Wavelet-based image analysis system for soil texture analysis
NASA Astrophysics Data System (ADS)
Sun, Yun; Long, Zhiling; Jang, Ping-Rey; Plodinec, M. John
2003-05-01
Soil texture is defined as the relative proportion of clay, silt and sand found in a given soil sample. It is an important physical property of soil that affects such phenomena as plant growth and agricultural fertility. Traditional methods used to determine soil texture are either time consuming (hydrometer), or subjective and experience-demanding (field tactile evaluation). Considering that textural patterns observed at soil surfaces are uniquely associated with soil textures, we propose an innovative approach to soil texture analysis, in which wavelet frames-based features representing texture contents of soil images are extracted and categorized by applying a maximum likelihood criterion. The soil texture analysis system has been tested successfully with an accuracy of 91% in classifying soil samples into one of three general categories of soil textures. In comparison with the common methods, this wavelet-based image analysis approach is convenient, efficient, fast, and objective.
Objective measurement of bread crumb texture
NASA Astrophysics Data System (ADS)
Wang, Jian; Coles, Graeme D.
1995-01-01
Evaluation of bread crumb texture plays an important role in judging bread quality. This paper discusses the application of image analysis methods to the objective measurement of the visual texture of bread crumb. The application of Fast Fourier Transform and mathematical morphology methods have been discussed by the authors in their previous work, and a commercial bread texture measurement system has been developed. Based on the nature of bread crumb texture, we compare the advantages and disadvantages of the two methods, and a third method based on features derived directly from statistics of edge density in local windows of the bread image. The analysis of various methods and experimental results provides an insight into the characteristics of the bread texture image and interconnection between texture measurement algorithms. The usefulness of the application of general stochastic process modelling of texture is thus revealed; it leads to more reliable and accurate evaluation of bread crumb texture. During the development of these methods, we also gained useful insights into how subjective judges form opinions about bread visual texture. These are discussed here.
Research of second harmonic generation images based on texture analysis
NASA Astrophysics Data System (ADS)
Liu, Yao; Li, Yan; Gong, Haiming; Zhu, Xiaoqin; Huang, Zufang; Chen, Guannan
2014-09-01
Texture analysis plays a crucial role in identifying objects or regions of interest in an image. It has been applied to a variety of medical image processing, ranging from the detection of disease and the segmentation of specific anatomical structures, to differentiation between healthy and pathological tissues. Second harmonic generation (SHG) microscopy as a potential noninvasive tool for imaging biological tissues has been widely used in medicine, with reduced phototoxicity and photobleaching. In this paper, we clarified the principles of texture analysis including statistical, transform, structural and model-based methods and gave examples of its applications, reviewing studies of the technique. Moreover, we tried to apply texture analysis to the SHG images for the differentiation of human skin scar tissues. Texture analysis method based on local binary pattern (LBP) and wavelet transform was used to extract texture features of SHG images from collagen in normal and abnormal scars, and then the scar SHG images were classified into normal or abnormal ones. Compared with other texture analysis methods with respect to the receiver operating characteristic analysis, LBP combined with wavelet transform was demonstrated to achieve higher accuracy. It can provide a new way for clinical diagnosis of scar types. At last, future development of texture analysis in SHG images were discussed.
Filomena-Ambrosio, Annamaria; Quintanilla-Carvajal, María Ximena; Ana-Puig; Hernando, Isabel; Hernández-Carrión, María; Sotelo-Díaz, Indira
2016-01-01
Surimi gel is a food product traditionally manufactured from marine species; it has functional features including a specific texture and a high protein concentration. The objective of this study was to evaluate and compare the effect of the ultrasound extraction protein method and different stabilizers on the water-holding capacity (WHC), texture, and microstructure of surimi from panga and tilapia to potentially increase the value of these species. For this purpose, WHC was determined and texture profile analysis, scanning electron microscopy, and texture image analysis were carried out. The results showed that the ultrasound method and the sodium citrate can be used to obtain surimi gels from panga and tilapia with optimal textural properties such as the hardness and chewiness. Moreover, image analysis is recommended as a quantitative and non-invasive technique to evaluate the microstructure and texture image properties of surimis prepared using different processing methods and stabilizers. © The Author(s) 2015.
Aural analysis of image texture via cepstral filtering and sonification
NASA Astrophysics Data System (ADS)
Rangayyan, Rangaraj M.; Martins, Antonio C. G.; Ruschioni, Ruggero A.
1996-03-01
Texture plays an important role in image analysis and understanding, with many applications in medical imaging and computer vision. However, analysis of texture by image processing is a rather difficult issue, with most techniques being oriented towards statistical analysis which may not have readily comprehensible perceptual correlates. We propose new methods for auditory display (AD) and sonification of (quasi-) periodic texture (where a basic texture element or `texton' is repeated over the image field) and random texture (which could be modeled as filtered or `spot' noise). Although the AD designed is not intended to be speech- like or musical, we draw analogies between the two types of texture mentioned above and voiced/unvoiced speech, and design a sonification algorithm which incorporates physical and perceptual concepts of texture and speech. More specifically, we present a method for AD of texture where the projections of the image at various angles (Radon transforms or integrals) are mapped to audible signals and played in sequence. In the case of random texture, the spectral envelopes of the projections are related to the filter spot characteristics, and convey the essential information for texture discrimination. In the case of periodic texture, the AD provides timber and pitch related to the texton and periodicity. In another procedure for sonification of periodic texture, we propose to first deconvolve the image using cepstral analysis to extract information about the texton and horizontal and vertical periodicities. The projections of individual textons at various angles are used to create a voiced-speech-like signal with each projection mapped to a basic wavelet, the horizontal period to pitch, and the vertical period to rhythm on a longer time scale. The sound pattern then consists of a serial, melody-like sonification of the patterns for each projection. We believe that our approaches provide the much-desired `natural' connection between the image data and the sounds generated. We have evaluated the sonification techniques with a number of synthetic textures. The sound patterns created have demonstrated the potential of the methods in distinguishing between different types of texture. We are investigating the application of these techniques to auditory analysis of texture in medical images such as magnetic resonance images.
NASA Astrophysics Data System (ADS)
Novaković, S.; Tomašević, I.
2017-09-01
Texture is one of the most important characteristics of meat and we can explain it as the human physiological-psychological awareness of a number of rheological and other properties of foods and their relations. In this paper, we discuss instrumental measurement of texture by Warner-Bratzler shear force (WBSF) and texture profile analysis (TPA). The conditions for using the device are detailed in WBSF measurements, and the influence of different parameters on the execution of the method and final results are shown. After that, the main disadvantages are reflected in the non-standardized method. Also, we introduce basic texture parameters which connect and separate TPA and WBSF methods and mention contemporary methods with their main advantage.
Texture analysis based on the Hermite transform for image classification and segmentation
NASA Astrophysics Data System (ADS)
Estudillo-Romero, Alfonso; Escalante-Ramirez, Boris; Savage-Carmona, Jesus
2012-06-01
Texture analysis has become an important task in image processing because it is used as a preprocessing stage in different research areas including medical image analysis, industrial inspection, segmentation of remote sensed imaginary, multimedia indexing and retrieval. In order to extract visual texture features a texture image analysis technique is presented based on the Hermite transform. Psychovisual evidence suggests that the Gaussian derivatives fit the receptive field profiles of mammalian visual systems. The Hermite transform describes locally basic texture features in terms of Gaussian derivatives. Multiresolution combined with several analysis orders provides detection of patterns that characterizes every texture class. The analysis of the local maximum energy direction and steering of the transformation coefficients increase the method robustness against the texture orientation. This method presents an advantage over classical filter bank design because in the latter a fixed number of orientations for the analysis has to be selected. During the training stage, a subset of the Hermite analysis filters is chosen in order to improve the inter-class separability, reduce dimensionality of the feature vectors and computational cost during the classification stage. We exhaustively evaluated the correct classification rate of real randomly selected training and testing texture subsets using several kinds of common used texture features. A comparison between different distance measurements is also presented. Results of the unsupervised real texture segmentation using this approach and comparison with previous approaches showed the benefits of our proposal.
Texture segmentation by genetic programming.
Song, Andy; Ciesielski, Vic
2008-01-01
This paper describes a texture segmentation method using genetic programming (GP), which is one of the most powerful evolutionary computation algorithms. By choosing an appropriate representation texture, classifiers can be evolved without computing texture features. Due to the absence of time-consuming feature extraction, the evolved classifiers enable the development of the proposed texture segmentation algorithm. This GP based method can achieve a segmentation speed that is significantly higher than that of conventional methods. This method does not require a human expert to manually construct models for texture feature extraction. In an analysis of the evolved classifiers, it can be seen that these GP classifiers are not arbitrary. Certain textural regularities are captured by these classifiers to discriminate different textures. GP has been shown in this study as a feasible and a powerful approach for texture classification and segmentation, which are generally considered as complex vision tasks.
Description of textures by a structural analysis.
Tomita, F; Shirai, Y; Tsuji, S
1982-02-01
A structural analysis system for describing natural textures is introduced. The analyzer automatically extracts the texture elements in an input image, measures their properties, classifies them into some distinctive classes (one ``ground'' class and some ``figure'' classes), and computes the distributions of the gray level, the shape, and the placement of the texture elements in each class. These descriptions are used for classification of texture images. An analysis-by-synthesis method for evaluating texture analyzers is also presented. We propose a synthesizer which generates a texture image based on the descriptions. By comparing the reconstructed image with the original one, we can see what information is preserved and what is lost in the descriptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fancher, Chris M.; Blendell, John E.; Bowman, Keith J.
2017-02-07
A method leveraging Rietveld full-pattern texture analysis to decouple induced domain texture from a preferred grain orientation is presented in this paper. The proposed method is demonstrated by determining the induced domain texture in a polar polymorph of 100 oriented 0.91Bi 1/2Na 1/2TiO 3-0.07BaTiO 3-0.02K 0.5Na 0.5NbO 3. Domain textures determined using the present method are compared with results obtained via single peak fitting. Texture determined using single peak fitting estimated more domain alignment than that determined using the Rietveld based method. These results suggest that the combination of grain texture and phase transitions can lead to single peak fittingmore » under or over estimating domain texture. Finally, while demonstrated for a bulk piezoelectric, the proposed method can be applied to quantify domain textures in multi-component systems and thin films.« less
Texture analysis of pulmonary parenchyma in normal and emphysematous lung
NASA Astrophysics Data System (ADS)
Uppaluri, Renuka; Mitsa, Theophano; Hoffman, Eric A.; McLennan, Geoffrey; Sonka, Milan
1996-04-01
Tissue characterization using texture analysis is gaining increasing importance in medical imaging. We present a completely automated method for discriminating between normal and emphysematous regions from CT images. This method involves extracting seventeen features which are based on statistical, hybrid and fractal texture models. The best subset of features is derived from the training set using the divergence technique. A minimum distance classifier is used to classify the samples into one of the two classes--normal and emphysema. Sensitivity and specificity and accuracy values achieved were 80% or greater in most cases proving that texture analysis holds great promise in identifying emphysema.
NASA Astrophysics Data System (ADS)
Sierra, Heidy; Brooks, Dana; Dimarzio, Charles
2010-07-01
The extraction of 3-D morphological information about thick objects is explored in this work. We extract this information from 3-D differential interference contrast (DIC) images by applying a texture detection method. Texture extraction methods have been successfully used in different applications to study biological samples. A 3-D texture image is obtained by applying a local entropy-based texture extraction method. The use of this method to detect regions of blastocyst mouse embryos that are used in assisted reproduction techniques such as in vitro fertilization is presented as an example. Results demonstrate the potential of using texture detection methods to improve morphological analysis of thick samples, which is relevant to many biomedical and biological studies. Fluorescence and optical quadrature microscope phase images are used for validation.
Independent Component Analysis of Textures
NASA Technical Reports Server (NTRS)
Manduchi, Roberto; Portilla, Javier
2000-01-01
A common method for texture representation is to use the marginal probability densities over the outputs of a set of multi-orientation, multi-scale filters as a description of the texture. We propose a technique, based on Independent Components Analysis, for choosing the set of filters that yield the most informative marginals, meaning that the product over the marginals most closely approximates the joint probability density function of the filter outputs. The algorithm is implemented using a steerable filter space. Experiments involving both texture classification and synthesis show that compared to Principal Components Analysis, ICA provides superior performance for modeling of natural and synthetic textures.
Mining textural knowledge in biological images: Applications, methods and trends.
Di Cataldo, Santa; Ficarra, Elisa
2017-01-01
Texture analysis is a major task in many areas of computer vision and pattern recognition, including biological imaging. Indeed, visual textures can be exploited to distinguish specific tissues or cells in a biological sample, to highlight chemical reactions between molecules, as well as to detect subcellular patterns that can be evidence of certain pathologies. This makes automated texture analysis fundamental in many applications of biomedicine, such as the accurate detection and grading of multiple types of cancer, the differential diagnosis of autoimmune diseases, or the study of physiological processes. Due to their specific characteristics and challenges, the design of texture analysis systems for biological images has attracted ever-growing attention in the last few years. In this paper, we perform a critical review of this important topic. First, we provide a general definition of texture analysis and discuss its role in the context of bioimaging, with examples of applications from the recent literature. Then, we review the main approaches to automated texture analysis, with special attention to the methods of feature extraction and encoding that can be successfully applied to microscopy images of cells or tissues. Our aim is to provide an overview of the state of the art, as well as a glimpse into the latest and future trends of research in this area.
Texture analysis of Napoleonic War Era copper bolts
NASA Astrophysics Data System (ADS)
Malamud, Florencia; Northover, Shirley; James, Jon; Northover, Peter; Kelleher, Joe
2016-04-01
Neutron diffraction techniques are suitable for volume texture analyses due to high penetration of thermal neutrons in most materials. We have implemented a new data analysis methodology that employed the spatial resolution achievable by a time-of-flight neutron strain scanner to non-destructively determine the crystallographic texture at selected locations within a macroscopic sample. The method is based on defining the orientation distribution function of the crystallites from several incomplete pole figures, and it has been implemented on ENGIN-X, a neutron strain scanner at the Isis Facility in the UK. Here, we demonstrate the application of this new texture analysis methodology in determining the crystallographic texture at selected locations within museum quality archaeological objects up to 1 m in length. The results were verified using samples of similar, but less valuable, objects by comparing the results of applying this method with those obtained using both electron backscatter diffraction and X-ray diffraction on their cross sections.
X-ray diffraction analysis of residual stresses in textured ZnO thin films
NASA Astrophysics Data System (ADS)
Dobročka, E.; Novák, P.; Búc, D.; Harmatha, L.; Murín, J.
2017-02-01
Residual stresses are commonly generated in thin films during the deposition process and can influence the film properties. Among a number of techniques developed for stress analysis, X-ray diffraction methods, especially the grazing incidence set-up, are of special importance due to their capability to analyze the stresses in very thin layers as well as to investigate the depth variation of the stresses. In this contribution a method combining multiple {hkl} and multiple χ modes of X-ray diffraction stress analysis in grazing incidence set-up is used for the measurement of residual stress in strongly textured ZnO thin films. The method improves the precision of the stress evaluation in textured samples. Because the measurements are performed at very low incidence angles, the effect of refraction of X-rays on the measured stress is analyzed in details for the general case of non-coplanar geometry. It is shown that this effect cannot be neglected if the angle of incidence approaches the critical angle. The X-ray stress factors are calculated for hexagonal fiber-textured ZnO for the Reuss model of grain-interaction and the effect of texture on the stress factors is analyzed. The texture in the layer is modelled by Gaussian distribution function. Numerical results indicate that in the process of stress evaluation the Reuss model can be replaced by much simpler crystallite group method if the standard deviation of Gaussian describing the texture is less than 6°. The results can be adapted for fiber-textured films of various hexagonal materials.
Brynolfsson, Patrik; Nilsson, David; Torheim, Turid; Asklund, Thomas; Karlsson, Camilla Thellenberg; Trygg, Johan; Nyholm, Tufve; Garpebring, Anders
2017-06-22
In recent years, texture analysis of medical images has become increasingly popular in studies investigating diagnosis, classification and treatment response assessment of cancerous disease. Despite numerous applications in oncology and medical imaging in general, there is no consensus regarding texture analysis workflow, or reporting of parameter settings crucial for replication of results. The aim of this study was to assess how sensitive Haralick texture features of apparent diffusion coefficient (ADC) MR images are to changes in five parameters related to image acquisition and pre-processing: noise, resolution, how the ADC map is constructed, the choice of quantization method, and the number of gray levels in the quantized image. We found that noise, resolution, choice of quantization method and the number of gray levels in the quantized images had a significant influence on most texture features, and that the effect size varied between different features. Different methods for constructing the ADC maps did not have an impact on any texture feature. Based on our results, we recommend using images with similar resolutions and noise levels, using one quantization method, and the same number of gray levels in all quantized images, to make meaningful comparisons of texture feature results between different subjects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, M. B.; Carballido-Gamio, J.; Fritscher, K.
2009-11-15
Purpose: Texture analysis of femur radiographs may serve as a potential low cost technique to predict osteoporotic fracture risk and has received considerable attention in the past years. A further application of this technique may be the measurement of the quality of specific bone compartments to provide useful information for treatment of bone fractures. Two challenges of texture analysis are the selection of the best suitable texture measure and reproducible placement of regions of interest (ROIs). The goal of this in vitro study was to automatically place ROIs in radiographs of proximal femur specimens and to calculate correlations between variousmore » different texture analysis methods and the femurs' anchorage strength. Methods: Radiographs were obtained from 14 femoral specimens and bone mineral density (BMD) was measured in the femoral neck. Biomechanical testing was performed to assess the anchorage strength in terms of failure load, breakaway torque, and number of cycles. Images were segmented using a framework that is based on the usage of level sets and statistical in-shape models. Five ROIs were automatically placed in the head, upper and lower neck, trochanteric, and shaft compartment in an atlas subject. All other subjects were registered rigidly, affinely, and nonlinearly, and the resulting transformation was used to map the five ROIs onto the individual femora. Results: In each ROI, texture features were extracted using gray level co-occurence matrices (GLCM), third-order GLCM, morphological gradients (MGs), Minkowski dimensions (MDs), Minkowski functionals (MFs), Gaussian Markov random fields, and scaling index method (SIM). Coefficients of determination for each texture feature with parameters of anchorage strength were computed. In a stepwise multiregression analysis, the most predictive parameters were identified in different models. Texture features were highly correlated with anchorage strength estimated by the failure load of up to R{sup 2}=0.61 (MF and MG features, p<0.01) and were partially independent of BMD. The correlations were dependent on the choice of the ROI and the texture measure. The best predictive multiregression model for failure load R{sub adj}{sup 2}=0.86 (p<0.001) included a set of recently developed texture methods (MF and SIM) but excluded bone mineral density and commonly used texture measures. Conclusions: The results suggest that texture information contained in trabecular bone structure visualized on radiographs may predict whether an implant anchorage can be used and may determine the local bone quality from preoperative radiographs.« less
Conjoint representation of texture ensemble and location in the parahippocampal place area.
Park, Jeongho; Park, Soojin
2017-04-01
Texture provides crucial information about the category or identity of a scene. Nonetheless, not much is known about how the texture information in a scene is represented in the brain. Previous studies have shown that the parahippocampal place area (PPA), a scene-selective part of visual cortex, responds to simple patches of texture ensemble. However, in natural scenes textures exist in spatial context within a scene. Here we tested two hypotheses that make different predictions on how textures within a scene context are represented in the PPA. The Texture-Only hypothesis suggests that the PPA represents texture ensemble (i.e., the kind of texture) as is, irrespective of its location in the scene. On the other hand, the Texture and Location hypothesis suggests that the PPA represents texture and its location within a scene (e.g., ceiling or wall) conjointly. We tested these two hypotheses across two experiments, using different but complementary methods. In experiment 1 , by using multivoxel pattern analysis (MVPA) and representational similarity analysis, we found that the representational similarity of the PPA activation patterns was significantly explained by the Texture-Only hypothesis but not by the Texture and Location hypothesis. In experiment 2 , using a repetition suppression paradigm, we found no repetition suppression for scenes that had the same texture ensemble but differed in location (supporting the Texture and Location hypothesis). On the basis of these results, we propose a framework that reconciles contrasting results from MVPA and repetition suppression and draw conclusions about how texture is represented in the PPA. NEW & NOTEWORTHY This study investigates how the parahippocampal place area (PPA) represents texture information within a scene context. We claim that texture is represented in the PPA at multiple levels: the texture ensemble information at the across-voxel level and the conjoint information of texture and its location at the within-voxel level. The study proposes a working hypothesis that reconciles contrasting results from multivoxel pattern analysis and repetition suppression, suggesting that the methods are complementary to each other but not necessarily interchangeable. Copyright © 2017 the American Physiological Society.
Fast Image Texture Classification Using Decision Trees
NASA Technical Reports Server (NTRS)
Thompson, David R.
2011-01-01
Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.
Bone marrow cavity segmentation using graph-cuts with wavelet-based texture feature.
Shigeta, Hironori; Mashita, Tomohiro; Kikuta, Junichi; Seno, Shigeto; Takemura, Haruo; Ishii, Masaru; Matsuda, Hideo
2017-10-01
Emerging bioimaging technologies enable us to capture various dynamic cellular activities [Formula: see text]. As large amounts of data are obtained these days and it is becoming unrealistic to manually process massive number of images, automatic analysis methods are required. One of the issues for automatic image segmentation is that image-taking conditions are variable. Thus, commonly, many manual inputs are required according to each image. In this paper, we propose a bone marrow cavity (BMC) segmentation method for bone images as BMC is considered to be related to the mechanism of bone remodeling, osteoporosis, and so on. To reduce manual inputs to segment BMC, we classified the texture pattern using wavelet transformation and support vector machine. We also integrated the result of texture pattern classification into the graph-cuts-based image segmentation method because texture analysis does not consider spatial continuity. Our method is applicable to a particular frame in an image sequence in which the condition of fluorescent material is variable. In the experiment, we evaluated our method with nine types of mother wavelets and several sets of scale parameters. The proposed method with graph-cuts and texture pattern classification performs well without manual inputs by a user.
Wu, Shulian; Huang, Yudian; Li, Hui; Wang, Yunxia; Zhang, Xiaoman
2015-01-01
Dermatofibrosarcoma protuberans (DFSP) is a skin cancer usually mistaken as other benign tumors. Abnormal DFSP resection results in tumor recurrence. Quantitative characterization of collagen alteration on the skin tumor is essential for developing a diagnostic technique. In this study, second harmonic generation (SHG) microscopy was performed to obtain images of the human DFSP skin and normal skin. Subsequently, structure and texture analysis methods were applied to determine the differences in skin texture characteristics between the two skin types, and the link between collagen alteration and tumor was established. Results suggest that combining SHG microscopy and texture analysis methods is a feasible and effective method to describe the characteristics of skin tumor like DFSP. © Wiley Periodicals, Inc.
Rock classification based on resistivity patterns in electrical borehole wall images
NASA Astrophysics Data System (ADS)
Linek, Margarete; Jungmann, Matthias; Berlage, Thomas; Pechnig, Renate; Clauser, Christoph
2007-06-01
Electrical borehole wall images represent grey-level-coded micro-resistivity measurements at the borehole wall. Different scientific methods have been implemented to transform image data into quantitative log curves. We introduce a pattern recognition technique applying texture analysis, which uses second-order statistics based on studying the occurrence of pixel pairs. We calculate so-called Haralick texture features such as contrast, energy, entropy and homogeneity. The supervised classification method is used for assigning characteristic texture features to different rock classes and assessing the discriminative power of these image features. We use classifiers obtained from training intervals to characterize the entire image data set recovered in ODP hole 1203A. This yields a synthetic lithology profile based on computed texture data. We show that Haralick features accurately classify 89.9% of the training intervals. We obtained misclassification for vesicular basaltic rocks. Hence, further image analysis tools are used to improve the classification reliability. We decompose the 2D image signal by the application of wavelet transformation in order to enhance image objects horizontally, diagonally and vertically. The resulting filtered images are used for further texture analysis. This combined classification based on Haralick features and wavelet transformation improved our classification up to a level of 98%. The application of wavelet transformation increases the consistency between standard logging profiles and texture-derived lithology. Texture analysis of borehole wall images offers the potential to facilitate objective analysis of multiple boreholes with the same lithology.
NASA Astrophysics Data System (ADS)
Ivanova, T. M.; Serebryany, V. N.
2017-12-01
The component fit method in quantitative texture analysis assumes that the texture of the polycrystalline sample can be represented by a superposition of weighted standard distributions those are characterized by position in the orientation space, shape and sharpness of the scattering. The components of the peak and axial shapes are usually used. It is known that an axial texture develops in materials subjected to direct pressing. In this paper we considered the possibility of modelling a texture of a magnesium sample subjected to equal-channel angular pressing with axial components only. The results obtained make it possible to conclude that ECAP is also a process leading to the appearance of an axial texture in magnesium alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, M; Fan, T; Duan, J
2015-06-15
Purpose: Prospectively assess the potential utility of texture analysis for differentiation of central cancer from atelectasis. Methods: 0 consecutive central lung cancer patients who were referred for CT imaging and PET-CT were enrolled. Radiotherapy doctor delineate the tumor and atelectasis according to the fusion imaging based on CT image and PET-CT image. The texture parameters (such as energy, correlation, sum average, difference average, difference entropy), were obtained respectively to quantitatively discriminate tumor and atelectasis based on gray level co-occurrence matrix (GLCM) Results: The texture analysis results showed that the parameters of correlation and sum average had an obviously statistical significance(P<0.05).more » Conclusion: the results of this study indicate that texture analysis may be useful for the differentiation of central lung cancer and atelectasis.« less
An application of Chan-Vese method used to determine the ROI area in CT lung screening
NASA Astrophysics Data System (ADS)
Prokop, Paweł; Surtel, Wojciech
2016-09-01
The article presents two approaches of determining the ROI area in CT lung screening. First approach is based on a classic method of framing the image in order to determine the ROI by using a MaZda tool. Second approach is based on segmentation of CT images of the lungs and reducing the redundant information from the image. Of the two approaches of an Active Contour, it was decided to choose the Chan-Vese method. In order to determine the effectiveness of the approach, it was performed an analysis of received ROI texture and extraction of textural features. In order to determine the effectiveness of the method, it was performed an analysis of the received ROI textures and extraction of the texture features, by using a Mazda tool. The results were compared and presented in the form of the radar graphs. The second approach proved to be effective and appropriate and consequently it is used for further analysis of CT images, in the computer-aided diagnosis of sarcoidosis.
Kontos, Despina; Bakic, Predrag R.; Carton, Ann-Katherine; Troxel, Andrea B.; Conant, Emily F.; Maidment, Andrew D.A.
2009-01-01
Rationale and Objectives Studies have demonstrated a relationship between mammographic parenchymal texture and breast cancer risk. Although promising, texture analysis in mammograms is limited by tissue superimposition. Digital breast tomosynthesis (DBT) is a novel tomographic x-ray breast imaging modality that alleviates the effect of tissue superimposition, offering superior parenchymal texture visualization compared to mammography. Our study investigates the potential advantages of DBT parenchymal texture analysis for breast cancer risk estimation. Materials and Methods DBT and digital mammography (DM) images of 39 women were analyzed. Texture features, shown in studies with mammograms to correlate with cancer risk, were computed from the retroareolar breast region. We compared the relative performance of DBT and DM texture features in correlating with two measures of breast cancer risk: (i) the Gail and Claus risk estimates, and (ii) mammographic breast density. Linear regression was performed to model the association between texture features and increasing levels of risk. Results No significant correlation was detected between parenchymal texture and the Gail and Claus risk estimates. Significant correlations were observed between texture features and breast density. Overall, the DBT texture features demonstrated stronger correlations with breast percent density (PD) than DM (p ≤0.05). When dividing our study population in groups of increasing breast PD, the DBT texture features appeared to be more discriminative, having regression lines with overall lower p-values, steeper slopes, and higher R2 estimates. Conclusion Although preliminary, our results suggest that DBT parenchymal texture analysis could provide more accurate characterization of breast density patterns, which could ultimately improve breast cancer risk estimation. PMID:19201357
Peng, Shao-Hu; Kim, Deok-Hwan; Lee, Seok-Lyong; Lim, Myung-Kwan
2010-01-01
Texture feature is one of most important feature analysis methods in the computer-aided diagnosis (CAD) systems for disease diagnosis. In this paper, we propose a Uniformity Estimation Method (UEM) for local brightness and structure to detect the pathological change in the chest CT images. Based on the characteristics of the chest CT images, we extract texture features by proposing an extension of rotation invariant LBP (ELBP(riu4)) and the gradient orientation difference so as to represent a uniform pattern of the brightness and structure in the image. The utilization of the ELBP(riu4) and the gradient orientation difference allows us to extract rotation invariant texture features in multiple directions. Beyond this, we propose to employ the integral image technique to speed up the texture feature computation of the spatial gray level dependent method (SGLDM). Copyright © 2010 Elsevier Ltd. All rights reserved.
MRI Texture Analysis of Background Parenchymal Enhancement of the Breast
Woo, Jun; Amano, Maki; Yanagisawa, Fumi; Yamamoto, Hiroshi; Tani, Mayumi
2017-01-01
Purpose The purpose of this study was to determine texture parameters reflecting the background parenchymal enhancement (BPE) of the breast, which were acquired using texture analysis (TA). Methods We investigated 52 breasts of the 26 subjects who underwent dynamic contrast-enhanced MRI. One experienced reader scored BPE visually (i.e., minimal, mild, moderate, and marked). TA, including 12 texture parameters, was performed to distinguish the BPE scores quantitatively. Relationships between the visual BPE scores and texture parameters were evaluated using analysis of variance and receiver operating characteristic analysis. Results The variance and skewness of signal intensity were useful for differentiating between moderate and mild or minimal BPE or between mild and minimal BPE, respectively, with the cutoff value of 356.7 for variance and that of 0.21 for skewness. Some TA features could be useful for defining breast lesions from the BPE. Conclusion TA may be useful for quantifying the BPE of the breast. PMID:28812015
Abnormal Image Detection in Endoscopy Videos Using a Filter Bank and Local Binary Patterns
Nawarathna, Ruwan; Oh, JungHwan; Muthukudage, Jayantha; Tavanapong, Wallapak; Wong, Johnny; de Groen, Piet C.; Tang, Shou Jiang
2014-01-01
Finding mucosal abnormalities (e.g., erythema, blood, ulcer, erosion, and polyp) is one of the most essential tasks during endoscopy video review. Since these abnormalities typically appear in a small number of frames (around 5% of the total frame number), automated detection of frames with an abnormality can save physician’s time significantly. In this paper, we propose a new multi-texture analysis method that effectively discerns images showing mucosal abnormalities from the ones without any abnormality since most abnormalities in endoscopy images have textures that are clearly distinguishable from normal textures using an advanced image texture analysis method. The method uses a “texton histogram” of an image block as features. The histogram captures the distribution of different “textons” representing various textures in an endoscopy image. The textons are representative response vectors of an application of a combination of Leung and Malik (LM) filter bank (i.e., a set of image filters) and a set of Local Binary Patterns on the image. Our experimental results indicate that the proposed method achieves 92% recall and 91.8% specificity on wireless capsule endoscopy (WCE) images and 91% recall and 90.8% specificity on colonoscopy images. PMID:25132723
Texture analysis improves level set segmentation of the anterior abdominal wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhoubing; Allen, Wade M.; Baucom, Rebeccah B.
2013-12-15
Purpose: The treatment of ventral hernias (VH) has been a challenging problem for medical care. Repair of these hernias is fraught with failure; recurrence rates ranging from 24% to 43% have been reported, even with the use of biocompatible mesh. Currently, computed tomography (CT) is used to guide intervention through expert, but qualitative, clinical judgments, notably, quantitative metrics based on image-processing are not used. The authors propose that image segmentation methods to capture the three-dimensional structure of the abdominal wall and its abnormalities will provide a foundation on which to measure geometric properties of hernias and surrounding tissues and, therefore,more » to optimize intervention.Methods: In this study with 20 clinically acquired CT scans on postoperative patients, the authors demonstrated a novel approach to geometric classification of the abdominal. The authors’ approach uses a texture analysis based on Gabor filters to extract feature vectors and follows a fuzzy c-means clustering method to estimate voxelwise probability memberships for eight clusters. The memberships estimated from the texture analysis are helpful to identify anatomical structures with inhomogeneous intensities. The membership was used to guide the level set evolution, as well as to derive an initial start close to the abdominal wall.Results: Segmentation results on abdominal walls were both quantitatively and qualitatively validated with surface errors based on manually labeled ground truth. Using texture, mean surface errors for the outer surface of the abdominal wall were less than 2 mm, with 91% of the outer surface less than 5 mm away from the manual tracings; errors were significantly greater (2–5 mm) for methods that did not use the texture.Conclusions: The authors’ approach establishes a baseline for characterizing the abdominal wall for improving VH care. Inherent texture patterns in CT scans are helpful to the tissue classification, and texture analysis can improve the level set segmentation around the abdominal region.« less
Textured silicon nitride: processing and anisotropic properties
Zhu, Xinwen; Sakka, Yoshio
2008-01-01
Textured silicon nitride (Si3N4) has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW) and templated grain growth (TGG). The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured α-Sialon using the same methods as those used for textured β-Si3N4 and β-Sialon. PMID:27877995
Crop identification of SAR data using digital textural analysis
NASA Technical Reports Server (NTRS)
Nuesch, D. R.
1983-01-01
After preprocessing SEASAT SAR data which included slant to ground range transformation, registration to LANDSAT MSS data and appropriate filtering of the raw SAR data to minimize coherent speckle, textural features were developed based upon the spatial gray level dependence method (SGLDM) to compute entropy and inertia as textural measures. It is indicated that the consideration of texture features are very important in SAR data analysis. The SEASAT SAR data are useful for the improvement of field boundary definitions and for an earlier season estimate of corn and soybean area location than is supported by LANDSAT alone.
Texture classification of lung computed tomography images
NASA Astrophysics Data System (ADS)
Pheng, Hang See; Shamsuddin, Siti M.
2013-03-01
Current development of algorithms in computer-aided diagnosis (CAD) scheme is growing rapidly to assist the radiologist in medical image interpretation. Texture analysis of computed tomography (CT) scans is one of important preliminary stage in the computerized detection system and classification for lung cancer. Among different types of images features analysis, Haralick texture with variety of statistical measures has been used widely in image texture description. The extraction of texture feature values is essential to be used by a CAD especially in classification of the normal and abnormal tissue on the cross sectional CT images. This paper aims to compare experimental results using texture extraction and different machine leaning methods in the classification normal and abnormal tissues through lung CT images. The machine learning methods involve in this assessment are Artificial Immune Recognition System (AIRS), Naive Bayes, Decision Tree (J48) and Backpropagation Neural Network. AIRS is found to provide high accuracy (99.2%) and sensitivity (98.0%) in the assessment. For experiments and testing purpose, publicly available datasets in the Reference Image Database to Evaluate Therapy Response (RIDER) are used as study cases.
1992-01-01
entropy , energy. variance, skewness, and object. It can also be applied to an image of a phenomenon. It kurtosis. These parameters are then used as...statistic. The co-occurrence matrix method is used in this study to derive texture values of entropy . Limogeneity. energy (similar to the GLDV angular...from working with the co-occurrence matrix method. Seven convolution sizes were chosen to derive the texture values of entropy , local homogeneity, and
Latha, Manohar; Kavitha, Ganesan
2018-02-03
Schizophrenia (SZ) is a psychiatric disorder that especially affects individuals during their adolescence. There is a need to study the subanatomical regions of SZ brain on magnetic resonance images (MRI) based on morphometry. In this work, an attempt was made to analyze alterations in structure and texture patterns in images of the SZ brain using the level-set method and Laws texture features. T1-weighted MRI of the brain from Center of Biomedical Research Excellence (COBRE) database were considered for analysis. Segmentation was carried out using the level-set method. Geometrical and Laws texture features were extracted from the segmented brain stem, corpus callosum, cerebellum, and ventricle regions to analyze pattern changes in SZ. The level-set method segmented multiple brain regions, with higher similarity and correlation values compared with an optimized method. The geometric features obtained from regions of the corpus callosum and ventricle showed significant variation (p < 0.00001) between normal and SZ brain. Laws texture feature identified a heterogeneous appearance in the brain stem, corpus callosum and ventricular regions, and features from the brain stem were correlated with Positive and Negative Syndrome Scale (PANSS) score (p < 0.005). A framework of geometric and Laws texture features obtained from brain subregions can be used as a supplement for diagnosis of psychiatric disorders.
Histogram contrast analysis and the visual segregation of IID textures.
Chubb, C; Econopouly, J; Landy, M S
1994-09-01
A new psychophysical methodology is introduced, histogram contrast analysis, that allows one to measure stimulus transformations, f, used by the visual system to draw distinctions between different image regions. The method involves the discrimination of images constructed by selecting texture micropatterns randomly and independently (across locations) on the basis of a given micropattern histogram. Different components of f are measured by use of different component functions to modulate the micropattern histogram until the resulting textures are discriminable. When no discrimination threshold can be obtained for a given modulating component function, a second titration technique may be used to measure the contribution of that component to f. The method includes several strong tests of its own assumptions. An example is given of the method applied to visual textures composed of small, uniform squares with randomly chosen gray levels. In particular, for a fixed mean gray level mu and a fixed gray-level variance sigma 2, histogram contrast analysis is used to establish that the class S of all textures composed of small squares with jointly independent, identically distributed gray levels with mean mu and variance sigma 2 is perceptually elementary in the following sense: there exists a single, real-valued function f S of gray level, such that two textures I and J in S are discriminable only if the average value of f S applied to the gray levels in I is significantly different from the average value of f S applied to the gray levels in J. Finally, histogram contrast analysis is used to obtain a seventh-order polynomial approximation of f S.
Texture-based segmentation and analysis of emphysema depicted on CT images
NASA Astrophysics Data System (ADS)
Tan, Jun; Zheng, Bin; Wang, Xingwei; Lederman, Dror; Pu, Jiantao; Sciurba, Frank C.; Gur, David; Leader, J. Ken
2011-03-01
In this study we present a texture-based method of emphysema segmentation depicted on CT examination consisting of two steps. Step 1, a fractal dimension based texture feature extraction is used to initially detect base regions of emphysema. A threshold is applied to the texture result image to obtain initial base regions. Step 2, the base regions are evaluated pixel-by-pixel using a method that considers the variance change incurred by adding a pixel to the base in an effort to refine the boundary of the base regions. Visual inspection revealed a reasonable segmentation of the emphysema regions. There was a strong correlation between lung function (FEV1%, FEV1/FVC, and DLCO%) and fraction of emphysema computed using the texture based method, which were -0.433, -.629, and -0.527, respectively. The texture-based method produced more homogeneous emphysematous regions compared to simple thresholding, especially for large bulla, which can appear as speckled regions in the threshold approach. In the texture-based method, single isolated pixels may be considered as emphysema only if neighboring pixels meet certain criteria, which support the idea that single isolated pixels may not be sufficient evidence that emphysema is present. One of the strength of our complex texture-based approach to emphysema segmentation is that it goes beyond existing approaches that typically extract a single or groups texture features and individually analyze the features. We focus on first identifying potential regions of emphysema and then refining the boundary of the detected regions based on texture patterns.
NASA Astrophysics Data System (ADS)
Leijenaar, Ralph T. H.; Nalbantov, Georgi; Carvalho, Sara; van Elmpt, Wouter J. C.; Troost, Esther G. C.; Boellaard, Ronald; Aerts, Hugo J. W. L.; Gillies, Robert J.; Lambin, Philippe
2015-08-01
FDG-PET-derived textural features describing intra-tumor heterogeneity are increasingly investigated as imaging biomarkers. As part of the process of quantifying heterogeneity, image intensities (SUVs) are typically resampled into a reduced number of discrete bins. We focused on the implications of the manner in which this discretization is implemented. Two methods were evaluated: (1) RD, dividing the SUV range into D equally spaced bins, where the intensity resolution (i.e. bin size) varies per image; and (2) RB, maintaining a constant intensity resolution B. Clinical feasibility was assessed on 35 lung cancer patients, imaged before and in the second week of radiotherapy. Forty-four textural features were determined for different D and B for both imaging time points. Feature values depended on the intensity resolution and out of both assessed methods, RB was shown to allow for a meaningful inter- and intra-patient comparison of feature values. Overall, patients ranked differently according to feature values-which was used as a surrogate for textural feature interpretation-between both discretization methods. Our study shows that the manner of SUV discretization has a crucial effect on the resulting textural features and the interpretation thereof, emphasizing the importance of standardized methodology in tumor texture analysis.
The analysis of image feature robustness using cometcloud
Qi, Xin; Kim, Hyunjoo; Xing, Fuyong; Parashar, Manish; Foran, David J.; Yang, Lin
2012-01-01
The robustness of image features is a very important consideration in quantitative image analysis. The objective of this paper is to investigate the robustness of a range of image texture features using hematoxylin stained breast tissue microarray slides which are assessed while simulating different imaging challenges including out of focus, changes in magnification and variations in illumination, noise, compression, distortion, and rotation. We employed five texture analysis methods and tested them while introducing all of the challenges listed above. The texture features that were evaluated include co-occurrence matrix, center-symmetric auto-correlation, texture feature coding method, local binary pattern, and texton. Due to the independence of each transformation and texture descriptor, a network structured combination was proposed and deployed on the Rutgers private cloud. The experiments utilized 20 randomly selected tissue microarray cores. All the combinations of the image transformations and deformations are calculated, and the whole feature extraction procedure was completed in 70 minutes using a cloud equipped with 20 nodes. Center-symmetric auto-correlation outperforms all the other four texture descriptors but also requires the longest computational time. It is roughly 10 times slower than local binary pattern and texton. From a speed perspective, both the local binary pattern and texton features provided excellent performance for classification and content-based image retrieval. PMID:23248759
Texture analysis at neutron diffractometer STRESS-SPEC
NASA Astrophysics Data System (ADS)
Brokmeier, H.-G.; Gan, W. M.; Randau, C.; Völler, M.; Rebelo-Kornmeier, J.; Hofmann, M.
2011-06-01
In response to the development of new materials and the application of materials and components in advanced technologies, non-destructive measurement methods of textures and residual stresses have gained worldwide significance in recent years. The materials science neutron diffractometer STRESS-SPEC at FRM II (Garching, Germany) is designed to be applied equally to texture and residual stress analyses by virtue of its very flexible configuration. Due to the high penetration capabilities of neutrons and the high neutron flux of STRESS-SPEC it allows a combined analysis of global texture, local texture, strain pole figure and FWHM pole figure in a wide variety of materials including metals, alloys, composites, ceramics and geological materials. Especially, the analysis of texture gradients in bulk materials using neutron diffraction has advantages over laboratory X-rays and EBSD for many scientific cases. Moreover, neutron diffraction is favourable for coarse-grained materials, where bulk information averaged over texture inhomogeneities is needed, and also stands out due to easy sample preparation. In future, the newly developed robot system for STRESS-SPEC will allow much more flexibility than an Eulerian cradle as on standard instruments. Five recent measurements are shown to demonstrate the wide range of possible texture applications at STRESS-SPEC diffractometer.
NASA Astrophysics Data System (ADS)
Bestwick, Jordan; Unwin, David; Butler, Richard; Henderson, Don; Purnell, Mark
2017-04-01
Pterosaurs (Pterosauria) were a successful group of Mesozoic flying reptiles. For 150 million years they were integral components of terrestrial and coastal ecosystems, yet their feeding ecology remains poorly constrained. Postulated pterosaur diets include insectivory, piscivory and/or carnivory, but many dietary hypotheses are speculative and/or based on little evidence, highlighting the need for alternative approaches to provide robust data. One method involves quantitative analysis of the micron-scale 3D textures of worn pterosaur tooth surfaces - dental microwear texture analysis. Microwear is produced as scratches and chips generated by food items create characteristic tooth surface textures. Microwear analysis has never been applied to pterosaurs, but we might expect microwear textures to differ between pterosaurs with different diets. An important step in investigating pterosaur microwear is to examine microwear from extant organisms with known diets to provide a comparative data set. This has been achieved through analysis of non-occlusal microwear textures in extant bats, crocodilians and monitor lizards, clades within which species exhibit insectivorous, piscivorous and carnivorous diets. The results - the first test of the hypothesis that non-occlusal microwear textures in these extant clades vary with diet - provide the context for the first robust quantitative tests of pterosaur diets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nawrocki, J; Chino, J; Craciunescu, O
Purpose: We propose a method to examine gynecological tumor heterogeneity using texture analysis in the context of an adaptive PET protocol in order to establish if texture metrics from baseline PET-CT predict tumor response better than SUV metrics alone as well as determine texture features correlating with tumor response during radiation therapy. Methods: This IRB approved protocol included 29 women with node positive gynecological cancers visible on FDG-PET treated with EBRT to the PET positive nodes. A baseline and intra-treatment PET-CT was obtained. Tumor outcome was determined based on RECIST on posttreatment PET-CT. Primary GTVs were segmented using 40% thresholdmore » and a semi-automatic gradient-based contouring tool, PET Edge (MIM Software Inc., Cleveland, OH). SUV histogram features, Metabolic Volume (MV), and Total Lesion Glycolysis (TLG) were calculated. Four 3D texture matrices describing local and regional relationships between voxel intensities in the GTV were generated: co-occurrence, run length, size zone, and neighborhood difference. From these, 39 texture features were calculated. Prognostic power of baseline features derived from gradientbased and threshold GTVs were determined using the Wilcoxon rank-sum test. Receiver Operating Characteristics and logistic regression was performed using JMP (SAS Institute Inc., Cary, NC) to find probabilities of predicting response. Changes in features during treatment were determined using the Wilcoxon signed-rank test. Results: Of the 29 patients, there were 16 complete responders, 7 partial responders, and 6 non-responders. Comparing CR/PR vs. NR for gradient-based GTVs, 7 texture values, TLG, and SUV kurtosis had a p < 0.05. Threshold GTVs yielded 4 texture features and TLG with p < 0.05. From baseline to intra-treatment, 14 texture features, SUVmean, SUVmax, MV, and TLG changed with p < 0.05. Conclusion: Texture analysis of PET imaged gynecological tumors is an effective method for early prognosis and should be used complimentary to SUV metrics, especially when using gradient based segmentation.« less
A Community Database of Quartz Microstructures: Can we make measurements that constrain rheology?
NASA Astrophysics Data System (ADS)
Toy, Virginia; Peternell, Mark; Morales, Luiz; Kilian, Ruediger
2014-05-01
Rheology can be explored by performing deformation experiments, and by examining resultant microstructures and textures as links to naturally deformed rocks. Certain deformation processes are assumed to result in certain microstructures or textures, of which some might be uniquely indicative, while most cannot be unequivocally used to interpret the deformation mechanism and hence rheology. Despite our lack of a sufficient understanding of microstructure and texture forming processes, huge advances in texture measurements and quantification of microstructural parameters have been made. Unfortunately, there are neither standard procedures nor a common consensus on interpretation of many parameters (e.g. texture, grain size, shape preferred orientation). Textures (crystallographic preferred orientations) have been extensively correlated to the interpretation of deformation mechanisms. For example the strength of textures can be measured either from the orientation distribution function (e.g. the J-index (Bunge, 1983) or texture entropy (Hielscher et al., 2007) or via the intensity of polefigures. However, there are various ways to identify a representative volume, to measure, to process the data and to calculate an odf and texture descriptors, which restricts their use as a comparative and diagnostic measurement. Microstructural parameters such as grain size, grain shape descriptors and fabric descriptors are similarly used to deduce and quantify deformation mechanisms. However there is very little consensus on how to measure and calculate some of these very important parameters, e.g. grain size which makes comparison of a vast amount of precious data in the literature very difficult. We propose establishing a community database of a standard set of such measurements, made using typical samples of different types of quartz rocks through standard methods of microstructural and texture quantification. We invite suggestions and discussion from the community about the worth of proposed parameters, methodology and usefulness and willingness to contribute to a database with free access of the community. We further invite institutions to participate on a benchmark analysis of a set of 'standard' thin sections. Bunge, H.J. 1983, Texture Analysis in Materials Science: mathematical methods. Butterworth-Heinemann, 593pp. Hielscher, R., Schaeben, H., Chateigner, D., 2007, On the entropy to texture index relationship in quantitative texture analysis: Journal of Applied Crystallography 40, 371-375.
3D Texture Analysis in Renal Cell Carcinoma Tissue Image Grading
Cho, Nam-Hoon; Choi, Heung-Kook
2014-01-01
One of the most significant processes in cancer cell and tissue image analysis is the efficient extraction of features for grading purposes. This research applied two types of three-dimensional texture analysis methods to the extraction of feature values from renal cell carcinoma tissue images, and then evaluated the validity of the methods statistically through grade classification. First, we used a confocal laser scanning microscope to obtain image slices of four grades of renal cell carcinoma, which were then reconstructed into 3D volumes. Next, we extracted quantitative values using a 3D gray level cooccurrence matrix (GLCM) and a 3D wavelet based on two types of basis functions. To evaluate their validity, we predefined 6 different statistical classifiers and applied these to the extracted feature sets. In the grade classification results, 3D Haar wavelet texture features combined with principal component analysis showed the best discrimination results. Classification using 3D wavelet texture features was significantly better than 3D GLCM, suggesting that the former has potential for use in a computer-based grading system. PMID:25371701
Fongaro, Lorenzo; Ho, Doris Mer Lin; Kvaal, Knut; Mayer, Klaus; Rondinella, Vincenzo V
2016-05-15
The identification of interdicted nuclear or radioactive materials requires the application of dedicated techniques. In this work, a new approach for characterizing powder of uranium ore concentrates (UOCs) is presented. It is based on image texture analysis and multivariate data modelling. 26 different UOCs samples were evaluated applying the Angle Measure Technique (AMT) algorithm to extract textural features on samples images acquired at 250× and 1000× magnification by Scanning Electron Microscope (SEM). At both magnifications, this method proved effective to classify the different types of UOC powder based on the surface characteristics that depend on particle size, homogeneity, and graininess and are related to the composition and processes used in the production facilities. Using the outcome data from the application of the AMT algorithm, the total explained variance was higher than 90% with Principal Component Analysis (PCA), while partial least square discriminant analysis (PLS-DA) applied only on the 14 black colour UOCs powder samples, allowed their classification only on the basis of their surface texture features (sensitivity>0.6; specificity>0.6). This preliminary study shows that this method was able to distinguish samples with similar composition, but obtained from different facilities. The mean angle spectral data obtained by the image texture analysis using the AMT algorithm can be considered as a specific fingerprint or signature of UOCs and could be used for nuclear forensic investigation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Shu, Ting; Zhang, Bob; Yan Tang, Yuan
2017-04-01
Researchers have recently discovered that Diabetes Mellitus can be detected through non-invasive computerized method. However, the focus has been on facial block color features. In this paper, we extensively study the effects of texture features extracted from facial specific regions at detecting Diabetes Mellitus using eight texture extractors. The eight methods are from four texture feature families: (1) statistical texture feature family: Image Gray-scale Histogram, Gray-level Co-occurance Matrix, and Local Binary Pattern, (2) structural texture feature family: Voronoi Tessellation, (3) signal processing based texture feature family: Gaussian, Steerable, and Gabor filters, and (4) model based texture feature family: Markov Random Field. In order to determine the most appropriate extractor with optimal parameter(s), various parameter(s) of each extractor are experimented. For each extractor, the same dataset (284 Diabetes Mellitus and 231 Healthy samples), classifiers (k-Nearest Neighbors and Support Vector Machines), and validation method (10-fold cross validation) are used. According to the experiments, the first and third families achieved a better outcome at detecting Diabetes Mellitus than the other two. The best texture feature extractor for Diabetes Mellitus detection is the Image Gray-scale Histogram with bin number=256, obtaining an accuracy of 99.02%, a sensitivity of 99.64%, and a specificity of 98.26% by using SVM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Texture-adaptive hyperspectral video acquisition system with a spatial light modulator
NASA Astrophysics Data System (ADS)
Fang, Xiaojing; Feng, Jiao; Wang, Yongjin
2014-10-01
We present a new hybrid camera system based on spatial light modulator (SLM) to capture texture-adaptive high-resolution hyperspectral video. The hybrid camera system records a hyperspectral video with low spatial resolution using a gray camera and a high-spatial resolution video using a RGB camera. The hyperspectral video is subsampled by the SLM. The subsampled points can be adaptively selected according to the texture characteristic of the scene by combining with digital imaging analysis and computational processing. In this paper, we propose an adaptive sampling method utilizing texture segmentation and wavelet transform (WT). We also demonstrate the effectiveness of the sampled pattern on the SLM with the proposed method.
Cellular automata rule characterization and classification using texture descriptors
NASA Astrophysics Data System (ADS)
Machicao, Jeaneth; Ribas, Lucas C.; Scabini, Leonardo F. S.; Bruno, Odermir M.
2018-05-01
The cellular automata (CA) spatio-temporal patterns have attracted the attention from many researchers since it can provide emergent behavior resulting from the dynamics of each individual cell. In this manuscript, we propose an approach of texture image analysis to characterize and classify CA rules. The proposed method converts the CA spatio-temporal patterns into a gray-scale image. The gray-scale is obtained by creating a binary number based on the 8-connected neighborhood of each dot of the CA spatio-temporal pattern. We demonstrate that this technique enhances the CA rule characterization and allow to use different texture image analysis algorithms. Thus, various texture descriptors were evaluated in a supervised training approach aiming to characterize the CA's global evolution. Our results show the efficiency of the proposed method for the classification of the elementary CA (ECAs), reaching a maximum of 99.57% of accuracy rate according to the Li-Packard scheme (6 classes) and 94.36% for the classification of the 88 rules scheme. Moreover, within the image analysis context, we found a better performance of the method by means of a transformation of the binary states to a gray-scale.
NASA Astrophysics Data System (ADS)
Karaszi, Zoltan; Konya, Andrew; Dragan, Feodor; Jakli, Antal; CPIP/LCI; CS Dept. of Kent State University Collaboration
Polarizing optical microscopy (POM) is traditionally the best-established method of studying liquid crystals, and using POM started already with Otto Lehman in 1890. An expert, who is familiar with the science of optics of anisotropic materials and typical textures of liquid crystals, can identify phases with relatively large confidence. However, for unambiguous identification usually other expensive and time-consuming experiments are needed. Replacement of the subjective and qualitative human eye-based liquid crystal texture analysis with quantitative computerized image analysis technique started only recently and were used to enhance the detection of smooth phase transitions, determine order parameter and birefringence of specific liquid crystal phases. We investigate if the computer can recognize and name the phase where the texture was taken. To judge the potential of reliable image recognition based on this procedure, we used 871 images of liquid crystal textures belonging to five main categories: Nematic, Smectic A, Smectic C, Cholesteric and Crystal, and used a Neural Network Clustering Technique included in the data mining software package in Java ``WEKA''. A neural network trained on a set of 827 LC textures classified the remaining 44 textures with 80% accuracy.
NASA Astrophysics Data System (ADS)
Lestari, W. D.; Ismail, R.; Jamari, J.; Bayuseno, A. P.
2017-05-01
Surface texture is a common method for improving wear properties of a tribo-pair of soft and hard bearing material. The reduction of wear rates on the contacting surface material is becoming important issues. In the present study, analysis of the contact pressure on the flat surface of UHMWPE (Ultra High Molecular Weight Polyethylene) under the static- and rolling motion with the surface of steel ball used the 3D finite element method (FEM) (the ABAQUS software version 6.12). Five shaped-texture models (square, circle, ellipse, triangle, and chevron) were presented on the flat surface for analysis. The normal load of 17, 30 and 50 N was deliberately set-up for static and rolling contact analysis. The contact pressure was determined to predict the wear behavior of the shaped-texture on the flat surface of UHMWPE. The results have shown that the static normal load yielded the lowest von-Mises stress distribution on the shaped-texture of the ellipse for all values applied a load, while the square shape experienced the highest stress distribution. Under rolling contact, however, the increasing load yielded the increasing von Mises stress distribution for the texture with a triangle shape. Moreover, the texture shapes for circle, ellipse, and chevron respectively, may undergo the lowest stress distribution for all load. The wear calculation provided that the circle and square shape may undergo the highest wear rates. Obviously, the surface texture of circle, ellipse, and chevron may experience the lowest wear rates and is potential for use in the surface engineering of bearing materials.
Marchand-Libouban, Hélène; Guillaume, Bernard; Bellaiche, Norbert; Chappard, Daniel
2013-05-01
Bone implants are now widely used to replace missing teeth. Bone grafting (sinus lift) is a very useful way to increase the bone volume of the maxilla in patients with bone atrophy. There is a 6- to 9-month delay for the receiver grafted site to heal before the implants can be placed. Computed tomography is a useful method to measure the amount of remaining bone before implantation and to evaluate the quality of the receiver bone at the end of the healing period. Texture analysis is a non-invasive method useful to characterize bone microarchitecture on X-ray images. Ten patients in which a sinus lift surgery was necessary before implantation were analyzed in the present study. All had a bone reconstruction with a combination of a biomaterial (beta tricalcium phosphate) and autograft bone harvested at the chin. Computed tomographic images were obtained before grafting (t0), at mid-interval (t1, 4.2 ± 0.7 months) and before implant placement (t2, 9.2 ± 0.6 months). Texture analysis was done with the run-length method. A significant increase of texture parameters at t1 reflected a gain of homogeneity due to the graft and the beginning of bone remodeling. At t2, some parameters remained high and corresponded to the persistence of bone trabeculae while the resorption of biomaterials was identified by other parameters which tended to return to pregraft values. Texture analysis identified changes during the healing of the receiver site. The method is known to correlate with microarchitectural changes in bone and could be a useful approach to characterized osseointegrated grafts.
NASA Astrophysics Data System (ADS)
Wu, Shulian; Peng, Yuanyuan; Hu, Liangjun; Zhang, Xiaoman; Li, Hui
2016-01-01
Second harmonic generation microscopy (SHGM) was used to monitor the process of chronological aging skin in vivo. The collagen structures of mice model with different ages were obtained using SHGM. Then, texture feature with contrast, correlation and entropy were extracted and analysed using the grey level co-occurrence matrix. At last, the neural network tool of Matlab was applied to train the texture of collagen in different statues during the aging process. And the simulation of mice collagen texture was carried out. The results indicated that the classification accuracy reach 85%. Results demonstrated that the proposed approach effectively detected the target object in the collagen texture image during the chronological aging process and the analysis tool based on neural network applied the skin of classification and feature extraction method is feasible.
NASA Astrophysics Data System (ADS)
Liu, X.; Zhang, J. X.; Zhao, Z.; Ma, A. D.
2015-06-01
Synthetic aperture radar in the application of remote sensing technology is becoming more and more widely because of its all-time and all-weather operation, feature extraction research in high resolution SAR image has become a hot topic of concern. In particular, with the continuous improvement of airborne SAR image resolution, image texture information become more abundant. It's of great significance to classification and extraction. In this paper, a novel method for built-up areas extraction using both statistical and structural features is proposed according to the built-up texture features. First of all, statistical texture features and structural features are respectively extracted by classical method of gray level co-occurrence matrix and method of variogram function, and the direction information is considered in this process. Next, feature weights are calculated innovatively according to the Bhattacharyya distance. Then, all features are weighted fusion. At last, the fused image is classified with K-means classification method and the built-up areas are extracted after post classification process. The proposed method has been tested by domestic airborne P band polarization SAR images, at the same time, two groups of experiments based on the method of statistical texture and the method of structural texture were carried out respectively. On the basis of qualitative analysis, quantitative analysis based on the built-up area selected artificially is enforced, in the relatively simple experimentation area, detection rate is more than 90%, in the relatively complex experimentation area, detection rate is also higher than the other two methods. In the study-area, the results show that this method can effectively and accurately extract built-up areas in high resolution airborne SAR imagery.
Zhi, Ruicong; Zhao, Lei; Xie, Nan; Wang, Houyin; Shi, Bolin; Shi, Jingye
2016-01-13
A framework of establishing standard reference scale (texture) is proposed by multivariate statistical analysis according to instrumental measurement and sensory evaluation. Multivariate statistical analysis is conducted to rapidly select typical reference samples with characteristics of universality, representativeness, stability, substitutability, and traceability. The reasonableness of the framework method is verified by establishing standard reference scale of texture attribute (hardness) with Chinese well-known food. More than 100 food products in 16 categories were tested using instrumental measurement (TPA test), and the result was analyzed with clustering analysis, principal component analysis, relative standard deviation, and analysis of variance. As a result, nine kinds of foods were determined to construct the hardness standard reference scale. The results indicate that the regression coefficient between the estimated sensory value and the instrumentally measured value is significant (R(2) = 0.9765), which fits well with Stevens's theory. The research provides reliable a theoretical basis and practical guide for quantitative standard reference scale establishment on food texture characteristics.
Inference of segmented color and texture description by tensor voting.
Jia, Jiaya; Tang, Chi-Keung
2004-06-01
A robust synthesis method is proposed to automatically infer missing color and texture information from a damaged 2D image by (N)D tensor voting (N > 3). The same approach is generalized to range and 3D data in the presence of occlusion, missing data and noise. Our method translates texture information into an adaptive (N)D tensor, followed by a voting process that infers noniteratively the optimal color values in the (N)D texture space. A two-step method is proposed. First, we perform segmentation based on insufficient geometry, color, and texture information in the input, and extrapolate partitioning boundaries by either 2D or 3D tensor voting to generate a complete segmentation for the input. Missing colors are synthesized using (N)D tensor voting in each segment. Different feature scales in the input are automatically adapted by our tensor scale analysis. Results on a variety of difficult inputs demonstrate the effectiveness of our tensor voting approach.
Temporal radiographic texture analysis in the detection of periprosthetic osteolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkie, Joel R.; Giger, Maryellen L.; Chinander, Michael R.
2008-01-15
Periprosthetic osteolysis is one of the most serious long-term problems in total hip arthroplasty. It has been primarily attributed to the body's inflammatory response to submicron polyethylene particles worn from the hip implant, and it leads to bone loss and structural deterioration in the surrounding bone. It was previously demonstrated that radiographic texture analysis (RTA) has the ability to distinguish between osteolysis and normal cases at the time of clinical detection of the disease; however, that analysis did not take into account the changes in texture over time. The goal of this preliminary analysis, however, is to assess the abilitymore » of temporal radiographic texture analysis (tRTA) to distinguish between patients who develop osteolysis and normal cases. Two tRTA methods were used in the study: the RTA feature change from baseline at various follow-up intervals and the slope of the best-fit line to the RTA data series. These tRTA methods included Fourier-based and fractal-based features calculated from digitized images of 202 total hip replacement cases, including 70 that developed osteolysis. Results show that separation between the osteolysis and normal groups increased over time for the feature difference method, as the disease progressed, with area under the curve (AUC) values from receiver operating characteristic analysis of 0.65 to 0.72 at 15 years postsurgery. Separation for the slope method was also evident, with AUC values ranging from 0.65 to 0.76 for the task of distinguishing between osteolysis and normal cases. The results suggest that tRTA methods have the ability to measure changes in trabecular structure, and may be useful in the early detection of periprosthetic osteolysis.« less
Monitoring of bone regeneration process by means of texture analysis
NASA Astrophysics Data System (ADS)
Kokkinou, E.; Boniatis, I.; Costaridou, L.; Saridis, A.; Panagiotopoulos, E.; Panayiotakis, G.
2009-09-01
An image analysis method is proposed for the monitoring of the regeneration of the tibial bone. For this purpose, 130 digitized radiographs of 13 patients, who had undergone tibial lengthening by the Ilizarov method, were studied. For each patient, 10 radiographs, taken at an equal number of postoperative successive time moments, were available. Employing available software, 3 Regions Of Interest (ROIs), corresponding to the: (a) upper, (b) central, and (c) lower aspect of the gap, where bone regeneration was expected to occur, were determined on each radiograph. Employing custom developed algorithms: (i) a number of textural features were generated from each of the ROIs, and (ii) a texture-feature based regression model was designed for the quantitative monitoring of the bone regeneration process. Statistically significant differences (p < 0.05) were derived for the initial and the final textural features values, generated from the first and the last postoperatively obtained radiographs, respectively. A quadratic polynomial regression equation fitted data adequately (r2 = 0.9, p < 0.001). The suggested method may contribute to the monitoring of the tibial bone regeneration process.
Hu, Shan; Xu, Chao; Guan, Weiqiao; Tang, Yong; Liu, Yana
2014-01-01
Osteosarcoma is the most common malignant bone tumor among children and adolescents. In this study, image texture analysis was made to extract texture features from bone CR images to evaluate the recognition rate of osteosarcoma. To obtain the optimal set of features, Sym4 and Db4 wavelet transforms and gray-level co-occurrence matrices were applied to the image, with statistical methods being used to maximize the feature selection. To evaluate the performance of these methods, a support vector machine algorithm was used. The experimental results demonstrated that the Sym4 wavelet had a higher classification accuracy (93.44%) than the Db4 wavelet with respect to osteosarcoma occurrence in the epiphysis, whereas the Db4 wavelet had a higher classification accuracy (96.25%) for osteosarcoma occurrence in the diaphysis. Results including accuracy, sensitivity, specificity and ROC curves obtained using the wavelets were all higher than those obtained using the features derived from the GLCM method. It is concluded that, a set of texture features can be extracted from the wavelets and used in computer-aided osteosarcoma diagnosis systems. In addition, this study also confirms that multi-resolution analysis is a useful tool for texture feature extraction during bone CR image processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamachi, Eiji; Yoshida, Takashi; Yamaguchi, Toshihiko
2014-10-06
We developed two-scale FE analysis procedure based on the crystallographic homogenization method by considering the hierarchical structure of poly-crystal aluminium alloy metal. It can be characterized as the combination of two-scale structure, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum. Micro polycrystal structure can be modeled as a three dimensional representative volume element (RVE). RVE is featured as by 3×3×3 eight-nodes solid finite elements, which has 216 crystal orientations. This FE analysis code can predict the deformation, strain and stress evolutions in the wire drawing processes in the macro- scales, and further the crystal texture andmore » hardening evolutions in the micro-scale. In this study, we analyzed the texture evolution in the wire drawing processes by our two-scale FE analysis code under conditions of various drawing angles of dice. We evaluates the texture evolution in the surface and center regions of the wire cross section, and to clarify the effects of processing conditions on the texture evolution.« less
NASA Astrophysics Data System (ADS)
Nakamachi, Eiji; Yoshida, Takashi; Kuramae, Hiroyuki; Morimoto, Hideo; Yamaguchi, Toshihiko; Morita, Yusuke
2014-10-01
We developed two-scale FE analysis procedure based on the crystallographic homogenization method by considering the hierarchical structure of poly-crystal aluminium alloy metal. It can be characterized as the combination of two-scale structure, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum. Micro polycrystal structure can be modeled as a three dimensional representative volume element (RVE). RVE is featured as by 3×3×3 eight-nodes solid finite elements, which has 216 crystal orientations. This FE analysis code can predict the deformation, strain and stress evolutions in the wire drawing processes in the macro- scales, and further the crystal texture and hardening evolutions in the micro-scale. In this study, we analyzed the texture evolution in the wire drawing processes by our two-scale FE analysis code under conditions of various drawing angles of dice. We evaluates the texture evolution in the surface and center regions of the wire cross section, and to clarify the effects of processing conditions on the texture evolution.
Wei, Q; Hu, Y
2009-01-01
The major hurdle for segmenting lung lobes in computed tomographic (CT) images is to identify fissure regions, which encase lobar fissures. Accurate identification of these regions is difficult due to the variable shape and appearance of the fissures, along with the low contrast and high noise associated with CT images. This paper studies the effectiveness of two texture analysis methods - the gray level co-occurrence matrix (GLCM) and the gray level run length matrix (GLRLM) - in identifying fissure regions from isotropic CT image stacks. To classify GLCM and GLRLM texture features, we applied a feed-forward back-propagation neural network and achieved the best classification accuracy utilizing 16 quantized levels for computing the GLCM and GLRLM texture features and 64 neurons in the input/hidden layers of the neural network. Tested on isotropic CT image stacks of 24 patients with the pathologic lungs, we obtained accuracies of 86% and 87% for identifying fissure regions using the GLCM and GLRLM methods, respectively. These accuracies compare favorably with surgeons/radiologists' accuracy of 80% for identifying fissure regions in clinical settings. This shows promising potential for segmenting lung lobes using the GLCM and GLRLM methods.
Rolland, Y; Bézy-Wendling, J; Duvauferrier, R; Coatrieux, J L
1999-03-01
To demonstrate the usefulness of a model of the parenchymous vascularization to evaluate texture analysis methods. Slices with thickness varying from 1 to 4 mm were reformatted from a 3D vascular model corresponding to either normal tissue perfusion or local hypervascularization. Parameters of statistical methods were measured on 16128x128 regions of interest, and mean values and standard deviation were calculated. For each parameter, the performances (discrimination power and stability) were evaluated. Among 11 calculated statistical parameters, three (homogeneity, entropy, mean of gradients) were found to have a good discriminating power to differentiate normal perfusion from hypervascularization, but only the gradient mean was found to have a good stability with respect to the thickness. Five parameters (run percentage, run length distribution, long run emphasis, contrast, and gray level distribution) were found to have intermediate results. In the remaining three, curtosis and correlation was found to have little discrimination power, skewness none. This 3D vascular model, which allows the generation of various examples of vascular textures, is a powerful tool to assess the performance of texture analysis methods. This improves our knowledge of the methods and should contribute to their a priori choice when designing clinical studies.
Feng, Zhichao; Rong, Pengfei; Cao, Peng; Zhou, Qingyu; Zhu, Wenwei; Yan, Zhimin; Liu, Qianyun; Wang, Wei
2018-04-01
To evaluate the diagnostic performance of machine-learning based quantitative texture analysis of CT images to differentiate small (≤ 4 cm) angiomyolipoma without visible fat (AMLwvf) from renal cell carcinoma (RCC). This single-institutional retrospective study included 58 patients with pathologically proven small renal mass (17 in AMLwvf and 41 in RCC groups). Texture features were extracted from the largest possible tumorous regions of interest (ROIs) by manual segmentation in preoperative three-phase CT images. Interobserver reliability and the Mann-Whitney U test were applied to select features preliminarily. Then support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were adopted to establish discriminative classifiers, and the performance of classifiers was assessed. Of the 42 extracted features, 16 candidate features showed significant intergroup differences (P < 0.05) and had good interobserver agreement. An optimal feature subset including 11 features was further selected by the SVM-RFE method. The SVM-RFE+SMOTE classifier achieved the best performance in discriminating between small AMLwvf and RCC, with the highest accuracy, sensitivity, specificity and AUC of 93.9 %, 87.8 %, 100 % and 0.955, respectively. Machine learning analysis of CT texture features can facilitate the accurate differentiation of small AMLwvf from RCC. • Although conventional CT is useful for diagnosis of SRMs, it has limitations. • Machine-learning based CT texture analysis facilitate differentiation of small AMLwvf from RCC. • The highest accuracy of SVM-RFE+SMOTE classifier reached 93.9 %. • Texture analysis combined with machine-learning methods might spare unnecessary surgery for AMLwvf.
Combining multiple features for color texture classification
NASA Astrophysics Data System (ADS)
Cusano, Claudio; Napoletano, Paolo; Schettini, Raimondo
2016-11-01
The analysis of color and texture has a long history in image analysis and computer vision. These two properties are often considered as independent, even though they are strongly related in images of natural objects and materials. Correlation between color and texture information is especially relevant in the case of variable illumination, a condition that has a crucial impact on the effectiveness of most visual descriptors. We propose an ensemble of hand-crafted image descriptors designed to capture different aspects of color textures. We show that the use of these descriptors in a multiple classifiers framework makes it possible to achieve a very high classification accuracy in classifying texture images acquired under different lighting conditions. A powerful alternative to hand-crafted descriptors is represented by features obtained with deep learning methods. We also show how the proposed combining strategy hand-crafted and convolutional neural networks features can be used together to further improve the classification accuracy. Experimental results on a food database (raw food texture) demonstrate the effectiveness of the proposed strategy.
NASA Technical Reports Server (NTRS)
Key, J.
1990-01-01
The spectral and textural characteristics of polar clouds and surfaces for a 7-day summer series of AVHRR data in two Arctic locations are examined, and the results used in the development of a cloud classification procedure for polar satellite data. Since spatial coherence and texture sensitivity tests indicate that a joint spectral-textural analysis based on the same cell size is inappropriate, cloud detection with AVHRR data and surface identification with passive microwave data are first done on the pixel level as described by Key and Barry (1989). Next, cloud patterns within 250-sq-km regions are described, then the spectral and local textural characteristics of cloud patterns in the image are determined and each cloud pixel is classified by statistical methods. Results indicate that both spectral and textural features can be utilized in the classification of cloudy pixels, although spectral features are most useful for the discrimination between cloud classes.
