from the gray-scale images at the effective wavelengths. The support vector machines (SVM) and partial least squares regression (PLSR) methods were used to establish classification and prediction models, respectively. The results showed that by using the combined data sets of effective wavelengths and texture features for modelling an optimal correct classification rate of 91.8%. could be achieved. The soil samples were first classified, then the local models were established for soil TN according to soil types, which achieved better prediction results than the general models. The overall results indicated that hyperspectral imaging technology could be used for soil type classification and soil TN determination, and data fusion combining spectral and image texture information showed advantages for the classification of soil types. PMID:28974005

  4. Measurement of kinaesthetic properties of in-brine table olives by microstructure of fracture surface, sensory evaluation and texture profile analysis (TPA).

    PubMed

    Lanza, Barbara; Amoruso, Filomena

    2018-02-02

    A series of transformations occur in olive fruit both during ripening and processing. In particular, significant changes in the microstructural composition affect the flavour, texture, nutrients and overall quality of the end product. Texture is one of the sensory quality attributes of greatest importance to consumer acceptance. In the present work, kinaesthetic properties of in-brine table olives of three cultivars of Olea europaea L. (Bella di Cerignola, Peranzana and Taggiasca cvs) were provided by several measurements of olive tissue texture by sensory, rheological and microstructural approaches. Olives at the same stage of ripening and processed with the same technology, but belonging to different cultivars, showed significant differences at microstructural, sensorial and rheological levels. To describe the relationship between the three variables, multiple regression analysis and principal component analysis were chosen. Differences in microstructure were closely related both in terms of hardness measured by texture profile analysis and hardness measured by sensory analysis. The information provided could be an aid for screening and training of a sensory panel. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  5. Identifying prognostic intratumor heterogeneity using pre- and post-radiotherapy 18F-FDG PET images for pancreatic cancer patients.

    PubMed

    Yue, Yong; Osipov, Arsen; Fraass, Benedick; Sandler, Howard; Zhang, Xiao; Nissen, Nicholas; Hendifar, Andrew; Tuli, Richard

    2017-02-01

    To stratify risks of pancreatic adenocarcinoma (PA) patients using pre- and post-radiotherapy (RT) PET/CT images, and to assess the prognostic value of texture variations in predicting therapy response of patients. Twenty-six PA patients treated with RT from 2011-2013 with pre- and post-treatment 18F-FDG-PET/CT scans were identified. Tumor locoregional texture was calculated using 3D kernel-based approach, and texture variations were identified by fitting discrepancies of texture maps of pre- and post-treatment images. A total of 48 texture and clinical variables were identified and evaluated for association with overall survival (OS). The prognostic heterogeneity features were selected using lasso/elastic net regression, and further were evaluated by multivariate Cox analysis. Median age was 69 y (range, 46-86 y). The texture map and temporal variations between pre- and post-treatment were well characterized by histograms and statistical fitting. The lasso analysis identified seven predictors (age, node stage, post-RT SUVmax, variations of homogeneity, variance, sum mean, and cluster tendency). The multivariate Cox analysis identified five significant variables: age, node stage, variations of homogeneity, variance, and cluster tendency (with P=0.020, 0.040, 0.065, 0.078, and 0.081, respectively). The patients were stratified into two groups based on the risk score of multivariate analysis with log-rank P=0.001: a low risk group (n=11) with a longer mean OS (29.3 months) and higher texture variation (>30%), and a high risk group (n=15) with a shorter mean OS (17.7 months) and lower texture variation (<15%). Locoregional metabolic texture response provides a feasible approach for evaluating and predicting clinical outcomes following treatment of PA with RT. The proposed method can be used to stratify patient risk and help select appropriate treatment strategies for individual patients toward implementing response-driven adaptive RT.

  6. A Framework for Establishing Standard Reference Scale of Texture by Multivariate Statistical Analysis Based on Instrumental Measurement and Sensory Evaluation.

    PubMed

    Zhi, Ruicong; Zhao, Lei; Xie, Nan; Wang, Houyin; Shi, Bolin; Shi, Jingye

    2016-01-13

    A framework of establishing standard reference scale (texture) is proposed by multivariate statistical analysis according to instrumental measurement and sensory evaluation. Multivariate statistical analysis is conducted to rapidly select typical reference samples with characteristics of universality, representativeness, stability, substitutability, and traceability. The reasonableness of the framework method is verified by establishing standard reference scale of texture attribute (hardness) with Chinese well-known food. More than 100 food products in 16 categories were tested using instrumental measurement (TPA test), and the result was analyzed with clustering analysis, principal component analysis, relative standard deviation, and analysis of variance. As a result, nine kinds of foods were determined to construct the hardness standard reference scale. The results indicate that the regression coefficient between the estimated sensory value and the instrumentally measured value is significant (R(2) = 0.9765), which fits well with Stevens's theory. The research provides reliable a theoretical basis and practical guide for quantitative standard reference scale establishment on food texture characteristics.

  7. Texture analysis of aeromagnetic data for enhancing geologic features using co-occurrence matrices in Elallaqi area, South Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Eldosouky, Ahmed M.; Elkhateeb, Sayed O.

    2018-06-01

    Enhancement of aeromagnetic data for qualitative purposes depends on the variations of texture and amplitude to outline various geologic features within the data. The texture of aeromagnetic data consists continuity of adjacent anomalies, size, and pattern. Variations in geology, or particularly rock magnetization, in a study area cause fluctuations in texture. In the present study, the anomalous features of Elallaqi area were extracted from aeromagnetic data. In order to delineate textures from the aeromagnetic data, the Red, Green, and Blue Co-occurrence Matrices (RGBCM) were applied to the reduced to the pole (RTP) grid of Elallaqi district in the South Eastern Desert of Egypt. The RGBCM are fashioned of sets of spatial analytical parameters that transform magnetic data into texture forms. Six texture features (parameters), i.e. Correlation, Contrast, Entropy, Homogeneity, Second Moment, and Variance, of RGB Co-occurrence Matrices (RGBCM) are used for analyzing the texture of the RTP grid in this study. These six RGBCM texture characteristics were mixed into a single image using principal component analysis. The calculated texture images present geologic characteristics and structures with much greater sidelong resolution than the original RTP grid. The estimated texture images enabled us to distinguish multiple geologic regions and structures within Elallaqi area including geologic terranes, lithologic boundaries, cracks, and faults. The faults of RGBCM maps were more represented than those of magnetic derivatives providing enhancement of the fine structures of Elallaqi area like the NE direction which scattered WNW metavolcanics and metasediments trending in the northwestern division of Elallaqi area.

  8. A Systematic Evaluation of Food Textures to Decrease Packing and Increase Oral Intake in Children with Pediatric Feeding Disorders

    ERIC Educational Resources Information Center

    Patel, Meeta R.; Piazza, Cathleen C.; Layer, Stacy A.; Coleman, Russell; Swartzwelder, Dana M.

    2005-01-01

    This study examined packing (pocketing or holding accepted food in the mouth) in 3 children who were failing to thrive or had inadequate weight gain due to insufficient caloric intake. The results of an analysis of texture indicated that total grams consumed were higher when lower textured foods were presented than when higher textured foods were…

  9. New durum wheat with soft kernel texture: milling performance and end-use quality analysis of the Hardness locus in Triticum turgidum ssp. durum

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which preclude conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft white...

  10. Nonlocal variational model and filter algorithm to remove multiplicative noise

    NASA Astrophysics Data System (ADS)

    Chen, Dai-Qiang; Zhang, Hui; Cheng, Li-Zhi

    2010-07-01

    The nonlocal (NL) means filter proposed by Buades, Coll, and Morel (SIAM Multiscale Model. Simul. 4(2), 490-530, 2005), which makes full use of the redundancy information in images, has shown to be very efficient for image denoising with Gauss noise added. On the basis of the NL method and a striver to minimize the conditional mean-square error, we design a NL means filter to remove multiplicative noise, and combining the NL filter to regularity method, we propose a NL total variational (TV) model and present a fast iterated algorithm for it. Experiments demonstrate that our algorithm is better than TV method; it is superior in preserving small structures and textures and can obtain an improvement in peak signal-to-noise ratio.

  11. An image-space parallel convolution filtering algorithm based on shadow map

    NASA Astrophysics Data System (ADS)

    Li, Hua; Yang, Huamin; Zhao, Jianping

    2017-07-01

    Shadow mapping is commonly used in real-time rendering. In this paper, we presented an accurate and efficient method of soft shadows generation from planar area lights. First this method generated a depth map from light's view, and analyzed the depth-discontinuities areas as well as shadow boundaries. Then these areas were described as binary values in the texture map called binary light-visibility map, and a parallel convolution filtering algorithm based on GPU was enforced to smooth out the boundaries with a box filter. Experiments show that our algorithm is an effective shadow map based method that produces perceptually accurate soft shadows in real time with more details of shadow boundaries compared with the previous works.

  12. Partial differential equation-based approach for empirical mode decomposition: application on image analysis.

    PubMed

    Niang, Oumar; Thioune, Abdoulaye; El Gueirea, Mouhamed Cheikh; Deléchelle, Eric; Lemoine, Jacques

    2012-09-01

    The major problem with the empirical mode decomposition (EMD) algorithm is its lack of a theoretical framework. So, it is difficult to characterize and evaluate this approach. In this paper, we propose, in the 2-D case, the use of an alternative implementation to the algorithmic definition of the so-called "sifting process" used in the original Huang's EMD method. This approach, especially based on partial differential equations (PDEs), was presented by Niang in previous works, in 2005 and 2007, and relies on a nonlinear diffusion-based filtering process to solve the mean envelope estimation problem. In the 1-D case, the efficiency of the PDE-based method, compared to the original EMD algorithmic version, was also illustrated in a recent paper. Recently, several 2-D extensions of the EMD method have been proposed. Despite some effort, 2-D versions for EMD appear poorly performing and are very time consuming. So in this paper, an extension to the 2-D space of the PDE-based approach is extensively described. This approach has been applied in cases of both signal and image decomposition. The obtained results confirm the usefulness of the new PDE-based sifting process for the decomposition of various kinds of data. Some results have been provided in the case of image decomposition. The effectiveness of the approach encourages its use in a number of signal and image applications such as denoising, detrending, or texture analysis.

  13. Analysis of the right-handed Majorana neutrino mass in an S U (4 )×S U (2 )L×S U (2 )R Pati-Salam model with democratic texture

    NASA Astrophysics Data System (ADS)

    Yang, Masaki J. S.

    2017-03-01

    In this paper, we attempt to build a unified model with the democratic texture, that has some unification between up-type Yukawa interactions Yν and Yu . Since the S3 L×S3 R flavor symmetry is chiral, the unified gauge group is assumed to be Pati-Salam type S U (4 )c×S U (2 )L×S U (2 )R. The breaking scheme of the flavor symmetry is considered to be S3 L×S3 R→S2 L×S2 R→0 . In this picture, the four-zero texture is desirable for realistic masses and mixings. This texture is realized by a specific representation for the second breaking of the S3 L×S3 R flavor symmetry. Assuming only renormalizable Yukawa interactions, type-I seesaw mechanism, and neglecting C P phases for simplicity, the right-handed neutrino mass matrix MR can be reconstructed from low energy input values. Numerical analysis shows that the texture of MR basically behaves like the "waterfall texture." Since MR tends to be the "cascade texture" in the democratic texture approach, a model with type-I seesaw and up-type Yukawa unification Yν≃Yu basically requires fine-tunings between parameters. Therefore, it seems to be more realistic to consider universal waterfall textures for both Yf and MR, e.g., by the radiative mass generation or the Froggatt-Nielsen mechanism. Moreover, analysis of eigenvalues shows that the lightest mass eigenvalue MR 1 is too light to achieve successful thermal leptogenesis. Although the resonant leptogenesis might be possible, it also requires fine-tunings of parameters.

