Critical soil bulk density for soybean growth in Oxisols
NASA Astrophysics Data System (ADS)
Keisuke Sato, Michel; Veras de Lima, Herdjania; Oliveira, Pedro Daniel de; Rodrigues, Sueli
2015-10-01
The aim of this study was to evaluate the critical soil bulk density from the soil penetration resistance measurements for soybean root growth in Brazilian Amazon Oxisols. The experiment was carried out in a greenhouse using disturbed soil samples collected from the northwest of Para characterized by different texture. The treatments consisted of a range of soil bulk densities for each soil textural class. Three pots were used for soybean growth of and two for the soil penetration resistance curve. From the fitted model, the critical soil bulk density was determined considering the penetration resistance values of 2 and 3 MPa. After sixty days, plants were cut and root length, dry mass of root, and dry mass of shoots were determined. At higher bulk densities, the increase in soil water content decreased the penetration resistance, allowing unrestricted growth of soybean roots. Regardless of soil texture, the penetration resistance of 2 and 3 MPa had a slight effect on root growth in soil moisture at field capacity and a reduction of 50% in the soybean root growth was achieved at critical soil bulk density of 1.82, 1.75, 1.51, and 1.45 Mg m-3 for the sandy loam, sandy clay loam, clayey, and very clayey soil.
Randy Kolka; Aaron Steber; Ken Brooks; Charles H. Perry; Matt Powers
2012-01-01
Although a number of harvesting studies have assessed compaction, no study has considered the interacting relationships of harvest season, soil texture, and landscape position on soil bulk density and surface soil strength for harvests in the western Lake States. In 2005, we measured bulk density and surface soil strength in recent clearcuts of predominantly aspen...
On soil textural classifications and soil-texture-based estimations
NASA Astrophysics Data System (ADS)
Ángel Martín, Miguel; Pachepsky, Yakov A.; García-Gutiérrez, Carlos; Reyes, Miguel
2018-02-01
The soil texture representation with the standard textural fraction triplet sand-silt-clay
is commonly used to estimate soil properties. The objective of this work was to test the hypothesis that other fraction sizes in the triplets may provide a better representation of soil texture for estimating some soil parameters. We estimated the cumulative particle size distribution and bulk density from an entropy-based representation of the textural triplet with experimental data for 6240 soil samples. The results supported the hypothesis. For example, simulated distributions were not significantly different from the original ones in 25 and 85 % of cases when the sand-silt-clay and very coarse+coarse + medium sand - fine + very fine sand - silt+clay
were used, respectively. When the same standard and modified triplets were used to estimate the average bulk density, the coefficients of determination were 0.001 and 0.967, respectively. Overall, the textural triplet selection appears to be application and data specific.
A reexamination of soil textural effects on microwave emission and backscattering
NASA Technical Reports Server (NTRS)
Dobson, M. C.; Kouyate, F.; Ulaby, F. T.
1984-01-01
Microwave frequency measurements of moist soil dielectric properties are noted to challenge the validity of percent-of-field-capacity as a moisture indicator that is independent of soil texture in terms of microwave sensitivity. In arriving at this view, gravimetric, volumetric, and percent-of-field-capacity were tested for their ability to reduce dielectric behavior divergence between soil textures at 1.4 and 5.0 GHz. The most congruent dielectric behavior between soil textures is found to occur when soil moisture is expressed on a volumetric basis that is proportional to the number of water dipoles/unit volume. An inadequate characterization of soil bulk density in the field, combined with the dependency of bulk density on water retention at field capacity, offers the most plausible explanation for the earlier conclusions.
Measurement of Vibrated Bulk Density of Coke Particle Blends Using Image Texture Analysis
NASA Astrophysics Data System (ADS)
Azari, Kamran; Bogoya-Forero, Wilinthon; Duchesne, Carl; Tessier, Jayson
2017-09-01
A rapid and nondestructive machine vision sensor was developed for predicting the vibrated bulk density (VBD) of petroleum coke particles based on image texture analysis. It could be used for making corrective adjustments to a paste plant operation to reduce green anode variability (e.g., changes in binder demand). Wavelet texture analysis (WTA) and gray level co-occurrence matrix (GLCM) algorithms were used jointly for extracting the surface textural features of coke aggregates from images. These were correlated with the VBD using partial least-squares (PLS) regression. Coke samples of several sizes and from different sources were used to test the sensor. Variations in the coke surface texture introduced by coke size and source allowed for making good predictions of the VBD of individual coke samples and mixtures of them (blends involving two sources and different sizes). Promising results were also obtained for coke blends collected from an industrial-baked carbon anode manufacturer.
Saturated hydraulic conductivity of US soils grouped according to textural class and bulk density
USDA-ARS?s Scientific Manuscript database
Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...
Saturated hydraulic conductivity of US soils grouped according textural class and bulk density
USDA-ARS?s Scientific Manuscript database
Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...
NASA Astrophysics Data System (ADS)
Setoyama, Yui; Shimoyama, Jun-ichi; Motoki, Takanori; Kishio, Kohji; Awaji, Satoshi; Kon, Koichi; Ichikawa, Naoki; Inamori, Satoshi; Naito, Kyogo
2016-12-01
Effects of densification of precursor disks on the density of residual voids and critical current properties for YBCO melt-textured bulk superconductors were systematically investigated. Six YBCO bulks were prepared from precursor pellets with different initial particle sizes of YBa2Cu3Oy (Y123) powder and applied pressures for pelletization. It was revealed that use of finer Y123 powder and consolidation using cold-isostatic-pressing (CIP) with higher pressures result in reduction of residual voids at inner regions of bulks and enhance Jc especially under low fields below the second peak.
NASA Astrophysics Data System (ADS)
Makovníková, Jarmila; Širáň, Miloš; Houšková, Beata; Pálka, Boris; Jones, Arwyn
2017-10-01
Soil bulk density is one of the main direct indicators of soil health, and is an important aspect of models for determining agroecosystem services potential. By way of applying multi-regression methods, we have created a distributed prediction of soil bulk density used subsequently for topsoil carbon stock estimation. The soil data used for this study were from the Slovakian partial monitoring system-soil database. In our work, two models of soil bulk density in an equilibrium state, with different combinations of input parameters (soil particle size distribution and soil organic carbon content in %), have been created, and subsequently validated using a data set from 15 principal sampling sites of Slovakian partial monitoring system-soil, that were different from those used to generate the bulk density equations. We have made a comparison of measured bulk density data and data calculated by the pedotransfer equations against soil bulk density calculated according to equations recommended by Joint Research Centre Sustainable Resources for Europe. The differences between measured soil bulk density and the model values vary from -0.144 to 0.135 g cm-3 in the verification data set. Furthermore, all models based on pedotransfer functions give moderately lower values. The soil bulk density model was then applied to generate a first approximation of soil bulk density map for Slovakia using texture information from 17 523 sampling sites, and was subsequently utilised for topsoil organic carbon estimation.
Holloway, Aleksey
1992-01-07
The present invention discloses a process and apparatus for forming textures in materials. The process comprises heating a material having an anisotropy in the paramagnetic or diamagnetic susceptibility within a magnetic field. The material is heated to a temperature approaching its melting point while a magnetic field of at least 10.sup.4 Oe is simultaneously applied. The process and apparatus produce highly textured bulk and elongated materials with high current densities below critical superconducting temperatures.
Holloway, A.
1992-01-07
The present invention discloses a process and apparatus for forming textures in materials. The process comprises heating a material having an anisotropy in the paramagnetic or diamagnetic susceptibility within a magnetic field. The material is heated to a temperature approaching its melting point while a magnetic field of at least 10[sup 4]Oe is simultaneously applied. The process and apparatus produce highly textured bulk and elongated materials with high current densities below critical superconducting temperatures. 6 figs.
7 CFR 58.317 - Bulk butter trucks, boats, texturizers, and packers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 3 2013-01-01 2013-01-01 false Bulk butter trucks, boats, texturizers, and packers... and Grading Service 1 Equipment and Utensils § 58.317 Bulk butter trucks, boats, texturizers, and packers. Bulk butter trucks, boats, texturizers, and packers shall be constructed of aluminum, stainless...
7 CFR 58.317 - Bulk butter trucks, boats, texturizers, and packers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 3 2014-01-01 2014-01-01 false Bulk butter trucks, boats, texturizers, and packers... and Grading Service 1 Equipment and Utensils § 58.317 Bulk butter trucks, boats, texturizers, and packers. Bulk butter trucks, boats, texturizers, and packers shall be constructed of aluminum, stainless...
7 CFR 58.317 - Bulk butter trucks, boats, texturizers, and packers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Bulk butter trucks, boats, texturizers, and packers... and Grading Service 1 Equipment and Utensils § 58.317 Bulk butter trucks, boats, texturizers, and packers. Bulk butter trucks, boats, texturizers, and packers shall be constructed of aluminum, stainless...
7 CFR 58.317 - Bulk butter trucks, boats, texturizers, and packers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 3 2012-01-01 2012-01-01 false Bulk butter trucks, boats, texturizers, and packers... and Grading Service 1 Equipment and Utensils § 58.317 Bulk butter trucks, boats, texturizers, and packers. Bulk butter trucks, boats, texturizers, and packers shall be constructed of aluminum, stainless...
7 CFR 58.317 - Bulk butter trucks, boats, texturizers, and packers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Bulk butter trucks, boats, texturizers, and packers... and Grading Service 1 Equipment and Utensils § 58.317 Bulk butter trucks, boats, texturizers, and packers. Bulk butter trucks, boats, texturizers, and packers shall be constructed of aluminum, stainless...
Present Status and Future Prospects in Bulk Processing of HIGH-Tc Superconductors
NASA Astrophysics Data System (ADS)
Jin, S.; Chu, C. W.
The following sections are included: * INTRODUCTION * HIGH SUPERCONDUCTING TRANSITION TEMPERATURE * HIGH CRITICAL CURRENT DENSITY * Grain Boundary Weak Links * Nature of Weak Links * Possible Processing Approaches for Weak Link Problem * Processing Techniques for Texture Formation * Flux Creep in HTSC * Desirable Pinning Defects * Processing for Flux Pinning Enhancement * PROSPECTS FOR BULK APPLICATIONS * Magnetic Field Gener * Energy Storage * Magnetic Shielding * Other Applications * CONCLUDING REMARKS * ACKNOWLEDGMENT * REFERENCES
2009-08-01
properties, part b. USLE K-Factor by Organic Matter Content Soil -Texture Classification Dry Bulk Density, g/cm3 Field Capacity, % Available...Universal Soil Loss Equation ( USLE ) can be used to estimate annual average sheet and rill erosion, A (tons/acre-yr), from the equation A R K L S...erodibility factors, K, for various soil classifications and percent organic matter content ( USLE Fact Sheet 2008). Textural Class Average Less than 2
Crystallographic texture of straight-rolled ?-uranium foils via neutron and X-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einhorn, J. R.; Steiner, M. A.; Vogel, S. C.
The texture of recrystallized straight-rolled ?-uranium foils, a component in prospective irradiation target designs for medical isotope production, has been measured by neutron diffraction, as well as X-ray diffraction using both Cu and Mo sources. Variations in the penetration depth of neutron and X-ray radiation allow for determination of both the bulk and surface textures. The bulk ?-uranium foil texture is similar to the warm straight-rolled plate texture, with the addition of a notable splitting of the (001) poles along the transverse direction. The surface texture of the foils is similar to the bulk, with an additional (001) texture componentmore » that is oriented between the rolling and normal directions. Differences between the surface and bulk textures are expected to arise from shear forces during the rolling process and the influence that distinct strain histories have on subsequent texture evolution during recrystallization.« less
Crystallographic texture of straight-rolled ?-uranium foils via neutron and X-ray diffraction
Einhorn, J. R.; Steiner, M. A.; Vogel, S. C.; ...
2017-05-25
The texture of recrystallized straight-rolled ?-uranium foils, a component in prospective irradiation target designs for medical isotope production, has been measured by neutron diffraction, as well as X-ray diffraction using both Cu and Mo sources. Variations in the penetration depth of neutron and X-ray radiation allow for determination of both the bulk and surface textures. The bulk ?-uranium foil texture is similar to the warm straight-rolled plate texture, with the addition of a notable splitting of the (001) poles along the transverse direction. The surface texture of the foils is similar to the bulk, with an additional (001) texture componentmore » that is oriented between the rolling and normal directions. Differences between the surface and bulk textures are expected to arise from shear forces during the rolling process and the influence that distinct strain histories have on subsequent texture evolution during recrystallization.« less
USDA-ARS?s Scientific Manuscript database
Directed soil sampling based on geospatial measurements of apparent soil electrical conductivity (ECa) is a potential means of characterizing the spatial variability of any soil property that influences ECa including soil salinity, water content, texture, bulk density, organic matter, and cation exc...
USDA-ARS?s Scientific Manuscript database
Saturated hydraulic conductivity Ksat is a fundamental characteristic in modeling flow and contaminant transport in soils and sediments. Therefore, many models have been developed to estimate Ksat from easily measureable parameters, such as textural properties, bulk density, etc. However, Ksat is no...
Pardo, Natalia; Cronin, Shane J.; Wright, Heather M.N.; Schipper, C. Ian; Smith, Ian; Stewart, Bob
2014-01-01
Between 27 and 11 cal. ka BP, a transition is observed in Plinian eruptions at Mt. Ruapehu, indicating evolution from non-collapsing (steady and oscillatory) eruption columns to partially collapsing columns (both wet and dry). To determine the causes of these variations over this eruptive interval, we examined lapilli fall deposits from four eruptions representing the climactic phases of each column type. All eruptions involve andesite to basaltic andesite magmas containing plagioclase, clinopyroxene, orthopyroxene and magnetite phenocrysts. Differences occur in the dominant pumice texture, the degree of bulk chemistry and textural variability, the average microcrystallinity and the composition of groundmass glass. In order to investigate the role of ascent and degassing processes on column stability, vesicle textures were quantified by gas volume pycnometry (porosity), X-ray synchrotron and computed microtomography (μ-CT) imagery from representative clasts from each eruption. These data were linked to groundmass crystallinity and glass geochemistry. Pumice textures were classified into six types (foamy, sheared, fibrous, microvesicular, microsheared and dense) according to the vesicle content, size and shape and microlite content. Bulk porosities vary from 19 to 95 % among all textural types. Melt-referenced vesicle number density ranges between 1.8 × 102 and 8.9 × 102 mm−3, except in fibrous textures, where it spans from 0.3 × 102 to 53 × 102 mm−3. Vesicle-free magnetite number density varies within an order of magnitude from 0.4 × 102 to 4.5 × 102 mm−3 in samples with dacitic groundmass glass and between 0.0 and 2.3 × 102 mm−3 in samples with rhyolitic groundmass. The data indicate that columns that collapsed to produce pyroclastic flows contained pumice with the greatest variation in bulk composition (which overlaps with but extends to slightly more silicic compositions than other eruptive products); textures indicating heterogeneous bubble nucleation, progressively more complex growth history and shear-localization; and the highest degrees of microlite crystallization, most evolved melt compositions and lowest relative temperatures. These findings suggest that collapsing columns in Ruapehu have been produced when strain localization is prominent, early bubble nucleation occurs and variation in decompression rate across the conduit is greatest. This study shows that examination of pumice from steady phases that precede column collapse may be used to predict subsequent column behaviour.
Physical Quality Indicators and Mechanical Behavior of Agricultural Soils of Argentina.
Imhoff, Silvia; da Silva, Alvaro Pires; Ghiberto, Pablo J; Tormena, Cássio A; Pilatti, Miguel A; Libardi, Paulo L
2016-01-01
Mollisols of Santa Fe have different tilth and load support capacity. Despite the importance of these attributes to achieve a sustainable crop production, few information is available. The objectives of this study are i) to assess soil physical indicators related to plant growth and to soil mechanical behavior; and ii) to establish relationships to estimate the impact of soil loading on the soil quality to plant growth. The study was carried out on Argiudolls and Hapludolls of Santa Fe. Soil samples were collected to determine texture, organic matter content, bulk density, water retention curve, soil resistance to penetration, least limiting water range, critical bulk density for plant growth, compression index, pre-consolidation pressure and soil compressibility. Water retention curve and soil resistance to penetration were linearly and significantly related to clay and organic matter (R2 = 0.91 and R2 = 0.84). The pedotransfer functions of water retention curve and soil resistance to penetration allowed the estimation of the least limiting water range and critical bulk density for plant growth. A significant nonlinear relationship was found between critical bulk density for plant growth and clay content (R2 = 0.98). Compression index was significantly related to bulk density, water content, organic matter and clay plus silt content (R2 = 0.77). Pre-consolidation pressure was significantly related to organic matter, clay and water content (R2 = 0.77). Soil compressibility was significantly related to initial soil bulk density, clay and water content. A nonlinear and significantly pedotransfer function (R2 = 0.88) was developed to predict the maximum acceptable pressure to be applied during tillage operations by introducing critical bulk density for plant growth in the compression model. The developed pedotransfer function provides a useful tool to link the mechanical behavior and tilth of the soils studied.
Physical Quality Indicators and Mechanical Behavior of Agricultural Soils of Argentina
Pires da Silva, Alvaro; Ghiberto, Pablo J.; Tormena, Cássio A.; Pilatti, Miguel A.; Libardi, Paulo L.
2016-01-01
Mollisols of Santa Fe have different tilth and load support capacity. Despite the importance of these attributes to achieve a sustainable crop production, few information is available. The objectives of this study are i) to assess soil physical indicators related to plant growth and to soil mechanical behavior; and ii) to establish relationships to estimate the impact of soil loading on the soil quality to plant growth. The study was carried out on Argiudolls and Hapludolls of Santa Fe. Soil samples were collected to determine texture, organic matter content, bulk density, water retention curve, soil resistance to penetration, least limiting water range, critical bulk density for plant growth, compression index, pre-consolidation pressure and soil compressibility. Water retention curve and soil resistance to penetration were linearly and significantly related to clay and organic matter (R2 = 0.91 and R2 = 0.84). The pedotransfer functions of water retention curve and soil resistance to penetration allowed the estimation of the least limiting water range and critical bulk density for plant growth. A significant nonlinear relationship was found between critical bulk density for plant growth and clay content (R2 = 0.98). Compression index was significantly related to bulk density, water content, organic matter and clay plus silt content (R2 = 0.77). Pre-consolidation pressure was significantly related to organic matter, clay and water content (R2 = 0.77). Soil compressibility was significantly related to initial soil bulk density, clay and water content. A nonlinear and significantly pedotransfer function (R2 = 0.88) was developed to predict the maximum acceptable pressure to be applied during tillage operations by introducing critical bulk density for plant growth in the compression model. The developed pedotransfer function provides a useful tool to link the mechanical behavior and tilth of the soils studied. PMID:27099925
Helical Spin Order from Topological Dirac and Weyl Semimetals
Sun, Xiao-Qi; Zhang, Shou-Cheng; Wang, Zhong
2015-08-14
In this paper, we study dynamical mass generation and the resultant helical spin orders in topological Dirac and Weyl semimetals, including the edge states of quantum spin Hall insulators, the surface states of weak topological insulators, and the bulk materials of Weyl semimetals. In particular, the helical spin textures of Weyl semimetals manifest the spin-momentum locking of Weyl fermions in a visible manner. Finally, the spin-wave fluctuations of the helical order carry electric charge density; therefore, the spin textures can be electrically controlled in a simple and predictable manner.
Effect of soil properties on Hydraulic characteristics under subsurface drip irrigation
NASA Astrophysics Data System (ADS)
Fan, Wangtao; Li, Gang
2018-02-01
Subsurface drip irrigation (SDI) is a technique that has a high potential in application because of its high efficiency in water-saving. The hydraulic characteristics of SDI sub-unit pipe network can be affected by soil physical properties as the emitters are buried in soils. The related research, however, is not fully explored. The laboratory tests were carried out in the present study to determine the effects of hydraulic factors including operating pressure, initial soil water content, and bulk density on flow rate and its sensitivity to each hydraulic factor for two types of SDI emitters (PLASSIM emitter and Heping emitter). For this purpose, three soils with contrasting textures (i.e., light sand, silt loam, and light clay) were repacked with two soil bulk density (1.25 and1.40 g cm-3) with two initial soil water content (12% and 18%) in plexiglass columns with 40 cm in diameter and 40 cm in height. Drip emitters were buried at depth of 20 cm to measure the flow rates under seven operating pressures (60, 100, 150, 200, 250, 300, and 370 kPa). We found that the operating pressure was the dominating factor of flow rate of the SDI emitter, and flow rate increased with the increase of operating pressure. The initial soil water content and bulk density also affected the flow rate, and their effects were the most notable in the light sand soil. The sensitivity of flow rate to each hydraulic factor was dependent on soil texture, and followed a descending order of light sand>silt loam>light clay for both types of emitters. Further, the sensitivity of flow rate to each hydraulic factor decreased with the increase of operating pressure, initial soil water content, and bulk density. This study may be used to guide the soil specific-design of SDI emitters for optimal water use and management.
NASA Technical Reports Server (NTRS)
Riley, H. C. F.
1981-01-01
Specimens from the surface horizon and the subsoil of 62 soil horizons in Hedmark and Oppland were investigated to study how the mechanical composition of the soil, the organic matter content and the bulk density affect their porosity and air capacity and their total and available water content. Most of the specimens belonged to the loam group, and a smaller number was from sandy and silty types of soil. Equations were established to make it possible to calculate the water retention curves and the amount of available water from the above mentioned parameters. As a rule, errors derived from the equations are no greater than those which are found in similar research in other countries.
Studying the effects of nucleating agents on texture modification of puffed corn-fish snack.
Shahmohammadi, Hamid Reza; Bakar, Jamilah; Rahman, Russly Abdul; Adzhan, Noranizan Mohd
2014-02-01
To improve textural attributes of puffed corn-fish snack, the effects of 1%, 1.5%, and 2% of calcium carbonate, magnesium silicate (talc), sodium bicarbonate as well as 5% and 10% of wheat bran (as the nucleating materials) on textural attributes were studied. Sensory evaluation, bulk density, expansion ratio, maximum force, and count peaks were measured using the Kramer test. The results showed that all of the additives except bran significantly enhanced the texture. Among them, talc at 0.5% was the best to enhance the density and expansion ratio. Effects of using 0.5% talc on puffed corn-fish snack microstructure were studied using scanning electron microscopy. The average cell diameter of 109 ± 48 μm and cell numbers per square centimeter of 67.4 for talc-treated products were obtained, while for nontalc-treated extrudates, average cell diameter of 798 ± 361 μm and cell numbers per square centimeter of 13.9 were found. Incorporation of 0.5% w/w of magnesium silicate reduced (7-fold) the average cell diameter while increased (4-fold) the cell number. © 2014 Institute of Food Technologists®
Entisol land characteristics with and without cover crop (Mucuna bracteata) on rubber plantation
NASA Astrophysics Data System (ADS)
Sakiah; Sembiring, M.; Hasibuan, J.
2018-02-01
Optimal nutrient delivery is one way to improve the quality and quantity of crop production. This is because the crops needs for nutrient is quite high, while the soil capacity in providing nutrients is limited. In addition to fertilization, nutrients can be given in the form of added organic material or planted as cover crop. The research took place from April to August 2016 in Bandar Pinang, Bandar Sumatera Indonesia Ltd. (SIPEF Group) plantation, with survey method. Soil samples were taken based on: Topography (flat and slope 15-30%), cover crop (with or without Mucuna bracteata) and plant age (seedling periods 1, 2 and 3). The soil sample is taken composite by zig zag method. The observed parameters were organic matter, N total, soil texture, bulk density and infiltration rate. Mucuna bracteata planting increased the contain of soil organic matter by 30.43% in flat area and 53.33% in hilly area, amount of N total soil by 27.27% in flat area and 7.69% at hilly area, bulk density 3.73 % In flat area and 0.41% in hilly area, soil infiltration by 48.88% with sandy clay dominant soil texture.
NASA Astrophysics Data System (ADS)
Atapour, Hadi; Mortazavi, Ali
2018-04-01
The effects of textural characteristics, especially grain size, on index properties of weakly solidified artificial sandstones are studied. For this purpose, a relatively large number of laboratory tests were carried out on artificial sandstones that were produced in the laboratory. The prepared samples represent fifteen sandstone types consisting of five different median grain sizes and three different cement contents. Indices rock properties including effective porosity, bulk density, point load strength index, and Schmidt hammer values (SHVs) were determined. Experimental results showed that the grain size has significant effects on index properties of weakly solidified sandstones. The porosity of samples is inversely related to the grain size and decreases linearly as grain size increases. While a direct relationship was observed between grain size and dry bulk density, as bulk density increased with increasing median grain size. Furthermore, it was observed that the point load strength index and SHV of samples increased as a result of grain size increase. These observations are indirectly related to the porosity decrease as a function of median grain size.
Large area bulk superconductors
Miller, Dean J.; Field, Michael B.
2002-01-01
A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.
The homogeneity of levitation force in single domain YBCO bulk
NASA Astrophysics Data System (ADS)
Zhou, Keran; Xu, Ke-Xi; Wu, Xing-da; Pan, Peng-jun
2007-11-01
The pellet homogeneity of levitation force versus the position in comparison to the seed or to the top surface has been studied in the entire volume of a single domain YBa 2Cu 3O 7-δ bulk sample processed by the top-seeded melt texturing growth (TSMTG). It is found that the levitation forces increase and peak at a depth of 3 mm from the top of the sample at liquid nitrogen temperature. In other words, the second disk has the largest levitation force density. The phenomenon can be interpreted by the interaction between the microcracks or pores produced by crystal growth and the oxygenation. We propose a model in which Y211 particles distribution leading to microcracks and pores reduces the effective induced shielding current loops (ISCL) and increases the perimeters of ISCL. This corresponds to a decrease in the grain size and results in greatly reduced levitation forces of the bottom of the bulk. From the research, we know that the density of the YBCO bulk is also an important parameter for the levitation properties. The result is very attractive and useful for the fundamental studies and fabrication of TSMTG YBa 2Cu 3O 7-δ bulk.
Effect of particle size of rice flour on physical and sensory properties of Sel-roti.
Subba, Dilip; Katawal, Surendra Bahadur
2013-02-01
Sel-roti is a delicious, deep-fat fried, puffed, ring shaped spongy doughnut like Nepalese indigenous food prepared from the batter of rice flour, ghee and sugar. A study was conducted to determine the effect of particle size of rice flour on bulk density, oil uptake and texture of Sel-roti. Rice was soaked in water and ground with the help of iron mortar and pestle and the flour was analyzed for particle size distribution by using standard sieves and separated into three particle size categories as coarse (> 890 u), medium (120-890 u) and fine (< 120 u). The rice flour of different particle sizes were mixed in different proportions and Sel-roti was prepared from these flours. Bulk density and oil uptake were determined and sensory test was carried out. The results showed significant good positive correlation between mean particle size and bulk density (r = 0.97, p ≤ 0.05) and a good negative correlation between mean particle size and oil-uptake (r = 0.90, p ≤ 0.05). Good positive correlation of mean particle size with texture attributes like hardness (r = 0.99, p ≤ 0.05) and fracturability (r = 0.96, p ≤ 0.05) and good negative correlation with smoothness (r = -0.97, p ≤ 0.05), cohesiveness (r = -0.92, p ≤ 0.05), stickiness (r = -0.76, p ≤ 0.05) and oily mouth feel (r = -0.85, p ≤ 0.05) and fair positive correlation with chewiness (r = 0.65, p > 0.05) were found.
NASA Technical Reports Server (NTRS)
Gao, L.; Meng, R. L.; Xue, Y. Y.; Hor, P. H.; Chu, C. W.
1991-01-01
Using a recently developed pulsed critical current density (Jc) measuring system, the Jc of the high-Jc melt-textured YBa2Cu3O(7-delta) (Y123) bulk samples has been determined. I-V curves with a voltage resolution of 0.5 microV were obtained, and transport Jc's along the a-b plane as high as 7.2 x 10 to the 4th A/sq cm were extracted. These results are comparable to the values obtained magnetically. On the other hand, transport Jc along the c axis were found to be two orders of magnitude smaller, even though the magnetic Jc along the c axis is only about five times smaller than Jc along the a-b plane. It is suggested that for the high-temperature superconducting materials which are highly anisotropic, caution should be taken when using the nontransport magnetic methods to determine Jc.
A.M. Weitza; E. Linderb; S. Frolkingc; P.M. Crillc; M. Keller
2001-01-01
We studied soil moisture dynamics and nitrous oxide (N2O) ¯uxes from agricultural soils in the humid tropics of Costa Rica. Using a splitplot design on two soils (clay, loam) we compared two crop types (annual, perennial) each unfertilized and fertilized. Both soils are of andic origin. Their properties include relatively low bulk density and high organic matter...
Effective response theory for zero-energy Majorana bound states in three spatial dimensions
NASA Astrophysics Data System (ADS)
Lopes, Pedro L. e. S.; Teo, Jeffrey C. Y.; Ryu, Shinsei
2015-05-01
We propose a gravitational response theory for point defects (hedgehogs) binding Majorana zero modes in (3 + 1)-dimensional superconductors. Starting in 4 + 1 dimensions, where the point defect is extended into a line, a coupling of the bulk defect texture with the gravitational field is introduced. Diffeomorphism invariance then leads to an S U (2) 2 Kac-Moody current running along the defect line. The S U (2) 2 Kac-Moody algebra accounts for the non-Abelian nature of the zero modes in 3 + 1 dimensions. It is then shown to also encode the angular momentum density which permeates throughout the bulk between hedgehog-antihedgehog pairs.
NASA Astrophysics Data System (ADS)
Hayes, Ben; Ashwal, Lewis D.; Webb, Susan J.; Bybee, Grant M.
2017-03-01
The Bellevue drillcore intersects 3 km of Main and Upper Zone cumulates in the Northern Limb of the Bushveld Complex. Main Zone cumulates are predominately gabbronorites, with localized layers of pyroxenite and anorthosite. Some previous workers, using bulk rock major, trace and isotopic compositions, have suggested that the Main Zone crystallized predominantly from a single pulse of magma. However, density measurements throughout the Bellevue drillcore reveal intervals that show up-section increases in bulk rock density, which are difficult to explain by crystallization from a single batch of magma. Wavelet analysis of the density data suggests that these intervals occur on length-scales of 40 to 170 m, thus defining a scale of layering not previously described in the Bushveld Complex. Upward increases in density in the Main Zone correspond to upward increases in modal pyroxene, producing intervals that grade from a basal anorthosite (with 5% pyroxene) to gabbronorite (with 30-40% pyroxene). We examined the textures and mineral compositions of a 40 m thick interval showing upwardly increasing density to establish how this type of layering formed. Plagioclase generally forms euhedral laths, while orthopyroxene is interstitial in texture and commonly envelops finer-grained and embayed plagioclase grains. Minor interstitial clinopyroxene was the final phase to crystallize from the magma. Plagioclase compositions show negligible change up-section (average An62), with local reverse zoning at the rims of cumulus laths (average increase of 2 mol%). In contrast, interstitial orthopyroxene compositions become more primitive up-section, from Mg# 57 to Mg# 63. Clinopyroxene similarly shows an up-section increase in Mg#. Pyroxene compositions record the primary magmatic signature of the melt at the time of crystallization and are not an artefact of the trapped liquid shift effect. Combined, the textures and decoupled mineral compositions indicate that the upward density increase is produced by the downward infiltration of noritic magma into a previously emplaced plagioclase-rich crystal mush. Fresh noritic magma soaked down into the crystallizing anorthositic mush, partially dissolving plagioclase laths and assimilating Fe-enriched pore melt. The presence of multiple cycles showing upward increases in density in the Bellevue drillcore suggests that downward magma infiltration occurred episodically during crystallization of the Main Zone.
Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field.
Tavares, Uilka Elisa; Rolim, Mário Monteiro; de Oliveira, Veronildo Souza; Pedrosa, Elvira Maria Regis; Siqueira, Glécio Machado; Magalhães, Adriana Guedes
2015-01-01
This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120 m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground.
Spatial Dependence of Physical Attributes and Mechanical Properties of Ultisol in a Sugarcane Field
Tavares, Uilka Elisa; Monteiro Rolim, Mário; Souza de Oliveira, Veronildo; Maria Regis Pedrosa, Elvira; Siqueira, Glécio Machado; Guedes Magalhães, Adriana
2015-01-01
This study investigates the effect of conventional tillage and application of the monoculture of sugar cane on soil health. Variables like density, moisture, texture, consistency limits, and preconsolidation stress were taken as indicators of soil quality. The measurements were made at a 120 × 120 m field cropped with sugar cane under conventional tillage. The objective of this work was to characterize the soil and to study the spatial dependence of the physical and mechanical attributes. Then, undisturbed soil samples were collected to measure bulk density, moisture content and preconsolidation stress and disturbed soil samples for classification of soil texture, and consistency limits. The soil texture indicated that soil can be characterized as sandy clay soil and a sandy clay loam soil, and the consistency limits indicated that the soil presents an inorganic low plasticity clay. The preconsolidation tests tillage in soil moisture content around 19% should be avoided or should be chosen a management of soil with lighter vehicles in this moisture content, to avoid risk of compaction. Using geostatistical techniques mapping was possible to identify areas of greatest conservation soil and greater disturbance of the ground. PMID:26167528
NASA Astrophysics Data System (ADS)
Usowicz, B.; Marczewski, W.; Lipiec, J.; Usowicz, J. B.; Sokolowska, Z.; Dabkowska-Naskret, H.; Hajnos, M.; Lukowski, M. I.
2009-04-01
The purpose is obtaining trustful ground based measurement data of SM (Soil Moisture) for validating SMOS, respectively to spatial and temporal distribution and variations. A use of Time Domain Reflectometric (TDR) method is fast, simple and less destructive, to the soil matter, than a usual standard gravimetric method. TDR tools operate efficiently, enable nearly instant measurements, and allow on collecting many measurements from numerous sites, even when operated manually in short time intervals. The method enables also very frequent sampling of SM at few selected fixed sites, when long terms of temporal variations are needed. In effect one obtains reasonably large data base for determining spatial and temporal distributions of SM. The study is devoted to determining a plan on collecting TDR data, in the scales of small and large field areas, and checking their relevance to those available from gravimetric methods. Finally, the ground based SM distributions are needed for validating other SM distributions, available remotely in larger scales, from the satellite data of ENVISAT-ASAR, and from SMOS (Soil Moisture and Ocean Salinity Mission) when it becomes operational. The ground based evaluations are served mainly by geo-statistical analysis. The space borne estimations are retrieved by image processing and physical models, proper to relevant Remote Sensing (RS) instruments on the orbit. Finally, validation must engage again the geo-statistical evaluations, to assess the agreement between direct and remote sensing means, and provide a measure of trust for extending the limited scales of the ground based data, on concluding the agreement in scales proper to the satellite data. The study is focused mainly on trustful evaluating data from the ground, provided independently on satellite data sources. SM ground based data are collected permanently at 2 selected tests sites, and temporary in areas around the tests sites, in one day sessions, repeated several times per vegetation season. Permanent measurements are provided in profiles, down to 50 cm below surface. Temporary SM measurements are collected by hand held TDR (FOM/mts type, Easy Test Ltd., Lublin, Poland) from the top surface layer (1-6 cm), in a grid covering small and large areas, containing few hundred sites. The same places are served by collecting soil samples for the gravimetric analysis of SM, bulk density, other physical and textural characteristics. Sessions on measurement in large areas on the scale of community are repeated for separate days. The two methods used were compared with correlation coefficient, regression equation and differences of values. The spatial variability of soil moisture from gravimetric and TDR measurements were analyzed using geostatistical methods. The semivariogram parameters were determined and mathematical functions were fitted to empirically derived semivariograms. These functions were used for estimation of spatial distribution of soil moisture in cultivated fields by the kriging method. The results showed that spatial distribution patterns of topsoil soil moisture in the investigated areas obtained from TDR and gravimetric methods were in general similar to each other. The TDR soil moisture contents were dependent on bulk density and texture of soil. In areas with fine-textured soils of lower soil bulk densities (approximately below 1.35 Mg m^-3) we observed that TDR soil moisture and spatial differentiation were greater compared to those with gravimetric method. However at higher bulk densities the inverse was true. The spatial patterns were further modified in areas with domination of coarse-textured soils. Decrease of measurement points results in smoothing soil moisture pattern and at the same time in a greater estimation error. The TDR method can be useful tool for ground moisture measurements and validation of satellite data. The use of specific calibration or correction for soil bulk density and texture with respect to the reflectometric method is recommended. The study is a contribution to the project SWEX (AO-3275) and funded by the Polish Ministry of Science and Higher Education (in part by Grant No. N305 046 31/1707 and in part by Grant No. N305 107 32/3865).
A model for nematode locomotion in soil
Hunt, H. William; Wall, Diana H.; DeCrappeo, Nicole; Brenner, John S.
2001-01-01
Locomotion of nematodes in soil is important for both practical and theoretical reasons. We constructed a model for rate of locomotion. The first model component is a simple simulation of nematode movement among finite cells by both random and directed behaviours. Optimisation procedures were used to fit the simulation output to data from published experiments on movement along columns of soil or washed sand, and thus to estimate the values of the model's movement coefficients. The coefficients then provided an objective means to compare rates of locomotion among studies done under different experimental conditions. The second component of the model is an equation to predict the movement coefficients as a function of controlling factors that have been addressed experimentally: soil texture, bulk density, water potential, temperature, trophic group of nematode, presence of an attractant or physical gradient and the duration of the experiment. Parameters of the equation were estimated by optimisation to achieve a good fit to the estimated movement coefficients. Bulk density, which has been reported in a minority of published studies, is predicted to have an important effect on rate of locomotion, at least in fine-textured soils. Soil sieving, which appears to be a universal practice in laboratory studies of nematode movement, is predicted to negatively affect locomotion. Slower movement in finer textured soils would be expected to increase isolation among local populations, and thus to promote species richness. Future additions to the model that might improve its utility include representing heterogeneity within populations in rate of movement, development of gradients of chemical attractants, trade-offs between random and directed components of movement, species differences in optimal temperature and water potential, and interactions among factors controlling locomotion.
Large-scale HTS bulks for magnetic application
NASA Astrophysics Data System (ADS)
Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter
2013-01-01
ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500-3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.
NASA Technical Reports Server (NTRS)
Weigand, A. J.; Meyer, M. L.; Ling, J. S.