Determination of mango fruit from binary image using randomized Hough transform
NASA Astrophysics Data System (ADS)
Rizon, Mohamed; Najihah Yusri, Nurul Ain; Abdul Kadir, Mohd Fadzil; bin Mamat, Abd. Rasid; Abd Aziz, Azim Zaliha; Nanaa, Kutiba
2015-12-01
A method of detecting mango fruit from RGB input image is proposed in this research. From the input image, the image is processed to obtain the binary image using the texture analysis and morphological operations (dilation and erosion). Later, the Randomized Hough Transform (RHT) method is used to find the best ellipse fits to each binary region. By using the texture analysis, the system can detect the mango fruit that is partially overlapped with each other and mango fruit that is partially occluded by the leaves. The combination of texture analysis and morphological operator can isolate the partially overlapped fruit and fruit that are partially occluded by leaves. The parameters derived from RHT method was used to calculate the center of the ellipse. The center of the ellipse acts as the gripping point for the fruit picking robot. As the results, the rate of detection was up to 95% for fruit that is partially overlapped and partially covered by leaves.
NASA Astrophysics Data System (ADS)
Zhang, L.; Hao, T.; Zhao, B.
2009-12-01
Hydrocarbon seepage effects can cause magnetic alteration zones in near surface, and the magnetic anomalies induced by the alteration zones can thus be used to locate oil-gas potential regions. In order to reduce the inaccuracy and multi-resolution of the hydrocarbon anomalies recognized only by magnetic data, and to meet the requirement of integrated management and sythetic analysis of multi-source geoscientfic data, it is necessary to construct a recognition system that integrates the functions of data management, real-time processing, synthetic evaluation, and geologic mapping. In this paper research for the key techniques of the system is discussed. Image processing methods can be applied to potential field images so as to make it easier for visual interpretation and geological understanding. For gravity or magnetic images, the anomalies with identical frequency-domain characteristics but different spatial distribution will reflect differently in texture and relevant textural statistics. Texture is a description of structural arrangements and spatial variation of a dataset or an image, and has been applied in many research fields. Textural analysis is a procedure that extracts textural features by image processing methods and thus obtains a quantitative or qualitative description of texture. When the two kinds of anomalies have no distinct difference in amplitude or overlap in frequency spectrum, they may be distinguishable due to their texture, which can be considered as textural contrast. Therefore, for the recognition system we propose a new “magnetic spots” recognition method based on image processing techniques. The method can be divided into 3 major steps: firstly, separate local anomalies caused by shallow, relatively small sources from the total magnetic field, and then pre-process the local magnetic anomaly data by image processing methods such that magnetic anomalies can be expressed as points, lines and polygons with spatial correlation, which includes histogram-equalization based image display, object recognition and extraction; then, mine the spatial characteristics and correlations of the magnetic anomalies using textural statistics and analysis, and study the features of known anomalous objects (closures, hydrocarbon-bearing structures, igneous rocks, etc.) in the same research area; finally, classify the anomalies, cluster them according to their similarity, and predict hydrocarbon induced “magnetic spots” combined with geologic, drilling and rock core data. The system uses the ArcGIS as the secondary development platform, inherits the basic functions of the ArcGIS, and develops two main sepecial functional modules, the module for conventional potential-field data processing methods and the module for feature extraction and enhancement based on image processing and analysis techniques. The system can be applied to realize the geophysical detection and recognition of near-surface hydrocarbon seepage anomalies, provide technical support for locating oil-gas potential regions, and promote geophysical data processing and interpretation to advance more efficiently.
A texture analysis method for MR images of airway dilator muscles: a feasibility study
Järnstedt, J; Sikiö, M; Viik, J; Dastidar, P; Peltomäki, T; Eskola, H
2014-01-01
Objectives: Airway dilator muscles play an important role in the analysis of breathing-related symptoms, such as obstructive sleep apnoea. Texture analysis (TA) provides a new non-invasive method for analysing airway dilator muscles. In this study, we propose a TA methodology for airway dilator muscles and prove the robustness of this method. Methods: 15 orthognathic surgery patients underwent 3-T MRI. Computerized TA was performed on 20 regions of interest (ROIs) in the patients' airway dilator muscles. 53 texture parameters were calculated for all ROIs. The robustness of the TA method was analysed by altering the locations, sizes and shapes of the ROIs. Results: Our study shows that there is significant difference in TA results as the size or shape of ROI changes. The change of location of the ROI inside the studied muscle does not affect the TA results. Conclusions: The TA method is valid for airway dilator muscles. We propose a methodology in which the number of co-occurrence parameters is reduced by using mean values from four different directions (0°, 45°, 90° and 135°) with pixel spacing of 1 pixel. PMID:24773626
Hiroyasu, Tomoyuki; Hayashinuma, Katsutoshi; Ichikawa, Hiroshi; Yagi, Nobuaki
2015-08-01
A preprocessing method for endoscopy image analysis using texture analysis is proposed. In a previous study, we proposed a feature value that combines a co-occurrence matrix and a run-length matrix to analyze the extent of early gastric cancer from images taken with narrow-band imaging endoscopy. However, the obtained feature value does not identify lesion zones correctly due to the influence of noise and halation. Therefore, we propose a new preprocessing method with a non-local means filter for de-noising and contrast limited adaptive histogram equalization. We have confirmed that the pattern of gastric mucosa in images can be improved by the proposed method. Furthermore, the lesion zone is shown more correctly by the obtained color map.
Texture analysis of tissues in Gleason grading of prostate cancer
NASA Astrophysics Data System (ADS)
Alexandratou, Eleni; Yova, Dido; Gorpas, Dimitris; Maragos, Petros; Agrogiannis, George; Kavantzas, Nikolaos
2008-02-01
Prostate cancer is a common malignancy among maturing men and the second leading cause of cancer death in USA. Histopathological grading of prostate cancer is based on tissue structural abnormalities. Gleason grading system is the gold standard and is based on the organization features of prostatic glands. Although Gleason score has contributed on cancer prognosis and on treatment planning, its accuracy is about 58%, with this percentage to be lower in GG2, GG3 and GG5 grading. On the other hand it is strongly affected by "inter- and intra observer variations", making the whole process very subjective. Therefore, there is need for the development of grading tools based on imaging and computer vision techniques for a more accurate prostate cancer prognosis. The aim of this paper is the development of a novel method for objective grading of biopsy specimen in order to support histopathological prognosis of the tumor. This new method is based on texture analysis techniques, and particularly on Gray Level Co-occurrence Matrix (GLCM) that estimates image properties related to second order statistics. Histopathological images of prostate cancer, from Gleason grade2 to Gleason grade 5, were acquired and subjected to image texture analysis. Thirteen texture characteristics were calculated from this matrix as they were proposed by Haralick. Using stepwise variable selection, a subset of four characteristics were selected and used for the description and classification of each image field. The selected characteristics profile was used for grading the specimen with the multiparameter statistical method of multiple logistic discrimination analysis. The subset of these characteristics provided 87% correct grading of the specimens. The addition of any of the remaining characteristics did not improve significantly the diagnostic ability of the method. This study demonstrated that texture analysis techniques could provide valuable grading decision support to the pathologists, concerning prostate cancer prognosis.
Multi Texture Analysis of Colorectal Cancer Continuum Using Multispectral Imagery
Chaddad, Ahmad; Desrosiers, Christian; Bouridane, Ahmed; Toews, Matthew; Hassan, Lama; Tanougast, Camel
2016-01-01
Purpose This paper proposes to characterize the continuum of colorectal cancer (CRC) using multiple texture features extracted from multispectral optical microscopy images. Three types of pathological tissues (PT) are considered: benign hyperplasia, intraepithelial neoplasia and carcinoma. Materials and Methods In the proposed approach, the region of interest containing PT is first extracted from multispectral images using active contour segmentation. This region is then encoded using texture features based on the Laplacian-of-Gaussian (LoG) filter, discrete wavelets (DW) and gray level co-occurrence matrices (GLCM). To assess the significance of textural differences between PT types, a statistical analysis based on the Kruskal-Wallis test is performed. The usefulness of texture features is then evaluated quantitatively in terms of their ability to predict PT types using various classifier models. Results Preliminary results show significant texture differences between PT types, for all texture features (p-value < 0.01). Individually, GLCM texture features outperform LoG and DW features in terms of PT type prediction. However, a higher performance can be achieved by combining all texture features, resulting in a mean classification accuracy of 98.92%, sensitivity of 98.12%, and specificity of 99.67%. Conclusions These results demonstrate the efficiency and effectiveness of combining multiple texture features for characterizing the continuum of CRC and discriminating between pathological tissues in multispectral images. PMID:26901134
Navarro, Pedro J; Fernández-Isla, Carlos; Alcover, Pedro María; Suardíaz, Juan
2016-07-27
This paper presents a robust method for defect detection in textures, entropy-based automatic selection of the wavelet decomposition level (EADL), based on a wavelet reconstruction scheme, for detecting defects in a wide variety of structural and statistical textures. Two main features are presented. One of the new features is an original use of the normalized absolute function value (NABS) calculated from the wavelet coefficients derived at various different decomposition levels in order to identify textures where the defect can be isolated by eliminating the texture pattern in the first decomposition level. The second is the use of Shannon's entropy, calculated over detail subimages, for automatic selection of the band for image reconstruction, which, unlike other techniques, such as those based on the co-occurrence matrix or on energy calculation, provides a lower decomposition level, thus avoiding excessive degradation of the image, allowing a more accurate defect segmentation. A metric analysis of the results of the proposed method with nine different thresholding algorithms determined that selecting the appropriate thresholding method is important to achieve optimum performance in defect detection. As a consequence, several different thresholding algorithms depending on the type of texture are proposed.
Effect of slice thickness on brain magnetic resonance image texture analysis
2010-01-01
Background The accuracy of texture analysis in clinical evaluation of magnetic resonance images depends considerably on imaging arrangements and various image quality parameters. In this paper, we study the effect of slice thickness on brain tissue texture analysis using a statistical approach and classification of T1-weighted images of clinically confirmed multiple sclerosis patients. Methods We averaged the intensities of three consecutive 1-mm slices to simulate 3-mm slices. Two hundred sixty-four texture parameters were calculated for both the original and the averaged slices. Wilcoxon's signed ranks test was used to find differences between the regions of interest representing white matter and multiple sclerosis plaques. Linear and nonlinear discriminant analyses were applied with several separate training and test sets to determine the actual classification accuracy. Results Only moderate differences in distributions of the texture parameter value for 1-mm and simulated 3-mm-thick slices were found. Our study also showed that white matter areas are well separable from multiple sclerosis plaques even if the slice thickness differs between training and test sets. Conclusions Three-millimeter-thick magnetic resonance image slices acquired with a 1.5 T clinical magnetic resonance scanner seem to be sufficient for texture analysis of multiple sclerosis plaques and white matter tissue. PMID:20955567
Dynamic texture recognition using local binary patterns with an application to facial expressions.
Zhao, Guoying; Pietikäinen, Matti
2007-06-01
Dynamic texture (DT) is an extension of texture to the temporal domain. Description and recognition of DTs have attracted growing attention. In this paper, a novel approach for recognizing DTs is proposed and its simplifications and extensions to facial image analysis are also considered. First, the textures are modeled with volume local binary patterns (VLBP), which are an extension of the LBP operator widely used in ordinary texture analysis, combining motion and appearance. To make the approach computationally simple and easy to extend, only the co-occurrences of the local binary patterns on three orthogonal planes (LBP-TOP) are then considered. A block-based method is also proposed to deal with specific dynamic events such as facial expressions in which local information and its spatial locations should also be taken into account. In experiments with two DT databases, DynTex and Massachusetts Institute of Technology (MIT), both the VLBP and LBP-TOP clearly outperformed the earlier approaches. The proposed block-based method was evaluated with the Cohn-Kanade facial expression database with excellent results. The advantages of our approach include local processing, robustness to monotonic gray-scale changes, and simple computation.
Texture analysis of medical images for radiotherapy applications
Rizzo, Giovanna
2017-01-01
The high-throughput extraction of quantitative information from medical images, known as radiomics, has grown in interest due to the current necessity to quantitatively characterize tumour heterogeneity. In this context, texture analysis, consisting of a variety of mathematical techniques that can describe the grey-level patterns of an image, plays an important role in assessing the spatial organization of different tissues and organs. For these reasons, the potentiality of texture analysis in the context of radiotherapy has been widely investigated in several studies, especially for the prediction of the treatment response of tumour and normal tissues. Nonetheless, many different factors can affect the robustness, reproducibility and reliability of textural features, thus limiting the impact of this technique. In this review, an overview of the most recent works that have applied texture analysis in the context of radiotherapy is presented, with particular focus on the assessment of tumour and tissue response to radiations. Preliminary, the main factors that have an influence on features estimation are discussed, highlighting the need of more standardized image acquisition and reconstruction protocols and more accurate methods for region of interest identification. Despite all these limitations, texture analysis is increasingly demonstrating its ability to improve the characterization of intratumour heterogeneity and the prediction of clinical outcome, although prospective studies and clinical trials are required to draw a more complete picture of the full potential of this technique. PMID:27885836
NASA Astrophysics Data System (ADS)
Baxandall, Shalese; Sharma, Shrushrita; Zhai, Peng; Pridham, Glen; Zhang, Yunyan
2018-03-01
Structural changes to nerve fiber tracts are extremely common in neurological diseases such as multiple sclerosis (MS). Accurate quantification is vital. However, while nerve fiber damage is often seen as multi-focal lesions in magnetic resonance imaging (MRI), measurement through visual perception is limited. Our goal was to characterize the texture pattern of the lesions in MRI and determine how texture orientation metrics relate to lesion structure using two new methods: phase congruency and multi-resolution spatial-frequency analysis. The former aims to optimize the detection of the `edges and corners' of a structure, and the latter evaluates both the radial and angular distributions of image texture associated with the various forming scales of a structure. The radial texture spectra were previously confirmed to measure the severity of nerve fiber damage, and were thus included for validation. All measures were also done in the control brain white matter for comparison. Using clinical images of MS patients, we found that both phase congruency and weighted mean phase detected invisible lesion patterns and were significantly greater in lesions, suggesting higher structure complexity, than the control tissue. Similarly, multi-angular spatial-frequency analysis detected much higher texture across the whole frequency spectrum in lesions than the control areas. Such angular complexity was consistent with findings from radial texture. Analysis of the phase and texture alignment may prove to be a useful new approach for assessing invisible changes in lesions using clinical MRI and thereby lead to improved management of patients with MS and similar disorders.
Image segmentation using association rule features.
Rushing, John A; Ranganath, Heggere; Hinke, Thomas H; Graves, Sara J
2002-01-01
A new type of texture feature based on association rules is described. Association rules have been used in applications such as market basket analysis to capture relationships present among items in large data sets. It is shown that association rules can be adapted to capture frequently occurring local structures in images. The frequency of occurrence of these structures can be used to characterize texture. Methods for segmentation of textured images based on association rule features are described. Simulation results using images consisting of man made and natural textures show that association rule features perform well compared to other widely used texture features. Association rule features are used to detect cumulus cloud fields in GOES satellite images and are found to achieve higher accuracy than other statistical texture features for this problem.
Ranjanomennahary, P; Ghalila, S Sevestre; Malouche, D; Marchadier, A; Rachidi, M; Benhamou, Cl; Chappard, C
2011-01-01
Hip fracture is a serious health problem and textural methods are being developed to assess bone quality. The authors aimed to perform textural analysis at femur on high-resolution digital radiographs compared to three-dimensional (3D) microarchitecture comparatively to bone mineral density. Sixteen cadaveric femurs were imaged with an x-ray device using a C-MOS sensor. One 17 mm square region of interest (ROI) was selected in the femoral head (FH) and one in the great trochanter (GT). Two-dimensional (2D) textural features from the co-occurrence matrices were extracted. Site-matched measurements of bone mineral density were performed. Inside each ROI, a 16 mm diameter core was extracted. Apparent density (Dapp) and bone volume proportion (BV/TV(Arch)) were measured from a defatted bone core using Archimedes' principle. Microcomputed tomography images of the entire length of the core were obtained (Skyscan 1072) at 19.8 microm of resolution and usual 3D morphometric parameters were computed on the binary volume after calibration from BV/TV(Arch). Then, bone surface/bone volume, trabecular thickness, trabecular separation, and trabecular number were obtained by direct methods without model assumption and the structure model index was calculated. In univariate analysis, the correlation coefficients between 2D textural features and 3D morphological parameters reached 0.83 at the FH and 0.79 at the GT. In multivariate canonical correlation analysis, coefficients of the first component reached 0.95 at the FH and 0.88 at the GT. Digital radiographs, widely available and economically viable, are an alternative method for evaluating bone microarchitectural structure.
Texture Feature Extraction and Classification for Iris Diagnosis
NASA Astrophysics Data System (ADS)
Ma, Lin; Li, Naimin
Appling computer aided techniques in iris image processing, and combining occidental iridology with the traditional Chinese medicine is a challenging research area in digital image processing and artificial intelligence. This paper proposes an iridology model that consists the iris image pre-processing, texture feature analysis and disease classification. To the pre-processing, a 2-step iris localization approach is proposed; a 2-D Gabor filter based texture analysis and a texture fractal dimension estimation method are proposed for pathological feature extraction; and at last support vector machines are constructed to recognize 2 typical diseases such as the alimentary canal disease and the nerve system disease. Experimental results show that the proposed iridology diagnosis model is quite effective and promising for medical diagnosis and health surveillance for both hospital and public use.
Werpy, Todd [West Richland, WA; Wang, Yong [Richland, WA
2003-12-30
A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.
Textured catalysts and methods of making textured catalysts
Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA
2007-03-06
A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desseroit, M; Cheze Le Rest, C; Tixier, F
2014-06-15
Purpose: Previous studies have shown that CT or 18F-FDG PET intratumor heterogeneity features computed using texture analysis may have prognostic value in Non-Small Cell Lung Cancer (NSCLC), but have been mostly investigated separately. The purpose of this study was to evaluate the potential added value with respect to prognosis regarding the combination of non-enhanced CT and 18F-FDG PET heterogeneity textural features on primary NSCLC tumors. Methods: One hundred patients with non-metastatic NSCLC (stage I–III), treated with surgery and/or (chemo)radiotherapy, that underwent staging 18F-FDG PET/CT images, were retrospectively included. Morphological tumor volumes were semi-automatically delineated on non-enhanced CT using 3D SlicerTM.more » Metabolically active tumor volumes (MATV) were automatically delineated on PET using the Fuzzy Locally Adaptive Bayesian (FLAB) method. Intratumoral tissue density and FDG uptake heterogeneities were quantified using texture parameters calculated from co-occurrence, difference, and run-length matrices. In addition to these textural features, first order histogram-derived metrics were computed on the whole morphological CT tumor volume, as well as on sub-volumes corresponding to fine, medium or coarse textures determined through various levels of LoG-filtering. Association with survival regarding all extracted features was assessed using Cox regression for both univariate and multivariate analysis. Results: Several PET and CT heterogeneity features were prognostic factors of overall survival in the univariate analysis. CT histogram-derived kurtosis and uniformity, as well as Low Grey-level High Run Emphasis (LGHRE), and PET local entropy were independent prognostic factors. Combined with stage and MATV, they led to a powerful prognostic model (p<0.0001), with median survival of 49 vs. 12.6 months and a hazard ratio of 3.5. Conclusion: Intratumoral heterogeneity quantified through textural features extracted from both CT and FDG PET images have complementary and independent prognostic value in NSCLC.« less
Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apostol, Lian; Boudousq, Vincent; Basset, Oliver
Although the diagnosis of osteoporosis is mainly based on dual x-ray absorptiometry, it has been shown that trabecular bone micro-architecture is also an important factor in regard to fracture risk. In vivo, techniques based on high-resolution x-ray radiography associated to texture analysis have been proposed to investigate bone micro-architecture, but their relevance for giving pertinent 3D information is unclear. Thirty-three calcaneus and femoral neck bone samples including the cortical shells (diameter: 14 mm, height: 30-40 mm) were imaged using 3D-synchrotron x-ray micro-CT at the ESRF. The 3D reconstructed images with a cubic voxel size of 15 {mu}m were further usedmore » for two purposes: (1) quantification of three-dimensional trabecular bone micro-architecture (2) simulation of realistic x-ray radiographs under different acquisition conditions. The simulated x-ray radiographs were then analyzed using a large variety of texture analysis methods (co-occurrence, spectral density, fractal, morphology, etc.). The range of micro-architecture parameters was in agreement with previous studies and rather large, suggesting that the population was representative. More than 350 texture parameters were tested. A small number of them were selected based on their correlation to micro-architectural morphometric parameters. Using this subset of texture parameters, multiple regression allowed one to predict up to 93% of the variance of micro-architecture parameters using three texture features. 2D texture features predicting 3D micro-architecture parameters other than BV/TV were identified. The methodology proposed for evaluating the relationships between 3D micro-architecture and 2D texture parameters may also be used for optimizing the conditions for radiographic imaging. Further work will include the application of the method to physical radiographs. In the future, this approach could be used in combination with DXA to refine osteoporosis diagnosis.« less
Quantitative Ultrasound Using Texture Analysis of Myofascial Pain Syndrome in the Trapezius.
Kumbhare, Dinesh A; Ahmed, Sara; Behr, Michael G; Noseworthy, Michael D
2018-01-01
Objective-The objective of this study is to assess the discriminative ability of textural analyses to assist in the differentiation of the myofascial trigger point (MTrP) region from normal regions of skeletal muscle. Also, to measure the ability to reliably differentiate between three clinically relevant groups: healthy asymptomatic, latent MTrPs, and active MTrP. Methods-18 and 19 patients were identified with having active and latent MTrPs in the trapezius muscle, respectively. We included 24 healthy volunteers. Images were obtained by research personnel, who were blinded with respect to the clinical status of the study participant. Histograms provided first-order parameters associated with image grayscale. Haralick, Galloway, and histogram-related features were used in texture analysis. Blob analysis was conducted on the regions of interest (ROIs). Principal component analysis (PCA) was performed followed by multivariate analysis of variance (MANOVA) to determine the statistical significance of the features. Results-92 texture features were analyzed for factorability using Bartlett's test of sphericity, which was significant. The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.94. PCA demonstrated rotated eigenvalues of the first eight components (each comprised of multiple texture features) explained 94.92% of the cumulative variance in the ultrasound image characteristics. The 24 features identified by PCA were included in the MANOVA as dependent variables, and the presence of a latent or active MTrP or healthy muscle were independent variables. Conclusion-Texture analysis techniques can discriminate between the three clinically relevant groups.
Ohkubo, Hirotsugu; Nakagawa, Hiroaki; Niimi, Akio
2018-01-01
Idiopathic pulmonary fibrosis (IPF) is the most common type of progressive idiopathic interstitial pneumonia in adults. Many computer-based image analysis methods of chest computed tomography (CT) used in patients with IPF include the mean CT value of the whole lungs, density histogram analysis, density mask technique, and texture classification methods. Most of these methods offer good assessment of pulmonary functions, disease progression, and mortality. Each method has merits that can be used in clinical practice. One of the texture classification methods is reported to be superior to visual CT scoring by radiologist for correlation with pulmonary function and prediction of mortality. In this mini review, we summarize the current literature on computer-based CT image analysis of IPF and discuss its limitations and several future directions. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
Szakonyi, G; Zelkó, R
2013-05-20
One of the promising approaches to predict in vivo disintegration time of orally disintegrating tablets (ODT) is the use of texture analyzer instrument. Once the method is able to provide good in vitro in vivo correlation (IVIVC) in the case of different tablets, it might be able to predict the oral disintegration time of similar products. However, there are many tablet parameters that influence the in vivo and the in vitro disintegration time of ODT products. Therefore, the measured in vitro and in vivo disintegration times can occasionally differ, even if they coincide in most cases of the investigated products and the in vivo disintegration times may also change if the aimed patient group is suffering from a special illness. If the method is no longer able to provide good IVIVC, then the modification of a single instrumental parameter may not be successful and the in vitro method must be re-set in a complex manner in order to provide satisfactory results. In the present experiment, an optimization process was developed based on texture analysis measurements using five different tablets in order to predict their in vivo disintegration times, and the optimized texture analysis method was evaluated using independent tablets. Copyright © 2013 Elsevier B.V. All rights reserved.
Local multifractal detrended fluctuation analysis for non-stationary image's texture segmentation
NASA Astrophysics Data System (ADS)
Wang, Fang; Li, Zong-shou; Li, Jin-wei
2014-12-01
Feature extraction plays a great important role in image processing and pattern recognition. As a power tool, multifractal theory is recently employed for this job. However, traditional multifractal methods are proposed to analyze the objects with stationary measure and cannot for non-stationary measure. The works of this paper is twofold. First, the definition of stationary image and 2D image feature detection methods are proposed. Second, a novel feature extraction scheme for non-stationary image is proposed by local multifractal detrended fluctuation analysis (Local MF-DFA), which is based on 2D MF-DFA. A set of new multifractal descriptors, called local generalized Hurst exponent (Lhq) is defined to characterize the local scaling properties of textures. To test the proposed method, both the novel texture descriptor and other two multifractal indicators, namely, local Hölder coefficients based on capacity measure and multifractal dimension Dq based on multifractal differential box-counting (MDBC) method, are compared in segmentation experiments. The first experiment indicates that the segmentation results obtained by the proposed Lhq are better than the MDBC-based Dq slightly and superior to the local Hölder coefficients significantly. The results in the second experiment demonstrate that the Lhq can distinguish the texture images more effectively and provide more robust segmentations than the MDBC-based Dq significantly.
Pneumothorax detection in chest radiographs using local and global texture signatures
NASA Astrophysics Data System (ADS)
Geva, Ofer; Zimmerman-Moreno, Gali; Lieberman, Sivan; Konen, Eli; Greenspan, Hayit
2015-03-01
A novel framework for automatic detection of pneumothorax abnormality in chest radiographs is presented. The suggested method is based on a texture analysis approach combined with supervised learning techniques. The proposed framework consists of two main steps: at first, a texture analysis process is performed for detection of local abnormalities. Labeled image patches are extracted in the texture analysis procedure following which local analysis values are incorporated into a novel global image representation. The global representation is used for training and detection of the abnormality at the image level. The presented global representation is designed based on the distinctive shape of the lung, taking into account the characteristics of typical pneumothorax abnormalities. A supervised learning process was performed on both the local and global data, leading to trained detection system. The system was tested on a dataset of 108 upright chest radiographs. Several state of the art texture feature sets were experimented with (Local Binary Patterns, Maximum Response filters). The optimal configuration yielded sensitivity of 81% with specificity of 87%. The results of the evaluation are promising, establishing the current framework as a basis for additional improvements and extensions.
Material quality assessment of silk nanofibers based on swarm intelligence
NASA Astrophysics Data System (ADS)
Brandoli Machado, Bruno; Nunes Gonçalves, Wesley; Martinez Bruno, Odemir
2013-02-01
In this paper, we propose a novel approach for texture analysis based on artificial crawler model. Our method assumes that each agent can interact with the environment and each other. The evolution process converges to an equilibrium state according to the set of rules. For each textured image, the feature vector is composed by signatures of the live agents curve at each time. Experimental results revealed that combining the minimum and maximum signatures into one increase the classification rate. In addition, we pioneer the use of autonomous agents for characterizing silk fibroin scaffolds. The results strongly suggest that our approach can be successfully employed for texture analysis.
BCC skin cancer diagnosis based on texture analysis techniques
NASA Astrophysics Data System (ADS)
Chuang, Shao-Hui; Sun, Xiaoyan; Chang, Wen-Yu; Chen, Gwo-Shing; Huang, Adam; Li, Jiang; McKenzie, Frederic D.
2011-03-01
In this paper, we present a texture analysis based method for diagnosing the Basal Cell Carcinoma (BCC) skin cancer using optical images taken from the suspicious skin regions. We first extracted the Run Length Matrix and Haralick texture features from the images and used a feature selection algorithm to identify the most effective feature set for the diagnosis. We then utilized a Multi-Layer Perceptron (MLP) classifier to classify the images to BCC or normal cases. Experiments showed that detecting BCC cancer based on optical images is feasible. The best sensitivity and specificity we achieved on our data set were 94% and 95%, respectively.
About normal distribution on SO(3) group in texture analysis
NASA Astrophysics Data System (ADS)
Savyolova, T. I.; Filatov, S. V.
2017-12-01
This article studies and compares different normal distributions (NDs) on SO(3) group, which are used in texture analysis. Those NDs are: Fisher normal distribution (FND), Bunge normal distribution (BND), central normal distribution (CND) and wrapped normal distribution (WND). All of the previously mentioned NDs are central functions on SO(3) group. CND is a subcase for normal CLT-motivated distributions on SO(3) (CLT here is Parthasarathy’s central limit theorem). WND is motivated by CLT in R 3 and mapped to SO(3) group. A Monte Carlo method for modeling normally distributed values was studied for both CND and WND. All of the NDs mentioned above are used for modeling different components of crystallites orientation distribution function in texture analysis.
NASA Astrophysics Data System (ADS)
Rajab, Fatema H.; Liu, Zhu; Li, Lin
2018-01-01
Superhydrophilic surfaces with liquid contact angles of less than 5 ° have attracted much interest in practical applications including self-cleaning, cell manipulation, adhesion enhancement, anti-fogging, fluid flow control and evaporative cooling. Standard laser metal texturing method often result in unstable wetting characteristics, i.e. changing from super hydrophilic to hydrophobic in a few days or weeks. In this paper, a simple one step method is reported for fabricating a stable superhydrophilic metallic surface that lasted for at least 6 months. Here, 316L stainless steel substrates were textured using a nanosecond laser with in-situ SiO2 deposition. Morphology and chemistry of laser-textured surfaces were characterised using SEM, XRD, XPS and an optical 3D profiler. Static wettability analysis was carried out over a period of 6 months after the laser treatment. The effect of surface roughness on wettability was also studied. Results showed that the wettability of the textured surfaces could be controlled by changing the scanning speed of laser beam and number of passes. The main reason for the realisation of the stable superhydrophilic surface is the combination of the melted glass particles mainly Si and O with that of stainless steel in the micro-textured patterns. This study presents a useful method
Analysis and interpretation of diffraction data from complex, anisotropic materials
NASA Astrophysics Data System (ADS)
Tutuncu, Goknur
Most materials are elastically anisotropic and exhibit additional anisotropy beyond elastic deformation. For instance, in ferroelectric materials the main inelastic deformation mode is via domains, which are highly anisotropic crystallographic features. To quantify this anisotropy of ferroelectrics, advanced X-ray and neutron diffraction methods were employed. Extensive sets of data were collected from tetragonal BaTiO3, PZT and other ferroelectric ceramics. Data analysis was challenging due to the complex constitutive behavior of these materials. To quantify the elastic strain and texture evolution in ferroelectrics under loading, a number of data analysis techniques such as the single peak and Rietveld methods were used and their advantages and disadvantages compared. It was observed that the single peak analysis fails at low peak intensities especially after domain switching while the Rietveld method does not account for lattice strain anisotropy although it overcomes the low intensity problem via whole pattern analysis. To better account for strain anisotropy the constant stress (Reuss) approximation was employed within the Rietveld method and new formulations to estimate lattice strain were proposed. Along the way, new approaches for handling highly anisotropic lattice strain data were also developed and applied. All of the ceramics studied exhibited significant changes in their crystallographic texture after loading indicating non-180° domain switching. For a full interpretation of domain switching the spherical harmonics method was employed in Rietveld. A procedure for simultaneous refinement of multiple data sets was established for a complete texture analysis. To further interpret diffraction data, a solid mechanics model based on the self-consistent approach was used in calculating lattice strain and texture evolution during the loading of a polycrystalline ferroelectric. The model estimates both the macroscopic average response of a specimen and its hkl-dependent lattice strains for different reflections. It also tracks the number of grains (or domains) contributing to each reflection and allows for domain switching. The agreement between the model and experimental data was found to be satisfactory.
NASA Astrophysics Data System (ADS)
Awad, Joseph; Krasinski, Adam; Spence, David; Parraga, Grace; Fenster, Aaron
2010-03-01
Carotid atherosclerosis is the major cause of ischemic stroke, a leading cause of death and disability. This is driving the development of image analysis methods to quantitatively evaluate local arterial effects of potential treatments of carotid disease. Here we investigate the use of novel texture analysis tools to detect potential changes in the carotid arteries after statin therapy. Three-dimensional (3D) carotid ultrasound images were acquired from the left and right carotid arteries of 35 subjects (16 treated with 80 mg atorvastatin and 19 treated with placebo) at baseline and after 3 months of treatment. Two-hundred and seventy texture features were extracted from 3D ultrasound carotid artery images. These images previously had their vessel walls (VW) manually segmented. Highly ranked individual texture features were selected and compared to the VW volume (VWV) change using 3 measures: distance between classes, Wilcoxon rank sum test, and accuracy of the classifiers. Six classifiers were used. Using texture feature (L7R7) increases the average accuracy and area under the ROC curve to 74.4% and 0.72 respectively compared to 57.2% and 0.61 using VWV change. Thus, the results demonstrate that texture features are more sensitive in detecting drug effects on the carotid vessel wall than VWV change.
Methods of making textured catalysts
Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA
2010-08-17
A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.
Estimating of Soil Texture Using Landsat Imagery: a Case Study in Thatta Tehsil, Sindh
NASA Astrophysics Data System (ADS)
Khalil, Zahid
2016-07-01
Soil texture is considered as an important environment factor for agricultural growth. It is the most essential part for soil classification in large scale. Today the precise soil information in large scale is of great demand from various stakeholders including soil scientists, environmental managers, land use planners and traditional agricultural users. With the increasing demand of soil properties in fine scale spatial resolution made the traditional laboratory methods inadequate. In addition the costs of soil analysis with precision agriculture systems are more expensive than traditional methods. In this regard, the application of geo-spatial techniques can be used as an alternative for examining soil analysis. This study aims to examine the ability of Geo-spatial techniques in identifying the spatial patterns of soil attributes in fine scale. Around 28 samples of soil were collected from the different areas of Thatta Tehsil, Sindh, Pakistan for analyzing soil texture. An Ordinary Least Square (OLS) regression analysis was used to relate the reflectance values of Landsat8 OLI imagery with the soil variables. The analysis showed there was a significant relationship (p<0.05) of band 2 and 5 with silt% (R2 = 0.52), and band 4 and 6 with clay% (R2 =0.40). The equation derived from OLS analysis was then used for the whole study area for deriving soil attributes. The USDA textural classification triangle was implementing for the derivation of soil texture map in GIS environment. The outcome revealed that the 'sandy loam' was in great quantity followed by loam, sandy clay loam and clay loam. The outcome shows that the Geo-spatial techniques could be used efficiently for mapping soil texture of a larger area in fine scale. This technology helped in decreasing cost, time and increase detailed information by reducing field work to a considerable level.
Evolution of microstructure in stainless martensitic steel for seamless tubing
NASA Astrophysics Data System (ADS)
Pyshmintsev, I. Yu.; Bityukov, S. M.; Pastukhov, V. I.; Danilov, S. V.; Vedernikova, L. O.; Lobanov, M. L.
2017-12-01
Scanning electron microscopy with orientation analysis by the electron backscatter diffraction (EBSD) method is used to study microstructures and textures formed in the 0.08C-13Cr-3Ni-Mo-V-Nb steel through seamless tube production route: after hot deformation by extrusion; after quenching from various temperatures and subsequent high tempering. It is shown that the martensitic microstructure formed both after hot deformation and after quenching is characterized by the presence of deformation crystallographic texture, which is predetermined by the texture of austenite. The effect of heat treatment on texture, packet refinement, lath width, precipitation of carbides and Charpy impact energy is analyzed.
Diagnostic analysis of liver B ultrasonic texture features based on LM neural network
NASA Astrophysics Data System (ADS)
Chi, Qingyun; Hua, Hu; Liu, Menglin; Jiang, Xiuying
2017-03-01
In this study, B ultrasound images of 124 benign and malignant patients were randomly selected as the study objects. The B ultrasound images of the liver were treated by enhanced de-noising. By constructing the gray level co-occurrence matrix which reflects the information of each angle, Principal Component Analysis of 22 texture features were extracted and combined with LM neural network for diagnosis and classification. Experimental results show that this method is a rapid and effective diagnostic method for liver imaging, which provides a quantitative basis for clinical diagnosis of liver diseases.
Khoje, Suchitra
2018-02-01
Images of four qualities of mangoes and guavas are evaluated for color and textural features to characterize and classify them, and to model the fruit appearance grading. The paper discusses three approaches to identify most discriminating texture features of both the fruits. In the first approach, fruit's color and texture features are selected using Mahalanobis distance. A total of 20 color features and 40 textural features are extracted for analysis. Using Mahalanobis distance and feature intercorrelation analyses, one best color feature (mean of a* [L*a*b* color space]) and two textural features (energy a*, contrast of H*) are selected as features for Guava while two best color features (R std, H std) and one textural features (energy b*) are selected as features for mangoes with the highest discriminate power. The second approach studies some common wavelet families for searching the best classification model for fruit quality grading. The wavelet features extracted from five basic mother wavelets (db, bior, rbior, Coif, Sym) are explored to characterize fruits texture appearance. In third approach, genetic algorithm is used to select only those color and wavelet texture features that are relevant to the separation of the class, from a large universe of features. The study shows that image color and texture features which were identified using a genetic algorithm can distinguish between various qualities classes of fruits. The experimental results showed that support vector machine classifier is elected for Guava grading with an accuracy of 97.61% and artificial neural network is elected from Mango grading with an accuracy of 95.65%. The proposed method is nondestructive fruit quality assessment method. The experimental results has proven that Genetic algorithm along with wavelet textures feature has potential to discriminate fruit quality. Finally, it can be concluded that discussed method is an accurate, reliable, and objective tool to determine fruit quality namely Mango and Guava, and might be applicable to in-line sorting systems. © 2017 Wiley Periodicals, Inc.
The Study of Residential Areas Extraction Based on GF-3 Texture Image Segmentation
NASA Astrophysics Data System (ADS)
Shao, G.; Luo, H.; Tao, X.; Ling, Z.; Huang, Y.
2018-04-01
The study chooses the standard stripe and dual polarization SAR images of GF-3 as the basic data. Residential areas extraction processes and methods based upon GF-3 images texture segmentation are compared and analyzed. GF-3 images processes include radiometric calibration, complex data conversion, multi-look processing, images filtering, and then conducting suitability analysis for different images filtering methods, the filtering result show that the filtering method of Kuan is efficient for extracting residential areas, then, we calculated and analyzed the texture feature vectors using the GLCM (the Gary Level Co-occurrence Matrix), texture feature vectors include the moving window size, step size and angle, the result show that window size is 11*11, step is 1, and angle is 0°, which is effective and optimal for the residential areas extracting. And with the FNEA (Fractal Net Evolution Approach), we segmented the GLCM texture images, and extracted the residential areas by threshold setting. The result of residential areas extraction verified and assessed by confusion matrix. Overall accuracy is 0.897, kappa is 0.881, and then we extracted the residential areas by SVM classification based on GF-3 images, the overall accuracy is less 0.09 than the accuracy of extraction method based on GF-3 Texture Image Segmentation. We reached the conclusion that residential areas extraction based on GF-3 SAR texture image multi-scale segmentation is simple and highly accurate. although, it is difficult to obtain multi-spectrum remote sensing image in southern China, in cloudy and rainy weather throughout the year, this paper has certain reference significance.
NASA Astrophysics Data System (ADS)
Miyata, Kazunori; Nakajima, Masayuki
1995-04-01
A method is given for synthesizing a texture by using the interface of a conventional drawing tool. The majority of conventional texture generation methods are based on the procedural approach, and can generate a variety of textures that are adequate for generating a realistic image. But it is hard for a user to imagine what kind of texture will be generated simply by looking at its parameters. Furthermore, it is difficult to design a new texture freely without a knowledge of all the procedures for texture generation. Our method offers a solution to these problems, and has the following four merits: First, a variety of textures can be obtained by combining a set of feature lines and attribute functions. Second, data definitions are flexible. Third, the user can preview a texture together with its feature lines. Fourth, people can design their own textures interactively and freely by using the interface of a conventional drawing tool. For users who want to build this texture generation method into their own programs, we also give the language specifications for generating a texture. This method can interactively provide a variety of textures, and can also be used for typographic design.
SU-F-R-18: Updates to the Computational Environment for Radiological Research for Image Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apte, Aditya P.; Deasy, Joseph O.
2016-06-15
Purpose: To present new tools in CERR for Texture Analysis and Visualization. Method: (1) Quantitative Image Analysis: We added the ability to compute Haralick texture features based on local neighbourhood. The Texture features depend on many parameters used in their derivation. For example: (a) directionality, (b) quantization of image, (c) patch-size for the neighborhood, (d) handling of the edge voxels within the region of interest, (e) Averaging co-occurance matrix vs texture features for different directions etc. A graphical user interface was built to set these parameters and then visualize their impact on the resulting texture maps. The entire functionality wasmore » written in Matlab. Array indexing was used to speed up the texture calculation. The computation speed is very competitive with the ITK library. Moreover, our implementation works with multiple CPUs and the computation time can be further reduced by using multiple processor threads. In order to reduce the Haralick texture maps into scalar features, we propose the use of Texture Volume Histograms. This lets users make use of the entire distribution of texture values within the region of interest rather than using just the mean and the standard deviations. (2) Qualitative/Visualization tools: The derived texture maps are stored as a new scan (derived) within CERR’s planC data structure. A display that compares various scans was built to show the raw image and the derived texture maps side-by-side. These images are positionally linked and can be navigated together. CERR’s graphics handling was updated and sped-up to be compatible with the newer Matlab versions. As a result, the users can use (a) different window levels and colormaps for different viewports, (b) click-and-drag or use mouse scroll-wheel to navigate slices. Results: The new features and updates are available via https://www.github.com/adityaapte/cerr . Conclusion: Features added to CERR increase its utility in Radiomics and Outcomes modeling.« less
NASA Astrophysics Data System (ADS)
Chung, Woon-Kwan; Park, Hyong-Hu; Im, In-Chul; Lee, Jae-Seung; Goo, Eun-Hoe; Dong, Kyung-Rae
2012-09-01
This paper proposes a computer-aided diagnosis (CAD) system based on texture feature analysis and statistical wavelet transformation technology to diagnose fatty liver disease with computed tomography (CT) imaging. In the target image, a wavelet transformation was performed for each lesion area to set the region of analysis (ROA, window size: 50 × 50 pixels) and define the texture feature of a pixel. Based on the extracted texture feature values, six parameters (average gray level, average contrast, relative smoothness, skewness, uniformity, and entropy) were determined to calculate the recognition rate for a fatty liver. In addition, a multivariate analysis of the variance (MANOVA) method was used to perform a discriminant analysis to verify the significance of the extracted texture feature values and the recognition rate for a fatty liver. According to the results, each texture feature value was significant for a comparison of the recognition rate for a fatty liver ( p < 0.05). Furthermore, the F-value, which was used as a scale for the difference in recognition rates, was highest in the average gray level, relatively high in the skewness and the entropy, and relatively low in the uniformity, the relative smoothness and the average contrast. The recognition rate for a fatty liver had the same scale as that for the F-value, showing 100% (average gray level) at the maximum and 80% (average contrast) at the minimum. Therefore, the recognition rate is believed to be a useful clinical value for the automatic detection and computer-aided diagnosis (CAD) using the texture feature value. Nevertheless, further study on various diseases and singular diseases will be needed in the future.
The effect of texture granularity on texture synthesis quality
NASA Astrophysics Data System (ADS)
Golestaneh, S. Alireza; Subedar, Mahesh M.; Karam, Lina J.
2015-09-01
Natural and artificial textures occur frequently in images and in video sequences. Image/video coding systems based on texture synthesis can make use of a reliable texture synthesis quality assessment method in order to improve the compression performance in terms of perceived quality and bit-rate. Existing objective visual quality assessment methods do not perform satisfactorily when predicting the synthesized texture quality. In our previous work, we showed that texture regularity can be used as an attribute for estimating the quality of synthesized textures. In this paper, we study the effect of another texture attribute, namely texture granularity, on the quality of synthesized textures. For this purpose, subjective studies are conducted to assess the quality of synthesized textures with different levels (low, medium, high) of perceived texture granularity using different types of texture synthesis methods.
Cooking Methods for a Soft Diet Using Chicken Based on Food Texture Analysis.
Watanabe, Emi; Maeno, Masami; Kayashita, Jun; Miyamoto, Ken-Ichi; Kogirima, Miho
2017-01-01
Undernutrition caused by difficulties in masticating is of growing concern among the elderly. Soft diets are often served at nursing homes; however, the styles differ with nursing homes. Improperly modified food texture and consistency may lead to further loss of nutritive value. Therefore, we developed a method to produce a soft diet using chicken. The texture-modified chicken was prepared by boiling a mixture of minced chicken and additive foodstuff that softened the meat. The best food additive was determined through testing cooking process, size after modification and texture. The optimum proportions of each component in the mixture were determined measuring food texture using a creep meter. Teriyaki chicken was cooked using the texture-modified chicken, and provided to a nursing home. The amount of food intake by elderly residents was subsequently surveyed. This study involved 22 residents (1 man and 21 women; mean age 91.4±5.3 y). Consequently, yakifu, which was made from wheat gluten, was the most suitable additive foodstuff. The hardness of the texture-modified chicken, with proportions of minced chicken, yakifu, and water being 50%, 10%, and 40% respectively, was under 40,000 N/m 2 . The intake amount of the texture-modified chicken of subjects whose intake amount of conventional chicken using chicken thigh was not 100% was significantly higher. These findings suggest that properly modified food textures could contribute to improve the quality of meals by preventing undernutrition among the elderly with mastication difficulties.
Application of texture analysis method for mammogram density classification
NASA Astrophysics Data System (ADS)
Nithya, R.; Santhi, B.
2017-07-01
Mammographic density is considered a major risk factor for developing breast cancer. This paper proposes an automated approach to classify breast tissue types in digital mammogram. The main objective of the proposed Computer-Aided Diagnosis (CAD) system is to investigate various feature extraction methods and classifiers to improve the diagnostic accuracy in mammogram density classification. Texture analysis methods are used to extract the features from the mammogram. Texture features are extracted by using histogram, Gray Level Co-Occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Difference Matrix (GLDM), Local Binary Pattern (LBP), Entropy, Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT), Gabor transform and trace transform. These extracted features are selected using Analysis of Variance (ANOVA). The features selected by ANOVA are fed into the classifiers to characterize the mammogram into two-class (fatty/dense) and three-class (fatty/glandular/dense) breast density classification. This work has been carried out by using the mini-Mammographic Image Analysis Society (MIAS) database. Five classifiers are employed namely, Artificial Neural Network (ANN), Linear Discriminant Analysis (LDA), Naive Bayes (NB), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM). Experimental results show that ANN provides better performance than LDA, NB, KNN and SVM classifiers. The proposed methodology has achieved 97.5% accuracy for three-class and 99.37% for two-class density classification.
Experimental Study on the Perception Characteristics of Haptic Texture by Multidimensional Scaling.
Wu, Juan; Li, Na; Liu, Wei; Song, Guangming; Zhang, Jun
2015-01-01
Recent works regarding real texture perception demonstrate that physical factors such as stiffness and spatial period play a fundamental role in texture perception. This research used a multidimensional scaling (MDS) analysis to further characterize and quantify the effects of the simulation parameters on haptic texture rendering and perception. In a pilot experiment, 12 haptic texture samples were generated by using a 3-degrees-of-freedom (3-DOF) force-feedback device with varying spatial period, height, and stiffness coefficient parameter values. The subjects' perceptions of the virtual textures indicate that roughness, denseness, flatness and hardness are distinguishing characteristics of texture. In the main experiment, 19 participants rated the dissimilarities of the textures and estimated the magnitudes of their characteristics. The MDS method was used to recover the underlying perceptual space and reveal the significance of the space from the recorded data. The physical parameters and their combinations have significant effects on the perceptual characteristics. A regression model was used to quantitatively analyze the parameters and their effects on the perceptual characteristics. This paper is to illustrate that haptic texture perception based on force feedback can be modeled in two- or three-dimensional space and provide suggestions on improving perception-based haptic texture rendering.
NASA Astrophysics Data System (ADS)
Li, Zhenjiang; Wang, Weilan
2018-04-01
Thangka is a treasure of Tibetan culture. In its digital protection, most of the current research focuses on the content of Thangka images, not the fabrication process. For silk embroidered Thangka of "Guo Tang", there are two craft methods, namely, weave embroidered and piles embroidered. The local texture of weave embroidered Thangka is rough, and that of piles embroidered Thangka is more smooth. In order to distinguish these two kinds of fabrication processes from images, a effectively segmentation algorithm of color blocks is designed firstly, and the obtained color blocks contain the local texture patterns of Thangka image; Secondly, the local texture features of the color block are extracted and screened; Finally, the selected features are analyzed experimentally. The experimental analysis shows that the proposed features can well reflect the difference between methods of weave embroidered and piles embroidered.
Liu, Jianli; Lughofer, Edwin; Zeng, Xianyi
2015-01-01
Modeling human aesthetic perception of visual textures is important and valuable in numerous industrial domains, such as product design, architectural design, and decoration. Based on results from a semantic differential rating experiment, we modeled the relationship between low-level basic texture features and aesthetic properties involved in human aesthetic texture perception. First, we compute basic texture features from textural images using four classical methods. These features are neutral, objective, and independent of the socio-cultural context of the visual textures. Then, we conduct a semantic differential rating experiment to collect from evaluators their aesthetic perceptions of selected textural stimuli. In semantic differential rating experiment, eights pairs of aesthetic properties are chosen, which are strongly related to the socio-cultural context of the selected textures and to human emotions. They are easily understood and connected to everyday life. We propose a hierarchical feed-forward layer model of aesthetic texture perception and assign 8 pairs of aesthetic properties to different layers. Finally, we describe the generation of multiple linear and non-linear regression models for aesthetic prediction by taking dimensionality-reduced texture features and aesthetic properties of visual textures as dependent and independent variables, respectively. Our experimental results indicate that the relationships between each layer and its neighbors in the hierarchical feed-forward layer model of aesthetic texture perception can be fitted well by linear functions, and the models thus generated can successfully bridge the gap between computational texture features and aesthetic texture properties.
Karacavus, Seyhan; Yılmaz, Bülent; Tasdemir, Arzu; Kayaaltı, Ömer; Kaya, Eser; İçer, Semra; Ayyıldız, Oguzhan
2018-04-01
We investigated the association between the textural features obtained from 18 F-FDG images, metabolic parameters (SUVmax , SUVmean, MTV, TLG), and tumor histopathological characteristics (stage and Ki-67 proliferation index) in non-small cell lung cancer (NSCLC). The FDG-PET images of 67 patients with NSCLC were evaluated. MATLAB technical computing language was employed in the extraction of 137 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM), and Laws' texture filters. Textural features and metabolic parameters were statistically analyzed in terms of good discrimination power between tumor stages, and selected features/parameters were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). We showed that one textural feature (gray-level nonuniformity, GLN) obtained using GLRLM approach and nine textural features using Laws' approach were successful in discriminating all tumor stages, unlike metabolic parameters. There were significant correlations between Ki-67 index and some of the textural features computed using Laws' method (r = 0.6, p = 0.013). In terms of automatic classification of tumor stage, the accuracy was approximately 84% with k-NN classifier (k = 3) and SVM, using selected five features. Texture analysis of FDG-PET images has a potential to be an objective tool to assess tumor histopathological characteristics. The textural features obtained using Laws' approach could be useful in the discrimination of tumor stage.
Yue, Yong; Osipov, Arsen; Fraass, Benedick; Sandler, Howard; Zhang, Xiao; Nissen, Nicholas; Hendifar, Andrew; Tuli, Richard
2017-02-01
To stratify risks of pancreatic adenocarcinoma (PA) patients using pre- and post-radiotherapy (RT) PET/CT images, and to assess the prognostic value of texture variations in predicting therapy response of patients. Twenty-six PA patients treated with RT from 2011-2013 with pre- and post-treatment 18F-FDG-PET/CT scans were identified. Tumor locoregional texture was calculated using 3D kernel-based approach, and texture variations were identified by fitting discrepancies of texture maps of pre- and post-treatment images. A total of 48 texture and clinical variables were identified and evaluated for association with overall survival (OS). The prognostic heterogeneity features were selected using lasso/elastic net regression, and further were evaluated by multivariate Cox analysis. Median age was 69 y (range, 46-86 y). The texture map and temporal variations between pre- and post-treatment were well characterized by histograms and statistical fitting. The lasso analysis identified seven predictors (age, node stage, post-RT SUVmax, variations of homogeneity, variance, sum mean, and cluster tendency). The multivariate Cox analysis identified five significant variables: age, node stage, variations of homogeneity, variance, and cluster tendency (with P=0.020, 0.040, 0.065, 0.078, and 0.081, respectively). The patients were stratified into two groups based on the risk score of multivariate analysis with log-rank P=0.001: a low risk group (n=11) with a longer mean OS (29.3 months) and higher texture variation (>30%), and a high risk group (n=15) with a shorter mean OS (17.7 months) and lower texture variation (<15%). Locoregional metabolic texture response provides a feasible approach for evaluating and predicting clinical outcomes following treatment of PA with RT. The proposed method can be used to stratify patient risk and help select appropriate treatment strategies for individual patients toward implementing response-driven adaptive RT.
NASA Astrophysics Data System (ADS)
Song, Bowen; Zhang, Guopeng; Lu, Hongbing; Wang, Huafeng; Han, Fangfang; Zhu, Wei; Liang, Zhengrong
2014-03-01
Differentiation of colon lesions according to underlying pathology, e.g., neoplastic and non-neoplastic, is of fundamental importance for patient management. Image intensity based textural features have been recognized as a useful biomarker for the differentiation task. In this paper, we introduce high order texture features, beyond the intensity, such as gradient and curvature, for that task. Based on the Haralick texture analysis method, we introduce a virtual pathological method to explore the utility of texture features from high order differentiations, i.e., gradient and curvature, of the image intensity distribution. The texture features were validated on database consisting of 148 colon lesions, of which 35 are non-neoplastic lesions, using the random forest classifier and the merit of area under the curve (AUC) of the receiver operating characteristics. The results show that after applying the high order features, the AUC was improved from 0.8069 to 0.8544 in differentiating non-neoplastic lesion from neoplastic ones, e.g., hyperplastic polyps from tubular adenomas, tubulovillous adenomas and adenocarcinomas. The experimental results demonstrated that texture features from the higher order images can significantly improve the classification accuracy in pathological differentiation of colorectal lesions. The gain in differentiation capability shall increase the potential of computed tomography (CT) colonography for colorectal cancer screening by not only detecting polyps but also classifying them from optimal polyp management for the best outcome in personalized medicine.
NASA Astrophysics Data System (ADS)
Dennison, Andrew G.
Classification of the seafloor substrate can be done with a variety of methods. These methods include Visual (dives, drop cameras); mechanical (cores, grab samples); acoustic (statistical analysis of echosounder returns). Acoustic methods offer a more powerful and efficient means of collecting useful information about the bottom type. Due to the nature of an acoustic survey, larger areas can be sampled, and by combining the collected data with visual and mechanical survey methods provide greater confidence in the classification of a mapped region. During a multibeam sonar survey, both bathymetric and backscatter data is collected. It is well documented that the statistical characteristic of a sonar backscatter mosaic is dependent on bottom type. While classifying the bottom-type on the basis on backscatter alone can accurately predict and map bottom-type, i.e a muddy area from a rocky area, it lacks the ability to resolve and capture fine textural details, an important factor in many habitat mapping studies. Statistical processing of high-resolution multibeam data can capture the pertinent details about the bottom-type that are rich in textural information. Further multivariate statistical processing can then isolate characteristic features, and provide the basis for an accurate classification scheme. The development of a new classification method is described here. It is based upon the analysis of textural features in conjunction with ground truth sampling. The processing and classification result of two geologically distinct areas in nearshore regions of Lake Superior; off the Lester River,MN and Amnicon River, WI are presented here, using the Minnesota Supercomputer Institute's Mesabi computing cluster for initial processing. Processed data is then calibrated using ground truth samples to conduct an accuracy assessment of the surveyed areas. From analysis of high-resolution bathymetry data collected at both survey sites is was possible to successfully calculate a series of measures that describe textural information about the lake floor. Further processing suggests that the features calculated capture a significant amount of statistical information about the lake floor terrain as well. Two sources of error, an anomalous heave and refraction error significantly deteriorated the quality of the processed data and resulting validate results. Ground truth samples used to validate the classification methods utilized for both survey sites, however, resulted in accuracy values ranging from 5 -30 percent at the Amnicon River, and between 60-70 percent for the Lester River. The final results suggest that this new processing methodology does adequately capture textural information about the lake floor and does provide an acceptable classification in the absence of significant data quality issues.
Sun, X; Chen, K J; Berg, E P; Newman, D J; Schwartz, C A; Keller, W L; Maddock Carlin, K R
2014-02-01
The objective was to use digital color image texture features to predict troponin-T degradation in beef. Image texture features, including 88 gray level co-occurrence texture features, 81 two-dimension fast Fourier transformation texture features, and 48 Gabor wavelet filter texture features, were extracted from color images of beef strip steaks (longissimus dorsi, n = 102) aged for 10d obtained using a digital camera and additional lighting. Steaks were designated degraded or not-degraded based on troponin-T degradation determined on d 3 and d 10 postmortem by immunoblotting. Statistical analysis (STEPWISE regression model) and artificial neural network (support vector machine model, SVM) methods were designed to classify protein degradation. The d 3 and d 10 STEPWISE models were 94% and 86% accurate, respectively, while the d 3 and d 10 SVM models were 63% and 71%, respectively, in predicting protein degradation in aged meat. STEPWISE and SVM models based on image texture features show potential to predict troponin-T degradation in meat. © 2013.
Multisource Transfer Learning With Convolutional Neural Networks for Lung Pattern Analysis.
Christodoulidis, Stergios; Anthimopoulos, Marios; Ebner, Lukas; Christe, Andreas; Mougiakakou, Stavroula
2017-01-01
Early diagnosis of interstitial lung diseases is crucial for their treatment, but even experienced physicians find it difficult, as their clinical manifestations are similar. In order to assist with the diagnosis, computer-aided diagnosis systems have been developed. These commonly rely on a fixed scale classifier that scans CT images, recognizes textural lung patterns, and generates a map of pathologies. In a previous study, we proposed a method for classifying lung tissue patterns using a deep convolutional neural network (CNN), with an architecture designed for the specific problem. In this study, we present an improved method for training the proposed network by transferring knowledge from the similar domain of general texture classification. Six publicly available texture databases are used to pretrain networks with the proposed architecture, which are then fine-tuned on the lung tissue data. The resulting CNNs are combined in an ensemble and their fused knowledge is compressed back to a network with the original architecture. The proposed approach resulted in an absolute increase of about 2% in the performance of the proposed CNN. The results demonstrate the potential of transfer learning in the field of medical image analysis, indicate the textural nature of the problem and show that the method used for training a network can be as important as designing its architecture.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to compare the effect of the production environment (pond vs in-pond raceway) on the chemical composition, color, and textural properties of channel catfish fillets. Compositional analysis consisted of percent moisture, lipid, protein, and ash content. Additional sa...
Majid, Abdul Hafiz Ab; Ahmad, Abu Hassan
2013-12-01
Nine soil samples from nine buildings infested with Coptotermes gestroi in Pulau Pinang, Malaysia, were tested for the type of soil texture. The soil texture analysis procedures used the hydrometer method. Four of nine buildings (44%) yielded loamy sand-type soil, whereas five of nine buildings (56%) contained sandy loam-type soil.
Majid, Abdul Hafiz Ab; Ahmad, Abu Hassan
2013-01-01
Nine soil samples from nine buildings infested with Coptotermes gestroi in Pulau Pinang, Malaysia, were tested for the type of soil texture. The soil texture analysis procedures used the hydrometer method. Four of nine buildings (44%) yielded loamy sand-type soil, whereas five of nine buildings (56%) contained sandy loam-type soil. PMID:24575252
Detection of pigment network in dermatoscopy images using texture analysis
Anantha, Murali; Moss, Randy H.; Stoecker, William V.
2011-01-01
Dermatoscopy, also known as dermoscopy or epiluminescence microscopy (ELM), is a non-invasive, in vivo technique, which permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. ELM offers a completely new range of visual features. One such prominent feature is the pigment network. Two texture-based algorithms are developed for the detection of pigment network. These methods are applicable to various texture patterns in dermatoscopy images, including patterns that lack fine lines such as cobblestone, follicular, or thickened network patterns. Two texture algorithms, Laws energy masks and the neighborhood gray-level dependence matrix (NGLDM) large number emphasis, were optimized on a set of 155 dermatoscopy images and compared. Results suggest superiority of Laws energy masks for pigment network detection in dermatoscopy images. For both methods, a texel width of 10 pixels or approximately 0.22 mm is found for dermatoscopy images. PMID:15249068
Wettability transition of laser textured brass surfaces inside different mediums
NASA Astrophysics Data System (ADS)
Yan, Huangping; Abdul Rashid, Mohamed Raiz B.; Khew, Si Ying; Li, Fengping; Hong, Minghui
2018-01-01
Hydrophobic surface on brass has attracted intensive attention owing to its importance in scientific research and practical applications. Laser texturing provides a simple and promising method to achieve it. Reducing wettability transition time from hydrophilicity to hydrophobicity or superhydrophobicity remains a challenge. Herein, wettability transition of brass surfaces with hybrid micro/nano-structures fabricated by laser texturing was investigated by immersing the samples inside different mediums. Scanning electron microscopy, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy and surface contact angle measurement were employed to characterize surface morphology, chemical composition and wettability of the fabricated surfaces of brass samples. Wettability transition time from hydrophilicity to hydrophobicity was shortened by immersion into isopropyl alcohol for a period of 3 h as a result of the absorption and accumulation of organic substances on the textured brass surface. When the textured brass sample was immersed into sodium bicarbonate solution, flower-like structures on the sample surface played a key role in slowing down wettability transition. Moreover, it had the smallest steady state contact angle as compared to the others. This study provides a facile method to construct textured surfaces with tunable wetting behaviors and effectively extend the industrial applications of brass.
Automatic extraction of tree crowns from aerial imagery in urban environment
NASA Astrophysics Data System (ADS)
Liu, Jiahang; Li, Deren; Qin, Xunwen; Yang, Jianfeng
2006-10-01
Traditionally, field-based investigation is the main method to investigate greenbelt in urban environment, which is costly and low updating frequency. In higher resolution image, the imagery structure and texture of tree canopy has great similarity in statistics despite the great difference in configurations of tree canopy, and their surface structures and textures of tree crown are very different from the other types. In this paper, we present an automatic method to detect tree crowns using high resolution image in urban environment without any apriori knowledge. Our method catches unique structure and texture of tree crown surface, use variance and mathematical expectation of defined image window to position the candidate canopy blocks coarsely, then analysis their inner structure and texture to refine these candidate blocks. The possible spans of all the feature parameters used in our method automatically generate from the small number of samples, and HOLE and its distribution as an important characteristics are introduced into refining processing. Also the isotropy of candidate image block and holes' distribution is integrated in our method. After introduction the theory of our method, aerial imageries were used ( with a resolution about 0.3m ) to test our method, and the results indicate that our method is an effective approach to automatically detect tree crown in urban environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranjanomennahary, P.; Ghalila, S. Sevestre; Malouche, D
Purpose: Hip fracture is a serious health problem and textural methods are being developed to assess bone quality. The authors aimed to perform textural analysis at femur on high-resolution digital radiographs compared to three-dimensional (3D) microarchitecture comparatively to bone mineral density. Methods: Sixteen cadaveric femurs were imaged with an x-ray device using a C-MOS sensor. One 17 mm square region of interest (ROI) was selected in the femoral head (FH) and one in the great trochanter (GT). Two-dimensional (2D) textural features from the co-occurrence matrices were extracted. Site-matched measurements of bone mineral density were performed. Inside each ROI, a 16more » mm diameter core was extracted. Apparent density (D{sub app}) and bone volume proportion (BV/TV{sub Arch}) were measured from a defatted bone core using Archimedes' principle. Microcomputed tomography images of the entire length of the core were obtained (Skyscan 1072) at 19.8 {mu}m of resolution and usual 3D morphometric parameters were computed on the binary volume after calibration from BV/TV{sub Arch}. Then, bone surface/bone volume, trabecular thickness, trabecular separation, and trabecular number were obtained by direct methods without model assumption and the structure model index was calculated. Results: In univariate analysis, the correlation coefficients between 2D textural features and 3D morphological parameters reached 0.83 at the FH and 0.79 at the GT. In multivariate canonical correlation analysis, coefficients of the first component reached 0.95 at the FH and 0.88 at the GT. Conclusions: Digital radiographs, widely available and economically viable, are an alternative method for evaluating bone microarchitectural structure.« less
Descriptive sensory and instrumental texture profile analysis of woody breast in marinated chicken.
Aguirre, M E; Owens, C M; Miller, R K; Alvarado, C Z
2018-04-01
The broiler industry is currently experiencing a muscle anomaly referred to as "woody breast," and the effect of different cooking methods on the marination properties of severe woody breast (SWB) has not yet been reported. This study compared the texture attributes of marinated (injected) normal (NOR) and SWB using a convection oven and a flat-top grill. The objectives were 1) to develop and validate a descriptive texture attribute panel with 6 trained panelists using a 16-point scale and 2) to evaluate the instrumental texture profile analysis (TPA) using a texture analyzer. Sixty-four NOR and SWB were obtained from a commercial facility. Fillet color (L*, a*, b*) and pH were measured before marination. In each of 2 trials, the breast muscles were injected in bulk with 15% brine (0.48 STPP, 0.55% NaCl, final concentration), and marinade retention was determined after 20 minutes. The meat was vacuum packaged, stored at -20°C (7 d sensory; 29 d TPA) and then thawed (4°C, 24 h). Fillets were cooked to 73°C on a flat-top grill (176°C) or in an oven (176°C), and cook loss % was determined. Panelist samples (2 × 2 cm) and TPA samples (4 × 2 cm) were cut into 3 pieces. Color and pH were higher for SWB than NOR fillets (P < 0.05). Marinade retention was 83.21% for NOR meat and 59.23% for SWB meat. The flat-top grill method resulted in higher cook loss than oven (P < 0.05). SWB had higher cook loss when compared to NOR (P < 0.05). Sensory texture descriptors springiness, hardness, denseness, cohesiveness, fracturability, fibrousness, crunchiness, and chewiness were higher for SWB than NOR fillets (P < 0.05). TPA attributes also showed higher values for SWB compared to NOR (P < 0.05). No differences in texture were found between the grill and oven for sensory and TPA attributes. In summary, marinated SWB has significant texture differences when compared to NOR, regardless of cooking method.
Near-affine-invariant texture learning for lung tissue analysis using isotropic wavelet frames.
Depeursinge, Adrien; Van de Ville, Dimitri; Platon, Alexandra; Geissbuhler, Antoine; Poletti, Pierre-Alexandre; Müller, Henning
2012-07-01
We propose near-affine-invariant texture descriptors derived from isotropic wavelet frames for the characterization of lung tissue patterns in high-resolution computed tomography (HRCT) imaging. Affine invariance is desirable to enable learning of nondeterministic textures without a priori localizations, orientations, or sizes. When combined with complementary gray-level histograms, the proposed method allows a global classification accuracy of 76.9% with balanced precision among five classes of lung tissue using a leave-one-patient-out cross validation, in accordance with clinical practice.
Ortiz-Ramón, Rafael; Larroza, Andrés; Ruiz-España, Silvia; Arana, Estanislao; Moratal, David
2018-05-14
To examine the capability of MRI texture analysis to differentiate the primary site of origin of brain metastases following a radiomics approach. Sixty-seven untreated brain metastases (BM) were found in 3D T1-weighted MRI of 38 patients with cancer: 27 from lung cancer, 23 from melanoma and 17 from breast cancer. These lesions were segmented in 2D and 3D to compare the discriminative power of 2D and 3D texture features. The images were quantized using different number of gray-levels to test the influence of quantization. Forty-three rotation-invariant texture features were examined. Feature selection and random forest classification were implemented within a nested cross-validation structure. Classification was evaluated with the area under receiver operating characteristic curve (AUC) considering two strategies: multiclass and one-versus-one. In the multiclass approach, 3D texture features were more discriminative than 2D features. The best results were achieved for images quantized with 32 gray-levels (AUC = 0.873 ± 0.064) using the top four features provided by the feature selection method based on the p-value. In the one-versus-one approach, high accuracy was obtained when differentiating lung cancer BM from breast cancer BM (four features, AUC = 0.963 ± 0.054) and melanoma BM (eight features, AUC = 0.936 ± 0.070) using the optimal dataset (3D features, 32 gray-levels). Classification of breast cancer and melanoma BM was unsatisfactory (AUC = 0.607 ± 0.180). Volumetric MRI texture features can be useful to differentiate brain metastases from different primary cancers after quantizing the images with the proper number of gray-levels. • Texture analysis is a promising source of biomarkers for classifying brain neoplasms. • MRI texture features of brain metastases could help identifying the primary cancer. • Volumetric texture features are more discriminative than traditional 2D texture features.
NASA Astrophysics Data System (ADS)
Heinrich, C.; Feldens, P.; Schwarzer, K.
2017-06-01
Hydroacoustic surveys are common tools for habitat investigation and monitoring that aid in the realisation of the aims of the EU Marine Directives. However, the creation of habitat maps is difficult, especially when benthic organisms densely populate the seafloor. This study assesses the sensitivity of entropy and homogeneity image texture parameters derived from backscatter strength data to benthic habitats dominated by the tubeworm Lanice conchilega. Side scan sonar backscatter surveys were carried out in 2010 and 2011 in the German Bight (southern North Sea) at two sites approx. 20 km offshore of the island of Sylt. Abiotic and biotic seabed facies, such as sorted bedforms, areas of fine to medium sand and L. conchilega beds with different tube densities, were identified and characterised based on manual expert analysis and image texture analysis. Ground truthing was performed by grab sampling and underwater video observations. Compared to the manual expert analysis, the k- means classification of image textures proves to be a semi-automated method to investigate small-scale differences in a biologically altered seabed from backscatter data. The texture parameters entropy and homogeneity appear linearly interrelated with tube density, the former positively and the latter negatively. Reinvestigation of one site after 1 year showed an extensive change in the distribution of the L. conchilega-altered seabed. Such marked annual fluctuations in L. conchilega tube cover demonstrate the need for dense time series and high spatial coverage to meaningfully monitor ecological patterns on the seafloor with acoustic backscatter methods in the study region and similar settings worldwide, particularly because the sand mason plays a pivotal role in promoting biodiversity. In this context, image texture analysis provides a cost-effective and reproducible method to track biologically altered seabeds from side scan sonar backscatter signatures.
Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis
Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.
2015-01-01
Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis. PMID:25991505
NASA Astrophysics Data System (ADS)
Raupov, Dmitry S.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Kornilin, Dmitry V.; Zakharov, Valery P.; Khramov, Alexander G.
2016-04-01
Optical coherence tomography (OCT) is usually employed for the measurement of tumor topology, which reflects structural changes of a tissue. We investigated the possibility of OCT in detecting changes using a computer texture analysis method based on Haralick texture features, fractal dimension and the complex directional field method from different tissues. These features were used to identify special spatial characteristics, which differ healthy tissue from various skin cancers in cross-section OCT images (B-scans). Speckle reduction is an important pre-processing stage for OCT image processing. In this paper, an interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in OCT images was used. The Haralick texture feature set includes contrast, correlation, energy, and homogeneity evaluated in different directions. A box-counting method is applied to compute fractal dimension of investigated tissues. Additionally, we used the complex directional field calculated by the local gradient methodology to increase of the assessment quality of the diagnosis method. The complex directional field (as well as the "classical" directional field) can help describe an image as set of directions. Considering to a fact that malignant tissue grows anisotropically, some principal grooves may be observed on dermoscopic images, which mean possible existence of principal directions on OCT images. Our results suggest that described texture features may provide useful information to differentiate pathological from healthy patients. The problem of recognition melanoma from nevi is decided in this work due to the big quantity of experimental data (143 OCT-images include tumors as Basal Cell Carcinoma (BCC), Malignant Melanoma (MM) and Nevi). We have sensitivity about 90% and specificity about 85%. Further research is warranted to determine how this approach may be used to select the regions of interest automatically.