  14. Parenchymal texture measures weighted by breast anatomy: preliminary optimization in a case-control study

    NASA Astrophysics Data System (ADS)

    Gastounioti, Aimilia; Keller, Brad M.; Hsieh, Meng-Kang; Conant, Emily F.; Kontos, Despina

    2016-03-01

    Growing evidence suggests that quantitative descriptors of the parenchymal texture patterns hold a valuable role in assessing an individual woman's risk for breast cancer. In this work, we assess the hypothesis that breast cancer risk factors are not uniformly expressed in the breast parenchymal tissue and, therefore, breast-anatomy-weighted parenchymal texture descriptors, where different breasts ROIs have non uniform contributions, may enhance breast cancer risk assessment. To this end, we introduce an automated breast-anatomy-driven methodology which generates a breast atlas, which is then used to produce a weight map that reinforces the contributions of the central and upper-outer breast areas. We incorporate this methodology to our previously validated lattice-based strategy for parenchymal texture analysis. In the framework of a pilot case-control study, including digital mammograms from 424 women, our proposed breast-anatomy-weighted texture descriptors are optimized and evaluated against non weighted texture features, using regression analysis with leave-one-out cross validation. The classification performance is assessed in terms of the area under the curve (AUC) of the receiver operating characteristic. The collective discriminatory capacity of the weighted texture features was maximized (AUC=0.87) when the central breast area was considered more important than the upperouter area, with significant performance improvement (DeLong's test, p-value<0.05) against the non-weighted texture features (AUC=0.82). Our results suggest that breast-anatomy-driven methodologies have the potential to further upgrade the promising role of parenchymal texture analysis in breast cancer risk assessment and may serve as a reference in the design of future studies towards image-driven personalized recommendations regarding women's cancer risk evaluation.

  15. Wavelet Transforms in Parallel Image Processing

    DTIC Science & Technology

    1994-01-27

    NUMBER OF PAGES Object Segmentation, Texture Segmentation, Image Compression, Image 137 Halftoning , Neural Network, Parallel Algorithms, 2D and 3D...Vector Quantization of Wavelet Transform Coefficients ........ ............................. 57 B.1.f Adaptive Image Halftoning based on Wavelet...application has been directed to the adaptive image halftoning . The gray information at a pixel, including its gray value and gradient, is represented by

  16. Statistical-techniques-based computer-aided diagnosis (CAD) using texture feature analysis: application in computed tomography (CT) imaging to fatty liver disease

    NASA Astrophysics Data System (ADS)

    Chung, Woon-Kwan; Park, Hyong-Hu; Im, In-Chul; Lee, Jae-Seung; Goo, Eun-Hoe; Dong, Kyung-Rae

    2012-09-01

    This paper proposes a computer-aided diagnosis (CAD) system based on texture feature analysis and statistical wavelet transformation technology to diagnose fatty liver disease with computed tomography (CT) imaging. In the target image, a wavelet transformation was performed for each lesion area to set the region of analysis (ROA, window size: 50 × 50 pixels) and define the texture feature of a pixel. Based on the extracted texture feature values, six parameters (average gray level, average contrast, relative smoothness, skewness, uniformity, and entropy) were determined to calculate the recognition rate for a fatty liver. In addition, a multivariate analysis of the variance (MANOVA) method was used to perform a discriminant analysis to verify the significance of the extracted texture feature values and the recognition rate for a fatty liver. According to the results, each texture feature value was significant for a comparison of the recognition rate for a fatty liver ( p < 0.05). Furthermore, the F-value, which was used as a scale for the difference in recognition rates, was highest in the average gray level, relatively high in the skewness and the entropy, and relatively low in the uniformity, the relative smoothness and the average contrast. The recognition rate for a fatty liver had the same scale as that for the F-value, showing 100% (average gray level) at the maximum and 80% (average contrast) at the minimum. Therefore, the recognition rate is believed to be a useful clinical value for the automatic detection and computer-aided diagnosis (CAD) using the texture feature value. Nevertheless, further study on various diseases and singular diseases will be needed in the future.

  17. Cortical mechanisms for the segregation and representation of acoustic textures.

    PubMed

    Overath, Tobias; Kumar, Sukhbinder; Stewart, Lauren; von Kriegstein, Katharina; Cusack, Rhodri; Rees, Adrian; Griffiths, Timothy D

    2010-02-10

    Auditory object analysis requires two fundamental perceptual processes: the definition of the boundaries between objects, and the abstraction and maintenance of an object's characteristic features. Although it is intuitive to assume that the detection of the discontinuities at an object's boundaries precedes the subsequent precise representation of the object, the specific underlying cortical mechanisms for segregating and representing auditory objects within the auditory scene are unknown. We investigated the cortical bases of these two processes for one type of auditory object, an "acoustic texture," composed of multiple frequency-modulated ramps. In these stimuli, we independently manipulated the statistical rules governing (1) the frequency-time space within individual textures (comprising ramps with a given spectrotemporal coherence) and (2) the boundaries between textures (adjacent textures with different spectrotemporal coherences). Using functional magnetic resonance imaging, we show mechanisms defining boundaries between textures with different coherences in primary and association auditory cortices, whereas texture coherence is represented only in association cortex. Furthermore, participants' superior detection of boundaries across which texture coherence increased (as opposed to decreased) was reflected in a greater neural response in auditory association cortex at these boundaries. The results suggest a hierarchical mechanism for processing acoustic textures that is relevant to auditory object analysis: boundaries between objects are first detected as a change in statistical rules over frequency-time space, before a representation that corresponds to the characteristics of the perceived object is formed.

  18. Visualizing Vector Fields Using Line Integral Convolution and Dye Advection

    NASA Technical Reports Server (NTRS)

    Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu

    1996-01-01

    We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.

  19. Superpixel-based structure classification for laparoscopic surgery

    NASA Astrophysics Data System (ADS)

    Bodenstedt, Sebastian; Görtler, Jochen; Wagner, Martin; Kenngott, Hannes; Müller-Stich, Beat Peter; Dillmann, Rüdiger; Speidel, Stefanie

    2016-03-01

    Minimally-invasive interventions offers multiple benefits for patients, but also entails drawbacks for the surgeon. The goal of context-aware assistance systems is to alleviate some of these difficulties. Localizing and identifying anatomical structures, maligned tissue and surgical instruments through endoscopic image analysis is paramount for an assistance system, making online measurements and augmented reality visualizations possible. Furthermore, such information can be used to assess the progress of an intervention, hereby allowing for a context-aware assistance. In this work, we present an approach for such an analysis. First, a given laparoscopic image is divided into groups of connected pixels, so-called superpixels, using the SEEDS algorithm. The content of a given superpixel is then described using information regarding its color and texture. Using a Random Forest classifier, we determine the class label of each superpixel. We evaluated our approach on a publicly available dataset for laparoscopic instrument detection and achieved a DICE score of 0.69.

  20. Combining multiple features for color texture classification

    NASA Astrophysics Data System (ADS)

    Cusano, Claudio; Napoletano, Paolo; Schettini, Raimondo

    2016-11-01

    The analysis of color and texture has a long history in image analysis and computer vision. These two properties are often considered as independent, even though they are strongly related in images of natural objects and materials. Correlation between color and texture information is especially relevant in the case of variable illumination, a condition that has a crucial impact on the effectiveness of most visual descriptors. We propose an ensemble of hand-crafted image descriptors designed to capture different aspects of color textures. We show that the use of these descriptors in a multiple classifiers framework makes it possible to achieve a very high classification accuracy in classifying texture images acquired under different lighting conditions. A powerful alternative to hand-crafted descriptors is represented by features obtained with deep learning methods. We also show how the proposed combining strategy hand-crafted and convolutional neural networks features can be used together to further improve the classification accuracy. Experimental results on a food database (raw food texture) demonstrate the effectiveness of the proposed strategy.

  1. Coastal modification of a scene employing multispectral images and vector operators.

    PubMed

    Lira, Jorge

    2017-05-01

    Changes in sea level, wind patterns, sea current patterns, and tide patterns have produced morphologic transformations in the coastline area of Tamaulipas Sate in North East Mexico. Such changes generated a modification of the coastline and variations of the texture-relief and texture of the continental area of Tamaulipas. Two high-resolution multispectral satellite Satellites Pour l'Observation de la Terre images were employed to quantify the morphologic change of such continental area. The images cover a time span close to 10 years. A variant of the principal component analysis was used to delineate the modification of the land-water line. To quantify changes in texture-relief and texture, principal component analysis was applied to the multispectral images. The first principal components of each image were modeled as a discrete bidimensional vector field. The divergence and Laplacian vector operators were applied to the discrete vector field. The divergence provided the change of texture, while the Laplacian produced the change of texture-relief in the area of study.

  2. Cloud cover analysis with Arctic Advanced Very High Resolution Radiometer data. II - Classification with spectral and textural measures

    NASA Technical Reports Server (NTRS)

    Key, J.

    1990-01-01

    The spectral and textural characteristics of polar clouds and surfaces for a 7-day summer series of AVHRR data in two Arctic locations are examined, and the results used in the development of a cloud classification procedure for polar satellite data. Since spatial coherence and texture sensitivity tests indicate that a joint spectral-textural analysis based on the same cell size is inappropriate, cloud detection with AVHRR data and surface identification with passive microwave data are first done on the pixel level as described by Key and Barry (1989). Next, cloud patterns within 250-sq-km regions are described, then the spectral and local textural characteristics of cloud patterns in the image are determined and each cloud pixel is classified by statistical methods. Results indicate that both spectral and textural features can be utilized in the classification of cloudy pixels, although spectral features are most useful for the discrimination between cloud classes.

  3. Local spatio-temporal analysis in vision systems

    NASA Astrophysics Data System (ADS)

    Geisler, Wilson S.; Bovik, Alan; Cormack, Lawrence; Ghosh, Joydeep; Gildeen, David

    1994-07-01

    The aims of this project are the following: (1) develop a physiologically and psychophysically based model of low-level human visual processing (a key component of which are local frequency coding mechanisms); (2) develop image models and image-processing methods based upon local frequency coding; (3) develop algorithms for performing certain complex visual tasks based upon local frequency representations, (4) develop models of human performance in certain complex tasks based upon our understanding of low-level processing; and (5) develop a computational testbed for implementing, evaluating and visualizing the proposed models and algorithms, using a massively parallel computer. Progress has been substantial on all aims. The highlights include the following: (1) completion of a number of psychophysical and physiological experiments revealing new, systematic and exciting properties of the primate (human and monkey) visual system; (2) further development of image models that can accurately represent the local frequency structure in complex images; (3) near completion in the construction of the Texas Active Vision Testbed; (4) development and testing of several new computer vision algorithms dealing with shape-from-texture, shape-from-stereo, and depth-from-focus; (5) implementation and evaluation of several new models of human visual performance; and (6) evaluation, purchase and installation of a MasPar parallel computer.