1977-01-01
An electron bombardment ion thruster was used as an ion source to sputter the surfaces of orthopedic prosthetic metals. Scanning electron microscopy photomicrographs were made of each ion beam textured surface. The effect of ion texturing an implant surface on its bond to bone cement was investigated. A Co-Cr-W alloy and surgical stainless steel were used as representative hard tissue implant materials to determine effects of ion texturing on bulk mechanical properties. Work was done to determine the effect of substrate temperature on the development of an ion textured surface microstructure. Results indicate that the ultimate strength of the bulk materials is unchanged by ion texturing and that the microstructure will develop more rapidly if the substrate is heated prior to ion texturing.
Bench and Riser Soil Water Content on Semiarid Hillslopes with Terracettes
NASA Astrophysics Data System (ADS)
Heinse, R.; Corrao, M.; Eitel, J.; Link, T. E.
2015-12-01
Microtopographic features known as terracettes are found throughout many semiarid rangelands. These path-like features roughly perpendicular to the slope are frequently traversed by grazing animals on steep hillslopes. The soil properties and hydrologic function, however, are virtually unknown. This research aimed to identify differences in soil properties between terracette bench and riser features, and their influence on soil water content for two terracetted sites and two non-terracetted control sites (grazed and ungrazed) in Eastern Washington State. Measurements of volumetric water content (θ_v), bulk density, soil texture, saturated hydraulic conductivity, pH, and ECa_a were collected along with compaction, vegetative cover and cattle density throughout the 2013 and 2014 field seasons. Results show small but significant volumetric water content differences between terracette benches and risers in the upper 10 cm with benches exhibiting higher mean θ_v than risers throughout the year. Soil bulk density on benches (1600 kg m-3^{-3}) was significantly higher than that of risers (1300 kg m-3^{-3}) with no differences in soil texture. The saturated hydraulic conductivity on benches was roughly half of that for risers. No significant soil differences were noted below 20 cm depth. Terracetted sites showed greater field-averaged θ_v compared to non-terracetted sites suggesting a positive trend with animal stocking rates. Higher water content on terracette benches is attributed to shifts in pore size distribution with compaction, and a reduction in root-water uptake due to plant-root impedance. This increased soil water does not however increase forage production as it is not accessible to plants.
NASA Astrophysics Data System (ADS)
Kim, Sora; Bahk, Jang-Jun; Kim, Daechoul; Lee, Gwang Soo; Kim, Seong-Pil
2017-04-01
A total of 288 piston and box core samples were collected and analyzed to characterize the physical properties and geoacoustic provinces of surficial sediments in the southern part of the East Sea. Based on in-situ condition sound velocity (converted laboratory sound velocity to in-situ condition sound velocity) and sediment properties (sediment textures and physical properties), the study area was divided into eight provinces (Province IA, IB, IC, II, III, IV, VA, and VB) : (1) Province IA : hemi-pelagic mud partially mixed with intermittent sandy sediments originating from the outer shelf due to slide/slump or mass flows (in-situ condition sound velocity: 1439 m/s, mean grain size: 8.5Φ, bulk density: 1.24 g/cm3,and porosity: 84%); (2) Province IB : Holocene muddy sediments are dominant, but in some area that is influenced by the surrounding land and coast (in-situ condition sound velocity: 1448 m/s, mean grain size: 8.3Φ, bulk density: 1.32 g/cm3, and porosity: 79%); (3) Province IC : muddy sediments that were deposited during the Holocene (in-situ condition sound velocity: 1457 m/s, mean grain size: 7.8Φ, bulk density: 1.36 g/cm3, and porosity: 78%); (4) Province II : mixed recent and relict sediments (in-situ condition sound velocity: 1493 m/s, mean grain size: 5.9Φ, bulk density: 1.53 g/cm3, and porosity: 68%); (5) Province III (Pohang) : there is a mixture of muddy sediments and sandy sediments and sediments from Hyeongsan River are mostly deposited (in-situ condition sound velocity: 1586 m/s, mean grain size: 4.1Φ, bulk density: 1.74 g/cm3, and porosity: 57%); (6) Province IV : coarse-grained relict sediments formed during the Pleistocene (in-situ condition sound velocity: 1572 m/s, mean grain size: 4.1Φ, bulk density: 1.76 g/cm3, and porosity: 55%); (7) Province VA : relict sand with some gravel, show marked differences from the area in which muddy sediments are deposited (in-situ condition sound velocity: 1662 m/s, mean grain size: 3.3Φ, bulk density: 1.82 g/cm3, and porosity: 51%), and (8) Province VB : similar to but coarser sediments than Province IV (in-situ condition sound velocity: 1667 m/s, mean grain size: 3.2Φ, bulk density: 1.87 g/cm3, and porosity: 46%). The in-situ condition sound velocity, mean grain size, and bulk density increased from Province IA to Province VB, whereas the porosity and water content decrease. Variability of the physical and acoustic properties tended to follow the general of the mean grain size. The classification of each province using the in-situ condition sound velocity corrected with the temperature and sediment type provides a better reflection of the sediment properties and sedimentary environment.
Resolving structural influences on water-retention properties of alluvial deposits
Winfield, K.A.; Nimmo, J.R.; Izbicki, J.A.; Martin, P.M.
2006-01-01
With the goal of improving property-transfer model (PTM) predictions of unsaturated hydraulic properties, we investigated the influence of sedimentary structure, defined as particle arrangement during deposition, on laboratory-measured water retention (water content vs. potential [??(??)]) of 10 undisturbed core samples from alluvial deposits in the western Mojave Desert, California. The samples were classified as having fluvial or debris-flow structure based on observed stratification and measured spread of particle-size distribution. The ??(??) data were fit with the Rossi-Nimmo junction model, representing water retention with three parameters: the maximum water content (??max), the ??-scaling parameter (??o), and the shape parameter (??). We examined trends between these hydraulic parameters and bulk physical properties, both textural - geometric mean, Mg, and geometric standard deviation, ??g, of particle diameter - and structural - bulk density, ??b, the fraction of unfilled pore space at natural saturation, Ae, and porosity-based randomness index, ??s, defined as the excess of total porosity over 0.3. Structural parameters ??s and Ae were greater for fluvial samples, indicating greater structural pore space and a possibly broader pore-size distribution associated with a more systematic arrangement of particles. Multiple linear regression analysis and Mallow's Cp statistic identified combinations of textural and structural parameters for the most useful predictive models: for ??max, including Ae, ??s, and ??g, and for both ??o and ??, including only textural parameters, although use of Ae can somewhat improve ??o predictions. Textural properties can explain most of the sample-to-sample variation in ??(??) independent of deposit type, but inclusion of the simple structural indicators Ae and ??s can improve PTM predictions, especially for the wettest part of the ??(??) curve. ?? Soil Science Society of America.
Partical Melting of bulk Bi-2212
NASA Technical Reports Server (NTRS)
Heeb, B.; Gauckler, L. J.
1995-01-01
Dense and textured Bi-2212 bulk samples have been produced by the partial melting process. The appropriate amount of liquid phase necessary for complete densification has been adjusted by controlling the maximum processing temperature. The maximum temperature itself has to be adapted to several parameters as powder stoichiometry, silver addition and oxygen partial pressure. Prolonged annealing at 850 and 820 C and cooling in N2 atmosphere led to nearly single phase material with T(sub c) = 92 K. Critical current densities j(sub c) of 2'200 A/sq cm at 77 K/0 T have been achieved in samples of more than 1 mm thickness. Reducing the thickness below 0.4 mm enhances j(sub c) considerably to values is greater than 4'000 A/sq cm. The addition of 2 wt% Ag decreases the solidus temperature of the Bi-2212 powder by 21 C. Therefore, the maximum heat treatment temperature of Ag containing samples can be markedly lowered leading to a reduction of the amount of secondary phases. In addition, Ag enhances slightly the texture over the entire cross section and as a result j(sub c) at 77 K/0 T.
A cost-efficient method to assess carbon stocks in tropical peat soil
NASA Astrophysics Data System (ADS)
Warren, M. W.; Kauffman, J. B.; Murdiyarso, D.; Anshari, G.; Hergoualc'h, K.; Kurnianto, S.; Purbopuspito, J.; Gusmayanti, E.; Afifudin, M.; Rahajoe, J.; Alhamd, L.; Limin, S.; Iswandi, A.
2012-11-01
Estimation of belowground carbon stocks in tropical wetland forests requires funding for laboratory analyses and suitable facilities, which are often lacking in developing nations where most tropical wetlands are found. It is therefore beneficial to develop simple analytical tools to assist belowground carbon estimation where financial and technical limitations are common. Here we use published and original data to describe soil carbon density (kgC m-3; Cd) as a function of bulk density (gC cm-3; Bd), which can be used to rapidly estimate belowground carbon storage using Bd measurements only. Predicted carbon densities and stocks are compared with those obtained from direct carbon analysis for ten peat swamp forest stands in three national parks of Indonesia. Analysis of soil carbon density and bulk density from the literature indicated a strong linear relationship (Cd = Bd × 495.14 + 5.41, R2 = 0.93, n = 151) for soils with organic C content > 40%. As organic C content decreases, the relationship between Cd and Bd becomes less predictable as soil texture becomes an important determinant of Cd. The equation predicted belowground C stocks to within 0.92% to 9.57% of observed values. Average bulk density of collected peat samples was 0.127 g cm-3, which is in the upper range of previous reports for Southeast Asian peatlands. When original data were included, the revised equation Cd = Bd × 468.76 + 5.82, with R2 = 0.95 and n = 712, was slightly below the lower 95% confidence interval of the original equation, and tended to decrease Cd estimates. We recommend this last equation for a rapid estimation of soil C stocks for well-developed peat soils where C content > 40%.
NASA Astrophysics Data System (ADS)
Xu, Zhongtang; Yuan, Pusheng; Ma, Yanwei; Cai, Chuanbing
2017-03-01
We report on the transport properties of FeSe0.5Te0.5 (FST) thin films fabricated on less-well-textured flexible coated conductor templates with LaMnO3 (LMO) as buffer layers using pulsed laser deposition. The LMO buffer layers exhibit large in-plane misalignment of ˜7.72°, which is unfavorable for cuprate-coated conductors due to the high grain boundaries. The FST thin films show a superconducting transition temperature of 16.8 K, higher than that of bulk materials due to the compressive strain between LMO and FST. Atomic force microscopy observations reveal that island-like features appear at the surfaces of both LMO and FST, confirming the island growth mode. A self-field transport critical-current density of up to 0.43 MA cm-2 at 4.2 K has been observed in FST thin films, which is much higher than that in powder-in-tube processed FST tapes. The films are capable of carrying current densities of over 105 A cm-2 in the whole applied magnetic field up to 9 T, showing great potential for high-field applications. The results indicate that, for FST, highly textured metal tapes are not needed to produce coated conductors with high performance, which is of great advantage over cuprate-coated conductors.
Texture analysis at neutron diffractometer STRESS-SPEC
NASA Astrophysics Data System (ADS)
Brokmeier, H.-G.; Gan, W. M.; Randau, C.; Völler, M.; Rebelo-Kornmeier, J.; Hofmann, M.
2011-06-01
In response to the development of new materials and the application of materials and components in advanced technologies, non-destructive measurement methods of textures and residual stresses have gained worldwide significance in recent years. The materials science neutron diffractometer STRESS-SPEC at FRM II (Garching, Germany) is designed to be applied equally to texture and residual stress analyses by virtue of its very flexible configuration. Due to the high penetration capabilities of neutrons and the high neutron flux of STRESS-SPEC it allows a combined analysis of global texture, local texture, strain pole figure and FWHM pole figure in a wide variety of materials including metals, alloys, composites, ceramics and geological materials. Especially, the analysis of texture gradients in bulk materials using neutron diffraction has advantages over laboratory X-rays and EBSD for many scientific cases. Moreover, neutron diffraction is favourable for coarse-grained materials, where bulk information averaged over texture inhomogeneities is needed, and also stands out due to easy sample preparation. In future, the newly developed robot system for STRESS-SPEC will allow much more flexibility than an Eulerian cradle as on standard instruments. Five recent measurements are shown to demonstrate the wide range of possible texture applications at STRESS-SPEC diffractometer.
NASA Astrophysics Data System (ADS)
Lim, Hanjin
High-T_{rm c}<=ad doped rm Bi_2Sr_2Ca_2Cu _2Cu_3O_{x} (BSCCO 2223) superconductor bulk materials were prepared using conventional powder metallurgy techniques, which were made from precursors having different histories. The ease of formation of superconducting phases was highly dependent on the processing of primitive powder. With the three -powder process that combines three kinds of calcined precursor powders, the formation of the BSCCO superconductor was accelerated and the amount of the secondary phase (e.g., Ca_2CuO_3) was reduced. The critical transition temperature (T _{rm c}) of the superconductor from the three-powder process is higher than that from the one-powder process. In lead-doped BSCCO 2223, positron trapping and annihilation evidently occur in the open BiO double layers rather than in the superconducting CuO_2 layers of the structure. Both positron annihilation parameters (tau_1, tau _2, overlinetau) and Doppler parameters (P, W, P/W) were insensitive to the superconducting transition in this material. This is quite opposite to the case of YBCO and Dy doped YBCO where positron annihilation is sensitive to the superconducting transition. High-T_{rm c} BSCCO superconducting tapes were fabricated using the powder -in-tube (PIT) method that includes heat treatments as well as mechanical processing such as drawing, rolling, and pressing. The highest critical current densities (J _{rm c}) at 5 and 77 K were 5.12 times 10^5 A/cm^2 and 1.77 times 10^4 A/cm^2 , respectively, for the tape sample which was solid state processed at 840^circC with three short sintering steps. J_{ rm c} values at 5 and 77 K of tape samples were 1 and 2 orders of magnitude higher than those of bulk samples, respectively. The preferred orientations of the BSCCO 2212 phase in the tape samples were basal and (1 1 13) textures; for the BSCCO 2223 phase preferred orientations were also basal and (1 1 19) textures. By taking the ratios of the texture coefficients (TCs) for (0 0 1) and (1 1 0) reflections, one can describe the strength of the basal texture for each superconducting phase in both bulk and tape. From these ratios one can say that the best basal texture for the tape BSCCO 2212 was produced by the procedure which included partial melting at 850^circ C for 0.3 h. The best treatment for BSCCO 2223 was the tape sample with solid state processing at 840 ^circC in 10% oxygen.
Application of textured YBCO bulks with artificial holes for superconducting magnetic bearing
NASA Astrophysics Data System (ADS)
Dias, D. H. N.; Sotelo, G. G.; Moysés, L. A.; Telles, L. G. T.; Bernstein, P.; Kenfaui, D.; Aburas, M.; Chaud, X.; Noudem, J. G.
2015-07-01
The levitation force between a superconductor and a permanent magnet has been investigated for the development of superconducting magnetic bearings (SMBs). Depending on the proposed application, the SMBs can be arranged with two kinds of symmetries: rotational or linear. The SMBs present passive operation, low level of noise and no friction, but they need a cooling system for their operation. Nowadays the cooling problem may be easily solved by the use of a commercial cryocooler. The levitation force of SMBs is directly related to the quality of the superconductor material (which depends on its critical current density) and the permanent magnet arrangement. Also, research about the YBa2Cu3Ox (Y123) bulk materials has shown that artificial holes enhance the superconducting properties, in particular the magnetic trapped field. In this context, this work proposes the investigation of the levitation force of a bulk Y123 sample with multiple holes and the comparison of its performances with those of conventional plain Y123 superconductors.
Near Surface Investigation of Agricultural Soils using a Multi-Frequency Electromagnetic Sensor
NASA Astrophysics Data System (ADS)
Sadatcharam, K.; Unc, A.; Krishnapillai, M.; Cheema, M.; Galagedara, L.
2017-12-01
Electromagnetic induction (EMI) sensors have been used as precision agricultural tools over decades. They are being used to measure spatiotemporal variability of soil properties and soil stratification in the sense of apparent electrical conductivity (ECa). We mapped the ECa variability by horizontal coplanar (HCP) and by vertical coplanar (VCP) orientation of a multi-frequency EMI sensor and identified its interrelation with physical properties of soil. A broadband, multi-frequency handheld EMI sensor (GEM-2) was used on a loamy sand soil cultivated with silage-corn in western Newfoundland, Canada. Log and line spaced, three frequency ranges (weak, low, and high), based on the factory calibration were tested using HCP and VCP orientation to produce spatiotemporal data of ECa. In parallel, we acquired data on soil moisture content, texture and bulk density. We then assessed the statistical significance of the relationship between ECa and soil physical properties. The test site had three areas of distinct soil properties corresponding to the elevation, in particular. The same spatial variability was also identified by ECa mapping at different frequencies and the two modes of coil orientations. Data analysis suggested that the high range frequency (38 kHz (log-spaced) and 49 kHz (line-spaced)) for both HCP and VCP orientations produced accurate ECa maps, better than the weak and low range frequencies tested. Furthermore, results revealed that the combined effects of soil texture, moisture content and bulk density affect ECameasurements as obtained by both frequencies and two coil orientations. Keywords: Apparent electrical conductivity, Electromagnetic induction, Horizontal coplanar, Soil properties, Vertical coplanar
NASA Astrophysics Data System (ADS)
Li, Danfeng; Gao, Guangyao; Shao, Ming'an; Fu, Bojie
2016-07-01
A detailed understanding of soil hydraulic properties, particularly the available water content of soil, (AW, cm3 cm-3), is required for optimal water management. Direct measurement of soil hydraulic properties is impractical for large scale application, but routinely available soil particle-size distribution (PSD) and bulk density can be used as proxies to develop various prediction functions. In this study, we compared the performance of the Arya and Paris (AP) model, Mohammadi and Vanclooster (MV) model, Arya and Heitman (AH) model, and Rosetta program in predicting the soil water characteristic curve (SWCC) at 34 points with experimental SWCC data in an oasis-desert transect (20 × 5 km) in the middle reaches of the Heihe River basin, northwestern China. The idea of the three models emerges from the similarity of the shapes of the PSD and SWCC. The AP model, MV model, and Rosetta program performed better in predicting the SWCC than the AH model. The AW determined from the SWCCs predicted by the MV model agreed better with the experimental values than those derived from the AP model and Rosetta program. The fine-textured soils were characterized by higher AW values, while the sandy soils had lower AW values. The MV model has the advantages of having robust physical basis, being independent of database-related parameters, and involving subclasses of texture data. These features make it promising in predicting soil water retention at regional scales, serving for the application of hydrological models and the optimization of soil water management.
NASA Astrophysics Data System (ADS)
Koestel, J. K.; Norgaard, T.; Luong, N. M.; Vendelboe, A. L.; Moldrup, P.; Jarvis, N. J.; Lamandé, M.; Iversen, B. V.; Wollesen de Jonge, L.
2013-02-01
It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables, and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field site in Silstrup (Denmark) at a sampling distance of approximately 15 m (with a few exceptions), covering an area of approximately 1 ha (60 m × 165 m). For 64 of the 65 investigated soil columns, we observed BTC shapes indicating a strong preferential transport. The strength of preferential transport was positively correlated with the bulk density and the degree of water saturation. The latter suggests that preferential macropore transport was the dominating transport process. Increased bulk densities were presumably related with a decrease in near-saturated hydraulic conductivities and as a consequence to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column scale have to be upscaled when applied to the field scale or larger.
Kustas, Andrew B.; Michael, Joseph R.; Susan, Don F.; ...
2018-06-04
In Part I, equal channel angular extrusion (ECAE) was demonstrated as a novel, simple-shear deformation process for producing bulk forms of the low ductility Fe–Co–2V (Hiperco 50A®) soft ferromagnetic alloy with refined grain sizes. Microstructures and mechanical properties were discussed. In this Part II contribution, the crystallographic textures and quasi-static magnetic properties of ECAE-processed Hiperco were characterized. The textures were of a simple-shear character defined by partial {110} and <111> fibers inclined relative to the extrusion direction, in agreement with the expectations for simple-shear deformation textures of BCC metals. These textures were observed throughout all processing conditions and only slightlymore » reduced in intensity by subsequent recrystallization heat treatments. Characterization of the magnetic properties revealed a lower coercivity and higher permeability for ECAE-processed Hiperco specimens relative to the conventionally processed and annealed Hiperco bar. In conclusion, the effects of the resultant microstructure and texture on the coercivity and permeability magnetic properties are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kustas, Andrew B.; Michael, Joseph R.; Susan, Don F.
In Part I, equal channel angular extrusion (ECAE) was demonstrated as a novel, simple-shear deformation process for producing bulk forms of the low ductility Fe–Co–2V (Hiperco 50A®) soft ferromagnetic alloy with refined grain sizes. Microstructures and mechanical properties were discussed. In this Part II contribution, the crystallographic textures and quasi-static magnetic properties of ECAE-processed Hiperco were characterized. The textures were of a simple-shear character defined by partial {110} and <111> fibers inclined relative to the extrusion direction, in agreement with the expectations for simple-shear deformation textures of BCC metals. These textures were observed throughout all processing conditions and only slightlymore » reduced in intensity by subsequent recrystallization heat treatments. Characterization of the magnetic properties revealed a lower coercivity and higher permeability for ECAE-processed Hiperco specimens relative to the conventionally processed and annealed Hiperco bar. In conclusion, the effects of the resultant microstructure and texture on the coercivity and permeability magnetic properties are discussed.« less
NASA Astrophysics Data System (ADS)
Lehman, B. M.; Niemann, J. D.
2008-12-01
Soil moisture exerts significant control over the partitioning of latent and sensible energy fluxes, the magnitude of both vertical and lateral water fluxes, the physiological and water-use characteristics of vegetation, and nutrient cycling. Considerable progress has been made in determining how soil characteristics, topography, and vegetation influence spatial patterns of soil moisture in humid environments at the catchment, hillslope, and plant scales. However, understanding of the controls on soil moisture patterns beyond the plant scale in semi-arid environments remains more limited. This study examines the relationships between the spatial patterns of near surface soil moisture (upper 5 cm), terrain indices, and soil properties in a small, semi-arid, montane catchment. The 8 ha catchment, located in the Cache La Poudre River Canyon in north-central Colorado, has a total relief of 115 m and an average elevation of 2193 m. It is characterized by steep slopes and shallow, gravelly/sandy soils with scattered granite outcroppings. Depth to bedrock ranges from 0 m to greater than 1 m. Vegetation in the catchment is highly correlated with topographic aspect. In particular, north-facing hillslopes are predominately vegetated by ponderosa pines, while south-facing slopes are mostly vegetated by several shrub species. Soil samples were collected at a 30 m resolution to characterize soil texture and bulk density, and several datasets consisting of more than 300 point measurements of soil moisture were collected using time domain reflectometry (TDR) between Fall 2007 and Summer 2008 at a 15 m resolution. Results from soil textural analysis performed with sieving and the ASTM standard hydrometer method show that soil texture is finer on the north-facing hillslope than on the south-facing hillslope. Cos(aspect) is the best univariate predictor of silts, while slope is the best predictor of coarser fractions up to fine gravel. Bulk density increases with depth but shows no significant relationship with topographic indices. When the catchment average soil moisture is low, the variance of soil moisture increases with the average. When the average is high, the variance remains relatively constant. Little of the variation in soil moisture is explained by topographic indices when the catchment is either very wet or dry; however, when the average soil moisture takes on intermediate values, cos(aspect) is consistently the best predictor among the terrain indices considered.
Spin texture of the surface state of three-dimensional Dirac material Ca3PbO
NASA Astrophysics Data System (ADS)
Kariyado, Toshikaze
2015-04-01
The bulk and surface electronic structures of a candidate three-dimensional Dirac material Ca3PbO and its family are discussed especially focusing on the spin texture on the surface states. We first explain the basic features of the bulk band structure of Ca3PbO, such as emergence of Dirac fermions near the Fermi energy, and compare it with the other known three-dimensional Dirac semimetals. Then, the surface bands and spin-texture on them are investigated in detail. It is shown that the surface bands exhibit strong momentum-spin locking, which may be useful in some application for spin manipulation, induced by a combination of the inversion symmetry breaking at the surface and the strong spin-orbit coupling of Pb atoms. The surface band structure and the spin-textures are sensitive to the surface types.
NASA Astrophysics Data System (ADS)
Zhang, De-Lin; Sun, Congli; Lv, Yang; Schliep, Karl B.; Zhao, Zhengyang; Chen, Jun-Yang; Voyles, Paul M.; Wang, Jian-Ping
2018-04-01
Magnetic materials that possess large bulk perpendicular magnetic anisotropy (PMA) are essential for the development of magnetic tunnel junctions (MTJs) used in future spintronic memory and logic devices. The addition of an antiferromagnetic layer to these MTJs was recently predicted to facilitate ultrafast magnetization switching. Here, we report a demonstration of a bulk perpendicular synthetic antiferromagnetic (PSAFM) structure comprised of a (001) textured Fe -Pd /Ru /Fe -Pd trilayer with a face-centered-cubic (fcc) phase Ru spacer. The L1 0 Fe -Pd PSAFM structure shows a large bulk PMA (Ku˜10.2 Merg /cm3 ) and strong antiferromagnetic coupling (-JIEC˜2.60 erg /cm2 ). Full perpendicular magnetic tunnel junctions (PMTJs) with a L1 0 Fe -Pd PSAFM layer are then fabricated. Tunneling magnetoresistance ratios of up to approximately 25% (approximately 60%) are observed at room temperature (5 K) after postannealing at 350 °C . Exhibiting high thermal stabilities and large Ku , the bulk PMTJs with an L1 0 Fe -Pd PSAFM layer could pave a way for next-generation ultrahigh-density and ultralow-energy spintronic applications.
Textured-surface quartz resonator fluid density and viscosity monitor
Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.
1998-08-25
A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.
NASA Astrophysics Data System (ADS)
van der Voort, Tessa Sophia; Hagedorn, Frank; McIntyre, Cameron; Zell, Claudia; Eglinton, Timothy Ian
2017-04-01
Soil carbon constitutes the largest terrestrial reservoir of organic carbon, and therefore understanding the mechanisms and drivers of carbon stabilization is crucial, especially in the framework of climate change. The understanding of the dependence of soil organic turnover in specific carbon pools as related to e.g. climate, soil texture and mineralogy is limited. In this framework, radiocarbon constitutes a uniquely powerful tool that help to unravel carbon dynamics from decadal to millennial timescales. This project combines bulk and pool-specific radiocarbon analyses in the top and deep soil on a wide range of forested soils that span a large climatic gradient (MAT 1.3-9.2°C, MAP 600 to 2100 mm m-2y-1). These well-studies sites are part of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL). This study aims to combine the insights gained from bulk and pool-specific turnover to environmental conditions and molecular composition of soil carbon. The pools investigated span the mineral-associated (occluded and heavy fractions from density fractionation) and potentially water-soluble (free light fractions from density fractionation and water extractable organic carbon) organic carbon fractions. Pool-specific radiocarbon work is augmented by the measurement of abundance of compounds such as alkanes, fatty acids and lignin phenols on a subset of samples. Initial results show disparate patterns depending on soil type and in particular soil texture, which could be indicative of various stabilization mechanisms in different soils. Overall, this study provides new insights into the controls of soil organic matter dynamics as related to environmental conditions, in particular in specific sub-pools of carbon.
NASA Astrophysics Data System (ADS)
Montzka, C.; Rötzer, K.; Bogena, H. R.; Vereecken, H.
2017-12-01
Improving the coarse spatial resolution of global soil moisture products from SMOS, SMAP and ASCAT is currently an up-to-date topic. Soil texture heterogeneity is known to be one of the main sources of soil moisture spatial variability. A method has been developed that predicts the soil moisture standard deviation as a function of the mean soil moisture based on soil texture information. It is a closed-form expression using stochastic analysis of 1D unsaturated gravitational flow in an infinitely long vertical profile based on the Mualem-van Genuchten model and first-order Taylor expansions. With the recent development of high resolution maps of basic soil properties such as soil texture and bulk density, relevant information to estimate soil moisture variability within a satellite product grid cell is available. Here, we predict for each SMOS, SMAP and ASCAT grid cell the sub-grid soil moisture variability based on the SoilGrids1km data set. We provide a look-up table that indicates the soil moisture standard deviation for any given soil moisture mean. The resulting data set provides important information for downscaling coarse soil moisture observations of the SMOS, SMAP and ASCAT missions. Downscaling SMAP data by a field capacity proxy indicates adequate accuracy of the sub-grid soil moisture patterns.
NASA Astrophysics Data System (ADS)
Keller, Brad M.; Chen, Jinbo; Conant, Emily F.; Kontos, Despina
2014-03-01
Accurate assessment of a woman's risk to develop specific subtypes of breast cancer is critical for appropriate utilization of chemopreventative measures, such as with tamoxifen in preventing estrogen-receptor positive breast cancer. In this context, we investigate quantitative measures of breast density and parenchymal texture, measures of glandular tissue content and tissue structure, as risk factors for estrogen-receptor positive (ER+) breast cancer. Mediolateral oblique (MLO) view digital mammograms of the contralateral breast from 106 women with unilateral invasive breast cancer were retrospectively analyzed. Breast density and parenchymal texture were analyzed via fully-automated software. Logistic regression with feature selection and was performed to predict ER+ versus ER- cancer status. A combined model considering all imaging measures extracted was compared to baseline models consisting of density-alone and texture-alone features. Area under the curve (AUC) of the receiver operating characteristic (ROC) and Delong's test were used to compare the models' discriminatory capacity for receptor status. The density-alone model had a discriminatory capacity of 0.62 AUC (p=0.05). The texture-alone model had a higher discriminatory capacity of 0.70 AUC (p=0.001), which was not significantly different compared to the density-alone model (p=0.37). In contrast the combined density-texture logistic regression model had a discriminatory capacity of 0.82 AUC (p<0.001), which was statistically significantly higher than both the density-alone (p<0.001) and texture-alone regression models (p=0.04). The combination of breast density and texture measures may have the potential to identify women specifically at risk for estrogen-receptor positive breast cancer and could be useful in triaging women into appropriate risk-reduction strategies.
Alam, M S; Kaur, Jasmeen; Khaira, Harjot; Gupta, Kalika
2016-01-01
Extrusion of foods is an emerging technology for the food industries to process and market a large number of products of varying size, shape, texture, and taste. Extrusion cooking technology has led to production of wide variety of products like pasta, breakfast cereals, bread crumbs, biscuits, crackers, croutons, baby foods, snack foods, confectionery items, chewing gum, texturized vegetable protein (TVP), modified starch, pet foods, dried soups, dry beverage mixes etc. The functional properties of extruded foods plays an important role for their acceptability which include water absorption, water solubility, oil absorption indexes, expansion index, bulk density and viscosity of the dough. The aim of this review is to give the detailed outlines about the potential of extrusion technology in development of different types of products and the role of extrusion-operating conditions and their effect on product development resulting in quality changes i.e physical, chemical, and nutritional, experienced during the extrusion process.
Kostecki, Marek; Woźniak, Jarosław; Cygan, Tomasz; Petrus, Mateusz; Olszyna, Andrzej
2017-01-01
Self-lubricating composites are designed to obtain materials that reduce energy consumption, improve heat dissipation between moving bodies, and eliminate the need for external lubricants. The use of a solid lubricant in bulk composite material always involves a significant reduction in its mechanical properties, which is usually not an optimal solution. The growing interest in multilayer graphene (MLG), characterised by interesting properties as a component of composites, encouraged the authors to use it as an alternative solid lubricant in aluminium matrix composites instead of graphite. Aluminium alloy 6061 matrix composite reinforced with 2–15 vol % of MLG were synthesised by the spark plasma sintering process (SPS) and its modification, spark plasma texturing (SPT), involving deformation of the pre-sintered body in a larger diameter matrix. It was found that the application of the SPT method improves the density and hardness of the composites, resulting in improved tribological properties, particularly in the higher load regime. PMID:28796172
Finite-element modelling of thermal micracking in fresh and consolidated marbles
NASA Astrophysics Data System (ADS)
Weiss, T.; Fuller, E.; Siegesmund, S.
2003-04-01
The initial stage of marble weathering is supposed to be controlled by thermal microcracking. Due to the anisotropy of the thermal expansion coefficients of calcite, the main rock forming mineral in marble, stresses are caused which lead to thermally-induced microcracking, especially along the grain boundaries. The so-called "granular disintegration" is a frequent weathering phenomenon observed for marbles. The controlling parameters are the grain size, grain shape and grain orientation. We use a finite-element approach to constrain magnitude and directional dependence of thermal degradation. Therefore, different assumptions are validated including the fracture toughness of the grain boundaries, the effects of the grain-to-grain orientation and bulk lattice preferred orientation (here referred to as texture). The resulting thermal microcracking and bulk rock thermal expansion anisotropy are validated. It is evident that thermal degradation depends on the texture. Strongly textured marbles exhibit a clear directional dependence of thermal degradation and a smaller bulk thermal degradation than randomly oriented ones. The effect of different stone consolidants in the pore space of degraded marble is simulated and its influence on mechanical properties such as tensile strength are evaluated.
Kontos, Despina; Bakic, Predrag R.; Carton, Ann-Katherine; Troxel, Andrea B.; Conant, Emily F.; Maidment, Andrew D.A.
2009-01-01
Rationale and Objectives Studies have demonstrated a relationship between mammographic parenchymal texture and breast cancer risk. Although promising, texture analysis in mammograms is limited by tissue superimposition. Digital breast tomosynthesis (DBT) is a novel tomographic x-ray breast imaging modality that alleviates the effect of tissue superimposition, offering superior parenchymal texture visualization compared to mammography. Our study investigates the potential advantages of DBT parenchymal texture analysis for breast cancer risk estimation. Materials and Methods DBT and digital mammography (DM) images of 39 women were analyzed. Texture features, shown in studies with mammograms to correlate with cancer risk, were computed from the retroareolar breast region. We compared the relative performance of DBT and DM texture features in correlating with two measures of breast cancer risk: (i) the Gail and Claus risk estimates, and (ii) mammographic breast density. Linear regression was performed to model the association between texture features and increasing levels of risk. Results No significant correlation was detected between parenchymal texture and the Gail and Claus risk estimates. Significant correlations were observed between texture features and breast density. Overall, the DBT texture features demonstrated stronger correlations with breast percent density (PD) than DM (p ≤0.05). When dividing our study population in groups of increasing breast PD, the DBT texture features appeared to be more discriminative, having regression lines with overall lower p-values, steeper slopes, and higher R2 estimates. Conclusion Although preliminary, our results suggest that DBT parenchymal texture analysis could provide more accurate characterization of breast density patterns, which could ultimately improve breast cancer risk estimation. PMID:19201357
NASA Astrophysics Data System (ADS)
Kim, S. I.; Gurevich, A.; Song, X.; Li, X.; Zhang, W.; Kodenkandath, T.; Rupich, M. W.; Holesinger, T. G.; Larbalestier, D. C.
2006-09-01
We report on the thickness dependence of the superconducting characteristics including critical current Ic, critical current density Jc, transition temperature Tc, irreversibility field Hirr, bulk pinning force plot Fp(H), and normal state resistivity curve ρ(T) measured after successive ion milling of ~1 µm thick high-Ic YBa2Cu3O7-x films made by an ex situ metal-organic deposition process on Ni-W rolling-assisted biaxially textured substrates (RABiTSTM). In contrast to many recent data, mostly on in situ pulsed laser deposition (PLD) films, which show strong depression of Jc with increasing film thickness t, our films exhibit only a weak dependence of Jc on t. The two better textured samples had full cross-section average Jc,avg (77 K, 0 T) ~4 MA cm-2 near the buffer layer interface and ~3 MA cm-2 at full thickness, despite significant current blocking due to ~30% porosity in the film. Taking account of the thickness dependence of the porosity, we estimate that the local, vortex-pinning current density is essentially independent of thickness, while accounting for the additional current-blocking effects of grain boundaries leads to local, vortex-pinning Jc values well above 5 MA cm-2. Such high local Jc values are produced by strong three-dimensional vortex pinning which subdivides vortex lines into weakly coupled segments much shorter than the film thickness.
Cai, Wen Tao; Li, He Yi; Lai, Li Ming; Zhang, Xiao Long; Guan, Tian Yu; Zhou, Ji Hua; Jiang, Lian He; Zheng, Yuan Run
2017-03-18
A series of typical abandoned croplands in the regions of Ruanliang and Yingliang in the Ordos Plateau, China, were selected, and dynamics of the surface litter, biological soil crust and soil bulk density, soil texture, and soil moisture in different soil layers were investigated. The results showed that in the abandoned cropland in Ruanliang, the clay particle content and surface litter of the surface soil layer (0-10 cm) increased during the restoration process, while that of soil bulk density substantially decreased and soil water content slightly increased in the surface soil. In the medium soil layer (10-30 cm), the clay particle content increased and the soil water content slightly decreased. In the deep soil layer (30-50 cm), there was a relatively large variation in the physical properties. In the abandoned cropland in Yingliang, the coverage of litter and the coverage and thickness of the biological soil crust increased during the abandonment process. The surface soil bulk density, soil clay particle content and soil water content remained constant in 0-10 cm soil layer, while the physical properties varied substantially in 10-40 cm soil layer. The shallow distribution of the soil water content caused by the accumulation of the litter and clay particles on the soil surface might be the key reason of the replacement of the semi-shrub Artemisia ordosica community with a perennial grass community over the last 20 years of the abandoned cropland in Ruanliang. The relatively high soil water content in the shallow layer and the development of the biological soil crust might explain why the abandoned cropland in Yingliang was not invaded by the semi-shrub A. ordosica during the restoration process.
Investigation of soil properties for identifying recharge characteristics in the Lake Chad Basin
NASA Astrophysics Data System (ADS)
Banks, M. L.; Ndunguru, G. G.; Adisa, S. J.; Lee, J.; Adegoke, J. O.; Goni, I. B.; Grindley, J.; Mulugeta, V.