NASA Astrophysics Data System (ADS)
Florindo, João. Batista
2018-04-01
This work proposes the use of Singular Spectrum Analysis (SSA) for the classification of texture images, more specifically, to enhance the performance of the Bouligand-Minkowski fractal descriptors in this task. Fractal descriptors are known to be a powerful approach to model and particularly identify complex patterns in natural images. Nevertheless, the multiscale analysis involved in those descriptors makes them highly correlated. Although other attempts to address this point was proposed in the literature, none of them investigated the relation between the fractal correlation and the well-established analysis employed in time series. And SSA is one of the most powerful techniques for this purpose. The proposed method was employed for the classification of benchmark texture images and the results were compared with other state-of-the-art classifiers, confirming the potential of this analysis in image classification.
Fast determination of the current loss mechanisms in textured crystalline Si-based solar cells
NASA Astrophysics Data System (ADS)
Nakane, Akihiro; Fujimoto, Shohei; Fujiwara, Hiroyuki
2017-11-01
A quite general device analysis method that allows the direct evaluation of optical and recombination losses in crystalline silicon (c-Si)-based solar cells has been developed. By applying this technique, the current loss mechanisms of the state-of-the-art solar cells with ˜20% efficiencies have been revealed. In the established method, the optical and electrical losses are characterized from the analysis of an experimental external quantum efficiency (EQE) spectrum with very low computational cost. In particular, we have performed the EQE analyses of textured c-Si solar cells by employing the experimental reflectance spectra obtained directly from the actual devices while using flat optical models without any fitting parameters. We find that the developed method provides almost perfect fitting to EQE spectra reported for various textured c-Si solar cells, including c-Si heterojunction solar cells, a dopant-free c-Si solar cell with a MoOx layer, and an n-type passivated emitter with rear locally diffused solar cell. The modeling of the recombination loss further allows the extraction of the minority carrier diffusion length and surface recombination velocity from the EQE analysis. Based on the EQE analysis results, the current loss mechanisms in different types of c-Si solar cells are discussed.
Automatic multiresolution age-related macular degeneration detection from fundus images
NASA Astrophysics Data System (ADS)
Garnier, Mickaël.; Hurtut, Thomas; Ben Tahar, Houssem; Cheriet, Farida
2014-03-01
Age-related Macular Degeneration (AMD) is a leading cause of legal blindness. As the disease progress, visual loss occurs rapidly, therefore early diagnosis is required for timely treatment. Automatic, fast and robust screening of this widespread disease should allow an early detection. Most of the automatic diagnosis methods in the literature are based on a complex segmentation of the drusen, targeting a specific symptom of the disease. In this paper, we present a preliminary study for AMD detection from color fundus photographs using a multiresolution texture analysis. We analyze the texture at several scales by using a wavelet decomposition in order to identify all the relevant texture patterns. Textural information is captured using both the sign and magnitude components of the completed model of Local Binary Patterns. An image is finally described with the textural pattern distributions of the wavelet coefficient images obtained at each level of decomposition. We use a Linear Discriminant Analysis for feature dimension reduction, to avoid the curse of dimensionality problem, and image classification. Experiments were conducted on a dataset containing 45 images (23 healthy and 22 diseased) of variable quality and captured by different cameras. Our method achieved a recognition rate of 93:3%, with a specificity of 95:5% and a sensitivity of 91:3%. This approach shows promising results at low costs that in agreement with medical experts as well as robustness to both image quality and fundus camera model.
Pantic, Igor; Pantic, Senka
2012-10-01
In this article, we present the results indicating that spleen germinal center (GC) texture entropy determined by gray-level co-occurrence matrix (GLCM) method is related to humoral immune response. Spleen tissue was obtained from eight outbred male short-haired guinea pigs previously immunized by sheep red blood cells (SRBC). A total of 312 images from 39 germinal centers (156 GC light zone images and 156 GC dark zone images) were acquired and analyzed by GLCM method. Angular second moment, contrast, correlation, entropy, and inverse difference moment were calculated for each image. Humoral immune response to SRBC was measured using T cell-dependent antibody response (TDAR) assay. Statistically highly significant negative correlation was detected between light zone entropy and the number of TDAR plaque-forming cells (r (s) = -0.86, p < 0.01). The entropy decreased as the plaque-forming cells increased and vice versa. A statistically significant negative correlation was also detected between dark zone entropy values and the number of plaque-forming cells (r (s) = -0.69, p < 0.05). Germinal center texture entropy may be a powerful indicator of humoral immune response. This study is one of the first to point out the potential scientific value of GLCM image texture analysis in lymphoid tissue cytoarchitecture evaluation. Lymphoid tissue texture analysis could become an important and affordable addition to the conventional immunophysiology techniques.
Li, Zhiming; Yu, Lan; Wang, Xin; Yu, Haiyang; Gao, Yuanxiang; Ren, Yande; Wang, Gang; Zhou, Xiaoming
2017-11-09
The purpose of this study was to investigate the diagnostic performance of mammographic texture analysis in the differential diagnosis of benign and malignant breast tumors. Digital mammography images were obtained from the Picture Archiving and Communication System at our institute. Texture features of mammographic images were calculated. Mann-Whitney U test was used to identify differences between the benign and malignant group. The receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic performance of texture features. Significant differences of texture features of histogram, gray-level co-occurrence matrix (GLCM) and run length matrix (RLM) were found between the benign and malignant breast group (P < .05). The area under the ROC (AUROC) of histogram, GLCM, and RLM were 0.800, 0.787, and 0.761, with no differences between them (P > .05). The AUROCs of imaging-based diagnosis, texture analysis, and imaging-based diagnosis combined with texture analysis were 0.873, 0.863, and 0.961, respectively. When imaging-based diagnosis was combined with texture analysis, the AUROC was higher than that of imaging-based diagnosis or texture analysis (P < .05). Mammographic texture analysis is a reliable technique for differential diagnosis of benign and malignant breast tumors. Furthermore, the combination of imaging-based diagnosis and texture analysis can significantly improve diagnostic performance. Copyright © 2017 Elsevier Inc. All rights reserved.
Purnell, Mark; Seehausen, Ole; Galis, Frietson
2012-01-01
Resource polymorphisms and competition for resources are significant factors in speciation. Many examples come from fishes, and cichlids are of particular importance because of their role as model organisms at the interface of ecology, development, genetics and evolution. However, analysis of trophic resource use in fishes can be difficult and time-consuming, and for fossil fish species it is particularly problematic. Here, we present evidence from cichlids that analysis of tooth microwear based on high-resolution (sub-micrometre scale) three-dimensional data and new ISO standards for quantification of surface textures provides a powerful tool for dietary discrimination and investigation of trophic resource exploitation. Our results suggest that three-dimensional approaches to analysis offer significant advantages over two-dimensional operator-scored methods of microwear analysis, including applicability to rough tooth surfaces that lack distinct scratches and pits. Tooth microwear textures develop over a longer period of time than is represented by stomach contents, and analyses based on textures are less prone to biases introduced by opportunistic feeding. They are more sensitive to subtle dietary differences than isotopic analysis. Quantitative textural analysis of tooth microwear has a useful role to play, complementing existing approaches, in trophic analysis of fishes—both extant and extinct. PMID:22491979
Classification of Weed Species Using Artificial Neural Networks Based on Color Leaf Texture Feature
NASA Astrophysics Data System (ADS)
Li, Zhichen; An, Qiu; Ji, Changying
The potential impact of herbicide utilization compel people to use new method of weed control. Selective herbicide application is optimal method to reduce herbicide usage while maintain weed control. The key of selective herbicide is how to discriminate weed exactly. The HIS color co-occurrence method (CCM) texture analysis techniques was used to extract four texture parameters: Angular second moment (ASM), Entropy(E), Inertia quadrature (IQ), and Inverse difference moment or local homogeneity (IDM).The weed species selected for studying were Arthraxon hispidus, Digitaria sanguinalis, Petunia, Cyperus, Alternanthera Philoxeroides and Corchoropsis psilocarpa. The software of neuroshell2 was used for designing the structure of the neural network, training and test the data. It was found that the 8-40-1 artificial neural network provided the best classification performance and was capable of classification accuracies of 78%.
A Study of Feature Extraction Using Divergence Analysis of Texture Features
NASA Technical Reports Server (NTRS)
Hallada, W. A.; Bly, B. G.; Boyd, R. K.; Cox, S.
1982-01-01
An empirical study of texture analysis for feature extraction and classification of high spatial resolution remotely sensed imagery (10 meters) is presented in terms of specific land cover types. The principal method examined is the use of spatial gray tone dependence (SGTD). The SGTD method reduces the gray levels within a moving window into a two-dimensional spatial gray tone dependence matrix which can be interpreted as a probability matrix of gray tone pairs. Haralick et al (1973) used a number of information theory measures to extract texture features from these matrices, including angular second moment (inertia), correlation, entropy, homogeneity, and energy. The derivation of the SGTD matrix is a function of: (1) the number of gray tones in an image; (2) the angle along which the frequency of SGTD is calculated; (3) the size of the moving window; and (4) the distance between gray tone pairs. The first three parameters were varied and tested on a 10 meter resolution panchromatic image of Maryville, Tennessee using the five SGTD measures. A transformed divergence measure was used to determine the statistical separability between four land cover categories forest, new residential, old residential, and industrial for each variation in texture parameters.
Single-Image Super-Resolution Based on Rational Fractal Interpolation.
Zhang, Yunfeng; Fan, Qinglan; Bao, Fangxun; Liu, Yifang; Zhang, Caiming
2018-08-01
This paper presents a novel single-image super-resolution (SR) procedure, which upscales a given low-resolution (LR) input image to a high-resolution image while preserving the textural and structural information. First, we construct a new type of bivariate rational fractal interpolation model and investigate its analytical properties. This model has different forms of expression with various values of the scaling factors and shape parameters; thus, it can be employed to better describe image features than current interpolation schemes. Furthermore, this model combines the advantages of rational interpolation and fractal interpolation, and its effectiveness is validated through theoretical analysis. Second, we develop a single-image SR algorithm based on the proposed model. The LR input image is divided into texture and non-texture regions, and then, the image is interpolated according to the characteristics of the local structure. Specifically, in the texture region, the scaling factor calculation is the critical step. We present a method to accurately calculate scaling factors based on local fractal analysis. Extensive experiments and comparisons with the other state-of-the-art methods show that our algorithm achieves competitive performance, with finer details and sharper edges.
NASA Astrophysics Data System (ADS)
Książek, Judyta
2015-10-01
At present, there has been a great interest in the development of texture based image classification methods in many different areas. This study presents the results of research carried out to assess the usefulness of selected textural features for detection of asbestos-cement roofs in orthophotomap classification. Two different orthophotomaps of southern Poland (with ground resolution: 5 cm and 25 cm) were used. On both orthoimages representative samples for two classes: asbestos-cement roofing sheets and other roofing materials were selected. Estimation of texture analysis usefulness was conducted using machine learning methods based on decision trees (C5.0 algorithm). For this purpose, various sets of texture parameters were calculated in MaZda software. During the calculation of decision trees different numbers of texture parameters groups were considered. In order to obtain the best settings for decision trees models cross-validation was performed. Decision trees models with the lowest mean classification error were selected. The accuracy of the classification was held based on validation data sets, which were not used for the classification learning. For 5 cm ground resolution samples, the lowest mean classification error was 15.6%. The lowest mean classification error in the case of 25 cm ground resolution was 20.0%. The obtained results confirm potential usefulness of the texture parameter image processing for detection of asbestos-cement roofing sheets. In order to improve the accuracy another extended study should be considered in which additional textural features as well as spectral characteristics should be analyzed.
Morphological and textural characterization of functionalized particulate silica xerogels
NASA Astrophysics Data System (ADS)
de Miranda, Lazaro A.; Mohallem, Nelcy D. S.; de Magalhães, Welington F.
2006-03-01
The functionalization of xerogels for use in chromatography and catalysis was carried out by solubilization of amorphous silica using a soxhlet extractor. Xerogels were prepared by sol-gel method using tetraethoxysilane, TEOS, ethanol, and water in a 1/3/10 molar ratio with HCl and HF as catalysts. The samples were prepared in monolithic form and dried at 70 °C and 550 °C for 1 h each. After functionalization, changes in textural and morphological characteristics of xerogels were investigated by means of nitrogen gas adsorption, positron annihilation lifetime spectroscopy (PALS), and scanning electron microscopy (SEM). As the analysis methods are based on different physical principles, the results are complementary, leading to a good knowledge of the texture of the samples studied.
Kriete, A; Schäffer, R; Harms, H; Aus, H M
1987-06-01
Nuclei of the cells from the thyroid gland were analyzed in a transmission electron microscope by direct TV scanning and on-line image processing. The method uses the advantages of a visual-perception model to detect structures in noisy and low-contrast images. The features analyzed include area, a form factor and texture parameters from the second derivative stage. Three tumor-free thyroid tissues, three follicular adenomas, three follicular carcinomas and three papillary carcinomas were studied. The computer-aided cytophotometric method showed that the most significant differences were the statistics of the chromatin texture features of homogeneity and regularity. These findings document the possibility of an automated differentiation of tumors at the ultrastructural level.
Uterus segmentation in dynamic MRI using LBP texture descriptors
NASA Astrophysics Data System (ADS)
Namias, R.; Bellemare, M.-E.; Rahim, M.; Pirró, N.
2014-03-01
Pelvic floor disorders cover pathologies of which physiopathology is not well understood. However cases get prevalent with an ageing population. Within the context of a project aiming at modelization of the dynamics of pelvic organs, we have developed an efficient segmentation process. It aims at alleviating the radiologist with a tedious one by one image analysis. From a first contour delineating the uterus-vagina set, the organ border is tracked along a dynamic mri sequence. The process combines movement prediction, local intensity and texture analysis and active contour geometry control. Movement prediction allows a contour intitialization for next image in the sequence. Intensity analysis provides image-based local contour detection enhanced by local binary pattern (lbp) texture descriptors. Geometry control prohibits self intersections and smoothes the contour. Results show the efficiency of the method with images produced in clinical routine.
NASA Astrophysics Data System (ADS)
Raupov, Dmitry S.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Zakharov, Valery P.; Khramov, Alexander G.
2016-10-01
In this paper, we propose a report about our examining of the validity of OCT in identifying changes using a skin cancer texture analysis compiled from Haralick texture features, fractal dimension, Markov random field method and the complex directional features from different tissues. Described features have been used to detect specific spatial characteristics, which can differentiate healthy tissue from diverse skin cancers in cross-section OCT images (B- and/or C-scans). In this work, we used an interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in OCT images. The Haralick texture features as contrast, correlation, energy, and homogeneity have been calculated in various directions. A box-counting method is performed to evaluate fractal dimension of skin probes. Markov random field have been used for the quality enhancing of the classifying. Additionally, we used the complex directional field calculated by the local gradient methodology to increase of the assessment quality of the diagnosis method. Our results demonstrate that these texture features may present helpful information to discriminate tumor from healthy tissue. The experimental data set contains 488 OCT-images with normal skin and tumors as Basal Cell Carcinoma (BCC), Malignant Melanoma (MM) and Nevus. All images were acquired from our laboratory SD-OCT setup based on broadband light source, delivering an output power of 20 mW at the central wavelength of 840 nm with a bandwidth of 25 nm. We obtained sensitivity about 97% and specificity about 73% for a task of discrimination between MM and Nevus.
NASA Astrophysics Data System (ADS)
Feng, Feng; Zhang, Xiangsong; Qu, Timing; Liu, Binbin; Huang, Junlong; Li, Jun; Xiao, Shaozhu; Han, Zhenghe; Feng, Pingfa
2018-04-01
In the fabrication of a high-temperature superconducting coated conductor, the surface roughness and texture of buffer layers can significantly affect the epitaxially grown superconductor layer. A biaxially textured MgO buffer layer fabricated by ion beam assisted deposition (IBAD) is widely used in the coated conductor manufacture due to its low thickness requirement. In our previous study, a new method called energetic particle self-assisted deposition (EPSAD), which employed only a sputtering deposition apparatus without an ion source, was proposed for fabricating biaxially textured MgO films on non-textured substrates. In this study, our aim was to investigate the deposition mechanism of EPSAD-MgO thin films. The behavior of the surface roughness (evaluated by Rq) was studied using atomic force microscopy (AFM) measurements with three scan scales, while the in-plane and out-of-plane textures were measured using X-ray diffraction (XRD). It was found that the variations of surface roughness and textures along with the increase in the thickness of EPSAD-MgO samples were very similar to those of IBAD-MgO reported in the literature, revealing the similarity of their deposition mechanisms. Moreover, fractal geometry was utilized to conduct the scaling analysis of EPSAD-MgO film's surface. Different scaling behaviors were found in two scale ranges, and the indications of the fractal properties in different scale ranges were discussed.
A standardised protocol for texture feature analysis of endoscopic images in gynaecological cancer.
Neofytou, Marios S; Tanos, Vasilis; Pattichis, Marios S; Pattichis, Constantinos S; Kyriacou, Efthyvoulos C; Koutsouris, Dimitris D
2007-11-29
In the development of tissue classification methods, classifiers rely on significant differences between texture features extracted from normal and abnormal regions. Yet, significant differences can arise due to variations in the image acquisition method. For endoscopic imaging of the endometrium, we propose a standardized image acquisition protocol to eliminate significant statistical differences due to variations in: (i) the distance from the tissue (panoramic vs close up), (ii) difference in viewing angles and (iii) color correction. We investigate texture feature variability for a variety of targets encountered in clinical endoscopy. All images were captured at clinically optimum illumination and focus using 720 x 576 pixels and 24 bits color for: (i) a variety of testing targets from a color palette with a known color distribution, (ii) different viewing angles, (iv) two different distances from a calf endometrial and from a chicken cavity. Also, human images from the endometrium were captured and analysed. For texture feature analysis, three different sets were considered: (i) Statistical Features (SF), (ii) Spatial Gray Level Dependence Matrices (SGLDM), and (iii) Gray Level Difference Statistics (GLDS). All images were gamma corrected and the extracted texture feature values were compared against the texture feature values extracted from the uncorrected images. Statistical tests were applied to compare images from different viewing conditions so as to determine any significant differences. For the proposed acquisition procedure, results indicate that there is no significant difference in texture features between the panoramic and close up views and between angles. For a calibrated target image, gamma correction provided an acquired image that was a significantly better approximation to the original target image. In turn, this implies that the texture features extracted from the corrected images provided for better approximations to the original images. Within the proposed protocol, for human ROIs, we have found that there is a large number of texture features that showed significant differences between normal and abnormal endometrium. This study provides a standardized protocol for avoiding any significant texture feature differences that may arise due to variability in the acquisition procedure or the lack of color correction. After applying the protocol, we have found that significant differences in texture features will only be due to the fact that the features were extracted from different types of tissue (normal vs abnormal).
Marschner, C B; Kokla, M; Amigo, J M; Rozanski, E A; Wiinberg, B; McEvoy, F J
2017-07-11
Diagnosis of pulmonary thromboembolism (PTE) in dogs relies on computed tomography pulmonary angiography (CTPA), but detailed interpretation of CTPA images is demanding for the radiologist and only large vessels may be evaluated. New approaches for better detection of smaller thrombi include dual energy computed tomography (DECT) as well as computer assisted diagnosis (CAD) techniques. The purpose of this study was to investigate the performance of quantitative texture analysis for detecting dogs with PTE using grey-level co-occurrence matrices (GLCM) and multivariate statistical classification analyses. CT images from healthy (n = 6) and diseased (n = 29) dogs with and without PTE confirmed on CTPA were segmented so that only tissue with CT numbers between -1024 and -250 Houndsfield Units (HU) was preserved. GLCM analysis and subsequent multivariate classification analyses were performed on texture parameters extracted from these images. Leave-one-dog-out cross validation and receiver operator characteristic (ROC) showed that the models generated from the texture analysis were able to predict healthy dogs with optimal levels of performance. Partial Least Square Discriminant Analysis (PLS-DA) obtained a sensitivity of 94% and a specificity of 96%, while Support Vector Machines (SVM) yielded a sensitivity of 99% and a specificity of 100%. The models, however, performed worse in classifying the type of disease in the diseased dog group: In diseased dogs with PTE sensitivities were 30% (PLS-DA) and 38% (SVM), and specificities were 80% (PLS-DA) and 89% (SVM). In diseased dogs without PTE the sensitivities of the models were 59% (PLS-DA) and 79% (SVM) and specificities were 79% (PLS-DA) and 82% (SVM). The results indicate that texture analysis of CTPA images using GLCM is an effective tool for distinguishing healthy from abnormal lung. Furthermore the texture of pulmonary parenchyma in dogs with PTE is altered, when compared to the texture of pulmonary parenchyma of healthy dogs. The models' poorer performance in classifying dogs within the diseased group, may be related to the low number of dogs compared to texture variables, a lack of balanced number of dogs within each group or a real lack of difference in the texture features among the diseased dogs.
Kim, Ki Wan; Hong, Hyung Gil; Nam, Gi Pyo; Park, Kang Ryoung
2017-06-30
The necessity for the classification of open and closed eyes is increasing in various fields, including analysis of eye fatigue in 3D TVs, analysis of the psychological states of test subjects, and eye status tracking-based driver drowsiness detection. Previous studies have used various methods to distinguish between open and closed eyes, such as classifiers based on the features obtained from image binarization, edge operators, or texture analysis. However, when it comes to eye images with different lighting conditions and resolutions, it can be difficult to find an optimal threshold for image binarization or optimal filters for edge and texture extraction. In order to address this issue, we propose a method to classify open and closed eye images with different conditions, acquired by a visible light camera, using a deep residual convolutional neural network. After conducting performance analysis on both self-collected and open databases, we have determined that the classification accuracy of the proposed method is superior to that of existing methods.
Method for radiometric calibration of an endoscope's camera and light source
NASA Astrophysics Data System (ADS)
Rai, Lav; Higgins, William E.
2008-03-01
An endoscope is a commonly used instrument for performing minimally invasive visual examination of the tissues inside the body. A physician uses the endoscopic video images to identify tissue abnormalities. The images, however, are highly dependent on the optical properties of the endoscope and its orientation and location with respect to the tissue structure. The analysis of endoscopic video images is, therefore, purely subjective. Studies suggest that the fusion of endoscopic video images (providing color and texture information) with virtual endoscopic views (providing structural information) can be useful for assessing various pathologies for several applications: (1) surgical simulation, training, and pedagogy; (2) the creation of a database for pathologies; and (3) the building of patient-specific models. Such fusion requires both geometric and radiometric alignment of endoscopic video images in the texture space. Inconsistent estimates of texture/color of the tissue surface result in seams when multiple endoscopic video images are combined together. This paper (1) identifies the endoscope-dependent variables to be calibrated for objective and consistent estimation of surface texture/color and (2) presents an integrated set of methods to measure them. Results show that the calibration method can be successfully used to estimate objective color/texture values for simple planar scenes, whereas uncalibrated endoscopes performed very poorly for the same tests.
Ryu, Ju Seok; Park, Donghwi; Oh, Yoongul; Lee, Seok Tae; Kang, Jin Young
2016-01-01
Background/Aims The purpose of this study was to develop new parameters of high-resolution manometry (HRM) and to applicate these to quantify the effect of bolus volume and texture on pharyngeal swallowing. Methods Ten healthy subjects prospectively swallowed dry, thin fluid 2 mL, thin fluid 5 mL, thin fluid 10 mL, and drinking twice to compare effects of bolus volume. To compare effect of texture, subjects swallowed thin fluid 5 mL, yogurt 5 mL, and bread twice. A 32-sensor HRM catheter and BioVIEW ANALYSIS software were used for data collection and analysis. HRM data were synchronized with kinematic analysis of videofluoroscopic swallowing study (VFSS) using epiglottis tilting. Results Linear correlation analysis for volume showed significant correlation for area of velopharynx, duration of velopharynx, pre-upper esophageal sphincter (UES) maximal pressure, minimal UES pressure, UES activity time, and nadir UES duration. In the correlation with texture, all parameters were not significantly different. The contraction of the velopharynx was faster than laryngeal elevation. The durations of UES relaxation was shorter in the kinematic analysis than HRM. Conclusions The bolus volume was shown to have significant effect on pharyngeal pressure and timing, but the texture did not show any effect on pharyngeal swallowing. The parameters of HRM were more sensitive than those of kinematic analysis. As the parameters of HRM are based on precise anatomic structure and the kinematic analysis reflects the actions of multiple anatomic structures, HRM and VFSS should be used according to their purposes. PMID:26598598
Al Ajmi, Eiman; Forghani, Behzad; Reinhold, Caroline; Bayat, Maryam; Forghani, Reza
2018-06-01
There is a rich amount of quantitative information in spectral datasets generated from dual-energy CT (DECT). In this study, we compare the performance of texture analysis performed on multi-energy datasets to that of virtual monochromatic images (VMIs) at 65 keV only, using classification of the two most common benign parotid neoplasms as a testing paradigm. Forty-two patients with pathologically proven Warthin tumour (n = 25) or pleomorphic adenoma (n = 17) were evaluated. Texture analysis was performed on VMIs ranging from 40 to 140 keV in 5-keV increments (multi-energy analysis) or 65-keV VMIs only, which is typically considered equivalent to single-energy CT. Random forest (RF) models were constructed for outcome prediction using separate randomly selected training and testing sets or the entire patient set. Using multi-energy texture analysis, tumour classification in the independent testing set had accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 92%, 86%, 100%, 100%, and 83%, compared to 75%, 57%, 100%, 100%, and 63%, respectively, for single-energy analysis. Multi-energy texture analysis demonstrates superior performance compared to single-energy texture analysis of VMIs at 65 keV for classification of benign parotid tumours. • We present and validate a paradigm for texture analysis of DECT scans. • Multi-energy dataset texture analysis is superior to single-energy dataset texture analysis. • DECT texture analysis has high accura\\cy for diagnosis of benign parotid tumours. • DECT texture analysis with machine learning can enhance non-invasive diagnostic tumour evaluation.
Hu, Leland S; Ning, Shuluo; Eschbacher, Jennifer M; Gaw, Nathan; Dueck, Amylou C; Smith, Kris A; Nakaji, Peter; Plasencia, Jonathan; Ranjbar, Sara; Price, Stephen J; Tran, Nhan; Loftus, Joseph; Jenkins, Robert; O'Neill, Brian P; Elmquist, William; Baxter, Leslie C; Gao, Fei; Frakes, David; Karis, John P; Zwart, Christine; Swanson, Kristin R; Sarkaria, Jann; Wu, Teresa; Mitchell, J Ross; Li, Jing
2015-01-01
Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM. We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set. We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients). Multi-parametric MRI and texture analysis can help characterize and visualize GBM's spatial histologic heterogeneity to identify regional tumor-rich biopsy targets.
A comparative study of new and current methods for dental micro-CT image denoising
Lashgari, Mojtaba; Qin, Jie; Swain, Michael
2016-01-01
Objectives: The aim of the current study was to evaluate the application of two advanced noise-reduction algorithms for dental micro-CT images and to implement a comparative analysis of the performance of new and current denoising algorithms. Methods: Denoising was performed using gaussian and median filters as the current filtering approaches and the block-matching and three-dimensional (BM3D) method and total variation method as the proposed new filtering techniques. The performance of the denoising methods was evaluated quantitatively using contrast-to-noise ratio (CNR), edge preserving index (EPI) and blurring indexes, as well as qualitatively using the double-stimulus continuous quality scale procedure. Results: The BM3D method had the best performance with regard to preservation of fine textural features (CNREdge), non-blurring of the whole image (blurring index), the clinical visual score in images with very fine features and the overall visual score for all types of images. On the other hand, the total variation method provided the best results with regard to smoothing of images in texture-free areas (CNRTex-free) and in preserving the edges and borders of image features (EPI). Conclusions: The BM3D method is the most reliable technique for denoising dental micro-CT images with very fine textural details, such as shallow enamel lesions, in which the preservation of the texture and fine features is of the greatest importance. On the other hand, the total variation method is the technique of choice for denoising images without very fine textural details in which the clinician or researcher is interested mainly in anatomical features and structural measurements. PMID:26764583
Ross, Heather A; Wright, Kathryn M; McDougall, Gordon J; Roberts, Alison G; Chapman, Sean N; Morris, Wayne L; Hancock, Robert D; Stewart, Derek; Tucker, Gregory A; James, Euan K; Taylor, Mark A
2011-01-01
Although cooked potato tuber texture is an important trait that influences consumer preference, a detailed understanding of tuber textural properties at the molecular level is lacking. Previous work has identified tuber pectin methyl esterase activity (PME) as a potential factor impacting on textural properties. In this study, tuber PME isoform and gene expression profiles have been determined in potato germplasm with differing textural properties as assessed using an amended wedge fracture method and a sloughing assay, revealing major differences between the potato types. Differences in pectin structure between potato types with different textural properties were revealed using monoclonal antibodies specific for different pectic epitopes. Chemical analysis of tuber pectin clearly demonstrated that, in tubers containing a higher level of total PME activity, there was a reduced degree of methylation of cell wall pectin and consistently higher peak force and work done values during the fracture of cooked tuber samples, demonstrating the link between PME activity, the degree of methylation of cell wall pectin, and cooked tuber textural properties.
Ross, Heather A.; Wright, Kathryn M.; McDougall, Gordon J.; Roberts, Alison G.; Chapman, Sean N.; Morris, Wayne L.; Hancock, Robert D.; Stewart, Derek; Tucker, Gregory A.; James, Euan K.; Taylor, Mark A.
2011-01-01
Although cooked potato tuber texture is an important trait that influences consumer preference, a detailed understanding of tuber textural properties at the molecular level is lacking. Previous work has identified tuber pectin methyl esterase activity (PME) as a potential factor impacting on textural properties. In this study, tuber PME isoform and gene expression profiles have been determined in potato germplasm with differing textural properties as assessed using an amended wedge fracture method and a sloughing assay, revealing major differences between the potato types. Differences in pectin structure between potato types with different textural properties were revealed using monoclonal antibodies specific for different pectic epitopes. Chemical analysis of tuber pectin clearly demonstrated that, in tubers containing a higher level of total PME activity, there was a reduced degree of methylation of cell wall pectin and consistently higher peak force and work done values during the fracture of cooked tuber samples, demonstrating the link between PME activity, the degree of methylation of cell wall pectin, and cooked tuber textural properties. PMID:20855456
Convertino, Matteo; Mangoubi, Rami S.; Linkov, Igor; Lowry, Nathan C.; Desai, Mukund
2012-01-01
Background The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems. Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species turnover. Methodology/Principal Findings We model satellite images of regions of interest as textures. We define a texture in an image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate probability density function (pdf) model for the coefficients at each subband is selected, and its parameters estimated, or, a non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We measure the difference between two textures' representative pdf's via the Kullback-Leibler divergence (KL). Species turnover, or diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we predict species richness, or diversity, based on the Shannon entropy of pixel intensity.To test our approach, we specifically use the green band of Landsat images for a water conservation area in the Florida Everglades. We validate our predictions against data of species occurrences for a twenty-eight years long period for both wet and dry seasons. Our method correctly predicts 73% of species richness. For species turnover, the newly proposed KL divergence prediction performance is near 100% accurate. This represents a significant improvement over the more conventional Shannon entropy difference, which provides 85% accuracy. Furthermore, we find that changes in soil and water patterns, as measured by fluctuations of the Shannon entropy for the red and blue bands respectively, are positively correlated with changes in vegetation. The fluctuations are smaller in the wet season when compared to the dry season. Conclusions/Significance Texture-based statistical multiresolution image analysis is a promising method for quantifying interseasonal differences and, consequently, the degree to which vegetation, soil, and water patterns vary. The proposed automated method for quantifying species richness and turnover can also provide analysis at higher spatial and temporal resolution than is currently obtainable from expensive monitoring campaigns, thus enabling more prompt, more cost effective inference and decision making support regarding anomalous variations in biodiversity. Additionally, a matrix-based visualization of the statistical multiresolution analysis is presented to facilitate both insight and quick recognition of anomalous data. PMID:23115629
NASA Astrophysics Data System (ADS)
Chaabani, Anouar; Njeh, Anouar; Donner, Wolfgang; Klein, Andreas; Hédi Ben Ghozlen, Mohamed
2017-05-01
Ba0.65Sr0.35TiO3 (BST) thin films of 300 nm were deposited on Pt(111)/TiO2/SiO2/Si(001) substrates by radio frequency magnetron sputtering. Two thin films with different (111) and (001) fiber textures were prepared. X-ray diffraction was applied to measure texture. The raw pole figure data were further processed using the MTEX quantitative texture analysis software for plotting pole figures and calculating elastic constants and Young’s modulus from the orientation distribution function (ODF) for each type of textured fiber. The calculated elastic constants were used in the theoretical studies of surface acoustics waves (SAW) propagating in two types of multilayered BST systems. Theoretical dispersion curves were plotted by the application of the ordinary differential equation (ODE) and the stiffness matrix methods (SMM). A laser acoustic waves (LAW) technique was applied to generate surface acoustic waves (SAW) propagating in the BST films, and from a recursive process, the effective Young’s modulus are determined for the two samples. These methods are used to extract and compare elastic properties of two types of BST films, and quantify the influence of texture on the direction-dependent Young’s modulus.
NASA Astrophysics Data System (ADS)
Lestari, W. D.; Jamari, J.; Bayuseno, A. P.
2017-04-01
The texture shapes play a key role in the tribological performance of the surface material. This paper presents a study on the use of the 3D finite element method for surface stress analysis on the different texture shape under load and dry sliding contact. The five texture-shaped model was investigated in this work, namely square, circle, ellipse, triangle, and chevron. The result shown that the square shape has the highest value of von Mises resultant stress under static load. In contrast, the dry sliding contact on the triangle shape provided the highest von Mises stress distribution. The lowest value of von Mises stress can be found in the texture pattern of circle, square, and chevron under influence of load for 17 N, 30 N, and 50 N, respectively. Those texture patterns applied to surface of Ultra High Molecular Weight Polyethylene (UHMWPE) may have a strong effect on the reduction of wear rate and enhance tribological performance.
Foreign object detection and removal to improve automated analysis of chest radiographs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogeweg, Laurens; Sanchez, Clara I.; Melendez, Jaime
2013-07-15
Purpose: Chest radiographs commonly contain projections of foreign objects, such as buttons, brassier clips, jewellery, or pacemakers and wires. The presence of these structures can substantially affect the output of computer analysis of these images. An automated method is presented to detect, segment, and remove foreign objects from chest radiographs.Methods: Detection is performed using supervised pixel classification with a kNN classifier, resulting in a probability estimate per pixel to belong to a projected foreign object. Segmentation is performed by grouping and post-processing pixels with a probability above a certain threshold. Next, the objects are replaced by texture inpainting.Results: The methodmore » is evaluated in experiments on 257 chest radiographs. The detection at pixel level is evaluated with receiver operating characteristic analysis on pixels within the unobscured lung fields and an A{sub z} value of 0.949 is achieved. Free response operator characteristic analysis is performed at the object level, and 95.6% of objects are detected with on average 0.25 false positive detections per image. To investigate the effect of removing the detected objects through inpainting, a texture analysis system for tuberculosis detection is applied to images with and without pathology and with and without foreign object removal. Unprocessed, the texture analysis abnormality score of normal images with foreign objects is comparable to those with pathology. After removing foreign objects, the texture score of normal images with and without foreign objects is similar, while abnormal images, whether they contain foreign objects or not, achieve on average higher scores.Conclusions: The authors conclude that removal of foreign objects from chest radiographs is feasible and beneficial for automated image analysis.« less
A Comparative Study of Land Cover Classification by Using Multispectral and Texture Data
Qadri, Salman; Khan, Dost Muhammad; Ahmad, Farooq; Qadri, Syed Furqan; Babar, Masroor Ellahi; Shahid, Muhammad; Ul-Rehman, Muzammil; Razzaq, Abdul; Shah Muhammad, Syed; Fahad, Muhammad; Ahmad, Sarfraz; Pervez, Muhammad Tariq; Naveed, Nasir; Aslam, Naeem; Jamil, Mutiullah; Rehmani, Ejaz Ahmad; Ahmad, Nazir; Akhtar Khan, Naeem
2016-01-01
The main objective of this study is to find out the importance of machine vision approach for the classification of five types of land cover data such as bare land, desert rangeland, green pasture, fertile cultivated land, and Sutlej river land. A novel spectra-statistical framework is designed to classify the subjective land cover data types accurately. Multispectral data of these land covers were acquired by using a handheld device named multispectral radiometer in the form of five spectral bands (blue, green, red, near infrared, and shortwave infrared) while texture data were acquired with a digital camera by the transformation of acquired images into 229 texture features for each image. The most discriminant 30 features of each image were obtained by integrating the three statistical features selection techniques such as Fisher, Probability of Error plus Average Correlation, and Mutual Information (F + PA + MI). Selected texture data clustering was verified by nonlinear discriminant analysis while linear discriminant analysis approach was applied for multispectral data. For classification, the texture and multispectral data were deployed to artificial neural network (ANN: n-class). By implementing a cross validation method (80-20), we received an accuracy of 91.332% for texture data and 96.40% for multispectral data, respectively. PMID:27376088
Kim, Hyun Gi; Lee, Young Han; Choi, Jin-Young; Park, Mi-Suk; Kim, Myeong-Jin; Kim, Ki Whang
2015-01-01
Purpose To investigate the optimal blending percentage of adaptive statistical iterative reconstruction (ASIR) in a reduced radiation dose while preserving a degree of image quality and texture that is similar to that of standard-dose computed tomography (CT). Materials and Methods The CT performance phantom was scanned with standard and dose reduction protocols including reduced mAs or kVp. Image quality parameters including noise, spatial, and low-contrast resolution, as well as image texture, were quantitatively evaluated after applying various blending percentages of ASIR. The optimal blending percentage of ASIR that preserved image quality and texture compared to standard dose CT was investigated in each radiation dose reduction protocol. Results As the percentage of ASIR increased, noise and spatial-resolution decreased, whereas low-contrast resolution increased. In the texture analysis, an increasing percentage of ASIR resulted in an increase of angular second moment, inverse difference moment, and correlation and in a decrease of contrast and entropy. The 20% and 40% dose reduction protocols with 20% and 40% ASIR blending, respectively, resulted in an optimal quality of images with preservation of the image texture. Conclusion Blending the 40% ASIR to the 40% reduced tube-current product can maximize radiation dose reduction and preserve adequate image quality and texture. PMID:25510772
Characterization of PET/CT images using texture analysis: the past, the present… any future?
Hatt, Mathieu; Tixier, Florent; Pierce, Larry; Kinahan, Paul E; Le Rest, Catherine Cheze; Visvikis, Dimitris
2017-01-01
After seminal papers over the period 2009 - 2011, the use of texture analysis of PET/CT images for quantification of intratumour uptake heterogeneity has received increasing attention in the last 4 years. Results are difficult to compare due to the heterogeneity of studies and lack of standardization. There are also numerous challenges to address. In this review we provide critical insights into the recent development of texture analysis for quantifying the heterogeneity in PET/CT images, identify issues and challenges, and offer recommendations for the use of texture analysis in clinical research. Numerous potentially confounding issues have been identified, related to the complex workflow for the calculation of textural features, and the dependency of features on various factors such as acquisition, image reconstruction, preprocessing, functional volume segmentation, and methods of establishing and quantifying correspondences with genomic and clinical metrics of interest. A lack of understanding of what the features may represent in terms of the underlying pathophysiological processes and the variability of technical implementation practices makes comparing results in the literature challenging, if not impossible. Since progress as a field requires pooling results, there is an urgent need for standardization and recommendations/guidelines to enable the field to move forward. We provide a list of correct formulae for usual features and recommendations regarding implementation. Studies on larger cohorts with robust statistical analysis and machine learning approaches are promising directions to evaluate the potential of this approach.
Enhancement of Stereo Imagery by Artificial Texture Projection Generated Using a LIDAR
NASA Astrophysics Data System (ADS)
Veitch-Michaelis, Joshua; Muller, Jan-Peter; Walton, David; Storey, Jonathan; Foster, Michael; Crutchley, Benjamin
2016-06-01
Passive stereo imaging is capable of producing dense 3D data, but image matching algorithms generally perform poorly on images with large regions of homogenous texture due to ambiguous match costs. Stereo systems can be augmented with an additional light source that can project some form of unique texture onto surfaces in the scene. Methods include structured light, laser projection through diffractive optical elements, data projectors and laser speckle. Pattern projection using lasers has the advantage of producing images with a high signal to noise ratio. We have investigated the use of a scanning visible-beam LIDAR to simultaneously provide enhanced texture within the scene and to provide additional opportunities for data fusion in unmatched regions. The use of a LIDAR rather than a laser alone allows us to generate highly accurate ground truth data sets by scanning the scene at high resolution. This is necessary for evaluating different pattern projection schemes. Results from LIDAR generated random dots are presented and compared to other texture projection techniques. Finally, we investigate the use of image texture analysis to intelligently project texture where it is required while exploiting the texture available in the ambient light image.
Texture Analysis of Recurrence Plots Based on Wavelets and PSO for Laryngeal Pathologies Detection.
Souza, Taciana A; Vieira, Vinícius J D; Correia, Suzete E N; Costa, Silvana L N C; de A Costa, Washington C; Souza, Micael A
2015-01-01
This paper deals with the discrimination between healthy and pathological speech signals using recurrence plots and wavelet transform with texture features. Approximation and detail coefficients are obtained from the recurrence plots using Haar wavelet transform, considering one decomposition level. The considered laryngeal pathologies are: paralysis, Reinke's edema and nodules. Accuracy rates above 86% were obtained by means of the employed method.
2016-07-01
Note (CHETN) describes a method using the U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS), Soil Survey Geographic...the general texture classifications. 2. Another source for soil information, such as the Food and Agriculture Organization of the United Nations (FAO...science studies such as agriculture , geology, geomorphology, engineering, biology, history, etc. (Soil Survey Division Staff 1993). The procedure pulls
Modelling Nonlinear Dynamic Textures using Hybrid DWT-DCT and Kernel PCA with GPU
NASA Astrophysics Data System (ADS)
Ghadekar, Premanand Pralhad; Chopade, Nilkanth Bhikaji
2016-12-01
Most of the real-world dynamic textures are nonlinear, non-stationary, and irregular. Nonlinear motion also has some repetition of motion, but it exhibits high variation, stochasticity, and randomness. Hybrid DWT-DCT and Kernel Principal Component Analysis (KPCA) with YCbCr/YIQ colour coding using the Dynamic Texture Unit (DTU) approach is proposed to model a nonlinear dynamic texture, which provides better results than state-of-art methods in terms of PSNR, compression ratio, model coefficients, and model size. Dynamic texture is decomposed into DTUs as they help to extract temporal self-similarity. Hybrid DWT-DCT is used to extract spatial redundancy. YCbCr/YIQ colour encoding is performed to capture chromatic correlation. KPCA is applied to capture nonlinear motion. Further, the proposed algorithm is implemented on Graphics Processing Unit (GPU), which comprise of hundreds of small processors to decrease time complexity and to achieve parallelism.
Li, Dali; Zou, Jiaojuan; Xie, Ruizhen; Wang, Zhihua; Tang, Bin
2018-01-01
Surface texture (ST) has been confirmed as an effective and economical surface treatment technique that can be applied to a great range of materials and presents growing interests in various engineering fields. Ti6Al4V which is the most frequently and successfully used titanium alloy has long been restricted in tribological-related operations due to the shortcomings of low surface hardness, high friction coefficient, and poor abrasive wear resistance. Ti6Al4V has benefited from surface texture-based surface treatments over the last decade. This review begins with a brief introduction, analysis approaches, and processing methods of surface texture. The specific applications of the surface texture-based surface treatments for improving surface performance of Ti6Al4V are thoroughly reviewed from the point of view of tribology and biology. PMID:29587358
NASA Astrophysics Data System (ADS)
Law, Yuen C.; Tenbrinck, Daniel; Jiang, Xiaoyi; Kuhlen, Torsten
2014-03-01
Computer-assisted processing and interpretation of medical ultrasound images is one of the most challenging tasks within image analysis. Physical phenomena in ultrasonographic images, e.g., the characteristic speckle noise and shadowing effects, make the majority of standard methods from image analysis non optimal. Furthermore, validation of adapted computer vision methods proves to be difficult due to missing ground truth information. There is no widely accepted software phantom in the community and existing software phantoms are not exible enough to support the use of specific speckle models for different tissue types, e.g., muscle and fat tissue. In this work we propose an anatomical software phantom with a realistic speckle pattern simulation to _ll this gap and provide a exible tool for validation purposes in medical ultrasound image analysis. We discuss the generation of speckle patterns and perform statistical analysis of the simulated textures to obtain quantitative measures of the realism and accuracy regarding the resulting textures.
Structure of Profiled Crystals Based on Solid Solutions of Bi2Te3 and Their X-Ray Diagnostics
NASA Astrophysics Data System (ADS)
Voronin, A. I.; Bublik, V. T.; Tabachkova, N. Yu.; Belov, Yu. M.
2011-05-01
In this work, we used x-ray structural diagnostic data to reveal the formation of structural regularities in profiled polycrystalline ingots based on Bi and Sb chalcogenide solid solutions. In Bi2Te3 lattice crystals, the solid phase grows such that the cleavage surfaces are perpendicular to the crystallization front. The crystallization singularity determines the nature of the growth texture. Because texture is an important factor determining the anisotropy of properties, which in turn determines the suitability of an ingot for production of modules and the possibility of figure of merit improvement, its diagnostics is an important issue for technology testing. Examples of texture analysis using the method of straight pole figure (SPF) construction for profiled crystals are provided. The structure of the surface layers in the profiled ingots was studied after electroerosion cutting. In addition, the method of estimation of the disturbed layer depth based on the nature of texture changes was used.
Abbasian Ardakani, Ali; Gharbali, Akbar; Mohammadi, Afshin
2015-01-01
The aim of this study was to evaluate computer aided diagnosis (CAD) system with texture analysis (TA) to improve radiologists' accuracy in identification of thyroid nodules as malignant or benign. A total of 70 cases (26 benign and 44 malignant) were analyzed in this study. We extracted up to 270 statistical texture features as a descriptor for each selected region of interests (ROIs) in three normalization schemes (default, 3s and 1%-99%). Then features by the lowest probability of classification error and average correlation coefficients (POE+ACC), and Fisher coefficient (Fisher) eliminated to 10 best and most effective features. These features were analyzed under standard and nonstandard states. For TA of the thyroid nodules, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA) were applied. First Nearest-Neighbour (1-NN) classifier was performed for the features resulting from PCA and LDA. NDA features were classified by artificial neural network (A-NN). Receiver operating characteristic (ROC) curve analysis was used for examining the performance of TA methods. The best results were driven in 1-99% normalization with features extracted by POE+ACC algorithm and analyzed by NDA with the area under the ROC curve ( Az) of 0.9722 which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Our results indicate that TA is a reliable method, can provide useful information help radiologist in detection and classification of benign and malignant thyroid nodules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Y; Huang, H; Su, T
Purpose: Texture-based quantification of image heterogeneity has been a popular topic for imaging studies in recent years. As previous studies mainly focus on oncological applications, we report our recent efforts of applying such techniques on cardiac perfusion imaging. A fully automated procedure has been developed to perform texture analysis for measuring the image heterogeneity. Clinical data were used to evaluate the preliminary performance of such methods. Methods: Myocardial perfusion images of Thallium-201 scans were collected from 293 patients with suspected coronary artery disease. Each subject underwent a Tl-201 scan and a percutaneous coronary intervention (PCI) within three months. The PCImore » Result was used as the gold standard of coronary ischemia of more than 70% stenosis. Each Tl-201 scan was spatially normalized to an image template for fully automatic segmentation of the LV. The segmented voxel intensities were then carried into the texture analysis with our open-source software Chang Gung Image Texture Analysis toolbox (CGITA). To evaluate the clinical performance of the image heterogeneity for detecting the coronary stenosis, receiver operating characteristic (ROC) analysis was used to compute the overall accuracy, sensitivity and specificity as well as the area under curve (AUC). Those indices were compared to those obtained from the commercially available semi-automatic software QPS. Results: With the fully automatic procedure to quantify heterogeneity from Tl-201 scans, we were able to achieve a good discrimination with good accuracy (74%), sensitivity (73%), specificity (77%) and AUC of 0.82. Such performance is similar to those obtained from the semi-automatic QPS software that gives a sensitivity of 71% and specificity of 77%. Conclusion: Based on fully automatic procedures of data processing, our preliminary data indicate that the image heterogeneity of myocardial perfusion imaging can provide useful information for automatic determination of the myocardial ischemia.« less
Diabetic peripheral neuropathy assessment through texture based analysis of corneal nerve images
NASA Astrophysics Data System (ADS)
Silva, Susana F.; Gouveia, Sofia; Gomes, Leonor; Negrão, Luís; João Quadrado, Maria; Domingues, José Paulo; Morgado, António Miguel
2015-05-01
Diabetic peripheral neuropathy (DPN) is one common complication of diabetes. Early diagnosis of DPN often fails due to the non-availability of a simple, reliable, non-invasive method. Several published studies show that corneal confocal microscopy (CCM) can identify small nerve fibre damage and quantify the severity of DPN, using nerve morphometric parameters. Here, we used image texture features, extracted from corneal sub-basal nerve plexus images, obtained in vivo by CCM, to identify DPN patients, using classification techniques. A SVM classifier using image texture features was used to identify (DPN vs. No DPN) DPN patients. The accuracies were 80.6%, when excluding diabetic patients without neuropathy, and 73.5%, when including diabetic patients without diabetic neuropathy jointly with healthy controls. The results suggest that texture analysis might be used as a complementing technique for DPN diagnosis, without requiring nerve segmentation in CCM images. The results also suggest that this technique has enough sensitivity to detect early disorders in the corneal nerves of diabetic patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B; Yu, H; Jara, H
Purpose: To compare enhanced Laws texture derived from parametric proton density (PD) maps to other MRI-based surrogate markers (T2, PD, ADC) in assessing degrees of liver fibrosis in a murine model of hepatic fibrosis using 11.7T scanner. Methods: This animal study was IACUC approved. Fourteen mice were divided into control (n=1) and experimental (n=13). The latter were fed a DDC-supplemented diet to induce hepatic fibrosis. Liver specimens were imaged using an 11.7T scanner; the parametric PD, T2, and ADC maps were generated from spin-echo pulsed field gradient and multi-echo spin-echo acquisitions. Enhanced Laws texture analysis was applied to the PDmore » maps: first, hepatic blood vessels and liver margins were segmented/removed using an automated dual-clustering algorithm; secondly, an optimal thresholding algorithm was applied to reduce the partial volume artifact; next, mean and stdev were corrected to minimize grayscale variation across images; finally, Laws texture was extracted. Degrees of fibrosis was assessed by an experienced pathologist and digital image analysis (%Area Fibrosis). Scatterplots comparing enhanced Laws texture, T2, PD, and ADC values to degrees of fibrosis were generated and correlation coefficients were calculated. Unenhanced Laws texture was also compared to assess the effectiveness of the proposed enhancements. Results: Hepatic fibrosis and the enhanced Laws texture were strongly correlated with higher %Area Fibrosis associated with higher Laws texture (r=0.89). Only a moderate correlation was detected between %Area Fibrosis and unenhanced Laws texture (r=0.70). Strong correlation also existed between ADC and %Area Fibrosis (r=0.86). Moderate correlations were seen between %Area Fibrosis and PD (r=0.65) and T2 (r=0.66). Conclusions: Higher degrees of hepatic fibrosis are associated with increased Laws texture. The proposed enhancements improve the accuracy of Laws texture. Enhanced Laws texture features are more accurate than PD and T2 in assessing fibrosis, and can potentially serve as an accurate surrogate marker for hepatic fibrosis.« less
Functional surfaces for tribological applications: inspiration and design
NASA Astrophysics Data System (ADS)
Abdel-Aal, Hisham A.
2016-12-01
Surface texturing has been recognized as a method for enhancing the tribological properties of surfaces for many years. Adding a controlled texture to one of two faces in relative motion can have many positive effects, such as reduction of friction and wear and increase in load capacity. To date, the true potential of texturing has not been realized not because of the lack of enabling texturing technologies but because of the severe lack of detailed information about the mechanistic functional details of texturing in a tribological situation. Experimental as well as theoretical analysis of textured surfaces define important metrics for performance evaluation. These metrics represent the interaction between geometry of the texturing element and surface topology. To date, there is no agreement on the optimal values that should be implemented given a particular surface. More importantly, a well-defined methodology for the generation of deterministic textures of optimized designs virtually does not exist. Nature, on the other hand, offers many examples of efficient texturing strategies (geometries and topologies) specifically applied to mitigate frictional effects in a variety of situations. Studying these examples may advance the technology of surface engineering. This paper therefore, provides a comparative review of surface texturing that manifest viable synergy between tribology and biology. We attempt to provide successful emerging examples where borrowing from nature has inspired viable surface solutions that address difficult tribological problems both in dry and lubricated contact situations.
Depeursinge, Adrien; Chin, Anne S.; Leung, Ann N.; Terrone, Donato; Bristow, Michael; Rosen, Glenn; Rubin, Daniel L.
2014-01-01
Objectives We propose a novel computational approach for the automated classification of classic versus atypical usual interstitial pneumonia (UIP). Materials and Methods 33 patients with UIP were enrolled in this study. They were classified as classic versus atypical UIP by a consensus of two thoracic radiologists with more than 15 years of experience using the American Thoracic Society evidence–based guidelines for CT diagnosis of UIP. Two cardiothoracic fellows with one year of subspecialty training provided independent readings. The system is based on regional characterization of the morphological tissue properties of lung using volumetric texture analysis of multiple detector CT images. A simple digital atlas with 36 lung subregions is used to locate texture properties, from which the responses of multi-directional Riesz wavelets are obtained. Machine learning is used to aggregate and to map the regional texture attributes to a simple score that can be used to stratify patients with UIP into classic and atypical subtypes. Results We compared the predictions based on regional volumetric texture analysis with the ground truth established by expert consensus. The area under the receiver operating characteristic curve of the proposed score was estimated to be 0.81 using a leave-one-patient-out cross-validation, with high specificity for classic UIP. The performance of our automated method was found to be similar to that of the two fellows and to the agreement between experienced chest radiologists reported in the literature. However, the errors of our method and the fellows occurred on different cases, which suggests that combining human and computerized evaluations may be synergistic. Conclusions Our results are encouraging and suggest that an automated system may be useful in routine clinical practice as a diagnostic aid for identifying patients with complex lung disease such as classic UIP, obviating the need for invasive surgical lung biopsy and its associated risks. PMID:25551822
Proceedings of the Third Annual Symposium on Mathematical Pattern Recognition and Image Analysis
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.
1985-01-01
Topics addressed include: multivariate spline method; normal mixture analysis applied to remote sensing; image data analysis; classifications in spatially correlated environments; probability density functions; graphical nonparametric methods; subpixel registration analysis; hypothesis integration in image understanding systems; rectification of satellite scanner imagery; spatial variation in remotely sensed images; smooth multidimensional interpolation; and optimal frequency domain textural edge detection filters.
Automated classification of articular cartilage surfaces based on surface texture.
Stachowiak, G P; Stachowiak, G W; Podsiadlo, P
2006-11-01
In this study the automated classification system previously developed by the authors was used to classify articular cartilage surfaces with different degrees of wear. This automated system classifies surfaces based on their texture. Plug samples of sheep cartilage (pins) were run on stainless steel discs under various conditions using a pin-on-disc tribometer. Testing conditions were specifically designed to produce different severities of cartilage damage due to wear. Environmental scanning electron microscope (SEM) (ESEM) images of cartilage surfaces, that formed a database for pattern recognition analysis, were acquired. The ESEM images of cartilage were divided into five groups (classes), each class representing different wear conditions or wear severity. Each class was first examined and assessed visually. Next, the automated classification system (pattern recognition) was applied to all classes. The results of the automated surface texture classification were compared to those based on visual assessment of surface morphology. It was shown that the texture-based automated classification system was an efficient and accurate method of distinguishing between various cartilage surfaces generated under different wear conditions. It appears that the texture-based classification method has potential to become a useful tool in medical diagnostics.
Cheng, Nai-Ming; Fang, Yu-Hua Dean; Lee, Li-yu; Chang, Joseph Tung-Chieh; Tsan, Din-Li; Ng, Shu-Hang; Wang, Hung-Ming; Liao, Chun-Ta; Yang, Lan-Yan; Hsu, Ching-Han; Yen, Tzu-Chen
2015-03-01
The question as to whether the regional textural features extracted from PET images predict prognosis in oropharyngeal squamous cell carcinoma (OPSCC) remains open. In this study, we investigated the prognostic impact of regional heterogeneity in patients with T3/T4 OPSCC. We retrospectively reviewed the records of 88 patients with T3 or T4 OPSCC who had completed primary therapy. Progression-free survival (PFS) and disease-specific survival (DSS) were the main outcome measures. In an exploratory analysis, a standardized uptake value of 2.5 (SUV 2.5) was taken as the cut-off value for the detection of tumour boundaries. A fixed threshold at 42 % of the maximum SUV (SUVmax 42 %) and an adaptive threshold method were then used for validation. Regional textural features were extracted from pretreatment (18)F-FDG PET/CT images using the grey-level run length encoding method and grey-level size zone matrix. The prognostic significance of PET textural features was examined using receiver operating characteristic (ROC) curves and Cox regression analysis. Zone-size nonuniformity (ZSNU) was identified as an independent predictor of PFS and DSS. Its prognostic impact was confirmed using both the SUVmax 42 % and the adaptive threshold segmentation methods. Based on (1) total lesion glycolysis, (2) uniformity (a local scale texture parameter), and (3) ZSNU, we devised a prognostic stratification system that allowed the identification of four distinct risk groups. The model combining the three prognostic parameters showed a higher predictive value than each variable alone. ZSNU is an independent predictor of outcome in patients with advanced T-stage OPSCC, and may improve their prognostic stratification.
Shen, Qijun; Shan, Yanna; Hu, Zhengyu; Chen, Wenhui; Yang, Bing; Han, Jing; Huang, Yanfang; Xu, Wen; Feng, Zhan
2018-04-30
To objectively quantify intracranial hematoma (ICH) enlargement by analysing the image texture of head CT scans and to provide objective and quantitative imaging parameters for predicting early hematoma enlargement. We retrospectively studied 108 ICH patients with baseline non-contrast computed tomography (NCCT) and 24-h follow-up CT available. Image data were assessed by a chief radiologist and a resident radiologist. Consistency analysis between observers was tested. The patients were divided into training set (75%) and validation set (25%) by stratified sampling. Patients in the training set were dichotomized according to 24-h hematoma expansion ≥ 33%. Using the Laplacian of Gaussian bandpass filter, we chose different anatomical spatial domains ranging from fine texture to coarse texture to obtain a series of derived parameters (mean grayscale intensity, variance, uniformity) in order to quantify and evaluate all data. The parameters were externally validated on validation set. Significant differences were found between the two groups of patients within variance at V 1.0 and in uniformity at U 1.0 , U 1.8 and U 2.5 . The intraclass correlation coefficients for the texture parameters were between 0.67 and 0.99. The area under the ROC curve between the two groups of ICH cases was between 0.77 and 0.92. The accuracy of validation set by CTTA was 0.59-0.85. NCCT texture analysis can objectively quantify the heterogeneity of ICH and independently predict early hematoma enlargement. • Heterogeneity is helpful in predicting ICH enlargement. • CTTA could play an important role in predicting early ICH enlargement. • After filtering, fine texture had the best diagnostic performance. • The histogram-based uniformity parameters can independently predict ICH enlargement. • CTTA is more objective, more comprehensive, more independently operable, than previous methods.
Phinney, David M; Frelka, John C; Wickramasinghe, Anita; Heldman, Dennis R
2017-04-01
Food freezing is a preservation process that works by lowering temperature while simultaneously decreasing water activity. It is accepted that although freezing preserves foods, it generally has a negative effect on textural quality. This research investigated the texture response of potatoes (Solanum tuberosum) as a function of time to freeze (defined as the time for the center temperature to reach -20 °C) and thawing process. Potatoes slices (6 mm) were blanched then frozen in an ethanol/carbon dioxide bath, a pilot scale high velocity air freezer (HVAF) and a still air freezer to achieve various times to freeze. Slices were stabilized at -20 °C and thawed by 2 methods; room temperature air and microwave. Afterwards, samples were allowed to come to room temperature prior to texture profile analysis (TPA). Results indicate a maximum texture loss of the potato was reached at a time to freeze of approximately 8 min (corresponding to the HVAF). The texture difference between room temperature and microwave thawing methods was not shown to be significant (P = 0.05). SEM images showed the cellular structure of the potato in a HVAF to be similar to that of the still air freezer, validating that the matrix was maximally damaged in both conditions. This work created a continuous quality loss model for the potato as a function of time to freeze and showed no textural benefit to high velocity over still air freezing. © 2017 Institute of Food Technologists®.
Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.
Ming, Yue; Wang, Guangchao; Fan, Chunxiao
2015-01-01
With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.
NASA Astrophysics Data System (ADS)
Pham, T. D.
2016-12-01
Recurrence plots display binary texture of time series from dynamical systems with single dots and line structures. Using fuzzy recurrence plots, recurrences of the phase-space states can be visualized as grayscale texture, which is more informative for pattern analysis. The proposed method replaces the crucial similarity threshold required by symmetrical recurrence plots with the number of cluster centers, where the estimate of the latter parameter is less critical than the estimate of the former.
NASA Astrophysics Data System (ADS)
Brosnan, Kristen H.
In this study, XRD and electron backscatter diffraction (EBSD) techniques were used to characterize the fiber texture in oriented PMN-28PT and the intensity data were fit with a texture model (the March-Dollase equation) that describes the texture in terms of texture fraction (f), and the width of the orientation distribution (r). EBSD analysis confirmed the <001> orientation of the microstructure, with no distinguishable randomly oriented, fine grain matrix. Although XRD rocking curve and EBSD data analysis gave similar f and r values, XRD rocking curve analysis was the most efficient and gave a complete description of texture fraction and texture orientation (f = 0.81 and r = 0.21, respectively). XRD rocking curve analysis was the preferred approach for characterization of the texture volume and the orientation distribution of texture in fiber-oriented PMN-PT. The dielectric, piezoelectric and electromechanical properties for random ceramic, 69 vol% textured, 81 vol% textured, and single crystal PMN-28PT were fully characterized and compared. The room temperature dielectric constant at 1 kHz for highly textured PMN-28PT was epsilonr ≥ 3600 with low dielectric loss (tan delta = 0.004). The temperature dependence of the dielectric constant for 81 vol% textured ceramic followed a similar trend as the single crystal PMN-28PT up to the rhombohedral to tetragonal transition temperature (TRT) at 104°C. 81 vol% textured PMN-28PT consistently displayed 60 to 65% of the single crystal PMN-28PT piezoelectric coefficient (d33) and 1.5 to 3.0 times greater than the random ceramic d33 (measured by Berlincourt meter, unipolar strain-field curves, IEEE standard resonance method, and laser vibrometry). The 81 vol% textured PMN-28PT displayed similarly low piezoelectric hysteresis as single crystal PMN-28PT measured by strain-field curves at 5 kV/cm. 81 vol% textured PMN-28PT and single crystal PMN-28PT displayed similar mechanical quality factors of QM = 74 and 76, respectively. The electromechanical coupling (k 33) of 81 vol% textured PMN-28PT (k33 = 0.79) was a significant fraction of single crystal (k33 = 0.91) and was higher than a commercial PMN-PT ceramic (k33 ˜ 0.74). The nonlinearity of the dielectric and piezoelectric response were investigated in textured ceramics and single crystal PMN-28PT using the Rayleigh approach. The reversible piezoelectric coefficient was found to increase significantly and the hysteretic contribution to the piezoelectric coefficient decreased significantly with an increase in texture volume. This indicates that increasing the texture volume decreases the non-180° domain wall contribution to the piezoelectric response in PMN-28PT. Finally, 81 vol% textured ceramics were also integrated into a Navy SONAR transducer design. In-water characterization of the transducers showed higher source levels, higher in-water coupling, higher acoustic intensity, and more bandwidth for the 81 vol% textured PMN-28PT tonpilz single elements compared to the ceramic PMN-28PT tonpilz element. In addition, an 81 vol% textured PMN-28PT tonpilz element showed large scale linearity in sound pressure levels as a function of drive level under high drive conditions (up to 2.33 kV/cm). The maximum electromechanical coupling obtained by the 81 vol% textured PMN-28PT transducer under high drive conditions was keff = 0.69. However, the resonance frequency shifted significantly during high drive tests (Deltafs = -19% at 3.7 kV/cm), evidence of a "soft" characteristic of the 81 vol% textured PMN-28PT, possibly caused by Sr2+ from the template particles. The results suggest there are limitations on the preload compressive stress (and thus drive level) for these textured ceramics, but this could be addressed with compositional modifications. The dielectric, piezoelectric and electromechanical properties have been significantly improved in textured PMN-PT ceramics of this study. Furthermore, scale-up in processing for incorporation into devices of highly textured ceramics with reproducible texture (and hence narrow properties distribution) was achieved in these materials. SONAR applications could benefit from textured ceramic parts because of their ease of processing, compositional homogeneity and potentially lower cost. (Abstract shortened by UMI.)
A novel tensile test method to assess texture and gaping in salmon fillets.
Ashton, Thomas J; Michie, Ian; Johnston, Ian A
2010-05-01
A new tensile strength method was developed to quantify the force required to tear a standardized block of Atlantic salmon muscle with the aim of identifying those samples more prone to factory downgrading as a result of softness and fillet gaping. The new method effectively overcomes problems of sample attachment encountered with previous tensile strength tests. The repeatability and sensitivity and predictability of the new technique were evaluated against other common instrumental texture measurement methods. The relationship between sensory assessments of firmness and parameters from the instrumental texture methods was also determined. Data from the new method were shown to have the strongest correlations with gaping severity (r =-0.514, P < 0.001) and the highest level of repeatability of data when analyzing cold-smoked samples. The Warner Bratzler shear method gave the most repeatable data from fresh samples and had the highest correlations between fresh and smoked product from the same fish (r = 0.811, P < 0.001). A hierarchical cluster analysis placed the tensile test in the top cluster, alongside the Warner Bratzler method, demonstrating that it also yields adequate data with respect to these tests. None of the tested sensory analysis attributes showed significant relationships to mechanical tests except fillet firmness, with correlations (r) of 0.42 for cylinder probe maximum force (P = 0.005) and 0.31 for tensile work (P = 0.04). It was concluded that the tensile test method developed provides an important addition to the available tools for mechanical analysis of salmon quality, particularly with respect to the prediction of gaping during factory processing, which is a serious commercial problem. A novel, reliable method of measuring flesh tensile strength in salmon, provides data of relevance to gaping.
Goyal, Amit; Kroeger, Donald M.
2003-11-11
A method for forming an electronically active biaxially textured article includes the steps of providing a substrate having a single crystal metal or metal alloy surface, deforming the substrate to form an elongated substrate surface having biaxial texture and depositing an epitaxial electronically active layer on the biaxially textured surface. The method can include at least one annealing step after the deforming step to produce the biaxially textured substrate surface. The invention can be used to form improved biaxially textured articles, such as superconducting wire and tape articles having improved J.sub.c values.
Electrodeposition of biaxially textured layers on a substrate
Bhattacharya, Raghu N; Phok, Sovannary; Spagnol, Priscila; Chaudhuri, Tapas
2013-11-19
Methods of producing one or more biaxially textured layer on a substrate, and articles produced by the methods, are disclosed. An exemplary method may comprise electrodepositing on the substrate a precursor material selected from the group consisting of rare earths, transition metals, actinide, lanthanides, and oxides thereof. An exemplary article (150) may comprise a biaxially textured base material (130), and at least one biaxially textured layer (110) selected from the group consisting of rare earths, transition metals, actinides, lanthanides, and oxides thereof. The at least one biaxially textured layer (110) is formed by electrodeposition on the biaxially textured base material (130).
Lee, Jack; Zee, Benny Chung Ying; Li, Qing
2013-01-01
Diabetic retinopathy is a major cause of blindness. Proliferative diabetic retinopathy is a result of severe vascular complication and is visible as neovascularization of the retina. Automatic detection of such new vessels would be useful for the severity grading of diabetic retinopathy, and it is an important part of screening process to identify those who may require immediate treatment for their diabetic retinopathy. We proposed a novel new vessels detection method including statistical texture analysis (STA), high order spectrum analysis (HOS), fractal analysis (FA), and most importantly we have shown that by incorporating their associated interactions the accuracy of new vessels detection can be greatly improved. To assess its performance, the sensitivity, specificity and accuracy (AUC) are obtained. They are 96.3%, 99.1% and 98.5% (99.3%), respectively. It is found that the proposed method can improve the accuracy of new vessels detection significantly over previous methods. The algorithm can be automated and is valuable to detect relatively severe cases of diabetic retinopathy among diabetes patients.
Spoofing detection on facial images recognition using LBP and GLCM combination
NASA Astrophysics Data System (ADS)
Sthevanie, F.; Ramadhani, K. N.
2018-03-01
The challenge for the facial based security system is how to detect facial image falsification such as facial image spoofing. Spoofing occurs when someone try to pretend as a registered user to obtain illegal access and gain advantage from the protected system. This research implements facial image spoofing detection method by analyzing image texture. The proposed method for texture analysis combines the Local Binary Pattern (LBP) and Gray Level Co-occurrence Matrix (GLCM) method. The experimental results show that spoofing detection using LBP and GLCM combination achieves high detection rate compared to that of using only LBP feature or GLCM feature.
Wang, Jing-Jing; Wu, Hai-Feng; Sun, Tao; Li, Xia; Wang, Wei; Tao, Li-Xin; Huo, Da; Lv, Ping-Xin; He, Wen; Guo, Xiu-Hua
2013-01-01
Lung cancer, one of the leading causes of cancer-related deaths, usually appears as solitary pulmonary nodules (SPNs) which are hard to diagnose using the naked eye. In this paper, curvelet-based textural features and clinical parameters are used with three prediction models [a multilevel model, a least absolute shrinkage and selection operator (LASSO) regression method, and a support vector machine (SVM)] to improve the diagnosis of benign and malignant SPNs. Dimensionality reduction of the original curvelet-based textural features was achieved using principal component analysis. In addition, non-conditional logistical regression was used to find clinical predictors among demographic parameters and morphological features. The results showed that, combined with 11 clinical predictors, the accuracy rates using 12 principal components were higher than those using the original curvelet-based textural features. To evaluate the models, 10-fold cross validation and back substitution were applied. The results obtained, respectively, were 0.8549 and 0.9221 for the LASSO method, 0.9443 and 0.9831 for SVM, and 0.8722 and 0.9722 for the multilevel model. All in all, it was found that using curvelet-based textural features after dimensionality reduction and using clinical predictors, the highest accuracy rate was achieved with SVM. The method may be used as an auxiliary tool to differentiate between benign and malignant SPNs in CT images.
NASA Astrophysics Data System (ADS)
Kuehn, Rebecca; Stipp, Michael; Leiss, Bernd
2017-04-01
During sedimentation and burial at continental margins, clay-rich sediments develop crystallographic preferred orientations (textures) depending on the ongoing compaction as well as size distribution and shape fabrics of the grains. Such textures can control the deformational properties of these sediments and hence the strain distribution in active continental margins and also the frictional behavior along and around the plate boundary. Strain-hardening and discontinuous deformation may lead to earthquake nucleation at or below the updip limit of the seismogenic zone. We want to investigate the active continental margin offshore Costa Rica where the oceanic Cocos plate is subducted below the Caribbean plate at a rate of approximately 9 cm per year. The Costa Rica trench is well-known for shallow seismogenesis and tsunami generation. As it is an erosive continental margin, both the incoming sediments from the Nazca plate as well as the slope sediments of the continental margin can be important for earthquake nucleation and faulting causing sea-floor breakage. To investigate texture and composition of the sediments and hence their deformational properties we collected samples from varying depth of 7 different drilling locations across the trench retrieved during IODP expeditions 334 and 344 as part of the Costa Rica Seismogenesis Project (CRISP). Texture analysis was carried out by means of synchrotron diffraction, as only this method is suitable for water-bearing samples. As knowledge on the sediment composition is required as input parameter for the texture data analysis, additional X-ray powder diffraction analysis on the sample material has been carried out. Samples for texture measurements were prepared from the original drill cores using an internally developed cutter which allows to produce cylindrical samples with a diameter of about 1.5 cm. The samples are oriented with respect to the drill core axis. Synchrotron texture measurements were conducted at the ESRF (European Synchrotron Radiation Facility) in Grenoble and the DESY (German Electron Synchrotron) in Hamburg. Samples were measured in transmission mode perpendicular to their cylinder axis with a beam diameter of 500 µm. Measurements were taken from 0 to 175° in 5° steps resulting in 36 images from a 2D image plate detector. Measurement time was in a range from 1 to 3 seconds. Due to the different, low symmetric mineral phases a large number of mostly overlapping reflections results. Such data can only be analyzed by the Rietveld method, in our case implemented in the software package MAUD (Materials Analysis Using Diffraction). Preliminary results show distinct textures depending on the composition and the origin of the samples, i.e. on drilling location and depth, which may be critical for strain localization and faulting of these samples. The results are also important for the analysis of experimentally deformed samples from the same drill cores which showed structurally weak and structurally strong deformation behavior during triaxial compression.