  4. Multifractal modeling, segmentation, prediction, and statistical validation of posterior fossa tumors

    NASA Astrophysics Data System (ADS)

    Islam, Atiq; Iftekharuddin, Khan M.; Ogg, Robert J.; Laningham, Fred H.; Sivakumar, Bhuvaneswari

    2008-03-01

    In this paper, we characterize the tumor texture in pediatric brain magnetic resonance images (MRIs) and exploit these features for automatic segmentation of posterior fossa (PF) tumors. We focus on PF tumor because of the prevalence of such tumor in pediatric patients. Due to varying appearance in MRI, we propose to model the tumor texture with a multi-fractal process, such as a multi-fractional Brownian motion (mBm). In mBm, the time-varying Holder exponent provides flexibility in modeling irregular tumor texture. We develop a detailed mathematical framework for mBm in two-dimension and propose a novel algorithm to estimate the multi-fractal structure of tissue texture in brain MRI based on wavelet coefficients. This wavelet based multi-fractal feature along with MR image intensity and a regular fractal feature obtained using our existing piecewise-triangular-prism-surface-area (PTPSA) method, are fused in segmenting PF tumor and non-tumor regions in brain T1, T2, and FLAIR MR images respectively. We also demonstrate a non-patient-specific automated tumor prediction scheme based on these image features. We experimentally show the tumor discriminating power of our novel multi-fractal texture along with intensity and fractal features in automated tumor segmentation and statistical prediction. To evaluate the performance of our tumor prediction scheme, we obtain ROCs and demonstrate how sharply the curves reach the specificity of 1.0 sacrificing minimal sensitivity. Experimental results show the effectiveness of our proposed techniques in automatic detection of PF tumors in pediatric MRIs.

  5. Texture analysis of pulmonary parenchymateous changes related to pulmonary thromboembolism in dogs - a novel approach using quantitative methods.

    PubMed

    Marschner, C B; Kokla, M; Amigo, J M; Rozanski, E A; Wiinberg, B; McEvoy, F J

    2017-07-11

    Diagnosis of pulmonary thromboembolism (PTE) in dogs relies on computed tomography pulmonary angiography (CTPA), but detailed interpretation of CTPA images is demanding for the radiologist and only large vessels may be evaluated. New approaches for better detection of smaller thrombi include dual energy computed tomography (DECT) as well as computer assisted diagnosis (CAD) techniques. The purpose of this study was to investigate the performance of quantitative texture analysis for detecting dogs with PTE using grey-level co-occurrence matrices (GLCM) and multivariate statistical classification analyses. CT images from healthy (n = 6) and diseased (n = 29) dogs with and without PTE confirmed on CTPA were segmented so that only tissue with CT numbers between -1024 and -250 Houndsfield Units (HU) was preserved. GLCM analysis and subsequent multivariate classification analyses were performed on texture parameters extracted from these images. Leave-one-dog-out cross validation and receiver operator characteristic (ROC) showed that the models generated from the texture analysis were able to predict healthy dogs with optimal levels of performance. Partial Least Square Discriminant Analysis (PLS-DA) obtained a sensitivity of 94% and a specificity of 96%, while Support Vector Machines (SVM) yielded a sensitivity of 99% and a specificity of 100%. The models, however, performed worse in classifying the type of disease in the diseased dog group: In diseased dogs with PTE sensitivities were 30% (PLS-DA) and 38% (SVM), and specificities were 80% (PLS-DA) and 89% (SVM). In diseased dogs without PTE the sensitivities of the models were 59% (PLS-DA) and 79% (SVM) and specificities were 79% (PLS-DA) and 82% (SVM). The results indicate that texture analysis of CTPA images using GLCM is an effective tool for distinguishing healthy from abnormal lung. Furthermore the texture of pulmonary parenchyma in dogs with PTE is altered, when compared to the texture of pulmonary parenchyma of healthy dogs. The models' poorer performance in classifying dogs within the diseased group, may be related to the low number of dogs compared to texture variables, a lack of balanced number of dogs within each group or a real lack of difference in the texture features among the diseased dogs.

  6. Classification and recognition of texture collagen obtaining by multiphoton microscope with neural network analysis

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Peng, Yuanyuan; Hu, Liangjun; Zhang, Xiaoman; Li, Hui

    2016-01-01

    Second harmonic generation microscopy (SHGM) was used to monitor the process of chronological aging skin in vivo. The collagen structures of mice model with different ages were obtained using SHGM. Then, texture feature with contrast, correlation and entropy were extracted and analysed using the grey level co-occurrence matrix. At last, the neural network tool of Matlab was applied to train the texture of collagen in different statues during the aging process. And the simulation of mice collagen texture was carried out. The results indicated that the classification accuracy reach 85%. Results demonstrated that the proposed approach effectively detected the target object in the collagen texture image during the chronological aging process and the analysis tool based on neural network applied the skin of classification and feature extraction method is feasible.

  7. Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study.

    PubMed

    Ortiz-Ramón, Rafael; Larroza, Andrés; Ruiz-España, Silvia; Arana, Estanislao; Moratal, David

    2018-05-14

    To examine the capability of MRI texture analysis to differentiate the primary site of origin of brain metastases following a radiomics approach. Sixty-seven untreated brain metastases (BM) were found in 3D T1-weighted MRI of 38 patients with cancer: 27 from lung cancer, 23 from melanoma and 17 from breast cancer. These lesions were segmented in 2D and 3D to compare the discriminative power of 2D and 3D texture features. The images were quantized using different number of gray-levels to test the influence of quantization. Forty-three rotation-invariant texture features were examined. Feature selection and random forest classification were implemented within a nested cross-validation structure. Classification was evaluated with the area under receiver operating characteristic curve (AUC) considering two strategies: multiclass and one-versus-one. In the multiclass approach, 3D texture features were more discriminative than 2D features. The best results were achieved for images quantized with 32 gray-levels (AUC = 0.873 ± 0.064) using the top four features provided by the feature selection method based on the p-value. In the one-versus-one approach, high accuracy was obtained when differentiating lung cancer BM from breast cancer BM (four features, AUC = 0.963 ± 0.054) and melanoma BM (eight features, AUC = 0.936 ± 0.070) using the optimal dataset (3D features, 32 gray-levels). Classification of breast cancer and melanoma BM was unsatisfactory (AUC = 0.607 ± 0.180). Volumetric MRI texture features can be useful to differentiate brain metastases from different primary cancers after quantizing the images with the proper number of gray-levels. • Texture analysis is a promising source of biomarkers for classifying brain neoplasms. • MRI texture features of brain metastases could help identifying the primary cancer. • Volumetric texture features are more discriminative than traditional 2D texture features.

  8. Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis.

    PubMed

    Sun, Wenqing; Zheng, Bin; Qian, Wei

    2017-10-01

    This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists' markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well. Copyright © 2017. Published by Elsevier Ltd.

  9. X-ray diffraction analysis of residual stresses in textured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Dobročka, E.; Novák, P.; Búc, D.; Harmatha, L.; Murín, J.

    2017-02-01

    Residual stresses are commonly generated in thin films during the deposition process and can influence the film properties. Among a number of techniques developed for stress analysis, X-ray diffraction methods, especially the grazing incidence set-up, are of special importance due to their capability to analyze the stresses in very thin layers as well as to investigate the depth variation of the stresses. In this contribution a method combining multiple {hkl} and multiple χ modes of X-ray diffraction stress analysis in grazing incidence set-up is used for the measurement of residual stress in strongly textured ZnO thin films. The method improves the precision of the stress evaluation in textured samples. Because the measurements are performed at very low incidence angles, the effect of refraction of X-rays on the measured stress is analyzed in details for the general case of non-coplanar geometry. It is shown that this effect cannot be neglected if the angle of incidence approaches the critical angle. The X-ray stress factors are calculated for hexagonal fiber-textured ZnO for the Reuss model of grain-interaction and the effect of texture on the stress factors is analyzed. The texture in the layer is modelled by Gaussian distribution function. Numerical results indicate that in the process of stress evaluation the Reuss model can be replaced by much simpler crystallite group method if the standard deviation of Gaussian describing the texture is less than 6°. The results can be adapted for fiber-textured films of various hexagonal materials.

  10. WE-E-17A-02: Predictive Modeling of Outcome Following SABR for NSCLC Based On Radiomics of FDG-PET Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, R; Aguilera, T; Shultz, D

    2014-06-15

    Purpose: This study aims to develop predictive models of patient outcome by extracting advanced imaging features (i.e., Radiomics) from FDG-PET images. Methods: We acquired pre-treatment PET scans for 51 stage I NSCLC patients treated with SABR. We calculated 139 quantitative features from each patient PET image, including 5 morphological features, 8 statistical features, 27 texture features, and 100 features from the intensity-volume histogram. Based on the imaging features, we aim to distinguish between 2 risk groups of patients: those with regional failure or distant metastasis versus those without. We investigated 3 pattern classification algorithms: linear discriminant analysis (LDA), naive Bayesmore » (NB), and logistic regression (LR). To avoid the curse of dimensionality, we performed feature selection by first removing redundant features and then applying sequential forward selection using the wrapper approach. To evaluate the predictive performance, we performed 10-fold cross validation with 1000 random splits of the data and calculated the area under the ROC curve (AUC). Results: Feature selection identified 2 texture features (homogeneity and/or wavelet decompositions) for NB and LR, while for LDA SUVmax and one texture feature (correlation) were identified. All 3 classifiers achieved statistically significant improvements over conventional PET imaging metrics such as tumor volume (AUC = 0.668) and SUVmax (AUC = 0.737). Overall, NB achieved the best predictive performance (AUC = 0.806). This also compares favorably with MTV using the best threshold at an SUV of 11.6 (AUC = 0.746). At a sensitivity of 80%, NB achieved 69% specificity, while SUVmax and tumor volume only had 36% and 47% specificity. Conclusion: Through a systematic analysis of advanced PET imaging features, we are able to build models with improved predictive value over conventional imaging metrics. If validated in a large independent cohort, the proposed techniques could potentially aid in identifying patients who might benefit from adjuvant therapy.« less

  11. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature

    NASA Astrophysics Data System (ADS)

    Iwahashi, Junko; Pike, Richard J.