2009-12-01
Lake Chad was once labeled as one of the largest fresh water lakes in the world, providing water and livelihood to over 20 million people. The lake is shared by six different countries; Chad Nigeria, Niger, Cameroon, Central African Republic, and Sudan. Since the 1970 to date, a significant decrease in the size of the lake has been observed with the use of satellite imagery. This shrinking of the lake has been blamed on global warming, population increase and poor water management by the agriculture industry for farming purpose for both plants and animals. While these can be all valid reasons for the decrease of Lake Chad, we see the need to examine environmental and hydrological evidence around the Lake Chad basin. This study was carried out from upper stream to lower stream leading from Kano to the Damatru region which is one of several water bodies that supply Lake Chad. Over seventy six sites were sampled for soil texture, bulk density and other physical properties to investigate recharge capacity of the basin especially along the stream. Soils were collected using a soil core and properly stored at 4 degrees Celsius. Soils were weighed and put to dry at 105 degrees for twenty four hours. Dry weight was recorded and bulk density was calculated. The wet sieve method was used to determine the particle size analysis. Soils were weighed to 10 grams and hydrogen peroxide added to separate particles. Samples were washed with water and put to dry overnight. Soils were reweighed and sieved to separate as course sand, fine sand and silt and clay. The data revealed that in the upstream, coarse sand continuously decreased while silt and clay continuously increased down toward the lake. At mid stream silt and clay had significantly higher values when compared to coarse sand and fine sand. In the lower stream, bulk density clearly decreased compared to the upper and mid streams. Correlations will be carried out to investigate the particle size analysis and bulk density with recharge capacity of the lake Chad Basin.
Influence of Laser Shock Texturing on W9 Steel Surface Friction Property
NASA Astrophysics Data System (ADS)
Fan, Yujie; Cui, Pengfei; Zhou, Jianzhong; Dai, Yibin; Guo, Erbin; Tang, Deye
2017-09-01
To improve surface friction property of high speed steel, micro-dent arrays on W9Mo3Cr4V surface were produced by laser shock processing. Friction test was conducted on smooth surface and texturing surface and effect of surface texturing density on friction property was studied. The results show that, under the same condition, friction coefficient of textured surface is lower than smooth surface with dent area density less than 6%, wear mass loss, width and depth of wear scar are smaller; Wear resistance of the surface is the best and the friction coefficient is the smallest when dent area density is 2.2%; Friction coefficient, wear mass loss, width and depth of wear scar increase correspondingly as density of dent area increases when dent area density is more than 2.2%. Abrasive wear and adhesive wear, oxidative wear appear in the wear process. Reasonable control of geometric parameters of surface texturing induced by laser shock processing is helpful to improve friction performance.
Comparison of waste pumpkin material and its potential use in extruded snack foods.
Norfezah, M N; Hardacre, A; Brennan, C S
2011-08-01
Material was produced from Crown pumpkin (Cucurbita maxima) processed from fractions of the fruit which are regarded as waste stream products (peel, flesh and seed). The flour from the three different fractions (peel, flesh and seed) of Crown pumpkin flour was incorporated into an extruded snack product formulation at levels 10%, 30% and 50% (w/w with corn grit) and processed in a twin-screw extruder to make 10 expanded snack products. Proximate analysis was carried out to determine the nutritional value of the raw pumpkin and pumpkin flour. A physical analysis of the product was used to determine its color, the expansion ratio, bulk density and texture. Inclusion of waste stream material (peel and seed) at 10%, yielded extruded products with similar expansion and density characteristics to the control sample; however, an inclusion of greater than 10% yielded significant challenges to product quality (hardness of the product).
NASA Astrophysics Data System (ADS)
Sigalingging, R.; Sumono; Rahmansyah, N.
2018-02-01
The estimation of crop water requirement is an important part of oil palm plantation because fruit yield of oil palm can be affected by water stress. Evapotranspiration and crop coefficient of oil palm using Tenera variety at 7-12 months old was determined. Soil texture was sandy loam with 73.8 % sand, 10.8 % silt, 15.77 % clay and 1.41 % organic matter. The results showed that the oil palm getting older decreased significantly in bulk density, particle density and porosity of soil caused the root of oil palm enlarged (19.42 g to 53.37 g). This was indicated by increased the dry root weight. On the other hand, the value of evapotranspiration and crop coefficient increased significantly, that was 1.85 to 2.00 mm/day and 0.8 to 0.87 respectively.
Dielectric and acoustical high frequency characterisation of PZT thin films
NASA Astrophysics Data System (ADS)
Conde, Janine; Muralt, Paul
2010-02-01
Pb(Zr, Ti)O3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.
Layering transitions and Schlieren textures in Langmuir films of two organic radicals.
Gallani, J-L; Bourgogne, C; Nakatsuji, S
2004-11-09
Two paramagnetic radicals have been investigated in terms of their film-forming properties at the air-water interface. Although the radicals failed to display any mesomorphic behavior in the bulk, they were found prone to built-up multilayer films on the Langmuir trough. The molecules seem to dimerize in the upper layers of the films that exhibit striking Schlieren textures when observed with Brewster angle microscopy. These Schlieren textures, together with the ability to form multilayers, indicate that the molecules came close to displaying smectic mesomorphism. A tentative model of the layers' structure is proposed, and a suggestion for synthesizing new molecules with actual mesomorphism is offered. The presented results show that the study of the behavior of molecules at the air-water interface can shed a new light on their behavior in the bulk and help in the design of new magnetic mesogens.
Quartz resonator fluid density and viscosity monitor
Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.
1998-01-01
A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.
Breast density characterization using texton distributions.
Petroudi, Styliani; Brady, Michael
2011-01-01
Breast density has been shown to be one of the most significant risks for developing breast cancer, with women with dense breasts at four to six times higher risk. The Breast Imaging Reporting and Data System (BI-RADS) has a four class classification scheme that describes the different breast densities. However, there is great inter and intra observer variability among clinicians in reporting a mammogram's density class. This work presents a novel texture classification method and its application for the development of a completely automated breast density classification system. The new method represents the mammogram using textons, which can be thought of as the building blocks of texture under the operational definition of Leung and Malik as clustered filter responses. The new proposed method characterizes the mammographic appearance of the different density patterns by evaluating the texton spatial dependence matrix (TDSM) in the breast region's corresponding texton map. The TSDM is a texture model that captures both statistical and structural texture characteristics. The normalized TSDM matrices are evaluated for mammograms from the different density classes and corresponding texture models are established. Classification is achieved using a chi-square distance measure. The fully automated TSDM breast density classification method is quantitatively evaluated on mammograms from all density classes from the Oxford Mammogram Database. The incorporation of texton spatial dependencies allows for classification accuracy reaching over 82%. The breast density classification accuracy is better using texton TSDM compared to simple texton histograms.
Full-gap superconductivity in spin-polarised surface states of topological semimetal β-PdBi2.
Iwaya, K; Kohsaka, Y; Okawa, K; Machida, T; Bahramy, M S; Hanaguri, T; Sasagawa, T
2017-10-17
A bulk superconductor possessing a topological surface state at the Fermi level is a promising system to realise long-sought topological superconductivity. Although several candidate materials have been proposed, experimental demonstrations concurrently exploring spin textures and superconductivity at the surface have remained elusive. Here we perform spectroscopic-imaging scanning tunnelling microscopy on the centrosymmetric superconductor β-PdBi 2 that hosts a topological surface state. By combining first-principles electronic-structure calculations and quasiparticle interference experiments, we determine the spin textures at the surface, and show not only the topological surface state but also all other surface bands exhibit spin polarisations parallel to the surface. We find that the superconducting gap fully opens in all the spin-polarised surface states. This behaviour is consistent with a possible spin-triplet order parameter expected for such in-plane spin textures, but the observed superconducting gap amplitude is comparable to that of the bulk, suggesting that the spin-singlet component is predominant in β-PdBi 2 .Although several materials have been proposed as topological superconductors, spin textures and superconductivity at the surface remain elusive. Here, Iwaya et al. determine the spin textures at the surface of a superconductor β-PdBi 2 and find the superconducting gap opening in all spin-polarised surface states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fancher, Chris M.; Blendell, John E.; Bowman, Keith J.
2017-02-07
A method leveraging Rietveld full-pattern texture analysis to decouple induced domain texture from a preferred grain orientation is presented in this paper. The proposed method is demonstrated by determining the induced domain texture in a polar polymorph of 100 oriented 0.91Bi 1/2Na 1/2TiO 3-0.07BaTiO 3-0.02K 0.5Na 0.5NbO 3. Domain textures determined using the present method are compared with results obtained via single peak fitting. Texture determined using single peak fitting estimated more domain alignment than that determined using the Rietveld based method. These results suggest that the combination of grain texture and phase transitions can lead to single peak fittingmore » under or over estimating domain texture. Finally, while demonstrated for a bulk piezoelectric, the proposed method can be applied to quantify domain textures in multi-component systems and thin films.« less
Ensemble Density Functional Approach to the Quantum Hall Effect
NASA Astrophysics Data System (ADS)
Heinonen, O.
1997-03-01
The fractional quantum Hall effect (FQHE) occurs in a two-dimensional electron gas of density n when a strong magnetic field perpendicular to the plane of the electron gas takes on certain strengths B(n). At these magnetic field strengths the system is incompressible, i.e., there is a finite cost in energy for creating charge density fluctuations in the bulk. Even so the boundary of the electron gas supports gapless modes of density waves. The bulk energy gap arises because of the strong electron-electron interactions. There are very good models for infinite homogeneous systems and for the gapless excitations of the boundary of the electron gas. But in order to explain experiments on quantum Hall systems, including Hall bars and quantum dots, new approaches are needed which can accurately describe inhomogeneous systems, including Landau level mixing and the spin degree of freedom. One possibility is an ensemble density functional theory approach that we have developed.(O. Heinonen, M.I. Lubin, and M.D. Johnson, Phys. Rev. Lett. 75), 4110 (1995)(O. Heinonen, M.I. Lubin, and M.D. Johnson, Int. J. Quant. Chem, December 1996) We have applied this to study edge reconstructions of spin-polarized quantum dots. The results for a six-electron test case are in excellent agreement with numerical diagonalizations. For larger systems, compressible and incompressible strips appear as the magnetic field is increased from the region in which a dot forms a compact so-called maximum density droplet. We have recently included spin degree of freedom to study the stability of a maximum density droplet, and charge-spin textures in inhomogeneous systems. As an example, when the Zeeman coupling is decreased, we find that the maximum density droplet develops a spin-structured edge instability. This implies that the spin degree of freedom may play a significant role in the study of edge modes at low or moderate magnetic fields.
The potential roles of biological soil crusts in dryland hydrologic cycles
Belnap, J.
2006-01-01
Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and water infiltration versus runoff in various drylands around the world. Most studies examining the effect of biological soil crusts on local hydrology are done by comparing undisturbed sites with those recently disturbed by the researchers. Unfortunately, this greatly complicates interpretation of the results. Applied disturbances alter many soil features such as soil texture, roughness, aggregate stability, physical crusting, porosity, and bulk density in ways that would not necessarily be the same if crusts were not naturally present. Combined, these studies show little agreement on how biological crusts affect water infiltration or runoff. However, when studies are separated by biological crust type and utilize naturally occurring differences among these types, results indicate that biological crusts in hyperarid regions reduce infiltration and increase runoff, have mixed effects in and regions, and increase infiltration and reduce runoff in semiarid cool and cold drylands. However, more studies are needed before broad generalizations can be made on how biological crusts affect infiltration and runoff. We especially need studies that control for sub-surface soil features such as bulk density, micro- and macropores, and biological crust structure. Unlike the mixed effects of biological crusts on infiltration and runoff among regions, almost all studies show that biological crusts reduce sediment production, regardless of crust or dryland type.
The potential roles of biological soil crusts in dryland hydrologic cycles
NASA Astrophysics Data System (ADS)
Belnap, Jayne
2006-10-01
Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and water infiltration versus runoff in various drylands around the world. Most studies examining the effect of biological soil crusts on local hydrology are done by comparing undisturbed sites with those recently disturbed by the researchers. Unfortunately, this greatly complicates interpretation of the results. Applied disturbances alter many soil features such as soil texture, roughness, aggregate stability, physical crusting, porosity, and bulk density in ways that would not necessarily be the same if crusts were not naturally present. Combined, these studies show little agreement on how biological crusts affect water infiltration or runoff. However, when studies are separated by biological crust type and utilize naturally occurring differences among these types, results indicate that biological crusts in hyperarid regions reduce infiltration and increase runoff, have mixed effects in arid regions, and increase infiltration and reduce runoff in semiarid cool and cold drylands. However, more studies are needed before broad generalizations can be made on how biological crusts affect infiltration and runoff. We especially need studies that control for sub-surface soil features such as bulk density, micro- and macropores, and biological crust structure. Unlike the mixed effects of biological crusts on infiltration and runoff among regions, almost all studies show that biological crusts reduce sediment production, regardless of crust or dryland type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakharchenko, I.V.; Terryll, K.M.; Rao, K.V.
1995-03-01
This study compared the microstructure, texturing, and functional properties (critical currents) of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}-based bulk pellets that were prepared by the quench-melt-growth-process (QMGP), melt-textured growth (MTG), and conventional solid-state reaction (SSR) approaches. Using two X-ray diffraction (XRD) methods, {theta}-2{theta}, and rocking curves, the authors found that the individual grains of two melt-processed pellets exhibited remarkable preferred orientational alignment (best rocking curve width = 3.2{degree}). However, the direction of the preferred orientation among the grains was random. Among the three types of bulk materials studied, the QMGP sample was found to have the best J{sub c} values, {approx} 4,500more » A/cm{sup 2} at 77 K in a field of 2 kG, as determined from SQUID magnetic data.« less
Application of inulin in cheese as prebiotic, fat replacer and texturizer: a review.
Karimi, Reza; Azizi, Mohammad Hossein; Ghasemlou, Mehran; Vaziri, Moharam
2015-03-30
Inulin is a food ingredient that belongs to a class of carbohydrates known as fructans. Nutritionally it has functional properties and health-promoting effects that include reduced calorie value, dietary fiber and prebiotic effects. Inulin is increasingly used in industrially processed dairy and non-dairy products because it is a bulking agent for use in fat replacement, textural modification and organoleptic improvement. Addition of inulin to different kinds of cheese can be beneficial in the manufacture of a reduced- or low-fat, texturized, symbiotic product. This paper gives an overview of some aspects of the microstructural, textural, rheological, prebiotic and sensorial effects of inulin incorporated in cheese as fat replacer, prebiotic and texture modifier. Copyright © 2014 Elsevier Ltd. All rights reserved.
Independent Component Analysis of Textures
NASA Technical Reports Server (NTRS)
Manduchi, Roberto; Portilla, Javier
2000-01-01
A common method for texture representation is to use the marginal probability densities over the outputs of a set of multi-orientation, multi-scale filters as a description of the texture. We propose a technique, based on Independent Components Analysis, for choosing the set of filters that yield the most informative marginals, meaning that the product over the marginals most closely approximates the joint probability density function of the filter outputs. The algorithm is implemented using a steerable filter space. Experiments involving both texture classification and synthesis show that compared to Principal Components Analysis, ICA provides superior performance for modeling of natural and synthetic textures.
Deformation Mechanisms in Tube Billets from Zr-1%Nb Alloy under Radial Forging
NASA Astrophysics Data System (ADS)
Perlovich, Yuriy; Isaenkova, Margarita; Fesenko, Vladimir; Krymskaya, Olga; Zavodchikov, Alexander
2011-05-01
Features of the deformation process by cold radial forging of tube billets from Zr-1%Nb alloy were reconstructed on the basis of X-ray data concerning their structure and texture. The cold radial forging intensifies grain fragmentation in the bulk of billet and increases significantly the latent hardening of potentially active slip systems, so that operation only of the single slip system becomes possible. As a result, in radially-forged billets unusual deformation and recrystallization textures arise. These textures differ from usual textures of α-Zr by the mutual inversion of crystallographic axes, aligned along the axis of tube.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T. K.; Wu, Z.; Stoica, A. D.
The cryogenic plastic deformation of CrCoFeMnNi high entropy alloy is characterized by three distinct stages based on the change of the work hardening rate. Microstructure and bulk texture at different strain levels were studied by electron backscatter diffraction (EBSD) and neutron diffraction. Our findings indicate that the deformation twins led to the constant work hardening rate at Stage II and resulted in the appearance of <115 >//TA texture component, while the dislocation slip was involved all though the entire plastic deformation. As a result, the twinning-mediated tensile plastic deformation at cryogenic temperature finally induced the strong {111}- < 112 >more » texture component and minor {001} < 110 > texture component accompanied with twinning-induced {115}< 552 > texture component.« less
Liu, T. K.; Wu, Z.; Stoica, A. D.; ...
2017-06-17
The cryogenic plastic deformation of CrCoFeMnNi high entropy alloy is characterized by three distinct stages based on the change of the work hardening rate. Microstructure and bulk texture at different strain levels were studied by electron backscatter diffraction (EBSD) and neutron diffraction. Our findings indicate that the deformation twins led to the constant work hardening rate at Stage II and resulted in the appearance of <115 >//TA texture component, while the dislocation slip was involved all though the entire plastic deformation. As a result, the twinning-mediated tensile plastic deformation at cryogenic temperature finally induced the strong {111}- < 112 >more » texture component and minor {001} < 110 > texture component accompanied with twinning-induced {115}< 552 > texture component.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Somjeet, E-mail: somjeetbiswas@gmail.com; Department of Materials Engineering, Indian Institute of Science, Bangalore 560012; Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures
Investigations on texture evolution and through-thickness texture heterogeneity during equal channel angular pressing (ECAP) of pure magnesium at 200 °C, 150 °C and room temperature (RT) was carried out by neutron, high energy synchrotron X-ray and electron back-scatter diffraction. Irrespective of the ECAP temperature, a distinctive basal (B) and pyramidal (C{sub 2}) II type of fibers forms. The texture differs in the bottom 1 mm portion, where the B-fiber is shifted ~ 55° due to negative shear attributed to friction. - Highlights: • ECAP of magnesium was carried out at 200 °C, 150 °C and room temperature. • Microstructure andmore » micro-texture evolution was examined using EBSD in FEG–SEM. • Bulk-texture was studied using neutron diffraction and compared with micro-texture. • Through thickness texture heterogeneity was observed by synchrotron radiation. • Changes in these parameters with respect to deformation temperature are discussed.« less
Adhesive behavior of micro/nano-textured surfaces
NASA Astrophysics Data System (ADS)
Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Wang, Ben
2015-02-01
A numerical model of the adhesive contact between a rigid smooth sphere and an elastic textured surface based on the Lennard-Jones interatomic potential law and the Hamaker summation method is established. Textures are considered by introducing the texture height distribution into the gap equation. Simulation results show that the pull-off force on textured surfaces decreases compared to that on smooth surfaces. Furthermore, effects of sphere-shaped textures on reducing adhesion are more obvious than cylinder-shaped or cube-shaped textures when the coverage area ratio, maximum height and interval of textures are fixed. For surfaces with sphere-shaped textures, variation trends of the mean pull-off force with texture density are not monotonous, and there exists a certain range of texture densities in which the mean pull-off force is small and its variation is insignificant. In addition, the pull-off force depends also on the maximum height and radius of textures. On one hand, if the texture radius is fixed, larger maximum height results in smaller pull-off force, and if the maximum height is fixed, the pull-off force tends to increase almost linearly with increases in texture radius. On the other hand, if the height-diameter ratio of textures is fixed, the pull-off force reaches a minimum at an optimum texture radius or maximum height.
Nanostructured Metal Oxides for Stoichiometric Degradation of Chemical Warfare Agents.
Štengl, Václav; Henych, Jiří; Janoš, Pavel; Skoumal, Miroslav
2016-01-01
Metal oxides have very important applications in many areas of chemistry, physics and materials science; their properties are dependent on the method of preparation, the morphology and texture. Nanostructured metal oxides can exhibit unique characteristics unlike those of the bulk form depending on their morphology, with a high density of edges, corners and defect surfaces. In recent years, methods have been developed for the preparation of metal oxide powders with tunable control of the primary particle size as well as of a secondary particle size: the size of agglomerates of crystallites. One of the many ways to take advantage of unique properties of nanostructured oxide materials is stoichiometric degradation of chemical warfare agents (CWAs) and volatile organic compounds (VOC) pollutants on their surfaces.
Properties of dielectric dead layers for SrTiO3 thin films on Pt electrodes
NASA Astrophysics Data System (ADS)
Finstrom, Nicholas H.; Cagnon, Joel; Stemmer, Susanne
2007-02-01
Dielectric measurements as a function of temperature were used to characterize the properties of the dielectric dead layers in parallel-plate capacitors with differently textured SrTiO3 thin films and Pt electrodes. The apparent thickness dependence of the permittivity was described with low-permittivity passive (dead) layers at the interfaces connected in series with the bulk of the SrTiO3 film. Interfacial capacitance densities changed with the film microstructure and were weakly temperature dependent. Estimates of the dielectric dead layer thickness and permittivity were limited by the film surface roughness (˜5nm ). The consequences for the possible origins of dielectric dead layers that have been proposed in the literature are discussed.
Laser surface texturing of polypropylene to increase adhesive bonding
NASA Astrophysics Data System (ADS)
Mandolfino, Chiara; Pizzorni, Marco; Lertora, Enrico; Gambaro, Carla
2018-05-01
In this paper, the main parameters of laser surface texturing of polymeric substrates have been studied. The final aim of the texturing is to increase the performance of bonded joints of grey-pigmented polypropylene substrates. The experimental investigation was carried out starting from the identification of the most effective treatment parameters, in order to achieve a good texture without compromising the characteristics of the bulk material. For each of these parameters, three values were individuated and 27 sets of samples were realised. The surface treatment was analysed and related to the mechanical characteristics of the bonded joints performing lap-shear tests. A statistical analysis in order to find the most influential parameter completed the work.
Brown, Donald William; Okuniewski, Maria A.; Sisneros, Thomas A.; ...
2016-12-01
Here, Al clad U-10Mo fuel plates are being considered for conversion of several research reactors from high-enriched to low-enriched U fuel. Neutron diffraction measurements of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the cladding procedure significantly reducesmore » the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stress state of the final plate is dominated by the thermal expansion mismatch of the constituent materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Donald William; Okuniewski, Maria A.; Sisneros, Thomas A.
Here, Al clad U-10Mo fuel plates are being considered for conversion of several research reactors from high-enriched to low-enriched U fuel. Neutron diffraction measurements of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the cladding procedure significantly reducesmore » the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stress state of the final plate is dominated by the thermal expansion mismatch of the constituent materials.« less
Height perception influenced by texture gradient.
Tozawa, Junko
2012-01-01
Three experiments were carried out to examine whether a texture gradient influences perception of relative object height. Previous research implicated texture cues in judgments of object width, but similar influences have not been demonstrated for relative height. In this study, I evaluate a hypothesis that the projective ratio of the number of texture elements covered by the objects combined with the ratio of the retinal object heights determines percepts of relative object height. Density of texture background was varied: four density conditions ranged from no-texture to very dense texture. In experiments 1 and 2, participants judged the height of comparison bar compared to the standard bar positioned on no-texture or textured backgrounds. Results showed relative height judgments differed with texture manipulations, consistent with predictions from a hypothesised combination of the number of texture elements with retinal height (experiment 1), or partially consistent with this hypothesis (experiment 2). In experiment 2, variations in the position of a comparison object showed that comparisons located far from the horizon were judged more poorly than in other positions. In experiment 3 I examined distance perception; relative distance judgments were found to be also affected by textured backgrounds. Results are discussed in terms of Gibson's relational theory and distance calibration theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonysamy, A.A., E-mail: alphons.antonysamy@GKNAerospace.com; Meyer, J., E-mail: jonathan.meyer@eads.com; Prangnell, P.B., E-mail: philip.prangnell@manchester.ac.uk
With titanium alloys, the solidification conditions in Additive Manufacturing (AM) frequently lead to coarse columnar β-grain structures. The effect of geometry on the variability in the grain structure and texture, seen in Ti-6Al-4V alloy components produced by Selective Electron Beam Melting (SEBM), has been investigated. Reconstruction of the primary β-phase, from α-phase EBSD data, has confirmed that in bulk sections where in-fill “hatching” is employed growth selection favours columnar grains aligned with an <001> {sub β} direction normal to the deposited powder layers; this results in a coarse β-grain structure with a strong < 001 > {sub β} fibre texturemore » (up 8 x random) that can oscillate between a near random distribution around the fibre axis and cube reinforcement with build height. It is proposed that this behaviour is related to the highly elongated melt pool and the raster directions alternating between two orthogonal directions every layer, which on average favours grains with cube alignment. In contrast, the outline, or “contour”, pass produces a distinctly different grain structure and texture resulting in a skin layer on wall surfaces, where nucleation occurs off the surrounding powder and growth follows the curved surface of the melt pool. This structure becomes increasingly important in thin sections. Local heterogeneities have also been found within different section transitions, resulting from the growth of skin grain structures into thicker sections. Texture simulations have shown that the far weaker α-texture (∼ 3 x random), seen in the final product, arises from transformation on cooling occurring with a near random distribution of α-plates across the 12 variants possible from the Burgers relationship. - Highlights: • Distinctly different skin and bulk structures are produced by the contour and hatching passes. • Bulk sections contain coarse β-grains with a < 001 > fibre texture in the build direction. • This oscillates between a random distribution around the axis and cube reinforcement. • In the skin layer nucleation occurs off the surrounding powder bed and growth occurs inwards. • Simulations show that a weak α-texture results from a random distribution across habit variants.« less
The formation of cosmic structure in a texture-seeded cold dark matter cosmogony
NASA Technical Reports Server (NTRS)
Gooding, Andrew K.; Park, Changbom; Spergel, David N.; Turok, Neil; Gott, Richard, III
1992-01-01
The growth of density fluctuations induced by global texture in an Omega = 1 cold dark matter (CDM) cosmogony is calculated. The resulting power spectra are in good agreement with each other, with more power on large scales than in the standard inflation plus CDM model. Calculation of related statistics (two-point correlation functions, mass variances, cosmic Mach number) indicates that the texture plus CDM model compares more favorably than standard CDM with observations of large-scale structure. Texture produces coherent velocity fields on large scales, as observed. Excessive small-scale velocity dispersions, and voids less empty than those observed may be remedied by including baryonic physics. The topology of the cosmic structure agrees well with observation. The non-Gaussian texture induced density fluctuations lead to earlier nonlinear object formation than in Gaussian models and may also be more compatible with recent evidence that the galaxy density field is non-Gaussian on large scales. On smaller scales the density field is strongly non-Gaussian, but this appears to be primarily due to nonlinear gravitational clustering. The velocity field on smaller scales is surprisingly Gaussian.
NASA Astrophysics Data System (ADS)
Soriano, David; Ortmann, Frank; Roche, Stephan
2012-12-01
We design three-dimensional models of topological insulator thin films, showing a tunability of the odd number of Dirac cones driven by the atomic-scale geometry at the boundaries. A single Dirac cone at the Γ-point can be obtained as well as full suppression of quantum tunneling between Dirac states at geometrically differentiated surfaces. The spin texture of surface states changes from a spin-momentum-locking symmetry to a surface spin randomization upon the introduction of bulk disorder. These findings illustrate the richness of the Dirac physics emerging in thin films of topological insulators and may prove utile for engineering Dirac cones and for quantifying bulk disorder in materials with ultraclean surfaces.
Diffusion of hydrogen into and through γ-iron by density functional theory
NASA Astrophysics Data System (ADS)
Chohan, Urslaan K.; Koehler, Sven P. K.; Jimenez-Melero, Enrique
2018-06-01
This study is concerned with the early stages of hydrogen embrittlement on an atomistic scale. We employed density functional theory to investigate hydrogen diffusion through the (100), (110) and (111) surfaces of γ-Fe. The preferred adsorption sites and respective energies for hydrogen adsorption were established for each plane, as well as a minimum energy pathway for diffusion. The H atoms adsorb on the (100), (110) and (111) surfaces with energies of ∼4.06 eV, ∼3.92 eV and ∼4.05 eV, respectively. The barriers for bulk-like diffusion for the (100), (110) and (111) surfaces are ∼0.6 eV, ∼0.5 eV and ∼0.7 eV, respectively. We compared these calculated barriers with previously obtained experimental data in an Arrhenius plot, which indicates good agreement between experimentally measured and theoretically predicted activation energies. Texturing austenitic steels such that the (111) surfaces of grains are preferentially exposed at the cleavage planes may be a possibility to reduce hydrogen embrittlement.
Obadina, Adewale O; Oyewole, Olusola B; Williams, Oluwasolabomi E
2013-07-01
This study was carried out to investigate and improve the traditional processing method and nutritional quality of the traditional cassava snack (Ajogun). Cassava root (Manihot esculenta Crantz L.) of TME 419 variety was processed into mash (40% moisture content). The cassava mash was mixed into different blends to produce fried traditional "Ajogun", fried and baked extrudates (modified Ajogun) as snacks. These products were analyzed to determine the proximate composition including carbohydrate, fat, protein, fiber, ash, and moisture contents and functional properties such as bulk density. The results obtained for the moisture, fat, protein, and ash contents showed significant difference (P < 0.05) between the control sample and the extrudates. However, there was no significant difference (P > 0.05) in the carbohydrate and fiber contents between the three samples. There was no significant difference (P > 0.05) in the bulk density of the snacks. Also, sensory evaluation was carried out on the cassava-based snacks using the 9-point hedonic scale to determine the degree of acceptability. Results obtained showed significant difference (P < 0.05) between the extrudates and control sample in terms of appearance, taste, flavor, color, aroma, texture, and overall acceptability. The highest acceptability level of the product was at 8.04 for the control sample (traditional Ajogun). This study has shown that "Ajogun", which is a lesser known cassava product, is rich in protein and fat.
Zhang, Xue-Lei; Feng, Wan-Wan; Zhong, Guo-Min
2011-01-01
A GIS-based 500 m x 500 m soil sampling point arrangement was set on 248 points at Wenshu Town of Yuzhou County in central Henan Province, where the typical Ustic Cambosols locates. By using soil digital data, the spatial database was established, from which, all the needed latitude and longitude data of the sampling points were produced for the field GPS guide. Soil samples (0-20 cm) were collected from 202 points, of which, bulk density measurement were conducted for randomly selected 34 points, and the ten soil property items used as the factors for soil quality assessment, including organic matter, available K, available P, pH, total N, total P, soil texture, cation exchange capacity (CEC), slowly available K, and bulk density, were analyzed for the other points. The soil property items were checked by statistic tools, and then, classified with standard criteria at home and abroad. The factor weight was given by analytic hierarchy process (AHP) method, and the spatial variation of the major 10 soil properties as well as the soil quality classes and their occupied areas were worked out by Kriging interpolation maps. The results showed that the arable Ustic Cambosols in study area was of good quality soil, over 95% of which ranked in good and medium classes and only less than 5% were in poor class.
Uncertainty in Pedotransfer Functions from Soil Survey Data
NASA Astrophysics Data System (ADS)
Pachepsky, Y. A.; Rawls, W. J.
2002-05-01
Pedotransfer functions (PTFs) are empirical relationships between hard-to-get soil parameters, i.e. hydraulic properties, and more easily obtainable basic soil properties, such as texture. Use of PTFs in large-scale projects and pilot studies relies on data of soil survey that provides soil basic data as a categorical information. Unlike numerical variables, categorical data cannot be directly used in statistical regressions or neural networks to develop PTFs. Objectives of this work were (a) to find and test techniques to develop PTFs for soil water retention and saturated hydraulic conductivity with soil categorical data as inputs, (b) to evaluate sources of uncertainty in results of such PTFs and to research opportunities of mitigating the uncertainty. We used a subset of about 12,000 samples from the US National Soil characterization database to estimate water retention, and the data set for circa 1000 hydraulic conductivity measurements done in the US. Regression trees and polynomial neural networks based on dummy coding were the techniques tried for the PTF development. The jackknife validation was used to prevent the over-parameterization. Both techniques were equally efficient in developing PTFs, but regression trees gave much more transparent results. Textural class was the leading predictor with RMSE values of about 6.5 and 4.1 vol.% for water retention at -33 and -1500 kPa, respectively. The RMSE values decreased 10% when the laboratory textural analysis was used to establish the textural class. Textural class in the field was determined correctly only in 41% of all cases. To mitigate this source of error, we added slopes, position on the slope classes, and land surface shape classes to the list of PTF inputs. Regression trees generated topotextural groups that encompassed several textural classes. Using topographic variables and soil horizon appeared to be the way to make up for errors made in field determination of texture. Adding field descriptors of soil structure to the field-determined textural class gave similar results. No large improvement was achieved probably because textural class, topographic descriptors and structure descriptors were correlated predictors in many cases. Both median values and uncertainty of the saturated hydraulic conductivity had a power-law decrease as clay content increased. Defining two classes of bulk density helped to estimate hydraulic conductivity within textural classes. We conclude that categorical field soil survey data can be used in PTF-based estimating soil water retention and saturated hydraulic conductivity with quantified uncertainty
NASA Astrophysics Data System (ADS)
Ma, Qiang; Yue, Ming; Xu, Xiaochang; Zhang, Hongguo; Zhang, Dongtao; Zhang, Xuefeng; Zhang, Jiuxing
2018-05-01
In the present study, bulk anisotropic nanocrystalline SmCo5 magnets were prepared by hot press and subsequent hot deformation method. Effect of phase composition on texture and magnetic properties are presented, based on which the mechanism of plastic deformation and texture formation during the hot deformation process is discussed. The SmCo5 magnets were prepared by hot deformation, excessive Sm of 2.5 wt% and 10 wt% was added to compensate the weight loss due to Sm evaporation. Our analyses reveal that the phase composition is one of the most important parameters that determine the texture of SmCo5 magnets. It is therefore suggested that the existence of 2:17 phase and its phase transformation undermined the crystal texture formation as well as the magnetic properties of nanocrystalline SmCo5 magnets.
Layering in peralkaline magmas, Ilímaussaq Complex, S Greenland
NASA Astrophysics Data System (ADS)
Hunt, Emma J.; Finch, Adrian A.; Donaldson, Colin H.
2017-01-01
The peralkaline to agpaitic Ilímaussaq Complex, S. Greenland, displays spectacular macrorhythmic (> 5 m) layering via the kakortokite (agpaitic nepheline syenite), which outcrops as the lowest exposed rocks in the complex. This study applies crystal size distribution (CSD) analyses and eudialyte-group mineral chemical compositions to study the marker horizon, Unit 0, and the contact to the underlying Unit - 1. Unit 0 is the best-developed unit in the kakortokites and as such is ideal for gaining insight into processes of crystal formation and growth within the layered kakortokite. The findings are consistent with a model whereby the bulk of the black and red layers developed through in situ crystallisation at the crystal mush-magma interface, whereas the white layer developed through a range of processes operating throughout the magma chamber, including density segregation (gravitational settling and flotation). Primary textures were modified through late-stage textural coarsening via grain overgrowth. An open-system model is proposed, where varying concentrations of halogens, in combination with undercooling, controlled crystal nucleation and growth to form Unit 0. Our observations suggest that the model is applicable more widely to the layering throughout the kakortokite series and potentially other layered peralkaline/agpaitic rocks around the world.
Microstructure, Texture, and Mechanical Behavior of As-cast Ni-Fe-W Matrix Alloy
NASA Astrophysics Data System (ADS)
Rao, A. Sambasiva; Manda, Premkumar; Mohan, M. K.; Nandy, T. K.; Singh, A. K.
2018-04-01
This article describes the tensile properties, flow, and work-hardening behavior of an experimental alloy 53Ni-29Fe-18W in as-cast condition. The microstructure of the alloy 53Ni-29Fe-18W displays single phase (fcc) in as-cast condition along with typical dendritic features. The bulk texture of the as-cast alloy reveals the triclinic sample symmetry and characteristic nature of coarse-grained materials. The alloy exhibits maximum strength ( σ YS and σ UTS) values along the transverse direction. The elongation values are maximum and minimum along the transverse and longitudinal directions, respectively. Tensile fracture surfaces of both the longitudinal and transverse samples display complete ductile fracture features. Two types of slip lines, namely, planar and intersecting, are observed in deformed specimens and the density of slip lines increases with increasing the amount of deformation. The alloy displays moderate in-plane anisotropy ( A IP) and reasonably low anisotropic index ( δ) values, respectively. The instantaneous or work-hardening rate curves portray three typical stages (I through III) along both the longitudinal and transverse directions. The alloy exhibits dislocation-controlled strain hardening during tensile testing, and slip is the predominant deformation mechanism.
Winfield, Kari A.
2005-01-01
Because characterizing the unsaturated hydraulic properties of sediments over large areas or depths is costly and time consuming, development of models that predict these properties from more easily measured bulk-physical properties is desirable. At the Idaho National Engineering and Environmental Laboratory, the unsaturated zone is composed of thick basalt flow sequences interbedded with thinner sedimentary layers. Determining the unsaturated hydraulic properties of sedimentary layers is one step in understanding water flow and solute transport processes through this complex unsaturated system. Multiple linear regression was used to construct simple property-transfer models for estimating the water-retention curve and saturated hydraulic conductivity of deep sediments at the Idaho National Engineering and Environmental Laboratory. The regression models were developed from 109 core sample subsets with laboratory measurements of hydraulic and bulk-physical properties. The core samples were collected at depths of 9 to 175 meters at two facilities within the southwestern portion of the Idaho National Engineering and Environmental Laboratory-the Radioactive Waste Management Complex, and the Vadose Zone Research Park southwest of the Idaho Nuclear Technology and Engineering Center. Four regression models were developed using bulk-physical property measurements (bulk density, particle density, and particle size) as the potential explanatory variables. Three representations of the particle-size distribution were compared: (1) textural-class percentages (gravel, sand, silt, and clay), (2) geometric statistics (mean and standard deviation), and (3) graphical statistics (median and uniformity coefficient). The four response variables, estimated from linear combinations of the bulk-physical properties, included saturated hydraulic conductivity and three parameters that define the water-retention curve. For each core sample,values of each water-retention parameter were estimated from the appropriate regression equation and used to calculate an estimated water-retention curve. The degree to which the estimated curve approximated the measured curve was quantified using a goodness-of-fit indicator, the root-mean-square error. Comparison of the root-mean-square-error distributions for each alternative particle-size model showed that the estimated water-retention curves were insensitive to the way the particle-size distribution was represented. Bulk density, the median particle diameter, and the uniformity coefficient were chosen as input parameters for the final models. The property-transfer models developed in this study allow easy determination of hydraulic properties without need for their direct measurement. Additionally, the models provide the basis for development of theoretical models that rely on physical relationships between the pore-size distribution and the bulk-physical properties of the media. With this adaptation, the property-transfer models should have greater application throughout the Idaho National Engineering and Environmental Laboratory and other geographic locations.