Anorexia Nervosa: Analysis of Trabecular Texture with CT
Tabari, Azadeh; Torriani, Martin; Miller, Karen K.; Klibanski, Anne; Kalra, Mannudeep K.
2017-01-01
Purpose To determine indexes of skeletal integrity by using computed tomographic (CT) trabecular texture analysis of the lumbar spine in patients with anorexia nervosa and normal-weight control subjects and to determine body composition predictors of trabecular texture. Materials and Methods This cross-sectional study was approved by the institutional review board and compliant with HIPAA. Written informed consent was obtained. The study included 30 women with anorexia nervosa (mean age ± standard deviation, 26 years ± 6) and 30 normal-weight age-matched women (control group). All participants underwent low-dose single-section quantitative CT of the L4 vertebral body with use of a calibration phantom. Trabecular texture analysis was performed by using software. Skewness (asymmetry of gray-level pixel distribution), kurtosis (pointiness of pixel distribution), entropy (inhomogeneity of pixel distribution), and mean value of positive pixels (MPP) were assessed. Bone mineral density and abdominal fat and paraspinal muscle areas were quantified with quantitative CT. Women with anorexia nervosa and normal-weight control subjects were compared by using the Student t test. Linear regression analyses were performed to determine associations between trabecular texture and body composition. Results Women with anorexia nervosa had higher skewness and kurtosis, lower MPP (P < .001), and a trend toward lower entropy (P = .07) compared with control subjects. Bone mineral density, abdominal fat area, and paraspinal muscle area were inversely associated with skewness and kurtosis and positively associated with MPP and entropy. Texture parameters, but not bone mineral density, were associated with lowest lifetime weight and duration of amenorrhea in anorexia nervosa. Conclusion Patients with anorexia nervosa had increased skewness and kurtosis and decreased entropy and MPP compared with normal-weight control subjects. These parameters were associated with lowest lifetime weight and duration of amenorrhea, but there were no such associations with bone mineral density. These findings suggest that trabecular texture analysis might contribute information about bone health in anorexia nervosa that is independent of that provided with bone mineral density. © RSNA, 2016 PMID:27797678
Anorexia Nervosa: Analysis of Trabecular Texture with CT.
Tabari, Azadeh; Torriani, Martin; Miller, Karen K; Klibanski, Anne; Kalra, Mannudeep K; Bredella, Miriam A
2017-04-01
Purpose To determine indexes of skeletal integrity by using computed tomographic (CT) trabecular texture analysis of the lumbar spine in patients with anorexia nervosa and normal-weight control subjects and to determine body composition predictors of trabecular texture. Materials and Methods This cross-sectional study was approved by the institutional review board and compliant with HIPAA. Written informed consent was obtained. The study included 30 women with anorexia nervosa (mean age ± standard deviation, 26 years ± 6) and 30 normal-weight age-matched women (control group). All participants underwent low-dose single-section quantitative CT of the L4 vertebral body with use of a calibration phantom. Trabecular texture analysis was performed by using software. Skewness (asymmetry of gray-level pixel distribution), kurtosis (pointiness of pixel distribution), entropy (inhomogeneity of pixel distribution), and mean value of positive pixels (MPP) were assessed. Bone mineral density and abdominal fat and paraspinal muscle areas were quantified with quantitative CT. Women with anorexia nervosa and normal-weight control subjects were compared by using the Student t test. Linear regression analyses were performed to determine associations between trabecular texture and body composition. Results Women with anorexia nervosa had higher skewness and kurtosis, lower MPP (P < .001), and a trend toward lower entropy (P = .07) compared with control subjects. Bone mineral density, abdominal fat area, and paraspinal muscle area were inversely associated with skewness and kurtosis and positively associated with MPP and entropy. Texture parameters, but not bone mineral density, were associated with lowest lifetime weight and duration of amenorrhea in anorexia nervosa. Conclusion Patients with anorexia nervosa had increased skewness and kurtosis and decreased entropy and MPP compared with normal-weight control subjects. These parameters were associated with lowest lifetime weight and duration of amenorrhea, but there were no such associations with bone mineral density. These findings suggest that trabecular texture analysis might contribute information about bone health in anorexia nervosa that is independent of that provided with bone mineral density. © RSNA, 2016.
Non-negative matrix factorization in texture feature for classification of dementia with MRI data
NASA Astrophysics Data System (ADS)
Sarwinda, D.; Bustamam, A.; Ardaneswari, G.
2017-07-01
This paper investigates applications of non-negative matrix factorization as feature selection method to select the features from gray level co-occurrence matrix. The proposed approach is used to classify dementia using MRI data. In this study, texture analysis using gray level co-occurrence matrix is done to feature extraction. In the feature extraction process of MRI data, we found seven features from gray level co-occurrence matrix. Non-negative matrix factorization selected three features that influence of all features produced by feature extractions. A Naïve Bayes classifier is adapted to classify dementia, i.e. Alzheimer's disease, Mild Cognitive Impairment (MCI) and normal control. The experimental results show that non-negative factorization as feature selection method able to achieve an accuracy of 96.4% for classification of Alzheimer's and normal control. The proposed method also compared with other features selection methods i.e. Principal Component Analysis (PCA).
Morphological texture assessment of oral bone as a screening tool for osteoporosis
NASA Astrophysics Data System (ADS)
Analoui, Mostafa; Eggertsson, Hafsteinn; Eckert, George
2001-07-01
Three classes of texture analysis approaches have been employed to assess the textural characteristic of oral bone. A set of linear structuring elements was used to compute granulometric features of trabecular bone. Multifractal analysis was also used to compute the fractal dimension of the corresponding tissues. In addition, some statistical features and histomorphometric parameters were computed. To assess the proposed approach we acquired digital intraoral radiographs of 47 subjects (14 males and 33 females). All radiographs were captured at 12 bits/pixel. Images were converted to binary form through a sliding locally adaptive thresholding approach. Each subject was scanned by DEXA for bone dosimetry. Subject were classified into one of the following three categories according World Health Organization (WHO) standard (1) healthy, (2) with osteopenia and (3) osteoporosis. In this study fractal dimension showed very low correlation with bone mineral density (BMD) measurements, which did not reach a level of statistical significance (p<0.5). However, entropy of pattern spectrum (EPS), along with statistical features and histomorphometric parameters, has shown correlation coefficients ranging from low to high, with statistical significance for both males and females. The results of this study indicate the utility of this approach for bone texture analysis. It is conjectured that designing a 2-D structuring element, specially tuned to trabecular bone texture, will increase the efficacy of the proposed method.
Leaf epidermis images for robust identification of plants
da Silva, Núbia Rosa; Oliveira, Marcos William da Silva; Filho, Humberto Antunes de Almeida; Pinheiro, Luiz Felipe Souza; Rossatto, Davi Rodrigo; Kolb, Rosana Marta; Bruno, Odemir Martinez
2016-01-01
This paper proposes a methodology for plant analysis and identification based on extracting texture features from microscopic images of leaf epidermis. All the experiments were carried out using 32 plant species with 309 epidermal samples captured by an optical microscope coupled to a digital camera. The results of the computational methods using texture features were compared to the conventional approach, where quantitative measurements of stomatal traits (density, length and width) were manually obtained. Epidermis image classification using texture has achieved a success rate of over 96%, while success rate was around 60% for quantitative measurements taken manually. Furthermore, we verified the robustness of our method accounting for natural phenotypic plasticity of stomata, analysing samples from the same species grown in different environments. Texture methods were robust even when considering phenotypic plasticity of stomatal traits with a decrease of 20% in the success rate, as quantitative measurements proved to be fully sensitive with a decrease of 77%. Results from the comparison between the computational approach and the conventional quantitative measurements lead us to discover how computational systems are advantageous and promising in terms of solving problems related to Botany, such as species identification. PMID:27217018
Orun, A B; Seker, H; Uslan, V; Goodyer, E; Smith, G
2017-06-01
The textural structure of 'skin age'-related subskin components enables us to identify and analyse their unique characteristics, thus making substantial progress towards establishing an accurate skin age model. This is achieved by a two-stage process. First by the application of textural analysis using laser speckle imaging, which is sensitive to textural effects within the λ = 650 nm spectral band region. In the second stage, a Bayesian inference method is used to select attributes from which a predictive model is built. This technique enables us to contrast different skin age models, such as the laser speckle effect against the more widely used normal light (LED) imaging method, whereby it is shown that our laser speckle-based technique yields better results. The method introduced here is non-invasive, low cost and capable of operating in real time; having the potential to compete against high-cost instrumentation such as confocal microscopy or similar imaging devices used for skin age identification purposes. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
NASA Astrophysics Data System (ADS)
Jardine, M. A.; Miller, J. A.; Becker, M.
2018-02-01
Texture is one of the most basic descriptors used in the geological sciences. The value derived from textural characterisation extends into engineering applications associated with mining, mineral processing and metal extraction where quantitative textural information is required for models predicting the response of the ore through a particular process. This study extends the well-known 2D grey level co-occurrence matrices methodology into 3D as a method for image analysis of 3D x-ray computed tomography grey scale volumes of drill core. Subsequent interrogation of the information embedded within the grey level occurrence matrices (GLCM) indicates they are sensitive to changes in mineralogy and texture of samples derived from a magmatic nickel sulfide ore. The position of the peaks in the GLCM is an indication of the relative density (specific gravity, SG) of the minerals and when interpreted using a working knowledge of the mineralogy of the ore presented a means to determine the relative abundance of the sulfide minerals (SG > 4), dense silicate minerals (SG > 3), and lighter silicate minerals (SG < 3). The spread of the peaks in the GLCM away from the diagonal is an indication of the degree of grain boundary interaction with wide peaks representing fine grain sizes and narrow peaks representing coarse grain sizes. The method lends itself to application as part of a generic methodology for routine use on large XCT volumes providing quantitative, timely, meaningful and automated information on mineralogy and texture in 3D.
Bahl, Gautam; Cruite, Irene; Wolfson, Tanya; Gamst, Anthony C.; Collins, Julie M.; Chavez, Alyssa D.; Barakat, Fatma; Hassanein, Tarek; Sirlin, Claude B.
2016-01-01
Purpose To demonstrate a proof of concept that quantitative texture feature analysis of double contrast-enhanced magnetic resonance imaging (MRI) can classify fibrosis noninvasively, using histology as a reference standard. Materials and Methods A Health Insurance Portability and Accountability Act (HIPAA)-compliant Institutional Review Board (IRB)-approved retrospective study of 68 patients with diffuse liver disease was performed at a tertiary liver center. All patients underwent double contrast-enhanced MRI, with histopathology-based staging of fibrosis obtained within 12 months of imaging. The MaZda software program was used to compute 279 texture parameters for each image. A statistical regularization technique, generalized linear model (GLM)-path, was used to develop a model based on texture features for dichotomous classification of fibrosis category (F ≤2 vs. F ≥3) of the 68 patients, with histology as the reference standard. The model's performance was assessed and cross-validated. There was no additional validation performed on an independent cohort. Results Cross-validated sensitivity, specificity, and total accuracy of the texture feature model in classifying fibrosis were 91.9%, 83.9%, and 88.2%, respectively. Conclusion This study shows proof of concept that accurate, noninvasive classification of liver fibrosis is possible by applying quantitative texture analysis to double contrast-enhanced MRI. Further studies are needed in independent cohorts of subjects. PMID:22851409
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nawrocki, J; Chino, J; Das, S
Purpose: This study examines the effect on texture analysis due to variable reconstruction of PET images in the context of an adaptive FDG PET protocol for node positive gynecologic cancer patients. By measuring variability in texture features from baseline and intra-treatment PET-CT, we can isolate unreliable texture features due to large variation. Methods: A subset of seven patients with node positive gynecological cancers visible on PET was selected for this study. Prescribed dose varied between 45–50.4Gy, with a 55–70Gy boost to the PET positive nodes. A baseline and intratreatment (between 30–36Gy) PET-CT were obtained on a Siemens Biograph mCT. Eachmore » clinical PET image set was reconstructed 6 times using a TrueX+TOF algorithm with varying iterations and Gaussian filter. Baseline and intra-treatment primary GTVs were segmented using PET Edge (MIM Software Inc., Cleveland, OH), a semi-automatic gradient-based algorithm, on the clinical PET and transferred to the other reconstructed sets. Using an in-house MATLAB program, four 3D texture matrices describing relationships between voxel intensities in the GTV were generated: co-occurrence, run length, size zone, and neighborhood difference. From these, 39 textural features characterizing texture were calculated in addition to SUV histogram features. The percent variability among parameters was first calculated. Each reconstructed texture feature from baseline and intra-treatment per patient was normalized to the clinical baseline scan and compared using the Wilcoxon signed-rank test in order to isolate variations due to reconstruction parameters. Results: For the baseline scans, 13 texture features showed a mean range greater than 10%. For the intra scans, 28 texture features showed a mean range greater than 10%. Comparing baseline to intra scans, 25 texture features showed p <0.05. Conclusion: Variability due to different reconstruction parameters increased with treatment, however, the majority of texture features showed significant changes during treatment independent of reconstruction effects.« less
Jackman, Patrick; Sun, Da-Wen; Allen, Paul; Valous, Nektarios A; Mendoza, Fernando; Ward, Paddy
2010-04-01
A method to discriminate between various grades of pork and turkey ham was developed using colour and wavelet texture features. Image analysis methods originally developed for predicting the palatability of beef were applied to rapidly identify the ham grade. With high quality digital images of 50-94 slices per ham it was possible to identify the greyscale that best expressed the differences between the various ham grades. The best 10 discriminating image features were then found with a genetic algorithm. Using the best 10 image features, simple linear discriminant analysis models produced 100% correct classifications for both pork and turkey on both calibration and validation sets. 2009 Elsevier Ltd. All rights reserved.
Padma, A; Sukanesh, R
2013-01-01
A computer software system is designed for the segmentation and classification of benign from malignant tumour slices in brain computed tomography (CT) images. This paper presents a method to find and select both the dominant run length and co-occurrence texture features of region of interest (ROI) of the tumour region of each slice to be segmented by Fuzzy c means clustering (FCM) and evaluate the performance of support vector machine (SVM)-based classifiers in classifying benign and malignant tumour slices. Two hundred and six tumour confirmed CT slices are considered in this study. A total of 17 texture features are extracted by a feature extraction procedure, and six features are selected using Principal Component Analysis (PCA). This study constructed the SVM-based classifier with the selected features and by comparing the segmentation results with the experienced radiologist labelled ground truth (target). Quantitative analysis between ground truth and segmented tumour is presented in terms of segmentation accuracy, segmentation error and overlap similarity measures such as the Jaccard index. The classification performance of the SVM-based classifier with the same selected features is also evaluated using a 10-fold cross-validation method. The proposed system provides some newly found texture features have an important contribution in classifying benign and malignant tumour slices efficiently and accurately with less computational time. The experimental results showed that the proposed system is able to achieve the highest segmentation and classification accuracy effectiveness as measured by jaccard index and sensitivity and specificity.
Texture analysis applied to second harmonic generation image data for ovarian cancer classification
NASA Astrophysics Data System (ADS)
Wen, Bruce L.; Brewer, Molly A.; Nadiarnykh, Oleg; Hocker, James; Singh, Vikas; Mackie, Thomas R.; Campagnola, Paul J.
2014-09-01
Remodeling of the extracellular matrix has been implicated in ovarian cancer. To quantitate the remodeling, we implement a form of texture analysis to delineate the collagen fibrillar morphology observed in second harmonic generation microscopy images of human normal and high grade malignant ovarian tissues. In the learning stage, a dictionary of "textons"-frequently occurring texture features that are identified by measuring the image response to a filter bank of various shapes, sizes, and orientations-is created. By calculating a representative model based on the texton distribution for each tissue type using a training set of respective second harmonic generation images, we then perform classification between images of normal and high grade malignant ovarian tissues. By optimizing the number of textons and nearest neighbors, we achieved classification accuracy up to 97% based on the area under receiver operating characteristic curves (true positives versus false positives). The local analysis algorithm is a more general method to probe rapidly changing fibrillar morphologies than global analyses such as FFT. It is also more versatile than other texture approaches as the filter bank can be highly tailored to specific applications (e.g., different disease states) by creating customized libraries based on common image features.
3D texture analysis for classification of second harmonic generation images of human ovarian cancer
NASA Astrophysics Data System (ADS)
Wen, Bruce; Campbell, Kirby R.; Tilbury, Karissa; Nadiarnykh, Oleg; Brewer, Molly A.; Patankar, Manish; Singh, Vikas; Eliceiri, Kevin. W.; Campagnola, Paul J.
2016-10-01
Remodeling of the collagen architecture in the extracellular matrix (ECM) has been implicated in ovarian cancer. To quantify these alterations we implemented a form of 3D texture analysis to delineate the fibrillar morphology observed in 3D Second Harmonic Generation (SHG) microscopy image data of normal (1) and high risk (2) ovarian stroma, benign ovarian tumors (3), low grade (4) and high grade (5) serous tumors, and endometrioid tumors (6). We developed a tailored set of 3D filters which extract textural features in the 3D image sets to build (or learn) statistical models of each tissue class. By applying k-nearest neighbor classification using these learned models, we achieved 83-91% accuracies for the six classes. The 3D method outperformed the analogous 2D classification on the same tissues, where we suggest this is due the increased information content. This classification based on ECM structural changes will complement conventional classification based on genetic profiles and can serve as an additional biomarker. Moreover, the texture analysis algorithm is quite general, as it does not rely on single morphological metrics such as fiber alignment, length, and width but their combined convolution with a customizable basis set.
NASA Astrophysics Data System (ADS)
Nadammal, Naresh; Kailas, Satish V.; Szpunar, Jerzy; Suwas, Satyam
2015-05-01
Friction-stir processing (FSP) has been proven as a successful method for the grain refinement of high-strength aluminum alloys. The most important attributes of this process are the fine-grain microstructure and characteristic texture, which impart suitable properties in the as-processed material. In the current work, FSP of the precipitation-hardenable aluminum alloy 2219 has been carried out and the consequent evolution of microstructure and texture has been studied. The as-processed materials were characterized using electron back-scattered diffraction, x-ray diffraction, and electron probe microanalysis. Onion-ring formation was observed in the nugget zone, which has been found to be related to the precipitation response and crystallographic texture of the alloy. Texture development in the alloy has been attributed to the combined effect of shear deformation and dynamic recrystallization. The texture was found heterogeneous even within the nugget zone. A microtexture analysis revealed the dominance of shear texture components, with C component at the top of nugget zone and the B and A2* components in the middle and bottom. The bulk texture measurement in the nugget zone revealed a dominant C component. The development of a weaker texture along with the presence of some large particles in the nugget zone indicates particle-stimulated nucleation as the dominant nucleation mechanism during FSP. Grain growth follows the Burke and Turnbull mechanism and geometrical coalescence.
A Study of Deep CNN-Based Classification of Open and Closed Eyes Using a Visible Light Camera Sensor
Kim, Ki Wan; Hong, Hyung Gil; Nam, Gi Pyo; Park, Kang Ryoung
2017-01-01
The necessity for the classification of open and closed eyes is increasing in various fields, including analysis of eye fatigue in 3D TVs, analysis of the psychological states of test subjects, and eye status tracking-based driver drowsiness detection. Previous studies have used various methods to distinguish between open and closed eyes, such as classifiers based on the features obtained from image binarization, edge operators, or texture analysis. However, when it comes to eye images with different lighting conditions and resolutions, it can be difficult to find an optimal threshold for image binarization or optimal filters for edge and texture extraction. In order to address this issue, we propose a method to classify open and closed eye images with different conditions, acquired by a visible light camera, using a deep residual convolutional neural network. After conducting performance analysis on both self-collected and open databases, we have determined that the classification accuracy of the proposed method is superior to that of existing methods. PMID:28665361
Kaur, Ravneet; Albano, Peter P.; Cole, Justin G.; Hagerty, Jason; LeAnder, Robert W.; Moss, Randy H.; Stoecker, William V.
2015-01-01
Background/Purpose Early detection of malignant melanoma is an important public health challenge. In the USA, dermatologists are seeing more melanomas at an early stage, before classic melanoma features have become apparent. Pink color is a feature of these early melanomas. If rapid and accurate automatic detection of pink color in these melanomas could be accomplished, there could be significant public health benefits. Methods Detection of three shades of pink (light pink, dark pink, and orange pink) was accomplished using color analysis techniques in five color planes (red, green, blue, hue and saturation). Color shade analysis was performed using a logistic regression model trained with an image set of 60 dermoscopic images of melanoma that contained pink areas. Detected pink shade areas were further analyzed with regard to the location within the lesion, average color parameters over the detected areas, and histogram texture features. Results Logistic regression analysis of a separate set of 128 melanomas and 128 benign images resulted in up to 87.9% accuracy in discriminating melanoma from benign lesions measured using area under the receiver operating characteristic curve. The accuracy in this model decreased when parameters for individual shades, texture, or shade location within the lesion were omitted. Conclusion Texture, color, and lesion location analysis applied to multiple shades of pink can assist in melanoma detection. When any of these three details: color location, shade analysis, or texture analysis were omitted from the model, accuracy in separating melanoma from benign lesions was lowered. Separation of colors into shades and further details that enhance the characterization of these color shades are needed for optimal discrimination of melanoma from benign lesions. PMID:25809473
2D/3D facial feature extraction
NASA Astrophysics Data System (ADS)
Çinar Akakin, Hatice; Ali Salah, Albert; Akarun, Lale; Sankur, Bülent
2006-02-01
We propose and compare three different automatic landmarking methods for near-frontal faces. The face information is provided as 480x640 gray-level images in addition to the corresponding 3D scene depth information. All three methods follow a coarse-to-fine suite and use the 3D information in an assist role. The first method employs a combination of principal component analysis (PCA) and independent component analysis (ICA) features to analyze the Gabor feature set. The second method uses a subset of DCT coefficients for template-based matching. These two methods employ SVM classifiers with polynomial kernel functions. The third method uses a mixture of factor analyzers to learn Gabor filter outputs. We contrast the localization performance separately with 2D texture and 3D depth information. Although the 3D depth information per se does not perform as well as texture images in landmark localization, the 3D information has still a beneficial role in eliminating the background and the false alarms.
Understanding the effect of watershed characteristic on the runoff using SCS curve number
NASA Astrophysics Data System (ADS)
Damayanti, Frieta; Schneider, Karl
2015-04-01
Runoff modeling is a key component in watershed management. The temporal course and amount of runoff is a complex function of a multitude of parameters such as climate, soil, topography, land use, and water management. Against the background of the current rapid environmental change, which is due to both i) man-made changes (e.g. urban development, land use change, water management) as well as ii) changes in the natural systems (e.g. climate change), understanding and predicting the impacts of these changes upon the runoff is very important and affects the wellbeing of many people living in the watershed. A main tool for predictions is hydrologic models. Particularly process based models are the method of choice to assess the impact of land use and climate change. However, many regions which experience large changes in the watersheds can be described as rather data poor, which limits the applicability of such models. This is particularly also true for the Telomoyo Watershed (545 km2) which is located in southern part of Central Java province. The average annual rainfall of the study area reaches 2971 mm. Irrigated paddy field are the dominating land use (35%), followed by built-up area and dry land agriculture. The only available soil map is the FAO soil digital map of the world, which provides rather general soil information. A field survey accompanied by a lab analysis 65 soil samples of was carried out to provide more detailed soil texture information. The soil texture map is a key input in the SCS method to define hydrological soil groups. In the frame of our study on 'Integrated Analysis on Flood Risk of Telomoyo Watershed in Response to the Climate and Land Use Change' funded by the German Academic Exchange service (DAAD) we analyzed the sensitivity of the modeled runoff upon the choice of the method to estimate the CN values using the SCS-CN method. The goal of this study is to analyze the impact of different data sources on the curve numbers and the estimated runoff. CN values were estimated using the field measurements of soil textures for different combinations of land use and topography. To transfer the local soil texture measurements to the watershed domain a statistical analysis using the frequency distribution of the measured soil textures is applied and used to derive the effective CN value for a given land use, topography and soil texture combination. Since the curve numbers change as a function of parameter combinations, the effect of different methods to estimate the curve number upon the runoff is analyzed and compared to the straight forward method of using the data from the FAO soil map.
Semantic attributes based texture generation
NASA Astrophysics Data System (ADS)
Chi, Huifang; Gan, Yanhai; Qi, Lin; Dong, Junyu; Madessa, Amanuel Hirpa
2018-04-01
Semantic attributes are commonly used for texture description. They can be used to describe the information of a texture, such as patterns, textons, distributions, brightness, and so on. Generally speaking, semantic attributes are more concrete descriptors than perceptual features. Therefore, it is practical to generate texture images from semantic attributes. In this paper, we propose to generate high-quality texture images from semantic attributes. Over the last two decades, several works have been done on texture synthesis and generation. Most of them focusing on example-based texture synthesis and procedural texture generation. Semantic attributes based texture generation still deserves more devotion. Gan et al. proposed a useful joint model for perception driven texture generation. However, perceptual features are nonobjective spatial statistics used by humans to distinguish different textures in pre-attentive situations. To give more describing information about texture appearance, semantic attributes which are more in line with human description habits are desired. In this paper, we use sigmoid cross entropy loss in an auxiliary model to provide enough information for a generator. Consequently, the discriminator is released from the relatively intractable mission of figuring out the joint distribution of condition vectors and samples. To demonstrate the validity of our method, we compare our method to Gan et al.'s method on generating textures by designing experiments on PTD and DTD. All experimental results show that our model can generate textures from semantic attributes.
NASA Astrophysics Data System (ADS)
Matsuki, Nobuyuki; Fujiwara, Hiroyuki
2013-07-01
Nanometer-scale hydrogenated amorphous silicon (a-Si:H) layers formed on crystalline silicon (c-Si) with pyramid-shaped textures have been characterized by spectroscopic ellipsometry (SE) using a tilt angle measurement configuration, in an attempt to establish a nondestructive method for the structural characterization of the a-Si:H/c-Si heterojunction solar cells. By applying an a-Si:H dielectric function model developed recently, the thickness and SiH2 content of the a-Si:H layer have been determined even on the textured substrates. Furthermore, from the SE analysis incorporating the Drude model, the carrier properties of the In2O3:Sn layers in the textured solar-cell structure have been characterized.
Pérez-Beteta, Julián; Luque, Belén; Arregui, Elena; Calvo, Manuel; Borrás, José M; López, Carlos; Martino, Juan; Velasquez, Carlos; Asenjo, Beatriz; Benavides, Manuel; Herruzo, Ismael; Martínez-González, Alicia; Pérez-Romasanta, Luis; Arana, Estanislao; Pérez-García, Víctor M
2016-01-01
Objective: The main objective of this retrospective work was the study of three-dimensional (3D) heterogeneity measures of post-contrast pre-operative MR images acquired with T1 weighted sequences of patients with glioblastoma (GBM) as predictors of clinical outcome. Methods: 79 patients from 3 hospitals were included in the study. 16 3D textural heterogeneity measures were computed including run-length matrix (RLM) features (regional heterogeneity) and co-occurrence matrix (CM) features (local heterogeneity). The significance of the results was studied using Kaplan–Meier curves and Cox proportional hazards analysis. Correlation between the variables of the study was assessed using the Spearman's correlation coefficient. Results: Kaplan–Meyer survival analysis showed that 4 of the 11 RLM features and 4 of the 5 CM features considered were robust predictors of survival. The median survival differences in the most significant cases were of over 6 months. Conclusion: Heterogeneity measures computed on the post-contrast pre-operative T1 weighted MR images of patients with GBM are predictors of survival. Advances in knowledge: Texture analysis to assess tumour heterogeneity has been widely studied. However, most works develop a two-dimensional analysis, focusing only on one MRI slice to state tumour heterogeneity. The study of fully 3D heterogeneity textural features as predictors of clinical outcome is more robust and is not dependent on the selected slice of the tumour. PMID:27319577
Breast histopathology image segmentation using spatio-colour-texture based graph partition method.
Belsare, A D; Mushrif, M M; Pangarkar, M A; Meshram, N
2016-06-01
This paper proposes a novel integrated spatio-colour-texture based graph partitioning method for segmentation of nuclear arrangement in tubules with a lumen or in solid islands without a lumen from digitized Hematoxylin-Eosin stained breast histology images, in order to automate the process of histology breast image analysis to assist the pathologists. We propose a new similarity based super pixel generation method and integrate it with texton representation to form spatio-colour-texture map of Breast Histology Image. Then a new weighted distance based similarity measure is used for generation of graph and final segmentation using normalized cuts method is obtained. The extensive experiments carried shows that the proposed algorithm can segment nuclear arrangement in normal as well as malignant duct in breast histology tissue image. For evaluation of the proposed method the ground-truth image database of 100 malignant and nonmalignant breast histology images is created with the help of two expert pathologists and the quantitative evaluation of proposed breast histology image segmentation has been performed. It shows that the proposed method outperforms over other methods. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Zhou, Chuan; Chan, Heang-Ping; Sahiner, Berkman; Hadjiiski, Lubomir M.; Paramagul, Chintana
2004-05-01
Automated registration of multiple mammograms for CAD depends on accurate nipple identification. We developed two new image analysis techniques based on geometric and texture convergence analyses to improve the performance of our previously developed nipple identification method. A gradient-based algorithm is used to automatically track the breast boundary. The nipple search region along the boundary is then defined by geometric convergence analysis of the breast shape. Three nipple candidates are identified by detecting the changes along the gray level profiles inside and outside the boundary and the changes in the boundary direction. A texture orientation-field analysis method is developed to estimate the fourth nipple candidate based on the convergence of the tissue texture pattern towards the nipple. The final nipple location is determined from the four nipple candidates by a confidence analysis. Our training and test data sets consisted of 419 and 368 randomly selected mammograms, respectively. The nipple location identified on each image by an experienced radiologist was used as the ground truth. For 118 of the training and 70 of the test images, the radiologist could not positively identify the nipple, but provided an estimate of its location. These were referred to as invisible nipple images. In the training data set, 89.37% (269/301) of the visible nipples and 81.36% (96/118) of the invisible nipples could be detected within 1 cm of the truth. In the test data set, 92.28% (275/298) of the visible nipples and 67.14% (47/70) of the invisible nipples were identified within 1 cm of the truth. In comparison, our previous nipple identification method without using the two convergence analysis techniques detected 82.39% (248/301), 77.12% (91/118), 89.93% (268/298) and 54.29% (38/70) of the nipples within 1 cm of the truth for the visible and invisible nipples in the training and test sets, respectively. The results indicate that the nipple on mammograms can be detected accurately. This will be an important step towards automatic multiple image analysis for CAD techniques.
NASA Astrophysics Data System (ADS)
Xu, Ye; Sonka, Milan; McLennan, Geoffrey; Guo, Junfeng; Hoffman, Eric
2005-04-01
Lung parenchyma evaluation via multidetector-row CT (MDCT), has significantly altered clinical practice in the early detection of lung disease. Our goal is to enhance our texture-based tissue classification ability to differentiate early pathologic processes by extending our 2-D Adaptive Multiple Feature Method (AMFM) to 3-D AMFM. We performed MDCT on 34 human volunteers in five categories: emphysema in severe Chronic Obstructive Pulmonary Disease (COPD) as EC, emphysema in mild COPD (MC), normal appearing lung in COPD (NC), non-smokers with normal lung function (NN), smokers with normal function (NS). We volumetrically excluded the airway and vessel regions, calculated 24 volumetric texture features for each Volume of Interest (VOI); and used Bayesian rules for discrimination. Leave-one-out and half-half methods were used for testing. Sensitivity, specificity and accuracy were calculated. The accuracy of the leave-one-out method for the four-class classification in the form of 3-D/2-D is: EC: 84.9%/70.7%, MC: 89.8%/82.7%; NC: 87.5.0%/49.6%; NN: 100.0%/60.0%. The accuracy of the leave-one-out method for the two-class classification in the form of 3-D/2-D is: NN: 99.3%/71.6%; NS: 99.7%/74.5%. We conclude that 3-D AMFM analysis of the lung parenchyma improves discrimination compared to 2-D analysis of the same images.
Efficient optical analysis of surface texture combinations for silicon solar cells
NASA Astrophysics Data System (ADS)
Tucher, Nico; Eisenlohr, Johannes; Kiefel, Peter; Gebrewold, Habtamu; Höhn, Oliver; Hauser, Hubert; Müller, Claas; Goldschmidt, Jan Christoph; Bläsi, Benedikt
2016-04-01
Surface textures can significantly improve anti-reflective and light trapping properties of silicon solar cells. Combining standard pyramidal front side textures with scattering or diffractive rear side textures has the potential to further increase the light path length inside the silicon and thereby increase the solar cell efficiency. In this work we introduce the OPTOS (Optical Properties of Textured Optical Sheets) simulation formalism and apply it to the modelling of silicon solar cells with different surface textures at front and rear side. OPTOS is a matrix-based method that allows for the computationally-efficient calculation of non-coherent light propagation within textured solar cells, featuring multiple textures that may operate in different optical regimes. After calculating redistribution matrices for each individual surface texture with the most appropriate technique, optical properties like angle dependent reflectance, transmittance or absorptance can be determined via matrix multiplications. Using OPTOS, we demonstrate for example that the integration of a diffractive grating at the rear side of solar cells with random pyramids at the front results in an absorptance gain that corresponds to a photocurrent density enhancement of 0.73 mA/cm2 for a 250 μm thick cell. The re-usability of matrices enables the investigation of different solar cell thicknesses within minutes. For thicknesses down to 50 μm the simulated gain increases up to 1.22 mA/cm2. The OPTOS formalism is furthermore not restricted with respect to the number of textured interfaces. By combining two or more textured sheets to effective interfaces, it is possible to optically model a complete photovoltaic module including EVA and potentially textured glass layers with one calculation tool.
Bone structure studies with holographic interferometric nondestructive testing and x-ray methods
NASA Astrophysics Data System (ADS)
Silvennoinen, Raimo; Nygren, Kaarlo; Rouvinen, Juha; Petrova, Valentina V.
1994-02-01
Changes in the biomechanics and in the molecular texture and structure of isolated radioulnar bones of subadult European moose (Alces alces L.) collected in various environmentally polluted areas of Finland were investigated by means of holographic interferometric non- destructive testing (HNDT), radiological, morphometrical, and x-ray diffraction methods. By means of small caudal-cranial bending forces, the surface movements of the lower end (distal epiphysis) of the radial bone were recorded with the HNDT method. To study bone molecular texture and structure changes under external compressing forces, the samples for x-ray diffraction analysis were taken from the upper end of the ulnar bone (olecranon tip). Results showed that the bones obtained from the Harjavalta area and those of North Karelian moose showing malnutrition and healing femoral fractures produced different HNDT pictures compared with the four normally developed North Karelian moose. In the x-ray diffraction, the Harjavalta samples showed changes in molecular texture and structure compared with the samples from the apparently normal North Karelian animals.
Thermal Texture Generation and 3d Model Reconstruction Using SFM and Gan
NASA Astrophysics Data System (ADS)
Kniaz, V. V.; Mizginov, V. A.
2018-05-01
Realistic 3D models with textures representing thermal emission of the object are widely used in such fields as dynamic scene analysis, autonomous driving, and video surveillance. Structure from Motion (SfM) methods provide a robust approach for the generation of textured 3D models in the visible range. Still, automatic generation of 3D models from the infrared imagery is challenging due to an absence of the feature points and low sensor resolution. Recent advances in Generative Adversarial Networks (GAN) have proved that they can perform complex image-to-image transformations such as a transformation of day to night and generation of imagery in a different spectral range. In this paper, we propose a novel method for generation of realistic 3D models with thermal textures using the SfM pipeline and GAN. The proposed method uses visible range images as an input. The images are processed in two ways. Firstly, they are used for point matching and dense point cloud generation. Secondly, the images are fed into a GAN that performs the transformation from the visible range to the thermal range. We evaluate the proposed method using real infrared imagery captured with a FLIR ONE PRO camera. We generated a dataset with 2000 pairs of real images captured in thermal and visible range. The dataset is used to train the GAN network and to generate 3D models using SfM. The evaluation of the generated 3D models and infrared textures proved that they are similar to the ground truth model in both thermal emissivity and geometrical shape.
Method of forming biaxially textured alloy substrates and devices thereon
Goyal, Amit; Specht, Eliot D.; Kroeger, Donald M.; Paranthaman, Mariappan
2000-01-01
Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.
Evaluation of Yogurt Microstructure Using Confocal Laser Scanning Microscopy and Image Analysis.
Skytte, Jacob L; Ghita, Ovidiu; Whelan, Paul F; Andersen, Ulf; Møller, Flemming; Dahl, Anders B; Larsen, Rasmus
2015-06-01
The microstructure of protein networks in yogurts defines important physical properties of the yogurt and hereby partly its quality. Imaging this protein network using confocal scanning laser microscopy (CSLM) has shown good results, and CSLM has become a standard measuring technique for fermented dairy products. When studying such networks, hundreds of images can be obtained, and here image analysis methods are essential for using the images in statistical analysis. Previously, methods including gray level co-occurrence matrix analysis and fractal analysis have been used with success. However, a range of other image texture characterization methods exists. These methods describe an image by a frequency distribution of predefined image features (denoted textons). Our contribution is an investigation of the choice of image analysis methods by performing a comparative study of 7 major approaches to image texture description. Here, CSLM images from a yogurt fermentation study are investigated, where production factors including fat content, protein content, heat treatment, and incubation temperature are varied. The descriptors are evaluated through nearest neighbor classification, variance analysis, and cluster analysis. Our investigation suggests that the texton-based descriptors provide a fuller description of the images compared to gray-level co-occurrence matrix descriptors and fractal analysis, while still being as applicable and in some cases as easy to tune. © 2015 Institute of Food Technologists®
Molina, D.; Pérez-Beteta, J.; Martínez-González, A.; Velásquez, C.; Martino, J.; Luque, B.; Revert, A.; Herruzo, I.; Arana, E.; Pérez-García, V. M.
2017-01-01
Abstract Introduction: Textural analysis refers to a variety of mathematical methods used to quantify the spatial variations in grey levels within images. In brain tumors, textural features have a great potential as imaging biomarkers having been shown to correlate with survival, tumor grade, tumor type, etc. However, these measures should be reproducible under dynamic range and matrix size changes for their clinical use. Our aim is to study this robustness in brain tumors with 3D magnetic resonance imaging, not previously reported in the literature. Materials and methods: 3D T1-weighted images of 20 patients with glioblastoma (64.80 ± 9.12 years-old) obtained from a 3T scanner were analyzed. Tumors were segmented using an in-house semi-automatic 3D procedure. A set of 16 3D textural features of the most common types (co-occurrence and run-length matrices) were selected, providing regional (run-length based measures) and local information (co-ocurrence matrices) on the tumor heterogeneity. Feature robustness was assessed by means of the coefficient of variation (CV) under both dynamic range (16, 32 and 64 gray levels) and/or matrix size (256x256 and 432x432) changes. Results: None of the textural features considered were robust under dynamic range changes. The textural co-occurrence matrix feature Entropy was the only textural feature robust (CV < 10%) under spatial resolution changes. Conclusions: In general, textural measures of three-dimensional brain tumor images are neither robust under dynamic range nor under matrix size changes. Thus, it becomes mandatory to fix standards for image rescaling after acquisition before the textural features are computed if they are to be used as imaging biomarkers. For T1-weighted images a dynamic range of 16 grey levels and a matrix size of 256x256 (and isotropic voxel) is found to provide reliable and comparable results and is feasible with current MRI scanners. The implications of this work go beyond the specific tumor type and MRI sequence studied here and pose the need for standardization in textural feature calculation of oncological images. FUNDING: James S. Mc. Donnell Foundation (USA) 21st Century Science Initiative in Mathematical and Complex Systems Approaches for Brain Cancer [Collaborative award 220020450 and planning grant 220020420], MINECO/FEDER [MTM2015-71200-R], JCCM [PEII-2014-031-P].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubisztal, J., E-mail: julian.kubisztal@us.edu.pl
A new approach to numerical analysis of maps of material surface has been proposed and discussed in detail. It was concluded that the roughness factor RF and the root mean square roughness S{sub q} show a saturation effect with increasing size of the analysed maps what allows determining the optimal map dimension representative of the examined material. A quantitative method of determining predominant direction of the surface texture based on the power spectral density function is also proposed and discussed. The elaborated method was applied in surface analysis of Ni + Mo composite coatings. It was shown that co-deposition ofmore » molybdenum particles in nickel matrix leads to an increase in surface roughness. In addition, a decrease in size of the embedded Mo particles in Ni matrix causes an increase of both the surface roughness and the surface texture. It was also stated that the relation between the roughness factor and the double layer capacitance C{sub dl} of the studied coatings is linear and allows determining the double layer capacitance of the smooth nickel electrode. - Highlights: •Optimization of the procedure for the scanning of the material surface •Quantitative determination of the surface roughness and texture intensity •Proposition of the parameter describing privileged direction of the surface texture •Determination of the double layer capacitance of the smooth electrode.« less
Rheological Principles for Food Analysis
NASA Astrophysics Data System (ADS)
Daubert, Christopher R.; Foegeding, E. Allen
Food scientists are routinely confronted with the need to measure physical properties related to sensory texture and processing needs. These properties are determined by rheological methods, where rheology is a science devoted to the deformation and flow of all materials. Rheological properties should be considered a subset of the textural properties of foods, because the sensory detection of texture encompasses factors beyond rheological properties. Specifically, rheological methods accurately measure "force," "deformation," and "flow," and food scientists and engineers must determine how best to apply this information. For example, the flow of salad dressing from a bottle, the snapping of a candy bar, or the pumping of cream through a homogenizer are each related to the rheological properties of these materials. In this chapter, we describe fundamental concepts pertinent to the understanding of the subject and discuss typical examples of rheological tests for common foods. A glossary is included as Sect. 30.6 to clarify and summarize rheological definitions throughout the chapter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Markel, D; Hegyi, G
2016-06-15
Purpose: The reliability of computed tomography (CT) textures is an important element of radiomics analysis. This study investigates the dependency of lung CT textures on different breathing phases and changes in CT image acquisition protocols in a realistic phantom setting. Methods: We investigated 11 CT texture features for radiation-induced lung disease from 3 categories (first-order, grey level co-ocurrence matrix (GLCM), and Law’s filter). A biomechanical swine lung phantom was scanned at two breathing phases (inhale/exhale) and two scanning protocols set for PET/CT and diagnostic CT scanning. Lung volumes acquired from the CT images were divided into 2-dimensional sub-regions with amore » grid spacing of 31 mm. The distribution of the evaluated texture features from these sub-regions were compared between the two scanning protocols and two breathing phases. The significance of each factor on feature values were tested at 95% significance level using analysis of covariance (ANCOVA) model with interaction terms included. Robustness of a feature to a scanning factor was defined as non-significant dependence on the factor. Results: Three GLCM textures (variance, sum entropy, difference entropy) were robust to breathing changes. Two GLCM (variance, sum entropy) and 3 Law’s filter textures (S5L5, E5L5, W5L5) were robust to scanner changes. Moreover, the two GLCM textures (variance, sum entropy) were consistent across all 4 scanning conditions. First-order features, especially Hounsfield unit intensity features, presented the most drastic variation up to 39%. Conclusion: Amongst the studied features, GLCM and Law’s filter texture features were more robust than first-order features. However, the majority of the features were modified by either breathing phase or scanner changes, suggesting a need for calibration when retrospectively comparing scans obtained at different conditions. Further investigation is necessary to identify the sensitivity of individual image acquisition parameters.« less
Impact of storage on dark chocolate: texture and polymorphic changes.
Nightingale, Lia M; Lee, Soo-Yeun; Engeseth, Nicki J
2011-01-01
Chocolate storage is critical to final product quality. Inadequate storage, especially with temperature fluctuations, may lead to rearrangement of triglycerides that make up the bulk of the chocolate matrix; this rearrangement may lead to fat bloom. Bloom is the main cause of quality loss in the chocolate industry. The effect of storage conditions leading to bloom formation on texture and flavor attributes by human and instrumental measures has yet to be reported. Therefore, the impact of storage conditions on the quality of dark chocolate by sensory and instrumental measurements was determined. Dark chocolate was kept under various conditions and analyzed at 0, 4, and 8 wk of storage. Ten members of a descriptive panel analyzed texture and flavor. Instrumental methods included texture analysis, color measurement, lipid polymorphism by X-ray diffraction and differential scanning calorimetry, triglyceride concentration by gas chromatography, and surface properties by atomic force microscopy. Results were treated by analysis of variance, cluster analysis, principal component analysis, and linear partial least squares regression analysis. Chocolate stored 8 wk at high temperature without fluctuations and 4 wk with fluctuations transitioned from form V to VI. Chocolates stored at high temperature with and without fluctuations were harder, more fracturable, more toothpacking, had longer melt time, were less sweet, and had less cream flavor. These samples had rougher surfaces, fewer but larger grains, and a heterogeneous surface. Overall, all stored dark chocolate experienced instrumental or perceptual changes attributed to storage condition. Chocolates stored at high temperature with and without fluctuations were most visually and texturally compromised. Practical Application: Many large chocolate companies do their own "in-house" unpublished research and smaller confectionery facilities do not have the means to conduct their own research. Therefore, this study relating sensory and instrumental data provides published evidence available for application throughout the confectionery industry.
Zapotoczny, Piotr; Kozera, Wojciech; Karpiesiuk, Krzysztof; Pawłowski, Rodian
2014-08-01
The effect of management systems on selected physical properties and chemical composition of m. longissimus dorsi was studied in pigs. Muscle texture parameters were determined by computer-assisted image analysis, and the color of muscle samples was evaluated using a spectrophotometer. Highly significant correlations were observed between chemical composition and selected texture variables in the analyzed images. Chemical composition was not correlated with color or spectral distribution. Subject to the applied classification methods and groups of variables included in the classification model, the experimental groups were identified correctly in 35-95%. No significant differences in the chemical composition of m. longissimus dorsi were observed between experimental groups. Significant differences were noted in color lightness (L*) and redness (a*). Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Srivastava, Vishal; Dalal, Devjyoti; Kumar, Anuj; Prakash, Surya; Dalal, Krishna
2018-06-01
Moisture content is an important feature of fruits and vegetables. As 80% of apple content is water, so decreasing the moisture content will degrade the quality of apples (Golden Delicious). The computational and texture features of the apples were extracted from optical coherence tomography (OCT) images. A support vector machine with a Gaussian kernel model was used to perform automated classification. To evaluate the quality of wax coated apples during storage in vivo, our proposed method opens up the possibility of fully automated quantitative analysis based on the morphological features of apples. Our results demonstrate that the analysis of the computational and texture features of OCT images may be a good non-destructive method for the assessment of the quality of apples.
Tug-of-war lacunarity—A novel approach for estimating lacunarity
NASA Astrophysics Data System (ADS)
Reiss, Martin A.; Lemmerer, Birgit; Hanslmeier, Arnold; Ahammer, Helmut
2016-11-01
Modern instrumentation provides us with massive repositories of digital images that will likely only increase in the future. Therefore, it has become increasingly important to automatize the analysis of digital images, e.g., with methods from pattern recognition. These methods aim to quantify the visual appearance of captured textures with quantitative measures. As such, lacunarity is a useful multi-scale measure of texture's heterogeneity but demands high computational efforts. Here we investigate a novel approach based on the tug-of-war algorithm, which estimates lacunarity in a single pass over the image. We computed lacunarity for theoretical and real world sample images, and found that the investigated approach is able to estimate lacunarity with low uncertainties. We conclude that the proposed method combines low computational efforts with high accuracy, and that its application may have utility in the analysis of high-resolution images.
Imaging Heterogeneity in Lung Cancer: Techniques, Applications, and Challenges.
Bashir, Usman; Siddique, Muhammad Musib; Mclean, Emma; Goh, Vicky; Cook, Gary J
2016-09-01
Texture analysis involves the mathematic processing of medical images to derive sets of numeric quantities that measure heterogeneity. Studies on lung cancer have shown that texture analysis may have a role in characterizing tumors and predicting patient outcome. This article outlines the mathematic basis of and the most recent literature on texture analysis in lung cancer imaging. We also describe the challenges facing the clinical implementation of texture analysis. Texture analysis of lung cancer images has been applied successfully to FDG PET and CT scans. Different texture parameters have been shown to be predictive of the nature of disease and of patient outcome. In general, it appears that more heterogeneous tumors on imaging tend to be more aggressive and to be associated with poorer outcomes and that tumor heterogeneity on imaging decreases with treatment. Despite these promising results, there is a large variation in the reported data and strengths of association.
FFDM image quality assessment using computerized image texture analysis
NASA Astrophysics Data System (ADS)
Berger, Rachelle; Carton, Ann-Katherine; Maidment, Andrew D. A.; Kontos, Despina
2010-04-01
Quantitative measures of image quality (IQ) are routinely obtained during the evaluation of imaging systems. These measures, however, do not necessarily correlate with the IQ of the actual clinical images, which can also be affected by factors such as patient positioning. No quantitative method currently exists to evaluate clinical IQ. Therefore, we investigated the potential of using computerized image texture analysis to quantitatively assess IQ. Our hypothesis is that image texture features can be used to assess IQ as a measure of the image signal-to-noise ratio (SNR). To test feasibility, the "Rachel" anthropomorphic breast phantom (Model 169, Gammex RMI) was imaged with a Senographe 2000D FFDM system (GE Healthcare) using 220 unique exposure settings (target/filter, kVs, and mAs combinations). The mAs were varied from 10%-300% of that required for an average glandular dose (AGD) of 1.8 mGy. A 2.5cm2 retroareolar region of interest (ROI) was segmented from each image. The SNR was computed from the ROIs segmented from images linear with dose (i.e., raw images) after flat-field and off-set correction. Image texture features of skewness, coarseness, contrast, energy, homogeneity, and fractal dimension were computed from the Premium ViewTM postprocessed image ROIs. Multiple linear regression demonstrated a strong association between the computed image texture features and SNR (R2=0.92, p<=0.001). When including kV, target and filter as additional predictor variables, a stronger association with SNR was observed (R2=0.95, p<=0.001). The strong associations indicate that computerized image texture analysis can be used to measure image SNR and potentially aid in automating IQ assessment as a component of the clinical workflow. Further work is underway to validate our findings in larger clinical datasets.
SU-F-R-20: Image Texture Features Correlate with Time to Local Failure in Lung SBRT Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M; Abazeed, M; Woody, N
Purpose: To explore possible correlation between CT image-based texture and histogram features and time-to-local-failure in early stage non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiotherapy (SBRT).Methods and Materials: From an IRB-approved lung SBRT registry for patients treated between 2009–2013 we selected 48 (20 male, 28 female) patients with local failure. Median patient age was 72.3±10.3 years. Mean time to local failure was 15 ± 7.1 months. Physician-contoured gross tumor volumes (GTV) on the planning CT images were processed and 3D gray-level co-occurrence matrix (GLCM) based texture and histogram features were calculated in Matlab. Data were exported tomore » R and a multiple linear regression model was used to examine the relationship between texture features and time-to-local-failure. Results: Multiple linear regression revealed that entropy (p=0.0233, multiple R2=0.60) from GLCM-based texture analysis and the standard deviation (p=0.0194, multiple R2=0.60) from the histogram-based features were statistically significantly correlated with the time-to-local-failure. Conclusion: Image-based texture analysis can be used to predict certain aspects of treatment outcomes of NSCLC patients treated with SBRT. We found entropy and standard deviation calculated for the GTV on the CT images displayed a statistically significant correlation with and time-to-local-failure in lung SBRT patients.« less
NASA Astrophysics Data System (ADS)
Müller, Benjamin; Bernhardt, Matthias; Jackisch, Conrad; Schulz, Karsten
2016-09-01
For understanding water and solute transport processes, knowledge about the respective hydraulic properties is necessary. Commonly, hydraulic parameters are estimated via pedo-transfer functions using soil texture data to avoid cost-intensive measurements of hydraulic parameters in the laboratory. Therefore, current soil texture information is only available at a coarse spatial resolution of 250 to 1000 m. Here, a method is presented to derive high-resolution (15 m) spatial topsoil texture patterns for the meso-scale Attert catchment (Luxembourg, 288 km2) from 28 images of ASTER (advanced spaceborne thermal emission and reflection radiometer) thermal remote sensing. A principle component analysis of the images reveals the most dominant thermal patterns (principle components, PCs) that are related to 212 fractional soil texture samples. Within a multiple linear regression framework, distributed soil texture information is estimated and related uncertainties are assessed. An overall root mean squared error (RMSE) of 12.7 percentage points (pp) lies well within and even below the range of recent studies on soil texture estimation, while requiring sparser sample setups and a less diverse set of basic spatial input. This approach will improve the generation of spatially distributed topsoil maps, particularly for hydrologic modeling purposes, and will expand the usage of thermal remote sensing products.
Bates, Anthony; Miles, Kenneth
2017-12-01
To validate MR textural analysis (MRTA) for detection of transition zone (TZ) prostate cancer through comparison with co-registered prostate-specific membrane antigen (PSMA) PET-MR. Retrospective analysis was performed for 30 men who underwent simultaneous PSMA PET-MR imaging for staging of prostate cancer. Thirty texture features were derived from each manually contoured T2-weighted, transaxial, prostatic TZ using texture analysis software that applies a spatial band-pass filter and quantifies texture through histogram analysis. Texture features of the TZ were compared to PSMA expression on the corresponding PET images. The Benjamini-Hochberg correction controlled the false discovery rate at <5%. Eighty-eight T2-weighted images in 18 patients demonstrated abnormal PSMA expression within the TZ on PET-MR. 123 images were PSMA negative. Based on the corrected p-value of 0.005, significant differences between PSMA positive and negative slices were found for 16 texture parameters: Standard deviation and mean of positive pixels for all spatial filters (p = <0.0001 for both at all spatial scaling factor (SSF) values) and mean intensity following filtration for SSF 3-6 mm (p = 0.0002-0.0018). Abnormal expression of PSMA within the TZ is associated with altered texture on T2-weighted MR, providing validation of MRTA for the detection of TZ prostate cancer. • Prostate transition zone (TZ) MR texture analysis may assist in prostate cancer detection. • Abnormal transition zone PSMA expression correlates with altered texture on T2-weighted MR. • TZ with abnormal PSMA expression demonstrates significantly reduced MI, SD and MPP.
Method of forming biaxially textured alloy substrates and devices thereon
Goyal, Amit; Specht, Eliot D.; Kroeger, Donald M.; Paranthaman, Mariappan
1999-01-01
Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be fabricated in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.
Iris Image Classification Based on Hierarchical Visual Codebook.
Zhenan Sun; Hui Zhang; Tieniu Tan; Jianyu Wang
2014-06-01
Iris recognition as a reliable method for personal identification has been well-studied with the objective to assign the class label of each iris image to a unique subject. In contrast, iris image classification aims to classify an iris image to an application specific category, e.g., iris liveness detection (classification of genuine and fake iris images), race classification (e.g., classification of iris images of Asian and non-Asian subjects), coarse-to-fine iris identification (classification of all iris images in the central database into multiple categories). This paper proposes a general framework for iris image classification based on texture analysis. A novel texture pattern representation method called Hierarchical Visual Codebook (HVC) is proposed to encode the texture primitives of iris images. The proposed HVC method is an integration of two existing Bag-of-Words models, namely Vocabulary Tree (VT), and Locality-constrained Linear Coding (LLC). The HVC adopts a coarse-to-fine visual coding strategy and takes advantages of both VT and LLC for accurate and sparse representation of iris texture. Extensive experimental results demonstrate that the proposed iris image classification method achieves state-of-the-art performance for iris liveness detection, race classification, and coarse-to-fine iris identification. A comprehensive fake iris image database simulating four types of iris spoof attacks is developed as the benchmark for research of iris liveness detection.
Fruehwald-Pallamar, J; Hesselink, J R; Mafee, M F; Holzer-Fruehwald, L; Czerny, C; Mayerhoefer, M E
2016-02-01
To evaluate whether texture-based analysis of standard MRI sequences can help in the discrimination between benign and malignant head and neck tumors. The MR images of 100 patients with a histologically clarified head or neck mass, from two different institutions, were analyzed. Texture-based analysis was performed using texture analysis software, with region of interest measurements for 2 D and 3 D evaluation independently for all axial sequences. COC, RUN, GRA, ARM, and WAV features were calculated for all ROIs. 10 texture feature subsets were used for a linear discriminant analysis, in combination with k-nearest-neighbor classification. Benign and malignant tumors were compared with regard to texture-based values. There were differences in the images from different field-strength scanners, as well as from different vendors. For the differentiation of benign and malignant tumors, we found differences on STIR and T2-weighted images for 2 D, and on contrast-enhanced T1-TSE with fat saturation for 3 D evaluation. In a separate analysis of the subgroups 1.5 and 3 Tesla, more discriminating features were found. Texture-based analysis is a useful tool in the discrimination of benign and malignant tumors when performed on one scanner with the same protocol. We cannot recommend this technique for the use of multicenter studies with clinical data. 2 D/3 D texture-based analysis can be performed in head and neck tumors. Texture-based analysis can differentiate between benign and malignant masses. Analyzed MR images should originate from one scanner with an identical protocol. © Georg Thieme Verlag KG Stuttgart · New York.
Forward impact extrusion of surface textured steel blanks using coated tooling
NASA Astrophysics Data System (ADS)
Hild, Rafael; Feuerhack, Andreas; Trauth, Daniel; Arghavani, Mostafa; Kruppe, Nathan C.; Brögelmann, Tobias; Bobzin, Kirsten; Klocke, Fritz
2017-10-01
A method to enable dry metal forming by the means of a self-lubricating coating and surface textures was researched using an innovative Pin-On-Cylinder-Tribometer. The experimental analysis was complemented by a numerical model of the complex contact conditions between coated tools and the surface textured specimen at the micro-level. Based on the results, the explanation of the tribological interactions between surface textured specimens and the tool in dry full forward extrusion is the objective of this work. Therefore, experimental dry extrusion tests were performed using a tool system. The extruded specimens were evaluated regarding their geometry as well as by the required punch force. Thereby, the effectiveness and the feasibility of dry metal forming on the example of full forward extrusion was evaluated. Thus, one more step towards the technical realization of dry metal forming of low alloy steels under industrial conditions was realized.
Change Detection in High-Resolution Remote Sensing Images Using Levene-Test and Fuzzy Evaluation
NASA Astrophysics Data System (ADS)
Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Liu, H. J.
2018-04-01
High-resolution remote sensing images possess complex spatial structure and rich texture information, according to these, this paper presents a new method of change detection based on Levene-Test and Fuzzy Evaluation. It first got map-spots by segmenting two overlapping images which had been pretreated, extracted features such as spectrum and texture. Then, changed information of all map-spots which had been treated by the Levene-Test were counted to obtain the candidate changed regions, hue information (H component) was extracted through the IHS Transform and conducted change vector analysis combined with the texture information. Eventually, the threshold was confirmed by an iteration method, the subject degrees of candidate changed regions were calculated, and final change regions were determined. In this paper experimental results on multi-temporal ZY-3 high-resolution images of some area in Jiangsu Province show that: Through extracting map-spots of larger difference as the candidate changed regions, Levene-Test decreases the computing load, improves the precision of change detection, and shows better fault-tolerant capacity for those unchanged regions which are of relatively large differences. The combination of Hue-texture features and fuzzy evaluation method can effectively decrease omissions and deficiencies, improve the precision of change detection.
Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features
NASA Astrophysics Data System (ADS)
Rezaeian, A.; Homayouni, S.; Safari, A.
2015-12-01
Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.
Iris recognition as a biometric method after cataract surgery
Roizenblatt, Roberto; Schor, Paulo; Dante, Fabio; Roizenblatt, Jaime; Belfort, Rubens
2004-01-01
Background Biometric methods are security technologies, which use human characteristics for personal identification. Iris recognition systems use iris textures as unique identifiers. This paper presents an analysis of the verification of iris identities after intra-ocular procedures, when individuals were enrolled before the surgery. Methods Fifty-five eyes from fifty-five patients had their irises enrolled before a cataract surgery was performed. They had their irises verified three times before and three times after the procedure, and the Hamming (mathematical) distance of each identification trial was determined, in a controlled ideal biometric environment. The mathematical difference between the iris code before and after the surgery was also compared to a subjective evaluation of the iris anatomy alteration by an experienced surgeon. Results A correlation between visible subjective iris texture alteration and mathematical difference was verified. We found only six cases in which the eye was no more recognizable, but these eyes were later reenrolled. The main anatomical changes that were found in the new impostor eyes are described. Conclusions Cataract surgeries change iris textures in such a way that iris recognition systems, which perform mathematical comparisons of textural biometric features, are able to detect these changes and sometimes even discard a pre-enrolled iris considering it an impostor. In our study, re-enrollment proved to be a feasible procedure. PMID:14748929
Tahir, Fahima; Fahiem, Muhammad Abuzar
2014-01-01
The quality of pharmaceutical products plays an important role in pharmaceutical industry as well as in our lives. Usage of defective tablets can be harmful for patients. In this research we proposed a nondestructive method to identify defective and nondefective tablets using their surface morphology. Three different environmental factors temperature, humidity and moisture are analyzed to evaluate the performance of the proposed method. Multiple textural features are extracted from the surface of the defective and nondefective tablets. These textural features are gray level cooccurrence matrix, run length matrix, histogram, autoregressive model and HAAR wavelet. Total textural features extracted from images are 281. We performed an analysis on all those 281, top 15, and top 2 features. Top 15 features are extracted using three different feature reduction techniques: chi-square, gain ratio and relief-F. In this research we have used three different classifiers: support vector machine, K-nearest neighbors and naïve Bayes to calculate the accuracies against proposed method using two experiments, that is, leave-one-out cross-validation technique and train test models. We tested each classifier against all selected features and then performed the comparison of their results. The experimental work resulted in that in most of the cases SVM performed better than the other two classifiers.
Texture- and deformability-based surface recognition by tactile image analysis.
Khasnobish, Anwesha; Pal, Monalisa; Tibarewala, D N; Konar, Amit; Pal, Kunal
2016-08-01
Deformability and texture are two unique object characteristics which are essential for appropriate surface recognition by tactile exploration. Tactile sensation is required to be incorporated in artificial arms for rehabilitative and other human-computer interface applications to achieve efficient and human-like manoeuvring. To accomplish the same, surface recognition by tactile data analysis is one of the prerequisites. The aim of this work is to develop effective technique for identification of various surfaces based on deformability and texture by analysing tactile images which are obtained during dynamic exploration of the item by artificial arms whose gripper is fitted with tactile sensors. Tactile data have been acquired, while human beings as well as a robot hand fitted with tactile sensors explored the objects. The tactile images are pre-processed, and relevant features are extracted from the tactile images. These features are provided as input to the variants of support vector machine (SVM), linear discriminant analysis and k-nearest neighbour (kNN) for classification. Based on deformability, six household surfaces are recognized from their corresponding tactile images. Moreover, based on texture five surfaces of daily use are classified. The method adopted in the former two cases has also been applied for deformability- and texture-based recognition of four biomembranes, i.e. membranes prepared from biomaterials which can be used for various applications such as drug delivery and implants. Linear SVM performed best for recognizing surface deformability with an accuracy of 83 % in 82.60 ms, whereas kNN classifier recognizes surfaces of daily use having different textures with an accuracy of 89 % in 54.25 ms and SVM with radial basis function kernel recognizes biomembranes with an accuracy of 78 % in 53.35 ms. The classifiers are observed to generalize well on the unseen test datasets with very high performance to achieve efficient material recognition based on its deformability and texture.
A methodology for the semi-automatic digital image analysis of fragmental impactites
NASA Astrophysics Data System (ADS)
Chanou, A.; Osinski, G. R.; Grieve, R. A. F.
2014-04-01
A semi-automated digital image analysis method is developed for the comparative textural study of impact melt-bearing breccias. This method uses the freeware software ImageJ developed by the National Institute of Health (NIH). Digital image analysis is performed on scans of hand samples (10-15 cm across), based on macroscopic interpretations of the rock components. All image processing and segmentation are done semi-automatically, with the least possible manual intervention. The areal fraction of components is estimated and modal abundances can be deduced, where the physical optical properties (e.g., contrast, color) of the samples allow it. Other parameters that can be measured include, for example, clast size, clast-preferred orientations, average box-counting dimension or fragment shape complexity, and nearest neighbor distances (NnD). This semi-automated method allows the analysis of a larger number of samples in a relatively short time. Textures, granulometry, and shape descriptors are of considerable importance in rock characterization. The methodology is used to determine the variations of the physical characteristics of some examples of fragmental impactites.
Computer-aided diagnosis of melanoma using border and wavelet-based texture analysis.
Garnavi, Rahil; Aldeen, Mohammad; Bailey, James
2012-11-01
This paper presents a novel computer-aided diagnosis system for melanoma. The novelty lies in the optimised selection and integration of features derived from textural, borderbased and geometrical properties of the melanoma lesion. The texture features are derived from using wavelet-decomposition, the border features are derived from constructing a boundaryseries model of the lesion border and analysing it in spatial and frequency domains, and the geometry features are derived from shape indexes. The optimised selection of features is achieved by using the Gain-Ratio method, which is shown to be computationally efficient for melanoma diagnosis application. Classification is done through the use of four classifiers; namely, Support Vector Machine, Random Forest, Logistic Model Tree and Hidden Naive Bayes. The proposed diagnostic system is applied on a set of 289 dermoscopy images (114 malignant, 175 benign) partitioned into train, validation and test image sets. The system achieves and accuracy of 91.26% and AUC value of 0.937, when 23 features are used. Other important findings include (i) the clear advantage gained in complementing texture with border and geometry features, compared to using texture information only, and (ii) higher contribution of texture features than border-based features in the optimised feature set.
Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps.
Sadeghi-Naini, Ali; Suraweera, Harini; Tran, William Tyler; Hadizad, Farnoosh; Bruni, Giancarlo; Rastegar, Rashin Fallah; Curpen, Belinda; Czarnota, Gregory J
2017-10-20
This study evaluated, for the first time, the efficacy of quantitative ultrasound (QUS) spectral parametric maps in conjunction with texture-analysis techniques to differentiate non-invasively benign versus malignant breast lesions. Ultrasound B-mode images and radiofrequency data were acquired from 78 patients with suspicious breast lesions. QUS spectral-analysis techniques were performed on radiofrequency data to generate parametric maps of mid-band fit, spectral slope, spectral intercept, spacing among scatterers, average scatterer diameter, and average acoustic concentration. Texture-analysis techniques were applied to determine imaging biomarkers consisting of mean, contrast, correlation, energy and homogeneity features of parametric maps. These biomarkers were utilized to classify benign versus malignant lesions with leave-one-patient-out cross-validation. Results were compared to histopathology findings from biopsy specimens and radiology reports on MR images to evaluate the accuracy of technique. Among the biomarkers investigated, one mean-value parameter and 14 textural features demonstrated statistically significant differences (p < 0.05) between the two lesion types. A hybrid biomarker developed using a stepwise feature selection method could classify the legions with a sensitivity of 96%, a specificity of 84%, and an AUC of 0.97. Findings from this study pave the way towards adapting novel QUS-based frameworks for breast cancer screening and rapid diagnosis in clinic.
Abbasian Ardakani, Ali; Reiazi, Reza; Mohammadi, Afshin
2018-03-30
This study investigated the potential of a clinical decision support approach for the classification of metastatic and tumor-free cervical lymph nodes (LNs) in papillary thyroid carcinoma on the basis of radiologic and textural analysis through ultrasound (US) imaging. In this research, 170 metastatic and 170 tumor-free LNs were examined by the proposed clinical decision support method. To discover the difference between the groups, US imaging was used for the extraction of radiologic and textural features. The radiologic features in the B-mode scans included the echogenicity, margin, shape, and presence of microcalcification. To extract the textural features, a wavelet transform was applied. A support vector machine classifier was used to classify the LNs. In the training set data, a combination of radiologic and textural features represented the best performance with sensitivity, specificity, accuracy, and area under the curve (AUC) values of 97.14%, 98.57%, 97.86%, and 0.994, respectively, whereas the classification based on radiologic and textural features alone yielded lower performance, with AUCs of 0.964 and 0.922. On testing the data set, the proposed model could classify the tumor-free and metastatic LNs with an AUC of 0.952, which corresponded to sensitivity, specificity, and accuracy of 93.33%, 96.66%, and 95.00%. The clinical decision support method based on textural and radiologic features has the potential to characterize LNs via 2-dimensional US. Therefore, it can be used as a supplementary technique in daily clinical practice to improve radiologists' understanding of conventional US imaging for characterizing LNs. © 2018 by the American Institute of Ultrasound in Medicine.
USDA-ARS?s Scientific Manuscript database
The objective was to characterize texture properties of raw and cooked broiler fillets (Pectoralis major) with the wooden breast condition (WBC) using the instrumental texture techniques of Meullenet-Owens Razor Shear (MORS) and Texture Profile Analysis (TPA). Deboned (3 h post-mortem) broiler fille...
Tissue classification for laparoscopic image understanding based on multispectral texture analysis
NASA Astrophysics Data System (ADS)
Zhang, Yan; Wirkert, Sebastian J.; Iszatt, Justin; Kenngott, Hannes; Wagner, Martin; Mayer, Benjamin; Stock, Christian; Clancy, Neil T.; Elson, Daniel S.; Maier-Hein, Lena
2016-03-01
Intra-operative tissue classification is one of the prerequisites for providing context-aware visualization in computer-assisted minimally invasive surgeries. As many anatomical structures are difficult to differentiate in conventional RGB medical images, we propose a classification method based on multispectral image patches. In a comprehensive ex vivo study we show (1) that multispectral imaging data is superior to RGB data for organ tissue classification when used in conjunction with widely applied feature descriptors and (2) that combining the tissue texture with the reflectance spectrum improves the classification performance. Multispectral tissue analysis could thus evolve as a key enabling technique in computer-assisted laparoscopy.
NASA Astrophysics Data System (ADS)
Linek, M.; Jungmann, M.; Berlage, T.; Clauser, C.
2005-12-01
Within the Ocean Drilling Program (ODP), image logging tools have been routinely deployed such as the Formation MicroScanner (FMS) or the Resistivity-At-Bit (RAB) tools. Both logging methods are based on resistivity measurements at the borehole wall and therefore are sensitive to conductivity contrasts, which are mapped in color scale images. These images are commonly used to study the structure of the sedimentary rocks and the oceanic crust (petrologic fabric, fractures, veins, etc.). So far, mapping of lithology from electrical images is purely based on visual inspection and subjective interpretation. We apply digital image analysis on electrical borehole wall images in order to develop a method, which augments objective rock identification. We focus on supervised textural pattern recognition which studies the spatial gray level distribution with respect to certain rock types. FMS image intervals of rock classes known from core data are taken in order to train textural characteristics for each class. A so-called gray level co-occurrence matrix is computed by counting the occurrence of a pair of gray levels that are a certain distant apart. Once the matrix for an image interval is computed, we calculate the image contrast, homogeneity, energy, and entropy. We assign characteristic textural features to different rock types by reducing the image information into a small set of descriptive features. Once a discriminating set of texture features for each rock type is found, we are able to discriminate the entire FMS images regarding the trained rock type classification. A rock classification based on texture features enables quantitative lithology mapping and is characterized by a high repeatability, in contrast to a purely visual subjective image interpretation. We show examples for the rock classification between breccias, pillows, massive units, and horizontally bedded tuffs based on ODP image data.
Chemometric approach to texture profile analysis of kombucha fermented milk products.
Malbaša, Radomir; Jevrić, Lidija; Lončar, Eva; Vitas, Jasmina; Podunavac-Kuzmanović, Sanja; Milanović, Spasenija; Kovačević, Strahinja
2015-09-01
In the present work, relationships between the textural characteristics of fermented milk products obtained by kombucha inoculums with various teas were investigated by using chemometric analysis. The presented data which describe numerically the textural characteristics (firmness, consistency, cohesiveness and index of viscosity) were analysed. The quadratic correlation was determined between the textural characteristics of fermented milk products obtained at fermentation temperatures of 40 and 43 °C, using milk with 0.8, 1.6 and 2.8% milk fat and kombucha inoculums cultivated on the extracts of peppermint, stinging nettle, wild thyme and winter savory. Hierarchical cluster analysis (HCA) was performed to identify the similarities among the fermented products. The best mathematical models predicting the textural characteristics of investigated samples were developed. The results of this study indicate that textural characteristics of sample based on winter savory have a significant effect on textural characteristics of samples based on peppermint, stinging nettle and wild thyme, which can be very useful in the determination of products texture profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, Amit; Shin, Junsoo
A polycrystalline ferroelectric and/or multiferroic oxide article includes a substrate having a biaxially textured surface; at least one biaxially textured buffer layer supported by the substrate; and a biaxially textured ferroelectric or multiferroic oxide layer supported by the buffer layer. Methods for making polycrystalline ferroelectric and/or multiferroic oxide articles are also disclosed.