    2007-05-01

    An iterative procedure that implements the classification of continuous topography as a problem in digital image-processing automatically divides an area into categories of surface form; three taxonomic criteria-slope gradient, local convexity, and surface texture-are calculated from a square-grid digital elevation model (DEM). The sequence of programmed operations combines twofold-partitioned maps of the three variables converted to greyscale images, using the mean of each variable as the dividing threshold. To subdivide increasingly subtle topography, grid cells sloping at less than mean gradient of the input DEM are classified by designating mean values of successively lower-sloping subsets of the study area (nested means) as taxonomic thresholds, thereby increasing the number of output categories from the minimum 8 to 12 or 16. Program output is exemplified by 16 topographic types for the world at 1-km spatial resolution (SRTM30 data), the Japanese Islands at 270 m, and part of Hokkaido at 55 m. Because the procedure is unsupervised and reflects frequency distributions of the input variables rather than pre-set criteria, the resulting classes are undefined and must be calibrated empirically by subsequent analysis. Maps of the example classifications reflect physiographic regions, geological structure, and landform as well as slope materials and processes; fine-textured terrain categories tend to correlate with erosional topography or older surfaces, coarse-textured classes with areas of little dissection. In Japan the resulting classes approximate landform types mapped from airphoto analysis, while in the Americas they create map patterns resembling Hammond's terrain types or surface-form classes; SRTM30 output for the United States compares favorably with Fenneman's physical divisions. Experiments are suggested for further developing the method; the Arc/Info AML and the map of terrain classes for the world are available as online downloads.

  12. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature

    USGS Publications Warehouse

    Iwahashi, J.; Pike, R.J.

    2007-01-01

    An iterative procedure that implements the classification of continuous topography as a problem in digital image-processing automatically divides an area into categories of surface form; three taxonomic criteria-slope gradient, local convexity, and surface texture-are calculated from a square-grid digital elevation model (DEM). The sequence of programmed operations combines twofold-partitioned maps of the three variables converted to greyscale images, using the mean of each variable as the dividing threshold. To subdivide increasingly subtle topography, grid cells sloping at less than mean gradient of the input DEM are classified by designating mean values of successively lower-sloping subsets of the study area (nested means) as taxonomic thresholds, thereby increasing the number of output categories from the minimum 8 to 12 or 16. Program output is exemplified by 16 topographic types for the world at 1-km spatial resolution (SRTM30 data), the Japanese Islands at 270??m, and part of Hokkaido at 55??m. Because the procedure is unsupervised and reflects frequency distributions of the input variables rather than pre-set criteria, the resulting classes are undefined and must be calibrated empirically by subsequent analysis. Maps of the example classifications reflect physiographic regions, geological structure, and landform as well as slope materials and processes; fine-textured terrain categories tend to correlate with erosional topography or older surfaces, coarse-textured classes with areas of little dissection. In Japan the resulting classes approximate landform types mapped from airphoto analysis, while in the Americas they create map patterns resembling Hammond's terrain types or surface-form classes; SRTM30 output for the United States compares favorably with Fenneman's physical divisions. Experiments are suggested for further developing the method; the Arc/Info AML and the map of terrain classes for the world are available as online downloads. ?? 2006 Elsevier B.V. All rights reserved.

  13. Extraction and processing of videocapsule data to detect and measure the presence of villous atrophy in celiac disease patients.

    PubMed

    Ciaccio, Edward J; Bhagat, Govind; Lewis, Suzanne K; Green, Peter H

    2016-11-01

    Videocapsule endoscopy is a relative new method to analyze the gastrointestinal tract for the presence of pathologic features. It is of relevance to detect villous atrophy in the small bowel, which is a defining symptom of celiac disease. In this tutorial, methods to extract and process videocapsule endoscopy data are elucidated. The algorithms, computer code, and paradigms to analyze image series are described in detail. The topics covered include extraction of data, analysis of texture, eigenanalysis, spectral analysis, three-dimensional projection, and estimation of motility. The basic paradigms to implement these processes are provided. Examples of successful quantitative analysis implementations for selected untreated celiac disease patients with villous atrophy versus control patients with normal villi were illustrated. Based on the implementations, it was evident that celiac patients tended to have a rougher small intestinal texture as compared with control patients. From three-dimensional projection, celiac patients exhibited larger surface protrusions emanating from the small intestinal mucosa, which may represent clumps of atrophied villi. The periodicity of small intestinal contractions tends to be slower when villous atrophy is present, and the estimated degree of motility is reduced as compared with control image series. Basis image construction suggested that fissuring and mottling of the mucosal surface is predominant in untreated celiac patients, and mostly absent in controls. Implementation of computerized methods, as described in this tutorial, will likely be useful for the automated detection and measurement of villous atrophy, and to map its extent along the small intestine of celiac patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. An explorative childhood pneumonia analysis based on ultrasonic imaging texture features

    NASA Astrophysics Data System (ADS)

    Zenteno, Omar; Diaz, Kristians; Lavarello, Roberto; Zimic, Mirko; Correa, Malena; Mayta, Holger; Anticona, Cynthia; Pajuelo, Monica; Oberhelman, Richard; Checkley, William; Gilman, Robert H.; Figueroa, Dante; Castañeda, Benjamín.

    2015-12-01

    According to World Health Organization, pneumonia is the respiratory disease with the highest pediatric mortality rate accounting for 15% of all deaths of children under 5 years old worldwide. The diagnosis of pneumonia is commonly made by clinical criteria with support from ancillary studies and also laboratory findings. Chest imaging is commonly done with chest X-rays and occasionally with a chest CT scan. Lung ultrasound is a promising alternative for chest imaging; however, interpretation is subjective and requires adequate training. In the present work, a two-class classification algorithm based on four Gray-level co-occurrence matrix texture features (i.e., Contrast, Correlation, Energy and Homogeneity) extracted from lung ultrasound images from children aged between six months and five years is presented. Ultrasound data was collected using a L14-5/38 linear transducer. The data consisted of 22 positive- and 68 negative-diagnosed B-mode cine-loops selected by a medical expert and captured in the facilities of the Instituto Nacional de Salud del Niño (Lima, Peru), for a total number of 90 videos obtained from twelve children diagnosed with pneumonia. The classification capacity of each feature was explored independently and the optimal threshold was selected by a receiver operator characteristic (ROC) curve analysis. In addition, a principal component analysis was performed to evaluate the combined performance of all the features. Contrast and correlation resulted the two more significant features. The classification performance of these two features by principal components was evaluated. The results revealed 82% sensitivity, 76% specificity, 78% accuracy and 0.85 area under the ROC.

  15. 3D models mapping optimization through an integrated parameterization approach: cases studies from Ravenna

    NASA Astrophysics Data System (ADS)

    Cipriani, L.; Fantini, F.; Bertacchi, S.

    2014-06-01

    Image-based modelling tools based on SfM algorithms gained great popularity since several software houses provided applications able to achieve 3D textured models easily and automatically. The aim of this paper is to point out the importance of controlling models parameterization process, considering that automatic solutions included in these modelling tools can produce poor results in terms of texture utilization. In order to achieve a better quality of textured models from image-based modelling applications, this research presents a series of practical strategies aimed at providing a better balance between geometric resolution of models from passive sensors and their corresponding (u,v) map reference systems. This aspect is essential for the achievement of a high-quality 3D representation, since "apparent colour" is a fundamental aspect in the field of Cultural Heritage documentation. Complex meshes without native parameterization have to be "flatten" or "unwrapped" in the (u,v) parameter space, with the main objective to be mapped with a single image. This result can be obtained by using two different strategies: the former automatic and faster, while the latter manual and time-consuming. Reverse modelling applications provide automatic solutions based on splitting the models by means of different algorithms, that produce a sort of "atlas" of the original model in the parameter space, in many instances not adequate and negatively affecting the overall quality of representation. Using in synergy different solutions, ranging from semantic aware modelling techniques to quad-dominant meshes achieved using retopology tools, it is possible to obtain a complete control of the parameterization process.

  16. Medical X-ray Image Hierarchical Classification Using a Merging and Splitting Scheme in Feature Space.

    PubMed

    Fesharaki, Nooshin Jafari; Pourghassem, Hossein

    2013-07-01

    Due to the daily mass production and the widespread variation of medical X-ray images, it is necessary to classify these for searching and retrieving proposes, especially for content-based medical image retrieval systems. In this paper, a medical X-ray image hierarchical classification structure based on a novel merging and splitting scheme and using shape and texture features is proposed. In the first level of the proposed structure, to improve the classification performance, similar classes with regard to shape contents are grouped based on merging measures and shape features into the general overlapped classes. In the next levels of this structure, the overlapped classes split in smaller classes based on the classification performance of combination of shape and texture features or texture features only. Ultimately, in the last levels, this procedure is also continued forming all the classes, separately. Moreover, to optimize the feature vector in the proposed structure, we use orthogonal forward selection algorithm according to Mahalanobis class separability measure as a feature selection and reduction algorithm. In other words, according to the complexity and inter-class distance of each class, a sub-space of the feature space is selected in each level and then a supervised merging and splitting scheme is applied to form the hierarchical classification. The proposed structure is evaluated on a database consisting of 2158 medical X-ray images of 18 classes (IMAGECLEF 2005 database) and accuracy rate of 93.6% in the last level of the hierarchical structure for an 18-class classification problem is obtained.

  17. QBIC project: querying images by content, using color, texture, and shape

    NASA Astrophysics Data System (ADS)

    Niblack, Carlton W.; Barber, Ron; Equitz, Will; Flickner, Myron D.; Glasman, Eduardo H.; Petkovic, Dragutin; Yanker, Peter; Faloutsos, Christos; Taubin, Gabriel

    1993-04-01

    In the query by image content (QBIC) project we are studying methods to query large on-line image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include medical (`Give me other images that contain a tumor with a texture like this one'), photo-journalism (`Give me images that have blue at the top and red at the bottom'), and many others in art, fashion, cataloging, retailing, and industry. Key issues include derivation and computation of attributes of images and objects that provide useful query functionality, retrieval methods based on similarity as opposed to exact match, query by image example or user drawn image, the user interfaces, query refinement and navigation, high dimensional database indexing, and automatic and semi-automatic database population. We currently have a prototype system written in X/Motif and C running on an RS/6000 that allows a variety of queries, and a test database of over 1000 images and 1000 objects populated from commercially available photo clip art images. In this paper we present the main algorithms for color texture, shape and sketch query that we use, show example query results, and discuss future directions.

  18. A GPU-based computer-assisted microscopy system for assessing the importance of different families of histological characteristics in cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Glotsos, Dimitris; Kostopoulos, Spiros; Sidiropoulos, Konstantinos; Ravazoula, Panagiota; Kalatzis, Ioannis; Asvestas, Pantelis; Cavouras, Dionisis

    2014-01-01

    In this study a Computer-Aided Microscopy (CAM) system is proposed for investigating the importance of the histological criteria involved in diagnosing of cancers in microscopy in order to suggest the more informative features for discriminating low from high-grade brain tumours. Four families of criteria have been examined, involving the greylevel variations (i.e. texture), the morphology (i.e. roundness), the architecture (i.e. cellularity) and the overall tumour qualities (expert's ordinal scale). The proposed CAM system was constructed using a modified Seeded Region Growing algorithm for image segmentation, and the Probabilistic Neural Network classifier for image classification. The implementation was designed on a commercial Graphics Processing Unit card using parallel programming. The system's performance using textural, morphological, architectural and ordinal information was 90.8%, 87.0%, 81.2% and 88.9% respectively. Results indicate that nuclei texture is the most important family of features regarding the degree of malignancy, and, thus, may guide more accurate predictions for discriminating low from high grade gliomas. Considering that nuclei texture is almost impractical to be encoded by visual observation, the need to incorporate computer-aided diagnostic tools as second opinion in daily clinical practice of diagnosing rare brain tumours may be justified.