Microwave radiometer experiment of soil moisture sensing at BARC test site during summer 1981
NASA Technical Reports Server (NTRS)
Wang, J.; Jackson, T.; Engman, E. T.; Gould, W.; Fuchs, J.; Glazer, W.; Oneill, P.; Schmugge, T. J.; Mcmurtrey, J., III
1984-01-01
Soil moisture was measured by truck mounted microwave radiometers at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz. The soil textures in the two test sites were different so that the soil type effect of microwave radiometric response could be studied. Several fields in each test site were prepared with different surface roughnesses and vegetation covers. Ground truth on the soil moisture, temperature, and the biomass of the vegetation was acquired in support of the microwave radiometric measurements. Soil bulk density for each of the fields in both test sites was sampled. The soils in both sites were measured mechanically and chemically. A tabulation of the measured data is presented and the sensors and operational problems associated with the measurements are discussed.
Klug, C.; Cashman, K.; Bacon, C.
2002-01-01
The vesicularity, permeability, and structure of pumice clasts provide insight into conditions of vesiculation and fragmentation during Plinian fall and pyroclastic flow-producing phases of the ???7,700 cal. year B.P. climactic eruption of Mount Mazama (Crater Lake), Oregon. We show that bulk properties (vesicularity and permeability) can be correlated with internal textures and that the clast structure can be related to inferred changes in eruption conditions. The vesicularity of all pumice clasts is 75-88%, with >90% interconnected pore volume. However, pumice clasts from the Plinian fall deposits exhibit a wider vesicularity range and higher volume percentage of interconnected vesicles than do clasts from pyroclastic-flow deposits. Pumice permeabilities also differ between the two clast types, with pumice from the fall deposit having higher minimum permeabilities (???5??10-13 m2) and a narrower permeability range (5-50??10-13 m2) than clasts from pyroclastic-flow deposits (0.2-330??10-13 m2). The observed permeability can be modeled to estimate average vesicle aperture radii of 1-5 ??m for the fall deposit clasts and 0.25-1 ??m for clasts from the pyroclastic flows. High vesicle number densities (???109 cm-3) in all clasts suggest that bubble nucleation occured rapidly and at high supersaturations. Post-nucleation modifications to bubble populations include both bubble growth and coalescence. A single stage of bubble nucleation and growth can account for 35-60% of the vesicle population in clasts from the fall deposits, and 65-80% in pumice from pyroclastic flows. Large vesicles form a separate population which defines a power law distribution with fractal dimension D=3.3 (range 3.0-3.5). The large D.value, coupled with textural evidence, suggests that the large vesicles formed primarily by coalescence. When viewed together, the bulk properties (vesicularity, permeability) and textural characteristics of all clasts indicate rapid bubble nucleation followed by bubble growth, coalescence and permeability development. This sequence of events is best explained by nucleation in response to a downward-propagating decompression wave, followed by rapid bubble growth and coalescence prior to magma disruption by fragmentation. The heterogeneity of vesicle sizes and shapes, and the absence of differential expansion across individual clasts, suggest that post-fragmentation expansion played a limited role in the development of pumice structure. The higher vesicle number densities and lower permeabilities of pyroclastic-flow clasts indicate limited coalescence and suggest that fragmentation occurred shortly after decompression. Either increased eruption velocities or increased depth of fragmentation accompanying caldera collapse could explain compression of the pre-fragmentation vesiculation interval.
Baker, Daniel H; Meese, Tim S
2016-07-27
Previous work has shown that human vision performs spatial integration of luminance contrast energy, where signals are squared and summed (with internal noise) over area at detection threshold. We tested that model here in an experiment using arrays of micro-pattern textures that varied in overall stimulus area and sparseness of their target elements, where the contrast of each element was normalised for sensitivity across the visual field. We found a power-law improvement in performance with stimulus area, and a decrease in sensitivity with sparseness. While the contrast integrator model performed well when target elements constituted 50-100% of the target area (replicating previous results), observers outperformed the model when texture elements were sparser than this. This result required the inclusion of further templates in our model, selective for grids of various regular texture densities. By assuming a MAX operation across these noisy mechanisms the model also accounted for the increase in the slope of the psychometric function that occurred as texture density decreased. Thus, for the first time, mechanisms that are selective for texture density have been revealed at contrast detection threshold. We suggest that these mechanisms have a role to play in the perception of visual textures.
Baker, Daniel H.; Meese, Tim S.
2016-01-01
Previous work has shown that human vision performs spatial integration of luminance contrast energy, where signals are squared and summed (with internal noise) over area at detection threshold. We tested that model here in an experiment using arrays of micro-pattern textures that varied in overall stimulus area and sparseness of their target elements, where the contrast of each element was normalised for sensitivity across the visual field. We found a power-law improvement in performance with stimulus area, and a decrease in sensitivity with sparseness. While the contrast integrator model performed well when target elements constituted 50–100% of the target area (replicating previous results), observers outperformed the model when texture elements were sparser than this. This result required the inclusion of further templates in our model, selective for grids of various regular texture densities. By assuming a MAX operation across these noisy mechanisms the model also accounted for the increase in the slope of the psychometric function that occurred as texture density decreased. Thus, for the first time, mechanisms that are selective for texture density have been revealed at contrast detection threshold. We suggest that these mechanisms have a role to play in the perception of visual textures. PMID:27460430
The combined effect of mammographic texture and density on breast cancer risk: a cohort study.
Wanders, Johanna O P; van Gils, Carla H; Karssemeijer, Nico; Holland, Katharina; Kallenberg, Michiel; Peeters, Petra H M; Nielsen, Mads; Lillholm, Martin
2018-05-02
Texture patterns have been shown to improve breast cancer risk segregation in addition to area-based mammographic density. The additional value of texture pattern scores on top of volumetric mammographic density measures in a large screening cohort has never been studied. Volumetric mammographic density and texture pattern scores were assessed automatically for the first available digital mammography (DM) screening examination of 51,400 women (50-75 years of age) participating in the Dutch biennial breast cancer screening program between 2003 and 2011. The texture assessment method was developed in a previous study and validated in the current study. Breast cancer information was obtained from the screening registration system and through linkage with the Netherlands Cancer Registry. All screen-detected breast cancers diagnosed at the first available digital screening examination were excluded. During a median follow-up period of 4.2 (interquartile range (IQR) 2.0-6.2) years, 301 women were diagnosed with breast cancer. The associations between texture pattern scores, volumetric breast density measures and breast cancer risk were determined using Cox proportional hazard analyses. Discriminatory performance was assessed using c-indices. The median age of the women at the time of the first available digital mammography examination was 56 years (IQR 51-63). Texture pattern scores were positively associated with breast cancer risk (hazard ratio (HR) 3.16 (95% CI 2.16-4.62) (p value for trend <0.001), for quartile (Q) 4 compared to Q1). The c-index of texture was 0.61 (95% CI 0.57-0.64). Dense volume and percentage dense volume showed positive associations with breast cancer risk (HR 1.85 (95% CI 1.32-2.59) (p value for trend <0.001) and HR 2.17 (95% CI 1.51-3.12) (p value for trend <0.001), respectively, for Q4 compared to Q1). When adding texture measures to models with dense volume or percentage dense volume, c-indices increased from 0.56 (95% CI 0.53-0.59) to 0.62 (95% CI 0.58-0.65) (p < 0.001) and from 0.58 (95% CI 0.54-0.61) to 0.60 (95% CI 0.57-0.63) (p = 0.054), respectively. Deep-learning-based texture pattern scores, measured automatically on digital mammograms, are associated with breast cancer risk, independently of volumetric mammographic density, and augment the capacity to discriminate between future breast cancer and non-breast cancer cases.
Site preparation effects on soil bulk density and pine seedling growth
John J. Stransky
1981-01-01
Soil bulk density was sampled the first and third growing seasons after site preparation and pine planting on three clearcut pine-hardwood forest sites in eastern Texas. Bulk density was measured 10 cm below the surface of mineral soil using a surface moisture-density probe. Plots that had been KG-bladed and chopped had significanlty higher bulk density than those that...
NASA Astrophysics Data System (ADS)
Mettrop, I.; Cammeraat, L. H.; Verbeeten, E.
2009-04-01
Termites are important ecosystem-engineers in subtropical and tropical regions. The effect of termite activity affecting soil infiltration is well documented in the Sahelian region. Most studies find increased infiltration rates on surfaces that are affected by termite activity in comparison to crusted areas showing non-termite presence. Crusted agricultural fields in the Sanmatenga region in Burkina Faso with clear termite activity were compared to control fields without visual ground dwelling termite activity. Fine scale rainfall simulations were carried out on crusted termite affected and control sites. Furthermore soil moisture change, bulk density, soil organic matter as well as general soil characteristics were studied. The top soils in the study area were strongly crusted (structural crust) after the summer rainfall and harvest of millet. They have a loamy sand texture underlain by a shallow sandy loam Bt horizon. The initial soil moisture conditions were significantly higher on the termite plots when compared to control sites. It was found that the amount of runoff produced on the termite plots was significantly higher, and also the volumetric soil moisture content after the experiments was significantly lower if compared to the control plots. Bulk density showed no difference whereas soil organic matter was significantly higher under termite affected areas, in comparison to the control plots. Lab tests showed no significant difference in hydrophobic behavior of the topsoil and crust material. Micro and macro-structural properties of the topsoil did not differ significantly between the termite sites and the control sites. The texture of the top 5 cm of the soil was also found to be not significantly different. The infiltration results are contradictory to the general literature, which reports increased infiltration rates after prolonged termite activity although mostly under different initial conditions. The number of nest entrances was clearly higher in the termite areas, but apparently did not significantly affect infiltration. The increased soil organic matter contents in the termite affected areas however, are as expected from literature, but did not improve soil aggregation which would be expected given the importance of organic matter in soil aggregation in this type of soils. One of the explanations for the reduced infiltration rates might be that termites bring clay from the finer textured subsoil to the surface to build casts over the organic material on the surface (mainly millet stems). It is speculated that the excavated clay material could be involved in crust formation, only present is in the upper 0.5 cm of the soil crust, which is enough to block pores in the crust surface, hampering infiltration. The topsoil aggregates are slaking under the summer rainfall and the increase in fine textured material, excavated by the termites, could be incorporated into the crust and reduce infiltration. Furthermore this specific effect might also be related to the type of termite involved, as impacts from ecosystem engineers on their environment is highly dependent on the specific species involved.
Orbital selective spin-texture in a topological insulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Bahadur, E-mail: bahadursingh24@gmail.com; Prasad, R.
Three-dimensional topological insulators support a metallic non-trivial surface state with unique spin texture, where spin and momentum are locked perpendicular to each other. In this work, we investigate the orbital selective spin-texture associated with the topological surface states in Sb2Te{sub 3}, using the first principles calculations. Sb2Te{sub 3} is a strong topological insulator with a p-p type bulk band inversion at the Γ-point and supports a single topological metallic surface state with upper (lower) Dirac-cone has left (right) handed spin-texture. Here, we show that the topological surface state has an additional locking between the spin and orbitals, leading to anmore » orbital selective spin-texture. The out-of-plane orbitals (p{sub z} orbitals) have an isotropic orbital texture for both the Dirac cones with an associated left and right handed spin-texture for the upper and lower Dirac cones, respectively. In contrast, the in-planar orbital texture (p{sub x} and p{sub y} projections) is tangential for the upper Dirac-cone and is radial for the lower Dirac-cone surface state. The dominant in-planar orbital texture in both the Dirac cones lead to a right handed orbital-selective spin-texture.« less
NASA Technical Reports Server (NTRS)
Walker, D.; Powell, M. A.; Hays, J. F.; Lofgren, G. E.
1978-01-01
The textural features produced in Stannern, a non-porpyritic representative of the eucrite basaltic achondrite class of meteorite, at differing cooling rates and various degrees of initial superheating were studied. Textures produced from mildly superheated melts were found to be fasciculate rather than porphyritic as the result of the cosaturated bulk chemistry of Stannern. The qualitative type of texture apparently depends mainly on the degree of initial superheating, whereas cooling rate exerts a strong influence on the coarseness of texture. Increasing the degree of superheating produces textures from intergranular/subophitic to fasciculate/porphyritic. With initial superheating to 1200 deg C the transition to quasi-porphyritic is controlled by cooling rate, but the development of phenocrysts is merely an overprint on the fasciculate background texture of the groundmass. The suppression of fasciculate texture is completed by a decrease of the degree of initial superheating below the plagioclast entry and suppression of quasi-porphyritic texture is completed by decrease of the degree of initial superheating below pyroxene entry; these qualitative changes do not seem to be produced by changes of cooling rate. A grain size/cooling rate dependence has been used to deduce the cooling rate of fasciculate-textured Stannern clasts (10.1 to 100 deg C/hr).
Directional motion of impacting drops on dual-textured surfaces.
Vaikuntanathan, V; Sivakumar, D
2012-09-01
In this work, we analyze the directional movement of impacting liquid drops on dual-textured solid surfaces comprising two different surface morphologies: a textured surface and a smooth surface. The dynamics of liquid drops impacting onto the junction line between the two parts of the dual-textured surfaces is studied experimentally for varying drop impact velocity. The dual-textured surfaces used here featured a variation in their textures' geometrical parameters as well as their surface chemistry. Two types of liquid drop differing in their surface tension were used. The impact process develops a net horizontal drop velocity towards the higher-wettability surface portion and results in a bulk movement of the impacting drop liquid. The final distance moved by the impacting drop from the junction line decreases with increasing impacting drop Weber number We. A fully theoretical model, employing a balance of forces acting at the drop contact line as well as energy conservation, is formulated to determine the variation, with We, of net horizontal drop velocity and subsequent movement of the impacting drop on the dual-textured surfaces.
NASA Astrophysics Data System (ADS)
Chai, Linjiang; Wang, Tingting; Ren, Yi; Song, Bo; Guo, Ning; Chen, Liangyu
2018-07-01
In this work, a commercially pure Zr sheet with a typical bimodal basal texture was annealed in an α + β region and then subjected to different coolings (in water and furnace). Microstructures and textures of both the as-received and the heat-treated specimens were investigated by electron channeling contrast imaging and electron backscatter diffraction techniques. Results show that a duplex microstructure consisting of untransformed bulk α grains and twinned martensitic plates is produced in the water-cooled specimen, which possesses a weakened texture compared to the initial one. For the specimen cooled in furnace, however, a uniform microstructure fully comprised of coarser equiaxed grains with a strengthened texture is obtained. Analyses reveal that the rapid cooling in water could suppress variant selection behaviors during β → α transformation and allow α plates with scattered orientations to be nucleated inside β phases, contributing to the weakened texture. In contrast, during slow cooling in furnace, β boundaries would act as preferred nucleation sites of α embryos, resulting in a strong variant selection that accounts for the intensified texture.
NASA Astrophysics Data System (ADS)
Chai, Linjiang; Wang, Tingting; Ren, Yi; Song, Bo; Guo, Ning; Chen, Liangyu
2018-03-01
In this work, a commercially pure Zr sheet with a typical bimodal basal texture was annealed in an α + β region and then subjected to different coolings (in water and furnace). Microstructures and textures of both the as-received and the heat-treated specimens were investigated by electron channeling contrast imaging and electron backscatter diffraction techniques. Results show that a duplex microstructure consisting of untransformed bulk α grains and twinned martensitic plates is produced in the water-cooled specimen, which possesses a weakened texture compared to the initial one. For the specimen cooled in furnace, however, a uniform microstructure fully comprised of coarser equiaxed grains with a strengthened texture is obtained. Analyses reveal that the rapid cooling in water could suppress variant selection behaviors during β → α transformation and allow α plates with scattered orientations to be nucleated inside β phases, contributing to the weakened texture. In contrast, during slow cooling in furnace, β boundaries would act as preferred nucleation sites of α embryos, resulting in a strong variant selection that accounts for the intensified texture.
NASA Astrophysics Data System (ADS)
Chan, Hoi Lam
This work systematically investigates two of the most promising synthesis methods for producing nanostructured (NS) materials: surface mechanical attrition treatment (SMAT) and the electrodeposition (ED) process, and obtains the proper conditions for fabricating NS materials in bulk form and studies the properties of these materials. SMAT is one of the recently developed processes to form nano-crystallized surface layer and refine grains in the subsurface layers, by actuating a number of spherical projectiles to impact the sample surface. In this work, the detailed measurement of ball impinging velocity is presented, and the resulted strain-rate and strains are theoretically modeled. Consequently the relation between plastic strain history and the observed microstructures is established. The SMAT process with different numbers of balls is explored to manifest that an optimum number of balls exists for the highest efficiency. ED process is widely used in producing NS materials these days. In this work, the relationships among non-metallic substrates, current type, current densities, microstructure and crystallographic textures, and mechanical properties is presented in order to demonstrate the influences of the deposition parameters in obtaining nano-grains and nano-twins microstructures. This work also examines the availability of obtaining bulk NS materials with desirable ductility in production-scale conditions through understanding these relationships. In the last part of the study, the effect of SMAT on the electrodeposits is studied. Tensile properties, microstructures and textures of the SMATed electrodeposits have been examined. The results demonstrate that the NS matrix obtained by the ED process with sufficient thickness retains desirable ductility after employing SMAT technology, and the SMAT process further enhances the strength of the electrodeposits.
NASA Astrophysics Data System (ADS)
Yang, Lijun; Ding, Ye; Cheng, Bai; He, Jiangtao; Wang, Genwang; Wang, Yang
2018-03-01
This work puts forward femtosecond laser modification of micro-textured surface on bearing steel GCr15 in order to reduce frictional wear and enhance load capacity during its application. Multi pulses femtosecond laser ablation experiments are established for the confirmation of laser spot radius as well as single pulse threshold fluence and pulse incubation coefficient of bulk material. Analytical models are set up in combination with hydrodynamics lubrication theory. Corresponding simulations are carried out on to explore influences of surface and cross sectional morphology of textures on hydrodynamics lubrication effect based on Navier-Stokes (N-S) equation. Technological experiments focus on the impacts of femtosecond laser machining variables, like scanning times, scanning velocity, pulse frequency and scanning gap on morphology of grooves as well as realization of optimized textures proposed by simulations, mechanisms of which are analyzed from multiple perspectives. Results of unidirectional rotating friction tests suggest that spherical texture with depth-to-width ratio of 0.2 can significantly improve tribological properties at low loading and velocity condition comparing with un-textured and other textured surfaces, which also verifies the accuracy of simulations and feasibility of femtosecond laser in modification of micro-textured surface.
Power spectral ensity of markov texture fields
NASA Technical Reports Server (NTRS)
Shanmugan, K. S.; Holtzman, J. C.
1984-01-01
Texture is an important image characteristic. A variety of spatial domain techniques were proposed for extracting and utilizing textural features for segmenting and classifying images. for the most part, these spatial domain techniques are ad hos in nature. A markov random field model for image texture is discussed. A frequency domain description of image texture is derived in terms of the power spectral density. This model is used for designing optimum frequency domain filters for enhancing, restoring and segmenting images based on their textural properties.
Control of mechanical response of freestanding PbZr0.52Ti0.48O3 films through texture
NASA Astrophysics Data System (ADS)
Das, Debashish; Sanchez, Luz; Martin, Joel; Power, Brian; Isaacson, Steven; Polcawich, Ronald G.; Chasiotis, Ioannis
2016-09-01
The texture of piezoelectric lead zirconate titanate (PZT) thin films plays a key role in their mechanical response and linearity in the stress vs. strain behavior. The open circuit mechanical properties of PZT films with controlled texture varying from 100% (001) to 100% (111) were quantified with the aid of direct strain measurements from freestanding thin film specimens. The texture was tuned using a highly {111}-textured Pt substrate and excess-Pb in the PbTiO3 seed layer. The mechanical and ferroelastic properties of 500 nm thick PZT (52/48) films were found to be strongly dependent on grain orientation: the lowest elastic modulus of 90 ± 2 GPa corresponded to pure (001) texture, and its value increased linearly with the percentage of (111) texture reaching 122 ± 3 GPa for pure (111) texture. These elastic modulus values were between those computed for transversely isotropic textured PZT films by using the soft and hard bulk PZT compliance coefficients. Pure (001) texture exhibited maximum non-linearity and ferroelastic domain switching, contrary to pure (111) texture that exhibited more linearity and the least amount of switching. A micromechanics model was employed to calculate the strain due to domain switching. The model fitted well the non-linearities in the experimental stress-strain curves of (001) and (111) textured PZT films, predicting 17% and 10% of switched 90° domains that initially were favorably aligned with the applied stress in (001) and (111) textured PZT films, respectively.
Scanning electron microscopy of clays and clay minerals
Bohor, B.F.; Hughes, R.E.
1971-01-01
The scanning electron microscope (SEM) proves to be ideally suited for studying the configuration, texture, and fabric of clay samples. Growth mechanics of crystalline units—interpenetration and interlocking of crystallites, crystal habits, twinning, helical growth, and topotaxis—also are uniquely revealed by the SEM.Authigenic kaolins make up the bulk of the examples because their larger crystallite size, better crystallinity, and open texture make them more suited to examination by the SEM than most other clay mineral types.
NASA Astrophysics Data System (ADS)
Hassdorf, R.; Arend, M.; Felsch, W.
1995-04-01
The flexural modulus EF of pure and hydrided cerium-iron multilayer films has been measured at 300 K as a function of the modulation wavelength Λ using a vibrating-reed technique. EF is strongly correlated to the structure of the layered systems. In the pure Ce/Fe multilayers, the Fe sublayers show a structural transition from an amorphous to the bcc crystalline phase for a thickness near 20 Å. At this transition, the modulus EF is reduced by ~70%. The elastic softening occurs already, as a precursor to the structural change, for the crystalline Fe sublayers somewhat above the thickness for amorphous growth. This behavior reveals close similarities to the crystal-to-glass transition in bulk metallic alloys and compounds which seems to be driven by a shear instability of the crystal lattice. Hydrogenation leads to multilayers built of CeH~2/Fe. The Fe sublayers grow in the bcc structure above 10 Å, with a pronounced (110) or (111) texture for low- or room-temperature deposition. The flexural moduli are larger as compared to the nonhydrided multilayers and distinctly different for the two Fe textures. A simple calculation shows that the texture-related differences mainly result from the bulk properties of the Fe layers, but a contribution of interfacial effects cannot be excluded.
CFS-SMO based classification of breast density using multiple texture models.
Sharma, Vipul; Singh, Sukhwinder
2014-06-01
It is highly acknowledged in the medical profession that density of breast tissue is a major cause for the growth of breast cancer. Increased breast density was found to be linked with an increased risk of breast cancer growth, as high density makes it difficult for radiologists to see an abnormality which leads to false negative results. Therefore, there is need for the development of highly efficient techniques for breast tissue classification based on density. This paper presents a hybrid scheme for classification of fatty and dense mammograms using correlation-based feature selection (CFS) and sequential minimal optimization (SMO). In this work, texture analysis is done on a region of interest selected from the mammogram. Various texture models have been used to quantify the texture of parenchymal patterns of breast. To reduce the dimensionality and to identify the features which differentiate between breast tissue densities, CFS is used. Finally, classification is performed using SMO. The performance is evaluated using 322 images of mini-MIAS database. Highest accuracy of 96.46% is obtained for two-class problem (fatty and dense) using proposed approach. Performance of selected features by CFS is also evaluated by Naïve Bayes, Multilayer Perceptron, RBF Network, J48 and kNN classifier. The proposed CFS-SMO method outperforms all other classifiers giving a sensitivity of 100%. This makes it suitable to be taken as a second opinion in classifying breast tissue density.
Anorexia Nervosa: Analysis of Trabecular Texture with CT
Tabari, Azadeh; Torriani, Martin; Miller, Karen K.; Klibanski, Anne; Kalra, Mannudeep K.
2017-01-01
Purpose To determine indexes of skeletal integrity by using computed tomographic (CT) trabecular texture analysis of the lumbar spine in patients with anorexia nervosa and normal-weight control subjects and to determine body composition predictors of trabecular texture. Materials and Methods This cross-sectional study was approved by the institutional review board and compliant with HIPAA. Written informed consent was obtained. The study included 30 women with anorexia nervosa (mean age ± standard deviation, 26 years ± 6) and 30 normal-weight age-matched women (control group). All participants underwent low-dose single-section quantitative CT of the L4 vertebral body with use of a calibration phantom. Trabecular texture analysis was performed by using software. Skewness (asymmetry of gray-level pixel distribution), kurtosis (pointiness of pixel distribution), entropy (inhomogeneity of pixel distribution), and mean value of positive pixels (MPP) were assessed. Bone mineral density and abdominal fat and paraspinal muscle areas were quantified with quantitative CT. Women with anorexia nervosa and normal-weight control subjects were compared by using the Student t test. Linear regression analyses were performed to determine associations between trabecular texture and body composition. Results Women with anorexia nervosa had higher skewness and kurtosis, lower MPP (P < .001), and a trend toward lower entropy (P = .07) compared with control subjects. Bone mineral density, abdominal fat area, and paraspinal muscle area were inversely associated with skewness and kurtosis and positively associated with MPP and entropy. Texture parameters, but not bone mineral density, were associated with lowest lifetime weight and duration of amenorrhea in anorexia nervosa. Conclusion Patients with anorexia nervosa had increased skewness and kurtosis and decreased entropy and MPP compared with normal-weight control subjects. These parameters were associated with lowest lifetime weight and duration of amenorrhea, but there were no such associations with bone mineral density. These findings suggest that trabecular texture analysis might contribute information about bone health in anorexia nervosa that is independent of that provided with bone mineral density. © RSNA, 2016 PMID:27797678
Anorexia Nervosa: Analysis of Trabecular Texture with CT.
Tabari, Azadeh; Torriani, Martin; Miller, Karen K; Klibanski, Anne; Kalra, Mannudeep K; Bredella, Miriam A
2017-04-01
Purpose To determine indexes of skeletal integrity by using computed tomographic (CT) trabecular texture analysis of the lumbar spine in patients with anorexia nervosa and normal-weight control subjects and to determine body composition predictors of trabecular texture. Materials and Methods This cross-sectional study was approved by the institutional review board and compliant with HIPAA. Written informed consent was obtained. The study included 30 women with anorexia nervosa (mean age ± standard deviation, 26 years ± 6) and 30 normal-weight age-matched women (control group). All participants underwent low-dose single-section quantitative CT of the L4 vertebral body with use of a calibration phantom. Trabecular texture analysis was performed by using software. Skewness (asymmetry of gray-level pixel distribution), kurtosis (pointiness of pixel distribution), entropy (inhomogeneity of pixel distribution), and mean value of positive pixels (MPP) were assessed. Bone mineral density and abdominal fat and paraspinal muscle areas were quantified with quantitative CT. Women with anorexia nervosa and normal-weight control subjects were compared by using the Student t test. Linear regression analyses were performed to determine associations between trabecular texture and body composition. Results Women with anorexia nervosa had higher skewness and kurtosis, lower MPP (P < .001), and a trend toward lower entropy (P = .07) compared with control subjects. Bone mineral density, abdominal fat area, and paraspinal muscle area were inversely associated with skewness and kurtosis and positively associated with MPP and entropy. Texture parameters, but not bone mineral density, were associated with lowest lifetime weight and duration of amenorrhea in anorexia nervosa. Conclusion Patients with anorexia nervosa had increased skewness and kurtosis and decreased entropy and MPP compared with normal-weight control subjects. These parameters were associated with lowest lifetime weight and duration of amenorrhea, but there were no such associations with bone mineral density. These findings suggest that trabecular texture analysis might contribute information about bone health in anorexia nervosa that is independent of that provided with bone mineral density. © RSNA, 2016.
Soil bulk density changes caused by mechanized harvesting: A case study in central Appalachia
Jingxin Wang; Chris B. LeDoux; Pam Edwards; Mark Jones; Mark Jones
2005-01-01
A mechanized harvesting system consisting of a feller-buncher and a grapple skidder was examined to quantify soil bulk density changes in a central Appalachian hardwood forest site. Soil bulk density was measured using a nuclear gauge pre-harvest and post-harvest systematically across the harvest unit and on transects across skid trails. Bulk density also was measured...
Formation and magnetic properties of the L10 phase in bulk, powder and hot compacted Mn-Ga alloys
NASA Astrophysics Data System (ADS)
Mix, T.; Müller, K.-H.; Schultz, L.; Woodcock, T. G.
2015-10-01
The formation and stability of the L10 phase in Mn-Ga binary alloys with compositions in the range 50-75 at% Mn (in steps of 5 at%) has been studied. Of these, single-phase L10 structure was successfully produced in the 55, 60 and 65 at% Mn alloys by annealing the high temperature phases, which had been retained to room temperature following arc melting. Further annealing and thermal analysis were used to determine the phase transformation temperatures in the alloys and the results were used to guide further processing. The saturation magnetisation, Ms, and the anisotropy field, Ha, were determined in applied fields up to 14 T. For Mn55Ga45, μ0Ms=0.807 T and μ0Ha=4.4 T were observed. Mechanically milled Mn55Ga45 powder had coercivity of μ0Hc=0.393 T, which was a twentyfold increase compared to the bulk material but the magnetisation was reduced (cf. powder: μ0M5 T=0.576 T, bulk: μ0M5 T=0.780 T). Annealing the powder at 400 °C led to recovery of the magnetisation but reduced the coercivity, which was still 10 times as high as the bulk value. A degree of texture of 0.45 was achieved by magnetic alignment of the powder particles, leading to a remanence of 0.526 T. Furthermore, isotropic hot compacts of powders were produced with packing density from 83% to 99%, in which the improved coercivity of the powders was partially retained.
Changes on aggregation in mine waste amended with biochar and marble mud
NASA Astrophysics Data System (ADS)
Ángeles Muñoz, María; Guzmán, Jose; Zornoza, Raúl; Moreno-Barriga, Fabián; Faz, Ángel; Lal, Rattan
2016-04-01
Mining activities have produced large amounts of wastes over centuries accumulated in tailing ponds in Southeast Spain. Applications of biochar may have a high potential for reclamation of degraded soils. Distribution, size and stability of aggregates are important indices of soil physical quality. However, research data on aggregation processes at amended mining tailings with biochar are scanty. Therefore, the aim of this study was to determine the effects of seven different treatments involving biochar and marble mud (MM) on the aggregation in mine waste (MW). Seven different treatments were tested after 90 days of incubation in the laboratory. These treatments were the mix of MW and: biochar from solid pig manure (PM), biochar from cotton crop residues (CR), biochar from municipal solid waste (MSW), marble mud (MM), PM+MM, CR+MM, MSW+MM and control without amendment. High sand percentages were identified in the MW. The biochars made from wastes (PM, CR, MSW) were obtained through pyrolysis of feedstocks. The water stability of soil aggregates was studied. The data on total aggregation were corrected for the primary particles considering the sandy texture of the MW. Moreover, partial aggregation was determined for each fraction and the mean weight diameter (MWD) of aggregates was computed. Soil bulk density and total porosity were also determined. No significant differences were observed in total aggregation and MWD among treatments including the control. For the size range of >4.75 mm, there were significant differences in aggregates > 4.75 mm between CR+MM in comparison with that for CT. There were also significant differences between MSW and PM+MM for the 1-0.425 mm fraction, and between CT and MM and CR for 0.425-0.162 mm aggregate size fractions. Therefore, CR-derived biochar applied with MM enhanced stability of macro-aggregates. Furthermore, soil bulk density was also the lowest bulk density and total porosity the highest for the CR-derived biochar treatment because macro aggregate stability is largely responsible for macro-porosity. The decrease in bulk density may be an indication of a positive effect for mine waste reclamation. Conversely, no differences were observed among treatments in micro-aggregate stability. Apparently, low organic matter contents in MW needed to be co-amended with labile organic amendments to effectively increase soil aggregation. Furthermore, the presence of Fe hydroxides could also increase the micro-aggregation. Additional research is needed to understand the mechanisms of mine soil reclamation. Acknowledgement : This work has been funded by Fundación Séneca (Agency of Science and Technology of the Region of Murcia, Spain
Obadina, Adewale O; Oyewole, Olusola B; Williams, Oluwasolabomi E
2013-01-01
This study was carried out to investigate and improve the traditional processing method and nutritional quality of the traditional cassava snack (Ajogun). Cassava root (Manihot esculenta Crantz L.) of TME 419 variety was processed into mash (40% moisture content). The cassava mash was mixed into different blends to produce fried traditional “Ajogun”, fried and baked extrudates (modified Ajogun) as snacks. These products were analyzed to determine the proximate composition including carbohydrate, fat, protein, fiber, ash, and moisture contents and functional properties such as bulk density. The results obtained for the moisture, fat, protein, and ash contents showed significant difference (P < 0.05) between the control sample and the extrudates. However, there was no significant difference (P > 0.05) in the carbohydrate and fiber contents between the three samples. There was no significant difference (P > 0.05) in the bulk density of the snacks. Also, sensory evaluation was carried out on the cassava-based snacks using the 9-point hedonic scale to determine the degree of acceptability. Results obtained showed significant difference (P < 0.05) between the extrudates and control sample in terms of appearance, taste, flavor, color, aroma, texture, and overall acceptability. The highest acceptability level of the product was at 8.04 for the control sample (traditional Ajogun). This study has shown that “Ajogun”, which is a lesser known cassava product, is rich in protein and fat. PMID:24804039
Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.; ...
2015-08-10
Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pitmore » densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.
Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pitmore » densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.« less
Wetzel, David J; Malone, Marvin A; Haasch, Richard T; Meng, Yifei; Vieker, Henning; Hahn, Nathan T; Gölzhäuser, Armin; Zuo, Jian-Min; Zavadil, Kevin R; Gewirth, Andrew A; Nuzzo, Ralph G
2015-08-26
Although rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pit densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. The passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.
Md Nor, Norfezah; Carr, Alistair; Hardacre, Allan; Brennan, Charles S.
2013-01-01
Pumpkin products confer natural sweetness, desirable flavours and β-carotene, a vitamin A precursor when added as ingredients to extruded snacks. Therefore, a potential use for dried pumpkin flour is as an ingredient in ready-to-eat (RTE) snack foods. Growth in this market has driven food manufacturers to produce a variety of new high value snack foods incorporating diverse ingredients to enhance the appearance and nutritional properties of these foods. Ready-to-eat snacks were made by extruding corn grits with 5%, 10%, 15% and 20% of pumpkin flour. Snacks made from 100% corn grits were used as control products for this work. The effect of formulation and screw speeds of 250 rpm and 350 rpm on torque and specific mechanical energy (SME, kWh/kg), physical characteristics (expansion ratio, bulk density, true density and hardness) and the microstructure of the snacks were studied. Increasing the screw speed resulted in a decrease of torque for all formulations. When pumpkin flour was added the specific mechanical energy (SME) decreased by approximately 45%. Increasing the percentage of pumpkin flour at the higher screw speed resulted in a harder texture for the extruded products. X-ray tomography of pumpkin flour-corn grit snacks showed that increased levels of pumpkin flour decreased both the bubble area and bubble size. However, no significant differences (p > 0.05) in bubble wall thickness were measured. By understanding the conditions during extrusion, desirable nutritional characteristics can be incorporated while maximizing expansion to make a product with low bulk density, a fine bubble structure and acceptable organoleptic properties. PMID:28239106
Nor, Norfezah Md; Carr, Alistair; Hardacre, Allan; Brennan, Charles S
2013-05-14
Pumpkin products confer natural sweetness, desirable flavours and β-carotene, a vitamin A precursor when added as ingredients to extruded snacks. Therefore, a potential use for dried pumpkin flour is as an ingredient in ready-to-eat (RTE) snack foods. Growth in this market has driven food manufacturers to produce a variety of new high value snack foods incorporating diverse ingredients to enhance the appearance and nutritional properties of these foods. Ready-to-eat snacks were made by extruding corn grits with 5%, 10%, 15% and 20% of pumpkin flour. Snacks made from 100% corn grits were used as control products for this work. The effect of formulation and screw speeds of 250 rpm and 350 rpm on torque and specific mechanical energy (SME, kWh/kg), physical characteristics (expansion ratio, bulk density, true density and hardness) and the microstructure of the snacks were studied. Increasing the screw speed resulted in a decrease of torque for all formulations. When pumpkin flour was added the specific mechanical energy (SME) decreased by approximately 45%. Increasing the percentage of pumpkin flour at the higher screw speed resulted in a harder texture for the extruded products. X-ray tomography of pumpkin flour-corn grit snacks showed that increased levels of pumpkin flour decreased both the bubble area and bubble size. However, no significant differences ( p > 0.05) in bubble wall thickness were measured. By understanding the conditions during extrusion, desirable nutritional characteristics can be incorporated while maximizing expansion to make a product with low bulk density, a fine bubble structure and acceptable organoleptic properties.
Using the Opposition Effect in Remotely Sensed Data to Assist in the Retrieval of Bulk Density
NASA Astrophysics Data System (ADS)
Ambeau, Brittany L.
Bulk density is an important geophysical property that impacts the mobility of military vehicles and personnel. Accurate retrieval of bulk density from remotely sensed data is, therefore, needed to estimate the mobility on "off-road" terrain. For a particulate surface, the functional form of the opposition effect can provide valuable information about composition and structure. In this research, we examine the relationship between bulk density and angular width of the opposition effect for a controlled set of laboratory experiments. Given a sample with a known bulk density, we collect reflectance measurements on a spherical grid for various illumination and view geometries -- increasing the amount of reflectance measurements collected at small phase angles near the opposition direction. Bulk densities are varied using a custom-made pluviation device, samples are measured using the Goniometer of the Rochester Institute of Technology-Two (GRIT-T), and observations are fit to the Hapke model using a grid-search method. The method that is selected allows for the direct estimation of five parameters: the single-scattering albedo, the amplitude of the opposition effect, the angular width of the opposition effect, and the two parameters that describe the single-particle phase function. As a test of the Hapke model, the retrieved bulk densities are compared to the known bulk densities. Results show that with an increase in the availability of multi-angular reflectance measurements, the prospects for retrieving the spatial distribution of bulk density from satellite and airborne sensors are imminent.