Enhanced facial texture illumination normalization for face recognition.
Luo, Yong; Guan, Ye-Peng
2015-08-01
An uncontrolled lighting condition is one of the most critical challenges for practical face recognition applications. An enhanced facial texture illumination normalization method is put forward to resolve this challenge. An adaptive relighting algorithm is developed to improve the brightness uniformity of face images. Facial texture is extracted by using an illumination estimation difference algorithm. An anisotropic histogram-stretching algorithm is proposed to minimize the intraclass distance of facial skin and maximize the dynamic range of facial texture distribution. Compared with the existing methods, the proposed method can more effectively eliminate the redundant information of facial skin and illumination. Extensive experiments show that the proposed method has superior performance in normalizing illumination variation and enhancing facial texture features for illumination-insensitive face recognition.
Fractal analysis of seafloor textures for target detection in synthetic aperture sonar imagery
NASA Astrophysics Data System (ADS)
Nabelek, T.; Keller, J.; Galusha, A.; Zare, A.
2018-04-01
Fractal analysis of an image is a mathematical approach to generate surface related features from an image or image tile that can be applied to image segmentation and to object recognition. In undersea target countermeasures, the targets of interest can appear as anomalies in a variety of contexts, visually different textures on the seafloor. In this paper, we evaluate the use of fractal dimension as a primary feature and related characteristics as secondary features to be extracted from synthetic aperture sonar (SAS) imagery for the purpose of target detection. We develop three separate methods for computing fractal dimension. Tiles with targets are compared to others from the same background textures without targets. The different fractal dimension feature methods are tested with respect to how well they can be used to detect targets vs. false alarms within the same contexts. These features are evaluated for utility using a set of image tiles extracted from a SAS data set generated by the U.S. Navy in conjunction with the Office of Naval Research. We find that all three methods perform well in the classification task, with a fractional Brownian motion model performing the best among the individual methods. We also find that the secondary features are just as useful, if not more so, in classifying false alarms vs. targets. The best classification accuracy overall, in our experimentation, is found when the features from all three methods are combined into a single feature vector.
Reischauer, Carolin; Patzwahl, René; Koh, Dow-Mu; Froehlich, Johannes M; Gutzeit, Andreas
2018-04-01
To evaluate whole-lesion volumetric texture analysis of apparent diffusion coefficient (ADC) maps for assessing treatment response in prostate cancer bone metastases. Texture analysis is performed in 12 treatment-naïve patients with 34 metastases before treatment and at one, two, and three months after the initiation of androgen deprivation therapy. Four first-order and 19 second-order statistical texture features are computed on the ADC maps in each lesion at every time point. Repeatability, inter-patient variability, and changes in the feature values under therapy are investigated. Spearman rank's correlation coefficients are calculated across time to demonstrate the relationship between the texture features and the serum prostate specific antigen (PSA) levels. With few exceptions, the texture features exhibited moderate to high precision. At the same time, Friedman's tests revealed that all first-order and second-order statistical texture features changed significantly in response to therapy. Thereby, the majority of texture features showed significant changes in their values at all post-treatment time points relative to baseline. Bivariate analysis detected significant correlations between the great majority of texture features and the serum PSA levels. Thereby, three first-order and six second-order statistical features showed strong correlations with the serum PSA levels across time. The findings in the present work indicate that whole-tumor volumetric texture analysis may be utilized for response assessment in prostate cancer bone metastases. The approach may be used as a complementary measure for treatment monitoring in conjunction with averaged ADC values. Copyright © 2018 Elsevier B.V. All rights reserved.
Fabrication and Piezoelectric Properties of Textured (Bi1/2K1/2)TiO3 Ferroelectric Ceramics
NASA Astrophysics Data System (ADS)
Nagata, Hajime; Saitoh, Masahiro; Hiruma, Yuji; Takenaka, Tadashi
2010-09-01
Textured (Bi1/2K1/2)TiO3 (BKT) ceramics were prepared by a reactive templated grain growth (RTGG) method to improve their piezoelectric properties. Also, a hot-pressing (HP) method was modified on the basis of RTGG method to obtain dense ceramics and promote the grain orientation. The textured BKT ceramics prepared by the RTGG and HP methods exhibited a relatively high orientation factor F of 0.82 and a high density ratio of 95-99%. Scanning electron microscopy (SEM) micrographs of the textured HP-BKT indicated a textured and poreless microstructure. In addition, the resistivity of the textured HP-BKT was 1.73×1013 Ω·cm. The piezoelectric strain constant d33 determined by means of resonance and antiresonance method was 125 pC/N for the direction parallel to the sheet-stacking direction of the RTGG process. From the measurement of field-induced stain, the normalized d33* (=Smax/Emax) at 80 kV/cm were 127 and 238 pm/V on the randomly oriented and textured samples (F=0.82) for the (∥) direction, respectively.
NASA Astrophysics Data System (ADS)
Liao, Lu-hai; Zheng, Xiao-fei; Kang, Yong-lin; Liu, Wei; Yan, Yan; Mo, Zhi-ying
2018-06-01
Since the production of tinplate with non-earing properties is difficult, especially when it is produced via the double-reduction process, the optimal degree of second cold reduction is particularly important for achieving desirable drawing properties. The evolution of texture and the earing propensity of double-reduction tinplate with different extents of second reduction were investigated in this study. Optical microscopy and scanning electron microscopy were used to observe the changes in the microstructure at various extents of reduction. Two common testing methods, X-ray diffraction (XRD) and electron backscatter diffraction, were used to investigate the texture of the specimens, which revealed the effects of deformation percentage on the final texture development and the change in the grain boundary. The earing rate was determined via earing tests involving measurement of the height of any ear. The results obtained from both XRD analyses and earing tests revealed the same ideal value for the second cold reduction on the basis of the relationship between crystallographic texture and the degree of earing.
NASA Astrophysics Data System (ADS)
Randau, C.; Brokmeier, H. G.; Gan, W. M.; Hofmann, M.; Voeller, M.; Tekouo, W.; Al-hamdany, N.; Seidl, G.; Schreyer, A.
2015-09-01
The materials science neutron diffractometer STRESS-SPEC located at FRM II is a dedicated instrument for strain and pole figure measurements. Both methods make complementary demands on sample handling. On one hand pole figure measurements need a high degree of freedom to orient small samples and on the other hand in strain investigations it is often necessary to handle large and heavy components. Therefore a robot based sample positioning system was developed, which has the capability to provide both possibilities. Based on this new robot system further developments like a full automated sample changer system for texture measurements were accomplished. Moreover this system opens the door for combined strain and texture analysis at STRESS-SPEC.
Austin, R S; Giusca, C L; Macaulay, G; Moazzez, R; Bartlett, D W
2016-02-01
This paper investigates the application of confocal laser scanning microscopy to determine the effect of acid-mediated erosive enamel wear on the micro-texture of polished human enamel in vitro. Twenty polished enamel samples were prepared and subjected to a citric acid erosion and pooled human saliva remineralization model. Enamel surface microhardness was measured using a Knoop hardness tester, which confirmed that an early enamel erosion lesion was formed which was then subsequently completely remineralized. A confocal laser scanning microscope was used to capture high-resolution images of the enamel surfaces undergoing demineralization and remineralization. Area-scale analysis was used to identify the optimal feature size following which the surface texture was determined using the 3D (areal) texture parameter Sa. The Sa successfully characterized the enamel erosion and remineralization for the polished enamel samples (P<0.001). Areal surface texture characterization of the surface events occurring during enamel demineralization and remineralization requires optical imaging instrumentation with lateral resolution <2.5 μm, applied in combination with appropriate filtering in order to remove unwanted waviness and roughness. These techniques will facilitate the development of novel methods for measuring early enamel erosion lesions in natural enamel surfaces in vivo. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Automated texture-based identification of ovarian cancer in confocal microendoscope images
NASA Astrophysics Data System (ADS)
Srivastava, Saurabh; Rodriguez, Jeffrey J.; Rouse, Andrew R.; Brewer, Molly A.; Gmitro, Arthur F.
2005-03-01
The fluorescence confocal microendoscope provides high-resolution, in-vivo imaging of cellular pathology during optical biopsy. There are indications that the examination of human ovaries with this instrument has diagnostic implications for the early detection of ovarian cancer. The purpose of this study was to develop a computer-aided system to facilitate the identification of ovarian cancer from digital images captured with the confocal microendoscope system. To achieve this goal, we modeled the cellular-level structure present in these images as texture and extracted features based on first-order statistics, spatial gray-level dependence matrices, and spatial-frequency content. Selection of the best features for classification was performed using traditional feature selection techniques including stepwise discriminant analysis, forward sequential search, a non-parametric method, principal component analysis, and a heuristic technique that combines the results of these methods. The best set of features selected was used for classification, and performance of various machine classifiers was compared by analyzing the areas under their receiver operating characteristic curves. The results show that it is possible to automatically identify patients with ovarian cancer based on texture features extracted from confocal microendoscope images and that the machine performance is superior to that of the human observer.
Multi-class texture analysis in colorectal cancer histology
NASA Astrophysics Data System (ADS)
Kather, Jakob Nikolas; Weis, Cleo-Aron; Bianconi, Francesco; Melchers, Susanne M.; Schad, Lothar R.; Gaiser, Timo; Marx, Alexander; Zöllner, Frank Gerrit
2016-06-01
Automatic recognition of different tissue types in histological images is an essential part in the digital pathology toolbox. Texture analysis is commonly used to address this problem; mainly in the context of estimating the tumour/stroma ratio on histological samples. However, although histological images typically contain more than two tissue types, only few studies have addressed the multi-class problem. For colorectal cancer, one of the most prevalent tumour types, there are in fact no published results on multiclass texture separation. In this paper we present a new dataset of 5,000 histological images of human colorectal cancer including eight different types of tissue. We used this set to assess the classification performance of a wide range of texture descriptors and classifiers. As a result, we found an optimal classification strategy that markedly outperformed traditional methods, improving the state of the art for tumour-stroma separation from 96.9% to 98.6% accuracy and setting a new standard for multiclass tissue separation (87.4% accuracy for eight classes). We make our dataset of histological images publicly available under a Creative Commons license and encourage other researchers to use it as a benchmark for their studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, H; Wang, J; Shen, L
Purpose: The purpose of this study is to investigate the relationship between computed tomographic (CT) texture features of primary lesions and metastasis-free survival for rectal cancer patients; and to develop a datamining prediction model using texture features. Methods: A total of 220 rectal cancer patients treated with neoadjuvant chemo-radiotherapy (CRT) were enrolled in this study. All patients underwent CT scans before CRT. The primary lesions on the CT images were delineated by two experienced oncologists. The CT images were filtered by Laplacian of Gaussian (LoG) filters with different filter values (1.0–2.5: from fine to coarse). Both filtered and unfiltered imagesmore » were analyzed using Gray-level Co-occurrence Matrix (GLCM) texture analysis with different directions (transversal, sagittal, and coronal). Totally, 270 texture features with different species, directions and filter values were extracted. Texture features were examined with Student’s t-test for selecting predictive features. Principal Component Analysis (PCA) was performed upon the selected features to reduce the feature collinearity. Artificial neural network (ANN) and logistic regression were applied to establish metastasis prediction models. Results: Forty-six of 220 patients developed metastasis with a follow-up time of more than 2 years. Sixtyseven texture features were significantly different in t-test (p<0.05) between patients with and without metastasis, and 12 of them were extremely significant (p<0.001). The Area-under-the-curve (AUC) of ANN was 0.72, and the concordance index (CI) of logistic regression was 0.71. The predictability of ANN was slightly better than logistic regression. Conclusion: CT texture features of primary lesions are related to metastasisfree survival of rectal cancer patients. Both ANN and logistic regression based models can be developed for prediction.« less
Pyka, Thomas; Gempt, Jens; Hiob, Daniela; Ringel, Florian; Schlegel, Jürgen; Bette, Stefanie; Wester, Hans-Jürgen; Meyer, Bernhard; Förster, Stefan
2016-01-01
Amino acid positron emission tomography (PET) with [18F]-fluoroethyl-L-tyrosine (FET) is well established in the diagnostic work-up of malignant brain tumors. Analysis of FET-PET data using tumor-to-background ratios (TBR) has been shown to be highly valuable for the detection of viable hypermetabolic brain tumor tissue; however, it has not proven equally useful for tumor grading. Recently, textural features in 18-fluorodeoxyglucose-PET have been proposed as a method to quantify the heterogeneity of glucose metabolism in a variety of tumor entities. Herein we evaluate whether textural FET-PET features are of utility for grading and prognostication in patients with high-grade gliomas. One hundred thirteen patients (70 men, 43 women) with histologically proven high-grade gliomas were included in this retrospective study. All patients received static FET-PET scans prior to first-line therapy. TBR (max and mean), volumetric parameters and textural parameters based on gray-level neighborhood difference matrices were derived from static FET-PET images. Receiver operating characteristic (ROC) and discriminant function analyses were used to assess the value for tumor grading. Kaplan-Meier curves and univariate and multivariate Cox regression were employed for analysis of progression-free and overall survival. All FET-PET textural parameters showed the ability to differentiate between World Health Organization (WHO) grade III and IV tumors (p < 0.001; AUC 0.775). Further improvement in discriminatory power was possible through a combination of texture and metabolic tumor volume, classifying 85 % of tumors correctly (AUC 0.830). TBR and volumetric parameters alone were correlated with tumor grade, but showed lower AUC values (0.644 and 0.710, respectively). Furthermore, a correlation of FET-PET texture but not TBR was shown with patient PFS and OS, proving significant in multivariate analysis as well. Volumetric parameters were predictive for OS, but this correlation did not hold in multivariate analysis. Determination of uptake heterogeneity in pre-therapeutic FET-PET using textural features proved valuable for the (sub-)grading of high-grade glioma as well as prediction of tumor progression and patient survival, and showed improved performance compared to standard parameters such as TBR and tumor volume. Our results underscore the importance of intratumoral heterogeneity in the biology of high-grade glial cell tumors and may contribute to individual therapy planning in the future, although they must be confirmed in prospective studies before incorporation into clinical routine.
Rantalainen, Timo; Chivers, Paola; Beck, Belinda R; Robertson, Sam; Hart, Nicolas H; Nimphius, Sophia; Weeks, Benjamin K; McIntyre, Fleur; Hands, Beth; Siafarikas, Aris
Most imaging methods, including peripheral quantitative computed tomography (pQCT), are susceptible to motion artifacts particularly in fidgety pediatric populations. Methods currently used to address motion artifact include manual screening (visual inspection) and objective assessments of the scans. However, previously reported objective methods either cannot be applied on the reconstructed image or have not been tested for distal bone sites. Therefore, the purpose of the present study was to develop and validate motion artifact classifiers to quantify motion artifact in pQCT scans. Whether textural features could provide adequate motion artifact classification performance in 2 adolescent datasets with pQCT scans from tibial and radial diaphyses and epiphyses was tested. The first dataset was split into training (66% of sample) and validation (33% of sample) datasets. Visual classification was used as the ground truth. Moderate to substantial classification performance (J48 classifier, kappa coefficients from 0.57 to 0.80) was observed in the validation dataset with the novel texture-based classifier. In applying the same classifier to the second cross-sectional dataset, a slight-to-fair (κ = 0.01-0.39) classification performance was observed. Overall, this novel textural analysis-based classifier provided a moderate-to-substantial classification of motion artifact when the classifier was specifically trained for the measurement device and population. Classification based on textural features may be used to prescreen obviously acceptable and unacceptable scans, with a subsequent human-operated visual classification of any remaining scans. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Estimating local scaling properties for the classification of interstitial lung disease patterns
NASA Astrophysics Data System (ADS)
Huber, Markus B.; Nagarajan, Mahesh B.; Leinsinger, Gerda; Ray, Lawrence A.; Wismueller, Axel
2011-03-01
Local scaling properties of texture regions were compared in their ability to classify morphological patterns known as 'honeycombing' that are considered indicative for the presence of fibrotic interstitial lung diseases in high-resolution computed tomography (HRCT) images. For 14 patients with known occurrence of honeycombing, a stack of 70 axial, lung kernel reconstructed images were acquired from HRCT chest exams. 241 regions of interest of both healthy and pathological (89) lung tissue were identified by an experienced radiologist. Texture features were extracted using six properties calculated from gray-level co-occurrence matrices (GLCM), Minkowski Dimensions (MDs), and the estimation of local scaling properties with Scaling Index Method (SIM). A k-nearest-neighbor (k-NN) classifier and a Multilayer Radial Basis Functions Network (RBFN) were optimized in a 10-fold cross-validation for each texture vector, and the classification accuracy was calculated on independent test sets as a quantitative measure of automated tissue characterization. A Wilcoxon signed-rank test was used to compare two accuracy distributions including the Bonferroni correction. The best classification results were obtained by the set of SIM features, which performed significantly better than all the standard GLCM and MD features (p < 0.005) for both classifiers with the highest accuracy (94.1%, 93.7%; for the k-NN and RBFN classifier, respectively). The best standard texture features were the GLCM features 'homogeneity' (91.8%, 87.2%) and 'absolute value' (90.2%, 88.5%). The results indicate that advanced texture features using local scaling properties can provide superior classification performance in computer-assisted diagnosis of interstitial lung diseases when compared to standard texture analysis methods.
PREFACE: 17th International Conference on Textures of Materials (ICOTOM 17)
NASA Astrophysics Data System (ADS)
Skrotzki, Werner; Oertel, Carl-Georg
2015-04-01
The 17th International Conference on Textures of Materials (ICOTOM 17) took place in Dresden, Germany, August 24-29, 2014. It belongs to the "triennial" series of ICOTOM meetings with a long tradition, starting in 1969 - Clausthal, 1971 - Cracow, 1973 - Pont-à-Mousson, 1975 - Cambridge, 1978 - Aachen, 1981 - Tokyo, 1984 - Noordwijkerhout, 1987 - Santa Fe, 1990 - Avignon, 1993 - Clausthal, 1996 - Xian, 1999 - Montreal, 2002 - Seoul, 2005 - Leuven, 2008 - Pittsburgh, 2011 - Mumbai, 2014 - Dresden. ICOTOM 17 was hosted by the Dresden University of Technology, Institute of Structural Physics. Following the tradition of the ICOTOM conferences, the main focus of ICOTOM-17 was to promote and strengthen the fundamental understanding of the basic processes that govern the formation of texture and its relation to the properties of polycrystalline materials. Nonetheless, it was the aim to forge links between basic research on model materials and applied research on engineering materials of technical importance. Thus, ICOTOM 17 provided a forum for the presentation and discussion of recent progress in research of texture and related anisotropy of mechanical and functional properties of all kinds of polycrystalline materials including natural materials like rocks. Particular attention was paid to recent advances in texture measurement and analysis as well as modeling of texture development for all kinds of processes like solidification, plastic deformation, recrystallization and grain growth, phase transformations, thin film deposition, etc. Hence, ICOTOM 17 was of great interest to materials scientists, engineers from many different areas and geoscientists. The topics covered by ICOTOM 17 were: 1. Mathematical, numerical and statistical methods of texture analysis 2. Deformation textures 3. Crystallization, recrystallization and growth textures 4. Transformation textures 5. Textures in functional materials 6. Textures in advanced materials 7. Textures in rocks 8. Texture related research on microstructures 9. Texture-induced anisotropy 10. Insight through new experimental methods 11. Technological applications of texture studies 12. Other new developments and future trends related to the field While there was large interest in the topics 2, 3 and 8, contributions to topic 7 were much less than expected. ICOTOM 17 attracted 266 scientists from 34 countries with about one third of the participants being students. This is a very good ratio showing that we could attract the young generation. There have been 216 oral and 76 poster presentations, three of which received a poster award. It is our pleasure to thank the members of the International ICOTOM Committee for their valuable help, especially for proposing and choosing the 15 plenary speakers as well as the distinguished scientist of the texture community for the "Bunge Award". 130 papers were submitted for publication in the proceedings, 116 were accepted after reviewing. We would like to express our thanks to all referees for their efficient and prompt efforts. We acknowledge particularly support from the German Research Society (DFG) and the City of Dresden. We are also grateful for industrial support from Bruker Nano GmbH, Oxford Instruments GmbH, Ametek GmbH / EDAX, Labosoft S.C., PANalytical GmbH and IOP Publishing. Finally we thank all members of the National Organizing Committee, Intercom Dresden and Conwerk / Laboratory Ten for the excellent organization of ICOTOM 17 and the very pleasant collaboration. On the first day of the conference three tutorials have been offered. Each of them has been attended by about 30 participants. 1. Texture-aided residual stress identification system (TARSIuS) (organized by Prof. Dr. J. Bonarski and Mr. B. Kania) 2. MTEX - MATLAB toolbox for quantitative texture analysis (organized by Dr. R. Hielscher and Mr. F. Bachmann) 3. Grain boundary engineering (organized by Prof. N. Bozzolo and Prof. Dr. A.D. Rollett) A highlight of ICOTOM 17 was the ceremony honoring Prof. Dr. Claude Esling with the Bunge Award for his distinguished contributions to the field of Textures of Materials and his continuous effort to pass on his knowledge to future generations of texture experts. The Bunge Award is named after Professor Hans Bunge († 2004), to whom the world's texture community is very much indebted not only for his magisterial work on the Mathematical Theory of Texture, but also for his lifelong promotion of the field of Textures of Materials. To the great delight of all participants, Helga Bunge and her son Prof. Hans-Peter Bunge, to whom many of the older generation have a personal relationship, attended the ceremony (see Fig. 1 in the PDF). Following the award ceremony Prof. Dr. Claude Esling gave an in memoriam tribute to Prof. Dr. Richard Penelle, who was an internationally recognized texture specialist. Details can be found in the proceedings paper by Esling et al. [this issue]. During the conference the International ICSMA Committee decided to convene the next conference in St. George, USA, in 2017. We wish the organizers of ICOTOM 18 great success and look forward to meeting you in St. George. Werner Skrotzki* (Chairman of ICOTOM 17, Dresden University of Technology) Carl-Georg Oertel (Dresden University of Technology) Guest Editors Dresden, March, 2015 (* Corresponding author; e-mail address: werner.skrotzki@tu-dresden.de)
Cascaded Amplitude Modulations in Sound Texture Perception.
McWalter, Richard; Dau, Torsten
2017-01-01
Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as "beating" in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures-stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.
NASA Astrophysics Data System (ADS)
Roine, J.; Tenho, M.; Murtomaa, M.; Lehto, V.-P.; Kansanaho, R.
2007-10-01
The present research experiments the applicability of x-ray texture analysis in investigating the properties of paper coatings. The preferred orientations of kaolin, talc, ground calcium carbonate, and precipitated calcium carbonate particles used in four different paper coatings were determined qualitatively based on the measured crystal orientation data. The extent of the orientation, namely, the degree of the texture of each pigment, was characterized quantitatively using a single parameter. As a result, the effect of paper calendering is clearly seen as an increase on the degree of texture of the coating pigments. The effect of calendering on the preferred orientation of kaolin was also evident in an independent energy dispersive spectrometer analysis on micrometer scale and an electron spectroscopy for chemical analysis on nanometer scale. Thus, the present work proves x-ray texture analysis to be a potential research tool for characterizing the properties of paper coating layers.
NASA Astrophysics Data System (ADS)
Fenton, O.; Vero, S.; Ibrahim, T. G.; Murphy, P. N. C.; Sherriff, S. C.; Ó hUallacháin, D.
2015-11-01
Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (tT) is divided into unsaturated (tu) and saturated (ts) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of tT. In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of tu were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When tu estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from the use of hydraulic parameters generated from hand texture data will be resultantly greater, and may lead to flawed predictions regarding the achievability of water policy targets. For this reason laboratory analysis, regardless of method, should be preferred to simple field assessments.
Texture Analysis of Poly-Adenylated mRNA Staining Following Global Brain Ischemia and Reperfusion
Szymanski, Jeffrey J.; Jamison, Jill T.; DeGracia, Donald J.
2011-01-01
Texture analysis provides a means to quantify complex changes in microscope images. We previously showed that cytoplasmic poly-adenylated mRNAs form mRNA granules in post-ischemic neurons and that these granules correlated with protein synthesis inhibition and hence cell death. Here we utilized the texture analysis software MaZda to quantify mRNA granules in photomicrographs of the pyramidal cell layer of rat hippocampal region CA3 around 1 hour of reperfusion after 10 min of normothermic global cerebral ischemia. At 1 hour reperfusion, we observed variations in the texture of mRNA granules amongst samples that were readily quantified by texture analysis. Individual sample variation was consistent with the interpretation that animal-to-animal variations in mRNA granules reflected the time-course of mRNA granule formation. We also used texture analysis to quantify the effect of cycloheximide, given either before or after brain ischemia, on mRNA granules. If administered before ischemia, cycloheximide inhibited mRNA granule formation, but if administered after ischemia did not prevent mRNA granulation, indicating mRNA granule formation is dependent on dissociation of polysomes. We conclude that texture analysis is an effective means for quantifying the complex morphological changes induced in neurons by brain ischemia and reperfusion. PMID:21477879
Method for making biaxially textured articles by plastic deformation
Goyal, Amit
2002-01-01
A method of preparing a biaxially textured article comprises the steps of providing a metal preform, coating or laminating the preform with a metal layer, deforming the layer to a sufficient degree, and rapidly recrystallizing the layer to produce a biaxial texture. A superconducting epitaxial layer may then be deposited on the biaxial texture. In some embodiments the article further comprises buffer layers, electromagnetic devices or electro-optical devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolski, M., E-mail: marcin.wolski@curtin.edu.au; Podsiadlo, P.; Stachowiak, G. W.
Purpose: To develop directional fractal signature methods for the analysis of trabecular bone (TB) texture in hand radiographs. Problems associated with the small size of hand bones and the orientation of fingers were addressed. Methods: An augmented variance orientation transform (AVOT) and a quadrant rotating grid (QRG) methods were developed. The methods calculate fractal signatures (FSs) in different directions. Unlike other methods they have the search region adjusted according to the size of bone region of interest (ROI) to be analyzed and they produce FSs defined with respect to any chosen reference direction, i.e., they work for arbitrary orientation ofmore » fingers. Five parameters at scales ranging from 2 to 14 pixels (depending on image size and method) were derived from rose plots of Hurst coefficients, i.e., FS in dominating roughness (FS{sub Sta}), vertical (FS{sub V}) and horizontal (FS{sub H}) directions, aspect ratio (StrS), and direction signatures (StdS), respectively. The accuracy in measuring surface roughness and isotropy/anisotropy was evaluated using 3600 isotropic and 800 anisotropic fractal surface images of sizes between 20 × 20 and 64 × 64 pixels. The isotropic surfaces had FDs ranging from 2.1 to 2.9 in steps of 0.1, and the anisotropic surfaces had two dominating directions of 30° and 120°. The methods were used to find differences in hand TB textures between 20 matched pairs of subjects with (cases: approximate Kellgren-Lawrence (KL) grade ≥2) and without (controls: approximate KL grade <2) radiographic hand osteoarthritis (OA). The OA Initiative public database was used and 20 × 20 pixel bone ROIs were selected on 5th distal and middle phalanges. The performance of the AVOT and QRG methods was compared against a variance orientation transform (VOT) method developed earlier [M. Wolski, P. Podsiadlo, and G. W. Stachowiak, “Directional fractal signature analysis of trabecular bone: evaluation of different methods to detect early osteoarthritis in knee radiographs,” Proc. Inst. Mech. Eng., Part H 223, 211–236 (2009)]. Results: The AVOT method correctly quantified the isotropic and anisotropic surfaces for all image sizes and scales. Values of FS{sub Sta} were significantly different (P < 0.05) between the isotropic surfaces. Using the VOT and QRG methods no differences were found at large scales for the isotropic surfaces that are smaller than 64 × 64 and 48 × 48 pixels, respectively, and at some scales for the anisotropic surfaces with size 48 × 48 pixels. Compared to controls, using the AVOT and QRG methods the authors found that OA TB textures were less rough (P < 0.05) in the dominating and horizontal directions (i.e., lower FS{sub Sta} and FS{sub H}), rougher in the vertical direction (i.e., higher FS{sub V}) and less anisotropic (i.e., higher StrS) than controls. No differences were found using the VOT method. Conclusions: The AVOT method is well suited for the analysis of bone texture in hand radiographs and it could be potentially useful for early detection and prediction of hand OA.« less
Thevenot, Jérôme; Hirvasniemi, Jukka; Pulkkinen, Pasi; Määttä, Mikko; Korpelainen, Raija; Saarakkala, Simo; Jämsä, Timo
2014-07-01
To investigate whether femoral neck fracture can be predicted retrospectively on the basis of clinical radiographs by using the combined analysis of bone geometry, textural analysis of trabecular bone, and bone mineral density (BMD). Formal ethics committee approval was obtained for the study, and all participants gave informed written consent. Pelvic radiographs and proximal femur BMD measurements were obtained in 53 women aged 79-82 years in 2006. By 2012, 10 of these patients had experienced a low-impact femoral neck fracture. A Laplacian-based semiautomatic custom algorithm was applied to the radiographs to calculate the texture parameters along the trabecular fibers in the lower neck area for all subjects. Intra- and interobserver reproducibility was calculated by using the root mean square average coefficient of variation to evaluate the robustness of the method. The best predictors of hip fracture were entropy (P = .007; reproducibility coefficient of variation < 1%), the neck-shaft angle (NSA) (P = .017), and the BMD (P = .13). For prediction of fracture, the area under the receiver operating characteristic curve was 0.753 for entropy, 0.608 for femoral neck BMD, and 0.698 for NSA. The area increased to 0.816 when entropy and NSA were combined and to 0.902 when entropy, NSA, and BMD were combined. Textural analysis of pelvic radiographs enables discrimination of patients at risk for femoral neck fracture, and our results show the potential of this conventional imaging method to yield better prediction than that achieved with dual-energy x-ray absorptiometry-based BMD. The combination of the entropy parameter with NSA and BMD can further enhance predictive accuracy. © RSNA, 2014.
Can we trust the calculation of texture indices of CT images? A phantom study.
Caramella, Caroline; Allorant, Adrien; Orlhac, Fanny; Bidault, Francois; Asselain, Bernard; Ammari, Samy; Jaranowski, Patricia; Moussier, Aurelie; Balleyguier, Corinne; Lassau, Nathalie; Pitre-Champagnat, Stephanie
2018-04-01
Texture analysis is an emerging tool in the field of medical imaging analysis. However, many issues have been raised in terms of its use in assessing patient images and it is crucial to harmonize and standardize this new imaging measurement tool. This study was designed to evaluate the reliability of texture indices of CT images on a phantom including a reproducibility study, to assess the discriminatory capacity of indices potentially relevant in CT medical images and to determine their redundancy. For the reproducibility and discriminatory analysis, eight identical CT acquisitions were performed on a phantom including one homogeneous insert and two close heterogeneous inserts. Texture indices were selected for their high reproducibility and capability of discriminating different textures. For the redundancy analysis, 39 acquisitions of the same phantom were performed using varying acquisition parameters and a correlation matrix was used to explore the 2 × 2 relationships. LIFEx software was used to explore 34 different parameters including first order and texture indices. Only eight indices of 34 exhibited high reproducibility and discriminated textures from each other. Skewness and kurtosis from histogram were independent from the six other indices but were intercorrelated, the other six indices correlated in diverse degrees (entropy, dissimilarity, and contrast of the co-occurrence matrix, contrast of the Neighborhood Gray Level difference matrix, SZE, ZLNU of the Gray-Level Size Zone Matrix). Care should be taken when using texture analysis as a tool to characterize CT images because changes in quantitation may be primarily due to internal variability rather than from real physio-pathological effects. Some textural indices appear to be sufficiently reliable and capable to discriminate close textures on CT images. © 2018 American Association of Physicists in Medicine.
Visual texture perception via graph-based semi-supervised learning
NASA Astrophysics Data System (ADS)
Zhang, Qin; Dong, Junyu; Zhong, Guoqiang
2018-04-01
Perceptual features, for example direction, contrast and repetitiveness, are important visual factors for human to perceive a texture. However, it needs to perform psychophysical experiment to quantify these perceptual features' scale, which requires a large amount of human labor and time. This paper focuses on the task of obtaining perceptual features' scale of textures by small number of textures with perceptual scales through a rating psychophysical experiment (what we call labeled textures) and a mass of unlabeled textures. This is the scenario that the semi-supervised learning is naturally suitable for. This is meaningful for texture perception research, and really helpful for the perceptual texture database expansion. A graph-based semi-supervised learning method called random multi-graphs, RMG for short, is proposed to deal with this task. We evaluate different kinds of features including LBP, Gabor, and a kind of unsupervised deep features extracted by a PCA-based deep network. The experimental results show that our method can achieve satisfactory effects no matter what kind of texture features are used.
Selecting relevant 3D image features of margin sharpness and texture for lung nodule retrieval.
Ferreira, José Raniery; de Azevedo-Marques, Paulo Mazzoncini; Oliveira, Marcelo Costa
2017-03-01
Lung cancer is the leading cause of cancer-related deaths in the world. Its diagnosis is a challenge task to specialists due to several aspects on the classification of lung nodules. Therefore, it is important to integrate content-based image retrieval methods on the lung nodule classification process, since they are capable of retrieving similar cases from databases that were previously diagnosed. However, this mechanism depends on extracting relevant image features in order to obtain high efficiency. The goal of this paper is to perform the selection of 3D image features of margin sharpness and texture that can be relevant on the retrieval of similar cancerous and benign lung nodules. A total of 48 3D image attributes were extracted from the nodule volume. Border sharpness features were extracted from perpendicular lines drawn over the lesion boundary. Second-order texture features were extracted from a cooccurrence matrix. Relevant features were selected by a correlation-based method and a statistical significance analysis. Retrieval performance was assessed according to the nodule's potential malignancy on the 10 most similar cases and by the parameters of precision and recall. Statistical significant features reduced retrieval performance. Correlation-based method selected 2 margin sharpness attributes and 6 texture attributes and obtained higher precision compared to all 48 extracted features on similar nodule retrieval. Feature space dimensionality reduction of 83 % obtained higher retrieval performance and presented to be a computationaly low cost method of retrieving similar nodules for the diagnosis of lung cancer.
Novel 3D Compression Methods for Geometry, Connectivity and Texture
NASA Astrophysics Data System (ADS)
Siddeq, M. M.; Rodrigues, M. A.
2016-06-01
A large number of applications in medical visualization, games, engineering design, entertainment, heritage, e-commerce and so on require the transmission of 3D models over the Internet or over local networks. 3D data compression is an important requirement for fast data storage, access and transmission within bandwidth limitations. The Wavefront OBJ (object) file format is commonly used to share models due to its clear simple design. Normally each OBJ file contains a large amount of data (e.g. vertices and triangulated faces, normals, texture coordinates and other parameters) describing the mesh surface. In this paper we introduce a new method to compress geometry, connectivity and texture coordinates by a novel Geometry Minimization Algorithm (GM-Algorithm) in connection with arithmetic coding. First, each vertex ( x, y, z) coordinates are encoded to a single value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences between two adjacent vertex locations, which are compressed by arithmetic coding together with texture coordinates. We demonstrate the method on large data sets achieving compression ratios between 87 and 99 % without reduction in the number of reconstructed vertices and triangle faces. The decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with a number of commonly used 3D file formats such as VRML, OpenCTM and STL highlighting the performance and effectiveness of the proposed method.
Music Structure Analysis from Acoustic Signals
NASA Astrophysics Data System (ADS)
Dannenberg, Roger B.; Goto, Masataka
Music is full of structure, including sections, sequences of distinct musical textures, and the repetition of phrases or entire sections. The analysis of music audio relies upon feature vectors that convey information about music texture or pitch content. Texture generally refers to the average spectral shape and statistical fluctuation, often reflecting the set of sounding instruments, e.g., strings, vocal, or drums. Pitch content reflects melody and harmony, which is often independent of texture. Structure is found in several ways. Segment boundaries can be detected by observing marked changes in locally averaged texture.
Visualization and Quantitative Analysis of Crack-Tip Plastic Zone in Pure Nickel
NASA Astrophysics Data System (ADS)
Kelton, Randall; Sola, Jalal Fathi; Meletis, Efstathios I.; Huang, Haiying
2018-05-01
Changes in surface morphology have long been thought to be associated with crack propagation in metallic materials. We have studied areal surface texture changes around crack tips in an attempt to understand the correlations between surface texture changes and crack growth behavior. Detailed profiling of the fatigue sample surface was carried out at short fatigue intervals. An image processing algorithm was developed to calculate the surface texture changes. Quantitative analysis of the crack-tip plastic zone, crack-arrested sites near triple points, and large surface texture changes associated with crack release from arrested locations was carried out. The results indicate that surface texture imaging enables visualization of the development of plastic deformation around a crack tip. Quantitative analysis of the surface texture changes reveals the effects of local microstructures on the crack growth behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Y; Pollom, E; Loo, B
Purpose: To evaluate whether tumor textural features extracted from both pre- and mid-treatment FDG-PET images predict early response to chemoradiotherapy in locally advanced head and neck cancer, and investigate whether they provide complementary value to conventional volume-based measurements. Methods: Ninety-four patients with locally advanced head and neck cancers were retrospectively studied. All patients received definitive chemoradiotherapy and underwent FDG-PET planning scans both before and during treatment. Within the primary tumor we extracted 6 textural features based on gray-level co-occurrence matrices (GLCM): entropy, dissimilarity, contrast, correlation, energy, and homogeneity. These image features were evaluated for their predictive power of treatment responsemore » to chemoradiotherapy in terms of local recurrence free survival (LRFS) and progression free survival (PFS). Logrank test were used to assess the statistical significance of the stratification between low- and high-risk groups. P-values were adjusted for multiple comparisons by the false discovery rate (FDR) method. Results: All six textural features extracted from pre-treatment PET images significantly differentiated low- and high-risk patient groups for LRFS (P=0.011–0.038) and PFS (P=0.029–0.034). On the other hand, none of the textural features on mid-treatment PET images was statistically significant in stratifying LRFS (P=0.212–0.445) or PFS (P=0.168–0.299). An imaging signature that combines textural feature (GLCM homogeneity) and metabolic tumor volume showed an improved performance for predicting LRFS (hazard ratio: 22.8, P<0.0001) and PFS (hazard ratio: 13.9, P=0.0005) in leave-one-out cross validation. Intra-tumor heterogeneity measured by textural features was significantly lower in mid-treatment PET images than in pre-treatment PET images (T-test: P<1.4e-6). Conclusion: Tumor textural features on pretreatment FDG-PET images are predictive for response to chemoradiotherapy in locally advanced head and neck cancer. The complementary information offered by textural features improves patient stratification and may potentially aid in personalized risk-adaptive therapy.« less
Lohmann, Philipp; Stoffels, Gabriele; Ceccon, Garry; Rapp, Marion; Sabel, Michael; Filss, Christian P; Kamp, Marcel A; Stegmayr, Carina; Neumaier, Bernd; Shah, Nadim J; Langen, Karl-Josef; Galldiks, Norbert
2017-07-01
We investigated the potential of textural feature analysis of O-(2-[ 18 F]fluoroethyl)-L-tyrosine ( 18 F-FET) PET to differentiate radiation injury from brain metastasis recurrence. Forty-seven patients with contrast-enhancing brain lesions (n = 54) on MRI after radiotherapy of brain metastases underwent dynamic 18 F-FET PET. Tumour-to-brain ratios (TBRs) of 18 F-FET uptake and 62 textural parameters were determined on summed images 20-40 min post-injection. Tracer uptake kinetics, i.e., time-to-peak (TTP) and patterns of time-activity curves (TAC) were evaluated on dynamic PET data from 0-50 min post-injection. Diagnostic accuracy of investigated parameters and combinations thereof to discriminate between brain metastasis recurrence and radiation injury was compared. Diagnostic accuracy increased from 81 % for TBR mean alone to 85 % when combined with the textural parameter Coarseness or Short-zone emphasis. The accuracy of TBR max alone was 83 % and increased to 85 % after combination with the textural parameters Coarseness, Short-zone emphasis, or Correlation. Analysis of TACs resulted in an accuracy of 70 % for kinetic pattern alone and increased to 83 % when combined with TBR max . Textural feature analysis in combination with TBRs may have the potential to increase diagnostic accuracy for discrimination between brain metastasis recurrence and radiation injury, without the need for dynamic 18 F-FET PET scans. • Textural feature analysis provides quantitative information about tumour heterogeneity • Textural features help improve discrimination between brain metastasis recurrence and radiation injury • Textural features might be helpful to further understand tumour heterogeneity • Analysis does not require a more time consuming dynamic PET acquisition.
Characterisation of group behaviour surface texturing with multi-layers fitting method
NASA Astrophysics Data System (ADS)
Kang, Zhengyang; Fu, Yonghong; Ji, Jinghu; Wang, Hao
2016-07-01
Surface texturing was widely applied in improving the tribological properties of mechanical components, but study of measurement of this technology was still insufficient. This study proposed the multi-layers fitting (MLF) method to characterise the dimples array texture surface. Based on the synergistic effect among the dimples, the 3D morphology of texture surface was rebuilt by 2D stylus profiler in the MLF method. The feasible regions of texture patterns and sensitive parameters were confirmed by non-linear programming, and the processing software of MLF method was developed based on the Matlab®. The characterisation parameters system of dimples was defined mathematically, and the accuracy of MLF method was investigated by comparison experiment. The surface texture specimens were made by laser surface texturing technology, in which high consistency of dimples' size and distribution was achieved. Then, 2D profiles of different dimples were captured by employing Hommel-T1000 stylus profiler, and the data were further processed by MLF software to rebuild 3D morphology of single dimple. The experiment results indicated that the MLF characterisation results were similar to those of Wyko T1100, the white light interference microscope. It was also found that the stability of MLF characterisation results highly depended on the number of captured cross-sections.
Automatic system for radar echoes filtering based on textural features and artificial intelligence
NASA Astrophysics Data System (ADS)
Hedir, Mehdia; Haddad, Boualem
2017-10-01
Among the very popular Artificial Intelligence (AI) techniques, Artificial Neural Network (ANN) and Support Vector Machine (SVM) have been retained to process Ground Echoes (GE) on meteorological radar images taken from Setif (Algeria) and Bordeaux (France) with different climates and topologies. To achieve this task, AI techniques were associated with textural approaches. We used Gray Level Co-occurrence Matrix (GLCM) and Completed Local Binary Pattern (CLBP); both methods were largely used in image analysis. The obtained results show the efficiency of texture to preserve precipitations forecast on both sites with the accuracy of 98% on Bordeaux and 95% on Setif despite the AI technique used. 98% of GE are suppressed with SVM, this rate is outperforming ANN skills. CLBP approach associated to SVM eliminates 98% of GE and preserves precipitations forecast on Bordeaux site better than on Setif's, while it exhibits lower accuracy with ANN. SVM classifier is well adapted to the proposed application since the average filtering rate is 95-98% with texture and 92-93% with CLBP. These approaches allow removing Anomalous Propagations (APs) too with a better accuracy of 97.15% with texture and SVM. In fact, textural features associated to AI techniques are an efficient tool for incoherent radars to surpass spurious echoes.
Passive pavement-mounted acoustical linguistic drive alert system and method
Kisner, Roger A.; Anderson, Richard L.; Carnal, Charles L.; Hylton, James O.; Stevens, Samuel S.
2001-01-01
Systems and methods are described for passive pavement-mounted acoustical alert of the occupants of a vehicle. A method of notifying a vehicle occupant includes providing a driving medium upon which a vehicle is to be driven; and texturing a portion of the driving medium such that the textured portion interacts with the vehicle to produce audible signals, the textured portion pattern such that a linguistic message is encoded into the audible signals. The systems and methods provide advantages because information can be conveyed to the occupants of the vehicle based on the location of the vehicle relative to the textured surface.
NASA Technical Reports Server (NTRS)
Welch, R. M.; Sengupta, S. K.; Chen, D. W.
1988-01-01
Stratocumulus, cumulus, and cirrus clouds were identified on the basis of cloud textural features which were derived from a single high-resolution Landsat MSS NIR channel using a stepwise linear discriminant analysis. It is shown that, using this method, it is possible to distinguish high cirrus clouds from low clouds with high accuracy on the basis of spatial brightness patterns. The largest probability of misclassification is associated with confusion between the stratocumulus breakup regions and the fair-weather cumulus.
Xu, Yingying; Lin, Lanfen; Hu, Hongjie; Wang, Dan; Zhu, Wenchao; Wang, Jian; Han, Xian-Hua; Chen, Yen-Wei
2018-01-01
The bag of visual words (BoVW) model is a powerful tool for feature representation that can integrate various handcrafted features like intensity, texture, and spatial information. In this paper, we propose a novel BoVW-based method that incorporates texture and spatial information for the content-based image retrieval to assist radiologists in clinical diagnosis. This paper presents a texture-specific BoVW method to represent focal liver lesions (FLLs). Pixels in the region of interest (ROI) are classified into nine texture categories using the rotation-invariant uniform local binary pattern method. The BoVW-based features are calculated for each texture category. In addition, a spatial cone matching (SCM)-based representation strategy is proposed to describe the spatial information of the visual words in the ROI. In a pilot study, eight radiologists with different clinical experience performed diagnoses for 20 cases with and without the top six retrieved results. A total of 132 multiphase computed tomography volumes including five pathological types were collected. The texture-specific BoVW was compared to other BoVW-based methods using the constructed dataset of FLLs. The results show that our proposed model outperforms the other three BoVW methods in discriminating different lesions. The SCM method, which adds spatial information to the orderless BoVW model, impacted the retrieval performance. In the pilot trial, the average diagnosis accuracy of the radiologists was improved from 66 to 80% using the retrieval system. The preliminary results indicate that the texture-specific features and the SCM-based BoVW features can effectively characterize various liver lesions. The retrieval system has the potential to improve the diagnostic accuracy and the confidence of the radiologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dengwang; Wang, Qinfen; Li, H
Purpose: The purpose of this research is studying tumor heterogeneity of the primary and lymphoma by using multi-scale texture analysis with PET-CT images, where the tumor heterogeneity is expressed by texture features. Methods: Datasets were collected from 12 lung cancer patients, and both of primary and lymphoma tumors were detected with all these patients. All patients underwent whole-body 18F-FDG PET/CT scan before treatment.The regions of interest (ROI) of primary and lymphoma tumor were contoured by experienced clinical doctors. Then the ROI of primary and lymphoma tumor is extracted automatically by using Matlab software. According to the geometry size of contourmore » structure, the images of tumor are decomposed by multi-scale method.Wavelet transform was performed on ROI structures within images by L layers sampling, and then wavelet sub-bands which have the same size of the original image are obtained. The number of sub-bands is 3L+1.The gray level co-occurrence matrix (GLCM) is calculated within different sub-bands, thenenergy, inertia, correlation and gray in-homogeneity were extracted from GLCM.Finally, heterogeneity statistical analysis was studied for primary and lymphoma tumor using the texture features. Results: Energy, inertia, correlation and gray in-homogeneity are calculated with our experiments for heterogeneity statistical analysis.Energy for primary and lymphomatumor is equal with the same patient, while gray in-homogeneity and inertia of primaryare 2.59595±0.00855, 0.6439±0.0007 respectively. Gray in-homogeneity and inertia of lymphoma are 2.60115±0.00635, 0.64435±0.00055 respectively. The experiments showed that the volume of lymphoma is smaller than primary tumor, but thegray in-homogeneity and inertia were higher than primary tumor with the same patient, and the correlation with lymphoma tumors is zero, while the correlation with primary tumor isslightly strong. Conclusion: This studying showed that there were effective heterogeneity differences between primary and lymphoma tumor by multi-scale image texture analysis. This work is supported by National Natural Science Foundation of China (No. 61201441), Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (No. BS2012DX038), Project of Shandong Province Higher Educational Science and Technology Program (No. J12LN23), Jinan youth science and technology star (No.20120109)« less
Cascaded Amplitude Modulations in Sound Texture Perception
McWalter, Richard; Dau, Torsten
2017-01-01
Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches. PMID:28955191
Separation of specular and diffuse components using tensor voting in color images.
Nguyen, Tam; Vo, Quang Nhat; Yang, Hyung-Jeong; Kim, Soo-Hyung; Lee, Guee-Sang
2014-11-20
Most methods for the detection and removal of specular reflections suffer from nonuniform highlight regions and/or nonconverged artifacts induced by discontinuities in the surface colors, especially when dealing with highly textured, multicolored images. In this paper, a novel noniterative and predefined constraint-free method based on tensor voting is proposed to detect and remove the highlight components of a single color image. The distribution of diffuse and specular pixels in the original image is determined using tensors' saliency analysis, instead of comparing color information among neighbor pixels. The achieved diffuse reflectance distribution is used to remove specularity components. The proposed method is evaluated quantitatively and qualitatively over a dataset of highly textured, multicolor images. The experimental results show that our result outperforms other state-of-the-art techniques.
Scale invariant texture descriptors for classifying celiac disease
Hegenbart, Sebastian; Uhl, Andreas; Vécsei, Andreas; Wimmer, Georg
2013-01-01
Scale invariant texture recognition methods are applied for the computer assisted diagnosis of celiac disease. In particular, emphasis is given to techniques enhancing the scale invariance of multi-scale and multi-orientation wavelet transforms and methods based on fractal analysis. After fine-tuning to specific properties of our celiac disease imagery database, which consists of endoscopic images of the duodenum, some scale invariant (and often even viewpoint invariant) methods provide classification results improving the current state of the art. However, not each of the investigated scale invariant methods is applicable successfully to our dataset. Therefore, the scale invariance of the employed approaches is explicitly assessed and it is found that many of the analyzed methods are not as scale invariant as they theoretically should be. Results imply that scale invariance is not a key-feature required for successful classification of our celiac disease dataset. PMID:23481171
Goudouri, Ourania-Menti; Kontonasaki, Eleana; Papadopoulou, Lambrini; Manda, Marianthi; Kavouras, Panagiotis; Triantafyllidis, Konstantinos S; Stefanidou, Maria; Koidis, Petros; Paraskevopoulos, Konstantinos M
2017-02-01
The aim of this study was the evaluation of the textural characteristics of an experimental sol-gel derived feldspathic dental ceramic, which has already been proven bioactive and the investigation of its flexural strength through Weibull Statistical Analysis. The null hypothesis was that the flexural strength of the experimental and the commercial dental ceramic would be of the same order, resulting in a dental ceramic with apatite forming ability and adequate mechanical integrity. Although the flexural strength of the experimental ceramics was not statistically significant different compared to the commercial one, the amount of blind pores due to processing was greater. The textural characteristics of the experimental ceramic were in accordance with the standard low porosity levels reported for dental ceramics used for fixed prosthetic restorations. Feldspathic dental ceramics with typical textural characteristics and advanced mechanical properties as well as enhanced apatite forming ability can be synthesized through the sol-gel method. Copyright © 2016 Elsevier Ltd. All rights reserved.
Topological patterns of mesh textures in serpentinites
NASA Astrophysics Data System (ADS)
Miyazawa, M.; Suzuki, A.; Shimizu, H.; Okamoto, A.; Hiraoka, Y.; Obayashi, I.; Tsuji, T.; Ito, T.
2017-12-01
Serpentinization is a hydration process that forms serpentine minerals and magnetite within the oceanic lithosphere. Microfractures crosscut these minerals during the reactions, and the structures look like mesh textures. It has been known that the patterns of microfractures and the system evolutions are affected by the hydration reaction and fluid transport in fractures and within matrices. This study aims at quantifying the topological patterns of the mesh textures and understanding possible conditions of fluid transport and reaction during serpentinization in the oceanic lithosphere. Two-dimensional simulation by the distinct element method (DEM) generates fracture patterns due to serpentinization. The microfracture patterns are evaluated by persistent homology, which measures features of connected components of a topological space and encodes multi-scale topological features in the persistence diagrams. The persistence diagrams of the different mesh textures are evaluated by principal component analysis to bring out the strong patterns of persistence diagrams. This approach help extract feature values of fracture patterns from high-dimensional and complex datasets.
Areeckal, A S; Jayasheelan, N; Kamath, J; Zawadynski, S; Kocher, M; David S, S
2018-03-01
We propose an automated low cost tool for early diagnosis of onset of osteoporosis using cortical radiogrammetry and cancellous texture analysis from hand and wrist radiographs. The trained classifier model gives a good performance accuracy in classifying between healthy and low bone mass subjects. We propose a low cost automated diagnostic tool for early diagnosis of reduction in bone mass using cortical radiogrammetry and cancellous texture analysis of hand and wrist radiographs. Reduction in bone mass could lead to osteoporosis, a disease observed to be increasingly occurring at a younger age in recent times. Dual X-ray absorptiometry (DXA), currently used in clinical practice, is expensive and available only in urban areas in India. Therefore, there is a need to develop a low cost diagnostic tool in order to facilitate large-scale screening of people for early diagnosis of osteoporosis at primary health centers. Cortical radiogrammetry from third metacarpal bone shaft and cancellous texture analysis from distal radius are used to detect low bone mass. Cortical bone indices and cancellous features using Gray Level Run Length Matrices and Laws' masks are extracted. A neural network classifier is trained using these features to classify healthy subjects and subjects having low bone mass. In our pilot study, the proposed segmentation method shows 89.9 and 93.5% accuracy in detecting third metacarpal bone shaft and distal radius ROI, respectively. The trained classifier shows training accuracy of 94.3% and test accuracy of 88.5%. An automated diagnostic technique for early diagnosis of onset of osteoporosis is developed using cortical radiogrammetric measurements and cancellous texture analysis of hand and wrist radiographs. The work shows that a combination of cortical and cancellous features improves the diagnostic ability and is a promising low cost tool for early diagnosis of increased risk of osteoporosis.
Optical texture analysis for automatic cytology and histology: a Markovian approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pressman, N.J.
1976-10-12
Markovian analysis is a method to measure optical texture based on gray-level transition probabilities in digitized images. The experiments described in this dissertation investigate the classification performance of parameters generated by this method. Three types of data sets are used: images of (1) human blood leukocytes (nuclei of monocytes, neutrophils, and lymphocytes; Wright stain; (0.125 ..mu..m)/sup 2//picture point), (2) cervical exfoliative cells (nuclei of normal intermediate squamous cells and dysplastic and carcinoma in situ cells; azure-A/Feulgen stain; (0.125 ..mu..m)/sup 2//picture point), and (3) lymph-node tissue sections (6-..mu..m thick sections from normal, acute lymphadenitis, and Hodgkin lymph nodes; hematoxylin and eosinmore » stain; (0.625 ..mu..m)/sup 2/ picture point). Each image consists of 128 x 128 picture points originally scanned with a 256 gray-level resolution. Each image class is defined by 75 images.« less
Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit
2000-01-01
The present invention provides methods and biaxially textured articles having a deformed epitaxial layer formed therefrom for use with high temperature superconductors, photovoltaic, ferroelectric, or optical devices. A buffer layer is epitaxially deposited onto biaxially-textured substrates and then mechanically deformed. The deformation process minimizes or eliminates grooves, or other irregularities, formed on the buffer layer while maintaining the biaxial texture of the buffer layer. Advantageously, the biaxial texture of the buffer layer is not altered during subsequent heat treatments of the deformed buffer. The present invention provides mechanical densification procedures which can be incorporated into the processing of superconducting films through the powder deposit or precursor approaches without incurring unfavorable high-angle grain boundaries.
Structural analysis of natural textures.
Vilnrotter, F M; Nevatia, R; Price, K E
1986-01-01
Many textures can be described structurally, in terms of the individual textural elements and their spatial relationships. This paper describes a system to generate useful descriptions of natural textures in these terms. The basic approach is to determine an initial, partial description of the elements using edge features. This description controls the extraction of the texture elements. The elements are grouped by type, and spatial relationships between elements are computed. The descriptions are shown to be useful for recognition of the textures, and for reconstruction of periodic textures.
Military personnel recognition system using texture, colour, and SURF features
NASA Astrophysics Data System (ADS)
Irhebhude, Martins E.; Edirisinghe, Eran A.
2014-06-01
This paper presents an automatic, machine vision based, military personnel identification and classification system. Classification is done using a Support Vector Machine (SVM) on sets of Army, Air Force and Navy camouflage uniform personnel datasets. In the proposed system, the arm of service of personnel is recognised by the camouflage of a persons uniform, type of cap and the type of badge/logo. The detailed analysis done include; camouflage cap and plain cap differentiation using gray level co-occurrence matrix (GLCM) texture feature; classification on Army, Air Force and Navy camouflaged uniforms using GLCM texture and colour histogram bin features; plain cap badge classification into Army, Air Force and Navy using Speed Up Robust Feature (SURF). The proposed method recognised camouflage personnel arm of service on sets of data retrieved from google images and selected military websites. Correlation-based Feature Selection (CFS) was used to improve recognition and reduce dimensionality, thereby speeding the classification process. With this method success rates recorded during the analysis include 93.8% for camouflage appearance category, 100%, 90% and 100% rates of plain cap and camouflage cap categories for Army, Air Force and Navy categories, respectively. Accurate recognition was recorded using SURF for the plain cap badge category. Substantial analysis has been carried out and results prove that the proposed method can correctly classify military personnel into various arms of service. We show that the proposed method can be integrated into a face recognition system, which will recognise personnel in addition to determining the arm of service which the personnel belong. Such a system can be used to enhance the security of a military base or facility.
In Vivo Imaging of Tau Pathology Using Magnetic Resonance Imaging Textural Analysis
Colgan, Niall; Ganeshan, Balaji; Harrison, Ian F.; Ismail, Ozama; Holmes, Holly E.; Wells, Jack A.; Powell, Nick M.; O'Callaghan, James M.; O'Neill, Michael J.; Murray, Tracey K.; Ahmed, Zeshan; Collins, Emily C.; Johnson, Ross A.; Groves, Ashley; Lythgoe, Mark F.
2017-01-01
Background: Non-invasive characterization of the pathological features of Alzheimer's disease (AD) could enhance patient management and the development of therapeutic strategies. Magnetic resonance imaging texture analysis (MRTA) has been used previously to extract texture descriptors from structural clinical scans in AD to determine cerebral tissue heterogeneity. In this study, we examined the potential of MRTA to specifically identify tau pathology in an AD mouse model and compared the MRTA metrics to histological measures of tau burden. Methods: MRTA was applied to T2 weighted high-resolution MR images of nine 8.5-month-old rTg4510 tau pathology (TG) mice and 16 litter matched wild-type (WT) mice. MRTA comprised of the filtration-histogram technique, where the filtration step extracted and enhanced features of different sizes (fine, medium, and coarse texture scales), followed by quantification of texture using histogram analysis (mean gray level intensity, mean intensity, entropy, uniformity, skewness, standard-deviation, and kurtosis). MRTA was applied to manually segmented regions of interest (ROI) drawn within the cortex, hippocampus, and thalamus regions and the level of tau burden was assessed in equivalent regions using histology. Results: Texture parameters were markedly different between WT and TG in the cortex (E, p < 0.01, K, p < 0.01), the hippocampus (K, p < 0.05) and in the thalamus (K, p < 0.01). In addition, we observed significant correlations between histological measurements of tau burden and kurtosis in the cortex, hippocampus and thalamus. Conclusions: MRTA successfully differentiated WT and TG in brain regions with varying degrees of tau pathology (cortex, hippocampus, and thalamus) based on T2 weighted MR images. Furthermore, the kurtosis measurement correlated with histological measures of tau burden. This initial study indicates that MRTA may have a role in the early diagnosis of AD and the assessment of tau pathology using routinely acquired structural MR images. PMID:29163005
Onder, Devrim; Sarioglu, Sulen; Karacali, Bilge
2013-04-01
Quasi-supervised learning is a statistical learning algorithm that contrasts two datasets by computing estimate for the posterior probability of each sample in either dataset. This method has not been applied to histopathological images before. The purpose of this study is to evaluate the performance of the method to identify colorectal tissues with or without adenocarcinoma. Light microscopic digital images from histopathological sections were obtained from 30 colorectal radical surgery materials including adenocarcinoma and non-neoplastic regions. The texture features were extracted by using local histograms and co-occurrence matrices. The quasi-supervised learning algorithm operates on two datasets, one containing samples of normal tissues labelled only indirectly, and the other containing an unlabeled collection of samples of both normal and cancer tissues. As such, the algorithm eliminates the need for manually labelled samples of normal and cancer tissues for conventional supervised learning and significantly reduces the expert intervention. Several texture feature vector datasets corresponding to different extraction parameters were tested within the proposed framework. The Independent Component Analysis dimensionality reduction approach was also identified as the one improving the labelling performance evaluated in this series. In this series, the proposed method was applied to the dataset of 22,080 vectors with reduced dimensionality 119 from 132. Regions containing cancer tissue could be identified accurately having false and true positive rates up to 19% and 88% respectively without using manually labelled ground-truth datasets in a quasi-supervised strategy. The resulting labelling performances were compared to that of a conventional powerful supervised classifier using manually labelled ground-truth data. The supervised classifier results were calculated as 3.5% and 95% for the same case. The results in this series in comparison with the benchmark classifier, suggest that quasi-supervised image texture labelling may be a useful method in the analysis and classification of pathological slides but further study is required to improve the results. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kalghatgi, Suparna Kishore
Real-world surfaces typically have geometric features at a range of spatial scales. At the microscale, opaque surfaces are often characterized by bidirectional reflectance distribution functions (BRDF), which describes how a surface scatters incident light. At the mesoscale, surfaces often exhibit visible texture -- stochastic or patterned arrangements of geometric features that provide visual information about surface properties such as roughness, smoothness, softness, etc. These textures also affect how light is scattered by the surface, but the effects are at a different spatial scale than those captured by the BRDF. Through this research, we investigate how microscale and mesoscale surface properties interact to contribute to overall surface appearance. This behavior is also the cause of the well-known "touch-up problem" in the paint industry, where two regions coated with exactly the same paint, look different in color, gloss and/or texture because of differences in application methods. At first, samples were created by applying latex paint to standard wallboard surfaces. Two application methods- spraying and rolling were used. The BRDF and texture properties of the samples were measured, which revealed differences at both the microscale and mesoscale. This data was then used as input for a physically-based image synthesis algorithm, to generate realistic images of the surfaces under different viewing conditions. In order to understand the factors that govern touch-up visibility, psychophysical tests were conducted using calibrated, digital photographs of the samples as stimuli. Images were presented in pairs and a two alternative forced choice design was used for the experiments. These judgments were then used as data for a Thurstonian scaling analysis to produce psychophysical scales of visibility, which helped determine the effect of paint formulation, application methods, and viewing and illumination conditions on the touch-up problem. The results can be used as base data towards development of a psychophysical model that relates physical differences in paint formulation and application methods to visual differences in surface appearance.
Zhang, Xin; Cui, Jintian; Wang, Weisheng; Lin, Chao
2017-01-01
To address the problem of image texture feature extraction, a direction measure statistic that is based on the directionality of image texture is constructed, and a new method of texture feature extraction, which is based on the direction measure and a gray level co-occurrence matrix (GLCM) fusion algorithm, is proposed in this paper. This method applies the GLCM to extract the texture feature value of an image and integrates the weight factor that is introduced by the direction measure to obtain the final texture feature of an image. A set of classification experiments for the high-resolution remote sensing images were performed by using support vector machine (SVM) classifier with the direction measure and gray level co-occurrence matrix fusion algorithm. Both qualitative and quantitative approaches were applied to assess the classification results. The experimental results demonstrated that texture feature extraction based on the fusion algorithm achieved a better image recognition, and the accuracy of classification based on this method has been significantly improved. PMID:28640181
Effect of substrate on texture and mechanical properties of Mg-Cu-Zn thin films
NASA Astrophysics Data System (ADS)
Eshaghi, F.; Zolanvari, A.
2018-04-01
In this work, thin films of Mg-Cu-Zn with 60 nm thicknesses have been deposited on the Si(100), Al, stainless steel, and Cu substrates using DC magnetron sputtering. FESEM images displayed uniformity of Mg-Cu-Zn particles on the different substrates. AFM micrograph revealed the roughness of thin film changes due to the different kinds of the substrates. XRD measurements showed the existence of strong Mg (002) reflections and weak Mg (101) peaks. Residual stress and adhesion force have been measured as the mechanical properties of the Mg-Cu-Zn thin films. The residual stresses of thin films which have been investigated by X-ray diffraction method revealed that the thin films sputtered on the Si and Cu substrates endure minimum and maximum stresses, respectively, during the deposition process. However, the force spectroscopy analysis indicated that the films grew on the Si and Cu experienced maximum and minimum adhesion force. The texture analysis has been done using XRD instrument to make pole figures of Mg (002) and Mg (101) reflections. ODFs have been calculated to evaluate the distribution of the orientations within the thin films. It was found that the texture and stress have an inverse relation, while the texture and the adhesion force of the Mg-Cu-Zn thin films have direct relation. A thin film that sustains the lowest residual stresses and highest adhesive force had the strongest {001} basal fiber texture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
2014-06-01
Purpose: The aim of this study was to explore the characteristics derived from 18F-fluorodeoxyglucose (18F-FDG) PET image and assess its capacity in staging of esophageal squamous cell carcinoma (ESCC). Methods: 26 patients with newly diagnosed ESCC who underwent 18F-FDG PET scan were included in this study. Different image-derived indices including the standardized uptake value (SUV), gross tumor length, texture features and shape feature were considered. Taken the histopathologic examination as the gold standard, the extracted capacities of indices in staging of ESCC were assessed by Kruskal-Wallis test and Mann-Whitney test. Specificity and sensitivity for each of the studied parameters weremore » derived using receiver-operating characteristic curves. Results: 18F-FDG SUVmax and SUVmean showed statistically significant capability in AJCC and TNM stages. Texture features such as ENT and CORR were significant factors for N stages(p=0.040, p=0.029). Both FDG PET Longitudinal length and shape feature Eccentricity (EC) (p≤0.010) provided powerful stratification in the primary ESCC AJCC and TNM stages than SUV and texture features. Receiver-operating-characteristic curve analysis showed that tumor textural analysis can capability M stages with higher sensitivity than SUV measurement but lower in T and N stages. Conclusion: The 18F-FDG image-derived characteristics of SUV, textural features and shape feature allow for good stratification AJCC and TNM stage in ESCC patients.« less
Pirisinu, Marco; Mazzarello, Vittorio
2016-05-01
The skin's surface is characterized by a network of furrows and wrinkles showing different height and depth. Different studies showed that processes such as aging, photo aging and cancer may alter dermal ultrastructure surface. The quantitative analysis of skin topography is a key point for understanding health condition of the skin. Here, for the first time, the skin fine structure was studied via a new approach where replica method was combined with Mex Alicona software and scanning electron microscopy (SEM). The skin texture of cheek and forearm were studied in 120 healthy sardinian volunteers. Patients were divided into three different aged groups. The skin areas of interest were reproduced by the silicone replica method, each replica was explored by SEM and digital images were taken. By using Mex Alicona software were created 3D imagine and a list of 24 surface texture parameters were obtained, of these the most representative were chosen in order to assess eventual changes between groups. The skin's texture of forearm and cheek showed a gradually loss of its typical polyhedric mesh with increasing age group. In particular, the photoexposition increased loss of dermal texture. At today, Alicona mex technology was exclusively used on palaeontology studies, our results showed that a deep analyze of skin texture was performed and support Mex alicona software as a new promising tool on dermatological research. This new analytical approach provided an easy and fast process to appreciate skin texture and its changes, by using high quality 3D dimension images. SCANNING 38:213-220, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Nestares, Oscar; Miravet, Carlos; Santamaria, Javier; Fonolla Navarro, Rafael
1999-05-01
Automatic object segmentation in highly noisy image sequences, composed by a translating object over a background having a different motion, is achieved through joint motion-texture analysis. Local motion and/or texture is characterized by the energy of the local spatio-temporal spectrum, as different textures undergoing different translational motions display distinctive features in their 3D (x,y,t) spectra. Measurements of local spectrum energy are obtained using a bank of directional 3rd order Gaussian derivative filters in a multiresolution pyramid in space- time (10 directions, 3 resolution levels). These 30 energy measurements form a feature vector describing texture-motion for every pixel in the sequence. To improve discrimination capability and reduce computational cost, we automatically select those 4 features (channels) that best discriminate object from background, under the assumptions that the object is smaller than the background and has a different velocity or texture. In this way we reject features irrelevant or dominated by noise, that could yield wrong segmentation results. This method has been successfully applied to sequences with extremely low visibility and for objects that are even invisible for the eye in absence of motion.
Automatic brain MR image denoising based on texture feature-based artificial neural networks.
Chang, Yu-Ning; Chang, Herng-Hua
2015-01-01
Noise is one of the main sources of quality deterioration not only for visual inspection but also in computerized processing in brain magnetic resonance (MR) image analysis such as tissue classification, segmentation and registration. Accordingly, noise removal in brain MR images is important for a wide variety of subsequent processing applications. However, most existing denoising algorithms require laborious tuning of parameters that are often sensitive to specific image features and textures. Automation of these parameters through artificial intelligence techniques will be highly beneficial. In the present study, an artificial neural network associated with image texture feature analysis is proposed to establish a predictable parameter model and automate the denoising procedure. In the proposed approach, a total of 83 image attributes were extracted based on four categories: 1) Basic image statistics. 2) Gray-level co-occurrence matrix (GLCM). 3) Gray-level run-length matrix (GLRLM) and 4) Tamura texture features. To obtain the ranking of discrimination in these texture features, a paired-samples t-test was applied to each individual image feature computed in every image. Subsequently, the sequential forward selection (SFS) method was used to select the best texture features according to the ranking of discrimination. The selected optimal features were further incorporated into a back propagation neural network to establish a predictable parameter model. A wide variety of MR images with various scenarios were adopted to evaluate the performance of the proposed framework. Experimental results indicated that this new automation system accurately predicted the bilateral filtering parameters and effectively removed the noise in a number of MR images. Comparing to the manually tuned filtering process, our approach not only produced better denoised results but also saved significant processing time.
Skin texture parameters of the dorsal hand in evaluating skin aging in China.
Gao, Qian; Hu, Li-Wen; Wang, Yang; Xu, Wen-Ying; Ouyang, Nan-Ning; Dong, Guo-Qing; Shi, Song-Tian; Liu, Yang
2011-11-01
There are various non-invasive methods in skin morphology for assessing skin aging. The use of digital photography will make it easier and more convenient. In this study, we explored some skin texture parameters for evaluating skin aging using digital image processing. Two hundred and twenty-eight subjects who lived in Sanya, China, were involved. Individual sun exposure history and other factors influencing skin aging were collected by a questionnaire. Meanwhile, we took photos of their dorsal hands. Skin images were graded according to the Beagley-Gibson system. These skin images were also processed using image analysis software. Five skin texture parameters, Angle Num., Angle Max., Angle Diff., Distance and Grids, were produced in reference to the Beagley-Gibson system. All texture parameters were significantly associated with the Beagley-Gibson score. Among the parameters, the distance between primary lines (Distance) and the value of angle formed by intersection textures (Angle Max., Angle Diff.) were positively associated with the Beagley-Gibson score. However, there was a negative correlation between the number of grids (Grids), the number of angle (Angle Num.) and the Beagley-Gibson score. These texture parameters were also correlated with factors influencing skin aging such as sun exposure, age, smoking, drinking and body mass index. In multivariate analysis, Grids and Distance were mainly affected by age. But Angle Max. and Angle Diff. were mainly affected by sun exposure. It seemed that the skin surface morphologic parameters presented in our study reflect skin aging changes to some extent and could be used to describe skin aging using digital image processing. © 2011 John Wiley & Sons A/S.
USDA-ARS?s Scientific Manuscript database
Weather and soil properties are known to affect soil nitrogen (N) availability and plant N uptake. Studies examining N response as affected by soil and weather sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment effects in a series of experiments...
Texture classification of vegetation cover in high altitude wetlands zone
NASA Astrophysics Data System (ADS)
Wentao, Zou; Bingfang, Wu; Hongbo, Ju; Hua, Liu
2014-03-01
The aim of this study was to investigate the utility of datasets composed of texture measures and other features for the classification of vegetation cover, specifically wetlands. QUEST decision tree classifier was applied to a SPOT-5 image sub-scene covering the typical wetlands area in Three River Sources region in Qinghai province, China. The dataset used for the classification comprised of: (1) spectral data and the components of principal component analysis; (2) texture measures derived from pixel basis; (3) DEM and other ancillary data covering the research area. Image textures is an important characteristic of remote sensing images; it can represent spatial variations with spectral brightness in digital numbers. When the spectral information is not enough to separate the different land covers, the texture information can be used to increase the classification accuracy. The texture measures used in this study were calculated from GLCM (Gray level Co-occurrence Matrix); eight frequently used measures were chosen to conduct the classification procedure. The results showed that variance, mean and entropy calculated by GLCM with a 9*9 size window were effective in distinguishing different vegetation types in wetlands zone. The overall accuracy of this method was 84.19% and the Kappa coefficient was 0.8261. The result indicated that the introduction of texture measures can improve the overall accuracy by 12.05% and the overall kappa coefficient by 0.1407 compared with the result using spectral and ancillary data.