  19. Developing a radiomics framework for classifying non-small cell lung carcinoma subtypes

    NASA Astrophysics Data System (ADS)

    Yu, Dongdong; Zang, Yali; Dong, Di; Zhou, Mu; Gevaert, Olivier; Fang, Mengjie; Shi, Jingyun; Tian, Jie

    2017-03-01

    Patient-targeted treatment of non-small cell lung carcinoma (NSCLC) has been well documented according to the histologic subtypes over the past decade. In parallel, recent development of quantitative image biomarkers has recently been highlighted as important diagnostic tools to facilitate histological subtype classification. In this study, we present a radiomics analysis that classifies the adenocarcinoma (ADC) and squamous cell carcinoma (SqCC). We extract 52-dimensional, CT-based features (7 statistical features and 45 image texture features) to represent each nodule. We evaluate our approach on a clinical dataset including 324 ADCs and 110 SqCCs patients with CT image scans. Classification of these features is performed with four different machine-learning classifiers including Support Vector Machines with Radial Basis Function kernel (RBF-SVM), Random forest (RF), K-nearest neighbor (KNN), and RUSBoost algorithms. To improve the classifiers' performance, optimal feature subset is selected from the original feature set by using an iterative forward inclusion and backward eliminating algorithm. Extensive experimental results demonstrate that radiomics features achieve encouraging classification results on both complete feature set (AUC=0.89) and optimal feature subset (AUC=0.91).

  20. Film grain synthesis and its application to re-graining

    NASA Astrophysics Data System (ADS)

    Schallauer, Peter; Mörzinger, Roland

    2006-01-01

    Digital film restoration and special effects compositing require more and more automatic procedures for movie regraining. Missing or inhomogeneous grain decreases perceived quality. For the purpose of grain synthesis an existing texture synthesis algorithm has been evaluated and optimized. We show that this algorithm can produce synthetic grain which is perceptually similar to a given grain template, which has high spatial and temporal variation and which can be applied to multi-spectral images. Furthermore a re-grain application framework is proposed, which synthesises based on an input grain template artificial grain and composites this together with the original image content. Due to its modular approach this framework supports manual as well as automatic re-graining applications. Two example applications are presented, one for re-graining an entire movie and one for fully automatic re-graining of image regions produced by restoration algorithms. Low computational cost of the proposed algorithms allows application in industrial grade software.

  1. Approach for scene reconstruction from the analysis of a triplet of still images

    NASA Astrophysics Data System (ADS)

    Lechat, Patrick; Le Mestre, Gwenaelle; Pele, Danielle

    1997-03-01

    Three-dimensional modeling of a scene from the automatic analysis of 2D image sequences is a big challenge for future interactive audiovisual services based on 3D content manipulation such as virtual vests, 3D teleconferencing and interactive television. We propose a scheme that computes 3D objects models from stereo analysis of image triplets shot by calibrated cameras. After matching the different views with a correlation based algorithm, a depth map referring to a given view is built by using a fusion criterion taking into account depth coherency, visibility constraints and correlation scores. Because luminance segmentation helps to compute accurate object borders and to detect and improve the unreliable depth values, a two steps segmentation algorithm using both depth map and graylevel image is applied to extract the objects masks. First an edge detection segments the luminance image in regions and a multimodal thresholding method selects depth classes from the depth map. Then the regions are merged and labelled with the different depth classes numbers by using a coherence test on depth values according to the rate of reliable and dominant depth values and the size of the regions. The structures of the segmented objects are obtained with a constrained Delaunay triangulation followed by a refining stage. Finally, texture mapping is performed using open inventor or VRML1.0 tools.

  2. Spectral dependence of texture features integrated with hyperspectral data for area target classification improvement

    NASA Astrophysics Data System (ADS)

    Bangs, Corey F.; Kruse, Fred A.; Olsen, Chris R.

    2013-05-01

    Hyperspectral data were assessed to determine the effect of integrating spectral data and extracted texture feature data on classification accuracy. Four separate spectral ranges (hundreds of spectral bands total) were used from the Visible and Near Infrared (VNIR) and Shortwave Infrared (SWIR) portions of the electromagnetic spectrum. Haralick texture features (contrast, entropy, and correlation) were extracted from the average gray-level image for each of the four spectral ranges studied. A maximum likelihood classifier was trained using a set of ground truth regions of interest (ROIs) and applied separately to the spectral data, texture data, and a fused dataset containing both. Classification accuracy was measured by comparison of results to a separate verification set of test ROIs. Analysis indicates that the spectral range (source of the gray-level image) used to extract the texture feature data has a significant effect on the classification accuracy. This result applies to texture-only classifications as well as the classification of integrated spectral data and texture feature data sets. Overall classification improvement for the integrated data sets was near 1%. Individual improvement for integrated spectral and texture classification of the "Urban" class showed approximately 9% accuracy increase over spectral-only classification. Texture-only classification accuracy was highest for the "Dirt Path" class at approximately 92% for the spectral range from 947 to 1343nm. This research demonstrates the effectiveness of texture feature data for more accurate analysis of hyperspectral data and the importance of selecting the correct spectral range to be used for the gray-level image source to extract these features.

  3. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function

    PubMed Central

    Groenendyk, Derek G.; Ferré, Ty P.A.; Thorp, Kelly R.; Rice, Amy K.

    2015-01-01

    Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth’s surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape function, suggest that hydrologic-process-based classifications should be incorporated into environmental process models and can be used to define application-specific maps of hydrologic function. PMID:26121466

  4. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function.

    PubMed

    Groenendyk, Derek G; Ferré, Ty P A; Thorp, Kelly R; Rice, Amy K

    2015-01-01

    Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth's surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape function, suggest that hydrologic-process-based classifications should be incorporated into environmental process models and can be used to define application-specific maps of hydrologic function.

  5. Cnn Based Retinal Image Upscaling Using Zero Component Analysis

    NASA Astrophysics Data System (ADS)

    Nasonov, A.; Chesnakov, K.; Krylov, A.

    2017-05-01

    The aim of the paper is to obtain high quality of image upscaling for noisy images that are typical in medical image processing. A new training scenario for convolutional neural network based image upscaling method is proposed. Its main idea is a novel dataset preparation method for deep learning. The dataset contains pairs of noisy low-resolution images and corresponding noiseless highresolution images. To achieve better results at edges and textured areas, Zero Component Analysis is applied to these images. The upscaling results are compared with other state-of-the-art methods like DCCI, SI-3 and SRCNN on noisy medical ophthalmological images. Objective evaluation of the results confirms high quality of the proposed method. Visual analysis shows that fine details and structures like blood vessels are preserved, noise level is reduced and no artifacts or non-existing details are added. These properties are essential in retinal diagnosis establishment, so the proposed algorithm is recommended to be used in real medical applications.

  6. The Slug and Churn Turbulence Characteristics of Oil-Gas-Water Flows in a Vertical Small Pipe

    NASA Astrophysics Data System (ADS)

    Liu, Weixin; Han, Yunfeng; Wang, Dayang; Zhao, An; Jin, Ningde

    2017-08-01

    The intention of the present study was to investigate the slug and churn turbulence characteristics of a vertical upward oil-gas-water three-phase flow. We firstly carried out a vertical upward oil-gas-water three-phase flow experiment in a 20-mm inner diameter (ID) pipe to measure the fluctuating signals of a rotating electric field conductance sensor under different flow patterns. Afterwards, typical flow patterns were identified with the aid of the texture structures in a cross recurrence plot. Recurrence quantitative analysis and multi-scale cross entropy (MSCE) algorithms were applied to investigate the turbulence characteristics of slug and churn flows with the varying flow parameters. The results suggest that with cross nonlinear analysis, the underlying dynamic characteristics in the evolution from slug to churn flow can be well understood. The present study provides a novel perspective for the analysis of the spatial-temporal evolution instability and complexity in oil-gas-water three-phase flow.

  7. Pneumothorax detection in chest radiographs using local and global texture signatures

    NASA Astrophysics Data System (ADS)

    Geva, Ofer; Zimmerman-Moreno, Gali; Lieberman, Sivan; Konen, Eli; Greenspan, Hayit

    2015-03-01

    A novel framework for automatic detection of pneumothorax abnormality in chest radiographs is presented. The suggested method is based on a texture analysis approach combined with supervised learning techniques. The proposed framework consists of two main steps: at first, a texture analysis process is performed for detection of local abnormalities. Labeled image patches are extracted in the texture analysis procedure following which local analysis values are incorporated into a novel global image representation. The global representation is used for training and detection of the abnormality at the image level. The presented global representation is designed based on the distinctive shape of the lung, taking into account the characteristics of typical pneumothorax abnormalities. A supervised learning process was performed on both the local and global data, leading to trained detection system. The system was tested on a dataset of 108 upright chest radiographs. Several state of the art texture feature sets were experimented with (Local Binary Patterns, Maximum Response filters). The optimal configuration yielded sensitivity of 81% with specificity of 87%. The results of the evaluation are promising, establishing the current framework as a basis for additional improvements and extensions.

  8. The effect of texture on the shaft surface on the sealing performance of radial lip seals

    NASA Astrophysics Data System (ADS)

    Guo, Fei; Jia, XiaoHong; Gao, Zhi; Wang, YuMing

    2014-07-01

    On the basis of elastohydrodynamic model, the present study numerically analyzes the effect of various microdimple texture shapes, namely, circular, square, oriented isosceles triangular, on the pumping rate and the friction torque of radial lip seals, and determines the microdimple texture shape that can produce positive pumping rate. The area ratio, depth and shape dimension of a single texture are the most important geometric parameters which influence the tribological performance. According to the selected texture shape, parameter analysis is conducted to determine the optimal combination for the above three parameters. Simultaneously, the simulated performances of radial lip seal with texture on the shaft surface are compared with those of the conventional lip seal without any texture on the shaft surface.

  9. Early classification of Alzheimer's disease using hippocampal texture from structural MRI

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Ding, Yanhui; Wang, Pan; Dou, Xuejiao; Zhou, Bo; Yao, Hongxiang; An, Ningyu; Zhang, Yongxin; Zhang, Xi; Liu, Yong

    2017-03-01

    Convergent evidence has been collected to support that Alzheimer's disease (AD) is associated with reduction in hippocampal volume based on anatomical magnetic resonance imaging (MRI) and impaired functional connectivity based on functional MRI. Radiomics texture analysis has been previously successfully used to identify MRI biomarkers of several diseases, including AD, mild cognitive impairment and multiple sclerosis. In this study, our goal was to determine if MRI hippocampal textures, including the intensity, shape, texture and wavelet features, could be served as an MRI biomarker of AD. For this purpose, the texture marker was trained and evaluated from MRI data of 48 AD and 39 normal samples. The result highlights the presence of hippocampal texture abnormalities in AD, and the possibility that texture may serve as a neuroimaging biomarker for AD.