Cooling of hot bubbles by surface texture during the boiling crisis
NASA Astrophysics Data System (ADS)
Dhillon, Navdeep; Buongiorno, Jacopo; Varanasi, Kripa
2015-11-01
We report the existence of maxima in critical heat flux (CHF) enhancement for pool boiling on textured hydrophilic surfaces and reveal the interaction mechanism between bubbles and surface texture that governs the boiling crisis phenomenon. Boiling is a process of fundamental importance in many engineering and industrial applications but the maximum heat flux that can be absorbed by the boiling liquid (or CHF) is limited by the boiling crisis. Enhancing the CHF of industrial boilers by surface texturing can lead to substantial energy savings and reduction in greenhouse gas emissions on a global scale. However, the fundamental mechanisms behind this enhancement are not well understood, with some previous studies indicating that CHF should increase monotonically with increasing texture density. However, using pool boiling experiments on a parametrically designed set of plain and nano-textured micropillar surfaces, we show that there is an optimum intermediate texture density that maximizes CHF and further that the length scale of this texture is of fundamental significance. Using imbibition experiments and high-speed optical and infrared imaging, we reveal the fundamental mechanisms governing the CHF enhancement maxima in boiling crisis. We acknowledge funding from the Chevron corporation.
Ultrasonic imaging of textured alumina
NASA Technical Reports Server (NTRS)
Stang, David B.; Salem, Jonathan A.; Generazio, Edward R.
1989-01-01
Ultrasonic images representing the bulk attenuation and velocity of a set of alumina samples were obtained by a pulse-echo contact scanning technique. The samples were taken from larger bodies that were chemically similar but were processed by extrusion or isostatic processing. The crack growth resistance and fracture toughness of the larger bodies were found to vary with processing method and test orientation. The results presented here demonstrate that differences in texture that contribute to variations in structural performance can be revealed by analytic ultrasonic techniques.
Evaporation in the young solar nebula as the origin of 'just-right' melting of chondrules
Cohen; Hewins; Yu
2000-08-10
Chondrules are millimetre-sized, solidified melt spherules formed in the solar nebula by an early widespread heating event of uncertain nature. They were accreted into chondritic asteroids, which formed about 4.56 billion years ago and have not experienced melting or differentiation since that time. Chondrules have diverse chemical compositions, corresponding to liquidus temperatures in the range 1,350-1,800 degrees C. Most chondrules, however, show porphyritic textures (consisting of large crystals in a distinctly finer grained or glassy matrix), indicative of melting within the narrow range 0-50 degrees C below the liquidus. This suggests an unusual heating mechanism for chondrule precursors, which would raise each individual chondrule to just the right temperature (particular to individual bulk composition) in order to form porphyritic textures. Here we report the results of isothermal melting of a chondritic composition at nebular pressures. Our results suggest that evaporation stabilizes porphyritic textures over a wider range of temperatures below the liquidus (about 200 degrees C) than previously believed, thus removing the need for individual chondrule temperature buffering. In addition, we show that evaporation explains many chondrule bulk and mineral compositions that have hitherto been difficult to understand.
Critical heat flux maxima during boiling crisis on textured surfaces
Dhillon, Navdeep Singh; Buongiorno, Jacopo; Varanasi, Kripa K.
2015-01-01
Enhancing the critical heat flux (CHF) of industrial boilers by surface texturing can lead to substantial energy savings and global reduction in greenhouse gas emissions, but fundamentally this phenomenon is not well understood. Prior studies on boiling crisis indicate that CHF monotonically increases with increasing texture density. Here we report on the existence of maxima in CHF enhancement at intermediate texture density using measurements on parametrically designed plain and nano-textured micropillar surfaces. Using high-speed optical and infrared imaging, we study the dynamics of dry spot heating and rewetting phenomena and reveal that the dry spot heating timescale is of the same order as that of the gravity and liquid imbibition-induced dry spot rewetting timescale. Based on these insights, we develop a coupled thermal-hydraulic model that relates CHF enhancement to rewetting of a hot dry spot on the boiling surface, thereby revealing the mechanism governing the hitherto unknown CHF enhancement maxima. PMID:26346098
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Li; Ungár, Tamás; Toth, Laszlo S.
The evolution of texture, grain size, grain shape, dislocation and twin density has been determined by synchrotron X-ray diffraction and line profile analysis in a nanocrystalline Ni- Fe alloy after cold rolling along different directions related to the initial fiber and the long axis of grains. The texture evolution has been simulated by the Taylor-type relaxed constraints viscoplastic polycrystal model. The simulations were based on the activity of partial dislocations in correlation with the experimental results of dislocation density determination. The concept of stress-induced shear-coupling is supported and strengthened by both the texture simulations and the experimentally determined evolution ofmore » the microstructure parameters. Grain-growth and texture evolution are shown to proceed by the shear-coupling mechanism supported by dislocation activity as long as the grain size is not smaller than about 20 nm.« less
NASA Astrophysics Data System (ADS)
Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang
2017-10-01
In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.
Effects of shrub encroachment on soil organic carbon in global grasslands.
Li, He; Shen, Haihua; Chen, Leiyi; Liu, Taoyu; Hu, Huifeng; Zhao, Xia; Zhou, Luhong; Zhang, Pujin; Fang, Jingyun
2016-07-08
This study aimed to evaluate the effect of shrub encroachment on soil organic carbon (SOC) content at broad scales and its controls. We conducted a meta-analysis using paired control data of shrub-encroached grassland (SEG) vs. non-SEG collected from 142 studies worldwide. SOC contents (0-50 cm) were altered by shrub encroachment, with changes ranging from -50% to + 300%, with an effect size of 0.15 (p < 0.01). The SOC contents increased in semi-arid and humid regions, and showed a greater rate of increase in grassland encroached by leguminous shrubs than by non-legumes. The SOC content decreased in silty and clay soils but increased in sand, sandy loam and sandy clay loam. The SOC content increment was significantly positively correlated with precipitation and temperature as well as with soil bulk density but significantly negatively correlated with soil total nitrogen. We conclude the main effects of shrub encroachment would be to increase topsoil organic carbon content. As structural equation model revealed, soils properties seem to be the primary factors responsible for the extent of the changes, coarse textured soils having a greater capacity than fine textured soils to increase the SOC content. This increased effect appears to be secondarily enhanced by climate and plant elements.
NASA Astrophysics Data System (ADS)
Kim, Jae Gon; Lee, Gyoo Ho; Lee, Jin-Soo; Chon, Chul-Min; Kim, Tack Hyun; Ha, Kyoochul
2006-02-01
We examined the infiltration pattern of water in a regolith-bedrock profile consisting of two overburdens (OB1 and OB2), a buried rice paddy soil (PS), two texturally distinctive weathered materials (WM1 and WM2) and a fractured sedimentary rock (BR), using a Brilliant Blue FCF dye tracer. A black-coloured coating in conducting fractures in WM1, WM2 and BR was analysed by X-ray diffraction and scanning electron microscopy. The dye tracer penetrated to greater than 2 m depth in the profile. The macropore flow and saturated interflow were the major infiltration patterns in the profile. Macropore flow and saturated interflow were observed along fractures in WM1, WM2 and BR and at the dipping interfaces of PS-WM1, PS-WM2 and PS-BR respectively. Heterogeneous matrix flow occurred in upper overburden (OB1) and PS. Compared with OB1, the coarser textured OB2 acted as a physical barrier for vertical flow of water. The PS with low bulk density and many fine roots was another major conducting route of water in the profile. Manganese oxide and iron oxide were positively identified in the black coating material and had low crystallinity and high surface area, indicating their high reactivity with conducting contaminants.
Meteoroid Bulk Density and Ceplecha Types
NASA Technical Reports Server (NTRS)
Blaauw, R. C.; Moser, D. E.; Moorhead, A. V.
2017-01-01
The determination of asteroid bulk density is an important aspect of Near Earth Object (NEO) characterization. A fraction of meteoroids originate from asteroids (including some NEOs), thus in lieu of mutual perturbations, satellites, or expensive spacecraft missions, a study of meteoroid bulk densities can potentially provide useful insights into the densities of NEOs and PHOs (Potentially Hazardous Objects). Meteoroid bulk density is still inherently difficult to measure, and is most often determined by modeling the ablation of the meteoroid. One approach towards determining a meteoroid density distribution entails using a more easily measured proxy for the densities, then calibrating the proxy with known densities from meteorite falls, ablation modelling, and other sources. An obvious proxy choice is the Ceplecha type, KB (Ceplecha, 1958), which is thought to indicate the strength of a meteoroid and often correlated to different bulk densities in literature. KB is calculated using the air density at the beginning height of the meteor, the initial velocity, and the zenith angle of the radiant; quantities more readily determined than meteoroid bulk density itself. Numerical values of K(sub B) are sorted into groups (A, B, C, etc.), which have been matched to meteorite falls or meteor showers with known composition such as the porous Draconids. An extensive survey was conducted to establish the strength of the relationship between bulk density and K(sub B), specifically looking at those that additionally determined K(sub B) for the meteors. In examining the modeling of high-resolution meteor data from Kikwaya et al. (2011), the correlation between K(sub B) and bulk density was not as strong as hoped. However, a distinct split by dynamical type was seen with Jovian Tisserand parameter (T(sub J)), with meteoroids from Halley Type comets (T(sub J) < 2) exhibiting much lower bulk densities than those originating from Jupiter Family comets and asteroids (T(sub J) > 2). Therefore, this work indicates that the dynamical classification of a meteoroid is a better indicator of the density than the strength proxy, a somewhat surprising result.
NASA Astrophysics Data System (ADS)
Nadammal, Naresh; Kailas, Satish V.; Szpunar, Jerzy; Suwas, Satyam
2015-05-01
Friction-stir processing (FSP) has been proven as a successful method for the grain refinement of high-strength aluminum alloys. The most important attributes of this process are the fine-grain microstructure and characteristic texture, which impart suitable properties in the as-processed material. In the current work, FSP of the precipitation-hardenable aluminum alloy 2219 has been carried out and the consequent evolution of microstructure and texture has been studied. The as-processed materials were characterized using electron back-scattered diffraction, x-ray diffraction, and electron probe microanalysis. Onion-ring formation was observed in the nugget zone, which has been found to be related to the precipitation response and crystallographic texture of the alloy. Texture development in the alloy has been attributed to the combined effect of shear deformation and dynamic recrystallization. The texture was found heterogeneous even within the nugget zone. A microtexture analysis revealed the dominance of shear texture components, with C component at the top of nugget zone and the B and A2* components in the middle and bottom. The bulk texture measurement in the nugget zone revealed a dominant C component. The development of a weaker texture along with the presence of some large particles in the nugget zone indicates particle-stimulated nucleation as the dominant nucleation mechanism during FSP. Grain growth follows the Burke and Turnbull mechanism and geometrical coalescence.
Associating Specific Materials with Topological Insulation Behavior
NASA Astrophysics Data System (ADS)
Zhang, Xiuwen
2014-03-01
The first-principles (a) total-energy/stability calculations combined with (b) electronic structure calculations of band inversion, spin-polarization and topological invariants (Z2) has led to the design and prediction of specific materials that are topological insulators in this study. We classify bulk materials into four types of band-inversion behaviors (TI-1, TI-2, BI-3, BI-4), based on the number of band inversions and their distributions on various time reversal invariant k points. Depending on the inversion type in bulk, the corresponding surface states have different protections e.g., protected by time reversal symmetry (in TI-1 materials), spatial symmetry (in TI-2), or not protected (in BI-3, BI-4). Subject 1 Discovery of new TI by screening materials for a Z2 metric: Such high-throughput search in the framework of Inverse Design methodology predicts a few previously undocumented materials that are TI-1 in their ground state crystal structure. We also predict dozens of materials that are TI-1 however in structures that are not ground states (e.g. perovskite structure of II-Bi-O3). Subject 2 Design Principle to increase the gap of TI-1 materials: In HgTe-like cubic topological materials, the insulating gap is zero since the spin-orbit splitting is positive and so a 4-fold half-filled p-like band is near the Fermi level. By design of hybridization of d-orbitals into the p-like bands, one can create negative spin-orbit splitting and so a finite insulating gap. Subject 3 Unconventional spin textures of TI surface states: Despite the fact that one of our predicted TI-1 KBaBi has inversion symmetry in the bulk-a fact that that would preclude bulk spin polarization-we find a Dresselhaus-like spin texture with non-helical spin texture. This originates from the local spin polarization, anchored on the atomic sites with inversion asymmetric point groups, that is compensated due to global inversion symmetry in bulk. In collaboration with: Jun-Wei Luo, Qihang Liu, Julien Vidal, and Alex Zunger, and supported in part by National Science Foundation DMREF. X.Z. acknowledges the administrative support of REMRSEC at Colorado School of Mines, Golden, Colorado.
Soil Bulk Density by Soil Type, Land Use and Data Source: Putting the Error in SOC Estimates
NASA Astrophysics Data System (ADS)
Wills, S. A.; Rossi, A.; Loecke, T.; Ramcharan, A. M.; Roecker, S.; Mishra, U.; Waltman, S.; Nave, L. E.; Williams, C. O.; Beaudette, D.; Libohova, Z.; Vasilas, L.
2017-12-01
An important part of SOC stock and pool assessment is the assessment, estimation, and application of bulk density estimates. The concept of bulk density is relatively simple (the mass of soil in a given volume), the specifics Bulk density can be difficult to measure in soils due to logistical and methodological constraints. While many estimates of SOC pools use legacy data in their estimates, few concerted efforts have been made to assess the process used to convert laboratory carbon concentration measurements and bulk density collection into volumetrically based SOC estimates. The methodologies used are particularly sensitive in wetlands and organic soils with high amounts of carbon and very low bulk densities. We will present an analysis across four database measurements: NCSS - the National Cooperative Soil Survey Characterization dataset, RaCA - the Rapid Carbon Assessment sample dataset, NWCA - the National Wetland Condition Assessment, and ISCN - the International soil Carbon Network. The relationship between bulk density and soil organic carbon will be evaluated by dataset and land use/land cover information. Prediction methods (both regression and machine learning) will be compared and contrasted across datasets and available input information. The assessment and application of bulk density, including modeling, aggregation and error propagation will be evaluated. Finally, recommendations will be made about both the use of new data in soil survey products (such as SSURGO) and the use of that information as legacy data in SOC pool estimates.
Utility of texture analysis for quantifying hepatic fibrosis on proton density MRI.
Yu, HeiShun; Buch, Karen; Li, Baojun; O'Brien, Michael; Soto, Jorge; Jara, Hernan; Anderson, Stephan W
2015-11-01
To evaluate the potential utility of texture analysis of proton density maps for quantifying hepatic fibrosis in a murine model of hepatic fibrosis. Following Institutional Animal Care and Use Committee (IACUC) approval, a dietary model of hepatic fibrosis was used and 15 ex vivo murine liver tissues were examined. All images were acquired using a 30 mm bore 11.7T magnetic resonance imaging (MRI) scanner with a multiecho spin-echo sequence. A texture analysis was employed extracting multiple texture features including histogram-based, gray-level co-occurrence matrix-based (GLCM), gray-level run-length-based features (GLRL), gray level gradient matrix (GLGM), and Laws' features. Texture features were correlated with histopathologic and digital image analysis of hepatic fibrosis. Histogram features demonstrated very weak to moderate correlations (r = -0.29 to 0.51) with hepatic fibrosis. GLCM features correlation and contrast demonstrated moderate-to-strong correlations (r = -0.71 and 0.59, respectively) with hepatic fibrosis. Moderate correlations were seen between hepatic fibrosis and the GLRL feature short run low gray-level emphasis (SRLGE) (r = -0. 51). GLGM features demonstrate very weak to weak correlations with hepatic fibrosis (r = -0.27 to 0.09). Moderate correlations were seen between hepatic fibrosis and Laws' features L6 and L7 (r = 0.58). This study demonstrates the utility of texture analysis applied to proton density MRI in a murine liver fibrosis model and validates the potential utility of texture-based features for the noninvasive, quantitative assessment of hepatic fibrosis. © 2015 Wiley Periodicals, Inc.
Cayuela, Maria Luz; Sánchez-Monedero, Miguel A; Roig, Asunción
2010-06-01
Two-phase olive mill waste (TPOMW) is a semisolid sludge generated by the olive oil industry. Its recycling as a soil amendment, either unprocessed or composted, is being promoted as a beneficial agricultural practice in the Mediterranean area. One of the major difficulties when composting TPOMW is the compaction of the material due to its dough-like texture, which leads to an inadequate aeration. For this reason, the addition of bulking agents is particularly important to attain a proper composting process. In this study we followed the evolution of two composting mixtures (A and B) prepared by mixing equal amounts of TPOMW and sheep litter (SL) (in a dry weight basis). In pile B grape stalks (GS) were added (10% dry weight) as bulking agent to study their effect on the development of the composting process and the final compost quality. The incorporation of grape stalks to the composting mixture changed the organic matter (OM) degradation dynamics and notably reduced the total amount of lixiviates. The evolution of several maturation indices (C/N, germination index, water soluble carbon, humification indices, C/N in the leachates) showed a faster and improved composting process when GS were added. Moreover, chemical (NH4+, NO3(-), cation exchange capacity, macro and micronutrients, heavy metals) and physical properties (bulk and real densities, air content, total water holding capacity, porosity) of the final composts were analysed and confirmed the superior quality of the compost where GS were added.
Manicouagan impact melt, Quebec. I - Stratigraphy, petrology, and chemistry
NASA Technical Reports Server (NTRS)
Floran, R. J.; Grieve, R. A. F.; Dence, M. R.; Phinney, W. C.; Warner, J. L.; Blanchard, D. P.; Simonds, C. H.
1978-01-01
A sheet of clast-laden impact melt 230 m thick and 55 km in diameter forms an annular plateau surrounding an uplift of shocked anorthosite within the moderately eroded Manicouagan structure. Three gradational units of the melt sheet are characterized with respect to grain size, inclusions, texture, and mineralogy. The melt rocks as a group are chemically homogeneous with a bulk composition similar to that of latite and with no statistically significant regional chemical variations. The melt is not completely chemically homogeneous as a local mafic variant represented by two samples with poikilitic texture was found. These poikilitic rocks texturally resemble some Apollo 17 impact melt rocks and are inferred to have had a similar origin and thermal history.
Pérez-Hernández, Oscar; Giesler, Loren J.
2014-01-01
Soil texture has been commonly associated with the population density of Heterodera glycines (soybean cyst nematode: SCN), but such an association has been mainly described in terms of textural classes. In this study, multivariate analysis and a generalized linear modeling approach were used to elucidate the quantitative relationship of soil texture with the observed SCN population density reduction after annual corn rotation in Nebraska. Forty-five commercial production fields were sampled in 2009, 2010, and 2011 and SCN population density (eggs/100 cm3 of soil) for each field was determined before (Pi) and after (Pf) annual corn rotation from ten 3 × 3-m sampling grids. Principal components analysis revealed that, compared with silt and clay, sand had a stronger association with SCN Pi and Pf. Cluster analysis using the average linkage method and confirmed through 1,000 bootstrap simulations identified two groups: one corresponding to predominant silt-and-clay fields and other to sand-predominant fields. This grouping suggested that SCN relative percent population decline was higher in the sandy than in the silt-and-clay predominant group. However, when groups were compared for their SCN population density reduction using Pf as the response, Pi as a covariate, and incorporating the year and field variability, a negative binomial generalized linear model indicated that the SCN population density reduction was not statistically different between the sand-predominant field group and the silt-and-clay predominant group. PMID:24987160
NASA Astrophysics Data System (ADS)
Zaki, M. K.; Komariah; Pujiasmanto, B.; Noda, K.
2018-03-01
Water deficit is a problem on rainfed maize production but can be solved by proper land management. The objective of the study to determine the soil physical properties and maize yield affected by land management to adapt to drought. The experimental design was a randomized complete block using 5 treatments with 4 repetitions, including: (i) Control (KO), (ii) Rice Straw Mulched (MC), (iii) Compost Fertilizer (CF), (iv) In-Organic Fertilizer (AF), (v) Legume Cover crop (CC). Soil physical and maize growth properties namely soil moisture, soil texture, soil bulk density, plant height, biomass, and yield were investigated. The results showed that composting land increased soil water availability and provided nutrient to crops and thus increase soil physical properties, maize growth and yield. Although inorganic fertilizer also increased plant growth and yield, but it did not improve soil physical properties.
Sulfur in vacuum - Sublimation effects on frozen melts, and applications to Io's surface and torus
NASA Astrophysics Data System (ADS)
Nash, D. B.
1987-10-01
The author has found from laboratory experiments that vacuum sublimation has a profound effect on the molecular composition, microtexture, bulk density (porosity), and the UV/visible spectral reflectance of the surface of solid sulfur samples, both when the sulfur is in the form of frozen or quenched melts and as laboratory-grade sulfur powder. These sublimation effects produce a unique surface material, the understanding of which may have important implications for deciphering the many enigmatic optical and textural properties of the surface of Jupiter's satellite Io. This planetary body is thought to have a surface greatly enriched in volcanically produced elemental sulfur and sulfur compounds and to have a surface atmospheric pressure with an upper limit of ≡10-7atm, comparable to a good laboratory vacuum, and surface hotspots at temperatures of about 300K covering about 0.3% of its global surface.
Temporal soil bulk density following tillage
USDA-ARS?s Scientific Manuscript database
Soil is the medium for air, energy, water, and chemical transport between the atmosphere and the solid earth. Soil bulk density is a key variable impacting the rate at which this transport occurs. Typically, soil bulk density is measured by the gravimetric method, where a sample of known volume is t...
Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin
2014-06-01
Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.
Montesano, Giovanni; Allegrini, Davide; Colombo, Leonardo; Rossetti, Luca M; Pece, Alfredo
2017-01-01
The main objective of our work is to perform an in depth analysis of the structural features of normal choriocapillaris imaged with OCT Angiography. Specifically, we provide an optimal radius for a circular Region of Interest (ROI) to obtain a stable estimate of the subfoveal choriocapillaris density and characterize its textural properties using Markov Random Fields. On each binarized image of the choriocapillaris OCT Angiography we performed simulated measurements of the subfoveal choriocapillaris densities with circular Regions of Interest (ROIs) of different radii and with small random displacements from the center of the Foveal Avascular Zone (FAZ). We then calculated the variability of the density measure with different ROI radii. We then characterized the textural features of choriocapillaris binary images by estimating the parameters of an Ising model. For each image we calculated the Optimal Radius (OR) as the minimum ROI radius required to obtain a standard deviation in the simulation below 0.01. The density measured with the individual OR was 0.52 ± 0.07 (mean ± STD). Similar density values (0.51 ± 0.07) were obtained using a fixed ROI radius of 450 μm. The Ising model yielded two parameter estimates (β = 0.34 ± 0.03; γ = 0.003 ± 0.012; mean ± STD), characterizing pixel clustering and white pixel density respectively. Using the estimated parameters to synthetize new random textures via simulation we obtained a good reproduction of the original choriocapillaris structural features and density. In conclusion, we developed an extensive characterization of the normal subfoveal choriocapillaris that might be used for flow analysis and applied to the investigation pathological alterations.
Perceptual adaptation in the use of night vision goggles
NASA Technical Reports Server (NTRS)
Durgin, Frank H.; Proffitt, Dennis R.
1992-01-01
The image intensification (I sup 2) systems studied for this report were the biocular AN/PVS-7(NVG) and the binocular AN/AVS-6(ANVIS). Both are quite impressive for purposes of revealing the structure of the environment in a fairly straightforward way in extremely low-light conditions. But these systems represent an unusual viewing medium. The perceptual information available through I sup 2 systems is different in a variety of ways from the typical input of everyday vision, and extensive training and practice is required for optimal use. Using this sort of system involves a kind of perceptual skill learning, but is may also involve visual adaptations that are not simply an extension of normal vision. For example, the visual noise evident in the goggles in very low-light conditions results in unusual statistical properties in visual input. Because we had recently discovered a strong and enduring aftereffect of perceived texture density which seemed to be sensitive to precisely the sorts of statistical distortions introduced by I sup 2 systems, it occurred to use that visual noise of this sort might be a very adapting stimulus for texture density and produce an aftereffect that extended into normal vision once the goggles were removed. We have not found any experimental evidence that I sup 2 systems produce texture density aftereffects. The nature of the texture density aftereffect is briefly explained, followed by an accounting of our studies of I sup 2 systems and our most recent work on the texture density aftereffect. A test for spatial frequency adaptation after exposure to NVG's is also reported, as is a study of perceived depth from motion (motion parallax) while wearing the biocular goggles. We conclude with a summary of our findings.
Fertility status of cultivated floodplain soils in the Zambezi Valley, northern Zimbabwe
NASA Astrophysics Data System (ADS)
Chimweta, M.; Nyakudya, I. W.; Jimu, L.
2018-06-01
Flood-recession cropping improves smallholder farmers' household food security. The objective of this study was to determine the fertility status of cultivated Zambezi Valley floodplain soils, in northern Zimbabwe. The study was conducted at three sites, along tributaries of Musengezi River. Soil samples were taken at 0.20 m depth increments to 0.60 m from hydromorphologically stratified fields, during the cropping season. Sampling points were replicated twice in each stratum at points equidistant from river edges. Relative elevations of sampling points were measured using levelling equipment. Soil was analysed using: core method for bulk density, hydrometer method for texture, loss on ignition for soil organic carbon (SOC), Kjeldahl procedure for total nitrogen (N), 0.01 M CaCl2 for pH, and Inductively Coupled Plasma (ICP) for Mehlich 3 extractable elements. Data from soil analyses were subjected to One Way Analysis of Variance and Pearson's correlation analysis. Bulk density ranged from 1.2 to 1.4 g cm-3 and it was negatively related to distance from river; and positively related to elevation at two sites. Highest values for SOC and total N were 2.04% and 0.36% respectively. Soil pH ranged from 7.70 to 8.60. Soil organic carbon and N were positively related to distance from river but negatively related to elevation. Threshold concentrations for deficiency: < 12 ppm for K, and <39 ppm for Mg, were exceeded. Calcium, Na, and micronutrients in most cases exceeded concentrations reported for floodplains. Practices that slow down flowing water and fertilizer microdosing are among possible fertility management options.
Wu, Li; Chen, Xiao-Guo; Zhang, Gao-Ke; Lan, Shu-Bin; Zhang, De-Lu; Hu, Chun-Xiang
2014-03-01
In order to understand the improving effects of cyanobacterial inoculation on water retention of topsoil in desert regions, this work focused on the development and succession of biological soil crusts and water holding characteristics of topsoil after cyanobacterial inoculation in Qubqi Desert. The results showed that after the artificial inoculation of desert cyanobacteria, algal crusts were quickly formed, and in some microenvironments direct succession of the algal crusts to moss crusts occurred after 2-3 years. With the development and succession of biological soil crusts, the topsoil biomass, polysaccharides content, crust thickness and porosity increased, while the soil bulk density decreased. At the same time, with crust development and succession, the topsoil texture became finer and the percents of fine soil particles including silt and clay contents increased, while the percents of coarse soil particles (sand content) decreased proportionately. In addition, it was found that with crust development and succession, the water holding capacity and water content of topsoil showed an increasing trend, namely: moss crust > algal crusts > shifting sand. The water content (or water holding capacity) in algal and moss crusts were 1.1-1.3 and 1.8-2.2 times of those in shifting sand, respectively. Correlation analysis showed that the water holding capacity and water content of topsoil were positively correlated with the crust biomass, polysaccharides content, thickness, bulk density, silt and clay content; while negatively correlated with the porosity and sand content. Furthermore, stepwise regression analysis showed that the main factor affecting water content was the clay content, while that affecting water holding capacity was the porosity.
Physical and Social Impacts on Hydrologic Properties of Residential Lawn Soils
NASA Astrophysics Data System (ADS)
Smith, M. L.; Band, L. E.
2009-12-01
Land development practices result in compacted soils that filter less water, increase surface runoff and decrease groundwater infiltration. Literature review of soil infiltration rates reveals that developed sites’ rates, 0.1 to 24 cm/hr, are reduced when compared to rates of undeveloped sites, 14.7 to 48.7 cm/hr. Yet, most hydrologic models neglect the impacts of residential soil compaction on infiltration and runoff. The objectives of this study included: determination of differences between soil properties of forested and residential lawn sites in Baltimore Ecosystem Study; parcel-scale location impacts on soil properties; and the impact of social and physical factors on the distribution of soil properties of residential lawns. Infiltration measures were collected in situ using a Cornell Sprinkle Infiltrometer and soil cores were collected for water retention and texture analysis. These soil properties were paired with GIS data relating to age of house construction, property value, parcel area, percent canopy cover per parcel and parcel distance from stream. The study finds that saturated infiltration rates in residential lawn soils are significantly lower than forest soils due to reduced macroporosity of residential lawn soils. Intra-parcel differences in bulk density and soil depth indicate that runoff from residential lawns is more likely from near-house and near-curb locations than the mid-front or backyards. The range of infiltration rate, bulk density and percent organic matter can be explained by readily attainable social and physical factors—age of house construction and parcel distance to stream. The impacts of land management on soil properties appear to be more prominent than percent canopy.
Evidence for a Low Bulk Crustal Density for Mars from Gravity and Topography.
Goossens, Sander; Sabaka, Terence J; Genova, Antonio; Mazarico, Erwan; Nicholas, Joseph B; Neumann, Gregory A
2017-08-16
Knowledge of the average density of the crust of a planet is important in determining its interior structure. The combination of high-resolution gravity and topography data has yielded a low density for the Moon's crust, yet for other terrestrial planets the resolution of the gravity field models has hampered reasonable estimates. By using well-chosen constraints derived from topography during gravity field model determination using satellite tracking data, we show that we can robustly and independently determine the average bulk crustal density directly from the tracking data, using the admittance between topography and imperfect gravity. We find a low average bulk crustal density for Mars, 2582 ± 209 kg m -3 . This bulk crustal density is lower than that assumed until now. Densities for volcanic complexes are higher, consistent with earlier estimates, implying large lateral variations in crustal density. In addition, we find indications that the crustal density increases with depth.
Bulk YBa2Cu3O(x) superconductors through pressurized partial melt growth processing
NASA Technical Reports Server (NTRS)
Hu, S.; Hojaji, H.; Barkatt, A.; Boroomand, M.; Hung, M.; Buechele, A. C.; Thorpe, A. N.; Davis, D. D.; Alterescu, S.
1992-01-01
A novel pressurized partial melt growth process has been developed for producing large pieces of bulk Y-Ba-Cu-O superconductors. During long-time partial melt growth stage, an additional driving force for solidification is obtained by using pressurized oxygen gas. The microstructure and superconducting properties of the resulting samples were investigated. It was found that this new technique can eliminate porosity and inhomogeneity, promote large-scale grain-texturing, and improve interdomain coupling as well.
Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics
NASA Astrophysics Data System (ADS)
Yan, Yongke; Cho, Kyung-Hoon; Maurya, Deepam; Kumar, Amit; Kalinin, Sergei; Khachaturyan, Armen; Priya, Shashank
2013-01-01
Pb(Zr,Ti)O3 (PZT) based compositions have been challenging to texture or grow in a single crystal form due to the incongruent melting point of ZrO2. Here we demonstrate the method for achieving 90% textured PZT-based ceramics and further show that it can provide highest known energy density in piezoelectric materials through enhancement of piezoelectric charge and voltage coefficients (d and g). Our method provides more than ˜5× increase in the ratio d(textured)/d(random). A giant magnitude of d.g coefficient with value of 59 000 × 10-15 m2 N-1 (comparable to that of the single crystal counterpart and 359% higher than that of the best commercial compositions) was obtained.
Relationship of grapevine yield and growth to nematode densities.
Ferris, H; McKenry, M V
1975-07-01
Yield, growth, and vigor of individual grape vines were correlated with nematode population densities in a series of California vineyards. In a Hanford sandy loam soil, Xiphinema americanum densities showed negative correlations with yield, growth, and vigor of vines. When vines were categorized according to vigor, X. americanurn densities had little relationship to yield of high-vigor vines, but were negatively correlated with yield of low-vigor vines. Densities of Paratylenchus harnatus were positively correlated with yield, growth, and vigor of vines. Correlations between Meloidogyne spp. densities and vine performance were variable, even when the vines were separated according to soil type and plant vigor. Densities of Meloidogyne spp. populations were generally higher on coarser-textured, sandy soils and the vines were less vigorous there. Densities of P. hamatus were greater in fine-textured soils.
Perceived beauty of random texture patterns: A preference for complexity.
Friedenberg, Jay; Liby, Bruce
2016-07-01
We report two experiments on the perceived aesthetic quality of random density texture patterns. In each experiment a square grid was filled with a progressively larger number of elements. Grid size in Experiment 1 was 10×10 with elements added to create a variety of textures ranging from 10%-100% fill levels. Participants rated the beauty of the patterns. Average judgments across all observers showed an inverted U-shaped function that peaked near middle densities. In Experiment 2 grid size was increased to 15×15 to see if observers preferred patterns with a fixed density or a fixed number of elements. The results of the second experiment were nearly identical to that of the first showing a preference for density over fixed element number. Ratings in both studies correlated positively with a GIF compression metric of complexity and with edge length. Within the range of stimuli used, observers judge more complex patterns to be more beautiful. Copyright © 2016 Elsevier B.V. All rights reserved.
Kametani, F.; Jiang, J.; Matras, M.; ...
2015-02-10
Why Bi₂Sr₂CaCu₂O x (Bi2212) allows high critical current density J c in round wires rather than only in the anisotropic tape form demanded by all other high temperature superconductors is important for future magnet applications. Here we compare the local texture of state-of-the-art Bi2212 and Bi2223 ((Bi,Pb)₂Sr₂Ca₂Cu₃O₁₀), finding that round wire Bi2212 generates a dominant a-axis growth texture that also enforces a local biaxial texture (FWHM <15°) while simultaneously allowing the c-axes of its polycrystals to rotate azimuthally along and about the filament axis so as to generate macroscopically isotropic behavior. By contrast Bi2223 shows only a uniaxial (FWHM <15°)more » c-axis texture perpendicular to the tape plane without any in-plane texture. Consistent with these observations, a marked, field-increasing, field-decreasing J c(H) hysteresis characteristic of weak-linked systems appears in Bi2223 but is absent in Bi2212 round wire. Growth-induced texture on cooling from the melt step of the Bi2212 J c optimization process appears to be the key step in generating this highly desirable microstructure.« less
The Collection of Urban Micrometeorites — Not an Urban Myth
NASA Astrophysics Data System (ADS)
Larsen, J.; Genge, M. J.
2016-08-01
We report the discovery of >500 micrometeorites (150-600 µm in size) collected from roofs in urban areas in Europe. They are shown to consist of S-type cosmic spherules on the basis of their textures, mineralogies and bulk compositions.
NASA Astrophysics Data System (ADS)
Sanfilippo, S.; Sulpice, A.; Bourgault, D.; Villard, C.; Gautier-Picard, P.; Chaud, X.; Beaugnon, E.; Tournier, R.
1998-02-01
Direct transport measurements at 77 K of the critical current density along the c-axis (J_c) and magnetic measurements are performed on the same bulk textured single domain YBaCuO samples with the longest dimension along the c-axis. A strong influence of the Twin Planes (TP) on J_c and on the ab-plane irreversibility line B(T^*) is reported when the field is rotated in the ab-planes perpendicularly to the c-axis. The different unusual behaviors observed for J_c and the B(T^*), depending on the range of temperature and field are explained by the strong influence of these extended correlated defects on the pinning of the flux lines. La densité de courant critique selon l'axe c (J_c) est mesurée à 77 K en transport et par des mesures magnétiques sur les mêmes échantillons texturés monodomaines d'YBaCuO. L'influence des plans de macles (TP) sur J_c et sur la ligne d'irréversibilité B(T^*) est étudiée en faisant tourner le champ dans les plans ab, perpendiculairement à l'axe c. Les résultats montrent que dans ces composés, J_c et B(T^*) sont fortement influencés par le piégeage par les TP. Divers comportements des lignes de flux résultant de l'influence de ces défauts corrélés sont proposés selon les gammes de température et de champ étudiées.
Image Texture Predicts Avian Density and Species Richness
Wood, Eric M.; Pidgeon, Anna M.; Radeloff, Volker C.; Keuler, Nicholas S.
2013-01-01
For decades, ecologists have measured habitat attributes in the field to understand and predict patterns of animal distribution and abundance. However, the scale of inference possible from field measured data is typically limited because large-scale data collection is rarely feasible. This is problematic given that conservation and management typical require data that are fine grained yet broad in extent. Recent advances in remote sensing methodology offer alternative tools for efficiently characterizing wildlife habitat across broad areas. We explored the use of remotely sensed image texture, which is a surrogate for vegetation structure, calculated from both an air photo and from a Landsat TM satellite image, compared with field-measured vegetation structure, characterized by foliage-height diversity and horizontal vegetation structure, to predict avian density and species richness within grassland, savanna, and woodland habitats at Fort McCoy Military Installation, Wisconsin, USA. Image texture calculated from the air photo best predicted density of a grassland associated species, grasshopper sparrow (Ammodramus savannarum), within grassland habitat (R2 = 0.52, p-value <0.001), and avian species richness among habitats (R2 = 0.54, p-value <0.001). Density of field sparrow (Spizella pusilla), a savanna associated species, was not particularly well captured by either field-measured or remotely sensed vegetation structure variables, but was best predicted by air photo image texture (R2 = 0.13, p-value = 0.002). Density of ovenbird (Seiurus aurocapillus), a woodland associated species, was best predicted by pixel-level satellite data (mean NDVI, R2 = 0.54, p-value <0.001). Surprisingly and interestingly, remotely sensed vegetation structure measures (i.e., image texture) were often better predictors of avian density and species richness than field-measured vegetation structure, and thus show promise as a valuable tool for mapping habitat quality and characterizing biodiversity across broad areas. PMID:23675463
Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal.
Inoue, Hiroyuki; Gyenis, András; Wang, Zhijun; Li, Jian; Oh, Seong Woo; Jiang, Shan; Ni, Ni; Bernevig, B Andrei; Yazdani, Ali
2016-03-11
Weyl semimetals host topologically protected surface states, with arced Fermi surface contours that are predicted to propagate through the bulk when their momentum matches that of the surface projections of the bulk's Weyl nodes. We used spectroscopic mapping with a scanning tunneling microscope to visualize quasiparticle scattering and interference at the surface of the Weyl semimetal TaAs. Our measurements reveal 10 different scattering wave vectors, which can be understood and precisely reproduced with a theory that takes into account the shape, spin texture, and momentum-dependent propagation of the Fermi arc surface states into the bulk. Our findings provide evidence that Weyl nodes act as sinks for electron transport on the surface of these materials. Copyright © 2016, American Association for the Advancement of Science.