Kebir, Sied; Khurshid, Zain; Gaertner, Florian C.; Essler, Markus; Hattingen, Elke; Fimmers, Rolf; Scheffler, Björn; Herrlinger, Ulrich; Bundschuh, Ralph A.; Glas, Martin
2017-01-01
Rationale Timely detection of pseudoprogression (PSP) is crucial for the management of patients with high-grade glioma (HGG) but remains difficult. Textural features of O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography (FET-PET) mirror tumor uptake heterogeneity; some of them may be associated with tumor progression. Methods Fourteen patients with HGG and suspected of PSP underwent FET-PET imaging. A set of 19 conventional and textural FET-PET features were evaluated and subjected to unsupervised consensus clustering. The final diagnosis of true progression vs. PSP was based on follow-up MRI using RANO criteria. Results Three robust clusters have been identified based on 10 predominantly textural FET-PET features. None of the patients with PSP fell into cluster 2, which was associated with high values for textural FET-PET markers of uptake heterogeneity. Three out of 4 patients with PSP were assigned to cluster 3 that was largely associated with low values of textural FET-PET features. By comparison, tumor-to-normal brain ratio (TNRmax) at the optimal cutoff 2.1 was less predictive of PSP (negative predictive value 57% for detecting true progression, p=0.07 vs. 75% with cluster 3, p=0.04). Principal Conclusions Clustering based on textural O-(2-[18F]fluoroethyl)-L-tyrosine PET features may provide valuable information in assessing the elusive phenomenon of pseudoprogression. PMID:28030820
Loudiyi, M; Rutledge, D N; Aït-Kaddour, A
2018-10-30
Common Dimension (ComDim) chemometrics method for multi-block data analysis was employed to evaluate the impact of different added salts and ripening times on physicochemical, color, dynamic low amplitude oscillatory rheology, texture profile, and molecular structure (fluorescence and MIR spectroscopies) of five Cantal-type cheeses. Firstly, Independent Components Analysis (ICA) was applied separately on fluorescence and MIR spectra in order to extract the relevant signal source and the associated proportions related to molecular structure characteristics. ComDim was then applied on the 31 data tables corresponding to the proportion of ICA signals obtained for spectral methods and the global analysis of cheeses by the other techniques. The ComDim results indicated that generally cheeses made with 50% NaCl or with 75:25% NaCl/KCl exhibit the equivalent characteristics in structural, textural, meltability and color properties. The proposed methodology demonstrates the applicability of ComDim for the characterization of samples when different techniques describe the same samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
An Active Patch Model for Real World Texture and Appearance Classification
Mao, Junhua; Zhu, Jun; Yuille, Alan L.
2014-01-01
This paper addresses the task of natural texture and appearance classification. Our goal is to develop a simple and intuitive method that performs at state of the art on datasets ranging from homogeneous texture (e.g., material texture), to less homogeneous texture (e.g., the fur of animals), and to inhomogeneous texture (the appearance patterns of vehicles). Our method uses a bag-of-words model where the features are based on a dictionary of active patches. Active patches are raw intensity patches which can undergo spatial transformations (e.g., rotation and scaling) and adjust themselves to best match the image regions. The dictionary of active patches is required to be compact and representative, in the sense that we can use it to approximately reconstruct the images that we want to classify. We propose a probabilistic model to quantify the quality of image reconstruction and design a greedy learning algorithm to obtain the dictionary. We classify images using the occurrence frequency of the active patches. Feature extraction is fast (about 100 ms per image) using the GPU. The experimental results show that our method improves the state of the art on a challenging material texture benchmark dataset (KTH-TIPS2). To test our method on less homogeneous or inhomogeneous images, we construct two new datasets consisting of appearance image patches of animals and vehicles cropped from the PASCAL VOC dataset. Our method outperforms competing methods on these datasets. PMID:25531013
Iris recognition as a biometric method after cataract surgery.
Roizenblatt, Roberto; Schor, Paulo; Dante, Fabio; Roizenblatt, Jaime; Belfort, Rubens
2004-01-28
Biometric methods are security technologies, which use human characteristics for personal identification. Iris recognition systems use iris textures as unique identifiers. This paper presents an analysis of the verification of iris identities after intra-ocular procedures, when individuals were enrolled before the surgery. Fifty-five eyes from fifty-five patients had their irises enrolled before a cataract surgery was performed. They had their irises verified three times before and three times after the procedure, and the Hamming (mathematical) distance of each identification trial was determined, in a controlled ideal biometric environment. The mathematical difference between the iris code before and after the surgery was also compared to a subjective evaluation of the iris anatomy alteration by an experienced surgeon. A correlation between visible subjective iris texture alteration and mathematical difference was verified. We found only six cases in which the eye was no more recognizable, but these eyes were later reenrolled. The main anatomical changes that were found in the new impostor eyes are described. Cataract surgeries change iris textures in such a way that iris recognition systems, which perform mathematical comparisons of textural biometric features, are able to detect these changes and sometimes even discard a pre-enrolled iris considering it an impostor. In our study, re-enrollment proved to be a feasible procedure.
Zach, Bernhard; Hofer, Ernst; Asslaber, Martin; Ahammer, Helmut
2016-01-01
The human heart has a heterogeneous structure, which is characterized by different cell types and their spatial configurations. The physical structure, especially the fibre orientation and the interstitial fibrosis, determines the electrical excitation and in further consequence the contractility in macroscopic as well as in microscopic areas. Modern image processing methods and parameters could be used to describe the image content and image texture. In most cases the description of the texture is not satisfying because the fibre orientation, detected with common algorithms, is biased by elements such as fibrocytes or endothelial nuclei. The goal of this work is to figure out if cardiac tissue can be analysed and classified on a microscopic level by automated image processing methods with a focus on an accurate detection of the fibre orientation. Quantitative parameters for identification of textures of different complexity or pathological attributes inside the heart were determined. The focus was set on the detection of the fibre orientation, which was calculated on the basis of the cardiomyocytes' nuclei. It turned out that the orientation of these nuclei corresponded with a high precision to the fibre orientation in the image plane. Additionally, these nuclei also indicated very well the inclination of the fibre.
Georgiadis, Pantelis; Cavouras, Dionisis; Kalatzis, Ioannis; Glotsos, Dimitris; Athanasiadis, Emmanouil; Kostopoulos, Spiros; Sifaki, Koralia; Malamas, Menelaos; Nikiforidis, George; Solomou, Ekaterini
2009-01-01
Three-dimensional (3D) texture analysis of volumetric brain magnetic resonance (MR) images has been identified as an important indicator for discriminating among different brain pathologies. The purpose of this study was to evaluate the efficiency of 3D textural features using a pattern recognition system in the task of discriminating benign, malignant and metastatic brain tissues on T1 postcontrast MR imaging (MRI) series. The dataset consisted of 67 brain MRI series obtained from patients with verified and untreated intracranial tumors. The pattern recognition system was designed as an ensemble classification scheme employing a support vector machine classifier, specially modified in order to integrate the least squares features transformation logic in its kernel function. The latter, in conjunction with using 3D textural features, enabled boosting up the performance of the system in discriminating metastatic, malignant and benign brain tumors with 77.14%, 89.19% and 93.33% accuracy, respectively. The method was evaluated using an external cross-validation process; thus, results might be considered indicative of the generalization performance of the system to "unseen" cases. The proposed system might be used as an assisting tool for brain tumor characterization on volumetric MRI series.
Computer aided diagnosis based on medical image processing and artificial intelligence methods
NASA Astrophysics Data System (ADS)
Stoitsis, John; Valavanis, Ioannis; Mougiakakou, Stavroula G.; Golemati, Spyretta; Nikita, Alexandra; Nikita, Konstantina S.
2006-12-01
Advances in imaging technology and computer science have greatly enhanced interpretation of medical images, and contributed to early diagnosis. The typical architecture of a Computer Aided Diagnosis (CAD) system includes image pre-processing, definition of region(s) of interest, features extraction and selection, and classification. In this paper, the principles of CAD systems design and development are demonstrated by means of two examples. The first one focuses on the differentiation between symptomatic and asymptomatic carotid atheromatous plaques. For each plaque, a vector of texture and motion features was estimated, which was then reduced to the most robust ones by means of ANalysis of VAriance (ANOVA). Using fuzzy c-means, the features were then clustered into two classes. Clustering performances of 74%, 79%, and 84% were achieved for texture only, motion only, and combinations of texture and motion features, respectively. The second CAD system presented in this paper supports the diagnosis of focal liver lesions and is able to characterize liver tissue from Computed Tomography (CT) images as normal, hepatic cyst, hemangioma, and hepatocellular carcinoma. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of neural network classifiers. The achieved classification performance was 100%, 93.75% and 90.63% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.
Real-time color-based texture analysis for sophisticated defect detection on wooden surfaces
NASA Astrophysics Data System (ADS)
Polzleitner, Wolfgang; Schwingshakl, Gert
2004-10-01
We describe a scanning system developed for the classification and grading of surfaces of wooden tiles. The system uses color imaging sensors to analyse the surfaces of either hard- or softwood material in terms of the texture formed by grain lines (orientation, spatial frequency, and color), various types of colorization, and other defects like knots, heart wood, cracks, holes, etc. The analysis requires two major tracks: the assignment of a tile to its texture class (like A, B, C, 1, 2, 3, Waste), and the detection of defects that decrease the commercial value of the tile (heart wood, knots, etc.). The system was initially developed under the international IMS program (Intelligent Manufacturing Systems) by an industry consortium. During the last two years it has been further developed, and several industrial systems have been installed, and are presently used in production of hardwood flooring. The methods implemented reflect some of the latest developments in the field of pattern recognition: genetic feature selection, two-dimensional second order statistics, special color space transforms, and classification by neural networks. In the industrial scenario we describe, many of the features defining a class cannot be described mathematically. Consequently a focus was the design of a learning architecture, where prototype texture samples are presented to the system, which then automatically finds the internal representation necessary for classification. The methods used in this approach have a wide applicability to problems of inspection, sorting, and optimization of high-value material typically used in the furniture, flooring, and related wood manufacturing industries.
Yoon, Hai-Jeon; Kim, Yemi; Chung, Jin; Kim, Bom Sahn
2018-03-30
Predicting response to neo-adjuvant chemotherapy (NAC) and survival in locally advanced breast cancer (LABC) is important. This study investigated the prognostic value of tumor heterogeneity evaluated with textural analysis through F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) and diffusion-weighted imaging (DWI). We enrolled 83 patients with LABC who had completed NAC and curative surgery. Tumor texture indices from pretreatment FDG PET and DWI were extracted from histogram analysis and 7 different parent matrices: co-occurrence matrix, the voxel-alignment matrix, neighborhood intensity difference matrix, intensity size-zone matrix (ISZM), normalized gray-level co-occurrence matrix (NGLCM), neighboring gray-level dependence matrix (NGLDM), and texture spectrum matrix. The predictive values of textural features were tested regarding both pathologic NAC response and progression-free survival. Among 83 patients, 46 were pathologic responders, while 37 were nonresponders. The PET texture indices from 7 parent matrices, DWI texture indices from histogram, and 1 parent matrix (NGLCM) showed significant differences according to NAC response. On multivariable analysis, number nonuniformity of PET extracted from the NGLDM was an independent predictor of pathologic response (P = .009). During a median follow-up period of 17.3 months, 14 patients experienced recurrence. High-intensity zone emphasis (HIZE) and high-intensity short-zone emphasis (HISZE) from PET extracted from ISZM were significant textural predictors (P = .011 and P = .033). On Cox regression analysis, only HIZE was a significant predictor of recurrence (P = .027), while HISZE showed borderline significance (P = .107). Tumor texture indices are useful for NAC response prediction in LABC. Moreover, PET texture indices can help to predict disease recurrence. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hamill, D. D.; Buscombe, D.; Wheaton, J. M.; Wilcock, P. R.
2016-12-01
The size and spatial organization of bed material, bed texture, is a fundamental physical attribute of lotic ecosystems. Traditional methods to map bed texture (such as physical samples and underwater video) are limited by low spatial coverage, and poor precision in positioning. Recreational grade sidescan sonar systems now offer the possibility of imaging submerged riverbed sediments at coverages and resolutions sufficient to identify subtle changes in bed texture, in any navigable body of water, with minimal cost, expertise in sonar, or logistical effort, thereby facilitating the democratization of acoustic imaging of benthic environments, to support ecohydrological studies in shallow water, not subject to the rigors of hydrographic standards, nor the preserve of hydroacoustic expertise and proprietary hydrographic industry software. We investigate the possibility of using recreational grade sidescan sonar for sedimentary change detection using a case study of repeat sidescan imaging of mixed sand-gravel-rock riverbeds in a debris-fan dominated canyon river, at a coverage and resolution that meets the objectives of studies of the effects of changing bed substrates on salmonid spawning. A repeat substrate mapping analysis on data collected between 2012 and 2015 on the Colorado River in Glen, Marble, and Grand Canyons will be presented. A detailed method has been developed to interpret and analyze non-survey-grade sidescan sonar data, encoded within an open source software tool developed by the authors. An automated technique to quantify bed texture directly from sidescan sonar imagery is tested against bed sediment observations from underwater video and multibeam sonar. Predictive relationships between known bed sediment observations and bed texture metrics could provide an objective means to quantify bed textures and to relate changes in bed texture to biological components of an aquatic ecosystem, at high temporal frequency, and with minimal logistical effort and cost.
Dental microwear textures: reconstructing diets of fossil mammals
NASA Astrophysics Data System (ADS)
DeSantis, Larisa R. G.
2016-06-01
Dietary information of fossil mammals can be revealed via the analysis of tooth morphology, tooth wear, tooth geochemistry, and the microscopic wear patterns on tooth surfaces resulting from food processing. Although dental microwear has long been used by anthropologists and paleontologists to clarify diets in a diversity of mammals, until recently these methods focused on the counting of wear features (e.g., pits and scratches) from two-dimensional surfaces (typically via scanning electron microscopes or low-magnification light microscopes). The analysis of dental microwear textures can instead reveal dietary information in a broad range of herbivorous, omnivorous, and carnivorous mammals by characterizing microscopic tooth surfaces in three-dimensions, without the counting of individual surface features. To date, dental microwear textures in ungulates, xenarthrans, marsupials, carnivorans, and primates (including humans and their ancestors) are correlated with known dietary behavior in extant taxa and reconstruct ancient diets in a diversity of prehistoric mammals. For example, tough versus hard object feeding can be characterized across disparate phylogenetic groups and can distinguish grazers, folivorous, and flesh consumers (tougher food consumers) from woody browsers, frugivores, and bone consumers (harder object feeders). This paper reviews how dental microwear textures can be useful to reconstructing diets in a broad array of living and extinct mammals, with commentary on areas of future research.
Extracting built-up areas from TerraSAR-X data using object-oriented classification method
NASA Astrophysics Data System (ADS)
Wang, SuYun; Sun, Z. C.
2017-02-01
Based on single-polarized TerraSAR-X, the approach generates homogeneous segments on an arbitrary number of scale levels by applying a region-growing algorithm which takes the intensity of backscatter and shape-related properties into account. The object-oriented procedure consists of three main steps: firstly, the analysis of the local speckle behavior in the SAR intensity data, leading to the generation of a texture image; secondly, a segmentation based on the intensity image; thirdly, the classification of each segment using the derived texture file and intensity information in order to identify and extract build-up areas. In our research, the distribution of BAs in Dongying City is derived from single-polarized TSX SM image (acquired on 17th June 2013) with average ground resolution of 3m using our proposed approach. By cross-validating the random selected validation points with geo-referenced field sites, Quick Bird high-resolution imagery, confusion matrices with statistical indicators are calculated and used for assessing the classification results. The results demonstrate that an overall accuracy 92.89 and a kappa coefficient of 0.85 could be achieved. We have shown that connect texture information with the analysis of the local speckle divergence, combining texture and intensity of construction extraction is feasible, efficient and rapid.
Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation
Maji, Pradipta; Roy, Shaswati
2015-01-01
Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR) images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentation method desirable. In this regard, this paper presents a new segmentation method for brain MR images, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method assumes that the major brain tissues, namely, gray matter, white matter, and cerebrospinal fluid from the MR images are considered to have different textural properties. The dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel, while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR image segmentation. An unsupervised feature selection method is introduced, based on maximum relevance-maximum significance criterion, to select relevant and significant textural features for segmentation problem, while the mathematical morphology based skull stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The performance of the proposed method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices. PMID:25848961
Characterising the disintegration properties of tablets in opaque media using texture analysis.
Scheuerle, Rebekah L; Gerrard, Stephen E; Kendall, Richard A; Tuleu, Catherine; Slater, Nigel K H; Mahbubani, Krishnaa T
2015-01-01
Tablet disintegration characterisation is used in pharmaceutical research, development, and quality control. Standard methods used to characterise tablet disintegration are often dependent on visual observation in measurement of disintegration times. This presents a challenge for disintegration studies of tablets in opaque, physiologically relevant media that could be useful for tablet formulation optimisation. This study has explored an application of texture analysis disintegration testing, a non-visual, quantitative means of determining tablet disintegration end point, by analysing the disintegration behaviour of two tablet formulations in opaque media. In this study, the disintegration behaviour of one tablet formulation manufactured in-house, and Sybedia Flashtab placebo tablets in water, bovine, and human milk were characterised. A novel method is presented to characterise the disintegration process and to quantify the disintegration end points of the tablets in various media using load data generated by a texture analyser probe. The disintegration times in the different media were found to be statistically different (P<0.0001) from one another for both tablet formulations using one-way ANOVA. Using the Tukey post-hoc test, the Sybedia Flashtab placebo tablets were found not to have statistically significant disintegration times from each other in human versus bovine milk (adjusted P value 0.1685). Copyright © 2015 Elsevier B.V. All rights reserved.
Automatic Segmenting Structures in MRI's Based on Texture Analysis and Fuzzy Logic
NASA Astrophysics Data System (ADS)
Kaur, Mandeep; Rattan, Munish; Singh, Pushpinder
2017-12-01
The purpose of this paper is to present the variational method for geometric contours which helps the level set function remain close to the sign distance function, therefor it remove the need of expensive re-initialization procedure and thus, level set method is applied on magnetic resonance images (MRI) to track the irregularities in them as medical imaging plays a substantial part in the treatment, therapy and diagnosis of various organs, tumors and various abnormalities. It favors the patient with more speedy and decisive disease controlling with lesser side effects. The geometrical shape, the tumor's size and tissue's abnormal growth can be calculated by the segmentation of that particular image. It is still a great challenge for the researchers to tackle with an automatic segmentation in the medical imaging. Based on the texture analysis, different images are processed by optimization of level set segmentation. Traditionally, optimization was manual for every image where each parameter is selected one after another. By applying fuzzy logic, the segmentation of image is correlated based on texture features, to make it automatic and more effective. There is no initialization of parameters and it works like an intelligent system. It segments the different MRI images without tuning the level set parameters and give optimized results for all MRI's.
A neural network detection model of spilled oil based on the texture analysis of SAR image
NASA Astrophysics Data System (ADS)
An, Jubai; Zhu, Lisong
2006-01-01
A Radial Basis Function Neural Network (RBFNN) Model is investigated for the detection of spilled oil based on the texture analysis of SAR imagery. In this paper, to take the advantage of the abundant texture information of SAR imagery, the texture features are extracted by both wavelet transform and the Gray Level Co-occurrence matrix. The RBFNN Model is fed with a vector of these texture features. The RBFNN Model is trained and tested by the sample data set of the feature vectors. Finally, a SAR image is classified by this model. The classification results of a spilled oil SAR image show that the classification accuracy for oil spill is 86.2 by the RBFNN Model using both wavelet texture and gray texture, while the classification accuracy for oil spill is 78.0 by same RBFNN Model using only wavelet texture as the input of this RBFNN model. The model using both wavelet transform and the Gray Level Co-occurrence matrix is more effective than that only using wavelet texture. Furthermore, it keeps the complicated proximity and has a good performance of classification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, W; Tu, S
Purpose: Pharyngeal and laryngeal carcinomas (PLC) are among the top leading cancers in Asian populations. Typically the tumor may recur and progress in a short period of time if radiotherapy fails to deliver a successful treatment. Here we used image texture features extracted from images of computed tomography (CT) planning and conducted a retrospective study to evaluate whether texture analysis is a feasible approach to predict local tumor recurrence for PLC patients received radiotherapy treatment. Methods: CT planning images of 100 patients with PLC treated by radiotherapy at our facility between 2001 and 2010 are collected. These patients were receivedmore » two separate CT scans, before and mid-course of the treatment delivery. Before the radiotherapy, a CT scanning was used for the first treatment planning. A total of 30 fractions were used in the treatment and patients were scanned with a second CT around the end of the fifteenth delivery for an adaptive treatment planning. Only patients who were treated with intensity modulated radiation therapy and RapidArc were selected. Treatment planning software of Eclipse was used. The changes of texture parameters between two CT acquisitions were computed to determine whether they were correlated to the local tumor recurrence. The following texture parameters were used in the preliminary assessment: mean, variance, standard deviation, skewness, kurtosis, energy, entropy, inverse difference moment, cluster shade, inertia, cluster prominence, gray-level co-occurrence matrix, and gray-level run-length matrix. The study was reviewed and approved by the committee of our institutional review board. Results: Our calculations suggested the following texture parameters were correlated with the local tumor recurrence: skewness, kurtosis, entropy, and inertia (p<0.0.05). Conclusion: The preliminary results were positive. However some works remain crucial to be completed, including addition of texture parameters for different image features, sensitivity of tumor segmentation variations, and effect of image filtering.« less
Structural texture similarity metrics for image analysis and retrieval.
Zujovic, Jana; Pappas, Thrasyvoulos N; Neuhoff, David L
2013-07-01
We develop new metrics for texture similarity that accounts for human visual perception and the stochastic nature of textures. The metrics rely entirely on local image statistics and allow substantial point-by-point deviations between textures that according to human judgment are essentially identical. The proposed metrics extend the ideas of structural similarity and are guided by research in texture analysis-synthesis. They are implemented using a steerable filter decomposition and incorporate a concise set of subband statistics, computed globally or in sliding windows. We conduct systematic tests to investigate metric performance in the context of "known-item search," the retrieval of textures that are "identical" to the query texture. This eliminates the need for cumbersome subjective tests, thus enabling comparisons with human performance on a large database. Our experimental results indicate that the proposed metrics outperform peak signal-to-noise ratio (PSNR), structural similarity metric (SSIM) and its variations, as well as state-of-the-art texture classification metrics, using standard statistical measures.
NASA Astrophysics Data System (ADS)
Walter, J. M.; Stipp, M.; Ullemeyer, K.; Klein, H.; Leiss, B.; Hansen, B.; Kuhs, W. F.
2011-12-01
Neutron diffraction has become a routine method in Geoscience for the quantitative analysis of crystallographic preferred orientations (CPOs) and for (experimental) powder diffraction. Quantitative texture analysis is a common tool for the investigation of fabric development in mono- and polyphase rocks, their deformation histories and kinematics. Furthermore the quantitative characterization of anisotropic physical properties by bulk texture measurements can be achieved due to the high penetration capabilities of neutrons. To cope with increasing needs for beam time at neutron diffraction facilities with the corresponding technical characteristics and equipment, POWTEX (POWder and TEXture Diffractometer) is designed as a high-intensity diffractometer at the neutron research reactor FRM II in Garching, Germany by groups from the RWTH Aachen, Forschungszentrum Jülich and the University of Göttingen. Complementary to existing neutron diffractometers (SKAT at Dubna, Russia; GEM at ISIS, UK; HIPPO at Los Alamos, USA; D20 at ILL, France; and the local STRESS-SPEC and SPODI at FRM II) the layout of POWTEX is focused on fast (texture) measurements for either time-resolved experiments or the measurement of larger sample series as necessary for the study of large scale geological structures. By utilizing a range of neutron wavelengths simultaneously (TOF-technique), a high flux (~1 x 107 n/cm2s) and a high detector coverage ( 9.8 sr) effective texture measurements without sample tilting and rotation are possible. Furthermore the instrument and the angular detector resolution is sufficient for strong recrystallisation textures as well as weak textures of polyphase rocks. Thereby large sample environments will be implemented at POWTEX allowing in-situ time-resolved texture measurements during deformation experiments on rocksalt, ice and other materials. Furthermore a furnace for 3D-recrystallisation analysis of single grains will be realized complementary to the furnace that already exists for fine grained materials at the synchrotron beamline BW5 at HASYLAB, Germany (e.g. Klein et al. 2009). The in-situ triaxial deformation apparatus is operated by a uniaxial spindle drive with a maximum axial load of 200 kN, which will be redesigned to minimize shadowing effects on the detector. The HT experiments will be carried out in uniaxial compression or extension and an upgrade to triaxial deformation conditions is envisaged. The load frame can alternatively be used for ice deformation by inserting a cryostat cell for temperatures down to 77 K with a triaxial apparatus allowing also simple shear experiments on ice. Strain rates range between 10-8 and 10-3 s-1 reaching to at least 50 % axial strain. The furnace for the recrystallization analysis will be a mirror furnace with temperatures up to 1500° C, which will be rotatable around a vertical axis to obtain the required stereologic orientation information.
NASA Astrophysics Data System (ADS)
Fernandez, Carlos; Platero, Carlos; Campoy, Pascual; Aracil, Rafael
1994-11-01
This paper describes some texture-based techniques that can be applied to quality assessment of flat products continuously produced (metal strips, wooden surfaces, cork, textile products, ...). Since the most difficult task is that of inspecting for product appearance, human-like inspection ability is required. A common feature to all these products is the presence of non- deterministic texture on their surfaces. Two main subjects are discussed: statistical techniques for both surface finishing determination and surface defect analysis as well as real-time implementation for on-line inspection in high-speed applications. For surface finishing determination a Gray Level Difference technique is presented to perform over low resolution images, that is, no-zoomed images. Defect analysis is performed by means of statistical texture analysis over defective portions of the surface. On-line implementation is accomplished by means of neural networks. When a defect arises, textural analysis is applied which result in a data-vector, acting as input of a neural net, previously trained in a supervised way. This approach tries to reach on-line performance in automated visual inspection applications when texture is presented in flat product surfaces.
Pieniazek, Facundo; Messina, Valeria
2016-11-01
In this study the effect of freeze drying on the microstructure, texture, and tenderness of Semitendinous and Gluteus Medius bovine muscles were analyzed applying Scanning Electron Microscopy combined with image analysis. Samples were analyzed by Scanning Electron Microscopy at different magnifications (250, 500, and 1,000×). Texture parameters were analyzed by Texture analyzer and by image analysis. Tenderness by Warner-Bratzler shear force. Significant differences (p < 0.05) were obtained for image and instrumental texture features. A linear trend with a linear correlation was applied for instrumental and image features. Image texture features calculated from Gray Level Co-occurrence Matrix (homogeneity, contrast, entropy, correlation and energy) at 1,000× in both muscles had high correlations with instrumental features (chewiness, hardness, cohesiveness, and springiness). Tenderness showed a positive correlation in both muscles with image features (energy and homogeneity). Combing Scanning Electron Microscopy with image analysis can be a useful tool to analyze quality parameters in meat.Summary SCANNING 38:727-734, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Methods for comparing 3D surface attributes
NASA Astrophysics Data System (ADS)
Pang, Alex; Freeman, Adam
1996-03-01
A common task in data analysis is to compare two or more sets of data, statistics, presentations, etc. A predominant method in use is side-by-side visual comparison of images. While straightforward, it burdens the user with the task of discerning the differences between the two images. The user if further taxed when the images are of 3D scenes. This paper presents several methods for analyzing the extent, magnitude, and manner in which surfaces in 3D differ in their attributes. The surface geometry are assumed to be identical and only the surface attributes (color, texture, etc.) are variable. As a case in point, we examine the differences obtained when a 3D scene is rendered progressively using radiosity with different form factor calculation methods. The comparison methods include extensions of simple methods such as mapping difference information to color or transparency, and more recent methods including the use of surface texture, perturbation, and adaptive placements of error glyphs.
Presotto, L; Bettinardi, V; De Bernardi, E; Belli, M L; Cattaneo, G M; Broggi, S; Fiorino, C
2018-06-01
The analysis of PET images by textural features, also known as radiomics, shows promising results in tumor characterization. However, radiomic metrics (RMs) analysis is currently not standardized and the impact of the whole processing chain still needs deep investigation. We characterized the impact on RM values of: i) two discretization methods, ii) acquisition statistics, and iii) reconstruction algorithm. The influence of tumor volume and standardized-uptake-value (SUV) on RM was also investigated. The Chang-Gung-Image-Texture-Analysis (CGITA) software was used to calculate 39 RMs using phantom data. Thirty noise realizations were acquired to measure statistical effect size indicators for each RM. The parameter η 2 (fraction of variance explained by the nuisance factor) was used to assess the effect of categorical variables, considering η 2 < 20% and 20% < η 2 < 40% as representative of a "negligible" and a "small" dependence respectively. The Cohen's d was used as discriminatory power to quantify the separation of two distributions. We found the discretization method based on fixed-bin-number (FBN) to outperform the one based on fixed-bin-size in units of SUV (FBS), as the latter shows a higher SUV dependence, with 30 RMs showing η 2 > 20%. FBN was also less influenced by the acquisition and reconstruction setup:with FBN 37 RMs had η 2 < 40%, only 20 with FBS. Most RMs showed a good discriminatory power among heterogeneous PET signals (for FBN: 29 out of 39 RMs with d > 3). For RMs analysis, FBN should be preferred. A group of 21 RMs was suggested for PET radiomics analysis. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
[Study on objectively evaluating skin aging according to areas of skin texture].
Shan, Gaixin; Gan, Ping; He, Ling; Sun, Lu; Li, Qiannan; Jiang, Zheng; He, Xiangqian
2015-02-01
Skin aging principles play important roles in skin disease diagnosis, the evaluation of skin cosmetic effect, forensic identification and age identification in sports competition, etc. This paper proposes a new method to evaluate the skin aging objectively and quantitatively by skin texture area. Firstly, the enlarged skin image was acquired. Then, the skin texture image was segmented by using the iterative threshold method, and the skin ridge image was extracted according to the watershed algorithm. Finally, the skin ridge areas of the skin texture were extracted. The experiment data showed that the average areas of skin ridges, of both men and women, had a good correlation with age (the correlation coefficient r of male was 0.938, and the correlation coefficient r of female was 0.922), and skin texture area and age regression curve showed that the skin texture area increased with age. Therefore, it is effective to evaluate skin aging objectively by the new method presented in this paper.
NASA Astrophysics Data System (ADS)
Phillips, Jonathan B.; Coppola, Stephen M.; Jin, Elaine W.; Chen, Ying; Clark, James H.; Mauer, Timothy A.
2009-01-01
Texture appearance is an important component of photographic image quality as well as object recognition. Noise cleaning algorithms are used to decrease sensor noise of digital images, but can hinder texture elements in the process. The Camera Phone Image Quality (CPIQ) initiative of the International Imaging Industry Association (I3A) is developing metrics to quantify texture appearance. Objective and subjective experimental results of the texture metric development are presented in this paper. Eight levels of noise cleaning were applied to ten photographic scenes that included texture elements such as faces, landscapes, architecture, and foliage. Four companies (Aptina Imaging, LLC, Hewlett-Packard, Eastman Kodak Company, and Vista Point Technologies) have performed psychophysical evaluations of overall image quality using one of two methods of evaluation. Both methods presented paired comparisons of images on thin film transistor liquid crystal displays (TFT-LCD), but the display pixel pitch and viewing distance differed. CPIQ has also been developing objective texture metrics and targets that were used to analyze the same eight levels of noise cleaning. The correlation of the subjective and objective test results indicates that texture perception can be modeled with an objective metric. The two methods of psychophysical evaluation exhibited high correlation despite the differences in methodology.
Automatic computational labeling of glomerular textural boundaries
NASA Astrophysics Data System (ADS)
Ginley, Brandon; Tomaszewski, John E.; Sarder, Pinaki
2017-03-01
The glomerulus, a specialized bundle of capillaries, is the blood filtering unit of the kidney. Each human kidney contains about 1 million glomeruli. Structural damages in the glomerular micro-compartments give rise to several renal conditions; most severe of which is proteinuria, where excessive blood proteins flow freely to the urine. The sole way to confirm glomerular structural damage in renal pathology is by examining histopathological or immunofluorescence stained needle biopsies under a light microscope. However, this method is extremely tedious and time consuming, and requires manual scoring on the number and volume of structures. Computational quantification of equivalent features promises to greatly ease this manual burden. The largest obstacle to computational quantification of renal tissue is the ability to recognize complex glomerular textural boundaries automatically. Here we present a computational pipeline to accurately identify glomerular boundaries with high precision and accuracy. The computational pipeline employs an integrated approach composed of Gabor filtering, Gaussian blurring, statistical F-testing, and distance transform, and performs significantly better than standard Gabor based textural segmentation method. Our integrated approach provides mean accuracy/precision of 0.89/0.97 on n = 200Hematoxylin and Eosin (HE) glomerulus images, and mean 0.88/0.94 accuracy/precision on n = 200 Periodic Acid Schiff (PAS) glomerulus images. Respective accuracy/precision of the Gabor filter bank based method is 0.83/0.84 for HE and 0.78/0.8 for PAS. Our method will simplify computational partitioning of glomerular micro-compartments hidden within dense textural boundaries. Automatic quantification of glomeruli will streamline structural analysis in clinic, and can help realize real time diagnoses and interventions.
NASA Astrophysics Data System (ADS)
Taylor, Faith E.; Malamud, Bruce D.; Millington, James D. A.
2016-04-01
The configuration of infrastructure networks such as roads, drainage and power lines can both affect and be affected by natural hazards such as earthquakes, intense rain, wildfires and extreme temperatures. In this paper, we present and compare two methods to quantify urban topology on approximate scales of 0.0005 km2 to 10 km2 and create classifications of different 'urban textures' that relate to risk of natural hazard impact in an area. The methods we use focus on applicability in urban developing country settings, where access to high resolution and high quality data may be difficult. We use the city of Nairobi, Kenya to trial these methods. Nairobi has a population >3 million, and is a mix of informal settlements, residential and commercial development. The city and its immediate surroundings are subject to a variety of natural hazards such as floods, landslides, fires, drought, hail, heavy wind and extreme temperatures; all of these hazards can occur singly, but also have the potential for one to trigger another, thus providing a 'cascade' of hazards, or for two of the hazards to occur spatially and temporally near each other and interact. We use two measures of urban texture: (i) Street block textures, (ii) Google Earth land cover textures. Street block textures builds on the methodology of Louf and Barthelemy (2014) and uses Open Street Map data to analyse the shape, size, complexity and pattern of individual blocks of land created by fully enclosed loops of the major and minor road network of Nairobi. We find >4000 of these blocks ranging in size from approximately 0.0005 km2 to 10 km2, with approximately 5 classifications of urban texture. Google Earth land cover texture is a visual classification of homogeneous parcels of land performed in Google Earth using high-resolution airborne imagery and a qualitative criteria for each land cover type. Using the Google Earth land cover texture method, we identify >40 'urban textures' based on visual characteristics such as colour, texture, shadow and setting and have created a clear criteria for classifying an area based on its visual characteristics. These two methods for classifying urban texture in Nairobi are compared in a GIS and in the field to investigate whether there is a link between the visual appearance of an area and its network topology. From these urban textures, we may start to identify areas where (a) urban texture types may indicate a relative propensity to certain hazards and their interactions and (b) urban texture types that may increase or decrease the impact of a hazard that occurs in that area.
Theory of Image Analysis and Recognition.
1983-01-24
Stanley M. Dunn, "Texture Classification with Change Point Statistics," TR- 1082 , July 1981. 97. R. Chellappa, "Synthesis of Textures Using Simultane...July 1981. 96. Stanley M. Dunn, "Texture Classification with Change Point Statistics," TR- 1082 , July 1981. * 97. R. Chellappa, "Synthesis of Textures
Instrumental texture characteristics of broiler pectoralis major with the woody breast condition
USDA-ARS?s Scientific Manuscript database
The objective was to characterize texture properties of raw and cooked broiler fillets (pectoralis major) with the woody breast condition (WBC) using instrumental texture techniques Meullenet-Owens Razor Shear (MORS) and texture profile analysis (TPA). Deboned (3 h postmortem) broiler fillets were c...
Method and Apparatus for Producing a Substrate with Low Secondary Electron Emissions
NASA Technical Reports Server (NTRS)
Jensen, Kenneth A. (Inventor); Curren, Arthur N. (Inventor); Roman, Robert F. (Inventor)
1998-01-01
The present invention is directed to a method and apparatus for producing a highly-textured surface on a copper substrate with only extremely small amounts of texture-inducing seeding of masking material. The texture-inducing seeding material is delivered to the copper substrate electrically switching the seeding material in and out of a circuit loop.
Dry etch method for texturing silicon and device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gershon, Talia S.; Haight, Richard A.; Kim, Jeehwan
2017-07-25
A method for texturing silicon includes loading a silicon wafer into a vacuum chamber, heating the silicon wafer and thermal cracking a gas to generate cracked sulfur species. The silicon wafer is exposed to the cracked sulfur species for a time duration in accordance with a texture characteristic needed for a surface of the silicon wafer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Y; Wang, J; Wang, C
Purpose: To investigate the sensitivity of classic texture features to variations of MRI acquisition parameters. Methods: This study was performed on American College of Radiology (ACR) MRI Accreditation Program Phantom. MR imaging was acquired on a GE 750 3T scanner with XRM explain gradient, employing a T1-weighted images (TR/TE=500/20ms) with the following parameters as the reference standard: number of signal average (NEX) = 1, matrix size = 256×256, flip angle = 90°, slice thickness = 5mm. The effect of the acquisition parameters on texture features with and without non-uniformity correction were investigated respectively, while all the other parameters were keptmore » as reference standard. Protocol parameters were set as follows: (a). NEX = 0.5, 2 and 4; (b).Phase encoding steps = 128, 160 and 192; (c). Matrix size = 128×128, 192×192 and 512×512. 32 classic texture features were generated using the classic gray level run length matrix (GLRLM) and gray level co-occurrence matrix (GLCOM) from each image data set. Normalized range ((maximum-minimum)/mean) was calculated to determine variation among the scans with different protocol parameters. Results: For different NEX, 31 out of 32 texture features’ range are within 10%. For different phase encoding steps, 31 out of 32 texture features’ range are within 10%. For different acquisition matrix size without non-uniformity correction, 14 out of 32 texture features’ range are within 10%; for different acquisition matrix size with non-uniformity correction, 16 out of 32 texture features’ range are within 10%. Conclusion: Initial results indicated that those texture features that range within 10% are less sensitive to variations in T1-weighted MRI acquisition parameters. This might suggest that certain texture features might be more reliable to be used as potential biomarkers in MR quantitative image analysis.« less
Losio, C.; Della Corte, A.; Venturini, E.; Ambrosi, A.; Panizza, P.; De Cobelli, F.
2018-01-01
Purpose To assess correlations between volumetric first-order texture parameters on baseline MRI and pathological response after neoadjuvant chemotherapy (NAC) for locally advanced breast cancer (BC). Materials and Methods 69 patients with locally advanced BC candidate to neoadjuvant chemotherapy underwent MRI within 4 weeks from the start of therapeutic regimen. T2, DWI, and DCE sequences were analyzed and maps were generated for Apparent Diffusion Coefficient (ADC), T2 signal intensity, and the following dynamic parameters: k-trans, peak enhancement, area under curve (AUC), time to maximal enhancement (TME), wash-in rate, and washout rate. Volumetric analysis of these parameters was performed, yielding a histogram analysis including first-order texture kinetics (percentiles, maximum value, minimum value, range, standard deviation, mean, median, mode, skewness, and kurtosis). Finally, correlations between these values and response to NAC (evaluated on the surgical specimen according to RECIST 1.1 criteria) were assessed. Results Out of 69 tumors, 33 (47.8%) achieved complete pathological response, 26 (37.7%) partial response, and 10 (14.5%) no response. Higher levels of AUCmax (p value = 0.0338), AUCrange (p value = 0.0311), and TME75 (p value = 0.0452) and lower levels of washout10 (p value = 0.0417), washout20 (p value = 0.0138), washout25 (p value = 0.0114), and washout30 (p value = 0.05) were predictive of noncomplete response. Conclusion Histogram-derived texture analysis of MRI images allows finding quantitative parameters predictive of nonresponse to NAC in women affected by locally advanced BC. PMID:29853811
Quantitative Analysis of the Cervical Texture by Ultrasound and Correlation with Gestational Age.
Baños, Núria; Perez-Moreno, Alvaro; Migliorelli, Federico; Triginer, Laura; Cobo, Teresa; Bonet-Carne, Elisenda; Gratacos, Eduard; Palacio, Montse
2017-01-01
Quantitative texture analysis has been proposed to extract robust features from the ultrasound image to detect subtle changes in the textures of the images. The aim of this study was to evaluate the feasibility of quantitative cervical texture analysis to assess cervical tissue changes throughout pregnancy. This was a cross-sectional study including singleton pregnancies between 20.0 and 41.6 weeks of gestation from women who delivered at term. Cervical length was measured, and a selected region of interest in the cervix was delineated. A model to predict gestational age based on features extracted from cervical images was developed following three steps: data splitting, feature transformation, and regression model computation. Seven hundred images, 30 per gestational week, were included for analysis. There was a strong correlation between the gestational age at which the images were obtained and the estimated gestational age by quantitative analysis of the cervical texture (R = 0.88). This study provides evidence that quantitative analysis of cervical texture can extract features from cervical ultrasound images which correlate with gestational age. Further research is needed to evaluate its applicability as a biomarker of the risk of spontaneous preterm birth, as well as its role in cervical assessment in other clinical situations in which cervical evaluation might be relevant. © 2016 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Herawati, ERN; Ariani, D.; Miftakhussolikhah; Yosieto, E.; Angwar, M.; Pranoto, Y.
2017-12-01
Ganyong (Canna edulis Kerr) is a local tuber which highest amount of starch content, but has not been fully utilized well at present. One way to improve the usefulness of canna is to process it into noodle, but it needs arenga starch which has high amylose content. The aim of this research was to study the sensory and textural properties of noodle made from canna flour and arenga starch. Research methodologies consist of: (i) characterization of canna flour and arenga starch, (ii) noodle production, and (iii) characterization sensory and textural properties of the noodle. Noodle was made with five ratio variations of canna flour and arenga starch, i.e. 100:0; 75:25; 50:50; 25:75; and 0:100. Sensory analysis was done by hedonic scoring method with attributes : color, stickiness, elasticity, firmness, surface smoothness and overall liking. Textural properties analyses consist of tensile strength, elongation, and stickiness measurements. The results showed that canna flour and arenga starch can be used in noodle making process. Noodle with 25% of canna flour was the most favored product and has the best textural properties. Factors which affect textural properties of product are the amylose and amylopectin amount in each starch. Tensile strength, elongation, and stickiness measurements of noodle with 25% of canna flour were 0,13 N; 41,61%; and 0,0115N respectively.
1st- and 2nd-order motion and texture resolution in central and peripheral vision
NASA Technical Reports Server (NTRS)
Solomon, J. A.; Sperling, G.
1995-01-01
STIMULI. The 1st-order stimuli are moving sine gratings. The 2nd-order stimuli are fields of static visual texture, whose contrasts are modulated by moving sine gratings. Neither the spatial slant (orientation) nor the direction of motion of these 2nd-order (microbalanced) stimuli can be detected by a Fourier analysis; they are invisible to Reichardt and motion-energy detectors. METHOD. For these dynamic stimuli, when presented both centrally and in an annular window extending from 8 to 10 deg in eccentricity, we measured the highest spatial frequency for which discrimination between +/- 45 deg texture slants and discrimination between opposite directions of motion were each possible. RESULTS. For sufficiently low spatial frequencies, slant and direction can be discriminated in both central and peripheral vision, for both 1st- and for 2nd-order stimuli. For both 1st- and 2nd-order stimuli, at both retinal locations, slant discrimination is possible at higher spatial frequencies than direction discrimination. For both 1st- and 2nd-order stimuli, motion resolution decreases 2-3 times more rapidly with eccentricity than does texture resolution. CONCLUSIONS. (1) 1st- and 2nd-order motion scale similarly with eccentricity. (2) 1st- and 2nd-order texture scale similarly with eccentricity. (3) The central/peripheral resolution fall-off is 2-3 times greater for motion than for texture.
Method for forming a nano-textured substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Sangmoo; Hu, Liangbing; Cui, Yi
A method for forming a nano-textured surface on a substrate is disclosed. An illustrative embodiment of the present invention comprises dispensing of a nanoparticle ink of nanoparticles and solvent onto the surface of a substrate, distributing the ink to form substantially uniform, liquid nascent layer of the ink, and enabling the solvent to evaporate from the nanoparticle ink thereby inducing the nanoparticles to assemble into an texture layer. Methods in accordance with the present invention enable rapid formation of large-area substrates having a nano-textured surface. Embodiments of the present invention are well suited for texturing substrates using high-speed, large scale,more » roll-to-roll coating equipment, such as that used in office product, film coating, and flexible packaging applications. Further, embodiments of the present invention are well suited for use with rigid or flexible substrates.« less
NASA Astrophysics Data System (ADS)
Pham, Tuan D.; Watanabe, Yuzuru; Higuchi, Mitsunori; Suzuki, Hiroyuki
2017-02-01
Texture analysis of computed tomography (CT) imaging has been found useful to distinguish subtle differences, which are in- visible to human eyes, between malignant and benign tissues in cancer patients. This study implemented two complementary methods of texture analysis, known as the gray-level co-occurrence matrix (GLCM) and the experimental semivariogram (SV) with an aim to improve the predictive value of evaluating mediastinal lymph nodes in lung cancer. The GLCM was explored with the use of a rich set of its derived features, whereas the SV feature was extracted on real and synthesized CT samples of benign and malignant lymph nodes. A distinct advantage of the computer methodology presented herein is the alleviation of the need for an automated precise segmentation of the lymph nodes. Using the logistic regression model, a sensitivity of 75%, specificity of 90%, and area under curve of 0.89 were obtained in the test population. A tenfold cross-validation of 70% accuracy of classifying between benign and malignant lymph nodes was obtained using the support vector machines as a pattern classifier. These results are higher than those recently reported in literature with similar studies.
Down syndrome detection from facial photographs using machine learning techniques
NASA Astrophysics Data System (ADS)
Zhao, Qian; Rosenbaum, Kenneth; Sze, Raymond; Zand, Dina; Summar, Marshall; Linguraru, Marius George
2013-02-01
Down syndrome is the most commonly occurring chromosomal condition; one in every 691 babies in United States is born with it. Patients with Down syndrome have an increased risk for heart defects, respiratory and hearing problems and the early detection of the syndrome is fundamental for managing the disease. Clinically, facial appearance is an important indicator in diagnosing Down syndrome and it paves the way for computer-aided diagnosis based on facial image analysis. In this study, we propose a novel method to detect Down syndrome using photography for computer-assisted image-based facial dysmorphology. Geometric features based on facial anatomical landmarks, local texture features based on the Contourlet transform and local binary pattern are investigated to represent facial characteristics. Then a support vector machine classifier is used to discriminate normal and abnormal cases; accuracy, precision and recall are used to evaluate the method. The comparison among the geometric, local texture and combined features was performed using the leave-one-out validation. Our method achieved 97.92% accuracy with high precision and recall for the combined features; the detection results were higher than using only geometric or texture features. The promising results indicate that our method has the potential for automated assessment for Down syndrome from simple, noninvasive imaging data.
Pérez-Hernández, Oscar; Giesler, Loren J.
2014-01-01
Soil texture has been commonly associated with the population density of Heterodera glycines (soybean cyst nematode: SCN), but such an association has been mainly described in terms of textural classes. In this study, multivariate analysis and a generalized linear modeling approach were used to elucidate the quantitative relationship of soil texture with the observed SCN population density reduction after annual corn rotation in Nebraska. Forty-five commercial production fields were sampled in 2009, 2010, and 2011 and SCN population density (eggs/100 cm3 of soil) for each field was determined before (Pi) and after (Pf) annual corn rotation from ten 3 × 3-m sampling grids. Principal components analysis revealed that, compared with silt and clay, sand had a stronger association with SCN Pi and Pf. Cluster analysis using the average linkage method and confirmed through 1,000 bootstrap simulations identified two groups: one corresponding to predominant silt-and-clay fields and other to sand-predominant fields. This grouping suggested that SCN relative percent population decline was higher in the sandy than in the silt-and-clay predominant group. However, when groups were compared for their SCN population density reduction using Pf as the response, Pi as a covariate, and incorporating the year and field variability, a negative binomial generalized linear model indicated that the SCN population density reduction was not statistically different between the sand-predominant field group and the silt-and-clay predominant group. PMID:24987160
NASA Astrophysics Data System (ADS)
Varghese, Bino; Hwang, Darryl; Mohamed, Passant; Cen, Steven; Deng, Christopher; Chang, Michael; Duddalwar, Vinay
2017-11-01
Purpose: To evaluate potential use of wavelets analysis in discriminating benign and malignant renal masses (RM) Materials and Methods: Regions of interest of the whole lesion were manually segmented and co-registered from multiphase CT acquisitions of 144 patients (98 malignant RM: renal cell carcinoma (RCC) and 46 benign RM: oncocytoma, lipid-poor angiomyolipoma). Here, the Haar wavelet was used to analyze the grayscale images of the largest segmented tumor in the axial direction. Six metrics (energy, entropy, homogeneity, contrast, standard deviation (SD) and variance) derived from 3-levels of image decomposition in 3 directions (horizontal, vertical and diagonal) respectively, were used to quantify tumor texture. Independent t-test or Wilcoxon rank sum test depending on data normality were used as exploratory univariate analysis. Stepwise logistic regression and receiver operator characteristics (ROC) curve analysis were used to select predictors and assess prediction accuracy, respectively. Results: Consistently, 5 out of 6 wavelet-based texture measures (except homogeneity) were higher for malignant tumors compared to benign, when accounting for individual texture direction. Homogeneity was consistently lower in malignant than benign tumors irrespective of direction. SD and variance measured in the diagonal direction on the corticomedullary phase showed significant (p<0.05) difference between benign versus malignant tumors. The multivariate model with variance (3 directions) and SD (vertical direction) extracted from the excretory and pre-contrast phase, respectively showed an area under the ROC curve (AUC) of 0.78 (p < 0.05) in discriminating malignant from benign. Conclusion: Wavelet analysis is a valuable texture evaluation tool to add to a radiomics platforms geared at reliably characterizing and stratifying renal masses.
NASA Astrophysics Data System (ADS)
Bhartia, R.; Wanger, G.; Orphan, V. J.; Fries, M.; Rowe, A. R.; Nealson, K. H.; Abbey, W. J.; DeFlores, L. P.; Beegle, L. W.
2014-12-01
Detection of in situ biosignatures on terrestrial and planetary missions is becoming increasingly more important. Missions that target the Earth's deep biosphere, Mars, moons of Jupiter (including Europa), moons of Saturn (Titan and Enceladus), and small bodies such as asteroids or comets require methods that enable detection of materials for both in-situ analysis that preserve context and as a means to select high priority sample for return to Earth. In situ instrumentation for biosignature detection spans a wide range of analytical and spectroscopic methods that capitalize on amino acid distribution, chirality, lipid composition, isotopic fractionation, or textures that persist in the environment. Many of the existing analytical instruments are bulk analysis methods and while highly sensitive, these require sample acquisition and sample processing. However, by combining with triaging spectroscopic methods, biosignatures can be targeted on a surface and preserve spatial context (including mineralogy, textures, and organic distribution). To provide spatially correlated chemical analysis at multiple spatial scales (meters to microns) we have employed a dual spectroscopic approach that capitalizes on high sensitivity deep UV native fluorescence detection and high specificity deep UV Raman analysis.. Recently selected as a payload on the Mars 2020 mission, SHERLOC incorporates these optical methods for potential biosignatures detection on Mars. We present data from both Earth analogs that operate as our only examples known biosignatures and meteorite samples that provide an example of abiotic organic formation, and demonstrate how provenance effects the spatial distribution and composition of organics.
Intraoral radiographs texture analysis for dental implant planning.
Mundim, Mayara B V; Dias, Danilo R; Costa, Ronaldo M; Leles, Cláudio R; Azevedo-Marques, Paulo M; Ribeiro-Rotta, Rejane F
2016-11-01
Computer vision extracts features or attributes from images improving diagnosis accuracy and aiding in clinical decisions. This study aims to investigate the feasibility of using texture analysis of periapical radiograph images as a tool for dental implant treatment planning. Periapical radiograph images of 127 jawbone sites were obtained before and after implant placement. From the superimposition of the pre- and post-implant images, four regions of interest (ROI) were delineated on the pre-implant images for each implant site: mesial, distal and apical peri-implant areas and a central area. Each ROI was analysed using Matlab® software and seven image attributes were extracted: mean grey level (MGL), standard deviation of grey levels (SDGL), coefficient of variation (CV), entropy (En), contrast, correlation (Cor) and angular second moment (ASM). Images were grouped by bone types-Lekholm and Zarb classification (1,2,3,4). Peak insertion torque (PIT) and resonance frequency analysis (RFA) were recorded during implant placement. Differences among groups were tested for each image attribute. Agreement between measurements of the peri-implant ROIs and overall ROI (peri-implant + central area) was tested, as well as the association between primary stability measures (PIT and RFA) and texture attributes. Differences among bone type groups were found for MGL (p = 0.035), SDGL (p = 0.024), CV (p < 0.001) and En (p < 0.001). The apical ROI showed a significant difference from the other regions for all attributes, except Cor. Concordance correlation coefficients were all almost perfect (ρ > 0.93), except for ASM (ρ = 0.62). Texture attributes were significantly associated with the implant stability measures. Texture analysis of periapical radiographs may be a reliable non-invasive quantitative method for the assessment of jawbone and prediction of implant stability, with potential clinical applications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B; Fujita, A; Buch, K
Purpose: To investigate the correlation between texture analysis-based model observer and human observer in the task of diagnosis of ischemic infarct in non-contrast head CT of adults. Methods: Non-contrast head CTs of five patients (2 M, 3 F; 58–83 y) with ischemic infarcts were retro-reconstructed using FBP and Adaptive Statistical Iterative Reconstruction (ASIR) of various levels (10–100%). Six neuro -radiologists reviewed each image and scored image quality for diagnosing acute infarcts by a 9-point Likert scale in a blinded test. These scores were averaged across the observers to produce the average human observer responses. The chief neuro-radiologist placed multiple ROIsmore » over the infarcts. These ROIs were entered into a texture analysis software package. Forty-two features per image, including 11 GLRL, 5 GLCM, 4 GLGM, 9 Laws, and 13 2-D features, were computed and averaged over the images per dataset. The Fisher-coefficient (ratio of between-class variance to in-class variance) was calculated for each feature to identify the most discriminating features from each matrix that separate the different confidence scores most efficiently. The 15 features with the highest Fisher -coefficient were entered into linear multivariate regression for iterative modeling. Results: Multivariate regression analysis resulted in the best prediction model of the confidence scores after three iterations (df=11, F=11.7, p-value<0.0001). The model predicted scores and human observers were highly correlated (R=0.88, R-sq=0.77). The root-mean-square and maximal residual were 0.21 and 0.44, respectively. The residual scatter plot appeared random, symmetric, and unbiased. Conclusion: For diagnosis of ischemic infarct in non-contrast head CT in adults, the predicted image quality scores from texture analysis-based model observer was highly correlated with that of human observers for various noise levels. Texture-based model observer can characterize image quality of low contrast, subtle texture changes in addition to human observers.« less
Tixier, Florent; Hatt, Mathieu; Le Rest, Catherine Cheze; Le Pogam, Adrien; Corcos, Laurent; Visvikis, Dimitris
2012-01-01
18F-FDG PET measurement of standardized uptake values (SUV) is increasingly used for monitoring therapy response or predicting outcome. Alternative parameters computed through textural analysis were recently proposed to quantify the tumor tracer uptake heterogeneity as significant predictors of response. The primary objective of this study was the evaluation of the reproducibility of these heterogeneity measurements. Methods Double-baseline 18F-FDG PET scans of 16 patients acquired within a period of 4 days prior to any treatment were considered. A Bland-Altman analysis was carried out on six parameters based on histogram measurements and 17 heterogeneity parameters based on textural features obtained after discretization with values between 8 and 128. Results SUVmax and SUVmean reproducibility were similar to previously reported studies with a mean percentage difference of 4.7±19.5% and 5.5±21.2% respectively. By comparison better reproducibility was measured for some of the textural features describing tumor tracer local heterogeneity, such as entropy and homogeneity with a mean percentage difference of −2±5.4% and 1.8±11.5% respectively. Several of the tumor regional heterogeneity parameters such as the variability in the intensity and size of homogeneous tumor activity distribution regions had similar reproducibility to the SUV measurements with 95% confidence intervals of −22.5% to 3.1% and −1.1% to 23.5% respectively. These parameters were largely insensitive to the discretization range values. Conclusion Several of the parameters derived from textural analysis describing tumor tracer heterogeneity at local and regional scales had similar or better reproducibility as simple SUV measurements. These reproducibility results suggest that these FDG PET image derived parameters which have already been shown to have a predictive and prognostic value in certain cancer models, may be used within the context of therapy response monitoring or predicting patient outcome. PMID:22454484
Fenton, O; Vero, S; Ibrahim, T G; Murphy, P N C; Sherriff, S C; Ó hUallacháin, D
2015-11-01
Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (t(T)) is divided into unsaturated (t(u)) and saturated (t(s)) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of t(T). In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of t(u) were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When t(u) estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from the use of hydraulic parameters generated from hand texture data will be resultantly greater, and may lead to flawed predictions regarding the achievability of water policy targets. For this reason laboratory analysis, regardless of method, should be preferred to simple field assessments. Copyright © 2015 Elsevier B.V. All rights reserved.
Seeing through The Bell Jar: investigating linguistic patterns of psychological disorder.
Hunt, Daniel; Carter, Ronald
2012-03-01
As a means of conveying difficult personal experiences, illness narratives and their analysis have the potential to increase awareness of patients' lives and circumstances. Becoming sensitised to the linguistic texture of narrative offers readers a means of increasing narrative understanding. Using the fictional narrative of The Bell Jar, this paper outlines a novel method for exploring the language of illness narratives. Corpus stylistics provides new insights into narrative texture and demonstrates the importance of recurrent linguistic features in shaping meaning. The paper concludes by proposing the application of a similar methodology to non-fictional illness narratives in therapeutic contexts.
Wavelet transform analysis of dynamic speckle patterns texture
NASA Astrophysics Data System (ADS)
Limia, Margarita Fernandez; Nunez, Adriana Mavilio; Rabal, Hector; Trivi, Marcelo
2002-11-01
We propose the use of the wavelet transform to characterize the time evolution of dynamic speckle patterns. We describe it by using as an example a method used for the assessment of the drying of paint. Optimal texture features are determined and the time evolution is described in terms of the Mahalanobis distance to the final (dry) state. From the behavior of this distance function, two parameters are defined that characterize the evolution. Because detailed knowledge of the involved dynamics is not required, the methodology could be implemented for other complex or poorly understood dynamic phenomena.
Efficient region-based approach for blotch detection in archived video using texture information
NASA Astrophysics Data System (ADS)
Yous, Hamza; Serir, Amina
2017-03-01
We propose a method for blotch detection in archived videos by modeling their spatiotemporal properties. We introduce an adaptive spatiotemporal segmentation to extract candidate regions that can be classified as blotches. Then, the similarity between the preselected regions and their corresponding motion-compensated regions in the adjacent frames is assessed by means of motion trajectory estimation and textural information analysis. Perceived ground truth based on just noticeable contrast is employed for the evaluation of our approach against the state-of-the-art, and the reported results show a better performance for our approach.
Extraction of texture features with a multiresolution neural network
NASA Astrophysics Data System (ADS)
Lepage, Richard; Laurendeau, Denis; Gagnon, Roger A.
1992-09-01
Texture is an important surface characteristic. Many industrial materials such as wood, textile, or paper are best characterized by their texture. Detection of defaults occurring on such materials or classification for quality control anD matching can be carried out through careful texture analysis. A system for the classification of pieces of wood used in the furniture industry is proposed. This paper is concerned with a neural network implementation of the features extraction and classification components of the proposed system. Texture appears differently depending at which spatial scale it is observed. A complete description of a texture thus implies an analysis at several spatial scales. We propose a compact pyramidal representation of the input image for multiresolution analysis. The feature extraction system is implemented on a multilayer artificial neural network. Each level of the pyramid, which is a representation of the input image at a given spatial resolution scale, is mapped into a layer of the neural network. A full resolution texture image is input at the base of the pyramid and a representation of the texture image at multiple resolutions is generated by the feedforward pyramid structure of the neural network. The receptive field of each neuron at a given pyramid level is preprogrammed as a discrete Gaussian low-pass filter. Meaningful characteristics of the textured image must be extracted if a good resolving power of the classifier must be achieved. Local dominant orientation is the principal feature which is extracted from the textured image. Local edge orientation is computed with a Sobel mask at four orientation angles (multiple of (pi) /4). The resulting intrinsic image, that is, the local dominant orientation image, is fed to the texture classification neural network. The classification network is a three-layer feedforward back-propagation neural network.
Mookiah, M R K; Rohrmeier, A; Dieckmeyer, M; Mei, K; Kopp, F K; Noel, P B; Kirschke, J S; Baum, T; Subburaj, K
2018-04-01
This study investigated the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis. The results showed an acceptable reproducibility of texture features, and these features could discriminate healthy/osteoporotic fracture cohort with an accuracy of 83%. This aim of this study is to investigate the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis. We performed texture analysis at the spine in routine MDCT exams and investigated the effect of intravenous contrast medium (IVCM) (n = 7), slice thickness (n = 7), the long-term reproducibility (n = 9), and the ability to differentiate healthy/osteoporotic fracture cohort (n = 9 age and gender matched pairs). Eight texture features were extracted using gray level co-occurrence matrix (GLCM). The independent sample t test was used to rank the features of healthy/fracture cohort and classification was performed using support vector machine (SVM). The results revealed significant correlations between texture parameters derived from MDCT scans with and without IVCM (r up to 0.91) slice thickness of 1 mm versus 2 and 3 mm (r up to 0.96) and scan-rescan (r up to 0.59). The performance of the SVM classifier was evaluated using 10-fold cross-validation and revealed an average classification accuracy of 83%. Opportunistic osteoporosis screening at the spine using specific texture parameters (energy, entropy, and homogeneity) and SVM can be performed in routine contrast-enhanced MDCT exams.
3D tooth microwear texture analysis in fishes as a test of dietary hypotheses of durophagy
NASA Astrophysics Data System (ADS)
Purnell, Mark A.; Darras, Laurent P. G.
2016-03-01
An understanding of how extinct animals functioned underpins our understanding of past evolutionary events, including adaptive radiations, and the role of functional innovation and adaptation as drivers of both micro- and macroevolution. Yet analysis of function in extinct animals is fraught with difficulty. Hypotheses that interpret molariform teeth in fishes as evidence of durophagous (shell-crushing) diets provide a good example of the particular problems inherent in the methods of functional morphology. This is because the assumed close coupling of form and function upon which the approach is based is weakened by, among other things, behavioural flexibility and the absence of a clear one to one relationship between structures and functions. Here we show that ISO 25178-2 standard parameters for surface texture, derived from analysis of worn surfaces of molariform teeth of fishes, vary significantly between species that differ in the amount of hard-shelled prey they consume. Two populations of the Sheepshead Seabream (Archosargus probatocephalus) were studied. This fish is not a dietary specialist, and one of the populations is known to consume more vegetation and less hard-shelled prey than the other; this is reflected in significant differences in their microwear textures. The Archosargus populations differ significantly in their microwear from the specialist shell-crusher Anarhichas lupus (the Atlantic Wolffish). Multivariate analysis of these three groups of fishes lends further support to the relationship between diet and tooth microwear, and provides robust validation of the approach. Application of the multivariate models derived from microwear texture in Archosargus and Anarhichas to a third fish species—the cichlid Astatoreochromis alluaudi—successfully separates wild caught fish that ate hard-shelled prey from lab-raised fish that did not. This cross-taxon validation demonstrates that quantitative analysis of tooth microwear texture can differentiate between fishes with different diets even when they range widely in size, habitat, and in the structure of their trophic apparatus. The approach thus has great potential as an additional tool for dietary analysis in extant fishes, and for testing dietary hypotheses in ancient and extinct species.
Djiongo Kenfack, Cedrigue Boris; Monga, Olivier; Mpong, Serge Moto; Ndoundam, René
2018-03-01
Within the last decade, several approaches using quaternion numbers to handle and model multiband images in a holistic manner were introduced. The quaternion Fourier transform can be efficiently used to model texture in multidimensional data such as color images. For practical application, multispectral satellite data appear as a primary source for measuring past trends and monitoring changes in forest carbon stocks. In this work, we propose a texture-color descriptor based on the quaternion Fourier transform to extract relevant information from multiband satellite images. We propose a new multiband image texture model extraction, called FOTO++, in order to address biomass estimation issues. The first stage consists in removing noise from the multispectral data while preserving the edges of canopies. Afterward, color texture descriptors are extracted thanks to a discrete form of the quaternion Fourier transform, and finally the support vector regression method is used to deduce biomass estimation from texture indices. Our texture features are modeled using a vector composed with the radial spectrum coming from the amplitude of the quaternion Fourier transform. We conduct several experiments in order to study the sensitivity of our model to acquisition parameters. We also assess its performance both on synthetic images and on real multispectral images of Cameroonian forest. The results show that our model is more robust to acquisition parameters than the classical Fourier Texture Ordination model (FOTO). Our scheme is also more accurate for aboveground biomass estimation. We stress that a similar methodology could be implemented using quaternion wavelets. These results highlight the potential of the quaternion-based approach to study multispectral satellite images.
Discrimination of isotrigon textures using the Rényi entropy of Allan variances.
Gabarda, Salvador; Cristóbal, Gabriel
2008-09-01
We present a computational algorithm for isotrigon texture discrimination. The aim of this method consists in discriminating isotrigon textures against a binary random background. The extension of the method to the problem of multitexture discrimination is considered as well. The method relies on the fact that the information content of time or space-frequency representations of signals, including images, can be readily analyzed by means of generalized entropy measures. In such a scenario, the Rényi entropy appears as an effective tool, given that Rényi measures can be used to provide information about a local neighborhood within an image. Localization is essential for comparing images on a pixel-by-pixel basis. Discrimination is performed through a local Rényi entropy measurement applied on a spatially oriented 1-D pseudo-Wigner distribution (PWD) of the test image. The PWD is normalized so that it may be interpreted as a probability distribution. Prior to the calculation of the texture's PWD, a preprocessing filtering step replaces the original texture with its localized spatially oriented Allan variances. The anisotropic structure of the textures, as revealed by the Allan variances, turns out to be crucial later to attain a high discrimination by the extraction of Rényi entropy measures. The method has been empirically evaluated with a family of isotrigon textures embedded in a binary random background. The extension to the case of multiple isotrigon mosaics has also been considered. Discrimination results are compared with other existing methods.
Measurement of food texture by an acoustic vibration method
NASA Astrophysics Data System (ADS)
Sakurai, Naoki; Taniwaki, Mitsuru; Iwatani, Shin-ichiro; Akimoto, Hidemi
2011-09-01
Food texture was measured by a new acoustic vibration method. A piezoelectric sensor sandwiched between a probe and piston was inserted into a food sample by delivery of silicon oil to a cylinder by a pump. Vibration emitted from the food sample on insertion of the probe was monitored by voltage outputs of the sensor. The voltage signals were passed through 19 half octave bands to calculate texture index for each band. The texture index was defined as vibration energy of the probe caused by the food rupture and/or breakage per unit time.
Conductive and robust nitride buffer layers on biaxially textured substrates
Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN
2009-03-31
The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.
NASA Astrophysics Data System (ADS)
Yang, Guang; Zhuang, Xiahai; Khan, Habib; Haldar, Shouvik; Nyktari, Eva; Li, Lei; Ye, Xujiong; Slabaugh, Greg; Wong, Tom; Mohiaddin, Raad; Keegan, Jennifer; Firmin, David
2017-03-01
Late Gadolinium-Enhanced Cardiac MRI (LGE CMRI) is an emerging non-invasive technique to image and quantify preablation native and post-ablation atrial scarring. Previous studies have reported that enhanced image intensities of the atrial scarring in the LGE CMRI inversely correlate with the left atrial endocardial voltage invasively obtained by electro-anatomical mapping. However, the reported reproducibility of using LGE CMRI to identify and quantify atrial scarring is variable. This may be due to two reasons: first, delineation of the left atrium (LA) and pulmonary veins (PVs) anatomy generally relies on manual operation that is highly subjective, and this could substantially affect the subsequent atrial scarring segmentation; second, simple intensity based image features may not be good enough to detect subtle changes in atrial scarring. In this study, we hypothesized that texture analysis can provide reliable image features for the LGE CMRI images subject to accurate and objective delineation of the heart anatomy based on a fully-automated whole heart segmentation (WHS) method. We tested the extracted texture features to differentiate between pre-ablation and post-ablation LGE CMRI studies in longstanding persistent atrial fibrillation patients. These patients often have extensive native scarring and differentiation from post-ablation scarring can be difficult. Quantification results showed that our method is capable of solving this classification task, and we can envisage further deployment of this texture analysis based method for other clinical problems using LGE CMRI.
USDA-ARS?s Scientific Manuscript database
Soil properties and weather conditions are known to affect soil nitrogen (N) availability and plant N uptake. However, studies examining N response as affected by soil and weather sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment effects in a series o...
Method of ultrasonic measurement of texture
Thompson, R. Bruce; Smith, John F.; Lee, Seung S.; Li, Yan
1993-10-12
A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improves reliability and accuracy. The method can be utilized in production on moving metal plate or sheet.
Method of ultrasonic measurement of texture
Thompson, R.B.; Smith, J.F.; Lee, S.S.; Taejon Ch'ungmam; Yan Li.
1993-10-12
A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improves reliability and accuracy. The method can be utilized in production on moving metal plate or sheet. 9 figures.
Through-process modelling of texture and anisotropy in AA5182
NASA Astrophysics Data System (ADS)
Crumbach, M.; Neumann, L.; Goerdeler, M.; Aretz, H.; Gottstein, G.; Kopp, R.
2006-07-01
A through-process texture and anisotropy prediction for AA5182 sheet production from hot rolling through cold rolling and annealing is reported. Thermo-mechanical process data predicted by the finite element method (FEM) package T-Pack based on the software LARSTRAN were fed into a combination of physics based microstructure models for deformation texture (GIA), work hardening (3IVM), nucleation texture (ReNuc), and recrystallization texture (StaRT). The final simulated sheet texture was fed into a FEM simulation of cup drawing employing a new concept of interactively updated texture based yield locus predictions. The modelling results of texture development and anisotropy were compared to experimental data. The applicability to other alloys and processes is discussed.
Benign-malignant mass classification in mammogram using edge weighted local texture features
NASA Astrophysics Data System (ADS)
Rabidas, Rinku; Midya, Abhishek; Sadhu, Anup; Chakraborty, Jayasree
2016-03-01
This paper introduces novel Discriminative Robust Local Binary Pattern (DRLBP) and Discriminative Robust Local Ternary Pattern (DRLTP) for the classification of mammographic masses as benign or malignant. Mass is one of the common, however, challenging evidence of breast cancer in mammography and diagnosis of masses is a difficult task. Since DRLBP and DRLTP overcome the drawbacks of Local Binary Pattern (LBP) and Local Ternary Pattern (LTP) by discriminating a brighter object against the dark background and vice-versa, in addition to the preservation of the edge information along with the texture information, several edge-preserving texture features are extracted, in this study, from DRLBP and DRLTP. Finally, a Fisher Linear Discriminant Analysis method is incorporated with discriminating features, selected by stepwise logistic regression method, for the classification of benign and malignant masses. The performance characteristics of DRLBP and DRLTP features are evaluated using a ten-fold cross-validation technique with 58 masses from the mini-MIAS database, and the best result is observed with DRLBP having an area under the receiver operating characteristic curve of 0.982.