  10. Characterizing commercial pureed foods: sensory, nutritional, and textural analysis.

    PubMed

    Ettinger, Laurel; Keller, Heather H; Duizer, Lisa M

    2014-01-01

    Dysphagia (swallowing impairment) is a common consequence of stroke and degenerative diseases such as Parkinson's and Alzheimer's. Limited research is available on pureed foods, specifically the qualities of commercial products. Because research has linked pureed foods, specifically in-house pureed products, to malnutrition due to inferior sensory and nutritional qualities, commercial purees also need to be investigated. Proprietary research on sensory attributes of commercial foods is available; however direct comparisons of commercial pureed foods have never been reported. Descriptive sensory analysis as well as nutritional and texture analysis of commercially pureed prepared products was performed using a trained descriptive analysis panel. The pureed foods tested included four brands of carrots, of turkey, and two of bread. Each commercial puree was analyzed for fat (Soxhlet), protein (Dumas), carbohydrate (proximate analysis), fiber (total fiber), and sodium content (Quantab titrator strips). The purees were also texturally compared with a line spread test and a back extrusion test. Differences were found in the purees for sensory attributes as well as nutritional and textural properties. Findings suggest that implementation of standards is required to reduce variability between products, specifically regarding the textural components of the products. This would ensure all commercial products available in Canada meet standards established as being considered safe for swallowing.

  11. Effects of image compression and degradation on an automatic diabetic retinopathy screening algorithm

    NASA Astrophysics Data System (ADS)

    Agurto, C.; Barriga, S.; Murray, V.; Pattichis, M.; Soliz, P.

    2010-03-01

    Diabetic retinopathy (DR) is one of the leading causes of blindness among adult Americans. Automatic methods for detection of the disease have been developed in recent years, most of them addressing the segmentation of bright and red lesions. In this paper we present an automatic DR screening system that does approach the problem through the segmentation of features. The algorithm determines non-diseased retinal images from those with pathology based on textural features obtained using multiscale Amplitude Modulation-Frequency Modulation (AM-FM) decompositions. The decomposition is represented as features that are the inputs to a classifier. The algorithm achieves 0.88 area under the ROC curve (AROC) for a set of 280 images from the MESSIDOR database. The algorithm is then used to analyze the effects of image compression and degradation, which will be present in most actual clinical or screening environments. Results show that the algorithm is insensitive to illumination variations, but high rates of compression and large blurring effects degrade its performance.

  12. Shadow Detection Based on Regions of Light Sources for Object Extraction in Nighttime Video

    PubMed Central

    Lee, Gil-beom; Lee, Myeong-jin; Lee, Woo-Kyung; Park, Joo-heon; Kim, Tae-Hwan

    2017-01-01

    Intelligent video surveillance systems detect pre-configured surveillance events through background modeling, foreground and object extraction, object tracking, and event detection. Shadow regions inside video frames sometimes appear as foreground objects, interfere with ensuing processes, and finally degrade the event detection performance of the systems. Conventional studies have mostly used intensity, color, texture, and geometric information to perform shadow detection in daytime video, but these methods lack the capability of removing shadows in nighttime video. In this paper, a novel shadow detection algorithm for nighttime video is proposed; this algorithm partitions each foreground object based on the object’s vertical histogram and screens out shadow objects by validating their orientations heading toward regions of light sources. From the experimental results, it can be seen that the proposed algorithm shows more than 93.8% shadow removal and 89.9% object extraction rates for nighttime video sequences, and the algorithm outperforms conventional shadow removal algorithms designed for daytime videos. PMID:28327515

  13. A fingerprint classification algorithm based on combination of local and global information

    NASA Astrophysics Data System (ADS)

    Liu, Chongjin; Fu, Xiang; Bian, Junjie; Feng, Jufu

    2011-12-01

    Fingerprint recognition is one of the most important technologies in biometric identification and has been wildly applied in commercial and forensic areas. Fingerprint classification, as the fundamental procedure in fingerprint recognition, can sharply decrease the quantity for fingerprint matching and improve the efficiency of fingerprint recognition. Most fingerprint classification algorithms are based on the number and position of singular points. Because the singular points detecting method only considers the local information commonly, the classification algorithms are sensitive to noise. In this paper, we propose a novel fingerprint classification algorithm combining the local and global information of fingerprint. Firstly we use local information to detect singular points and measure their quality considering orientation structure and image texture in adjacent areas. Furthermore the global orientation model is adopted to measure the reliability of singular points group. Finally the local quality and global reliability is weighted to classify fingerprint. Experiments demonstrate the accuracy and effectivity of our algorithm especially for the poor quality fingerprint images.

  14. The use of an ion-beam source to alter the surface morphology of biological implant materials

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.

    1978-01-01

    An electron bombardment, ion thruster was used as a neutralized-ion beam sputtering source to texture the surfaces of biological implant materials. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane were obtained.

  15. Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, M.; Ebel, D.S.

    2009-03-19

    We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length ofmore » {approx}15 {micro}m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 {micro}m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.« less

  16. Aesthetic perception of visual textures: a holistic exploration using texture analysis, psychological experiment, and perception modeling.

    PubMed

    Liu, Jianli; Lughofer, Edwin; Zeng, Xianyi

    2015-01-01

    Modeling human aesthetic perception of visual textures is important and valuable in numerous industrial domains, such as product design, architectural design, and decoration. Based on results from a semantic differential rating experiment, we modeled the relationship between low-level basic texture features and aesthetic properties involved in human aesthetic texture perception. First, we compute basic texture features from textural images using four classical methods. These features are neutral, objective, and independent of the socio-cultural context of the visual textures. Then, we conduct a semantic differential rating experiment to collect from evaluators their aesthetic perceptions of selected textural stimuli. In semantic differential rating experiment, eights pairs of aesthetic properties are chosen, which are strongly related to the socio-cultural context of the selected textures and to human emotions. They are easily understood and connected to everyday life. We propose a hierarchical feed-forward layer model of aesthetic texture perception and assign 8 pairs of aesthetic properties to different layers. Finally, we describe the generation of multiple linear and non-linear regression models for aesthetic prediction by taking dimensionality-reduced texture features and aesthetic properties of visual textures as dependent and independent variables, respectively. Our experimental results indicate that the relationships between each layer and its neighbors in the hierarchical feed-forward layer model of aesthetic texture perception can be fitted well by linear functions, and the models thus generated can successfully bridge the gap between computational texture features and aesthetic texture properties.

  17. Can Laws Be a Potential PET Image Texture Analysis Approach for Evaluation of Tumor Heterogeneity and Histopathological Characteristics in NSCLC?

    PubMed

    Karacavus, Seyhan; Yılmaz, Bülent; Tasdemir, Arzu; Kayaaltı, Ömer; Kaya, Eser; İçer, Semra; Ayyıldız, Oguzhan

    2018-04-01

    We investigated the association between the textural features obtained from 18 F-FDG images, metabolic parameters (SUVmax , SUVmean, MTV, TLG), and tumor histopathological characteristics (stage and Ki-67 proliferation index) in non-small cell lung cancer (NSCLC). The FDG-PET images of 67 patients with NSCLC were evaluated. MATLAB technical computing language was employed in the extraction of 137 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM), and Laws' texture filters. Textural features and metabolic parameters were statistically analyzed in terms of good discrimination power between tumor stages, and selected features/parameters were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). We showed that one textural feature (gray-level nonuniformity, GLN) obtained using GLRLM approach and nine textural features using Laws' approach were successful in discriminating all tumor stages, unlike metabolic parameters. There were significant correlations between Ki-67 index and some of the textural features computed using Laws' method (r = 0.6, p = 0.013). In terms of automatic classification of tumor stage, the accuracy was approximately 84% with k-NN classifier (k = 3) and SVM, using selected five features. Texture analysis of FDG-PET images has a potential to be an objective tool to assess tumor histopathological characteristics. The textural features obtained using Laws' approach could be useful in the discrimination of tumor stage.

  18. Decoupling of superposed textures in an electrically biased piezoceramic with a 100 preferred orientation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fancher, Chris M.; Blendell, John E.; Bowman, Keith J.

    2017-02-07

    A method leveraging Rietveld full-pattern texture analysis to decouple induced domain texture from a preferred grain orientation is presented in this paper. The proposed method is demonstrated by determining the induced domain texture in a polar polymorph of 100 oriented 0.91Bi 1/2Na 1/2TiO 3-0.07BaTiO 3-0.02K 0.5Na 0.5NbO 3. Domain textures determined using the present method are compared with results obtained via single peak fitting. Texture determined using single peak fitting estimated more domain alignment than that determined using the Rietveld based method. These results suggest that the combination of grain texture and phase transitions can lead to single peak fittingmore » under or over estimating domain texture. Finally, while demonstrated for a bulk piezoelectric, the proposed method can be applied to quantify domain textures in multi-component systems and thin films.« less

  19. Texture in steel plates revealed by laser ultrasonic surface acoustic waves velocity dispersion analysis.

    PubMed

    Yin, Anmin; Wang, Xiaochen; Glorieux, Christ; Yang, Quan; Dong, Feng; He, Fei; Wang, Yanlong; Sermeus, Jan; Van der Donck, Tom; Shu, Xuedao

    2017-07-01

    A photoacoustic, laser ultrasonics based approach in an Impulsive Stimulated Scattering (ISS) implementation was used to investigate the texture in polycrystalline metal plates. The angular dependence of the 'polycrystalline' surface acoustic wave (SAW) velocity measured along regions containing many grains was experimentally determined and compared with simulated results that were based on the angular dependence of the 'single grain' SAW velocity within single grains and the grain orientation distribution. The polycrystalline SAW velocities turn out to vary with texture. The SAW velocities and their angular variations for {110} texture were found to be larger than that the ones for {111} texture or the strong γ fiber texture. The SAW velocities for {001} texture were larger than for {111} texture, but with almost the same angular dependence. The results infer the feasibility to apply angular SAW angular dispersion measurements by laser ultrasonics for on-line texture monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Texture analysis applied to second harmonic generation image data for disease classification and development of a multi-view second harmonic generation imaging platform

    NASA Astrophysics Data System (ADS)

    Wen, Lianggong

    Many diseases, e.g. ovarian cancer, breast cancer and pulmonary fibrosis, are commonly associated with drastic alterations in surrounding connective tissue, and changes in the extracellular matrix (ECM) are associated with the vast majority of cellular processes in disease progression and carcinogenesis: cell differentiation, proliferation, biosynthetic ability, polarity, and motility. We use second harmonic generation (SHG) microscopy for imaging the ECM because it is a non-invasive, non-linear laser scanning technique with high sensitivity and specificity for visualizing fibrillar collagen. In this thesis, we are interested in developing imaging techniques to understand how the ECM, especially the collagen architecture, is remodeled in diseases. To quantitate remodeling, we implement a 3D texture analysis to delineate the collagen fibrillar morphology observed in SHG microscopy images of human normal and high grade malignant ovarian tissues. In the learning stage, a dictionary of "textons"---frequently occurring texture features that are identified by measuring the image response to a filter bank of various shapes, sizes, and orientations---is created. By calculating a representative model based on the texton distribution for each tissue type using a training set of respective mages, we then perform classification between normal and high grade malignant ovarian tissues classification based on the area under receiver operating characteristic curves (true positives versus false positives). The local analysis algorithm is a more general method to probe rapidly changing fibrillar morphologies than global analyses such as FFT. It is also more versatile than other texture approaches as the filter bank can be highly tailored to specific applications (e.g., different disease states) by creating customized libraries based on common image features. Further, we describe the development of a multi-view 3D SHG imaging platform. Unlike fluorescence microscopy, SHG excites intrinsic characteristics of collagen, bypassing the need for additional primary and secondary imaging labels. However, single view image collection from endogenous SHG contrast of collagen molecules is not "a true 3D technique", because collagen fibers oriented along the plane of the lasers used to excite them are invisible to the excitation The loss of information means that researchers cannot resolve the 3D structure of the ECM using this technique. We are developing a new, multi-view approach that involves rotation of agarose embedded sample in FEP tubing, so that the excitation beam path travels to from multiple angles, to reveal new insight in understanding the 3D collagen structure and its role in normal and diseased tissue.