The effect of refrigerated and frozen storage on butter flavor and texture.
Krause, A J; Miracle, R E; Sanders, T H; Dean, L L; Drake, M A
2008-02-01
Butter is often stored for extended periods of time; therefore, it is important for manufacturers to know the refrigerated and frozen shelf life. The objectives of this study were to characterize the effect of refrigerated and frozen storage on the sensory and physical characteristics of butter. Fresh butter was obtained on 2 occasions from 2 facilities in 113-g sticks and 4-kg bulk blocks (2 facilities, 2 package forms). Butters were placed into both frozen (-20 degrees C) and refrigerated storage (5 degrees C). Frozen butters were sampled after 0, 6, 12, 15, and 24 mo; refrigerated butters were sampled after 0, 3, 6, 9, 12, 15, and 18 mo. Every 3 mo, oxidative stability index (OSI) and descriptive sensory analysis (texture, flavor, and color) were conducted. Every 6 mo, peroxide value (PV), free fatty acid value (FFV), fatty acid profiling, vane, instrumental color, and oil turbidity were examined. A mixed-model ANOVA was conducted to characterize the effects of storage time, temperature, and package type. Storage time, temperature, and package type affected butter flavor, OSI, PV, and FFV. Refrigerated butter quarters exhibited refrigerator/stale off-flavors concurrent with increased levels of oxidation (lower oxidative stability and higher PV and FFV) within 6 mo of refrigerated storage, and similar trends were observed for refrigerated bulk butter after 9 mo. Off-flavors were not evident in frozen butters until 12 or 18 mo for quarters and bulk butters, respectively. Off-flavors in frozen butters were not correlated with instrumental oxidation measurements. Because butter is such a desirable fat source in terms of flavor and textural properties, it is important that manufacturers understand how long their product can be stored before negative attributes develop.
NASA Astrophysics Data System (ADS)
T, Morimoto; F, Yoshida; A, Yanagida; J, Yanagimoto
2015-04-01
First, hardening model in f.c.c. metals was formulated with collinear interactions slips, Hirth slips and Lomer-Cottrell slips. Using the Taylor and the Sachs rolling texture prediction model, the residual dislocation densities of cold-rolled commercial pure aluminum were estimated. Then, coincidence site lattice grains were investigated from observed cold rolling texture. Finally, on the basis of oriented nucleation theory and coincidence site lattice theory, the recrystallization texture of commercial pure aluminum after low-temperature annealing was predicted.
Measured acoustic properties of variable and low density bulk absorbers
NASA Technical Reports Server (NTRS)
Dahl, M. D.; Rice, E. J.
1985-01-01
Experimental data were taken to determine the acoustic absorbing properties of uniform low density and layered variable density samples using a bulk absober with a perforated plate facing to hold the material in place. In the layered variable density case, the bulk absorber was packed such that the lowest density layer began at the surface of the sample and progressed to higher density layers deeper inside. The samples were placed in a rectangular duct and measurements were taken using the two microphone method. The data were used to calculate specific acoustic impedances and normal incidence absorption coefficients. Results showed that for uniform density samples the absorption coefficient at low frequencies decreased with increasing density and resonances occurred in the absorption coefficient curve at lower densities. These results were confirmed by a model for uniform density bulk absorbers. Results from layered variable density samples showed that low frequency absorption was the highest when the lowest density possible was packed in the first layer near the exposed surface. The layers of increasing density within the sample had the effect of damping the resonances.
Meteoroid Bulk Density and Ceplecha Types
NASA Technical Reports Server (NTRS)
Blaauw, R. C.; Moser, D. E.; Moorhead, A. V.
2017-01-01
Determination of asteroid bulk density is an important aspect of NEO characterization, yet difficult to measure. As a fraction of meteoroids originate from asteroids (including some NEOs), a study of meteoroid bulk densities can potentially provide useful insights into the densities of NEOs and PHOs in lieu of mutual perturbations, satellite, or expensive spacecraft missions. NASA's Meteoroid Environment Office characterizes the meteoroid environment for the purpose of spacecraft risk and operations. To accurately determine the risk, a distribution of meteoroid bulk densities are needed. This is not trivial to determine. If the particle survives to the ground the bulk density can be directly measured, however only the most dense particles land on the Earth. The next best approach is to model the meteor's ablation, which is not straightforward. Clear deceleration is necessary to do this and there are discrepancies in results between models. One approach to a distribution of bulk density is to use a measured proxy for the densities, then calibrate the proxy with known densities from meteorite falls, ablation modelling, and other sources. An obvious proxy choice is the Ceplecha type, K(sub B), thought to indicate the strength of a meteoroid. KB is frequented cited as a good proxy for meteoroid densities, but we find it is poorly correlated with density. However, a distinct split by dynamical type was seen with Jovian Tisserand parameter, T(sub J), with meteoroids from Halley Type comets (T(sub J less than 2 ) exhibiting much lower densities than those originating from Jupiter and asteroids (T(sub J greater than 2).
NASA Astrophysics Data System (ADS)
Ngabonziza, P.; Wang, Y.; Brinkman, A.
2018-04-01
An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi2Te3 topological insulator samples, bulk single crystals and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi2Te3 thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two dimensional in nature.
Is the bulk mode conversion important in high density helicon plasma?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro
2016-06-15
In a high-density helicon plasma production process, a contribution of Trivelpiece-Gould (TG) wave for surface power deposition is widely accepted. The TG wave can be excited either due to an abrupt density gradient near the plasma edge (surface conversion) or due to linear mode conversion from the helicon wave in a density gradient in the bulk region (bulk mode conversion). By numerically solving the boundary value problem of linear coupling between the helicon and the TG waves in a background with density gradient, we show that the efficiency of the bulk mode conversion strongly depends on the dissipation included inmore » the plasma, and the bulk mode conversion is important when the dissipation is small. Also, by performing FDTD simulation, we show the time evolution of energy flux associated with the helicon and the TG waves.« less
Adhesive bonding of ion beam textured metals and fluoropolymers
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Sovey, J. S.
1978-01-01
An electron bombardment argon ion source was used to ion etch various metals and fluoropolymers. The metal and fluoropolymers were exposed to (0.5 to 1.0) keV Ar ions at ion current densities of (0.2 to 1.5) mA/sq cm for various exposure times. The resulting surface texture is in the form of needles or spires whose vertical dimensions may range from tenths to hundreds of micrometers, depending on the selection of beam energy, ion current density, and etch time. The bonding of textured surfaces is accomplished by ion beam texturing mating pieces of either metals or fluoropolymers and applying a bonding agent which wets in and around the microscopic cone-like structures. After bonding, both tensile and shear strength measurements were made on the samples. Also tested, for comparison's sake, were untextured and chemically etched fluoropolymers. The results of these measurements are presented.
Adhesive bonding of ion beam textured metals and fluoropolymers
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Sovey, J. S.
1978-01-01
An electron-bombardment argon ion source was used to ion-etch various metals and fluoropolymers. The metal and fluoropolymers were exposed to (0.5 to 1.0)-keV Ar ions at ion current densities of 0.2 to 1.5 mA/sq cm for various exposure times. The resulting surface texture is in the form of needles or spires whose vertical dimensions may range from tenths to hundreds of micrometers, depending on the selection of beam energy, ion current density, and etch time. The bonding of textured surfaces is accomplished by ion-beam texturing mating pieces of either metals or fluoropolymers and applying a bonding agent which wets in and around the microscopic conelike structures. After bonding, both tensile and shear strength measurements were made on the samples. Also tested, for comparison's sake, were untextured and chemically etched fluoropolymers. The results of these measurements are presented in this paper.
NASA Astrophysics Data System (ADS)
Zheng, J.; Liao, X. L.; Jing, H. L.; Deng, Z. G.; Yen, F.; Wang, S. Y.; Wang, J. S.
2013-10-01
Growth anisotropies of bulk high temperature superconductors (HTSCs) fabricated by a top-seeded melt texture growth process, that is, different pinning effect in the growth sectors (GSs) and growth sector boundaries (GSBs), possess effect on the macro flux trapping and levitation performance of bulk HTSCs. Previous work (Physics Procedia, 36 (2012) 1043) has found that the bulk HTSC array with aligned GSB pattern (AGSBP) exhibits better capability for levitation and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP). In this paper, we further examine this growth anisotropy effect on the maglev performance of a double-layer bulk HTSC. In contrast to reported trapped flux cases (Supercond. Sci. Technol. 19 (2006) S466), the two superposed bulk HTSCs with same AGSBP with PMG are found to show better maglev performance. These series of results are helpful and support a new way for the performance optimization of present HTS maglev systems.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Schaap, M. G.
2012-12-01
Over the past fifteen years, the University of Arizona has carried out four controlled infiltration experiments in a 3600 m2, 15 meter deep vadose zone (Maricopa, Arizona) in which the evolution of moisture content (9 wells, 25 cm resolution), and matric potential (27 locations) was monitored and the subsurface stratigraphy, texture (1042 samples), and bulk density (251 samples) was characterized. In order to simulate the subsurface moisture dynamics it is necessary to define the 3D structure of the subsurface hydraulic characteristics (i.e. moisture retention and hydraulic functions). Several simple to complex strategies are possible ranging from stratigraphy based layering using hydraulic parameters derived from core samples to sophisticated numerical inversions based on 3D geostatistics and site-specific pedotransfer functions. A range of approaches will be evaluated on objective metrics that quantify how well the observed moisture dynamics are matched by simulations. We will evaluate the worth of auxiliary data such as observed matric potentials and quantity the number of texture samples needed to arrive at effective descriptions of subsurface structure. In addition, we will discuss more subjective metrics that evaluate the relative effort involved and estimate monetary cost of each method. While some of the results will only be valid for the studied site, some general conclusions will be possible about the effectiveness of particular methods for other semi-arid sites.
Abiodun, O A; Akinoso, R
2015-05-01
The use of trifoliate yam (Dioscorea dumetorum) flour for stiff dough 'amala' production is one of the ways to curb under-utilization of the tuber. The study evaluates the textural and sensory properties of trifoliate yam flour and stiff dough. Freshly harvested trifoliate yam tubers were peeled, washed, sliced and blanched (60 (°)C for 10 min). The sliced yam were soaked in water for 12 h, dried and milled into flour. Pasting viscosities, functional properties, brown index and sensory attributes of the flour and stiff dough were analyzed. Peak, holding strength and final viscosities ranged from 84.09 to 213.33 RVU, 81.25 to 157.00 RVU and 127.58 to 236.17 RVU respectively. White raw flour had higher viscosity than the yellow flours. The swelling index, water absorption capacity and bulk density ranged from 1.46 to 2.28, 2.11 to 2.92 ml H2O/g and 0.71 to 0.88 g/cm(3) respectively. Blanching method employed improved the swelling index and water absorption capacity of flour. The brown index values of flour and stiff dough ranged from 6.73 to 18.36 and 14.63-46.72 respectively. Sensory evaluation revealed significant differences in the colour, odour and general acceptability of the product when compared with the stiff dough from white yam.
Sample sizes to control error estimates in determining soil bulk density in California forest soils
Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber
2016-01-01
Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...
40 CFR 721.9675 - Titanate [Ti6O13 (2-)], di-po-tas-sium.
Code of Federal Regulations, 2012 CFR
2012-07-01
... bulk density measurements of the PMN substance in the pure form are less than 0.4 g/cm3 or greater than 0.6 g/cm3. The bulk density of each shipment must be verified, by lot, prior to clearing U.S... method of manufacture and bulk density measurements. (2) Limitations or revocation of certain...
40 CFR 721.9675 - Titanate [Ti6O13 (2-)], di-po-tas-sium.
Code of Federal Regulations, 2014 CFR
2014-07-01
... bulk density measurements of the PMN substance in the pure form are less than 0.4 g/cm3 or greater than 0.6 g/cm3. The bulk density of each shipment must be verified, by lot, prior to clearing U.S... method of manufacture and bulk density measurements. (2) Limitations or revocation of certain...
40 CFR 721.9675 - Titanate [Ti6O13 (2-)], di-po-tas-sium.
Code of Federal Regulations, 2011 CFR
2011-07-01
... bulk density measurements of the PMN substance in the pure form are less than 0.4 g/cm3 or greater than 0.6 g/cm3. The bulk density of each shipment must be verified, by lot, prior to clearing U.S... method of manufacture and bulk density measurements. (2) Limitations or revocation of certain...
NASA Astrophysics Data System (ADS)
Esmaeeli, Mohammad; Khosravi, Hamed; Mirhabibi, Alireza
2015-02-01
The lignin-cellulosic texture of wood was used to produce two-dimensional (2D) carbon/carbon (C/C) composites using coal tar pitch. Ash content tests were conducted to select two samples among the different kinds of woods present in Iran, including walnut, white poplar, cherry, willow, buttonwood, apricots, berry, and blue wood. Walnut and white poplar with ash contents of 1.994wt% and 0.351wt%, respectively, were selected. The behavior of these woods during pyrolysis was investigated by differential thermal analysis (DTA) and thermo gravimetric (TG) analysis. The bulk density and open porosity were measured after carbonization and densification. The microstructural characteristics of samples were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy. The results indicate that the density of both the walnut and white poplar is increased, and the open porosity is decreased with the increasing number of carbonization cycles. The XRD patterns of the wood charcoal change gradually with increasing pyrolysis temperature, possibly as a result of the ultra-structural changes in the charcoal or the presence of carbonized coal tar pitch in the composite's body.
NASA Astrophysics Data System (ADS)
Torii, S.; Yuasa, K.
2004-10-01
Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.
NASA Astrophysics Data System (ADS)
Fan, Zhijian; Jóni, Bertalan; Xie, Lei; Ribárik, Gábor; Ungár, Tamás
2018-04-01
Specimens of cold-rolled zirconium were tensile-deformed along the rolling (RD) and the transverse (TD) directions. The stress-strain curves revealed a strong texture dependence. High resolution X-ray line profile analysis was used to determine the prevailing active slip-systems in the specimens with different textures. The reflections in the X-ray diffraction patterns were separated into two groups. One group corresponds to the major and the other group to the random texture component, respectively. The dislocation densities, the subgrain size and the prevailing active slip-systems were evaluated by using the convolutional multiple whole profile (CMWP) procedure. These microstructure parameters were evaluated separately in the two groups of reflections corresponding to the two different texture components. Significant differences were found in both, the evolution of dislocation densities and the development of the fractions of and
NASA Astrophysics Data System (ADS)
Kumar, Amit; Khatirkar, Rajesh Kisni; Chalapathi, Darshan; Kumar, Gulshan; Suwas, Satyam
2017-05-01
In the present study, microstructure and texture evolution during cold rolling in UNS S32205 and UNS S32760 duplex stainless steel was investigated. Both steels were unidirectionally cold rolled up to 80 pct thickness reduction. Scanning electron microscopy and electron backscattered diffraction (EBSD) were used for microstructural characterization, while X-ray diffraction (XRD) was used for the measurement of bulk texture. Strain-induced martensite (SIM) was identified and quantified with the help of magnetic measurements (B-H curve and magnetization saturation). With the increase in plastic strain, the grains became morphologically elongated along the rolling direction with the reduction in average band thickness and band spacing. SIM increased with the increase in deformation and was found to be a function of strain and the SFE of austenite. The increase in SIM was much more pronounced in UNS S32205 steel as compared to UNS S32760 steel. After cold rolling, strong α-fiber (RD//<110>) texture was developed in ferrite, while brass texture was dominant in austenite for both steels. The strength of texture components and fibers was stronger in UNS S32760 steel. Another significant feature was the development of weak γ-fiber (ND//<111>) in UNS S32760 steel at intermediate deformation.
NASA Astrophysics Data System (ADS)
Wei, Xixiong; Deng, Wanling; Fang, Jielin; Ma, Xiaoyu; Huang, Junkai
2017-10-01
A physical-based straightforward extraction technique for interface and bulk density of states in metal oxide semiconductor thin film transistors (TFTs) is proposed by using the capacitance-voltage (C-V) characteristics. The interface trap density distribution with energy has been extracted from the analysis of capacitance-voltage characteristics. Using the obtained interface state distribution, the bulk trap density has been determined. With this method, for the interface trap density, it is found that deep state density nearing the mid-gap is approximately constant and tail states density increases exponentially with energy; for the bulk trap density, it is a superposition of exponential deep states and exponential tail states. The validity of the extraction is verified by comparisons with the measured current-voltage (I-V) characteristics and the simulation results by the technology computer-aided design (TCAD) model. This extraction method uses non-numerical iteration which is simple, fast and accurate. Therefore, it is very useful for TFT device characterization.
Kim, Do Yun; Hänni, Simon; Schüttauf, Jan-Willem; van Swaaij, René A C M M; Zeman, Miro
2016-08-17
Optical and electrical properties of hydrogenated nanocrystalline silicon (nc-Si:H) solar cells are strongly influenced by the morphology of underlying substrates. By texturing the substrates, the photogenerated current of nc-Si:H solar cells can increase due to enhanced light scattering. These textured substrates are, however, often incompatible with defect-less nc-Si:H growth resulting in lower Voc and FF. In this study we investigate the correlation between the substrate morphology, the nc-Si:H solar-cell performance, and the defect density in the intrinsic layer of the solar cells (i-nc-Si:H). Statistical surface parameters representing the substrate morphology do not show a strong correlation with the solar-cell parameters. Thus, we first quantify the line density of potentially defective valleys of randomly textured ZnO substrates where the opening angle is smaller than 130° (ρ<130). This ρ<130 is subsequently compared with the solar-cell performance and the defect density of i-nc-Si:H (ρdefect), which is obtained by fitting external photovoltaic parameters from experimental results and simulations. We confirm that when ρ<130 increases the Voc and FF significantly drops. It is also observed that ρdefect increases following a power law dependence of ρ<130. This result is attributed to more frequently formed defective regions for substrates having higher ρ<130.
Jingxin Wang; Chris B. LeDoux; Pam Edwards
2007-01-01
A harvesting system consisting of chainsaw felling and cable skidder extraction was studied to determine soil bulk density changes in a central Appalachian hardwood forest site. Soil bulk density was measured using a nuclear gauge preharvest and postharvest systematically across the harvest site, on transects across skid trails, and for a subset of skid trail transects...
Mosaic anisotropy model for magnetic interactions in mesostructured crystals
NASA Astrophysics Data System (ADS)
Goldman, Abby R.; Asenath-Smith, Emily; Estroff, Lara A.
2017-10-01
We propose a new model for interpreting the magnetic interactions in crystals with mosaic texture called the mosaic anisotropy (MA) model. We test the MA model using hematite as a model system, comparing mosaic crystals to polycrystals, single crystal nanoparticles, and bulk single crystals. Vibrating sample magnetometry confirms the hypothesis of the MA model that mosaic crystals have larger remanence (Mr/Ms) and coercivity (Hc) compared to polycrystalline or bulk single crystals. By exploring the magnetic properties of mesostructured crystalline materials, we may be able to develop new routes to engineering harder magnets.
POWTEX Neutron Diffractometer at FRM II - New Perspectives for In-Situ Rock Deformation Analysis
NASA Astrophysics Data System (ADS)
Walter, J. M.; Stipp, M.; Ullemeyer, K.; Klein, H.; Leiss, B.; Hansen, B. T.; Kuhs, W. F.
2012-04-01
In Geoscience quantitative texture analysis here defined as the quantitative analysis of the crystallographic preferred orientation (CPO), is a common tool for the investigation of fabric development in mono- and polyphase rocks, their deformation histories and kinematics. Bulk texture measurements also allow the quantitative characterisation of the anisotropic physical properties of rock materials. A routine tool to measure bulk sample volumes is neutron texture diffraction, as neutrons have large penetration capabilities of several cm in geological sample materials. The new POWTEX (POWder and TEXture) Diffractometer at the neutron research reactor FRM II in Garching, Germany is designed as a high-intensity diffractometer by groups from the RWTH Aachen, Forschungszentrum Jülich and the University of Göttingen. Complementary to existing neutron diffractometers (SKAT at Dubna, Russia; GEM at ISIS, UK; HIPPO at Los Alamos, USA; D20 at ILL, France; and the local STRESS-SPEC and SPODI at FRM II) the layout of POWTEX is focused on fast time-resolved experiments and the measurement of larger sample series as necessary for the study of large scale geological structures. POWTEX is a dedicated beam line for geoscientific research. Effective texture measurements without sample tilting and rotation are possible firstly by utilizing a range of neutron wavelengths simultaneously (Time-of-Flight technique) and secondly by the high detector coverage (9.8 sr) and a high flux (~1 - 107 n/cm2s) at the sample. Furthermore the instrument and the angular detector resolution is designed also for strong recrystallisation textures as well as for weak textures of polyphase rocks. These instrument characteristics allow in-situ time-resolved texture measurements during deformation experiments on rocksalt, ice and other materials as large sample environments will be implemented at POWTEX. The in-situ deformation apparatus is operated by a uniaxial spindle drive with a maximum axial load of 250 kN, which will be redesigned to minimize shadowing effects inside the cylindrical detector. The HT deformatione experiments will be carried out in uniaxial compression or extension and an upgrade to triaxial deformation conditions is envisaged. The load frame can alternatively be used for ice deformation by inserting a cryostat cell for temperatures down to 77 K with a triaxial apparatus allowing also simple shear experiments on ice. Strain rates range between 10-8 and 10-3 s-1 reaching to at least 50 % axial strain. The deformation apparatus is designed for continuous long-term deformation experiments and can be exchanged between in-situ and ex-situ placements during continuous operation inside and outside the neutron detector.
Simultaneous constraint and phase conversion processing of oxide superconductors
Li, Qi; Thompson, Elliott D.; Riley, Jr., Gilbert N.; Hellstrom, Eric E.; Larbalestier, David C.; DeMoranville, Kenneth L.; Parrell, Jeffrey A.; Reeves, Jodi L.
2003-04-29
A method of making an oxide superconductor article includes subjecting an oxide superconductor precursor to a texturing operation to orient grains of the oxide superconductor precursor to obtain a highly textured precursor; and converting the textured oxide superconducting precursor into an oxide superconductor, while simultaneously applying a force to the precursor which at least matches the expansion force experienced by the precursor during phase conversion to the oxide superconductor. The density and the degree of texture of the oxide superconductor precursor are retained during phase conversion. The constraining force may be applied isostatically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, L. G., E-mail: lingen.huang@hzdr.de; Kluge, T.; Cowan, T. E.
The dynamics of bulk heating and ionization is investigated both in simulations and theory, which determines the crucial plasma parameters such as plasma temperature and density in ultra-short relativistic laser-solid target interactions. During laser-plasma interactions, the solid density plasma absorbs a fraction of laser energy and converts it into kinetic energy of electrons. A portion of the electrons with relativistic kinetic energy goes through the solid density plasma and transfers energy into the bulk electrons, which results in bulk electron heating. The bulk electron heating is finally translated into the processes of bulk collisional ionization inside the solid target. Amore » simple model based on the Ohmic heating mechanism indicates that the local and temporal profile of bulk return current is essential to determine the temporal evolution of bulk electron temperature. A series of particle-in-cell simulations showing the local heating model is robust in the cases of target with a preplasma and without a preplasma. Predicting the bulk electron heating is then benefit for understanding the collisional ionization dynamics inside the solid targets. The connection of the heating and ionization inside the solid target is further studied using Thomas-Fermi model.« less
NASA Astrophysics Data System (ADS)
Pöhlitz, Julia; Rücknagel, Jan; Schlüter, Steffen; Vogel, Hans-Jörg
2017-04-01
In recent years there has been an increasing application of conservation tillage techniques where the soil is no longer turned, but only loosened or left completely untilled. Dead plant material remains on the soil surface, which provides environmental and economic benefits such as the conservation of water, preventing soil erosion and saving time during seedbed preparation. There is a variety of conservation tillage systems, e.g. mulch till, no-till and strip tillage, which is a special feature. In strip tillage, the seed bed is divided into a seed zone (strip-till within the seed row: STWS) and a soil management zone (strip-till between the seed row: STBS). However, each tillage application affects physical soil properties and processes. Here, the combined application of classical soil mechanical and computed tomographic methods is used on a Chernozem (texture 0-30 cm: silt loam) to show small-scale structural differences under strip tillage (STWS, STBS) compared to no-till (NT) and mulch till (MT). In addition to the classical soil physical parameters dry bulk density and saturated conductivity (years: 2012, 2014, 2015) at soil depths 2-8 and 12-18 cm, stress-strain tests were carried out to map mechanical behavior. The stress-strain tests were performed for a load range from 5-550 kPa at 12-18 cm depth (year 2015). Mechanical precompression stress was determined on the stress-dry bulk density curves. Further, CT image cross sections and computed tomographic examinations (average pore size, porosity, connectivity, and anisotropy) were used from the same soil samples. For STBS and NT, a significant increase in dry bulk density was observed over the course of time compared to STWS and MT, which was more pronounced at 2-8 cm than at 12-18 cm depth. Despite higher dry bulk density, STBS displayed higher saturated conductivity in contrast to STWS, which can be attributed to higher earthworm abundance. In strip tillage, structural differences were identified. Mechanical precompression stress was significantly higher for STBS (141 kPa) than STWS (38 kPa). In addition, the CT image cross sections and the computed tomographic parameters confirmed the mechanically more stable soil structure observed under STBS with a higher initial average pore size but lower porosity and connectivity values compared to STWS. The reason for this is the lack of tillage. On the other hand, tillage at STWS created a loosened, porous and connective substrate. For all variants, the increasing load application led to progressive homogenization processes of the soil structure. At the same time, as stress application increased in all variants, the increase in dry bulk density led to a decrease in average pore size, porosity, and connectivity, while anisotropy increased. It was possible to confirm that strip tillage combines the advantages of no-till and a deeper conservation primary tillage, since on the one hand MT and STWS and on the other hand STBS and NT showed very similar soil structures. The computed tomographic parameters therefore provide valuable information about the impact of tillage on microscopic pore space attributes that improve our understanding about soil functional behavior at much larger scales.
Ranjanomennahary, P; Ghalila, S Sevestre; Malouche, D; Marchadier, A; Rachidi, M; Benhamou, Cl; Chappard, C
2011-01-01
Hip fracture is a serious health problem and textural methods are being developed to assess bone quality. The authors aimed to perform textural analysis at femur on high-resolution digital radiographs compared to three-dimensional (3D) microarchitecture comparatively to bone mineral density. Sixteen cadaveric femurs were imaged with an x-ray device using a C-MOS sensor. One 17 mm square region of interest (ROI) was selected in the femoral head (FH) and one in the great trochanter (GT). Two-dimensional (2D) textural features from the co-occurrence matrices were extracted. Site-matched measurements of bone mineral density were performed. Inside each ROI, a 16 mm diameter core was extracted. Apparent density (Dapp) and bone volume proportion (BV/TV(Arch)) were measured from a defatted bone core using Archimedes' principle. Microcomputed tomography images of the entire length of the core were obtained (Skyscan 1072) at 19.8 microm of resolution and usual 3D morphometric parameters were computed on the binary volume after calibration from BV/TV(Arch). Then, bone surface/bone volume, trabecular thickness, trabecular separation, and trabecular number were obtained by direct methods without model assumption and the structure model index was calculated. In univariate analysis, the correlation coefficients between 2D textural features and 3D morphological parameters reached 0.83 at the FH and 0.79 at the GT. In multivariate canonical correlation analysis, coefficients of the first component reached 0.95 at the FH and 0.88 at the GT. Digital radiographs, widely available and economically viable, are an alternative method for evaluating bone microarchitectural structure.
NASA Astrophysics Data System (ADS)
Miszczyk, M. M.; Paul, H.
2015-08-01
The cube texture formation during primary recrystallization was analysed in plane strain deformed samples of a commercial AA1050 alloy and an Al-1%wt.Mn model alloy single crystal of the Goss{110}<001> orientation. The textures were measured with the use of X-ray diffraction and scanning electron microscopy equipped with an electron backscattered diffraction facility. After recrystallization of the Al-1%wt.Mn single crystal, the texture of the recrystallized grains was dominated by four variants of the S{123}<634> orientation. The cube grains were only sporadically detected by the SEM/EBSD system. Nevertheless, an increased density of <111> poles corresponding to the cube orientation was observed. The latter was connected with the superposition of four variants of the S{123}<634> orientation. This indicates that the cube texture after the recrystallization was a ‘compromise texture’. In the case of the recrystallized AA1050 alloy, the strong cube texture results from both the increased density of the particular <111> poles of the four variants of the S orientation and the ∼40°(∼< 111>)-type rotation. The first mechanism transforms the Sdef-oriented areas into Srex ones, whereas the second the near S-oriented, as-deformed areas into near cube-oriented grains.
Electrical manipulation of dynamic magnetic impurity and spin texture of helical Dirac fermions
NASA Astrophysics Data System (ADS)
Wang, Rui-Qiang; Zhong, Min; Zheng, Shi-Han; Yang, Mou; Wang, Guang-Hui
2016-05-01
We have theoretically investigated the spin inelastic scattering of helical electrons off a high-spin nanomagnet absorbed on a topological surface. The nanomagnet is treated as a dynamic quantum spin and driven by the spin transfer torque effect. We proposed a mechanism to electrically manipulate the spin texture of helical Dirac fermions rather than by an external magnetic field. By tuning the bias voltage and the direction of impurity magnetization, we present rich patterns of spin texture, from which important fingerprints exclusively associated with the spin helical feature are obtained. Furthermore, it is found that the nonmagnetic potential can create the resonance state in the spin density with different physics as the previously reported resonance of charge density.
Clementson, C L; Ileleji, K E
2010-07-01
Loading railcars with consistent tonnage has immense cost implications for the shipping of distillers' dried grains with soluble (DDGS) product. Therefore, this study was designed to investigate the bulk density variability of DDGS during filling of railcar hoppers. An apparatus was developed similar to a spinning riffler sampler in order to simulate the filling of railcars at an ethanol plant. There was significant difference (P<0.05) between the initial and final measures of bulk density and particle size as the hoppers were emptied in both mass and funnel flow patterns. Particle segregation that takes place during filling of hoppers contributed to the bulk density variation and was explained by particle size variation. This phenomenon is most likely the same throughout the industry and an appropriate sampling procedure should be adopted for measuring the bulk density of DDGS stored silos or transported in railcar hoppers. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Non-grazing and gophers lower bulk density and acidity in annual-plant soil
Raymond D. Ratliff; Stanley E. Westfall
1971-01-01
The effects of non-grazing on Ahwahnee coarse sandy loam were studied at the San Joaquin Experimental Range in central California. An exclosure, on which there had been no livestock grazing for 34 years, had a lower surface bulk density and lower acidity than an adjacent range that had been grazed. Bulk density averaged 1.08 gm./cc. on the ungrazed range, and 1.43 gm./...
Martin F. Jurgensen; Deborah S. Page-Dumroese; Robert E. Brown; Joanne M. Tirocke; Chris A. Miller; James B. Pickens; Min Wang
2017-01-01
Soils with high rock content are common in many US forests, and contain large amounts of stored C. Accurate measurements of soil bulk density and rock content are critical for calculating and assessing changes in both C and nutrient pool size, but bulk density sampling methods have limitations and sources of variability. Therefore, we evaluated the use of small-...
Model for texture evolution in cold rolling of 2.4 wt.-% Si non-oriented electrical steel
NASA Astrophysics Data System (ADS)
Wei, X.; Hojda, S.; Dierdorf, J.; Lohmar, J.; Hirt, G.
2017-10-01
Iron loss and limited magnetic flux density are constraints for NGO electrical steel used in highly efficient electrical machinery cores. The most important factors that affect these properties are the final microstructure and the texture of the NGO steel. Reviewing the whole process chain, cold rolling plays an important role because the recrystallization and grain growth during the final heat treatment can be strongly affected by the stored energy and microstructure of cold rolling, and some texture characteristics can be inherited as well. Therefore, texture evolution during cold rolling of NGO steel is worth a detailed investigation. In this paper, texture evolution in cold rolling of non-oriented (NGO) electrical steel is simulated with a crystal plasticity finite element method (CPFEM) model. In previous work, a CPFEM model has been implemented for simulating the texture evolution with periodic boundary conditions and a phenomenological constitutive law. In a first step the microstructure in the core of the workpiece was investigated and mapped to a representative volume element to predict the texture evolution. In this work an improved version of the CPFEM model is described that better reflects the texture evolution in cold rolling of NGO electrical steel containing 2.4 wt.-% Si. This is achieved by applying the deformation gradient and calibrating the flow curve within the CPFEM model. Moreover, the evolution of dislocation density is calculated and visualized in this model. An in depth comparison of the numerical and experimental results reveals, that the improved CPFEM model is able to represent the important characteristics of texture evolution in the core of the workpiece during cold rolling with high precision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallow, Anne M; Abdelaziz, Omar; Graham, Samuel
The thermal charging performance of phase change materials, specifically paraffin wax, combined with compressed expanded natural graphite foam is studied under constant heat flux and constant temperature conditions. By varying the heat flux between 0.39 W/cm2 and 1.55 W/cm2 or maintaining a boundary temperature of 60 C for four graphite foam bulk densities, the impact on the rate of thermal energy storage is discussed. Thermal charging experiments indicate that thermal conductivity of the composite is an insufficient metric to compare the influence of graphite foam on the rate of thermal energy storage of the PCM composite. By dividing the latentmore » heat of the composite by the time to melt for various boundary conditions and graphite foam bulk densities, it is determined that bulk density selection is dependent on the applied boundary condition. A greater bulk density is advantageous for samples exposed to a constant temperature near the melting temperature as compared to constant heat flux conditions where a lower bulk density is adequate. Furthermore, the anisotropic nature of graphite foam bulk densities greater than 50 kg/m3 is shown to have an insignificant impact on the rate of thermal charging. These experimental results are used to validate a computational model for future use in the design of thermal batteries for waste heat recovery.« less
Thangavel, Ranjith; Kaliyappan, Karthikeyan; Ramasamy, Hari Vignesh; Sun, Xueliang; Lee, Yun-Sung
2017-07-10
Electrochemical supercapacitors with high energy density are promising devices due to their simple construction and long-term cycling performance. The development of a supercapacitor based on electrical double-layer charge storage with high energy density that can preserve its cyclability at higher power presents an ongoing challenge. Herein, we provide insights to achieve a high energy density at high power with an ultrahigh stability in an electrical double-layer capacitor (EDLC) system by using carbon from a biomass precursor (cinnamon sticks) in a sodium ion-based organic electrolyte. Herein, we investigated the dependence of EDLC performance on structural, textural, and functional properties of porous carbon engineered by using various activation agents. The results demonstrate that the performance of EDLCs is not only dependent on their textural properties but also on their structural features and surface functionalities, as is evident from the electrochemical studies. The electrochemical results are highly promising and revealed that the porous carbon with poor textural properties has great potential to deliver high capacitance and outstanding stability over 300 000 cycles compared with porous carbon with good textural properties. A very low capacitance degradation of around 0.066 % per 1000 cycles, along with high energy density (≈71 Wh kg -1 ) and high power density, have been achieved. These results offer a new platform for the application of low-surface-area biomass-derived carbons in the design of highly stable high-energy supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Predicting and mapping soil available water capacity in Korea.
Hong, Suk Young; Minasny, Budiman; Han, Kyung Hwa; Kim, Yihyun; Lee, Kyungdo
2013-01-01
The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at -10 and -1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at -10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively). Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils.
High trapped fields in bulk YBCO superconductors
NASA Astrophysics Data System (ADS)
Fuchs, Günter; Gruss, Stefan; Krabbes, Gernot; Schätzle, Peter; Verges, Peter; Müller, Karl-Hartmut; Fink, Jörg; Schultz, Ludwig
The trapped field properties of bulk melt-textured YBCO material were investigated at different temperatures. In the temperature range of liquid nitrogen, maximum trapped fields of 1.1 T were found at 77 K by doping of YBCO with small amounts of zinc. The improved pinning of zinc-doped YBa2Cu3O7-x (YBCO) results in a pronounced peak effect in the field dependence of the critical current density. the trapped field at lower temperatures increases due to the increasing critical current density, however, at temperatures around 50 K cracking of the material is observed which is exposed to considerably tensile stresses due to Lorentz forces. Very high trapped fields up to 14.4 T were achieved at 22.5 K for a YBCO disk pair by the addition of silver improving the tensile strength of YBCO and by using a bandage made of a steel tube. The steel tube produces a compressive stress on YBCO after cooling down from 300 K to the measuring temperature, which is due to the higher coeeficient of thermal expansion of steel compared with that of YBCO in the a,b plane. The application of superconducting permanent magnets with trapped fields of 10 T and more in superconducting bearings would allow to obtain very high levitation pressures up to 2500 N/cm2 which is two orders of magnitude higher than the levitation pressure achievable in superconducting bearings with conventional permanent magnets. The most important problem for the application of superconducting permanent magnets is the magnetizing procedure of the YBCO material. Results of magnetizing YBCO disks by using of pulsed magnetic fields will be presented.
Rice production in relation to soil quality under different rice-based cropping systems
NASA Astrophysics Data System (ADS)
Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim
2016-04-01
Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal soil depth without restriction for rice root elongation was at least 25 cm from the soil surface. We suggest these values as indicative for optimal physical soil quality when growing rice in fine-textured alluvial soils and their definition as a first step towards presenting real threshold values.
NASA Astrophysics Data System (ADS)
Cao, Haitao; Moutalbi, Nahed; Harnois, Christelle; Hu, Rui; Li, Jinshan; Zhou, Lian; Noudem, Jacques G.
2010-01-01
Mono-domain YBa 2Cu 3O 7-x (Y123) bulk superconductors have been processed using seeded infiltration growth technique (SIG). The combination of melt infiltrated liquid source (Ba 3Cu 5O 8) into the Y 2BaCuO 5 (Y211) pre-form and the nucleation of Y123 domain from SmBa 2Cu 3O 7 crystal seed has been investigated. The different configurations of SIG process were compared in this study. In addition, the effect of the starting Y211 particles size has been studied. The results reveal that, the Y211 particle size and different configurations strongly influence the properties of the final bulk superconductor sample.
Preliminary Results of Field Emission Cathode Tests
NASA Technical Reports Server (NTRS)
Sovey, James S.; Kovaleski, Scott D.