Dynamic facial expression recognition based on geometric and texture features
NASA Astrophysics Data System (ADS)
Li, Ming; Wang, Zengfu
2018-04-01
Recently, dynamic facial expression recognition in videos has attracted growing attention. In this paper, we propose a novel dynamic facial expression recognition method by using geometric and texture features. In our system, the facial landmark movements and texture variations upon pairwise images are used to perform the dynamic facial expression recognition tasks. For one facial expression sequence, pairwise images are created between the first frame and each of its subsequent frames. Integration of both geometric and texture features further enhances the representation of the facial expressions. Finally, Support Vector Machine is used for facial expression recognition. Experiments conducted on the extended Cohn-Kanade database show that our proposed method can achieve a competitive performance with other methods.
Brain tissue analysis using texture features based on optical coherence tomography images
NASA Astrophysics Data System (ADS)
Lenz, Marcel; Krug, Robin; Dillmann, Christopher; Gerhardt, Nils C.; Welp, Hubert; Schmieder, Kirsten; Hofmann, Martin R.
2018-02-01
Brain tissue differentiation is highly demanded in neurosurgeries, i.e. tumor resection. Exact navigation during the surgery is essential in order to guarantee best life quality afterwards. So far, no suitable method has been found that perfectly covers this demands. With optical coherence tomography (OCT), fast three dimensional images can be obtained in vivo and contactless with a resolution of 1-15 μm. With these specifications OCT is a promising tool to support neurosurgeries. Here, we investigate ex vivo samples of meningioma, healthy white and healthy gray matter in a preliminary study towards in vivo brain tumor removal assistance. Raw OCT images already display structural variations for different tissue types, especially meningioma. But, in order to achieve neurosurgical guidance directly during resection, an automated differentiation approach is desired. For this reason, we employ different texture feature based algorithms, perform a Principal Component Analysis afterwards and then train a Support Vector Machine classifier. In the future we will try different combinations of texture features and perform in vivo measurements in order to validate our findings.
NASA Astrophysics Data System (ADS)
Lu, Lei; Yan, Jihong; Chen, Wanqun; An, Shi
2018-03-01
This paper proposed a novel spatial frequency analysis method for the investigation of potassium dihydrogen phosphate (KDP) crystal surface based on an improved bidimensional empirical mode decomposition (BEMD) method. Aiming to eliminate end effects of the BEMD method and improve the intrinsic mode functions (IMFs) for the efficient identification of texture features, a denoising process was embedded in the sifting iteration of BEMD method. With removing redundant information in decomposed sub-components of KDP crystal surface, middle spatial frequencies of the cutting and feeding processes were identified. Comparative study with the power spectral density method, two-dimensional wavelet transform (2D-WT), as well as the traditional BEMD method, demonstrated that the method developed in this paper can efficiently extract texture features and reveal gradient development of KDP crystal surface. Furthermore, the proposed method was a self-adaptive data driven technique without prior knowledge, which overcame shortcomings of the 2D-WT model such as the parameters selection. Additionally, the proposed method was a promising tool for the application of online monitoring and optimal control of precision machining process.
Textural Maturity Analysis and Sedimentary Environment Discrimination Based on Grain Shape Data
NASA Astrophysics Data System (ADS)
Tunwal, M.; Mulchrone, K. F.; Meere, P. A.
2017-12-01
Morphological analysis of clastic sedimentary grains is an important source of information regarding the processes involved in their formation, transportation and deposition. However, a standardised approach for quantitative grain shape analysis is generally lacking. In this contribution we report on a study where fully automated image analysis techniques were applied to loose sediment samples collected from glacial, aeolian, beach and fluvial environments. A range of shape parameters are evaluated for their usefulness in textural characterisation of populations of grains. The utility of grain shape data in ranking textural maturity of samples within a given sedimentary environment is evaluated. Furthermore, discrimination of sedimentary environment on the basis of grain shape information is explored. The data gathered demonstrates a clear progression in textural maturity in terms of roundness, angularity, irregularity, fractal dimension, convexity, solidity and rectangularity. Textural maturity can be readily categorised using automated grain shape parameter analysis. However, absolute discrimination between different depositional environments on the basis of shape parameters alone is less certain. For example, the aeolian environment is quite distinct whereas fluvial, glacial and beach samples are inherently variable and tend to overlap each other in terms of textural maturity. This is most likely due to a collection of similar processes and sources operating within these environments. This study strongly demonstrates the merit of quantitative population-based shape parameter analysis of texture and indicates that it can play a key role in characterising both loose and consolidated sediments. This project is funded by the Irish Petroleum Infrastructure Programme (www.pip.ie)
The promise and limits of PET texture analysis.
Cheng, Nai-Ming; Fang, Yu-Hua Dean; Yen, Tzu-Chen
2013-11-01
Metabolic heterogeneity is a recognized characteristic of malignant tumors. Positron emission tomography (PET) texture analysis evaluated intratumoral heterogeneity in the uptake of (18)F-fluorodeoxyglucose. There were recent evidences that PET textural features were of prognostic significance in patients with different solid tumors. Unfortunately, there are still crucial standardization challenges to transform PET texture parameters from their current use as research tools into the arena of validated technologies for use in oncology practice. Testing its generalizability, robustness, consistency, and limitations is necessary before implementing it in daily patient care.
Rolling process for producing biaxially textured substrates
Goyal, Amit
2004-05-25
A method of preparing a biaxially textured article includes the steps of: rolling a metal preform while applying shear force thereto to form as-rolled biaxially textured substrate having an a rotated cube texture wherein a (100) cube face thereof is parallel to a surface of said substrate, and wherein a [100] direction thereof is at an angle of at least 30.degree. relative to the rolling direction; and depositing onto the surface of the biaxially textured substrate at least one epitaxial layer of another material to form a biaxially textured article.
NASA Astrophysics Data System (ADS)
Voss, M.; Blundell, B.
2015-12-01
Characterization of urban environments is a high priority for the U.S. Army as battlespaces have transitioned from the predominantly open spaces of the 20th century to urban areas where soldiers have reduced situational awareness due to the diversity and density of their surroundings. Creating high-resolution urban terrain geospatial information will improve mission planning and soldier effectiveness. In this effort, super-resolution true-color imagery was collected with an Altivan NOVA unmanned aerial system over the Muscatatuck Urban Training Center near Butlerville, Indiana on September 16, 2014. Multispectral texture analysis using different algorithms was conducted for urban surface characterization at a variety of scales. Training samples extracted from the true-color and texture images. These data were processed using a variety of meta-algorithms with a decision tree classifier to create a high-resolution urban features map. In addition to improving accuracy over traditional image classification methods, this technique allowed the determination of the most significant textural scales in creating urban terrain maps for tactical exploitation.
NASA Astrophysics Data System (ADS)
Joko, Tri; Anggoro, Sutrisno; Sunoko, Henna Rya; Rachmawati, Savitri
2018-02-01
Organophosphates have been used to eradicate pests and prevent losses from harvest failures caused by pest attack. It is undeniable that the organophosphate persist in soil. This study aims to identify the organophosphate residue and soil properties include pH, soil texture, and permeability. The soil samples were taken from cropland in 10 villages, Wanasari sub-district, Brebes, Indonesia. Organophosphate residue determined by gas chromatography using Flame Photometric Detector. Soil texture was determined by soil texture triangle from NRCS USDA, and the permeability value was determined by falling head method. The mean value of chlorpyrifos, profenofos, diazinon were 0.0078; 0.0388; 0.2271 mg/l respectively. The soil texture varies from clay, silt clay, loam, silt loam, and silt clay loam with permeability value at 10-7 with the soil pH value between 6.4 - 8.1. The results showed that organophosphate residues found in the soil and its potential affect the soil fertility decline. We recommend to conduct routine soil quality analysis to prevent soil damage in the agricultural environment.
NASA Astrophysics Data System (ADS)
Ding, R.; Cruz, L.; Whitney, J.; Telenko, D.; Oware, E. K.
2017-12-01
There is the growing need for the development of efficient irrigation management practices due to increasing irrigation water scarcity as a result of growing population and changing climate. Soil texture primarily controls the water-holding capacity of soils, which determines the amount of irrigation water that will be available to the plant. However, while there are significant variabilities in the textural properties of the soil across a field, conventional irrigation practices ignore the underlying variability in the soil properties, resulting in over- or under-irrigation. Over-irrigation leaches plant nutrients beyond the root-zone leading to fertilizer, energy, and water wastages with dire environmental consequences. Under-irrigation, in contrast, causes water stress of the plant, thereby reducing plant quality and yield. The goal of this project is to leverage soil textural map of a field to create water management zones (MZs) to guide site-specific precision irrigation. There is increasing application of electromagnetic induction methods to rapidly and inexpensively map spatially continuous soil properties in terms of the apparent electrical conductivity (ECa) of the soil. ECa is a measure of the bulk soil properties, including soil texture, moisture, salinity, and cation exchange capacity, making an ECa map a pseudo-soil map. Data for the project were collected from a farm site at Eden, NY. The objective is to leverage high-resolution ECa map to predict spatially dense soil textural properties from limited measurements of soil texture. Thus, after performing ECa mapping, we conducted particle-size analysis of soil samples to determine the textural properties of soils at selected locations across the field. We cokriged the high-resolution ECa measurements with the sparse soil textural data to estimate a soil texture map for the field. We conducted irrigation experiments at selected locations to calibrate representative water-holding capacities of each estimated soil textural unit. Estimated soil units with similar water-holding characteristics were merged to create sub-field water MZs to guide precision irrigation of each MZ, instructed by each MZ's calibrated water-holding properties.
RIS4E at Kilauea's December 1974 Flow: Lava Flow Texture LiDAR Signatures
NASA Astrophysics Data System (ADS)
Whelley, P.; Garry, W. B.; Scheidt, S. P.; Bleacher, J. E.; Hamilton, C.
2015-12-01
High-resolution point clouds and digital terrain models (DTMs) are used to investigate lava textures on the Big Island of Hawaii. Lava texture (e.g., ´áā and pāhoehoe) depends significantly on eruption conditions, and it is therefore instructive, if accurately determined. In places where field investigations are prohibitive (e.g., on other planets and remote regions of Earth) lava texture must be assessed from remote sensing data. A reliable method for doing so remains elusive. The December 1974 flow from Kilauea, in the Kau desert, presents an excellent field site to develop techniques for identifying lava texture. The eruption is young and the textures are well preserved. We present results comparing properties of lava textures observed in Terrestrial Laser Scanning (TLS) data. The authors collected the TLS data during May 2014 and June 2015 field seasons. Scans are a quantitative representation of what a geologist, or robotic system, sees "on the ground" and provides "ground truth" for airborne or orbital remote sensing analysis by enabling key parameters of lava morphology to be quantified. While individual scans have a heterogeneous point density, multiple scans are merged such that sub-cm lava textures can be quantified. Results indicate that TLS-derived surface roughness (i.e., de-trended RMS roughness) is useful for differentiating lava textures and assists volcanologic interpretations. As many lava types are quite rough, it is not simply roughness that is the most advantageous parameter for differentiating lava textures; rather co-occurrence patterns in surface roughness are used. Gradually forming textures (e.g., pāhoehoe) are elevated in statistics that measure smoothness (e.g., homogeneity) while lava with disrupted crusts (e.g., slabby and platy flow) have more random distributions of roughness (i.e., high entropy). A similar technique will be used to analyze high-resolution DTMs of martian lava flows using High Resolution Imaging Science Experiment DTMs. This work will lead to faster and more reliable volcanic mapping efforts for planetary exploration as well as terrestrial geohazards.
NASA Astrophysics Data System (ADS)
Garcia-Allende, P. Beatriz; Amygdalos, Iakovos; Dhanapala, Hiruni; Goldin, Robert D.; Hanna, George B.; Elson, Daniel S.
2012-01-01
Computer-aided diagnosis of ophthalmic diseases using optical coherence tomography (OCT) relies on the extraction of thickness and size measures from the OCT images, but such defined layers are usually not observed in emerging OCT applications aimed at "optical biopsy" such as pulmonology or gastroenterology. Mathematical methods such as Principal Component Analysis (PCA) or textural analyses including both spatial textural analysis derived from the two-dimensional discrete Fourier transform (DFT) and statistical texture analysis obtained independently from center-symmetric auto-correlation (CSAC) and spatial grey-level dependency matrices (SGLDM), as well as, quantitative measurements of the attenuation coefficient have been previously proposed to overcome this problem. We recently proposed an alternative approach consisting of a region segmentation according to the intensity variation along the vertical axis and a pure statistical technology for feature quantification. OCT images were first segmented in the axial direction in an automated manner according to intensity. Afterwards, a morphological analysis of the segmented OCT images was employed for quantifying the features that served for tissue classification. In this study, a PCA processing of the extracted features is accomplished to combine their discriminative power in a lower number of dimensions. Ready discrimination of gastrointestinal surgical specimens is attained demonstrating that the approach further surpasses the algorithms previously reported and is feasible for tissue classification in the clinical setting.
High compression image and image sequence coding
NASA Technical Reports Server (NTRS)
Kunt, Murat
1989-01-01
The digital representation of an image requires a very large number of bits. This number is even larger for an image sequence. The goal of image coding is to reduce this number, as much as possible, and reconstruct a faithful duplicate of the original picture or image sequence. Early efforts in image coding, solely guided by information theory, led to a plethora of methods. The compression ratio reached a plateau around 10:1 a couple of years ago. Recent progress in the study of the brain mechanism of vision and scene analysis has opened new vistas in picture coding. Directional sensitivity of the neurones in the visual pathway combined with the separate processing of contours and textures has led to a new class of coding methods capable of achieving compression ratios as high as 100:1 for images and around 300:1 for image sequences. Recent progress on some of the main avenues of object-based methods is presented. These second generation techniques make use of contour-texture modeling, new results in neurophysiology and psychophysics and scene analysis.
Enhanced Line Integral Convolution with Flow Feature Detection
NASA Technical Reports Server (NTRS)
Lane, David; Okada, Arthur
1996-01-01
The Line Integral Convolution (LIC) method, which blurs white noise textures along a vector field, is an effective way to visualize overall flow patterns in a 2D domain. The method produces a flow texture image based on the input velocity field defined in the domain. Because of the nature of the algorithm, the texture image tends to be blurry. This sometimes makes it difficult to identify boundaries where flow separation and reattachments occur. We present techniques to enhance LIC texture images and use colored texture images to highlight flow separation and reattachment boundaries. Our techniques have been applied to several flow fields defined in 3D curvilinear multi-block grids and scientists have found the results to be very useful.
Fractal-Based Image Analysis In Radiological Applications
NASA Astrophysics Data System (ADS)
Dellepiane, S.; Serpico, S. B.; Vernazza, G.; Viviani, R.
1987-10-01
We present some preliminary results of a study aimed to assess the actual effectiveness of fractal theory and to define its limitations in the area of medical image analysis for texture description, in particular, in radiological applications. A general analysis to select appropriate parameters (mask size, tolerance on fractal dimension estimation, etc.) has been performed on synthetically generated images of known fractal dimensions. Moreover, we analyzed some radiological images of human organs in which pathological areas can be observed. Input images were subdivided into blocks of 6x6 pixels; then, for each block, the fractal dimension was computed in order to create fractal images whose intensity was related to the D value, i.e., texture behaviour. Results revealed that the fractal images could point out the differences between normal and pathological tissues. By applying histogram-splitting segmentation to the fractal images, pathological areas were isolated. Two different techniques (i.e., the method developed by Pentland and the "blanket" method) were employed to obtain fractal dimension values, and the results were compared; in both cases, the appropriateness of the fractal description of the original images was verified.
NASA Astrophysics Data System (ADS)
Han, Hao; Zhang, Hao; Wei, Xinzhou; Moore, William; Liang, Zhengrong
2016-03-01
In this paper, we proposed a low-dose computed tomography (LdCT) image reconstruction method with the help of prior knowledge learning from previous high-quality or normal-dose CT (NdCT) scans. The well-established statistical penalized weighted least squares (PWLS) algorithm was adopted for image reconstruction, where the penalty term was formulated by a texture-based Gaussian Markov random field (gMRF) model. The NdCT scan was firstly segmented into different tissue types by a feature vector quantization (FVQ) approach. Then for each tissue type, a set of tissue-specific coefficients for the gMRF penalty was statistically learnt from the NdCT image via multiple-linear regression analysis. We also proposed a scheme to adaptively select the order of gMRF model for coefficients prediction. The tissue-specific gMRF patterns learnt from the NdCT image were finally used to form an adaptive MRF penalty for the PWLS reconstruction of LdCT image. The proposed texture-adaptive PWLS image reconstruction algorithm was shown to be more effective to preserve image textures than the conventional PWLS image reconstruction algorithm, and we further demonstrated the gain of high-order MRF modeling for texture-preserved LdCT PWLS image reconstruction.
Nyflot, Matthew J.; Yang, Fei; Byrd, Darrin; Bowen, Stephen R.; Sandison, George A.; Kinahan, Paul E.
2015-01-01
Abstract. Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes. PMID:26251842
Nyflot, Matthew J; Yang, Fei; Byrd, Darrin; Bowen, Stephen R; Sandison, George A; Kinahan, Paul E
2015-10-01
Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes.
Method of fabricating low-dislocation-density epitaxially-grown films with textured surfaces
Li, Qiming; Wang, George T
2015-01-13
A method for forming a surface-textured single-crystal film layer by growing the film atop a layer of microparticles on a substrate and subsequently selectively etching away the microparticles to release the surface-textured single-crystal film layer from the substrate. This method is applicable to a very wide variety of substrates and films. In some embodiments, the film is an epitaxial film that has been grown in crystallographic alignment with respect to a crystalline substrate.
Ship Detection Based on Multiple Features in Random Forest Model for Hyperspectral Images
NASA Astrophysics Data System (ADS)
Li, N.; Ding, L.; Zhao, H.; Shi, J.; Wang, D.; Gong, X.
2018-04-01
A novel method for detecting ships which aim to make full use of both the spatial and spectral information from hyperspectral images is proposed. Firstly, the band which is high signal-noise ratio in the range of near infrared or short-wave infrared spectrum, is used to segment land and sea on Otsu threshold segmentation method. Secondly, multiple features that include spectral and texture features are extracted from hyperspectral images. Principal components analysis (PCA) is used to extract spectral features, the Grey Level Co-occurrence Matrix (GLCM) is used to extract texture features. Finally, Random Forest (RF) model is introduced to detect ships based on the extracted features. To illustrate the effectiveness of the method, we carry out experiments over the EO-1 data by comparing single feature and different multiple features. Compared with the traditional single feature method and Support Vector Machine (SVM) model, the proposed method can stably achieve the target detection of ships under complex background and can effectively improve the detection accuracy of ships.
Measurement of Vibrated Bulk Density of Coke Particle Blends Using Image Texture Analysis
NASA Astrophysics Data System (ADS)
Azari, Kamran; Bogoya-Forero, Wilinthon; Duchesne, Carl; Tessier, Jayson
2017-09-01
A rapid and nondestructive machine vision sensor was developed for predicting the vibrated bulk density (VBD) of petroleum coke particles based on image texture analysis. It could be used for making corrective adjustments to a paste plant operation to reduce green anode variability (e.g., changes in binder demand). Wavelet texture analysis (WTA) and gray level co-occurrence matrix (GLCM) algorithms were used jointly for extracting the surface textural features of coke aggregates from images. These were correlated with the VBD using partial least-squares (PLS) regression. Coke samples of several sizes and from different sources were used to test the sensor. Variations in the coke surface texture introduced by coke size and source allowed for making good predictions of the VBD of individual coke samples and mixtures of them (blends involving two sources and different sizes). Promising results were also obtained for coke blends collected from an industrial-baked carbon anode manufacturer.
A subjective study and an objective metric to quantify the granularity level of textures
NASA Astrophysics Data System (ADS)
Subedar, Mahesh M.; Karam, Lina J.
2015-03-01
Texture granularity is an important visual characteristic that is useful in a variety of applications, including analysis, recognition, and compression, to name a few. A texture granularity measure can be used to quantify the perceived level of texture granularity. The granularity level of the textures is influenced by the size of the texture primitives. A primitive is defined as the smallest recognizable repetitive object in the texture. If the texture has large primitives then the perceived granularity level tends to be lower as compared to a texture with smaller primitives. In this work we are presenting a texture granularity database referred as GranTEX which consists of 30 textures with varying levels of primitive sizes and granularity levels. The GranTEX database consists of both natural and man-made textures. A subjective study is conducted to measure the perceived granularity level of textures present in the GranTEX database. An objective metric that automatically measures the perceived granularity level of textures is also presented as part of this work. It is shown that the proposed granularity metric correlates well with the subjective granularity scores.
TU-F-12A-05: Sensitivity of Textural Features to 3D Vs. 4D FDG-PET/CT Imaging in NSCLC Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, F; Nyflot, M; Bowen, S
2014-06-15
Purpose: Neighborhood Gray-level difference matrices (NGLDM) based texture parameters extracted from conventional (3D) 18F-FDG PET scans in patients with NSCLC have been previously shown to associate with response to chemoradiation and poorer patient outcome. However, the change in these parameters when utilizing respiratory-correlated (4D) FDG-PET scans has not yet been characterized for NSCLC. The Objectives: of this study was to assess the extent to which NGLDM-based texture parameters on 4D PET images vary with reference to values derived from 3D scans in NSCLC. Methods: Eight patients with newly diagnosed NSCLC treated with concomitant chemoradiotherapy were included in this study. 4Dmore » PET scans were reconstructed with OSEM-IR in 5 respiratory phase-binned images and corresponding CT data of each phase were employed for attenuation correction. NGLDM-based texture features, consisting of coarseness, contrast, busyness, complexity and strength, were evaluated for gross tumor volumes defined on 3D/4D PET scans by radiation oncologists. Variation of the obtained texture parameters over the respiratory cycle were examined with respect to values extracted from 3D scans. Results: Differences between texture parameters derived from 4D scans at different respiratory phases and those extracted from 3D scans ranged from −30% to 13% for coarseness, −12% to 40% for contrast, −5% to 50% for busyness, −7% to 38% for complexity, and −43% to 20% for strength. Furthermore, no evident correlations were observed between respiratory phase and 4D scan texture parameters. Conclusion: Results of the current study showed that NGLDM-based texture parameters varied considerably based on choice of 3D PET and 4D PET reconstruction of NSCLC patient images, indicating that standardized image acquisition and analysis protocols need to be established for clinical studies, especially multicenter clinical trials, intending to validate prognostic values of texture features for NSCLC.« less
Spatial prediction of soil texture in region Centre (France) from summary data
NASA Astrophysics Data System (ADS)
Dobarco, Mercedes Roman; Saby, Nicolas; Paroissien, Jean-Baptiste; Orton, Tom G.
2015-04-01
Soil texture is a key controlling factor of important soil functions like water and nutrient holding capacity, retention of pollutants, drainage, soil biodiversity, and C cycling. High resolution soil texture maps enhance our understanding of the spatial distribution of soil properties and provide valuable information for decision making and crop management, environmental protection, and hydrological planning. We predicted the soil texture of agricultural topsoils in the Region Centre (France) combining regression and area-to-point kriging. Soil texture data was collected from the French soil-test database (BDAT), which is populated with soil analysis performed by farmers' demand. To protect the anonymity of the farms the data was treated by commune. In a first step, summary statistics of environmental covariates by commune were used to develop prediction models with Cubist, boosted regression trees, and random forests. In a second step the residuals of each individual observation were summarized by commune and kriged following the method developed by Orton et al. (2012). This approach allowed to include non-linear relationships among covariates and soil texture while accounting for the uncertainty on areal means in the area-to-point kriging step. Independent validation of the models was done using data from the systematic soil monitoring network of French soils. Future work will compare the performance of these models with a non-stationary variance geostatistical model using the most important covariates and summary statistics of texture data. The results will inform on whether the later and statistically more-challenging approach improves significantly texture predictions or whether the more simple area-to-point regression kriging can offer satisfactory results. The application of area-to-point regression kriging at national level using BDAT data has the potential to improve soil texture predictions for agricultural topsoils, especially when combined with existing maps (i.e., model ensemble).
NASA Astrophysics Data System (ADS)
Zhang, Rui; Xin, Binjie
2016-08-01
Yarn density is always considered as the fundamental structural parameter used for the quality evaluation of woven fabrics. The conventional yarn density measurement method is based on one-side analysis. In this paper, a novel density measurement method is developed for yarn-dyed woven fabrics based on a dual-side fusion technique. Firstly, a lab-used dual-side imaging system is established to acquire both face-side and back-side images of woven fabric and the affine transform is used for the alignment and fusion of the dual-side images. Then, the color images of the woven fabrics are transferred from the RGB to the CIE-Lab color space, and the intensity information of the image extracted from the L component is used for texture fusion and analysis. Subsequently, three image fusion methods are developed and utilized to merge the dual-side images: the weighted average method, wavelet transform method and Laplacian pyramid blending method. The fusion efficacy of each method is evaluated by three evaluation indicators and the best of them is selected to do the reconstruction of the complete fabric texture. Finally, the yarn density of the fused image is measured based on the fast Fourier transform, and the yarn alignment image could be reconstructed using the inverse fast Fourier transform. Our experimental results show that the accuracy of density measurement by using the proposed method is close to 99.44% compared with the traditional method and the robustness of this new proposed method is better than that of conventional analysis methods.
Natural texture retrieval based on perceptual similarity measurement
NASA Astrophysics Data System (ADS)
Gao, Ying; Dong, Junyu; Lou, Jianwen; Qi, Lin; Liu, Jun
2018-04-01
A typical texture retrieval system performs feature comparison and might not be able to make human-like judgments of image similarity. Meanwhile, it is commonly known that perceptual texture similarity is difficult to be described by traditional image features. In this paper, we propose a new texture retrieval scheme based on texture perceptual similarity. The key of the proposed scheme is that prediction of perceptual similarity is performed by learning a non-linear mapping from image features space to perceptual texture space by using Random Forest. We test the method on natural texture dataset and apply it on a new wallpapers dataset. Experimental results demonstrate that the proposed texture retrieval scheme with perceptual similarity improves the retrieval performance over traditional image features.
Method of Forming Textured Silicon Substrate by Maskless Cryogenic Etching
NASA Technical Reports Server (NTRS)
Yee, Karl Y. (Inventor); Homyk, Andrew P. (Inventor)
2014-01-01
Disclosed herein is a textured substrate comprising a base comprising silicon, the base having a plurality of needle like structures depending away from the base, wherein at least one of the needle like structures has a depth of greater than or equal to about 50 micrometers determined perpendicular to the base, and wherein at least one of the needle like structures has a width of less than or equal to about 50 micrometers determined parallel to the base. An anode and a lithium ion battery comprising the textured substrate, and a method of producing the textured substrate are also disclosed.
Conductive and robust nitride buffer layers on biaxially textured substrates
Sankar, Sambasivan; Goyal, Amit; Barnett, Scott A.; Kim, Ilwon; Kroeger, Donald M.
2004-08-31
The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metal and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layers. In some embodiments the article further comprises electromagnetic devices which may be super conducting properties.
Graphene as transparent electrode in Si solar cells: A dry transfer method
NASA Astrophysics Data System (ADS)
Zang, Yuan; Li, Lian-bi; Chu, Qing; Pu, Hongbin; Hu, Jichao; Jin, Haili; Zhang, Yan
2018-06-01
This paper present an experimental study on a new dry transfer method of graphene applied as transparent conducting electrode in textured silicon solar cells. Raman spectra of dry exfoliated graphene indicated a monolayer graphene was transferred onto textured Si cells and the dry exfoliated graphene with better crystalline quality is attained. Photovoltaic result shows the short circuit current of the dry transferred graphene on texture Si solar cell has an increase of 28% compared to the wet transferred graphene. It proves the possibility of dry transferred graphene as transparent conducting electrode in textured Si solar cell applications.
Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI
NASA Astrophysics Data System (ADS)
Pei, Linmin; Reza, Syed M. S.; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M.
2017-03-01
In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. To model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.
Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI.
Pei, Linmin; Reza, Syed M S; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M
2017-02-11
In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. In order to model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.
Measurement of subcellular texture by optical Gabor-like filtering with a digital micromirror device
Pasternack, Robert M.; Qian, Zhen; Zheng, Jing-Yi; Metaxas, Dimitris N.; White, Eileen; Boustany, Nada N.
2010-01-01
We demonstrate an optical Fourier processing method to quantify object texture arising from subcellular feature orientation within unstained living cells. Using a digital micromirror device as a Fourier spatial filter, we measured cellular responses to two-dimensional optical Gabor-like filters optimized to sense orientation of nonspherical particles, such as mitochondria, with a width around 0.45 μm. Our method showed significantly rounder structures within apoptosis-defective cells lacking the proapoptotic mitochondrial effectors Bax and Bak, when compared with Bax/Bak expressing cells functional for apoptosis, consistent with reported differences in mitochondrial shape in these cells. By decoupling spatial frequency resolution from image resolution, this method enables rapid analysis of nonspherical submicrometer scatterers in an under-sampled large field of view and yields spatially localized morphometric parameters that improve the quantitative assessment of biological function. PMID:18830354
Analyzing and improving surface texture by dual-rotation magnetorheological finishing
NASA Astrophysics Data System (ADS)
Wang, Yuyue; Zhang, Yun; Feng, Zhijing
2016-01-01
The main advantages of magnetorheological finishing (MRF) are its high convergence rate of surface error, the ability of polishing aspheric surfaces and nearly no subsurface damage. However, common MRF produces directional surface texture due to the constant flow direction of the magnetorheological (MR) polishing fluid. This paper studies the mechanism of surface texture formation by texture modeling. Dual-rotation magnetorheological finishing (DRMRF) is presented to suppress directional surface texture after analyzing the results of the texture model for common MRF. The results of the surface texture model for DRMRF and the proposed quantitative method based on mathematical statistics indicate the effective suppression of directional surface texture. An experimental setup is developed and experiments show directional surface texture and no directional surface texture in common MRF and DRMRF, respectively. As a result, the surface roughness of DRMRF is 0.578 nm (root-mean-square value) which is lower than 1.109 nm in common MRF.
NASA Astrophysics Data System (ADS)
Amouriq, Yves; Guedon, Jeanpierre; Normand, Nicolas; Arlicot, Aurore; Benhdech, Yassine; Weiss, Pierre
2011-03-01
Bone microarchitecture is the predictor of bone quality or bone disease. It can only be measured on a bone biopsy, which is invasive and not available for all clinical situations. Texture analysis on radiographs is a common way to investigate bone microarchitecture. But relationship between three-dimension histomorphometric parameters and two-dimension texture parameters is not always well known, with poor results. The aim of this study is to performed angulated radiographs of the same region of interest and see if a better relationship between texture analysis on several radiographs and histomorphometric parameters can be developed. Computed radiography images of dog (Beagle) mandible section in molar regions were compared with high-resolution micro-CT (Computed-Tomograph) volumes. Four radiographs with 27° angle (up, down, left, right, using Rinn ring and customized arm positioning system) were performed from initial radiograph position. Bone texture parameters were calculated on all images. Texture parameters were also computed from new images obtained by difference between angulated images. Results of fractal values in different trabecular areas give some caracterisation of bone microarchitecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garson, A; Gunsten, S; Guan, H
Purpose: We demonstrate a novel X-ray phase-contrast (XPC) method for lung imaging representing a paradigm shift in the way small animal functional imaging is performed. In our method, information regarding airway microstructure that is encoded within speckle texture of a single XPC radiograph is decoded to produce 2D parametric images that will spatially resolve changes in lung properties such as microstructure sizes and air volumes. Such information cannot be derived from conventional lung radiography or any other 2D imaging modality. By computing these images at different points within a breathing cycle, dynamic functional imaging will be readily achieved without themore » need for tomography. Methods: XPC mouse lung radiographs acquired in situ with an in-line X-ray phase contrast benchtop system. The lung air volume is varied and controlled with a small animal ventilator. XPC radiographs will be acquired for various lung air volume levels representing different phases of the respiratory cycle. Similar data will be acquired of microsphere-based lung phantoms containing hollow glass spheres with known distributions of diameters. Image texture analysis is applied to the data to investigate relationships between texture characteristics and airspace/microsphere physical properties. Results: Correlations between Fourier-based texture descriptors (FBTDs) and regional lung air volume indicate that the texture features in 2D radiographs reveal information on 3D properties of the lungs. For example, we find for a 350 × 350 πm2 lung ROI a linear relationship between injected air volume and FBTD value with slope and intercept of 8.9×10{sup 5} and 7.5, respectively. Conclusion: We demonstrate specific image texture measures related to lung speckle features are correlated with physical characteristics of refracting elements (i.e. lung air spaces). Furthermore, we present results indicating the feasibility of implementing the technique with a simple imaging system design, short exposures, and low dose which provides potential for widespread use in laboratory settings for in vivo studies. This research was supported in part by NSF Award CBET1263988.« less
Michael L. Hoppus; Rachel I. Riemann; Andrew J. Lister; Mark V. Finco
2002-01-01
The panchromatic bands of Landsat 7, SPOT, and IRS satellite imagery provide an opportunity to evaluate the effectiveness of texture analysis of satellite imagery for mapping of land use/cover, especially forest cover. A variety of texture algorithms, including standard deviation, Ryherd-Woodcock minimum variance adaptive window, low pass etc., were applied to moving...
Gere, Attila; Losó, Viktor; Györey, Annamária; Kovács, Sándor; Huzsvai, László; Nábrádi, András; Kókai, Zoltán; Sipos, László
2014-12-01
Traditional internal and external preference mapping methods are based on principal component analysis (PCA). However, parallel factor analysis (PARAFAC) and Tucker-3 methods could be a better choice. To evaluate the methods, preference maps of sweet corn varieties will be introduced. A preference map of eight sweet corn varieties was established using PARAFAC and Tucker-3 methods. Instrumental data were also integrated into the maps. The triplot created by the PARAFAC model explains better how odour is separated from texture or appearance, and how some varieties are separated from others. Internal and external preference maps were created using parallel factor analysis (PARAFAC) and Tucker-3 models employing both sensory (trained panel and consumers) and instrumental parameters simultaneously. Triplots of the applied three-way models have a competitive advantage compared to the traditional biplots of the PCA-based external preference maps. The solution of PARAFAC and Tucker-3 is very similar regarding the interpretation of the first and third factors. The main difference is due to the second factor as it differentiated the attributes better. Consumers who prefer 'super sweet' varieties (they place great emphasis especially on taste) are much younger and have significantly higher incomes, and buy sweet corn products rarely (once a month). Consumers who consume sweet corn products mainly because of their texture and appearance are significantly older and include a higher ratio of men. © 2014 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Simura, Rayko; Taniuchi, Tetsuo; Sugiyama, Kazumasa; Fukuda, Tsuguo
2018-01-01
Ce-doped YAG/Al2O3 melt-growth composite (MGC) samples were grown by the micro-pulling-down (μ-PD) method, and their physical and chemical properties were investigated. The grown MGC samples exhibit fine-grained granophyric texture at the micron scale. Fluorescence spectra, excited by a blue laser diode, were recorded, and, in particular, the finely textured granophyric MGC sample doped with 0.1 at% Ce and prepared with a growth rate of 3 mm/min shows superior fluorescence properties without high-temperature deterioration of fluorescence intensity. The μ-PD method is demonstrated to be applicable for manufacturing finely textured MGC samples with improved luminous efficiency as phosphors for white LEDs.
Hemorrhage detection in MRI brain images using images features
NASA Astrophysics Data System (ADS)
Moraru, Luminita; Moldovanu, Simona; Bibicu, Dorin; Stratulat (Visan), Mirela
2013-11-01
The abnormalities appear frequently on Magnetic Resonance Images (MRI) of brain in elderly patients presenting either stroke or cognitive impairment. Detection of brain hemorrhage lesions in MRI is an important but very time-consuming task. This research aims to develop a method to extract brain tissue features from T2-weighted MR images of the brain using a selection of the most valuable texture features in order to discriminate between normal and affected areas of the brain. Due to textural similarity between normal and affected areas in brain MR images these operation are very challenging. A trauma may cause microstructural changes, which are not necessarily perceptible by visual inspection, but they could be detected by using a texture analysis. The proposed analysis is developed in five steps: i) in the pre-processing step: the de-noising operation is performed using the Daubechies wavelets; ii) the original images were transformed in image features using the first order descriptors; iii) the regions of interest (ROIs) were cropped from images feature following up the axial symmetry properties with respect to the mid - sagittal plan; iv) the variation in the measurement of features was quantified using the two descriptors of the co-occurrence matrix, namely energy and homogeneity; v) finally, the meaningful of the image features is analyzed by using the t-test method. P-value has been applied to the pair of features in order to measure they efficacy.
Microstructure, crystallographic texture and mechanical properties of friction stir welded AA2017A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, M.M.Z., E-mail: mohamed_ahmed4@s-petrol.suez.edu.eg; Department of Metallurgical and Materials Engineering, Suez Canal University, Suez 43721; Wynne, B.P.
2012-02-15
In this study a thick section (20 mm) friction stir welded AA2017A-T451 has been characterized in terms of microstructure, crystallographic texture and mechanical properties. For microstructural analysis both optical and scanning electron microscopes have been used. A detailed crystallographic texture analysis has been carried out using the electron back scattering diffraction technique. Crystallographic texture has been examined in both shoulder and probe affected regions of the weld NG. An entirely weak texture is observed at the shoulder affected region which is mainly explained by the effect of the sequential multi pass deformation experienced by both tool probe and tool shoulder.more » The texture in the probe dominated region at the AS side of the weld is relatively weak but still assembles the simple shear texture of FCC metals with B/B{sup Macron} and C components existing across the whole map. However, the texture is stronger at the RS than at the AS of the weld, mainly dominated byB/B{sup Macron} components and with C component almost absent across the map. An alternating bands between (B) components and (B{sup Macron }) component are observed only at the AS side of the weld. - Highlights: Black-Right-Pointing-Pointer Detailed investigation of microstructure and crystallographic texture. Black-Right-Pointing-Pointer The grain size is varied from the top to the bottom of the NG. Black-Right-Pointing-Pointer An entirely weak texture is observed at the shoulder affected region. Black-Right-Pointing-Pointer The texture in the probe affected region is dominated by simple shear texture.« less
Textural states of a hot-worked MA2-1 magnesium alloy
NASA Astrophysics Data System (ADS)
Serebryany, V. N.; Kochubei, A. Ya.; Kurtasov, S. F.; Mel'Nikov, K. E.
2007-02-01
Quantitative texture analysis is used to study texture formation in an MA2-1 magnesium alloy subjected to axisymmetric upsetting at temperatures of 250-450°C and strain rates of 10-4-100 -1. The deformed structure is examined by optical microscopy, and the results obtained are used to plot the structural-state diagram of the alloy after 50% upsetting. The experimental textures are compared with the textures calculated in terms of a thermoactivation model.
NASA Astrophysics Data System (ADS)
Isaenkova, M.; Perlovich, Yu; Fesenko, V.
2016-04-01
Currently used methods for constructing texture complete direct pole figure (CDPF) based on the results of X-ray diffractometric measurements were considered with respect to the products of Zr-based alloys and, in particular, used in a nuclear reactor cladding tubes, for which the accuracy of determination of integral texture parameters is of the especial importance. The main attention was devoted to technical issues which are solved by means of computer processing of large arrays of obtained experimental data. Among considered questions there are amendments of the defocusing, techniques for constructing of complete direct pole figures and determination of integral textural parameters. The methods of reconstruction of complete direct pole figures by partial direct pole figures recorded up to tilt angles of sample ψ=70-80°: the method of extrapolation of data to an uninvestigated region of the stereographic projection, and the method of "sewing" of partial pole figures measured for three mutually perpendicular plane sections of the product. The limits of applicability of these methods, depending on the shape of the test product and the degree of inhomogeneity of the layer-by-layer texture, were revealed. On the basis of a large number of experimental data, the accuracy of the integral parameters used for calculation of the physical and mechanical properties of metals with a hexagonal crystal structure was found to be equal to 0.02, when taking into account the texture heterogeneity of regular products from Zr-based alloys.
Comparing the performance of various digital soil mapping approaches to map physical soil properties
NASA Astrophysics Data System (ADS)
Laborczi, Annamária; Takács, Katalin; Pásztor, László
2015-04-01
Spatial information on physical soil properties is intensely expected, in order to support environmental related and land use management decisions. One of the most widely used properties to characterize soils physically is particle size distribution (PSD), which determines soil water management and cultivability. According to their size, different particles can be categorized as clay, silt, or sand. The size intervals are defined by national or international textural classification systems. The relative percentage of sand, silt, and clay in the soil constitutes textural classes, which are also specified miscellaneously in various national and/or specialty systems. The most commonly used is the classification system of the United States Department of Agriculture (USDA). Soil texture information is essential input data in meteorological, hydrological and agricultural prediction modelling. Although Hungary has a great deal of legacy soil maps and other relevant soil information, it often occurs, that maps do not exist on a certain characteristic with the required thematic and/or spatial representation. The recent developments in digital soil mapping (DSM), however, provide wide opportunities for the elaboration of object specific soil maps (OSSM) with predefined parameters (resolution, accuracy, reliability etc.). Due to the simultaneous richness of available Hungarian legacy soil data, spatial inference methods and auxiliary environmental information, there is a high versatility of possible approaches for the compilation of a given soil map. This suggests the opportunity of optimization. For the creation of an OSSM one might intend to identify the optimum set of soil data, method and auxiliary co-variables optimized for the resources (data costs, computation requirements etc.). We started comprehensive analysis of the effects of the various DSM components on the accuracy of the output maps on pilot areas. The aim of this study is to compare and evaluate different digital soil mapping methods and sets of ancillary variables for producing the most accurate spatial prediction of texture classes in a given area of interest. Both legacy and recently collected data on PSD were used as reference information. The predictor variable data set consisted of digital elevation model and its derivatives, lithology, land use maps as well as various bands and indices of satellite images. Two conceptionally different approaches can be applied in the mapping process. Textural classification can be realized after particle size data were spatially extended by proper geostatistical method. Alternatively, the textural classification is carried out first, followed by the spatial extension through suitable data mining method. According to the first approach, maps of sand, silt and clay percentage have been computed through regression kriging (RK). Since the three maps are compositional (their sum must be 100%), we applied Additive Log-Ratio (alr) transformation, instead of kriging them independently. Finally, the texture class map has been compiled according to the USDA categories from the three maps. Different combinations of reference and training soil data and auxiliary covariables resulted several different maps. On the basis of the other way, the PSD were classified firstly into the USDA categories, then the texture class maps were compiled directly by data mining methods (classification trees and random forests). The various results were compared to each other as well as to the RK maps. The performance of the different methods and data sets has been examined by testing the accuracy of the geostatistically computed and the directly classified results to assess the most predictive and accurate method. Acknowledgement: Our work was supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167).
Scharfenberger, Christian; Wong, Alexander; Clausi, David A
2015-01-01
We propose a simple yet effective structure-guided statistical textural distinctiveness approach to salient region detection. Our method uses a multilayer approach to analyze the structural and textural characteristics of natural images as important features for salient region detection from a scale point of view. To represent the structural characteristics, we abstract the image using structured image elements and extract rotational-invariant neighborhood-based textural representations to characterize each element by an individual texture pattern. We then learn a set of representative texture atoms for sparse texture modeling and construct a statistical textural distinctiveness matrix to determine the distinctiveness between all representative texture atom pairs in each layer. Finally, we determine saliency maps for each layer based on the occurrence probability of the texture atoms and their respective statistical textural distinctiveness and fuse them to compute a final saliency map. Experimental results using four public data sets and a variety of performance evaluation metrics show that our approach provides promising results when compared with existing salient region detection approaches.
Utility of texture analysis for quantifying hepatic fibrosis on proton density MRI.
Yu, HeiShun; Buch, Karen; Li, Baojun; O'Brien, Michael; Soto, Jorge; Jara, Hernan; Anderson, Stephan W
2015-11-01
To evaluate the potential utility of texture analysis of proton density maps for quantifying hepatic fibrosis in a murine model of hepatic fibrosis. Following Institutional Animal Care and Use Committee (IACUC) approval, a dietary model of hepatic fibrosis was used and 15 ex vivo murine liver tissues were examined. All images were acquired using a 30 mm bore 11.7T magnetic resonance imaging (MRI) scanner with a multiecho spin-echo sequence. A texture analysis was employed extracting multiple texture features including histogram-based, gray-level co-occurrence matrix-based (GLCM), gray-level run-length-based features (GLRL), gray level gradient matrix (GLGM), and Laws' features. Texture features were correlated with histopathologic and digital image analysis of hepatic fibrosis. Histogram features demonstrated very weak to moderate correlations (r = -0.29 to 0.51) with hepatic fibrosis. GLCM features correlation and contrast demonstrated moderate-to-strong correlations (r = -0.71 and 0.59, respectively) with hepatic fibrosis. Moderate correlations were seen between hepatic fibrosis and the GLRL feature short run low gray-level emphasis (SRLGE) (r = -0. 51). GLGM features demonstrate very weak to weak correlations with hepatic fibrosis (r = -0.27 to 0.09). Moderate correlations were seen between hepatic fibrosis and Laws' features L6 and L7 (r = 0.58). This study demonstrates the utility of texture analysis applied to proton density MRI in a murine liver fibrosis model and validates the potential utility of texture-based features for the noninvasive, quantitative assessment of hepatic fibrosis. © 2015 Wiley Periodicals, Inc.
Pectin engineering to modify product quality in potato.
Ross, Heather A; Morris, Wayne L; Ducreux, Laurence J M; Hancock, Robert D; Verrall, Susan R; Morris, Jenny A; Tucker, Gregory A; Stewart, Derek; Hedley, Pete E; McDougall, Gordon J; Taylor, Mark A
2011-10-01
Although processed potato tuber texture is an important trait that influences consumer preference, a detailed understanding of tuber textural properties at the molecular level is lacking. Previous work has identified tuber pectin methyl esterase (PME) activity as a potential factor impacting on textural properties, and the expression of a gene encoding an isoform of PME (PEST1) was associated with cooked tuber textural properties. In this study, a transgenic approach was undertaken to investigate further the impact of the PEST1 gene. Antisense and over-expressing potato lines were generated. In over-expressing lines, tuber PME activity was enhanced by up to 2.3-fold; whereas in antisense lines, PME activity was decreased by up to 62%. PME isoform analysis indicated that the PEST1 gene encoded one isoform of PME. Analysis of cell walls from tubers from the over-expressing lines indicated that the changes in PME activity resulted in a decrease in pectin methylation. Analysis of processed tuber texture demonstrated that the reduced level of pectin methylation in the over-expressing transgenic lines was associated with a firmer processed texture. Thus, there is a clear link between PME activity, pectin methylation and processed tuber textural properties. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Langhammer, Jakub; Vacková, Tereza
2017-04-01
In the contribution, we are presenting a novel method, enabling objective detection and classification of the alluvial features resulting from flooding, based on the imagery, acquired by the unmanned aerial vehicles (UAVs, drones). We have proposed and tested a workflow, using two key data products of the UAV photogrammetry - the 2D orthoimage and 3D digital elevation model, together with derived information on surface texture for the consequent classification of erosional and depositional features resulting from the flood. The workflow combines the photogrammetric analysis of the UAV imagery, texture analysis of the DEM, and the supervised image classification. Application of the texture analysis and use of DEM data is aimed to enhance 2D information, resulting from the high-resolution orthoimage by adding the newly derived bands, which enhance potential for detection and classification of key types of fluvial features in the stream and the floodplain. The method was tested on the example of a snowmelt-driven flood in a montane stream in Sumava Mts., Czech Republic, Central Europe, that occurred in December 2015. Using the UAV platform DJI Inspire 1 equipped with the RGB camera there was acquired imagery covering a 1 km long stretch of a meandering creek with elevated fluvial dynamics. Agisoft Photoscan Pro was used to derive a point cloud and further the high-resolution seamless orthoimage and DEM, Orfeo toolkit and SAGA GIS tools were used for DEM analysis. From the UAV-based data inputs, a multi-band dataset was derived as a source for the consequent classification of fluvial landforms. The RGB channels of the derived orthoimage were completed by the selected texture feature layers and the information on 3D properties of the riverscape - the normalized DEM and terrain ruggedness. Haralick features, derived from the RGB channels, are used for extracting information on the surface texture, the terrain ruggedness index is used as a measure of local topographical variability. Based on this dataset, the supervised classification was performed to identify the fluvial features, including the fresh and old accumulations of different size, fresh bank erosion, in-stream features and the riparian zone vegetation, verified later by the field survey. The classification based on the fusion of high-resolution 2D and 3D data, derived from UAV imagery, enabled to identify and quantify the extent of recent and old accumulations, to distinguish the coarse and fine sediments or to separate the shallow and deep zones in the submerged zone of the channel. With the high operability of the data acquisition process, the proposed method appears to be a promising tool for rapid mapping and classification of flood effects in streams and floodplains.
Structures having enhanced biaxial texture and method of fabricating same
Goyal, Amit; Budai, John D.; Kroeger, Donald M.; Norton, David P.; Specht, Eliot D.; Christen, David K.
1998-01-01
A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon.
Structures having enhanced biaxial texture and method of fabricating same
Goyal, Amit; Budai, John D.; Kroeger, Donald M.; Norton, David P.; Specht, Eliot D.; Christen, David K.
1999-01-01
A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon.
Adhesive behavior of micro/nano-textured surfaces
NASA Astrophysics Data System (ADS)
Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Wang, Ben
2015-02-01
A numerical model of the adhesive contact between a rigid smooth sphere and an elastic textured surface based on the Lennard-Jones interatomic potential law and the Hamaker summation method is established. Textures are considered by introducing the texture height distribution into the gap equation. Simulation results show that the pull-off force on textured surfaces decreases compared to that on smooth surfaces. Furthermore, effects of sphere-shaped textures on reducing adhesion are more obvious than cylinder-shaped or cube-shaped textures when the coverage area ratio, maximum height and interval of textures are fixed. For surfaces with sphere-shaped textures, variation trends of the mean pull-off force with texture density are not monotonous, and there exists a certain range of texture densities in which the mean pull-off force is small and its variation is insignificant. In addition, the pull-off force depends also on the maximum height and radius of textures. On one hand, if the texture radius is fixed, larger maximum height results in smaller pull-off force, and if the maximum height is fixed, the pull-off force tends to increase almost linearly with increases in texture radius. On the other hand, if the height-diameter ratio of textures is fixed, the pull-off force reaches a minimum at an optimum texture radius or maximum height.
NASA Astrophysics Data System (ADS)
Nikitaev, V. G.; Nagornov, O. V.; Pronichev, A. N.; Polyakov, E. V.; Dmitrieva, V. V.
2017-12-01
The first stage of diagnostics of blood cancer is the analysis of blood smears. The application of decision-making support systems would reduce the subjectivity of the diagnostic process and avoid errors, resulting in often irreversible changes in the patient's condition. In this regard, the solution of this problem requires the use of modern technology. One of the tools of the program classification of blood cells are texture features, and the task of finding informative among them is promising. The paper investigates the effect of noise of the image sensor to informative texture features with application of methods of mathematical modelling.
USDA-ARS?s Scientific Manuscript database
Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which precludes conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft whit...
Zhong, Sihua; Wang, Wenjie; Tan, Miao; Zhuang, Yufeng
2017-01-01
Abstract Large‐scale (156 mm × 156 mm) quasi‐omnidirectional solar cells are successfully realized and featured by keeping high cell performance over broad incident angles (θ), via employing Si nanopyramids (SiNPs) as surface texture. SiNPs are produced by the proposed metal‐assisted alkaline etching method, which is an all‐solution‐processed method and highly simple together with cost‐effective. Interestingly, compared to the conventional Si micropyramids (SiMPs)‐textured solar cells, the SiNPs‐textured solar cells possess lower carrier recombination and thus superior electrical performances, showing notable distinctions from other Si nanostructures‐textured solar cells. Furthermore, SiNPs‐textured solar cells have very little drop of quantum efficiency with increasing θ, demonstrating the quasi‐omnidirectional characteristic. As an overall result, both the SiNPs‐textured homojunction and heterojunction solar cells possess higher daily electric energy production with a maximum relative enhancement approaching 2.5%, when compared to their SiMPs‐textured counterparts. The quasi‐omnidirectional solar cell opens a new opportunity for photovoltaics to produce more electric energy with a low cost. PMID:29201616
Zhong, Sihua; Wang, Wenjie; Tan, Miao; Zhuang, Yufeng; Shen, Wenzhong
2017-11-01
Large-scale (156 mm × 156 mm) quasi-omnidirectional solar cells are successfully realized and featured by keeping high cell performance over broad incident angles (θ), via employing Si nanopyramids (SiNPs) as surface texture. SiNPs are produced by the proposed metal-assisted alkaline etching method, which is an all-solution-processed method and highly simple together with cost-effective. Interestingly, compared to the conventional Si micropyramids (SiMPs)-textured solar cells, the SiNPs-textured solar cells possess lower carrier recombination and thus superior electrical performances, showing notable distinctions from other Si nanostructures-textured solar cells. Furthermore, SiNPs-textured solar cells have very little drop of quantum efficiency with increasing θ, demonstrating the quasi-omnidirectional characteristic. As an overall result, both the SiNPs-textured homojunction and heterojunction solar cells possess higher daily electric energy production with a maximum relative enhancement approaching 2.5%, when compared to their SiMPs-textured counterparts. The quasi-omnidirectional solar cell opens a new opportunity for photovoltaics to produce more electric energy with a low cost.
Automatic Texture Reconstruction of 3d City Model from Oblique Images
NASA Astrophysics Data System (ADS)
Kang, Junhua; Deng, Fei; Li, Xinwei; Wan, Fang
2016-06-01
In recent years, the photorealistic 3D city models are increasingly important in various geospatial applications related to virtual city tourism, 3D GIS, urban planning, real-estate management. Besides the acquisition of high-precision 3D geometric data, texture reconstruction is also a crucial step for generating high-quality and visually realistic 3D models. However, most of the texture reconstruction approaches are probably leading to texture fragmentation and memory inefficiency. In this paper, we introduce an automatic framework of texture reconstruction to generate textures from oblique images for photorealistic visualization. Our approach include three major steps as follows: mesh parameterization, texture atlas generation and texture blending. Firstly, mesh parameterization procedure referring to mesh segmentation and mesh unfolding is performed to reduce geometric distortion in the process of mapping 2D texture to 3D model. Secondly, in the texture atlas generation step, the texture of each segmented region in texture domain is reconstructed from all visible images with exterior orientation and interior orientation parameters. Thirdly, to avoid color discontinuities at boundaries between texture regions, the final texture map is generated by blending texture maps from several corresponding images. We evaluated our texture reconstruction framework on a dataset of a city. The resulting mesh model can get textured by created texture without resampling. Experiment results show that our method can effectively mitigate the occurrence of texture fragmentation. It is demonstrated that the proposed framework is effective and useful for automatic texture reconstruction of 3D city model.
Texture Feature Analysis for Different Resolution Level of Kidney Ultrasound Images
NASA Astrophysics Data System (ADS)
Kairuddin, Wan Nur Hafsha Wan; Mahmud, Wan Mahani Hafizah Wan
2017-08-01
Image feature extraction is a technique to identify the characteristic of the image. The objective of this work is to discover the texture features that best describe a tissue characteristic of a healthy kidney from ultrasound (US) image. Three ultrasound machines that have different specifications are used in order to get a different quality (different resolution) of the image. Initially, the acquired images are pre-processed to de-noise the speckle to ensure the image preserve the pixels in a region of interest (ROI) for further extraction. Gaussian Low- pass Filter is chosen as the filtering method in this work. 150 of enhanced images then are segmented by creating a foreground and background of image where the mask is created to eliminate some unwanted intensity values. Statistical based texture features method is used namely Intensity Histogram (IH), Gray-Level Co-Occurance Matrix (GLCM) and Gray-level run-length matrix (GLRLM).This method is depends on the spatial distribution of intensity values or gray levels in the kidney region. By using One-Way ANOVA in SPSS, the result indicated that three features (Contrast, Difference Variance and Inverse Difference Moment Normalized) from GLCM are not statistically significant; this concludes that these three features describe a healthy kidney characteristics regardless of the ultrasound image quality.
Some distinguishing characteristics of contour and texture phenomena in images
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.
1992-01-01
The development of generalized contour/texture discrimination techniques is a central element necessary for machine vision recognition and interpretation of arbitrary images. Here, the visual perception of texture, selected studies of texture analysis in machine vision, and diverse small samples of contour and texture are all used to provide insights into the fundamental characteristics of contour and texture. From these, an experimental discrimination scheme is developed and tested on a battery of natural images. The visual perception of texture defined fine texture as a subclass which is interpreted as shading and is distinct from coarse figural similarity textures. Also, perception defined the smallest scale for contour/texture discrimination as eight to nine visual acuity units. Three contour/texture discrimination parameters were found to be moderately successful for this scale discrimination: (1) lightness change in a blurred version of the image, (2) change in lightness change in the original image, and (3) percent change in edge counts relative to local maximum.
Abrupt skin lesion border cutoff measurement for malignancy detection in dermoscopy images.
Kaya, Sertan; Bayraktar, Mustafa; Kockara, Sinan; Mete, Mutlu; Halic, Tansel; Field, Halle E; Wong, Henry K
2016-10-06
Automated skin lesion border examination and analysis techniques have become an important field of research for distinguishing malignant pigmented lesions from benign lesions. An abrupt pigment pattern cutoff at the periphery of a skin lesion is one of the most important dermoscopic features for detection of neoplastic behavior. In current clinical setting, the lesion is divided into a virtual pie with eight sections. Each section is examined by a dermatologist for abrupt cutoff and scored accordingly, which can be tedious and subjective. This study introduces a novel approach to objectively quantify abruptness of pigment patterns along the lesion periphery. In the proposed approach, first, the skin lesion border is detected by the density based lesion border detection method. Second, the detected border is gradually scaled through vector operations. Then, along gradually scaled borders, pigment pattern homogeneities are calculated at different scales. Through this process, statistical texture features are extracted. Moreover, different color spaces are examined for the efficacy of texture analysis. The proposed method has been tested and validated on 100 (31 melanoma, 69 benign) dermoscopy images. Analyzed results indicate that proposed method is efficient on malignancy detection. More specifically, we obtained specificity of 0.96 and sensitivity of 0.86 for malignancy detection in a certain color space. The F-measure, harmonic mean of recall and precision, of the framework is reported as 0.87. The use of texture homogeneity along the periphery of the lesion border is an effective method to detect malignancy of the skin lesion in dermoscopy images. Among different color spaces tested, RGB color space's blue color channel is the most informative color channel to detect malignancy for skin lesions. That is followed by YCbCr color spaces Cr channel, and Cr is closely followed by the green color channel of RGB color space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mateos, M-J; Brandan, M-E; Gastelum, A
Purpose: To evaluate the time evolution of texture parameters, based on the gray level co-occurrence matrix (GLCM), in subtracted images of 17 patients (10 malignant and 7 benign) subjected to contrast-enhanced digital mammography (CEDM). The goal is to determine the sensitivity of texture to iodine uptake at the lesion, and its correlation (or lack of) with mean-pixel-value (MPV). Methods: Acquisition of clinical images followed a single-energy CEDM protocol using Rh/Rh/48 kV plus external 0.5 cm Al from a Senographe DS unit. Prior to the iodine-based contrast medium (CM) administration a mask image was acquired; four CM images were obtained 1,more » 2, 3, and 5 minutes after CM injection. Temporal series were obtained by logarithmic subtraction of registered CM minus mask images.Regions of interest (ROI) for the lesion were drawn by a radiologist and the texture was analyzed. GLCM was evaluated at a 3 pixel distance, 0° angle, and 64 gray-levels. Pixels identified as registration errors were excluded from the computation. 17 texture parameters were chosen, classified according to similarity into 7 groups, and analyzed. Results: In all cases the texture parameters within a group have similar dynamic behavior. Two texture groups (associated to cluster and sum mean) show a strong correlation with MPV; their average correlation coefficient (ACC) is r{sup 2}=0.90. Other two groups (contrast, homogeneity) remain constant with time, that is, a low-sensitivity to CM uptake. Three groups (regularity, lacunarity and diagonal moment) are sensitive to CM uptake but less correlated with MPV; their ACC is r{sup 2}=0.78. Conclusion: This analysis has shown that, at least groups associated to regularity, lacunarity and diagonal moment offer dynamical information additional to the mean pixel value due to the presence of CM at the lesion. The next step will be the analysis in terms of the lesion pathology. Authors thank PAPIIT-IN105813 for support. Consejo Nacional de Ciencia Y Tecnologia, PAPIIT-IN105813.« less
The postglacial Stuoragurra Fault, North Norway - A textural and mineralogical study.
NASA Astrophysics Data System (ADS)
Roaldset, E.
2012-04-01
The postglacial Stuoragurra Fault, North Norway - A textural and mineralogical study Elen Roaldset(1), Mari Åm (2), and Oddleiv Olesen(3) 1) Natural History Museum, University of Oslo, P.O.Box 1172 Blindern, 0318 Oslo, Norway 2) Statoil R &D, P. O. Box 2470, 7005 Trondheim, Norway 3) Norwegian Geological Survey, P.O.Box 6315 Sluppen, 7491 Trondheim, Norway The Stuoragurra Fault is part of the Lapland province of postglacial faults and was identified in 1983 during a colloborative project between the Geological Surveys of Finland Norway and Sweden. The Stuoragurra Fault is an 80 km long fault zone which contains three main segments of eastward dipping faults (30-55 deg.) with up to 10 m of reverse displacement and a 7 m high escarpment. It cross-cuts glaciofluvial deposits and consequently being younger than 10.000 years. The postglacial fault segments follow to a large extent older fault zones represented by lithified breccias and diabases of Proterozoic age. In this paper we will present textural and mineralogical study of a 135 m continous core drilled across the fault zone. The investigation methods include quality assessments by rock quality designation methods (RQD and Q- methods), textural and petrological descriptions visually and by thin section microscopy, and mineralogical analysis by X-ray diffraction. Special attention is drawn to neoformed and/or degraded minerals like clay minerals and iron oxides/hydroxides. The quality assessments of the cored material reflect the degree of rock deformation and fragmentation and show the quality of the bedrock generally to be of very poor (about 60%) to poor quality" (25%) The main minerals in the fresh rock are quarts, feldspar, mica and iron oxides (magnetite and ilmenite). Throughout the cored borehole products of weathering have formed on fissures, fractures and in strongly deformed, gravelly, zones. The neoformed minerals include kaolinite, smectite, and vermiculite, as well as goethite. The mineralogical transformations will be discussed in relation to the rock texture,petrophysical properties and fault characteristics.
NASA Astrophysics Data System (ADS)
Beguet, Benoit; Guyon, Dominique; Boukir, Samia; Chehata, Nesrine
2014-10-01
The main goal of this study is to design a method to describe the structure of forest stands from Very High Resolution satellite imagery, relying on some typical variables such as crown diameter, tree height, trunk diameter, tree density and tree spacing. The emphasis is placed on the automatization of the process of identification of the most relevant image features for the forest structure retrieval task, exploiting both spectral and spatial information. Our approach is based on linear regressions between the forest structure variables to be estimated and various spectral and Haralick's texture features. The main drawback of this well-known texture representation is the underlying parameters which are extremely difficult to set due to the spatial complexity of the forest structure. To tackle this major issue, an automated feature selection process is proposed which is based on statistical modeling, exploring a wide range of parameter values. It provides texture measures of diverse spatial parameters hence implicitly inducing a multi-scale texture analysis. A new feature selection technique, we called Random PRiF, is proposed. It relies on random sampling in feature space, carefully addresses the multicollinearity issue in multiple-linear regression while ensuring accurate prediction of forest variables. Our automated forest variable estimation scheme was tested on Quickbird and Pléiades panchromatic and multispectral images, acquired at different periods on the maritime pine stands of two sites in South-Western France. It outperforms two well-established variable subset selection techniques. It has been successfully applied to identify the best texture features in modeling the five considered forest structure variables. The RMSE of all predicted forest variables is improved by combining multispectral and panchromatic texture features, with various parameterizations, highlighting the potential of a multi-resolution approach for retrieving forest structure variables from VHR satellite images. Thus an average prediction error of ˜ 1.1 m is expected on crown diameter, ˜ 0.9 m on tree spacing, ˜ 3 m on height and ˜ 0.06 m on diameter at breast height.
A new method for shape and texture classification of orthopedic wear nanoparticles.
Zhang, Dongning; Page, Janet R; Kavanaugh, Aaron E; Billi, Fabrizio
2012-09-27
Detailed morphologic analysis of particles produced during wear of orthopedic implants is important in determining a correlation among material, wear, and biological effects. However, the use of simple shape descriptors is insufficient to categorize the data and to compare the nature of wear particles generated by different implants. An approach based on Discrete Fourier Transform (DFT) is presented for describing particle shape and surface texture. Four metal-on-metal bearing couples were tested in an orbital wear simulator under standard and adverse (steep-angled cups) wear simulator conditions. Digitized Scanning Electron Microscope (SEM) images of the wear particles were imported into MATLAB to carry out Fourier descriptor calculations via a specifically developed algorithm. The descriptors were then used for studying particle characteristics (shape and texture) as well as for cluster classification. Analysis of the particles demonstrated the validity of the proposed model by showing that steep-angle Co-Cr wear particles were more asymmetric, compressed, extended, triangular, square, and roughened at 3 Mc than after 0.25 Mc. In contrast, particles from standard angle samples were only more compressed and extended after 3 Mc compared to 0.25 Mc. Cluster analysis revealed that the 0.25 Mc steep-angle particle distribution was a subset of the 3 Mc distribution.
Zhang, Xiaolei; Liu, Fei; He, Yong; Li, Xiaoli
2012-01-01
Hyperspectral imaging in the visible and near infrared (VIS-NIR) region was used to develop a novel method for discriminating different varieties of commodity maize seeds. Firstly, hyperspectral images of 330 samples of six varieties of maize seeds were acquired using a hyperspectral imaging system in the 380–1,030 nm wavelength range. Secondly, principal component analysis (PCA) and kernel principal component analysis (KPCA) were used to explore the internal structure of the spectral data. Thirdly, three optimal wavelengths (523, 579 and 863 nm) were selected by implementing PCA directly on each image. Then four textural variables including contrast, homogeneity, energy and correlation were extracted from gray level co-occurrence matrix (GLCM) of each monochromatic image based on the optimal wavelengths. Finally, several models for maize seeds identification were established by least squares-support vector machine (LS-SVM) and back propagation neural network (BPNN) using four different combinations of principal components (PCs), kernel principal components (KPCs) and textural features as input variables, respectively. The recognition accuracy achieved in the PCA-GLCM-LS-SVM model (98.89%) was the most satisfactory one. We conclude that hyperspectral imaging combined with texture analysis can be implemented for fast classification of different varieties of maize seeds. PMID:23235456
Structures having enhanced biaxial texture and method of fabricating same
Goyal, A.; Budai, J.D.; Kroeger, D.M.; Norton, D.P.; Specht, E.D.; Christen, D.K.
1999-04-27
A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon. 11 figs.
Structures having enhanced biaxial texture and method of fabricating same
Goyal, A.; Budai, J.D.; Kroeger, D.M.; Norton, D.P.; Specht, E.D.; Christen, D.K.
1998-04-21
A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon. 11 figs.
Structures having enhanced biaxial texture and method of fabricating same
Goyal, A.; Budai, J.D.; Kroeger, D.M.; Norton, D.P.; Specht, E.D.; Christen, D.K.
1998-04-14
A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon. 11 figs.
Interior car noise created by textured pavement surfaces : final report.
DOT National Transportation Integrated Search
1975-01-01
Because of widespread concern about the effect of textured pavement surfaces on interior car noise, sound pressure levels (SPL) were measured inside a test vehicle as it traversed 21 pavements with various textures. A linear regression analysis run o...
Classification of interstitial lung disease patterns with topological texture features
NASA Astrophysics Data System (ADS)
Huber, Markus B.; Nagarajan, Mahesh; Leinsinger, Gerda; Ray, Lawrence A.; Wismüller, Axel
2010-03-01
Topological texture features were compared in their ability to classify morphological patterns known as 'honeycombing' that are considered indicative for the presence of fibrotic interstitial lung diseases in high-resolution computed tomography (HRCT) images. For 14 patients with known occurrence of honey-combing, a stack of 70 axial, lung kernel reconstructed images were acquired from HRCT chest exams. A set of 241 regions of interest of both healthy and pathological (89) lung tissue were identified by an experienced radiologist. Texture features were extracted using six properties calculated from gray-level co-occurrence matrices (GLCM), Minkowski Dimensions (MDs), and three Minkowski Functionals (MFs, e.g. MF.euler). A k-nearest-neighbor (k-NN) classifier and a Multilayer Radial Basis Functions Network (RBFN) were optimized in a 10-fold cross-validation for each texture vector, and the classification accuracy was calculated on independent test sets as a quantitative measure of automated tissue characterization. A Wilcoxon signed-rank test was used to compare two accuracy distributions and the significance thresholds were adjusted for multiple comparisons by the Bonferroni correction. The best classification results were obtained by the MF features, which performed significantly better than all the standard GLCM and MD features (p < 0.005) for both classifiers. The highest accuracy was found for MF.euler (97.5%, 96.6%; for the k-NN and RBFN classifier, respectively). The best standard texture features were the GLCM features 'homogeneity' (91.8%, 87.2%) and 'absolute value' (90.2%, 88.5%). The results indicate that advanced topological texture features can provide superior classification performance in computer-assisted diagnosis of interstitial lung diseases when compared to standard texture analysis methods.
NASA Technical Reports Server (NTRS)
Bedka, Kristopher M.; Dworak, Richard; Brunner, Jason; Feltz, Wayne
2012-01-01
Two satellite infrared-based overshooting convective cloud-top (OT) detection methods have recently been described in the literature: 1) the 11-mm infrared window channel texture (IRW texture) method, which uses IRW channel brightness temperature (BT) spatial gradients and thresholds, and 2) the water vapor minus IRW BT difference (WV-IRW BTD). While both methods show good performance in published case study examples, it is important to quantitatively validate these methods relative to overshooting top events across the globe. Unfortunately, no overshooting top database currently exists that could be used in such study. This study examines National Aeronautics and Space Administration CloudSat Cloud Profiling Radar data to develop an OT detection validation database that is used to evaluate the IRW-texture and WV-IRW BTD OT detection methods. CloudSat data were manually examined over a 1.5-yr period to identify cases in which the cloud top penetrates above the tropopause height defined by a numerical weather prediction model and the surrounding cirrus anvil cloud top, producing 111 confirmed overshooting top events. When applied to Moderate Resolution Imaging Spectroradiometer (MODIS)-based Geostationary Operational Environmental Satellite-R Series (GOES-R) Advanced Baseline Imager proxy data, the IRW-texture (WV-IRW BTD) method offered a 76% (96%) probability of OT detection (POD) and 16% (81%) false-alarm ratio. Case study examples show that WV-IRW BTD.0 K identifies much of the deep convective cloud top, while the IRW-texture method focuses only on regions with a spatial scale near that of commonly observed OTs. The POD decreases by 20% when IRW-texture is applied to current geostationary imager data, highlighting the importance of imager spatial resolution for observing and detecting OT regions.
Lifestyle Factors and Visible Skin Aging in a Population of Japanese Elders
Asakura, Keiko; Nishiwaki, Yuji; Milojevic, Ai; Michikawa, Takehiro; Kikuchi, Yuriko; Nakano, Makiko; Iwasawa, Satoko; Hillebrand, Greg; Miyamoto, Kukizo; Ono, Masaji; Kinjo, Yoshihide; Akiba, Suminori; Takebayashi, Toru
2009-01-01
Background The number of studies that use objective and quantitative methods to evaluate facial skin aging in elderly people is extremely limited, especially in Japan. Therefore, in this cross-sectional study we attempted to characterize the condition of facial skin (hyperpigmentation, pores, texture, and wrinkling) in Japanese adults aged 65 years or older by using objective and quantitative imaging methods. In addition, we aimed to identify lifestyle factors significantly associated with these visible signs of aging. Methods The study subjects were 802 community-dwelling Japanese men and women aged at least 65 years and living in the town of Kurabuchi (Takasaki City, Gunma Prefecture, Japan), a mountain community with a population of approximately 4800. The facial skin condition of subjects was assessed quantitatively using a standardized facial imaging system and subsequent computer image analysis. Lifestyle information was collected using a structured questionnaire. The association between skin condition and lifestyle factors was examined using multivariable regression analysis. Results Among women, the mean values for facial texture, hyperpigmentation, and pores were generally lower than those among age-matched men. There was no significant difference between sexes in the severity of facial wrinkling. Older age was associated with worse skin condition among women only. After adjusting for age, smoking status and topical sun protection were significantly associated with skin condition among both men and women. Conclusions Our study revealed significant differences between sexes in the severity of hyperpigmentation, texture, and pores, but not wrinkling. Smoking status and topical sun protection were significantly associated with signs of visible skin aging in this study population. PMID:19700917
Clustering document fragments using background color and texture information
NASA Astrophysics Data System (ADS)
Chanda, Sukalpa; Franke, Katrin; Pal, Umapada
2012-01-01
Forensic analysis of questioned documents sometimes can be extensively data intensive. A forensic expert might need to analyze a heap of document fragments and in such cases to ensure reliability he/she should focus only on relevant evidences hidden in those document fragments. Relevant document retrieval needs finding of similar document fragments. One notion of obtaining such similar documents could be by using document fragment's physical characteristics like color, texture, etc. In this article we propose an automatic scheme to retrieve similar document fragments based on visual appearance of document paper and texture. Multispectral color characteristics using biologically inspired color differentiation techniques are implemented here. This is done by projecting document color characteristics to Lab color space. Gabor filter-based texture analysis is used to identify document texture. It is desired that document fragments from same source will have similar color and texture. For clustering similar document fragments of our test dataset we use a Self Organizing Map (SOM) of dimension 5×5, where the document color and texture information are used as features. We obtained an encouraging accuracy of 97.17% from 1063 test images.