  1. The analysis of image feature robustness using cometcloud

    PubMed Central

    Qi, Xin; Kim, Hyunjoo; Xing, Fuyong; Parashar, Manish; Foran, David J.; Yang, Lin

    2012-01-01

    The robustness of image features is a very important consideration in quantitative image analysis. The objective of this paper is to investigate the robustness of a range of image texture features using hematoxylin stained breast tissue microarray slides which are assessed while simulating different imaging challenges including out of focus, changes in magnification and variations in illumination, noise, compression, distortion, and rotation. We employed five texture analysis methods and tested them while introducing all of the challenges listed above. The texture features that were evaluated include co-occurrence matrix, center-symmetric auto-correlation, texture feature coding method, local binary pattern, and texton. Due to the independence of each transformation and texture descriptor, a network structured combination was proposed and deployed on the Rutgers private cloud. The experiments utilized 20 randomly selected tissue microarray cores. All the combinations of the image transformations and deformations are calculated, and the whole feature extraction procedure was completed in 70 minutes using a cloud equipped with 20 nodes. Center-symmetric auto-correlation outperforms all the other four texture descriptors but also requires the longest computational time. It is roughly 10 times slower than local binary pattern and texton. From a speed perspective, both the local binary pattern and texton features provided excellent performance for classification and content-based image retrieval. PMID:23248759

  2. Texture analysis of high-resolution FLAIR images for TLE

    NASA Astrophysics Data System (ADS)

    Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost

    2005-04-01

    This paper presents a study of the texture information of high-resolution FLAIR images of the brain with the aim of determining the abnormality and consequently the candidacy of the hippocampus for temporal lobe epilepsy (TLE) surgery. Intensity and volume features of the hippocampus from FLAIR images of the brain have been previously shown to be useful in detecting the abnormal hippocampus in TLE. However, the small size of the hippocampus may limit the texture information. High-resolution FLAIR images show more details of the abnormal intensity variations of the hippocampi and therefore are more suitable for texture analysis. We study and compare the low and high-resolution FLAIR images of six epileptic patients. The hippocampi are segmented manually by an expert from T1-weighted MR images. Then the segmented regions are mapped on the corresponding FLAIR images for texture analysis. The 2-D wavelet transforms of the hippocampi are employed for feature extraction. We compare the ability of the texture features from regular and high-resolution FLAIR images to distinguish normal and abnormal hippocampi. Intracranial EEG results as well as surgery outcome are used as gold standard. The results show that the intensity variations of the hippocampus are related to the abnormalities in the TLE.

  3. Three-dimensional ultrasound-based texture analysis of the effect of atorvastatin on carotid atherosclerosis

    NASA Astrophysics Data System (ADS)

    Awad, Joseph; Krasinski, Adam; Spence, David; Parraga, Grace; Fenster, Aaron

    2010-03-01

    Carotid atherosclerosis is the major cause of ischemic stroke, a leading cause of death and disability. This is driving the development of image analysis methods to quantitatively evaluate local arterial effects of potential treatments of carotid disease. Here we investigate the use of novel texture analysis tools to detect potential changes in the carotid arteries after statin therapy. Three-dimensional (3D) carotid ultrasound images were acquired from the left and right carotid arteries of 35 subjects (16 treated with 80 mg atorvastatin and 19 treated with placebo) at baseline and after 3 months of treatment. Two-hundred and seventy texture features were extracted from 3D ultrasound carotid artery images. These images previously had their vessel walls (VW) manually segmented. Highly ranked individual texture features were selected and compared to the VW volume (VWV) change using 3 measures: distance between classes, Wilcoxon rank sum test, and accuracy of the classifiers. Six classifiers were used. Using texture feature (L7R7) increases the average accuracy and area under the ROC curve to 74.4% and 0.72 respectively compared to 57.2% and 0.61 using VWV change. Thus, the results demonstrate that texture features are more sensitive in detecting drug effects on the carotid vessel wall than VWV change.

  4. Hierarchical colorant-based direct binary search halftoning.

    PubMed

    He, Zhen

    2010-07-01

    Colorant-based direct binary search (CB-DBS) halftoning proposed in provides an image quality benchmark for dispersed-dot halftoning algorithms. The objective of this paper is to further push the image quality limit. An algorithm called hierarchical colorant-based direct binary search (HCB-DBS) is developed in this paper. By appropriately integrating yellow colorant into dot-overlapping and dot-positioning controls, it is demonstrated that HCB-DBS can achieve better halftone texture of both individual and joint dot-color planes, without compromising the dot distribution of more visible halftone of cyan and magenta colorants. The input color specification is first converted from colorant space to dot-color space with minimum brightness variation principle for full dot-overlapping control. The dot-colors are then split into groups based upon dot visibility. Hierarchical monochrome DBS halftoning is applied to make dot-positioning decision for each group, constrained on the already generated halftone of the groups with higher priority. And dot-coloring is decided recursively with joint monochrome DBS halftoning constrained on the related total dot distribution. Experiments show HCB-DBS improves halftone texture for both individual and joint dot-color planes. And it reduces the halftone graininess and free of color mottle artifacts, comparing to CB-DBS.

  5. Content-based cell pathology image retrieval by combining different features

    NASA Astrophysics Data System (ADS)

    Zhou, Guangquan; Jiang, Lu; Luo, Limin; Bao, Xudong; Shu, Huazhong

    2004-04-01

    Content Based Color Cell Pathology Image Retrieval is one of the newest computer image processing applications in medicine. Recently, some algorithms have been developed to achieve this goal. Because of the particularity of cell pathology images, the result of the image retrieval based on single characteristic is not satisfactory. A new method for pathology image retrieval by combining color, texture and morphologic features to search cell images is proposed. Firstly, nucleus regions of leukocytes in images are automatically segmented by K-mean clustering method. Then single leukocyte region is detected by utilizing thresholding algorithm segmentation and mathematics morphology. The features that include color, texture and morphologic features are extracted from single leukocyte to represent main attribute in the search query. The features are then normalized because the numerical value range and physical meaning of extracted features are different. Finally, the relevance feedback system is introduced. So that the system can automatically adjust the weights of different features and improve the results of retrieval system according to the feedback information. Retrieval results using the proposed method fit closely with human perception and are better than those obtained with the methods based on single feature.

  6. Oil Spill Detection and Tracking Using Lipschitz Regularity and Multiscale Techniques in Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Ajadi, O. A.; Meyer, F. J.

    2014-12-01

    Automatic oil spill detection and tracking from Synthetic Aperture Radar (SAR) images is a difficult task, due in large part to the inhomogeneous properties of the sea surface, the high level of speckle inherent in SAR data, the complexity and the highly non-Gaussian nature of amplitude information, and the low temporal sampling that is often achieved with SAR systems. This research presents a promising new oil spill detection and tracking method that is based on time series of SAR images. Through the combination of a number of advanced image processing techniques, the develop approach is able to mitigate some of these previously mentioned limitations of SAR-based oil-spill detection and enables fully automatic spill detection and tracking across a wide range of spatial scales. The method combines an initial automatic texture analysis with a consecutive change detection approach based on multi-scale image decomposition. The first step of the approach, a texture transformation of the original SAR images, is performed in order to normalize the ocean background and enhance the contrast between oil-covered and oil-free ocean surfaces. The Lipschitz regularity (LR), a local texture parameter, is used here due to its proven ability to normalize the reflectivity properties of ocean water and maximize the visibly of oil in water. To calculate LR, the images are decomposed using two-dimensional continuous wavelet transform (2D-CWT), and transformed into Holder space to measure LR. After texture transformation, the now normalized images are inserted into our multi-temporal change detection algorithm. The multi-temporal change detection approach is a two-step procedure including (1) data enhancement and filtering and (2) multi-scale automatic change detection. The performance of the developed approach is demonstrated by an application to oil spill areas in the Gulf of Mexico. In this example, areas affected by oil spills were identified from a series of ALOS PALSAR images acquired in 2010. The comparison showed exceptional performance of our method. This method can be applied to emergency management and decision support systems with a need for real-time data, and it shows great potential for rapid data analysis in other areas, including volcano detection, flood boundaries, forest health, and wildfires.

  7. Textural signatures for wetland vegetation

    NASA Technical Reports Server (NTRS)

    Whitman, R. I.; Marcellus, K. L.

    1973-01-01

    This investigation indicates that unique textural signatures do exist for specific wetland communities at certain times in the growing season. When photographs with the proper resolution are obtained, the textural features can identify the spectral features of the vegetation community seen with lower resolution mapping data. The development of a matrix of optimum textural signatures is the goal of this research. Seasonal variations of spectral and textural features are particularly important when performing a vegetations analysis of fresh water marshes. This matrix will aid in flight planning, since expected seasonal variations and resolution requirements can be established prior to a given flight mission.

  8. Efficient Data Mining for Local Binary Pattern in Texture Image Analysis

    PubMed Central

    Kwak, Jin Tae; Xu, Sheng; Wood, Bradford J.

    2015-01-01

    Local binary pattern (LBP) is a simple gray scale descriptor to characterize the local distribution of the grey levels in an image. Multi-resolution LBP and/or combinations of the LBPs have shown to be effective in texture image analysis. However, it is unclear what resolutions or combinations to choose for texture analysis. Examining all the possible cases is impractical and intractable due to the exponential growth in a feature space. This limits the accuracy and time- and space-efficiency of LBP. Here, we propose a data mining approach for LBP, which efficiently explores a high-dimensional feature space and finds a relatively smaller number of discriminative features. The features can be any combinations of LBPs. These may not be achievable with conventional approaches. Hence, our approach not only fully utilizes the capability of LBP but also maintains the low computational complexity. We incorporated three different descriptors (LBP, local contrast measure, and local directional derivative measure) with three spatial resolutions and evaluated our approach using two comprehensive texture databases. The results demonstrated the effectiveness and robustness of our approach to different experimental designs and texture images. PMID:25767332

  9. Color and texture associations in voice-induced synesthesia

    PubMed Central

    Moos, Anja; Simmons, David; Simner, Julia; Smith, Rachel

    2013-01-01

    Voice-induced synesthesia, a form of synesthesia in which synesthetic perceptions are induced by the sounds of people's voices, appears to be relatively rare and has not been systematically studied. In this study we investigated the synesthetic color and visual texture perceptions experienced in response to different types of “voice quality” (e.g., nasal, whisper, falsetto). Experiences of three different groups—self-reported voice synesthetes, phoneticians, and controls—were compared using both qualitative and quantitative analysis in a study conducted online. Whilst, in the qualitative analysis, synesthetes used more color and texture terms to describe voices than either phoneticians or controls, only weak differences, and many similarities, between groups were found in the quantitative analysis. Notable consistent results between groups were the matching of higher speech fundamental frequencies with lighter and redder colors, the matching of “whispery” voices with smoke-like textures, and the matching of “harsh” and “creaky” voices with textures resembling dry cracked soil. These data are discussed in the light of current thinking about definitions and categorizations of synesthesia, especially in cases where individuals apparently have a range of different synesthetic inducers. PMID:24032023

  10. Model-based color halftoning using direct binary search.

    PubMed

    Agar, A Ufuk; Allebach, Jan P

    2005-12-01

    In this paper, we develop a model-based color halftoning method using the direct binary search (DBS) algorithm. Our method strives to minimize the perceived error between the continuous tone original color image and the color halftone image. We exploit the differences in how the human viewers respond to luminance and chrominance information and use the total squared error in a luminance/chrominance based space as our metric. Starting with an initial halftone, we minimize this error metric using the DBS algorithm. Our method also incorporates a measurement based color printer dot interaction model to prevent the artifacts due to dot overlap and to improve color texture quality. We calibrate our halftoning algorithm to ensure accurate colorant distributions in resulting halftones. We present the color halftones which demonstrate the efficacy of our method.