2001-01-01
Preliminary screening tests of field emission cathodes such as chemical vapor deposited (CVD) diamond, textured pyrolytic graphite, and textured copper were conducted at background pressures typical of electric thruster test facilities to assess cathode performance and stability. Very low power electric thrusters which provide tens to hundreds micronewtons of thrust may need field emission neutralizers that have a capability of tens to hundreds of microamperes. From current voltage characteristics, it was found that the CVD diamond and textured metals cathodes clearly satisfied the Fowler-Nordheim emission relation. The CVD diamond and a textured copper cathode had average current densities of 270 and 380 mA/sq cm, respectively, at the beginning-of-life. After a few hours of operation the cathode emission currents degraded by 40 to 75% at background pressures in the 10(exp -5) Pa to 10(exp -4) Pa range. The textured pyrolytic graphite had a modest current density at beginning-of-life of 84 mA/sq cm, but this cathode was the most stable of all. Extended testing of the most promising cathodes is warranted to determine if current degradation is a burn-in effect or whether it is a long-term degradation process. Preliminary experiments with ferroelectric emission cathodes, which are ceramics with spontaneous electric polarization, were conducted. Peak current densities of 30 to 120 mA/sq cm were obtained for pulse durations of about 500 ns in the 10(exp -4) Pa pressure range.
Compaction of AWBA fuel pellets without binders (AWBA Development Program)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R.G.R.
1982-08-01
Highly active oxide fuel powders, composed of UO/sub 2/, UO/sub 2/-ThO/sub 2/, or ThO/sub 2/, were compacted into ultra-high density pellets without the use of binders. The objective of the study was to select the optimum die lubricant for compacting these powders into pellets in preparation for sintering to densities in excess of 97% Theoretical Density. The results showed that sintered density was a function of both the lubricant bulk density and concentration with the lowest bulk density lubricant giving the highest sintered densities with a lubricant concentration of 0.1 weight percent. Five calcium and zinc stearates were evaluated withmore » a calcium stearate with a 15 lb/ft/sup 3/ bulk density being the best lubricant.« less
USDA-ARS?s Scientific Manuscript database
Effects of varying bulk densities of steam-flaked corn (SFC) and level of inclusion of roughage in feedlot diets were evaluated in three experiments. In Experiment 1, 128 beef steers were used in a 2 x 2 factorial arrangement to evaluate effects of bulk density of SFC (335 or 386 g/L) and roughage...
Objective measurement of bread crumb texture
NASA Astrophysics Data System (ADS)
Wang, Jian; Coles, Graeme D.
1995-01-01
Evaluation of bread crumb texture plays an important role in judging bread quality. This paper discusses the application of image analysis methods to the objective measurement of the visual texture of bread crumb. The application of Fast Fourier Transform and mathematical morphology methods have been discussed by the authors in their previous work, and a commercial bread texture measurement system has been developed. Based on the nature of bread crumb texture, we compare the advantages and disadvantages of the two methods, and a third method based on features derived directly from statistics of edge density in local windows of the bread image. The analysis of various methods and experimental results provides an insight into the characteristics of the bread texture image and interconnection between texture measurement algorithms. The usefulness of the application of general stochastic process modelling of texture is thus revealed; it leads to more reliable and accurate evaluation of bread crumb texture. During the development of these methods, we also gained useful insights into how subjective judges form opinions about bread visual texture. These are discussed here.
Peng, Biaolin; Zhang, Qi; Li, Xing; Sun, Tieyu; Fan, Huiqing; Ke, Shanming; Ye, Mao; Wang, Yu; Lu, Wei; Niu, Hanben; Zeng, Xierong; Huang, Haitao
2015-06-24
A highly textured (111)-oriented Pb0.8Ba0.2ZrO3 (PBZ) relaxor thin film with the coexistence of antiferroelectric (AFE) and ferroelectric (FE) phases was prepared on a Pt/TiOx/SiO2/Si(100) substrate by using a sol-gel method. A large recoverable energy storage density of 40.18 J/cm(3) along with an efficiency of 64.1% was achieved at room temperature. Over a wide temperature range of 250 K (from room temperature to 523 K), the variation of the energy density is within 5%, indicating a high thermal stability. The high energy storage performance was endowed by a large dielectric breakdown strength, great relaxor dispersion, highly textured orientation, and the coexistence of FE and AFE phases. The PBZ thin film is believed to be an attractive material for applications in energy storage systems over a wide temperature range.
Textural variability of ordinary chondrite chondrules: Implications of their formation
NASA Technical Reports Server (NTRS)
Zinovieva, N. G.; Mitreikina, O. B.; Granovsky, L. B.
1994-01-01
Scanning electron microscopy (SEM) and microprobe examination of the Raguli H3-4, Saratov L3, and Fucbin L5-6 ordinary chondrites and the analysis of preexisted data on other meteorites have shown that the variety of textural types of chondrules depends on the chemical composition of the chondrules. The comparison of bulk-rock chemistries of the chondrules by major components demonstrates that they apparently fall, like basic-ultrabasic rock, into groups of dunitic and pyroxenitic composition. This separation is further validated by the character of zoning in chondrules of the intermediate, peridotitic type. The effect is vividly demonstrated by the 'chondrule-in-chondrule' structure.
NASA Technical Reports Server (NTRS)
Blander, M.; Planner, H. N.; Keil, K.; Nelson, L. S.; Richardson, N. L.
1976-01-01
Laser-melted magnesium silicate droplets were supercooled 400-750 C below their equilibrium liquidus temperatures before crystallization and their texture was compared with that of meteoritic and lunar chondrules. Crystal morphology, width and texture were studied in relation to nucleation temperature and bulk composition. It was found that the only phase to nucleate from the forsterite-enstatite normative melts was forsterite. Highly siliceous glass, about 65% SiO2 by weight, was identified interstitially to the forsterite crystals in seven of the MgSiO4 spherules and was thought to be present in all.
Strong texturing of lithium metal in batteries
Shi, Feifei; Pei, Allen; Vailionis, Arturas; ...
2017-10-30
Lithium, with its high theoretical specific capacity and lowest electrochemical potential, has been recognized as the ultimate negative electrode material for next-generation lithium-based high-energy-density batteries. However, a key challenge that has yet to be overcome is the inferior reversibility of Li plating and stripping, typically thought to be related to the uncontrollable morphology evolution of the Li anode during cycling. Here we show that Li-metal texturing (preferential crystallographic orientation) occurs during electrochemical deposition, which governs the morphological change of the Li anode. X-ray diffraction pole-figure analysis demonstrates that the texture of Li deposits is primarily dependent on the type ofmore » additive or cross-over molecule from the cathode side. With adsorbed additives, like LiNO 3 and polysulfide, the lithium deposits are strongly textured, with Li (110) planes parallel to the substrate, and thus exhibit uniform, rounded morphology. A growth diagram of lithium deposits is given to connect various texture and morphology scenarios for different battery electrolytes. In conclusion, this understanding of lithium electrocrystallization from the crystallographic point of view provides significant insight for future lithium anode materials design in high-energy-density batteries.« less
Strong texturing of lithium metal in batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Feifei; Pei, Allen; Vailionis, Arturas
Lithium, with its high theoretical specific capacity and lowest electrochemical potential, has been recognized as the ultimate negative electrode material for next-generation lithium-based high-energy-density batteries. However, a key challenge that has yet to be overcome is the inferior reversibility of Li plating and stripping, typically thought to be related to the uncontrollable morphology evolution of the Li anode during cycling. Here we show that Li-metal texturing (preferential crystallographic orientation) occurs during electrochemical deposition, which governs the morphological change of the Li anode. X-ray diffraction pole-figure analysis demonstrates that the texture of Li deposits is primarily dependent on the type ofmore » additive or cross-over molecule from the cathode side. With adsorbed additives, like LiNO 3 and polysulfide, the lithium deposits are strongly textured, with Li (110) planes parallel to the substrate, and thus exhibit uniform, rounded morphology. A growth diagram of lithium deposits is given to connect various texture and morphology scenarios for different battery electrolytes. In conclusion, this understanding of lithium electrocrystallization from the crystallographic point of view provides significant insight for future lithium anode materials design in high-energy-density batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chaoyi; Livescu, Veronica; Harrington, Tyler
The influence of microstructural anisotropy on shear response of high-purity titanium was studied using the compact forced-simple-shear specimen (CFSS) loaded under quasi-static loading conditions. Post-mortem characterization reveals significant difference in shear response of different directions in the same material due to material crystallographic texture anisotropy. Shear bands are narrower in specimens in which the shear zone is aligned along the direction with a strong {0001} basal texture. Twinning was identified as an active mechanism to accommodate strains in the shear region in both orientations. This paper confirms the applicability of the CFSS design for the investigation of differences in themore » shear response of materials as a function of process-induced crystallographic texture. A detailed, systematic approach to quantifying shear band evolution by evaluating geometrically necessary dislocations (GND) associated with crystallographic anisotropy is presented. Finally, the results show that: i) line average GND density profiles, for Ti samples that possess a uniform equiaxed-grain structure, but with strong crystallographic anisotropy, exhibit significant differences in GND density close to the shear band center; ii) GND profiles decrease steadily away from the shear band as the plastic strain diminishes, in agreement with Ashby's theory of work hardening, where the higher GND density in the through-thickness (TT) orientation is a result of restricted < a > type slip in the shear band compared with in-plane (IP) samples; iii) the anisotropy in deformation response is derived from initial crystallographic texture of the materials, where GND density of < a > GNDs are higher adjacent to the shear band in the through-thickness sample oriented away from easy slip, but the density of < c+a > type GNDs are very similar in these two samples; and iv) the increase in grain average GND density was determined to have strong correlation to an increase in the Euler Φ angle of the grain average orientation, indicating an increased misorientation angle evolution.« less
Zhu, Chaoyi; Livescu, Veronica; Harrington, Tyler; ...
2017-03-31
The influence of microstructural anisotropy on shear response of high-purity titanium was studied using the compact forced-simple-shear specimen (CFSS) loaded under quasi-static loading conditions. Post-mortem characterization reveals significant difference in shear response of different directions in the same material due to material crystallographic texture anisotropy. Shear bands are narrower in specimens in which the shear zone is aligned along the direction with a strong {0001} basal texture. Twinning was identified as an active mechanism to accommodate strains in the shear region in both orientations. This paper confirms the applicability of the CFSS design for the investigation of differences in themore » shear response of materials as a function of process-induced crystallographic texture. A detailed, systematic approach to quantifying shear band evolution by evaluating geometrically necessary dislocations (GND) associated with crystallographic anisotropy is presented. Finally, the results show that: i) line average GND density profiles, for Ti samples that possess a uniform equiaxed-grain structure, but with strong crystallographic anisotropy, exhibit significant differences in GND density close to the shear band center; ii) GND profiles decrease steadily away from the shear band as the plastic strain diminishes, in agreement with Ashby's theory of work hardening, where the higher GND density in the through-thickness (TT) orientation is a result of restricted < a > type slip in the shear band compared with in-plane (IP) samples; iii) the anisotropy in deformation response is derived from initial crystallographic texture of the materials, where GND density of < a > GNDs are higher adjacent to the shear band in the through-thickness sample oriented away from easy slip, but the density of < c+a > type GNDs are very similar in these two samples; and iv) the increase in grain average GND density was determined to have strong correlation to an increase in the Euler Φ angle of the grain average orientation, indicating an increased misorientation angle evolution.« less
Ion sputter textured graphite electrode plates
NASA Technical Reports Server (NTRS)
Curren, A. N.; Forman, R.; Sovey, J. S.; Wintucky, E. G. (Inventor)
1983-01-01
A specially textured surface of pyrolytic graphite exhibits extremely low yields of secondary electrons and reduced numbers of reflected primary electrons after impingement of high energy primary electrons. Electrode plates of this material are used in multistage depressed collectors. An ion flux having an energy between 500 iV and 1000 iV and a current density between 1.0 mA/sq cm and 6.0 mA/sq cm produces surface roughening or texturing which is in the form of needles or spires. Such textured surfaces are especially useful as anode collector plates in high tube devices.
NASA Astrophysics Data System (ADS)
Colombier, M.; Gurioli, L.; Druitt, T. H.; Shea, T.; Boivin, P.; Miallier, D.; Cluzel, N.
2017-02-01
Textural parameters such as density, porosity, pore connectivity, permeability, and vesicle size distributions of vesiculated and dense pyroclasts from the 9.4-ka eruption of Kilian Volcano, were quantified to constrain conduit and eruptive processes. The eruption generated a sequence of five vertical explosions of decreasing intensity, producing pyroclastic density currents and tephra fallout. The initial and final phases of the eruption correspond to the fragmentation of a degassed plug, as suggested by the increase of dense juvenile clasts (bimodal density distributions) as well as non-juvenile clasts, resulting from the reaming of a crater. In contrast, the intermediate eruptive phases were the results of more open-conduit conditions (unimodal density distributions, decreases in dense juvenile pyroclasts, and non-juvenile clasts). Vesicles within the pyroclasts are almost fully connected; however, there are a wide range of permeabilities, especially for the dense juvenile clasts. Textural analysis of the juvenile clasts reveals two vesiculation events: (1) an early nucleation event at low decompression rates during slow magma ascent producing a population of large bubbles (>1 mm) and (2) a syn-explosive nucleation event, followed by growth and coalescence of small bubbles controlled by high decompression rates immediately prior to or during explosive fragmentation. The similarities in pyroclast textures between the Kilian explosions and those at Soufrière Hills Volcano on Montserrat, in 1997, imply that eruptive processes in the two systems were rather similar and probably common to vulcanian eruptions in general.
Bulk density of small meteoroids
NASA Astrophysics Data System (ADS)
Kikwaya, J.-B.; Campbell-Brown, M.; Brown, P. G.
2011-06-01
Aims: Here we report on precise metric and photometric observations of 107 optical meteors, which were simultaneously recorded at multiple stations using three different intensified video camera systems. The purpose is to estimate bulk meteoroid density, link small meteoroids to their parent bodies based on dynamical and physical density values expected for different small body populations, to better understand and explain the dynamical evolution of meteoroids after release from their parent bodies. Methods: The video systems used had image sizes ranging from 640 × 480 to 1360 × 1036 pixels, with pixel scales from 0.01° per pixel to 0.05° per pixel, and limiting meteor magnitudes ranging from Mv = +2.5 to +6.0. We find that 78% of our sample show noticeable deceleration, allowing more robust constraints to be placed on density estimates. The density of each meteoroid is estimated by simultaneously fitting the observed deceleration and lightcurve using a model based on thermal fragmentation, conservation of energy and momentum. The entire phase space of the model free parameters is explored for each event to find ranges of parameters which fit the observations within the measurement uncertainty. Results: (a) We have analysed our data by first associating each of our events with one of the five meteoroid classes. The average density of meteoroids whose orbits are asteroidal and chondritic (AC) is 4200 kg m-3 suggesting an asteroidal parentage, possibly related to the high-iron content population. Meteoroids with orbits belonging to Jupiter family comets (JFCs) have an average density of 3100 ± 300 kg m-3. This high density is found for all meteoroids with JFC-like orbits and supports the notion that the refractory material reported from the Stardust measurements of 81P/Wild 2 dust is common among the broader JFC population. This high density is also the average bulk density for the 4 meteoroids with orbits belonging to the Ecliptic shower-type class (ES) also related to JFCs. Both categories we suggest are chondritic based on their high bulk density. Meteoroids of HT (Halley type) orbits have a minimum bulk density value of 360+400-100 kg m-3 and a maximum value of 1510+400-900 kg m-3. This is consistent with many previous works which suggest bulk cometary meteoroid density is low. SA (Sun-approaching)-type meteoroids show a density spread from 1000 kg m-3 to 4000 kg m-3, reflecting multiple origins. (b) We found two different meteor showers in our sample: Perseids (10 meteoroids, ~11% of our sample) with an average bulk density of 620 kg m-3 and Northern Iota Aquariids (4 meteoroids) with an average bulk density of 3200 kg m-3, consistent with the notion that the NIA derive from 2P/Encke.
Application of texture analysis method for mammogram density classification
NASA Astrophysics Data System (ADS)
Nithya, R.; Santhi, B.
2017-07-01
Mammographic density is considered a major risk factor for developing breast cancer. This paper proposes an automated approach to classify breast tissue types in digital mammogram. The main objective of the proposed Computer-Aided Diagnosis (CAD) system is to investigate various feature extraction methods and classifiers to improve the diagnostic accuracy in mammogram density classification. Texture analysis methods are used to extract the features from the mammogram. Texture features are extracted by using histogram, Gray Level Co-Occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Difference Matrix (GLDM), Local Binary Pattern (LBP), Entropy, Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT), Gabor transform and trace transform. These extracted features are selected using Analysis of Variance (ANOVA). The features selected by ANOVA are fed into the classifiers to characterize the mammogram into two-class (fatty/dense) and three-class (fatty/glandular/dense) breast density classification. This work has been carried out by using the mini-Mammographic Image Analysis Society (MIAS) database. Five classifiers are employed namely, Artificial Neural Network (ANN), Linear Discriminant Analysis (LDA), Naive Bayes (NB), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM). Experimental results show that ANN provides better performance than LDA, NB, KNN and SVM classifiers. The proposed methodology has achieved 97.5% accuracy for three-class and 99.37% for two-class density classification.
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Knapp, David E. (Editor); Nerbas, Tim; Anderson, Darwin
2000-01-01
This data set was collected by TE-1 to provide a set of soil properties for BOREAS investigators in the SSA. The soil samples were collected at sets of soil pits in 1993 and 1994. Each set of soil pits was in the vicinity of one of the five flux towers in the BOREAS SSA. The collected soil samples were sent to a lab, where the major soil properties were determined. These properties include, but are not limited to, soil horizon; dry soil color; pH; bulk density; total, organic, and inorganic carbon; electric conductivity; cation exchange capacity; exchangeable sodium, potassium, calcium, magnesium, and hydrogen; water content at 0.01, 0.033, and 1.5 MPascals; nitrogen; phosphorus; particle size distribution; texture; pH of the mineral soil and of the organic soil; extractable acid; and sulfur. The data are stored in tabular ASCII text files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Organic carbon sequestration under selected land use in Padang city, West Sumatra, Indonesia
NASA Astrophysics Data System (ADS)
Yulnafatmawita; Yasin, S.
2018-03-01
Organic carbon is a potential element to build biomass as well as emitting CO2 to the atmosphere and promotes global warming. This research was aimed to calculate the sequestered Carbon (C) within a 1-m soil depth under selected land use from 6 different sites in Padang city, Indonesia. Disturbed and undisturbed soil samples were taken from several horizons until 100 cm depth at each location. Soil parameters observed were organic carbon (OC), bulk density (BD), and soil texture. The result showed that soil OC content tended to decrease by the depth at all land use types, except under rice field in Kurao-Nanggalo which extremely increased at >65 cm soil depth with the highest carbon stock. The soil organic carbon sequestration from the highest to the lowest according to land use and the location is in the following order mix garden- Kayu Aro > mix garden- Aie Pacah > Rangeland- Parak Laweh >seasonal farming- Teluk Sirih > rice field- Kampuang Jua.
NASA Astrophysics Data System (ADS)
Hickson, Dylan; Boivin, Alexandre; Daly, Michael G.; Ghent, Rebecca; Nolan, Michael C.; Tait, Kimberly; Cunje, Alister; Tsai, Chun An
2018-05-01
The variations in near-surface properties and regolith structure of asteroids are currently not well constrained by remote sensing techniques. Radar is a useful tool for such determinations of Near-Earth Asteroids (NEAs) as the power of the reflected signal from the surface is dependent on the bulk density, ρbd, and dielectric permittivity. In this study, high precision complex permittivity measurements of powdered aluminum oxide and dunite samples are used to characterize the change in the real part of the permittivity with the bulk density of the sample. In this work, we use silica aerogel for the first time to increase the void space in the samples (and decrease the bulk density) without significantly altering the electrical properties. We fit various mixing equations to the experimental results. The Looyenga-Landau-Lifshitz mixing formula has the best fit and the Lichtenecker mixing formula, which is typically used to approximate planetary regolith, does not model the results well. We find that the Looyenga-Landau-Lifshitz formula adequately matches Lunar regolith permittivity measurements, and we incorporate it into an existing model for obtaining asteroid regolith bulk density from radar returns which is then used to estimate the bulk density in the near surface of NEA's (101955) Bennu and (25143) Itokawa. Constraints on the material properties appropriate for either asteroid give average estimates of ρbd = 1.27 ± 0.33g/cm3 for Bennu and ρbd = 1.68 ± 0.53g/cm3 for Itokawa. We conclude that our data suggest that the Looyenga-Landau-Lifshitz mixing model, in tandem with an appropriate radar scattering model, is the best method for estimating bulk densities of regoliths from radar observations of airless bodies.
The temporal changes in saturated hydraulic conductivity of forest soils
NASA Astrophysics Data System (ADS)
Kornél Szegedi, Balázs
2015-04-01
I investigated the temporal variability of forest soils infiltration capacity through compaction. I performed the measurements of mine in The Botanical Garden of Sopron between 15.09.2014 - 15.10.2014. I performed the measurements in 50-50 cm areas those have been cleaned of vegetation, where I measured the bulk density and volume of soil hydraulic conductivity with Tension Disk Infiltrometer (TDI) in 3-3 repetitions. I took undisturbed 160 cm3 from the upper 5 cm layer of the cleaned soil surface for the bulk density measurements. Then I loosened the top 10-15 cm layer of the soil surface with spade. After the cultivation of the soil I measured the bulk density and volume of water conductivity also 3-3 repetitions. Later I performed the hydraulic conductivity (Ksat) using the TDI and bulk density measurements on undisturbed samples on a weekly basis in the study area. I illustrated the measured hydraulic conductivity and bulk density values as a function of cumulative rainfall by using simple graphical and statistical methods. The rate of the soil compaction pace was fast and smooth based on the change of the measured bulk density values. There was a steady downward trend in hydraulic conductivity parallel the compaction. The cultivation increased the hydraulic conductivity nearly fourfold compared to original, than decreased to half by 1 week. In the following the redeposition rate declined, but based on the literature data, almost 3-4 months enough to return the original state before cultivation of the soil hydraulic conductivity and bulk density values. This publication has been supported by AGRARKLIMA.2 VKSZ_12-1-2013-0034 project.
Comparative study of texture of normal and energy reduced sponge cakes.
Baeva, M R; Panchev, I N; Terzieva, V V
2000-08-01
The complete sucrose elimination and its replacement by microencapsulated aspartame (Nutra Sweet) and bulking agents (sorbitol, wheat starch and wheat germ) on the physical and textural sensory characteristics of two diabetic sponge cakes against a control sponge cake was studied. Mathematical and statistical methods were used and regression models worked out, describing the physical and textural characteristics of the three sponge cakes and their values were optimized. The effect on the porosity, springiness, volume and shrinkage of sponge takes was substantial and depended on the amount of the added ingredients. The diabetic sponge cake containing wheat germ showed the least physical and sensory deviations against the control sponge cake. The energy value of the diabetic sponge cakes against the control one was reduced with 25% for the ordinary sponge cake without sucrose and with 29% for sponge cake without sucrose containing wheat germ.
Gugliuzza, Annarosa; Perrotta, Maria Luisa; Drioli, Enrico
2016-01-01
This work provides additional insights into the identification of operating conditions necessary to overcome a current limitation to the scale-up of the breath figure method, which is regarded as an outstanding manufacturing approach for structurally ordered porous films. The major restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of polymeric solutions are properly managed to generate honeycomb membranes with a long-range structurally ordered texture. Water uptake and dynamics are explored as chemical environments are changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation. In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in combination with alcohols at different chain length extents and a traditional polymer such as the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in the bulk of composite solutions are explored and examined in relation to competitive droplet nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric mixture. The experimental findings confirm the consistency of the approach and are expected to give propulsion to the commercially production of breath figures films shortly. PMID:27196938
Gugliuzza, Annarosa; Perrotta, Maria Luisa; Drioli, Enrico
2016-05-16
This work provides additional insights into the identification of operating conditions necessary to overcome a current limitation to the scale-up of the breath figure method, which is regarded as an outstanding manufacturing approach for structurally ordered porous films. The major restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of polymeric solutions are properly managed to generate honeycomb membranes with a long-range structurally ordered texture. Water uptake and dynamics are explored as chemical environments are changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation. In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in combination with alcohols at different chain length extents and a traditional polymer such as the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in the bulk of composite solutions are explored and examined in relation to competitive droplet nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric mixture. The experimental findings confirm the consistency of the approach and are expected to give propulsion to the commercially production of breath figures films shortly.
NASA Astrophysics Data System (ADS)
Holt, S. J.; Carey, R.; Houghton, B. F.; Orr, T. R.; McPhie, J.
2015-12-01
The early phases of the ongoing eruption of Pu`u `Ō`ō in the East Rift Zone (ERZ) of Kīlauea on Hawai`i provide a unique opportunity to study the vesicle microtexture of tephra from five high (≥200m) Hawaiian fountaining events, from a single vent, over a prolonged period of time. The high Hawaiian fountains erupted at Pu`u `Ō`ō varied in height from 200 m up to a maximum of 467 m, during which the shallow conduit at Pu`u `Ō`ō remained stable. We conducted microtextural analysis of pyroclasts from five high (264 to 391 m) Hawaiian fountaining episodes at Kīlauea, Episodes 32, 37, 40, 44 and 45, erupted from the Pu`u `Ō`ō vent between 1985 and 1986 in order to constrain the parameters that lead to large variations in fountain height of Hawaiian fountains at Pu`u `Ō`ō. Our results show that pyroclasts from a single episode can vary greatly in texture (from bubbly to foamy) and have vesicle volume densities (Nmv) that vary by an order of magnitude. This range in vesicle texture and population is due to extensive growth and coalescence of vesicles within the eruption jet post-fragmentation, resulting in the observed vesicle texture not being wholly indicative of the syn-fragmentation vesicle population. Only four pyroclasts were found to have textures that are interpreted to be indicative of the vesicle population at the moment of fragmentation, all of which have bubbly texture, high density, high Nmv, and low vesicle-to-melt ratio (VG/VL). Due to the paucity of pyroclasts representative of syn-eruption vesiculation processes, comparison of shallow conduit dynamics across episodes can only be qualitative observations, which suggest the ascending melt is thermally and mechanically heterogeneous on a small scale during Hawaiian-style fountaining. This highlights the importance for detailed micro-scale qualitative textural observations on pyroclasts with end-member densities, as well as modal densities, when carrying out vesicle microtexture analysis. This will ensure that a sufficient number of pyroclasts with textures representative of the syn-fragmentation vesicle population are identified, in order to carry out quantitative comparisons across episodes.
NASA Astrophysics Data System (ADS)
Dicken, Matthew J.; Diest, Kenneth; Park, Young-Bae; Atwater, Harry A.
2007-03-01
We have investigated the growth of barium titanate thin films on bulk crystalline and amorphous substrates utilizing biaxially oriented template layers. Ion beam-assisted deposition was used to grow thin, biaxially textured, magnesium oxide template layers on amorphous and silicon substrates. Growth of highly oriented barium titanate films on these template layers was achieved by molecular beam epitaxy using a layer-by-layer growth process. Barium titanate thin films were grown in molecular oxygen and in the presence of oxygen radicals produced by a 300 W radio frequency plasma. We used X-ray and in situ reflection high-energy electron diffraction (RHEED) to analyze the structural properties and show the predominantly c-oriented grains in the films. Variable angle spectroscopic ellipsometry was used to analyze and compare the optical properties of the thin films grown with and without oxygen plasma. We have shown that optical quality barium titanate thin films, which show bulk crystal-like properties, can be grown on any substrate through the use of biaxially oriented magnesium oxide template layers.
Deformation Behavior and TExture Evolution of Steel Alloys under Axial-Torsional Loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siriruk, A.; Kant, M.; Penumadu, D.
2011-06-01
Using hollow cylinder samples with suitable geometry obtained from round bar stock, the deformation behavior of bcc Fe based 12L14 steel alloy is evaluated under multi-axial conditions. A stacked strain gage rosette and extensometer mounted on the cylindrical surface at the mid height of the specimen provided strain tensor as a function of applied stress for pure tensile and torsion tests prior to yielding. This study examines elastic and yield behavior and effects of these with respect to texture evolution. Hollow cylinder specimen geometry (tubes) with small wall thickness and relatively (to its thickness) large inner diameter is used. Themore » variation of observed yield surface in deviatoric plane and the effect on mode of deformation (tension versus torsion versus its combination) on stress-strain behavior is discussed. Bulk texture was studied using neutron time-of-flight diffractometer at High-Pressure-Preferred Orientation (HIPPO) - Los Alamos Neutron Science Center (LANSCE) instrument and the evolution of texture and related anisotropy for pure tension versus torsion are also included.« less
Laser ultrasonics for bulk-density distribution measurement on green ceramic tiles
NASA Astrophysics Data System (ADS)
Revel, G. M.; Cavuto, A.; Pandarese, G.
2016-10-01
In this paper a Laser Ultrasonics (LUT) system is developed and applied to measure bulk density distribution of green ceramic tiles, which are porous materials with low heat conductivity. Bulk density of green ceramic bodies is a fundamental parameter to be kept under control in the industrial production of ceramic tiles. The LUT system proposed is based on a Nd:YAG pulsed laser for excitation and an air-coupled electro-capacitive transducer for detection. The paper reports experimental apparent bulk-density measurements on white ceramic bodies after a calibration procedures. The performances observed are better than those previously achieved by authors using air-coupled ultrasonic probes for both emission and detection, allowing to reduce average uncertainty down to about ±6 kg/m3 (±0.3%), thanks to the increase in excitation efficiency and lateral resolution, while maintaining potential flexibility for on-line application. The laser ultrasonic procedure proposed is available for both on-line and off-line application. In this last case it is possible to obtain bulk density maps with high spatial resolution by a 2D scan without interrupting the production process.
Starting a European Space Agency Sample Analogue Collection for Robotic Exploration Missions
NASA Astrophysics Data System (ADS)
Smith, C. L.; Mavris, C.; Michalski, J. R.; Rumsey, M. S.; Russell, S. S.; Jones, C.; Schroeven-Deceuninck, H.
2015-12-01
The Natural History Museum is working closely with the European Space Agency (ESA) and the UK Space Agency to develop a European collection of analogue materials with appropriate physical/mechanical and chemical (mineralogical) properties which can support the development and verification of both spacecraft and scientific systems for potential science and exploration missions to Phobos/Deimos, Mars, C-type asteroids and the Moon. As an ESA Collection it will be housed at the ESA Centre based at Harwell, UK. The "ESA Sample Analogues Collection" will be composed of both natural and artificial materials chosen to (as closely as possible) replicate the surfaces and near-surfaces of different Solar System target bodies of exploration interest. The analogue samples will be fully characterised in terms of both their physical/mechanical properties (compressive strength, bulk density, grain shape, grain size, cohesion and angle of internal friction) and their chemical/mineralogical properties (texture, modal mineralogy, bulk chemical composition - major, minor and trace elements and individual mineralogical compositions). The Collection will be fully curated to international standards including implementation of a user-friendly database and will be available for use by engineers and scientists across the UK and Europe. Enhancement of the initial Collection will be possible through collaborations with other ESA and UK Space Agency supported activities, such as the acquisition of new samples during field trials.
Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Shiratsuyu, Kousuke; Sakabe, Yukio
2007-12-01
Abstract-The high-power piezoelectric characteristics in h001i oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi(2)Nb(2)O(9) (SBN), (Bi,La)(4)Ti(3)O(12) (BLT), and CaBi(4)Ti(4)O(15) (CBT), were studied by a constant voltage driving method. These textured ceramics were fabricated by a templated grain growth (TGG) method, and their Lotgering factors were 95%, 97%, and 99%, respectively. The vibration velocities of the longitudinal mode (33-mode) increased proportionally to an applied electric field up to 2.5 m/s in these textured BLSF ceramics, although, the vibration velocity of the 33-mode was saturated at more than 1.0 m/s in the Pb(Mn,Nb)O(3)-PZT ceramics. The resonant frequencies were constant up to the vibration velocity of 2.5 m/s in the SBN and CBT textured ceramics; however, the resonant frequency decreased with increasing over the vibration velocity of 1.5 m/s in the BLT textured ceramics. The dissipation power density of the BLT was almost the same as that of the Pb(Mn,Nb)O(3)-PZT ceramics. However, the dissipation power densities of the SBN and CBT were lower than those of the BLT and Pb(Mn,Nb)O(3)-PZT ceramics. The textured SBN and CBT ceramics are good candidates for high-power piezoelectric applications.
Mn-Cr isotopic systematics of Chainpur chondrules and bulk ordinary chondrites
NASA Technical Reports Server (NTRS)
Nyquist, L.; Lindstrom, D.; Wiesmann, H.; Bansal, B.; Shih, C.-Y.; Mittlefehldt, D.; Martinez, R.; Wentworth, S.
1994-01-01
We report on ongoing study of the Mn-Cr systematics of individual Chainpur (LL3.4) chondrules and compare the results to those for bulk ordinary chondrites. Twenty-eight chondrules were surveyed for abundances of Mn, Cr, Na, Fe, Sc, Hf, Ir, and Zn by INAA. Twelve were chosen for SEM/EDX and high-precision Cr-isotopic studies on the basis of LL-chondrite-normalized Mn(LL), Sc(LL), (Mn/Fe)(LL), and (Sc/Fe)(LL) as well as their Mn/Cr ratios. Classification into textural types follows from SEM/EDX examination of interior surfaces.
Optical and electrical properties of ion beam textured Kapton and Teflon
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Sovey, J. S.
1977-01-01
Results are given for ion beam texturing of polyimide (Kapton) and fluorinated ethylene propylene (Teflon) by means of a 30-cm diam electron bombardment argon ion source. Ion beam-textured Kapton and Teflon surfaces are evaluated for various beam energies, current densities, and exposure times. The optical properties and sheet resistance are measured after each exposure. Provided in the paper are optical spectral data, resistivity measurements, calculated absorptance and emittance measurements, and surface structure SEM micrographs for various exposures to argon ions. It is found that Kapton becomes conducting and Teflon nonconducting when ion beam-textured. Textured Kapton exhibits large changes in the transmittance and solar absorptance, but only slight changes in reflectance. Surface texturing of Teflon may allow better adherence of subsequent sputtered metallic films for a high absorptance value. The results are valuable in spacecraft charging applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rother, Gernot; Vlcek, Lukas; Gruszkiewicz, Miroslaw
2014-01-01
Adsorption of supercritical CO2 in nanoporous silica aerogel was investigated by a combination of experiments and molecular-level computer modeling. High-pressure gravimetric and vibrating tube densimetry techniques were used to measure the mean pore fluid density and excess sorption at 35 C and 50 C and pressures of 0-200 bar. Densification of the pore fluid was observed at bulk fluid densities below 0.7 g/cm3. Far above the bulk fluid density, near-zero sorption or weak depletion effects were measured, while broad excess sorption maxima form in the vicinity of the bulk critical density region. The CO2 sorption properties are very similar formore » two aerogels with different bulk densities of 0.1 g/cm3 and 0.2 g/cm3, respectively. The spatial distribution of the confined supercritical fluid was analyzed in terms of sorption- and bulk-phase densities by means of the Adsorbed Phase Model (APM), which used data from gravimetric sorption and small-angle neutron scattering experiments. To gain more detailed insight into supercritical fluid sorption, large-scale lattice gas GCMC simulations were utilized and tuned to resemble the experimental excess sorption data. The computed three-dimensional pore fluid density distributions show that the observed maximum of the excess sorption near the critical density originates from large density fluctuations pinned to the pore walls. At this maximum, the size of these fluctuations is comparable to the prevailing pore sizes.« less
Häberle, Lothar; Hack, Carolin C; Heusinger, Katharina; Wagner, Florian; Jud, Sebastian M; Uder, Michael; Beckmann, Matthias W; Schulz-Wendtland, Rüdiger; Wittenberg, Thomas; Fasching, Peter A
2017-08-30
Tumors in radiologically dense breast were overlooked on mammograms more often than tumors in low-density breasts. A fast reproducible and automated method of assessing percentage mammographic density (PMD) would be desirable to support decisions whether ultrasonography should be provided for women in addition to mammography in diagnostic mammography units. PMD assessment has still not been included in clinical routine work, as there are issues of interobserver variability and the procedure is quite time consuming. This study investigated whether fully automatically generated texture features of mammograms can replace time-consuming semi-automatic PMD assessment to predict a patient's risk of having an invasive breast tumor that is visible on ultrasound but masked on mammography (mammography failure). This observational study included 1334 women with invasive breast cancer treated at a hospital-based diagnostic mammography unit. Ultrasound was available for the entire cohort as part of routine diagnosis. Computer-based threshold PMD assessments ("observed PMD") were carried out and 363 texture features were obtained from each mammogram. Several variable selection and regression techniques (univariate selection, lasso, boosting, random forest) were applied to predict PMD from the texture features. The predicted PMD values were each used as new predictor for masking in logistic regression models together with clinical predictors. These four logistic regression models with predicted PMD were compared among themselves and with a logistic regression model with observed PMD. The most accurate masking prediction was determined by cross-validation. About 120 of the 363 texture features were selected for predicting PMD. Density predictions with boosting were the best substitute for observed PMD to predict masking. Overall, the corresponding logistic regression model performed better (cross-validated AUC, 0.747) than one without mammographic density (0.734), but less well than the one with the observed PMD (0.753). However, in patients with an assigned mammography failure risk >10%, covering about half of all masked tumors, the boosting-based model performed at least as accurately as the original PMD model. Automatically generated texture features can replace semi-automatically determined PMD in a prediction model for mammography failure, such that more than 50% of masked tumors could be discovered.
Yu, Xinxiao; Zhao, Yutao; Zhang, Zhiqiang; Cheng, Genwei
2003-01-01
Dark coniferous forest is the predominant type of vegetation in the upper reaches of Yangtze River. Difference among different types of soil exists. The sand content of soil is higher and the soil texture is coarser in the early stage of forest succession. The sand content of soil decreases with the advancement of the forest succession while that of soil in Abies fabri over-mature forest is the lowest. In slope wash soil, the sand content of soil decreases with the increasing soil depth. The soil porosity and soil water-holding capacity increases and soil bulk density decreases with the advancement of forest succession and decrease of soil depth. The deeper soil depth or the smaller soil water content are, the smaller the unsaturated hydraulic conductivity of soil measured by CGA method. Moreover, the correlation of soil water content with unsaturated hydraulic conductivity of soil can be simulated by an exponential function. The saturated hydraulic conductivity of soil decreases exponentially with the increasing soil depth. The time to attain the stable infiltration rate is different among different soil depth, while the deeper the soil depth is, the longer the time needs. The variation in soil texture, soil physical properties and the high infiltration rate of soil there implicated that there are scarce surface runoff, but abundant in subsurface flow, return flow and seepage, which is the result of regulation by dark coniferous forest on hydrological processes.