Koh, Young Wha; Park, Seong Yong; Hyun, Seung Hyup; Lee, Su Jin
2018-02-01
We evaluated the association between positron emission tomography (PET) textural features and glucose transporter 1 (GLUT1) expression level and further investigated the prognostic significance of textural features in lung adenocarcinoma. We evaluated 105 adenocarcinoma patients. We extracted texture-based PET parameters of primary tumors. Conventional PET parameters were also measured. The relationships between PET parameters and GLUT1 expression levels were evaluated. The association between PET parameters and overall survival (OS) was assessed using Cox's proportional hazard regression models. In terms of PET textural features, tumors expressing high levels of GLUT1 exhibited significantly lower coarseness, contrast, complexity, and strength, but significantly higher busyness. On univariate analysis, the metabolic tumor volume, total lesion glycolysis, contrast, busyness, complexity, and strength were significant predictors of OS. Multivariate analysis showed that lower complexity (HR=2.017, 95%CI=1.032-3.942, p=0.040) was independently associated with poorer survival. PET textural features may aid risk stratification in lung adenocarcinoma patients. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Reliable Classification of Geologic Surfaces Using Texture Analysis
NASA Astrophysics Data System (ADS)
Foil, G.; Howarth, D.; Abbey, W. J.; Bekker, D. L.; Castano, R.; Thompson, D. R.; Wagstaff, K.
2012-12-01
Communication delays and bandwidth constraints are major obstacles for remote exploration spacecraft. Due to such restrictions, spacecraft could make use of onboard science data analysis to maximize scientific gain, through capabilities such as the generation of bandwidth-efficient representative maps of scenes, autonomous instrument targeting to exploit targets of opportunity between communications, and downlink prioritization to ensure fast delivery of tactically-important data. Of particular importance to remote exploration is the precision of such methods and their ability to reliably reproduce consistent results in novel environments. Spacecraft resources are highly oversubscribed, so any onboard data analysis must provide a high degree of confidence in its assessment. The TextureCam project is constructing a "smart camera" that can analyze surface images to autonomously identify scientifically interesting targets and direct narrow field-of-view instruments. The TextureCam instrument incorporates onboard scene interpretation and mapping to assist these autonomous science activities. Computer vision algorithms map scenes such as those encountered during rover traverses. The approach, based on a machine learning strategy, trains a statistical model to recognize different geologic surface types and then classifies every pixel in a new scene according to these categories. We describe three methods for increasing the precision of the TextureCam instrument. The first uses ancillary data to segment challenging scenes into smaller regions having homogeneous properties. These subproblems are individually easier to solve, preventing uncertainty in one region from contaminating those that can be confidently classified. The second involves a Bayesian approach that maximizes the likelihood of correct classifications by abstaining from ambiguous ones. We evaluate these two techniques on a set of images acquired during field expeditions in the Mojave Desert. Finally, the algorithm was expanded to perform robust texture classification across a wide range of lighting conditions. We characterize both the increase in precision achieved using different input data representations as well as the range of conditions under which reliable performance can be achieved. An ensemble learning approach is used to increase performance by leveraging the illumination-dependent statistics of an image. Our results show that the three algorithmic modifications lead to a significant increase in classification performance as well as an increase in precision using an adjustable and human-understandable metric of confidence.
NASA Astrophysics Data System (ADS)
Jeter, G. W.; Carter, G. A.
2013-12-01
Guy (Will) Wilburn Jeter Jr., Gregory A. Carter University of Southern Mississippi Geography and Geology Gulf Coast Geospatial Center The over-arching goal of this research is to assess habitat change over a seventy year period to better understand the combined effects of global sea level rise and storm impacts on the stability of Horn Island, MS habitats. Historical aerial photography is often overlooked as a resource for use in determining habitat change. However, the spatial information provided even by black and white imagery can give insight into past habitat composition via textural analysis. This research will evaluate characteristic dimensions; most notably patch size of habitat types using simple geo-statistics and textures of brightness values of historical aerial imagery. It is assumed that each cover type has an identifiable patch size that can be used as a unique classifier of each habitat type. Analytical methods applied to the 1940 imagery were developed using 2010 field data and USDA aerial imagery. Textural moving window methods and basic geo-statistics were used to estimate characteristic dimensions of each cover type in 1940 aerial photography. The moving window texture analysis was configured with multiple window sizes to capture the characteristic dimensions of six habitat types; water, bare sand , dune herb land, estuarine shrub land, marsh land and slash pine woodland. Coefficient of variation (CV), contrast, and entropy texture filters were used to analyze the spatial variability of the 1940 and 2010 imagery. (CV) was used to depict the horizontal variability of each habitat characteristic dimension. Contrast was used to represent the variability of bright versus dark pixel values; entropy was used to show the variation in the slash pine woodland habitat type. Results indicate a substantial increase in marshland habitat relative to other habitat types since 1940. Results also reveal each habitat-type, such as dune herb-land, marsh-land, estuarine shrub-land, bare sand, slash pine woodland, and water exhibit a characteristic dimension that may be estimated from horizontal variability in image brightness values. These characteristic dimensions are estimated at less than one 1 meter for marsh-land bare sand and water, 3 meters for estuarine shrub-land and dune herb-land, and 5 to 7 meters for slash pine woodland.
NASA Astrophysics Data System (ADS)
Cunliffe, Alexandra R.; Al-Hallaq, Hania A.; Fei, Xianhan M.; Tuohy, Rachel E.; Armato, Samuel G.
2013-02-01
To determine how 19 image texture features may be altered by three image registration methods, "normal" baseline and follow-up computed tomography (CT) scans from 27 patients were analyzed. Nineteen texture feature values were calculated in over 1,000 32x32-pixel regions of interest (ROIs) randomly placed in each baseline scan. All three methods used demons registration to map baseline scan ROIs to anatomically matched locations in the corresponding transformed follow-up scan. For the first method, the follow-up scan transformation was subsampled to achieve a voxel size identical to that of the baseline scan. For the second method, the follow-up scan was transformed through affine registration to achieve global alignment with the baseline scan. For the third method, the follow-up scan was directly deformed to the baseline scan using demons deformable registration. Feature values in matched ROIs were compared using Bland- Altman 95% limits of agreement. For each feature, the range spanned by the 95% limits was normalized to the mean feature value to obtain the normalized range of agreement, nRoA. Wilcoxon signed-rank tests were used to compare nRoA values across features for the three methods. Significance for individual tests was adjusted using the Bonferroni method. nRoA was significantly smaller for affine-registered scans than for the resampled scans (p=0.003), indicating lower feature value variability between baseline and follow-up scan ROIs using this method. For both of these methods, however, nRoA was significantly higher than when feature values were calculated directly on demons-deformed followup scans (p<0.001). Across features and methods, nRoA values remained below 26%.
The neutron texture diffractometer at the China Advanced Research Reactor
NASA Astrophysics Data System (ADS)
Li, Mei-Juan; Liu, Xiao-Long; Liu, Yun-Tao; Tian, Geng-Fang; Gao, Jian-Bo; Yu, Zhou-Xiang; Li, Yu-Qing; Wu, Li-Qi; Yang, Lin-Feng; Sun, Kai; Wang, Hong-Li; Santisteban, J. r.; Chen, Dong-Feng
2016-03-01
The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)
García-Rey, R M; García-Olmo, J; De Pedro, E; Quiles-Zafra, R; Luque de Castro, M D
2005-06-01
The potential of visible and near infrared spectroscopy to predict texture and colour of dry-cured ham samples was investigated. Sensory evaluation was performed on 117 boned and cross-sectioned dry-cured ham samples. Slices of approximate thickness 4cm were cut, vacuum-packaged and kept under frozen storage until spectral analysis. Then, Biceps femoris muscle from the thawed slices was taken and scanned (400-2200nm) using a fiber optic probe. The exploratory analysis using principal component analysis shows that there are two ham groups according to the appearance or not of defects. Then, a K nearest neighbours was used to classify dry-cured hams into defective or no defective classes. The overall accuracy of the classification as a function of pastiness was 88.5%; meanwhile, according to colour was 79.7%. Partial least squares regression was used to formulate prediction equations for pastiness and colour. The correlation coefficients of calibration and cross-validation were 0.97 and 0.86 for optimal equation predicting pastiness, and 0.82 and 0.69 for optimal equation predicting colour. The standard error of cross-validation for predicting pastiness and colour is between 1 and 2 times the standard deviation of the reference method (the error involved in the sensory evaluation by the experts). The magnitude of this error demonstrates the good precision of the methods for predicting pastiness and colour. Furthermore, the samples were classified into defective or no defective classes, with a correct classification of 94.2% according to pasty texture evaluation and 75.7% as regard to colour evaluation.
Automatic T1 bladder tumor detection by using wavelet analysis in cystoscopy images
NASA Astrophysics Data System (ADS)
Freitas, Nuno R.; Vieira, Pedro M.; Lima, Estevão; Lima, Carlos S.
2018-02-01
Correct classification of cystoscopy images depends on the interpreter’s experience. Bladder cancer is a common lesion that can only be confirmed by biopsying the tissue, therefore, the automatic identification of tumors plays a significant role in early stage diagnosis and its accuracy. To our best knowledge, the use of white light cystoscopy images for bladder tumor diagnosis has not been reported so far. In this paper, a texture analysis based approach is proposed for bladder tumor diagnosis presuming that tumors change in tissue texture. As is well accepted by the scientific community, texture information is more present in the medium to high frequency range which can be selected by using a discrete wavelet transform (DWT). Tumor enhancement can be improved by using automatic segmentation, since a mixing with normal tissue is avoided under ideal conditions. The segmentation module proposed in this paper takes advantage of the wavelet decomposition tree to discard poor texture information in such a way that both steps of the proposed algorithm segmentation and classification share the same focus on texture. Multilayer perceptron and a support vector machine with a stratified ten-fold cross-validation procedure were used for classification purposes by using the hue-saturation-value (HSV), red-green-blue, and CIELab color spaces. Performances of 91% in sensitivity and 92.9% in specificity were obtained regarding HSV color by using both preprocessing and classification steps based on the DWT. The proposed method can achieve good performance on identifying bladder tumor frames. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis.
Umaraw, Pramila; Pathak, V.; Rajkumar, V.; Verma, Arun K.; Singh, V. P.; Verma, Akhilesh K.
2015-01-01
Aim: The study was conducted to estimate the contribution of edible byproducts of Barbari kids to their live and carcass weight as well as to assess textural and color characteristics and microbiological status of these byproducts. Materials and Methods: Percent live weight, Percent carcass weight, Texture, color, and microbiological analysis was done for edible byproducts viz. liver, heart, kidney, spleen, brain and testicle and longissimus dorsi muscle was taken as a reference. Results: The edible byproducts of Barbari kids constitute about 3% of the live weight of an animal of which liver contributed maximum (1.47%) followed by testicles (0.69%) and heart (0.41%). While the same constituted 3.57, 1.70, and 0.99%, respectively on carcass weight. There was significant (p<0.05) difference among all organs regarding textural properties. Liver required the maximum shear force and work of shear (121.48N and 32.19 kg-sec) followed by spleen and heart. All organs revealed characteristics color values (L*, a*, b*, chroma, and hue) which were significantly different (p<0.05) from muscle values. The total viable count, coliform count showed slight differences for all organs studied. The staphylococcus counts were low with little differences among organs. Conclusion: Edible byproducts have a significant contribution to carcass weight which could enhance total edible portion of the carcass. Efficient utilization of these by-products returns good source of revenue to the meat industries. Textural and color analysis give information for their incorporation in comminuted meat products, and microbial study tells about the storage study. However, study was in the preliminary and basic step forward toward better utilization of 3% of live animal which could increase the saleable cost of animal by 6.94%. PMID:27047004
Bongoni, R; Verkerk, R; Dekker, M; Steenbekkers, L P A
2015-06-01
Preferences for sensory properties (e.g. taste and texture) are assumed to control cooking behaviour with respect to vegetables. Conditions such as the cooking method, amount of water used and the time-temperature profile determine the nutritional quality (e.g. vitamins and phytochemicals) of cooked vegetables. Information on domestic processing and any underlying motives can be used to inform consumers about cooking vegetables that are equally liked and are nutrient-rich. Two online self-reporting questionnaires were used to identify domestic processing conditions of broccoli and carrots by Dutch households. Questions on various aspects of domestic processing and consumer motives were included. Descriptive data analysis and hierarchical cluster analysis were performed for both vegetables, separately, to group consumers with similar motives and behaviour towards vegetables. Approximately 70% of consumers boiled vegetables, 8-9% steamed vegetables, 10-15% stir fried raw vegetables and 8-10% stir fried boiled vegetables. Mainly texture was used as a way to decide the 'doneness' of the vegetables. For both vegetables, three clusters of consumers were identified: texture-orientated, health-orientated, or taste-orientated. The texture-orientated consumers are identified as the most prevalent (56-59%) group in the present study. Statistically significant associations are found between domestic processing conditions and clusters, whereas no such association are found between demographic details and clusters. A wide variation in domestic processing of broccoli and carrots is found in the present study. Mainly sensory properties (i.e. texture and taste) determined the domestic processing conditions. The findings of the present study can be used to optimise cooking to yield vegetables that meet consumer's specific sensory preference and are higher in nutrients, and as well as to communicate with target consumer groups. © 2014 The British Dietetic Association Ltd.
Janve, Bhaskar; Yang, Wade; Sims, Charles
2015-06-01
Power ultrasound reduces the traditional corn steeping time from 18 to 1.5 h during tortilla chips dough (masa) processing. This study sought to examine consumer (n = 99) acceptability and quality of tortilla chips made from the masa by traditional compared with ultrasonic methods. Overall appearance, flavor, and texture acceptability scores were evaluated using a 9-point hedonic scale. The baked chips (process intermediate) before and after frying (finished product) were analyzed using a texture analyzer and machine vision. The texture values were determined using the 3-point bend test using breaking force gradient (BFG), peak breaking force (PBF), and breaking distance (BD). The fracturing properties determined by the crisp fracture support rig using fracture force gradient (FFG), peak fracture force (PFF), and fracture distance (FD). The machine vision evaluated the total surface area, lightness (L), color difference (ΔE), Hue (°h), and Chroma (C*). The results were evaluated by analysis of variance and means were separated using Tukey's test. Machine vision values of L, °h, were higher (P < 0.05) and ΔE was lower (P < 0.05) for fried and L, °h were significantly (P < 0.05) higher for baked chips produced from ultra-sonication as compare to traditional. Baked chips texture for ultra-sonication was significantly higher (P < 0.05) on BFG, BPD, PFF, and FD. Fried tortilla chips texture were higher significantly (P < 0.05) in BFG and PFF for ultra-sonication than traditional processing. However, the instrumental differences were not detected in sensory analysis, concluding possibility of power ultrasound as potential tortilla chips processing aid. © 2015 Institute of Food Technologists®
Lanza, Barbara; Amoruso, Filomena
2018-02-02
A series of transformations occur in olive fruit both during ripening and processing. In particular, significant changes in the microstructural composition affect the flavour, texture, nutrients and overall quality of the end product. Texture is one of the sensory quality attributes of greatest importance to consumer acceptance. In the present work, kinaesthetic properties of in-brine table olives of three cultivars of Olea europaea L. (Bella di Cerignola, Peranzana and Taggiasca cvs) were provided by several measurements of olive tissue texture by sensory, rheological and microstructural approaches. Olives at the same stage of ripening and processed with the same technology, but belonging to different cultivars, showed significant differences at microstructural, sensorial and rheological levels. To describe the relationship between the three variables, multiple regression analysis and principal component analysis were chosen. Differences in microstructure were closely related both in terms of hardness measured by texture profile analysis and hardness measured by sensory analysis. The information provided could be an aid for screening and training of a sensory panel. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Systems and Methods of Laser Texturing of Material Surfaces and Their Applications
NASA Technical Reports Server (NTRS)
Gupta, Mool C. (Inventor); Nayak, Barada K. (Inventor)
2014-01-01
The surface of a material is textured and by exposing the surface to pulses from an ultrafast laser. The laser treatment causes pillars to form on the treated surface. These pillars provide for greater light absorption. Texturing and crystallization can be carried out as a single step process. The crystallization of the material provides for higher electric conductivity and changes in optical and electronic properties of the material. The method may be performed in vacuum or a gaseous environment. The gaseous environment may aid in texturing and/or modifying physical and chemical properties of the surfaces. This method may be used on various material surfaces, such as semiconductors, metals and their alloys, ceramics, polymers, glasses, composites, as well as crystalline, nanocrystalline, polycrystalline, microcrystalline, and amorphous phases.
Comparison of texture synthesis methods for content generation in ultrasound simulation for training
NASA Astrophysics Data System (ADS)
Mattausch, Oliver; Ren, Elizabeth; Bajka, Michael; Vanhoey, Kenneth; Goksel, Orcun
2017-03-01
Navigation and interpretation of ultrasound (US) images require substantial expertise, the training of which can be aided by virtual-reality simulators. However, a major challenge in creating plausible simulated US images is the generation of realistic ultrasound speckle. Since typical ultrasound speckle exhibits many properties of Markov Random Fields, it is conceivable to use texture synthesis for generating plausible US appearance. In this work, we investigate popular classes of texture synthesis methods for generating realistic US content. In a user study, we evaluate their performance for reproducing homogeneous tissue regions in B-mode US images from small image samples of similar tissue and report the best-performing synthesis methods. We further show that regression trees can be used on speckle texture features to learn a predictor for US realism.
Lung texture in serial thoracic CT scans: Assessment of change introduced by image registration1
Cunliffe, Alexandra R.; Al-Hallaq, Hania A.; Labby, Zacariah E.; Pelizzari, Charles A.; Straus, Christopher; Sensakovic, William F.; Ludwig, Michelle; Armato, Samuel G.
2012-01-01
Purpose: The aim of this study was to quantify the effect of four image registration methods on lung texture features extracted from serial computed tomography (CT) scans obtained from healthy human subjects. Methods: Two chest CT scans acquired at different time points were collected retrospectively for each of 27 patients. Following automated lung segmentation, each follow-up CT scan was registered to the baseline scan using four algorithms: (1) rigid, (2) affine, (3) B-splines deformable, and (4) demons deformable. The registration accuracy for each scan pair was evaluated by measuring the Euclidean distance between 150 identified landmarks. On average, 1432 spatially matched 32 × 32-pixel region-of-interest (ROI) pairs were automatically extracted from each scan pair. First-order, fractal, Fourier, Laws’ filter, and gray-level co-occurrence matrix texture features were calculated in each ROI, for a total of 140 features. Agreement between baseline and follow-up scan ROI feature values was assessed by Bland–Altman analysis for each feature; the range spanned by the 95% limits of agreement of feature value differences was calculated and normalized by the average feature value to obtain the normalized range of agreement (nRoA). Features with small nRoA were considered “registration-stable.” The normalized bias for each feature was calculated from the feature value differences between baseline and follow-up scans averaged across all ROIs in every patient. Because patients had “normal” chest CT scans, minimal change in texture feature values between scan pairs was anticipated, with the expectation of small bias and narrow limits of agreement. Results: Registration with demons reduced the Euclidean distance between landmarks such that only 9% of landmarks were separated by ≥1 mm, compared with rigid (98%), affine (95%), and B-splines (90%). Ninety-nine of the 140 (71%) features analyzed yielded nRoA > 50% for all registration methods, indicating that the majority of feature values were perturbed following registration. Nineteen of the features (14%) had nRoA < 15% following demons registration, indicating relative feature value stability. Student's t-tests showed that the nRoA of these 19 features was significantly larger when rigid, affine, or B-splines registration methods were used compared with demons registration. Demons registration yielded greater normalized bias in feature value change than B-splines registration, though this difference was not significant (p = 0.15). Conclusions: Demons registration provided higher spatial accuracy between matched anatomic landmarks in serial CT scans than rigid, affine, or B-splines algorithms. Texture feature changes calculated in healthy lung tissue from serial CT scans were smaller following demons registration compared with all other algorithms. Though registration altered the values of the majority of texture features, 19 features remained relatively stable after demons registration, indicating their potential for detecting pathologic change in serial CT scans. Combined use of accurate deformable registration using demons and texture analysis may allow for quantitative evaluation of local changes in lung tissue due to disease progression or treatment response. PMID:22894392
Method of texturing a superconductive oxide precursor
DeMoranville, Kenneth L.; Li, Qi; Antaya, Peter D.; Christopherson, Craig J.; Riley, Jr., Gilbert N.; Seuntjens, Jeffrey M.
1999-01-01
A method of forming a textured superconductor wire includes constraining an elongated superconductor precursor between two constraining elongated members placed in contact therewith on opposite sides of the superconductor precursor, and passing the superconductor precursor with the two constraining members through flat rolls to form the textured superconductor wire. The method includes selecting desired cross-sectional shape and size constraining members to control the width of the formed superconductor wire. A textured superconductor wire formed by the method of the invention has regular-shaped, curved sides and is free of flashing. A rolling assembly for single-pass rolling of the elongated precursor superconductor includes two rolls, two constraining members, and a fixture for feeding the precursor superconductor and the constraining members between the rolls. In alternate embodiments of the invention, the rolls can have machined regions which will contact only the elongated constraining members and affect the lateral deformation and movement of those members during the rolling process.
Textural and Mineralogical Analysis of Volcanic Rocks by µ-XRF Mapping.
Germinario, Luigi; Cossio, Roberto; Maritan, Lara; Borghi, Alessandro; Mazzoli, Claudio
2016-06-01
In this study, µ-XRF was applied as a novel surface technique for quick acquisition of elemental X-ray maps of rocks, image analysis of which provides quantitative information on texture and rock-forming minerals. Bench-top µ-XRF is cost-effective, fast, and non-destructive, can be applied to both large (up to a few tens of cm) and fragile samples, and yields major and trace element analysis with good sensitivity. Here, X-ray mapping was performed with a resolution of 103.5 µm and spot size of 30 µm over sample areas of about 5×4 cm of Euganean trachyte, a volcanic porphyritic rock from the Euganean Hills (NE Italy) traditionally used in cultural heritage. The relative abundance of phenocrysts and groundmass, as well as the size and shape of the various mineral phases, were obtained from image analysis of the elemental maps. The quantified petrographic features allowed identification of various extraction sites, revealing an objective method for archaeometric provenance studies exploiting µ-XRF imaging.
NASA Astrophysics Data System (ADS)
Eldosouky, Ahmed M.; Elkhateeb, Sayed O.
2018-06-01
Enhancement of aeromagnetic data for qualitative purposes depends on the variations of texture and amplitude to outline various geologic features within the data. The texture of aeromagnetic data consists continuity of adjacent anomalies, size, and pattern. Variations in geology, or particularly rock magnetization, in a study area cause fluctuations in texture. In the present study, the anomalous features of Elallaqi area were extracted from aeromagnetic data. In order to delineate textures from the aeromagnetic data, the Red, Green, and Blue Co-occurrence Matrices (RGBCM) were applied to the reduced to the pole (RTP) grid of Elallaqi district in the South Eastern Desert of Egypt. The RGBCM are fashioned of sets of spatial analytical parameters that transform magnetic data into texture forms. Six texture features (parameters), i.e. Correlation, Contrast, Entropy, Homogeneity, Second Moment, and Variance, of RGB Co-occurrence Matrices (RGBCM) are used for analyzing the texture of the RTP grid in this study. These six RGBCM texture characteristics were mixed into a single image using principal component analysis. The calculated texture images present geologic characteristics and structures with much greater sidelong resolution than the original RTP grid. The estimated texture images enabled us to distinguish multiple geologic regions and structures within Elallaqi area including geologic terranes, lithologic boundaries, cracks, and faults. The faults of RGBCM maps were more represented than those of magnetic derivatives providing enhancement of the fine structures of Elallaqi area like the NE direction which scattered WNW metavolcanics and metasediments trending in the northwestern division of Elallaqi area.
ERIC Educational Resources Information Center
Patel, Meeta R.; Piazza, Cathleen C.; Layer, Stacy A.; Coleman, Russell; Swartzwelder, Dana M.
2005-01-01
This study examined packing (pocketing or holding accepted food in the mouth) in 3 children who were failing to thrive or had inadequate weight gain due to insufficient caloric intake. The results of an analysis of texture indicated that total grams consumed were higher when lower textured foods were presented than when higher textured foods were…
USDA-ARS?s Scientific Manuscript database
Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which preclude conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft white...
Soil texture classification algorithm using RGB characteristics of soil images
USDA-ARS?s Scientific Manuscript database
Soil texture has an important influence on agriculture, affecting crop selection, movement of nutrients and water, soil electrical conductivity, and crop growth. Soil texture has traditionally been determined in the laboratory using pipette and hydrometer methods that require a considerable amount o...
Hamill, Daniel; Buscombe, Daniel; Wheaton, Joseph M
2018-01-01
Side scan sonar in low-cost 'fishfinder' systems has become popular in aquatic ecology and sedimentology for imaging submerged riverbed sediment at coverages and resolutions sufficient to relate bed texture to grain-size. Traditional methods to map bed texture (i.e. physical samples) are relatively high-cost and low spatial coverage compared to sonar, which can continuously image several kilometers of channel in a few hours. Towards a goal of automating the classification of bed habitat features, we investigate relationships between substrates and statistical descriptors of bed textures in side scan sonar echograms of alluvial deposits. We develop a method for automated segmentation of bed textures into between two to five grain-size classes. Second-order texture statistics are used in conjunction with a Gaussian Mixture Model to classify the heterogeneous bed into small homogeneous patches of sand, gravel, and boulders with an average accuracy of 80%, 49%, and 61%, respectively. Reach-averaged proportions of these sediment types were within 3% compared to similar maps derived from multibeam sonar.
Corn response to nitrogen is influenced by soil texture and weather
USDA-ARS?s Scientific Manuscript database
Soil properties and weather conditions are known to affect soil nitrogen (N) availability and plant N uptake. However, studies examining N response as affected by soil and weather sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment effects in a se...
NASA Astrophysics Data System (ADS)
Yang, Masaki J. S.
2017-03-01
In this paper, we attempt to build a unified model with the democratic texture, that has some unification between up-type Yukawa interactions Yν and Yu . Since the S3 L×S3 R flavor symmetry is chiral, the unified gauge group is assumed to be Pati-Salam type S U (4 )c×S U (2 )L×S U (2 )R. The breaking scheme of the flavor symmetry is considered to be S3 L×S3 R→S2 L×S2 R→0 . In this picture, the four-zero texture is desirable for realistic masses and mixings. This texture is realized by a specific representation for the second breaking of the S3 L×S3 R flavor symmetry. Assuming only renormalizable Yukawa interactions, type-I seesaw mechanism, and neglecting C P phases for simplicity, the right-handed neutrino mass matrix MR can be reconstructed from low energy input values. Numerical analysis shows that the texture of MR basically behaves like the "waterfall texture." Since MR tends to be the "cascade texture" in the democratic texture approach, a model with type-I seesaw and up-type Yukawa unification Yν≃Yu basically requires fine-tunings between parameters. Therefore, it seems to be more realistic to consider universal waterfall textures for both Yf and MR, e.g., by the radiative mass generation or the Froggatt-Nielsen mechanism. Moreover, analysis of eigenvalues shows that the lightest mass eigenvalue MR 1 is too light to achieve successful thermal leptogenesis. Although the resonant leptogenesis might be possible, it also requires fine-tunings of parameters.
NASA Astrophysics Data System (ADS)
Gastounioti, Aimilia; Keller, Brad M.; Hsieh, Meng-Kang; Conant, Emily F.; Kontos, Despina
2016-03-01
Growing evidence suggests that quantitative descriptors of the parenchymal texture patterns hold a valuable role in assessing an individual woman's risk for breast cancer. In this work, we assess the hypothesis that breast cancer risk factors are not uniformly expressed in the breast parenchymal tissue and, therefore, breast-anatomy-weighted parenchymal texture descriptors, where different breasts ROIs have non uniform contributions, may enhance breast cancer risk assessment. To this end, we introduce an automated breast-anatomy-driven methodology which generates a breast atlas, which is then used to produce a weight map that reinforces the contributions of the central and upper-outer breast areas. We incorporate this methodology to our previously validated lattice-based strategy for parenchymal texture analysis. In the framework of a pilot case-control study, including digital mammograms from 424 women, our proposed breast-anatomy-weighted texture descriptors are optimized and evaluated against non weighted texture features, using regression analysis with leave-one-out cross validation. The classification performance is assessed in terms of the area under the curve (AUC) of the receiver operating characteristic. The collective discriminatory capacity of the weighted texture features was maximized (AUC=0.87) when the central breast area was considered more important than the upperouter area, with significant performance improvement (DeLong's test, p-value<0.05) against the non-weighted texture features (AUC=0.82). Our results suggest that breast-anatomy-driven methodologies have the potential to further upgrade the promising role of parenchymal texture analysis in breast cancer risk assessment and may serve as a reference in the design of future studies towards image-driven personalized recommendations regarding women's cancer risk evaluation.
NDVI and Panchromatic Image Correlation Using Texture Analysis
2010-03-01
6 Figure 5. Spectral reflectance of vegetation and soil from 0.4 to 1.1 mm (From Perry...should help the classification methods to be able to classify kelp. Figure 5. Spectral reflectance of vegetation and soil from 0.4 to 1.1 mm...1988). Image processing software for imaging spectrometry analysis. Remote Sensing of Enviroment , 24: 201–210. Perry, C., & Lautenschlager, L. F
Effect of the Crystal Structure on the Electrical Properties of Thin-Film PZT Structures
NASA Astrophysics Data System (ADS)
Delimova, L. A.; Gushchina, E. V.; Zaitseva, N. V.; Seregin, D. S.; Vorotilov, K. A.; Sigov, A. S.
2018-03-01
A new method of two-stage crystallization of lead zirconate-titanate (PZT) films using a seed sublayer with a low excess lead content has been proposed and realized. A seed layer with a strong texture of perovskite Pe(111) grains is formed from a solution with a lead excess of 0-5 wt %; the fast growth of the grains is provided by the deposition of the main film from a solution with high lead content. As a result, a strong Pe(111) texture with complete suppression of the Pe(100) orientation forms. An analysis of current-voltage dependences of the transient currents and the distributions of the local conductivity measured by the contact AFM method reveals two various mechanisms of current percolation that are determined by traps in the bulk and at the perovskite grain interfaces.
A new approach of sensorial evaluation of cooked cereal foods: fractal analysis of rheological data
NASA Astrophysics Data System (ADS)
Scher, J.; Hardy, J.
2002-11-01
An analytical method based on a fractal geometry concept was developed through the relationship between structure-texture of solid-like crackers, flat bread and Bretzels. An universal testing machine was used to determine indentation tests. The graphs were irregularly shaped so that usual interpretation was made not possible. Nevertheless, the irregular shape, or “roughness" displays auto-similarity properties which can be interpreted in terms of apparent fractal dimension texture (D_T). A trained panel able to quantify the “hardness", “porous structure" and “crispness" descriptors carried out sensorial characterisation of products. High correlation between sensorial hardness and resistance to indentation, on one hand, and between crispness and D_T on the other hand was found. Modelling mathematics methods for complex systems allow useful contribution to Food Science.
Biaxially textured articles formed by plastic deformation
Goyal, Amit
2001-01-01
A method of preparing a biaxially textured article comprises the steps of providing a metal preform, coating or laminating the preform with a metal layer, deforming the layer to a sufficient degree, and rapidly recrystallizing the layer to produce a biaxial texture. A superconducting epitaxial layer may then be deposited on the biaxial texture. In some embodiments the article further comprises buffer layers, electromagnetic devices or electro-optical devices.
Cest Analysis: Automated Change Detection from Very-High Remote Sensing Images
NASA Astrophysics Data System (ADS)
Ehlers, M.; Klonus, S.; Jarmer, T.; Sofina, N.; Michel, U.; Reinartz, P.; Sirmacek, B.
2012-08-01
A fast detection, visualization and assessment of change in areas of crisis or catastrophes are important requirements for coordination and planning of help. Through the availability of new satellites and/or airborne sensors with very high spatial resolutions (e.g., WorldView, GeoEye) new remote sensing data are available for a better detection, delineation and visualization of change. For automated change detection, a large number of algorithms has been proposed and developed. From previous studies, however, it is evident that to-date no single algorithm has the potential for being a reliable change detector for all possible scenarios. This paper introduces the Combined Edge Segment Texture (CEST) analysis, a decision-tree based cooperative suite of algorithms for automated change detection that is especially designed for the generation of new satellites with very high spatial resolution. The method incorporates frequency based filtering, texture analysis, and image segmentation techniques. For the frequency analysis, different band pass filters can be applied to identify the relevant frequency information for change detection. After transforming the multitemporal images via a fast Fourier transform (FFT) and applying the most suitable band pass filter, different methods are available to extract changed structures: differencing and correlation in the frequency domain and correlation and edge detection in the spatial domain. Best results are obtained using edge extraction. For the texture analysis, different 'Haralick' parameters can be calculated (e.g., energy, correlation, contrast, inverse distance moment) with 'energy' so far providing the most accurate results. These algorithms are combined with a prior segmentation of the image data as well as with morphological operations for a final binary change result. A rule-based combination (CEST) of the change algorithms is applied to calculate the probability of change for a particular location. CEST was tested with high-resolution satellite images of the crisis areas of Darfur (Sudan). CEST results are compared with a number of standard algorithms for automated change detection such as image difference, image ratioe, principal component analysis, delta cue technique and post classification change detection. The new combined method shows superior results averaging between 45% and 15% improvement in accuracy.
NASA Astrophysics Data System (ADS)
Choi, Jae Young; Kim, Dae Hoe; Choi, Seon Hyeong; Ro, Yong Man
2012-03-01
We investigated the feasibility of using multiresolution Local Binary Pattern (LBP) texture analysis to reduce falsepositive (FP) detection in a computerized mass detection framework. A new and novel approach for extracting LBP features is devised to differentiate masses and normal breast tissue on mammograms. In particular, to characterize the LBP texture patterns of the boundaries of masses, as well as to preserve the spatial structure pattern of the masses, two individual LBP texture patterns are then extracted from the core region and the ribbon region of pixels of the respective ROI regions, respectively. These two texture patterns are combined to produce the so-called multiresolution LBP feature of a given ROI. The proposed LBP texture analysis of the information in mass core region and its margin has clearly proven to be significant and is not sensitive to the precise location of the boundaries of masses. In this study, 89 mammograms were collected from the public MAIS database (DB). To perform a more realistic assessment of FP reduction process, the LBP texture analysis was applied directly to a total of 1,693 regions of interest (ROIs) automatically segmented by computer algorithm. Support Vector Machine (SVM) was applied for the classification of mass ROIs from ROIs containing normal tissue. Receiver Operating Characteristic (ROC) analysis was conducted to evaluate the classification accuracy and its improvement using multiresolution LBP features. With multiresolution LBP features, the classifier achieved an average area under the ROC curve, , z A of 0.956 during testing. In addition, the proposed LBP features outperform other state-of-the-arts features designed for false positive reduction.
NASA Astrophysics Data System (ADS)
Taşkin Kaya, Gülşen
2013-10-01
Recently, earthquake damage assessment using satellite images has been a very popular ongoing research direction. Especially with the availability of very high resolution (VHR) satellite images, a quite detailed damage map based on building scale has been produced, and various studies have also been conducted in the literature. As the spatial resolution of satellite images increases, distinguishability of damage patterns becomes more cruel especially in case of using only the spectral information during classification. In order to overcome this difficulty, textural information needs to be involved to the classification to improve the visual quality and reliability of damage map. There are many kinds of textural information which can be derived from VHR satellite images depending on the algorithm used. However, extraction of textural information and evaluation of them have been generally a time consuming process especially for the large areas affected from the earthquake due to the size of VHR image. Therefore, in order to provide a quick damage map, the most useful features describing damage patterns needs to be known in advance as well as the redundant features. In this study, a very high resolution satellite image after Iran, Bam earthquake was used to identify the earthquake damage. Not only the spectral information, textural information was also used during the classification. For textural information, second order Haralick features were extracted from the panchromatic image for the area of interest using gray level co-occurrence matrix with different size of windows and directions. In addition to using spatial features in classification, the most useful features representing the damage characteristic were selected with a novel feature selection method based on high dimensional model representation (HDMR) giving sensitivity of each feature during classification. The method called HDMR was recently proposed as an efficient tool to capture the input-output relationships in high-dimensional systems for many problems in science and engineering. The HDMR method is developed to improve the efficiency of the deducing high dimensional behaviors. The method is formed by a particular organization of low dimensional component functions, in which each function is the contribution of one or more input variables to the output variables.
SU-D-12A-02: DeTECT, a Method to Enhance Soft Tissue Contrast From Mega Voltage CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, K; Gou, S; Qi, S
Purpose: MVCT images have been used on TomoTherapy system to align patients based on bony anatomies but its usefulness for soft tissue registration, delineation and adaptive radiation therapy is severely limited due to minimal photoelectric interaction and prominent presence of noise resulting from low detector quantum efficiency of megavoltage x-rays. We aim to utilize a non-local means denoising method and texture analysis to recover the soft tissue information for MVCT. Methods: A block matching 3D (BM3D) algorithm was adapted to reduce the noise while keeping the texture information of the MVCT images. BM3D is an imaging denoising algorithm developed frommore » non-local means methods. BM3D additionally creates 3D groups by stacking 2D patches by the order of similarity. 3D denoising operation is then performed. The resultant 3D group is inversely transformed back to 2D images. In this study, BM3D was applied to MVCT images of a CT quality phantom, a head and neck and a prostate patient. Following denoising, imaging texture was enhanced to create the denoised and texture enhanced CT (DeTECT). Results: The original MVCT images show prevalent noise and poor soft tissue contrast. By applying BM3D denoising and texture enhancement, all MVCT images show remarkable improvements. For the phantom, the contrast to noise ratio for the low contrast plug was improved from 2.2 to 13.1 without compromising line pair conspicuity. For the head and neck patient, the lymph nodes and vein in the carotid space inconspicuous in the original MVCT image becomes highly visible in DeTECT. For the prostate patient, the boundary between the bladder and the prostate in the original MVCT is successfully recovered. Both results are visually validated by kVCT images of the corresponding patients. Conclusion: DeTECT showed the promise to drastically improve the soft tissue contrast of MVCT for image guided radiotherapy and adaptive radiotherapy.« less
Cortical mechanisms for the segregation and representation of acoustic textures.
Overath, Tobias; Kumar, Sukhbinder; Stewart, Lauren; von Kriegstein, Katharina; Cusack, Rhodri; Rees, Adrian; Griffiths, Timothy D
2010-02-10
Auditory object analysis requires two fundamental perceptual processes: the definition of the boundaries between objects, and the abstraction and maintenance of an object's characteristic features. Although it is intuitive to assume that the detection of the discontinuities at an object's boundaries precedes the subsequent precise representation of the object, the specific underlying cortical mechanisms for segregating and representing auditory objects within the auditory scene are unknown. We investigated the cortical bases of these two processes for one type of auditory object, an "acoustic texture," composed of multiple frequency-modulated ramps. In these stimuli, we independently manipulated the statistical rules governing (1) the frequency-time space within individual textures (comprising ramps with a given spectrotemporal coherence) and (2) the boundaries between textures (adjacent textures with different spectrotemporal coherences). Using functional magnetic resonance imaging, we show mechanisms defining boundaries between textures with different coherences in primary and association auditory cortices, whereas texture coherence is represented only in association cortex. Furthermore, participants' superior detection of boundaries across which texture coherence increased (as opposed to decreased) was reflected in a greater neural response in auditory association cortex at these boundaries. The results suggest a hierarchical mechanism for processing acoustic textures that is relevant to auditory object analysis: boundaries between objects are first detected as a change in statistical rules over frequency-time space, before a representation that corresponds to the characteristics of the perceived object is formed.
Ohri, Nitin; Duan, Fenghai; Snyder, Bradley S.; Wei, Bo; Machtay, Mitchell; Alavi, Abass; Siegel, Barry A.; Johnson, Douglas W.; Bradley, Jeffrey D.; DeNittis, Albert; Werner-Wasik, Maria; El Naqa, Issam
2016-01-01
In a secondary analysis of American College of Radiology Imaging Network (ACRIN) 6668/RTOG 0235, high pretreatment metabolic tumor volume (MTV) on 18F-FDG PET was found to be a poor prognostic factor for patients treated with chemoradiotherapy for locally advanced non–small cell lung cancer (NSCLC). Here we utilize the same dataset to explore whether heterogeneity metrics based on PET textural features can provide additional prognostic information. Methods Patients with locally advanced NSCLC underwent 18F-FDG PET prior to treatment. A gradient-based segmentation tool was used to contour each patient’s primary tumor. MTV, maximum SUV, and 43 textural features were extracted for each tumor. To address over-fitting and high collinearity among PET features, the least absolute shrinkage and selection operator (LASSO) method was applied to identify features that were independent predictors of overall survival (OS) after adjusting for MTV. Recursive binary partitioning in a conditional inference framework was utilized to identify optimal thresholds. Kaplan–Meier curves and log-rank testing were used to compare outcomes among patient groups. Results Two hundred one patients met inclusion criteria. The LASSO procedure identified 1 textural feature (SumMean) as an independent predictor of OS. The optimal cutpoint for MTV was 93.3 cm3, and the optimal Sum-Mean cutpoint for tumors above 93.3 cm3 was 0.018. This grouped patients into three categories: low tumor MTV (n = 155; median OS, 22.6 mo), high tumor MTV and high SumMean (n = 23; median OS, 20.0 mo), and high tumor MTV and low SumMean (n = 23; median OS, 6.2 mo; log-rank P < 0.001). Conclusion We have described an appropriate methodology to evaluate the prognostic value of textural PET features in the context of established prognostic factors. We have also identified a promising feature that may have prognostic value in locally advanced NSCLC patients with large tumors who are treated with chemoradiotherapy. Validation studies are warranted. PMID:26912429
Semi-automatic for ultrasonic measurement of texture
Thompson, R. Bruce; Smith, John F.; Lee, Seung S.; Li, Yan
1990-02-13
A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improved reliability and accuracy. The method can be utilized in production on moving metal plate or sheet.
Semi-automatic for ultrasonic measurement of texture
Thompson, R.B.; Smith, J.F.; Lee, S.S.; Li, Y.
1990-02-13
A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improved reliability and accuracy. The method can be utilized in production on moving metal plate or sheet. 9 figs.
NASA Astrophysics Data System (ADS)
Li, Na; Gong, Xingyu; Li, Hongan; Jia, Pengtao
2018-01-01
For faded relics, such as Terracotta Army, the 2D-3D registration between an optical camera and point cloud model is an important part for color texture reconstruction and further applications. This paper proposes a nonuniform multiview color texture mapping for the image sequence and the three-dimensional (3D) model of point cloud collected by Handyscan3D. We first introduce nonuniform multiview calibration, including the explanation of its algorithm principle and the analysis of its advantages. We then establish transformation equations based on sift feature points for the multiview image sequence. At the same time, the selection of nonuniform multiview sift feature points is introduced in detail. Finally, the solving process of the collinear equations based on multiview perspective projection is given with three steps and the flowchart. In the experiment, this method is applied to the color reconstruction of the kneeling figurine, Tangsancai lady, and general figurine. These results demonstrate that the proposed method provides an effective support for the color reconstruction of the faded cultural relics and be able to improve the accuracy of 2D-3D registration between the image sequence and the point cloud model.
NASA Astrophysics Data System (ADS)
Bender, P.; Tschöpe, A.; Birringer, R.
2014-12-01
The local mechanical coupling of ferromagnetic nanorods in hydrogels was characterized by magnetization measurements. Nickel nanorods were synthesized by the AAO-template method and embedded in gelatine hydrogels with mechanically soft or hard matrix properties determined by the gelatine weight fraction. By applying a homogeneous magnetic field during gelation the nanorods were aligned along the field resulting in uniaxially textured ferrogels. The magnetization curves of the soft ferrogel exhibited not only important similarities but also characteristic differences as compared to the hard ferrogel. The hystereses measured in a field parallel to the texture axis were almost identical for both samples indicating effective coupling of the nanorods with the polymer network. By contrast, measurements in a magnetic field perpendicular to the texture axis revealed a much higher initial susceptibility of the soft as compared to the hard ferrogel. This difference was attributed to the additional rotation of the nanorods allowed by the reduced shear modulus in the soft ferrogel matrix. Two methods for data analysis were presented which enabled us to determine the shear modulus of the gelatine matrix which was interpreted as a local rather than macroscopic quantity in consideration of the nanoscale of the probe particles.
Staging Liver Fibrosis with Statistical Observers
NASA Astrophysics Data System (ADS)
Brand, Jonathan Frieman
Chronic liver disease is a worldwide health problem, and hepatic fibrosis (HF) is one of the hallmarks of the disease. Pathology diagnosis of HF is based on textural change in the liver as a lobular collagen network that develops within portal triads. The scale of collagen lobules is characteristically on order of 1mm, which close to the resolution limit of in vivo Gd-enhanced MRI. In this work the methods to collect training and testing images for a Hotelling observer are covered. An observer based on local texture analysis is trained and tested using wet-tissue phantoms. The technique is used to optimize the MRI sequence based on task performance. The final method developed is a two stage model observer to classify fibrotic and healthy tissue in both phantoms and in vivo MRI images. The first stage observer tests for the presence of local texture. Test statistics from the first observer are used to train the second stage observer to globally sample the local observer results. A decision of the disease class is made for an entire MRI image slice using test statistics collected from the second observer. The techniques are tested on wet-tissue phantoms and in vivo clinical patient data.
NASA Astrophysics Data System (ADS)
Wenk, H.-R.; Vasin, R. N.; Kern, H.; Matthies, S.; Vogel, S. C.; Ivankina, T. I.
2012-10-01
A sample of biotite gneiss from the Outokumpu deep drilling project in Finland was investigated by Kern et al. (2008) for crystal preferred orientation and elastic anisotropy. Considerable differences between measured acoustic velocities and velocities calculated on the basis of texture patterns were observed. Measured P-wave anisotropy was 15.1% versus a Voigt average yielding 7.9%. Here we investigate the same sample with different methods and using different averaging techniques. Analyzing time-of-flight neutron diffraction data from Dubna-SKAT and LANSCE-HIPPO diffractometers with the Rietveld technique, much stronger preferred orientation for biotite is determined, compared to conventional pole-figure analysis reported previously. The comparison reveals important differences: HIPPO has much better counting statistics but pole figure coverage is poor. SKAT has better angular resolution. Using the new preferred orientation data and applying a self-consistent averaging method that takes grain shapes into account, close agreement of calculated and measured P-wave velocities is observed (12.6%). This is further improved by adding 0.1 vol.% flat micropores parallel to the biotite platelets in the simulation (14.9%).
Coastal modification of a scene employing multispectral images and vector operators.
Lira, Jorge
2017-05-01
Changes in sea level, wind patterns, sea current patterns, and tide patterns have produced morphologic transformations in the coastline area of Tamaulipas Sate in North East Mexico. Such changes generated a modification of the coastline and variations of the texture-relief and texture of the continental area of Tamaulipas. Two high-resolution multispectral satellite Satellites Pour l'Observation de la Terre images were employed to quantify the morphologic change of such continental area. The images cover a time span close to 10 years. A variant of the principal component analysis was used to delineate the modification of the land-water line. To quantify changes in texture-relief and texture, principal component analysis was applied to the multispectral images. The first principal components of each image were modeled as a discrete bidimensional vector field. The divergence and Laplacian vector operators were applied to the discrete vector field. The divergence provided the change of texture, while the Laplacian produced the change of texture-relief in the area of study.
Assessment of visual landscape quality using IKONOS imagery.
Ozkan, Ulas Yunus
2014-07-01
The assessment of visual landscape quality is of importance to the management of urban woodlands. Satellite remote sensing may be used for this purpose as a substitute for traditional survey techniques that are both labour-intensive and time-consuming. This study examines the association between the quality of the perceived visual landscape in urban woodlands and texture measures extracted from IKONOS satellite data, which features 4-m spatial resolution and four spectral bands. The study was conducted in the woodlands of Istanbul (the most important element of urban mosaic) lying along both shores of the Bosporus Strait. The visual quality assessment applied in this study is based on the perceptual approach and was performed via a survey of expressed preferences. For this purpose, representative photographs of real scenery were used to elicit observers' preferences. A slide show comprising 33 images was presented to a group of 153 volunteers (all undergraduate students), and they were asked to rate the visual quality of each on a 10-point scale (1 for very low visual quality, 10 for very high). Average visual quality scores were calculated for landscape. Texture measures were acquired using the two methods: pixel-based and object-based. Pixel-based texture measures were extracted from the first principle component (PC1) image. Object-based texture measures were extracted by using the original four bands. The association between image texture measures and perceived visual landscape quality was tested via Pearson's correlation coefficient. The analysis found a strong linear association between image texture measures and visual quality. The highest correlation coefficient was calculated between standard deviation of gray levels (SDGL) (one of the pixel-based texture measures) and visual quality (r = 0.82, P < 0.05). The results showed that perceived visual quality of urban woodland landscapes can be estimated by using texture measures extracted from satellite data in combination with appropriate modelling techniques.
Cloud field classification based on textural features
NASA Technical Reports Server (NTRS)
Sengupta, Sailes Kumar
1989-01-01
An essential component in global climate research is accurate cloud cover and type determination. Of the two approaches to texture-based classification (statistical and textural), only the former is effective in the classification of natural scenes such as land, ocean, and atmosphere. In the statistical approach that was adopted, parameters characterizing the stochastic properties of the spatial distribution of grey levels in an image are estimated and then used as features for cloud classification. Two types of textural measures were used. One is based on the distribution of the grey level difference vector (GLDV), and the other on a set of textural features derived from the MaxMin cooccurrence matrix (MMCM). The GLDV method looks at the difference D of grey levels at pixels separated by a horizontal distance d and computes several statistics based on this distribution. These are then used as features in subsequent classification. The MaxMin tectural features on the other hand are based on the MMCM, a matrix whose (I,J)th entry give the relative frequency of occurrences of the grey level pair (I,J) that are consecutive and thresholded local extremes separated by a given pixel distance d. Textural measures are then computed based on this matrix in much the same manner as is done in texture computation using the grey level cooccurrence matrix. The database consists of 37 cloud field scenes from LANDSAT imagery using a near IR visible channel. The classification algorithm used is the well known Stepwise Discriminant Analysis. The overall accuracy was estimated by the percentage or correct classifications in each case. It turns out that both types of classifiers, at their best combination of features, and at any given spatial resolution give approximately the same classification accuracy. A neural network based classifier with a feed forward architecture and a back propagation training algorithm is used to increase the classification accuracy, using these two classes of features. Preliminary results based on the GLDV textural features alone look promising.
NASA Astrophysics Data System (ADS)
Moallemi, Mohammad; Zarei-Hanzaki, Abbas; Eskandari, Mostafa; Burrows, Andrew; Alimadadi, Hossein
2017-08-01
A new metastable Ni-free duplex stainless steel has been designed with superior plasticity by optimizing austenite stability using thermodynamic calculations of stacking fault energy and with reference to literature findings. Several characterization methods comprising optical microscopy, magnetic phase measurements, X-ray diffraction (XRD) and electron backscattered diffraction were employed to study the plastic deformation behavior and to identify the operating plasticity mechanisms. The results obtained show that the newly designed duplex alloy exhibits some extraordinary mechanical properties, including an ultimate tensile strength of 900 MPa and elongation to fracture of 94 pct due to the synergistic effects of transformation-induced plasticity and twinning-induced plasticity. The deformation mechanism of austenite is complex and includes deformation banding, strain-induced martensite formation, and deformation-induced twinning, while the ferrite phase mainly deforms by dislocation slip. Texture analysis indicates that the Copper and Rotated Brass textures in austenite (FCC phase) and {001}<110> texture in ferrite and martensite (BCC phases) are the main active components during tensile deformation. The predominance of these components is logically related to the strain-induced martensite and/or twin formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, S; Coroller, T; Niu, N
2015-06-15
Purpose: Tumor regions-of-interest (ROI) can be propagated from the pre-onto the post-treatment PET/CT images using image registration of their CT counterparts, providing an automatic way to compute texture features on longitudinal scans. This exploratory study assessed the impact of image registration algorithms on textures to predict pathological response. Methods: Forty-six esophageal cancer patients (1 tumor/patient) underwent PET/CT scans before and after chemoradiotherapy. Patients were classified into responders and non-responders after the surgery. Physician-defined tumor ROIs on pre-treatment PET were propagated onto the post-treatment PET using rigid and ten deformable registration algorithms. One co-occurrence, two run-length and size zone matrix texturesmore » were computed within all ROIs. The relative difference of each texture at different treatment time-points was used to predict the pathologic responders. Their predictive value was assessed using the area under the receiver-operating-characteristic curve (AUC). Propagated ROIs and texture quantification resulting from different algorithms were compared using overlap volume (OV) and coefficient of variation (CoV), respectively. Results: Tumor volumes were better captured by ROIs propagated by deformable rather than the rigid registration. The OV between rigidly and deformably propagated ROIs were 69%. The deformably propagated ROIs were found to be similar (OV∼80%) except for fast-demons (OV∼60%). Rigidly propagated ROIs with run-length matrix textures failed to significantly differentiate between responders and non-responders (AUC=0.65, p=0.07), while the differentiation was significant with other textures (AUC=0.69–0.72, p<0.03). Among the deformable algorithms, fast-demons was the least predictive (AUC=0.68–0.71, p<0.04). ROIs propagated by all other deformable algorithms with any texture significantly predicted pathologic responders (AUC=0.71–0.78, p<0.01) despite substantial variation in texture quantification (CoV>70%). Conclusion: Propagated ROIs using deformable registration for all textures can lead to accurate prediction of pathologic response, potentially expediting the temporal texture analysis process. However, rigid and fast-demons deformable algorithms are not recommended due to their inferior performance compared to other algorithms. The project was supported in part by a Kaye Scholar Award.« less
Barbosa, Daniel J C; Ramos, Jaime; Lima, Carlos S
2008-01-01
Capsule endoscopy is an important tool to diagnose tumor lesions in the small bowel. The capsule endoscopic images possess vital information expressed by color and texture. This paper presents an approach based in the textural analysis of the different color channels, using the wavelet transform to select the bands with the most significant texture information. A new image is then synthesized from the selected wavelet bands, trough the inverse wavelet transform. The features of each image are based on second-order textural information, and they are used in a classification scheme using a multilayer perceptron neural network. The proposed methodology has been applied in real data taken from capsule endoscopic exams and reached 98.7% sensibility and 96.6% specificity. These results support the feasibility of the proposed algorithm.
Multi-layer cube sampling for liver boundary detection in PET-CT images.
Liu, Xinxin; Yang, Jian; Song, Shuang; Song, Hong; Ai, Danni; Zhu, Jianjun; Jiang, Yurong; Wang, Yongtian
2018-06-01
Liver metabolic information is considered as a crucial diagnostic marker for the diagnosis of fever of unknown origin, and liver recognition is the basis of automatic diagnosis of metabolic information extraction. However, the poor quality of PET and CT images is a challenge for information extraction and target recognition in PET-CT images. The existing detection method cannot meet the requirement of liver recognition in PET-CT images, which is the key problem in the big data analysis of PET-CT images. A novel texture feature descriptor called multi-layer cube sampling (MLCS) is developed for liver boundary detection in low-dose CT and PET images. The cube sampling feature is proposed for extracting more texture information, which uses a bi-centric voxel strategy. Neighbour voxels are divided into three regions by the centre voxel and the reference voxel in the histogram, and the voxel distribution information is statistically classified as texture feature. Multi-layer texture features are also used to improve the ability and adaptability of target recognition in volume data. The proposed feature is tested on the PET and CT images for liver boundary detection. For the liver in the volume data, mean detection rate (DR) and mean error rate (ER) reached 95.15 and 7.81% in low-quality PET images, and 83.10 and 21.08% in low-contrast CT images. The experimental results demonstrated that the proposed method is effective and robust for liver boundary detection.
Improved Oxygen-Beam Texturing of Glucose-Monitoring Optics
NASA Technical Reports Server (NTRS)
Banks, Bruce A.
2006-01-01
An improved method has been devised for using directed, hyperthermal beams of oxygen atoms and ions to impart desired textures to the tips of polymethylmethacrylate [PMMA] optical fibers to be used in monitoring the glucose content of blood. The improved method incorporates, but goes beyond, the method described in Texturing Blood-Glucose- Monitoring Optics Using Oxygen Beams (LEW-17642-1), NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 11a. The basic principle of operation of such a glucose-monitoring sensor is as follows: The textured surface of the optical fiber is coated with chemicals that interact with glucose in such a manner as to change the reflectance of the surface. Light is sent down the optical fiber and is reflected from, the textured surface. The resulting change in reflectance of the light is measured as an indication of the concentration of glucose. The required texture on the ends of the optical fibers is a landscape of microscopic cones or pillars having high aspect ratios (microscopic structures being taller than they are wide). The average distance between hills must be no more than about 5 mso that blood cells (which are wider) cannot enter the valleys between the hills, where they would interfere with optical sensing of glucose in the blood plasma. On the other hand, the plasma is required to enter the valleys, and high aspect ratio structures are needed to maximize the surface area in contact with the plasma, thereby making it possible to obtain a given level of optical glucose-measurement sensitivity with a relatively small volume of blood. There is an additional requirement that the hills be wide enough that a sufficient amount of light can propagate into them and, after reflection, can propagate out of them. The method described in the cited prior article produces a texture comprising cones and pillars that conform to the average-distance and aspect-ratio requirements. However, a significant fraction of the cones and pillars are so narrow that not enough light can propagate along them. The improved method makes it possible to form wider cones and pillars while still satisfying the average-distance and aspect-ratio requirements. In the improved method, as in the previously reported method, multiple optical fibers are first bundled together for simultaneous texturing of their distal tips. However, prior to texturing by exposure to an oxygen beam, the tips are first coated by vapor deposition of a thin, sparse layer of aluminum: The exposure to the aluminum vapor must be short enough (typically of the order of seconds) so that the aluminum nucleates into islands separated by uncoated areas. The coated tips are textured by exposure to a directed beam of hyperthermal (kinetic energy >1 eV) oxygen atoms and/or ions in a vacuum chamber, as in the previously reported method. The aluminum islands partially shield the underlying PMMA from oxidation and erosion by the beam, so that the cones or pillars remaining after texturing are wider than they would otherwise be. To some extent, the dimensions of the hills and the distances between them can be tailored through choice of the thickness of the aluminum coat and/or the oxygen-beam fluence. The figure illustrates an example of texturing of the tip of a PMMA optical fiber without and with prior aluminum coating.
Deep Filter Banks for Texture Recognition, Description, and Segmentation.
Cimpoi, Mircea; Maji, Subhransu; Kokkinos, Iasonas; Vedaldi, Andrea
Visual textures have played a key role in image understanding because they convey important semantics of images, and because texture representations that pool local image descriptors in an orderless manner have had a tremendous impact in diverse applications. In this paper we make several contributions to texture understanding. First, instead of focusing on texture instance and material category recognition, we propose a human-interpretable vocabulary of texture attributes to describe common texture patterns, complemented by a new describable texture dataset for benchmarking. Second, we look at the problem of recognizing materials and texture attributes in realistic imaging conditions, including when textures appear in clutter, developing corresponding benchmarks on top of the recently proposed OpenSurfaces dataset. Third, we revisit classic texture represenations, including bag-of-visual-words and the Fisher vectors, in the context of deep learning and show that these have excellent efficiency and generalization properties if the convolutional layers of a deep model are used as filter banks. We obtain in this manner state-of-the-art performance in numerous datasets well beyond textures, an efficient method to apply deep features to image regions, as well as benefit in transferring features from one domain to another.
Three dimensional range geometry and texture data compression with space-filling curves.
Chen, Xia; Zhang, Song
2017-10-16
This paper presents a novel method to effectively store three-dimensional (3D) data and 2D texture data into a regular 24-bit image. The proposed method uses the Hilbert space-filling curve to map the normalized unwrapped phase map to two 8-bit color channels, and saves the third color channel for 2D texture storage. By further leveraging existing 2D image and video compression techniques, the proposed method can achieve high compression ratios while effectively preserving data quality. Since the encoding and decoding processes can be applied to most of the current 2D media platforms, this proposed compression method can make 3D data storage and transmission available for many electrical devices without requiring special hardware changes. Experiments demonstrate that if a lossless 2D image/video format is used, both original 3D geometry and 2D color texture can be accurately recovered; if lossy image/video compression is used, only black-and-white or grayscale texture can be properly recovered, but much higher compression ratios (e.g., 1543:1 against the ASCII OBJ format) are achieved with slight loss of 3D geometry quality.
Quantification of Shape, Angularity, and Surface texture of Base Course Materials
DOT National Transportation Integrated Search
1998-01-01
A state-of-the-art review was conducted to determine existing test methods for characterizing the shape, angularity, and surface texture of coarse aggregates. The review found direct methods used by geologists to determine these characteristics. Thes...
NASA Astrophysics Data System (ADS)
Nuzhnaya, Tatyana; Bakic, Predrag; Kontos, Despina; Megalooikonomou, Vasileios; Ling, Haibin
2012-02-01
This work is a part of our ongoing study aimed at understanding a relation between the topology of anatomical branching structures with the underlying image texture. Morphological variability of the breast ductal network is associated with subsequent development of abnormalities in patients with nipple discharge such as papilloma, breast cancer and atypia. In this work, we investigate complex dependence among ductal components to perform segmentation, the first step for analyzing topology of ductal lobes. Our automated framework is based on incorporating a conditional random field with texture descriptors of skewness, coarseness, contrast, energy and fractal dimension. These features are selected to capture the architectural variability of the enhanced ducts by encoding spatial variations between pixel patches in galactographic image. The segmentation algorithm was applied to a dataset of 20 x-ray galactograms obtained at the Hospital of the University of Pennsylvania. We compared the performance of the proposed approach with fully and semi automated segmentation algorithms based on neural network classification, fuzzy-connectedness, vesselness filter and graph cuts. Global consistency error and confusion matrix analysis were used as accuracy measurements. For the proposed approach, the true positive rate was higher and the false negative rate was significantly lower compared to other fully automated methods. This indicates that segmentation based on CRF incorporated with texture descriptors has potential to efficiently support the analysis of complex topology of the ducts and aid in development of realistic breast anatomy phantoms.
ADC texture—An imaging biomarker for high-grade glioma?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brynolfsson, Patrik; Hauksson, Jón; Karlsson, Mikael
2014-10-15
Purpose: Survival for high-grade gliomas is poor, at least partly explained by intratumoral heterogeneity contributing to treatment resistance. Radiological evaluation of treatment response is in most cases limited to assessment of tumor size months after the initiation of therapy. Diffusion-weighted magnetic resonance imaging (MRI) and its estimate of the apparent diffusion coefficient (ADC) has been widely investigated, as it reflects tumor cellularity and proliferation. The aim of this study was to investigate texture analysis of ADC images in conjunction with multivariate image analysis as a means for identification of pretreatment imaging biomarkers. Methods: Twenty-three consecutive high-grade glioma patients were treatedmore » with radiotherapy (2 Gy/60 Gy) with concomitant and adjuvant temozolomide. ADC maps and T1-weighted anatomical images with and without contrast enhancement were collected prior to treatment, and (residual) tumor contrast enhancement was delineated. A gray-level co-occurrence matrix analysis was performed on the ADC maps in a cuboid encapsulating the tumor in coronal, sagittal, and transversal planes, giving a total of 60 textural descriptors for each tumor. In addition, similar examinations and analyses were performed at day 1, week 2, and week 6 into treatment. Principal component analysis (PCA) was applied to reduce dimensionality of the data, and the five largest components (scores) were used in subsequent analyses. MRI assessment three months after completion of radiochemotherapy was used for classifying tumor progression or regression. Results: The score scatter plots revealed that the first, third, and fifth components of the pretreatment examinations exhibited a pattern that strongly correlated to survival. Two groups could be identified: one with a median survival after diagnosis of 1099 days and one with 345 days, p = 0.0001. Conclusions: By combining PCA and texture analysis, ADC texture characteristics were identified, which seems to hold pretreatment prognostic information, independent of known prognostic factors such as age, stage, and surgical procedure. These findings encourage further studies with a larger patient cohort.« less
DOT National Transportation Integrated Search
1970-01-01
The purpose of this study was to explore methods of obtaining a rough, durable texture on test slabs fabricated in the laboratory in an attempt to provide high skid resistance. The exploration involved the investigation of types of texture, time of t...
Method for Texturing Surfaces of Optical Fiber Sensors Used for Blood Glucose Monitoring
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor)
2007-01-01
Disclosed is a method and the resulting product thereof comprising a solid light-conducting fiber with a point of attachment and having a textured surface site consisting a textured distal end prepared by being placed in a vacuum and then subjected to directed hyperthermal beams comprising oxygen ions or atoms. The textured distal end comprises cones or pillars that are spaced upon from each other by less than 1 micron and are extremely suitable to prevent cellular components of blood from entering the valleys between the cones or pillars so as to effectively separate the cellular components in the blood from interfering with optical sensing of the glucose concentration for diabetic patients.
Fusion method of SAR and optical images for urban object extraction
NASA Astrophysics Data System (ADS)
Jia, Yonghong; Blum, Rick S.; Li, Fangfang
2007-11-01
A new image fusion method of SAR, Panchromatic (Pan) and multispectral (MS) data is proposed. First of all, SAR texture is extracted by ratioing the despeckled SAR image to its low pass approximation, and is used to modulate high pass details extracted from the available Pan image by means of the á trous wavelet decomposition. Then, high pass details modulated with the texture is applied to obtain the fusion product by HPFM (High pass Filter-based Modulation) fusion method. A set of image data including co-registered Landsat TM, ENVISAT SAR and SPOT Pan is used for the experiment. The results demonstrate accurate spectral preservation on vegetated regions, bare soil, and also on textured areas (buildings and road network) where SAR texture information enhances the fusion product, and the proposed approach is effective for image interpret and classification.
NASA Astrophysics Data System (ADS)
Scanlan, Neil W.; Schott, John R.; Brown, Scott D.
2004-01-01
Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.
NASA Astrophysics Data System (ADS)
Scanlan, Neil W.; Schott, John R.; Brown, Scott D.
2003-12-01
Synthetic imagery has traditionally been used to support sensor design by enabling design engineers to pre-evaluate image products during the design and development stages. Increasingly exploitation analysts are looking to synthetic imagery as a way to develop and test exploitation algorithms before image data are available from new sensors. Even when sensors are available, synthetic imagery can significantly aid in algorithm development by providing a wide range of "ground truthed" images with varying illumination, atmospheric, viewing and scene conditions. One limitation of synthetic data is that the background variability is often too bland. It does not exhibit the spatial and spectral variability present in real data. In this work, four fundamentally different texture modeling algorithms will first be implemented as necessary into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model environment. Two of the models to be tested are variants of a statistical Z-Score selection model, while the remaining two involve a texture synthesis and a spectral end-member fractional abundance map approach, respectively. A detailed comparative performance analysis of each model will then be carried out on several texturally significant regions of the resultant synthetic hyperspectral imagery. The quantitative assessment of each model will utilize a set of three peformance metrics that have been derived from spatial Gray Level Co-Occurrence Matrix (GLCM) analysis, hyperspectral Signal-to-Clutter Ratio (SCR) measures, and a new concept termed the Spectral Co-Occurrence Matrix (SCM) metric which permits the simultaneous measurement of spatial and spectral texture. Previous research efforts on the validation and performance analysis of texture characterization models have been largely qualitative in nature based on conducting visual inspections of synthetic textures in order to judge the degree of similarity to the original sample texture imagery. The quantitative measures used in this study will in combination attempt to determine which texture characterization models best capture the correct statistical and radiometric attributes of the corresponding real image textures in both the spatial and spectral domains. The motivation for this work is to refine our understanding of the complexities of texture phenomena so that an optimal texture characterization model that can accurately account for these complexities can be eventually implemented into a synthetic image generation (SIG) model. Further, conclusions will be drawn regarding which of the candidate texture models are able to achieve realistic levels of spatial and spectral clutter, thereby permitting more effective and robust testing of hyperspectral algorithms in synthetic imagery.
NASA Astrophysics Data System (ADS)
Liu, Daiming; Wang, Qingkang; Wang, Qing
2018-05-01
Surface texturing is of great significance in light trapping for solar cells. Herein, the multiscale texture, consisting of microscale pyramids and nanoscale porous arrangement, was fabricated on crystalline Si by KOH etching and Ag-assisted HF etching processes and subsequently replicated onto glass with high fidelity by UV nanoimprint method. Light trapping of the multiscale texture was studied by spectral (reflectance, haze ratio) characterizations. Results reveal the multiscale texture provides the broadband reflection reducing, the highlighted light scattering and the additional self-cleaning behaviors. Compared with bare cell, the multiscale textured micromorph cell achieves a 4% relative increase in power conversion efficiency. This surface texturing route paves a promising way for developing low-cost, large-scale and high-efficiency solar applications.
2007-07-01
primary and secondary alpha in micrographs and thus to correlate microstructural features and texture data [3- 6 ]. For instance, Germain, et al. [3, 4 ...Following electropolishing , the sample was mounted 7/3/2007 6 on the tilting stage inside an XL30 field-emission-gun scanning-electron-microscope (FEG...AFRL-RX-WP-TP-2008-4338 A COUPLED EBSD/EDS METHOD TO DETERMINE THE PRIMARY–AND SECONDARY–ALPHA TEXTURES IN TITANIUM ALLOYS WITH DUPLEX
Wavelet Types Comparison for Extracting Iris Feature Based on Energy Compaction
NASA Astrophysics Data System (ADS)
Rizal Isnanto, R.
2015-06-01
Human iris has a very unique pattern which is possible to be used as a biometric recognition. To identify texture in an image, texture analysis method can be used. One of method is wavelet that extract the image feature based on energy. Wavelet transforms used are Haar, Daubechies, Coiflets, Symlets, and Biorthogonal. In the research, iris recognition based on five mentioned wavelets was done and then comparison analysis was conducted for which some conclusions taken. Some steps have to be done in the research. First, the iris image is segmented from eye image then enhanced with histogram equalization. The features obtained is energy value. The next step is recognition using normalized Euclidean distance. Comparison analysis is done based on recognition rate percentage with two samples stored in database for reference images. After finding the recognition rate, some tests are conducted using Energy Compaction for all five types of wavelets above. As the result, the highest recognition rate is achieved using Haar, whereas for coefficients cutting for C(i) < 0.1, Haar wavelet has a highest percentage, therefore the retention rate or significan coefficient retained for Haaris lower than other wavelet types (db5, coif3, sym4, and bior2.4)
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Sulaiman, F.; Karatas, C.
2018-05-01
Zirconium nitride is used as a selective surface for concentrated solar heating applications and one of the methods to form a zirconium nitride is texturing of zirconia surface by a high intensity laser beam under high pressure nitrogen gas environment. Laser texturing also provides hydrophobic surface characteristics via forming micro/nano pillars at the surface; however, environmental dust settlement on textured surface influences the surface characteristics significantly. In the present study, laser texturing of zirconia surface and effects of the dust particles on the textured surface in a humid air ambient are investigated. Analytical tools are used to assess the morphological changes on the laser textured surface prior and after the dust settlement in the humid air ambient. It is found that laser textured surface has hydrophobic characteristics. The mud formed during condensate of water on the dust particles alters the characteristics of the laser textured surface. The tangential force required to remove the dry mud from the textured surface remains high; in which case, the dried liquid solution at the mud-textured surface interface is responsible for the strong adhesion of the dry mud on the textured surface. The textured surface becomes hydrophilic after the dry mud was removed from the surface by a desalinated water jet.