  11. Onboard Algorithms for Data Prioritization and Summarization of Aerial Imagery

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Hayden, David; Thompson, David R.; Castano, Rebecca

    2013-01-01

    Many current and future NASA missions are capable of collecting enormous amounts of data, of which only a small portion can be transmitted to Earth. Communications are limited due to distance, visibility constraints, and competing mission downlinks. Long missions and high-resolution, multispectral imaging devices easily produce data exceeding the available bandwidth. To address this situation computationally efficient algorithms were developed for analyzing science imagery onboard the spacecraft. These algorithms autonomously cluster the data into classes of similar imagery, enabling selective downlink of representatives of each class, and a map classifying the terrain imaged rather than the full dataset, reducing the volume of the downlinked data. A range of approaches was examined, including k-means clustering using image features based on color, texture, temporal, and spatial arrangement

  12. Spatially resolved texture and microstructure evolution of additively manufactured and gas gun deformed 304L stainless steel investigated by neutron diffraction and electron backscatter diffraction

    DOE PAGES

    Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn; ...

    2018-04-30

    In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less

  13. Spatially resolved texture and microstructure evolution of additively manufactured and gas gun deformed 304L stainless steel investigated by neutron diffraction and electron backscatter diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn

    In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less

  14. Investigation of quartz grain surface textures by atomic force microscopy for forensic analysis.

    PubMed

    Konopinski, D I; Hudziak, S; Morgan, R M; Bull, P A; Kenyon, A J

    2012-11-30

    This paper presents a study of quartz sand grain surface textures using atomic force microscopy (AFM) to image the surface. Until now scanning electron microscopy (SEM) has provided the primary technique used in the forensic surface texture analysis of quartz sand grains as a means of establishing the provenance of the grains for forensic reconstructions. The ability to independently corroborate the grain type classifications is desirable and provides additional weight to the findings of SEM analysis of the textures of quartz grains identified in forensic soil/sediment samples. AFM offers a quantitative means of analysis that complements SEM examination, and is a non-destructive technique that requires no sample preparation prior to scanning. It therefore has great potential to be used for forensic analysis where sample preservation is highly valuable. By taking quantitative topography scans, it is possible to produce 3D representations of microscopic surface textures and diagnostic features for examination. Furthermore, various empirical measures can be obtained from analysing the topography scans, including arithmetic average roughness, root-mean-square surface roughness, skewness, kurtosis, and multiple gaussian fits to height distributions. These empirical measures, combined with qualitative examination of the surfaces can help to discriminate between grain types and provide independent analysis that can corroborate the morphological grain typing based on the surface textures assigned using SEM. Furthermore, the findings from this study also demonstrate that quartz sand grain surfaces exhibit a statistically self-similar fractal nature that remains unchanged across scales. This indicates the potential for a further quantitative measure that could be utilised in the discrimination of quartz grains based on their provenance for forensic investigations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Comparative analysis of classification based algorithms for diabetes diagnosis using iris images.

    PubMed

    Samant, Piyush; Agarwal, Ravinder

    2018-01-01

    Photo-diagnosis is always an intriguing area for the researchers, with the advancement of image processing and computer machine vision techniques it have become more reliable and popular in recent years. The objective of this paper is to study the change in the features of iris, particularly irregularities in the pigmentation of certain areas of the iris with respect to diabetic health of an individual. Apart from the point that iris recognition concentrates on the overall structure of the iris, diagnostic techniques emphasises the local variations in the particular area of iris. Pre-image processing techniques have been applied to extract iris and thereafter, region of interest from the extracted iris have been cropped out. In order to observe the changes in the tissue pigmentation of region of interest, statistical, texture textural and wavelet features have been extracted. At the end, a comparison of accuracies of five different classifiers has been presented to classify two subject groups of diabetic and non-diabetic. Best classification accuracy has been calculated as 89.66% by the random forest classifier. Results have been shown the effectiveness and diagnostic significance of the proposed methodology. Presented piece of work offers a novel systemic perspective of non-invasive and automatic diabetic diagnosis.

  16. A weighted optimization approach to time-of-flight sensor fusion.

    PubMed

    Schwarz, Sebastian; Sjostrom, Marten; Olsson, Roger

    2014-01-01

    Acquiring scenery depth is a fundamental task in computer vision, with many applications in manufacturing, surveillance, or robotics relying on accurate scenery information. Time-of-flight cameras can provide depth information in real-time and overcome short-comings of traditional stereo analysis. However, they provide limited spatial resolution and sophisticated upscaling algorithms are sought after. In this paper, we present a sensor fusion approach to time-of-flight super resolution, based on the combination of depth and texture sources. Unlike other texture guided approaches, we interpret the depth upscaling process as a weighted energy optimization problem. Three different weights are introduced, employing different available sensor data. The individual weights address object boundaries in depth, depth sensor noise, and temporal consistency. Applied in consecutive order, they form three weighting strategies for time-of-flight super resolution. Objective evaluations show advantages in depth accuracy and for depth image based rendering compared with state-of-the-art depth upscaling. Subjective view synthesis evaluation shows a significant increase in viewer preference by a factor of four in stereoscopic viewing conditions. To the best of our knowledge, this is the first extensive subjective test performed on time-of-flight depth upscaling. Objective and subjective results proof the suitability of our approach to time-of-flight super resolution approach for depth scenery capture.

  17. Machine learning based brain tumour segmentation on limited data using local texture and abnormality.

    PubMed

    Bonte, Stijn; Goethals, Ingeborg; Van Holen, Roel

    2018-05-07

    Brain tumour segmentation in medical images is a very challenging task due to the large variety in tumour shape, position, appearance, scanning modalities and scanning parameters. Most existing segmentation algorithms use information from four different MRI-sequences, but since this is often not available, there is need for a method able to delineate the different tumour tissues based on a minimal amount of data. We present a novel approach using a Random Forests model combining voxelwise texture and abnormality features on a contrast-enhanced T1 and FLAIR MRI. We transform the two scans into 275 feature maps. A random forest model next calculates the probability to belong to 4 tumour classes or 5 normal classes. Afterwards, a dedicated voxel clustering algorithm provides the final tumour segmentation. We trained our method on the BraTS 2013 database and validated it on the larger BraTS 2017 dataset. We achieve median Dice scores of 40.9% (low-grade glioma) and 75.0% (high-grade glioma) to delineate the active tumour, and 68.4%/80.1% for the total abnormal region including edema. Our fully automated brain tumour segmentation algorithm is able to delineate contrast enhancing tissue and oedema with high accuracy based only on post-contrast T1-weighted and FLAIR MRI, whereas for non-enhancing tumour tissue and necrosis only moderate results are obtained. This makes the method especially suitable for high-grade glioma. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Remote sensing imagery classification using multi-objective gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie

    2016-10-01

    Simultaneous optimization of different validity measures can capture different data characteristics of remote sensing imagery (RSI) and thereby achieving high quality classification results. In this paper, two conflicting cluster validity indices, the Xie-Beni (XB) index and the fuzzy C-means (FCM) (Jm) measure, are integrated with a diversity-enhanced and memory-based multi-objective gravitational search algorithm (DMMOGSA) to present a novel multi-objective optimization based RSI classification method. In this method, the Gabor filter method is firstly implemented to extract texture features of RSI. Then, the texture features are syncretized with the spectral features to construct the spatial-spectral feature space/set of the RSI. Afterwards, cluster of the spectral-spatial feature set is carried out on the basis of the proposed method. To be specific, cluster centers are randomly generated initially. After that, the cluster centers are updated and optimized adaptively by employing the DMMOGSA. Accordingly, a set of non-dominated cluster centers are obtained. Therefore, numbers of image classification results of RSI are produced and users can pick up the most promising one according to their problem requirements. To quantitatively and qualitatively validate the effectiveness of the proposed method, the proposed classification method was applied to classifier two aerial high-resolution remote sensing imageries. The obtained classification results are compared with that produced by two single cluster validity index based and two state-of-the-art multi-objective optimization algorithms based classification results. Comparison results show that the proposed method can achieve more accurate RSI classification.

  19. A small-scale hyperacute compound eye featuring active eye tremor: application to visual stabilization, target tracking, and short-range odometry.

    PubMed

    Colonnier, Fabien; Manecy, Augustin; Juston, Raphaël; Mallot, Hanspeter; Leitel, Robert; Floreano, Dario; Viollet, Stéphane

    2015-02-25

    In this study, a miniature artificial compound eye (15 mm in diameter) called the curved artificial compound eye (CurvACE) was endowed for the first time with hyperacuity, using similar micro-movements to those occurring in the fly's compound eye. A periodic micro-scanning movement of only a few degrees enables the vibrating compound eye to locate contrasting objects with a 40-fold greater resolution than that imposed by the interommatidial angle. In this study, we developed a new algorithm merging the output of 35 local processing units consisting of adjacent pairs of artificial ommatidia. The local measurements performed by each pair are processed in parallel with very few computational resources, which makes it possible to reach a high refresh rate of 500 Hz. An aerial robotic platform with two degrees of freedom equipped with the active CurvACE placed over naturally textured panels was able to assess its linear position accurately with respect to the environment thanks to its efficient gaze stabilization system. The algorithm was found to perform robustly at different light conditions as well as distance variations relative to the ground and featured small closed-loop positioning errors of the robot in the range of 45 mm. In addition, three tasks of interest were performed without having to change the algorithm: short-range odometry, visual stabilization, and tracking contrasting objects (hands) moving over a textured background.

  20. Domain Engineered Magnetoelectric Thin Films for High Sensitivity Resonant Magnetic Field Sensors

    DTIC Science & Technology

    2011-12-01

    synthesis and texture analysis Sol-gel deposition and RF sputtering process was developed for deposition of PZT on Pt/Ti/Si02/Si (hereafter...well textured (i.e. with preferred crystalline orientation). To texture and obtain crack-free thick PZT RF films, we employed pre- treated substrates...and post-deposition annealing. One pre-treatment was the use of seed layer of textured PZT sol-gel thin film of thickness 65-85nm [1]. • Oean

Top