Simulating the Seismic Signal of Phase Transitions in the Deepest Mantle (Invited)
NASA Astrophysics Data System (ADS)
Walker, A.; Dobson, D. P.; Nowacki, A.; Wookey, J. M.; Forte, A. M.; Kendall, J. M.
2013-12-01
The discovery of the perovskite to post-perovskite phase transition in (Mg,Fe)SiO3 explains many of the seismic observations of the lowermost mantle including the presence of multiple seismic discontinuities and significant seismic anisotropy. However, the explanations of many detailed features remain elusive. The recent discovery of a topotactic relationship between the orientation of perovskite and post-perovskite crystals in a partially transformed analogue opens the possibility of texture inheritance through the phase transition [1]. This must be captured in simulations designed to explain the anisotropy of the lowermost mantle, especially those which link mantle dynamics with seismic observations. We have extended our previous work linking models of flow in the lowermost mantle with simulations of texture development and predictions of seismic anisotropy [2] to account for the topotaxy between perovskite and post-perovskite. In particular, we compare four cases: (1) As in [2], anisotropy is only generated in post-perovskite by dislocation mediated deformation dominated by one of a number of slip systems, phase transitions destroy texture and ferropericlase and perovskite dominated rocks are isotropic. (2) Although phase transitions destroy texture, ferropericlase and/or perovskite deform by dislocation motion permitting the generation of seismic anisotropy in warmer regions of the mantle where post-perovskite is unstable. We account for the possibility of the inversion of slip-system activities in ferropericlase at high pressure as suggested by models of dislocation motion based on atomic scale simulations [3]. (3) Allow texture development by dislocation motion in perovskite and post-perovskite and texture inheritance through phase transitions by the mechanism described in [1]. However, we assume that the bulk of the lower mantle deforms by a mechanism that does not lead to the development of texture and so begin the simulation from a random distribution of crystal orientations the first time the post-perovskite stability field is encountered for downward migrating packages of mantle. (4) Allow the bulk of the lower mantle to deform by dislocation creep such that material entering the lowermost mantle for the first time is already textured, allow this texture to be inherited and further modified by strain and phase transitions. These calculations show clear differences in global and local scale elastic anisotropy in the lowermost mantle between cases where texture is allowed to persist through the phase transitions and those where it is not. On a global scale and when radial anisotropy is imposed the inclusion of topotaxy results in a dramatic decrease in the strength of the degree two signal and better agreement between observations and the model for post-perovskite deformation where dislocations moving on (001) dominate. On a smaller scale we see potential signs of reflectors generated by a change in anisotropy between perovskite that has inherited a strong starting texture from post-perovskite and overlaying perovskite that has never undergone the phase transition. These observations suggest that the incorporation of texture inheritance will be an important feature of future models of anisotropy in the lowermost mantle. [1] Dobson et al. 2013 Nature Geosci. 6:575-578 [2] Walker et al. 2011 Gcubed. 12:Q10006 [3] Cordier et al. 2012 Nature 481:177-180
Seth Ex; Frederick Smith; Tara Keyser; Stephanie Rebain
2017-01-01
The Forest Vegetation Simulator Fire and Fuels Extension (FFE-FVS) is often used to estimate canopy bulk density (CBD) and canopy base height (CBH), which are key indicators of crown fire hazard for conifer stands in the Western United States. Estimated CBD from FFE-FVS is calculated as the maximum 4 m running mean bulk density of predefined 0.3 m thick canopy layers (...
In Situ Observations of Crystallization in Water-Undersaturated Pegmatite Liquids
NASA Astrophysics Data System (ADS)
Sirbescu, M. L. C.; Wilke, M.; Gehrmann, S.; Schmidt, C.
2014-12-01
Crystallization behavior of water-undersaturated haplogranite-Li-B-H2O melts was observed and recorded in diamond anvil cell (DAC) experiments. We have generated salient pegmatitic features such as coarse and zoned crystals; comb and radiating textures; and graphic intergrowths from moderately-fluxed granitic melts in the absence of a hydrous phase. The experimental conditions placed the hydrous melt under variable degrees of undercooling between their liquidus and glass transition. Undercooling of ~100-150°C below the liquidus produced crystals that reached 0.4 of cell diameter in less than one day. The starting material was a homogeneous glass with 2% Li2O, 4.6% B2O3, and 3.0 or 6.5% H2O synthesized in an internally heated pressure vessel at 1200°C and 400 MPa. The composition was selected to approximate bulk cores of Li-rich pegmatites. The crystallization temperature was dropped in 50°C intervals from 600°C to 400°C to simulate pegmatite cooling. Run duration was < 3.2 days. The pressure of ~150 to 450 MPa was generated isochorically, based on a preconfigured ratio of glass to void space (created by femtosecond laser drilling) included in the cell. The shift in the wavenumber of the ν3-SiO4Raman band of a chemically inert zircon crystal was used to determine pressure as a function of temperature. Reproducible phase assemblages were documented using Raman spectroscopy and EPMA. Virgilite (solid solution between SiO2 and LiAlSi2O6) nucleated at T≤600°C. Alkali-feldspar and muscovite nucleated at T≤550°C. Virgilite and alkali-feldspar nucleated heterogeneously on surfaces of zircon, gasket, and diamond windows (see attached figure), whereas muscovite nucleated homogeneously. Development of pegmatite texture was facilitated by the relatively low nucleation density at P of ~300 to 400 MPa. Radically higher nucleation density at an estimated P of <2.5 GPa led to an equigranular, fine-grained texture. Time-lapse photography allowed for accurate growth-rate measurements and demonstrated constant volumetric growth rate of unobstructed crystals at low to moderate fraction of crystallization. The DAC experiments complement prior kinetic studies conducted in 3 to 60 day-long time series runs in cold-seal vessels. This technique has a great potential for further applications in physical petrology.
Characterization of crystallographic properties of thin films using X-ray diffraction
NASA Astrophysics Data System (ADS)
Zoo, Yeongseok
2007-12-01
Silver (Ag) has been recognized as one of promising candidates in Ultra-Large Scale Integrated (ULSI) applications in that it has the lowest bulk electrical resistivity of all pure metals and higher electromigration resistance than other interconnect materials. However, low thermal stability on Silicon Dioxide (Si02) at high temperatures (e.g., agglomeration) is considered a drawback for the Ag metallization scheme. Moreover, if a thin film is attached on a substrate, its properties may differ significantly from that of the bulk, since the properties of thin films can be significantly affected by the substrate. In this study, the Coefficient of Thermal Expansion (CTE) and texture evolution of Ag thin films on different substrates were characterized using various analytical techniques. The experimental results showed that the CTE of the Ag thin film was significantly affected by underlying substrate and the surface roughness of substrate. To investigate the alloying effect for Ag meatallization, small amounts of Copper (Cu) were added and characterized using theta-2theta X-ray Diffraction (XRD) scan and pole figure analysis. These XRD techniques are useful for investigating the primary texture of a metal film, (111) in this study, which (111) is the notation of a specific plane in the orthogonal coordinate system. They revealed that the (111) textures of Ag and Ag(Cu) thin films were enhanced with increasing temperature. Comparison of texture profiles between Ag and Ag(Cu) thin films showed that Cu additions enhanced (111) texture in Ag thin films. Accordingly, the texture enhancement in Ag thin films by Cu addition was discussed. Strained Silicon-On-Insulator (SSOI) is being considered as a potential substrate for Complementary Metal-Oxide-Semiconductor (CMOS) technology since the induced strain results in a significant improvement in device performance. High resolution X-ray diffraction (XRD) techniques were used to characterize the perpendicular and parallel strains in SSOI layers. XRD diffraction profiles generated from the crystalline SSOI layer provided a direct measurement of the layer's strain components. In addition, it has demonstrated that the rotational misalignment between the layer and the substrate can be incorporated within the biaxial strain equations for epitaxial layers. Based on these results, the strain behavior of the SSOI layer and the relation between strained Si and SiO2 layers are discussed for annealed samples.
Volumes and bulk densities of forty asteroids from ADAM shape modeling
NASA Astrophysics Data System (ADS)
Hanuš, J.; Viikinkoski, M.; Marchis, F.; Ďurech, J.; Kaasalainen, M.; Delbo', M.; Herald, D.; Frappa, E.; Hayamizu, T.; Kerr, S.; Preston, S.; Timerson, B.; Dunham, D.; Talbot, J.
2017-05-01
Context. Disk-integrated photometric data of asteroids do not contain accurate information on shape details or size scale. Additional data such as disk-resolved images or stellar occultation measurements further constrain asteroid shapes and allow size estimates. Aims: We aim to use all the available disk-resolved images of approximately forty asteroids obtained by the Near-InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope together with the disk-integrated photometry and stellar occultation measurements to determine their volumes. We can then use the volume, in combination with the known mass, to derive the bulk density. Methods: We downloaded and processed all the asteroid disk-resolved images obtained by the Nirc2 that are available in the Keck Observatory Archive (KOA). We combined optical disk-integrated data and stellar occultation profiles with the disk-resolved images and use the All-Data Asteroid Modeling (ADAM) algorithm for the shape and size modeling. Our approach provides constraints on the expected uncertainty in the volume and size as well. Results: We present shape models and volume for 41 asteroids. For 35 of these asteroids, the knowledge of their mass estimates from the literature allowed us to derive their bulk densities. We see a clear trend of lower bulk densities for primitive objects (C-complex) and higher bulk densities for S-complex asteroids. The range of densities in the X-complex is large, suggesting various compositions. We also identified a few objects with rather peculiar bulk densities, which is likely a hint of their poor mass estimates. Asteroid masses determined from the Gaia astrometric observations should further refine most of the density estimates.
NASA Astrophysics Data System (ADS)
Hickson, D. C.; Boivin, A.; Daly, M. G.; Ghent, R. R.; Nolan, M. C.; Tait, K.; Cunje, A.; Tsai, C. A.
2017-12-01
Planetary radar is widely used to survey the Near-Earth Asteroid (NEA) population and can provide insight into target shapes, sizes, and spin states. The dual-polarization reflectivity is sensitive to surface roughness as well as material properties, specifically the real part of the complex permittivity, or dielectric constant. Knowledge of the behavior of the dielectric constant of asteroid regolith analogue material with environmental parameters can be used to inversely solve for such parameters, such as bulk density, from radar observations. In this study laboratory measurements of the complex permittivity of powdered aluminum oxide and dunite samples are performed in a low-pressure environment chamber using a coaxial transmission line from roughly 1 GHz to 8.5 GHz. The bulk densities of the samples are varied across the measurements by incrementally adding silica aerogel, a low-density material with a very low dielectric constant. This allows the alteration of the proportions of void space to solid particle grains to achieve microgravity-relevant porosities without significantly altering the dielectric properties of the powder sample. The data are then modeled using various electromagnetic mixing equations to characterize the change in dielectric constant with increasing volume fractions of void space (decreasing bulk density). Using spectral analogues as constraints on the composition of NEAs allows us to calculate the range in bulk densities in the near surface of NEAs that have been observed by planetary radar. Utilizing existing radar data from Arecibo Observatory we calculate the bulk density in the near-surface on (101955) Bennu, the target of NASA's OSIRIS-Rex mission, to be ρ = 1.27 ± 0.33 g cm-3 based on an average of the likely range in particle density and dielectric constant of the regolith material.
46 CFR 151.03-21 - Filling density.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Filling density. 151.03-21 Section 151.03-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-21 Filling density. The ratio, expressed as...
46 CFR 151.03-21 - Filling density.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Filling density. 151.03-21 Section 151.03-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-21 Filling density. The ratio, expressed as...
46 CFR 151.03-21 - Filling density.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Filling density. 151.03-21 Section 151.03-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-21 Filling density. The ratio, expressed as...
46 CFR 151.03-21 - Filling density.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Filling density. 151.03-21 Section 151.03-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-21 Filling density. The ratio, expressed as...
46 CFR 151.03-21 - Filling density.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Filling density. 151.03-21 Section 151.03-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-21 Filling density. The ratio, expressed as...
Method of fabricating low-dislocation-density epitaxially-grown films with textured surfaces
Li, Qiming; Wang, George T
2015-01-13
A method for forming a surface-textured single-crystal film layer by growing the film atop a layer of microparticles on a substrate and subsequently selectively etching away the microparticles to release the surface-textured single-crystal film layer from the substrate. This method is applicable to a very wide variety of substrates and films. In some embodiments, the film is an epitaxial film that has been grown in crystallographic alignment with respect to a crystalline substrate.
Paleomagnetism of a primitive achondrite parent body: The acapulcoite-lodranites
NASA Astrophysics Data System (ADS)
Schnepf, N. R.; Weiss, B. P.; Andrade Lima, E.; Fu, R. R.; Uehara, M.; Gattacceca, J.; Wang, H.; Suavet, C. R.
2014-12-01
Primitive achondrites are a recently recognized meteorite grouping with textures and compositions intermediate between unmelted meteorites (chondrites) and igneous meteorites (achondrites). Their existence demonstrates prima facie that some planetesimals only experienced partial rather than complete melting. We present the first paleomagnetic measurements of acapulcoite-lodranite meteorites to determine the existence and intensity of ancient magnetic fields on their parent body. Our paleomagnetic study tests the hypothesis that their parent body had an advecting metallic core, with the goal of providing one of the first geophysical constraints on its large-scale structure and the extent of interior differentiation. In particular, by analyzing samples whose petrologic textures require an origin on a partially differentiated body, we will be able to critically test a recent proposal that some achondrites and chondrite groups could have originated on a single body (Weiss and Elkins-Tanton 2013). We analyzed samples of the meteorites Acapulco and Lodran. Like other acapulcoites and lodranites, these meteorites are granular rocks containing large (~0.1-0.3 mm) kamacite and taenite grains along with similarly sized silicate crystals. Many silicate grains contain numerous fine (1-10 μm) FeNi metal inclusions. Our compositional measurements and rock magnetic data suggest that tetrataenite is rare or absent. Bulk paleomagnetic measurements were done on four mutually oriented bulk samples of Acapulco and one bulk sample of Lodran. Alternating field (AF) demagnetization revealed that the magnetization of the bulk samples is highly unstable, likely due to the large (~0.1-0.3 mm) interstitial kamacite grains throughout the samples. To overcome this challenge, we are analyzing individual ~0.2 mm mutually oriented silicate grains extracted using a wire saw micromill. Preliminary SQUID microscopy measurements of a Lodran silicate grain suggest magnetization stable to AF levels of at least 25-40 mT.
Manipulating topological states by imprinting non-collinear spin textures
Streubel, Robert; Han, Luyang; Im, Mi -Young; ...
2015-03-05
Topological magnetic states, such as chiral skyrmions, are of great scientific interest and show huge potential for novel spintronics applications, provided their topological charges can be fully controlled. So far skyrmionic textures have been observed in noncentrosymmetric crystalline materials with low symmetry and at low temperatures. We propose theoretically and demonstrate experimentally the design of spin textures with topological charge densities that can be tailored at ambient temperatures. Tuning the interlayer coupling in vertically stacked nanopatterned magnetic heterostructures, such as a model system of a Co/Pd multilayer coupled to Permalloy, the in-plane non-collinear spin texture of one layer can bemore » imprinted into the out-of-plane magnetised material. We observe distinct spin textures, e.g. vortices, magnetic swirls with tunable opening angle, donut states and skyrmion core configurations. We show that applying a small magnetic field, a reliable switching between topologically distinct textures can be achieved at remanence« less
Mechanical Properties and Microstructural Evolution of Variable-Plane-Rolled Mg-3Al-1Zn Alloy
NASA Astrophysics Data System (ADS)
Zhu, Rong; Bian, Cunjian; Wu, Yanjun
2017-04-01
The microstructural evolution and mechanical properties of AZ31 magnesium alloy produced by variable-plane rolling (VPR) were investigated. Two types of weak textures were formed: basal texture in odd pass and double-peak basal texture in even pass. Dynamic recrystallization (DRX) was observed during the VPR treatment, and the nucleation of grains during DRX was dependent on the coalescence of subgrains. Three types of twins were observed in the VPR treatment: {10-12} extension twins, {10-13} contraction twins and {10-11}-{10-12} double twins. The {10-11}-{10-12} double twinning is the underlying mechanism in the formation of the double-peak texture. Tensile testing revealed improved strength without loss of ductility. The Hall-Petch relationship can be used to describe the strengths in any even pass with the same texture. The significant strengthening is ascribed to the refined grain, twin boundaries, texture hardening, and high dislocation density.
NASA Astrophysics Data System (ADS)
Zheng, Dan; Cai, Zhen-bing; Shen, Ming-xue; Li, Zheng-yang; Zhu, Min-hao
2016-11-01
Tribological properties of graphene nanosheets (GNS) as lubricating oil additives on textured surfaces were investigated using a UMT-2 tribotester. The lubricating fluids keeping a constant temperature of 100 °C were applied to a GCr15 steel ball and an RTCr2 alloy cast iron plate with various texture designs (original surface, dimple density of 22.1%, 19.6% and 44.2%). The oil with GNS adding showed good tribological properties (wear reduced 50%), especially on the textured surfaces (the reduction in wear was high at over 90%). A combined effect between GNS additives and laser surface texturing (LST) was revealed, which is not a simple superposition of the two factors mentioned. A mechanism is proposed to explain for these results -the graphene layers sheared at the sliding contact interfaces, and form a protective film, which is closely related with the GNS structures and surface texture patterns.
NASA Astrophysics Data System (ADS)
Ancona, Antonio; Carbone, Giuseppe; De Filippis, Michele; Volpe, Annalisa; Lugarà, Pietro Mario
2014-12-01
Minimizing mechanical losses and friction in vehicle engines would have a great impact on reducing fuel consumption and exhaust emissions, to the benefit of environmental protection. With this scope, laser surface texturing (LST) with femtosecond pulses is an emerging technology, which consists of creating, by laser ablation, an array of high-density microdimples on the surface of a mechanical device. The microtexture decreases the effective contact area and, in case of lubricated contact, acts as oil reservoir and trap for wear debris, leading to an overall friction reduction. Depending on the lubrication regime and on the texture geometry, several mechanisms may concur to modify friction such as the local reduction of the shear stress, the generation of a hydrodynamic lift between the surfaces or the formation of eddy-like flows at the bottom of the dimple cavities. All these effects have been investigated by fabricating and characterizing several LST surfaces by femtosecond laser ablation with different features: partial/full texture, circular/elliptical dimples, variable diameters, and depths but equivalent areal density. More than 85% of friction reduction has been obtained from the circular dimple geometry, but the elliptical texture allows adjusting the friction coefficient by changing its orientation with respect to the sliding direction.
Numerosity but not texture-density discrimination correlates with math ability in children.
Anobile, Giovanni; Castaldi, Elisa; Turi, Marco; Tinelli, Francesca; Burr, David C
2016-08-01
Considerable recent work suggests that mathematical abilities in children correlate with the ability to estimate numerosity. Does math correlate only with numerosity estimation, or also with other similar tasks? We measured discrimination thresholds of school-age (6- to 12.5-years-old) children in 3 tasks: numerosity of patterns of relatively sparse, segregatable items (24 dots); numerosity of very dense textured patterns (250 dots); and discrimination of direction of motion. Thresholds in all tasks improved with age, but at different rates, implying the action of different mechanisms: In particular, in young children, thresholds were lower for sparse than textured patterns (the opposite of adults), suggesting earlier maturation of numerosity mechanisms. Importantly, numerosity thresholds for sparse stimuli correlated strongly with math skills, even after controlling for the influence of age, gender and nonverbal IQ. However, neither motion-direction discrimination nor numerosity discrimination of texture patterns showed a significant correlation with math abilities. These results provide further evidence that numerosity and texture-density are perceived by independent neural mechanisms, which develop at different rates; and importantly, only numerosity mechanisms are related to math. As developmental dyscalculia is characterized by a profound deficit in discriminating numerosity, it is fundamental to understand the mechanism behind the discrimination. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Active contours on statistical manifolds and texture segmentation
Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman
2005-01-01
A new approach to active contours on statistical manifolds is presented. The statistical manifolds are 2- dimensional Riemannian manifolds that are statistically defined by maps that transform a parameter domain onto a set of probability density functions. In this novel framework, color or texture features are measured at each image point and their statistical...
Andrew T. Hudak; Carol A. Wessman
1998-01-01
Transitions from grassland to shrubland through woody plant encroachment result in potentially significant shifts in savanna ecosystem function. Given high resolution imagery, a textural index could prove useful for mapping woody plant densities and monitoring woody plant encroachment across savanna landscapes. Spatial heterogeneity introduced through mixtures of...
Active contours on statistical manifolds and texture segmentaiton
Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman
2005-01-01
A new approach to active contours on statistical manifolds is presented. The statistical manifolds are 2- dimensional Riemannian manifolds that are statistically defined by maps that transform a parameter domain onto-a set of probability density functions. In this novel framework, color or texture features are measured at each Image point and their statistical...
A Permeable Active Amendment Concrete (PAAC) for Contaminant Remediation and Erosion Control
2012-06-01
124: 131 -143. SRNL-STI-2012-00356 70 Tessier, A., Campbell, P.G.C., and Bisson, M. 1979. Sequential extraction procedure for the speciation of...Bulk Density, Dry, (AI( C-D)]* p, pcf 134.85 Bulk Dens ity after Immersion, [BI(C-D)]* p, pcf 146.65 Bulk Density after Immersion & Boiling1 jCI (C
Highly alloyed Ni-W substrates for low AC loss applications
NASA Astrophysics Data System (ADS)
Gaitzsch, Uwe; Hänisch, Jens; Hühne, Ruben; Rodig, Christian; Freudenberger, Jens; Holzapfel, Bernhard; Schultz, Ludwig
2013-08-01
Cube texture formation has been studied in Ni-W alloys with a W content of 9 at.% and above. These alloys show a low magnetization at 77 K and below, and are therefore excellent candidates for use as substrates of coated conductors in AC applications. The application of a modified deformation and annealing sequence leads to a highly textured surface of Ni9W and Ni9.5W tapes with cube texture fractions above 96%. YBCO (YBa2Cu3O7-δ) layers obtained on these substrates using a standard buffer architecture showed a critical current density exceeding 1.5 MA cm-2 at 77 K, similar to those for films on commercial Ni5W tapes. In contrast, only a weak cube texture was achieved in Ni10W tapes. The rolling texture of this alloy showed a significantly increased Goss component, which could not be reduced by applying intermediate annealing treatments. The influence of this texture on the cube texture formation will be discussed in detail.
Huet, J; Druilhe, C; Trémier, A; Benoist, J C; Debenest, G
2012-06-01
This study aimed to experimentally acquire evolution profiles between depth, bulk density, Free Air Space (FAS), air permeability and thermal conductivity in initial composting materials. The impact of two different moisture content, two particle size and two types of bulking agent on these four parameters was also evaluated. Bulk density and thermal conductivity both increased with depth while FAS and air permeability both decreased with it. Moreover, depth and moisture content had a significant impact on almost all the four physical parameters contrary to particle size and the type of bulking agent. Copyright © 2012 Elsevier Ltd. All rights reserved.
Properties of medium-density fiberboard related to hardwood specific gravity
George E. Woodson
1976-01-01
Boards of acceptable quality were made from barky material, pressure-refined from 14 species of southern hardwoods. Static bending and tensile properties (parallel to surface) of specimens were negatively correlated to stem specific gravity (wood plus bark), chip bulk density, and fiber bulk density. Bending and tensile properties increased with increasing...
Bulk densities of materials from selected pine-site hardwoods
Clyde Vidrine; George E. Woodson
1982-01-01
Bulk densities of hardwood materials from low and high density species were determined for green and air-dry conditions. Materials consisted of whole-tree chips, bark-free chips, bark as collected from three types of debarkers (ring, rosser head, and drum debarkers) sawdust, planer shavings, flakes, logging residues, baled branchwood, steel-strapped firewood, and...
Soil water retention of a bare soil with changing bulk densities
USDA-ARS?s Scientific Manuscript database
Tillage changes the bulk density of the soil, lowering the density initially after which it increases as the soil settles. Implications of this for soil water content and soil water potential are obvious, but limited efforts have been made to monitor these changes continuously. We present in-situ me...
NASA Astrophysics Data System (ADS)
Hossain, Mohammad J.; Wang, Zhiyang; Khansur, Neamul H.; Kimpton, Justin A.; Oddershede, Jette; Daniels, John E.
2016-08-01
The electro-mechanical coupling mechanisms in polycrystalline ferroelectric materials, including a soft PbZrxTi1-xO3 (PZT) and lead-free 0.9375(Bi1/2Na1/2)TiO3-0.0625BaTiO3 (BNT-6.25BT), have been studied using a surface sensitive low-energy (12.4 keV) and bulk sensitive high-energy (73 keV) synchrotron X-ray diffraction with in situ electric fields. The results show that for tetragonal PZT at a maximum electric field of 2.8 kV/mm, the electric-field-induced lattice strain (ɛ111) is 20% higher at the surface than in the bulk, and non-180° ferroelectric domain texture (as indicated by the intensity ratio I002/I200) is 16% higher at the surface. In the case of BNT-6.25BT, which is pseudo-cubic up to fields of 2 kV/mm, lattice strains, ɛ111 and ɛ200, are 15% and 20% higher at the surface, while in the mixed tetragonal and rhombohedral phases at 5 kV/mm, the domain texture indicated by the intensity ratio, I 111 / I 11 1 ¯ and I002/I200, are 12% and 10% higher at the surface than in the bulk, respectively. The observed difference in the strain contributions between the surface and bulk is suggested to result from the fact that surface grains are not constrained in three dimensions, and consequently, domain reorientation and lattice expansion in surface grains are promoted. It is suggested that the magnitude of property difference between the surface and bulk is higher for the PZT than for BNT-6.25BT due to the level of anisotropy in the strain mechanism. The comparison of the results from different methods demonstrates that the intergranular constraints have a significant influence on the electric-field-induced electro-mechanical responses in polycrystalline ferroelectrics. These results have implications for the design of higher performance polycrystalline piezoelectrics.
Increasing the efficiency of organic solar cells by photonic and electrostatic-field enhancements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nalwa, Kanwar
2011-01-01
Organic photovoltaic (OPV) technology is an attractive solar-electric conversion paradigm due to the promise of low cost roll-to-roll production and amenability to flexible substrates. Power conversion efficiency (PCE) exceeding 7% has recently been achieved. OPV cells suffer from low charge carrier mobilities of polymers, leading to recombination losses, higher series resistances and lower fill-factors. Thus, it is imperative to develop fabrication methodologies that can enable efficient optical absorption in films thinner than optical absorption length. Active layers conformally deposited on light-trapping, microscale textured, grating-type surfaces is one possible approach to achieve this objective. In this study, 40% theoretical increase inmore » photonic absorption over flat OPVs is shown for devices with textured geometry by the simulation results. For verifying this theoretical result and improving the efficiency of OPVs by light trapping, OPVs were fabricated on grating-type textured substrates possessing t pitch and -coat PV active-layer on these textured substrates led to over filling of the valleys and shunts at the crest, which severely affected the performance of the resultant PV devices. Thus, it is established that although the optical design is important for OPV performance but the potential of light trapping can only be effectively tapped if the textures are amenable for realizing a conformal active layer. It is discovered that if the height of the underlying topographical features is reduced to sub-micron regime (e.g. 300 nm) and the pitch is increased to more than a micron (e.g. 2 μm), the textured surface becomes amenable to coating a conformal PV active-layer. The resultant PV cells showed 100% increase in average light absorption near the band edge due to trapping of higher wavelength photons, and 20% improvement in power conversion efficiency as compared with the flat PV cell. Another factor that severely limits the performance of OPVs is recombination of charge carriers. Thus it becomes imperative to understand the effect of processing conditions such as spin coating speed and drying rate on defect density and hence induced carrier recombination mechanism. In this study, It is shown that slow growth (longer drying time) of the active-layer leads to reduction of sub-bandgap traps by an order of magnitude as compared to fast grown active-layer. By coupling the experimental results with simulations, it is demonstrated that at one sun condition, slow grown device has bimolecular recombination as the major loss mechanism while in the fast grown device with high trap density, the trap assisted recombination dominates. It has been estimated that non-radiative recombination accounts nearly 50% of efficiency loss in modern OPVs. Generally, an external bias (electric field) is required to collect all the photogenerated charges and thus prevent their recombination. The motivation is to induce additional electric field in otherwise low mobility conjugated polymer based active layer by incorporating ferroelectric dipoles. This is expected to facilitate singlet exciton dissociation in polymer matrix and impede charge transfer exciton (CTE) recombination at polymer:fullerene interface. For the first time, it is shown that the addition of ferroelectric dipoles to modern bulk heterojunction (BHJ) can significantly improve exciton dissociation, resulting in a ~50% enhancement of overall solar cell efficiency. The devices also exhibit the unique ferroelectric-photovoltaic effect with polarization-controlled power conversion efficiency.« less
NASA Astrophysics Data System (ADS)
Dolui, Kapildeb; Nikolić, Branislav K.
2017-12-01
Spin-memory loss (SML) of electrons traversing ferromagnetic-metal/heavy-metal (FM/HM), FM/normal-metal (FM/NM), and HM/NM interfaces is a fundamental phenomenon that must be invoked to explain consistently large numbers of spintronic experiments. However, its strength extracted by fitting experimental data to phenomenological semiclassical theory, which replaces each interface by a fictitious bulk diffusive layer, is poorly understood from a microscopic quantum framework and/or materials properties. Here we describe an ensemble of flowing spin quantum states using spin-density matrix, so that SML is measured like any decoherence process by the decay of its off-diagonal elements or, equivalently, by the reduction of the magnitude of polarization vector. By combining this framework with density functional theory, we examine how all three components of the polarization vector change at Co/Ta, Co/Pt, Co/Cu, Pt/Cu, and Pt/Au interfaces embedded within Cu/FM/HM/Cu vertical heterostructures. In addition, we use ab initio Green's functions to compute spectral functions and spin textures over FM, HM, and NM monolayers around these interfaces which quantify interfacial spin-orbit coupling and explain the microscopic origin of SML in long-standing puzzles, such as why it is nonzero at the Co/Cu interface; why it is very large at the Pt/Cu interface; and why it occurs even in the absence of disorder, intermixing and magnons at the interface.
Elephant Moraine 87521: The first lunar meteorite composed of predominantly mare material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, P.H.; Kallemeyn, G.W.
1989-12-01
The trace-element chemistry and detailed petrography of brecciated Antarctic meteorite EET87521 reveal that it is not, as originally classified, a eucrite. Its Fe/Mn ratio and bulk Co content are fair higher than expected for a eucrite. Only one known type of extraterrestrial material resembles EET87521 in all important respects for which constraints exist: very-low-Ti (VLT) lunar mare basalts. Even compared to VLT basalts, EET87521 is enriched in REE. However, other varieties of high-alumina, low-Ti mare basalt are known that contain REE at even higher concentrations than EET87521. Several clasts in EET87521 preserve clear vestiges of coarse-grained igneous, possibly orthocumulate, textures.more » Mineralogically, these coarse-grained clasts are diverse; e.g., olivine ranges from Fo{sub 15} in one to Fo{sub 67} in another. One clast with an anomalously fine-grained texture is anorthositic and contains exceptionally Mg-rich pyroxene and Na-poor plagioclase, along with the only FeNi-metal in the thin section. Its FeNi-metals have compositions typical of metals incorporated into lunar soils and polymict breccias as debris from metal-rich meteorites. However, the low Ni and Ir contents of our bulk-rock analysis imply that the proportion of impact-projectile matter in our chip sample is probably small. The moderate degree of lithologic diversity among the lithic lasts and the bulk composition in general indicate that EET87521 is dominated by a single rock type: VLT mare basalt.« less
Revised Thickness of the Lunar Crust from GRAIL Data: Implications for Lunar Bulk Composition
NASA Technical Reports Server (NTRS)
Taylor, G. Jeffrey; Wieczorek, Mark A.; Neumann, Gregory A.; Nimmo, Francis; Kiefer, Walter S.; Melosh, H. Jay; Phillips, Roger J.; Solomon, Sean C.; Andrews-Hanna, Jeffrey C.; Asmar, Sami W.;
2013-01-01
High-resolution gravity data from GRAIL have yielded new estimates of the bulk density and thickness of the lunar crust. The bulk density of the highlands crust is 2550 kg m-3. From a comparison with crustal composition measured remotely, this density implies a mean porosity of 12%. With this bulk density and constraints from the Apollo seismic experiment, the average global crustal thickness is found to lie between 34 and 43 km, a value 10 to 20 km less than several previous estimates. Crustal thickness is a central parameter in estimating bulk lunar composition. Estimates of the concentrations of refractory elements in the Moon from heat flow, remote sensing and sample data, and geophysical data fall into two categories: those with refractory element abundances enriched by 50% or more relative to Earth, and those with abundances the same as Earth. Settling this issue has implications for processes operating during lunar formation. The crustal thickness resulting from analysis of GRAIL data is less than several previous estimates. We show here that a refractory-enriched Moon is not required
NASA Astrophysics Data System (ADS)
Ding, R.; Cruz, L.; Whitney, J.; Telenko, D.; Oware, E. K.
2017-12-01
There is the growing need for the development of efficient irrigation management practices due to increasing irrigation water scarcity as a result of growing population and changing climate. Soil texture primarily controls the water-holding capacity of soils, which determines the amount of irrigation water that will be available to the plant. However, while there are significant variabilities in the textural properties of the soil across a field, conventional irrigation practices ignore the underlying variability in the soil properties, resulting in over- or under-irrigation. Over-irrigation leaches plant nutrients beyond the root-zone leading to fertilizer, energy, and water wastages with dire environmental consequences. Under-irrigation, in contrast, causes water stress of the plant, thereby reducing plant quality and yield. The goal of this project is to leverage soil textural map of a field to create water management zones (MZs) to guide site-specific precision irrigation. There is increasing application of electromagnetic induction methods to rapidly and inexpensively map spatially continuous soil properties in terms of the apparent electrical conductivity (ECa) of the soil. ECa is a measure of the bulk soil properties, including soil texture, moisture, salinity, and cation exchange capacity, making an ECa map a pseudo-soil map. Data for the project were collected from a farm site at Eden, NY. The objective is to leverage high-resolution ECa map to predict spatially dense soil textural properties from limited measurements of soil texture. Thus, after performing ECa mapping, we conducted particle-size analysis of soil samples to determine the textural properties of soils at selected locations across the field. We cokriged the high-resolution ECa measurements with the sparse soil textural data to estimate a soil texture map for the field. We conducted irrigation experiments at selected locations to calibrate representative water-holding capacities of each estimated soil textural unit. Estimated soil units with similar water-holding characteristics were merged to create sub-field water MZs to guide precision irrigation of each MZ, instructed by each MZ's calibrated water-holding properties.
High Tc YBCO superconductor deposited on biaxially textured Ni substrate
Budai, John D.; Christen, David K.; Goyal, Amit; He, Qing; Kroeger, Donald M.; Lee, Dominic F.; List, III, Frederick A.; Norton, David P.; Paranthaman, Mariappan; Sales, Brian C.; Specht, Eliot D.
1999-01-01
A superconducting article includes a biaxially-textured Ni substrate, and epitaxial buffer layers of Pd (optional), CeO.sub.2 and YSZ, and a top layer of in-plane aligned, c-axis oriented YBCO having a critical current density (J.sub.c) in the range of at least 100,000 A/cm.sup.2 at 77 K.
Healey, D.L.
1971-01-01
Gravity observations were made on the ground surface and at a depth of 5,854 feet in drill hole UA-1. Two attempts to measure the free-air gradient utilizing the headframe over the drill hole were unsuccessful owing to mechanical vibrations in the structure. Because of the uncertainty in the measured free-air gradients these values were discarded and the average value (0.09406 mgal/ft) was used in the calculations. The calculated in situ bulk density is 2.36 g/cc. The weighted average bulk density determined from 47 core samples taken in the adjacent UAE-1 drill hole is also 2.36 g/cc. An analysis of selected portions of density logs provides an in situ bulk density of 2.37 g/cc.
Measurements and tests of HTS bulk material in resistive fault current limiters
NASA Astrophysics Data System (ADS)
Noe, M.; Juengst, K.-P.; Werfel, F. N.; Elschner, S.; Bock, J.; Wolf, A.; Breuer, F.
2002-08-01
The application of superconducting fault current limiters (SCFCL) depends highly on their technical and economical benefits. Therefore it is obvious that the main requirements on the SCFCL are a reliable, fail-safe and rapid current limitation, low losses, and an inexpensive production. As a potential candidate material we have investigated HTS bulk material in resistive fault current limiters. Our report focuses on the E- j-curves, the AC-losses and the quench behaviour of melt cast processed-BSCCO 2212 and melt textured polycrystalline-YBCO 123. Within a temperature range from 64 to 80 K E- j-curves and AC losses of HTS elements were measured. The measurement results show that HTS bulk material meets the SCFCL specifications. In order to avoid hot spots during limitation and to improve mechanical stability a metallic bypass is needed. First test results of the quench behaviour of HTS bulk material with metallic bypass demonstrate safe limitation up to the specified electrical field of 100 V/m.
Petrology of the Indian Eucrite Piplia Kalan
NASA Technical Reports Server (NTRS)
Buchanan, Paul C.; Mittlefehldt, D. W.; Hutchinson, R.; Koeberl, C.; Lindstrom, D. J.; Pandit, M. K.
1999-01-01
Piplia Kalan is an equilibrated eucrite consisting of 60-80 vol.% lithic clasts in a subordinate brecciated matrix. Ophitic/subophitic lithic clasts fall into two groups: finer-grained lithology A and coarser-grained lithology B. Very fine-grained clasts (lithology C) also occur and originally were hypocrystalline in texture. The variety of materials represented in Piplia Kalan suggests cooling histories ranging from quenching or fast crystallization to slower crystallization. Despite textural differences, clasts and matrix have similar mineral and bulk compositions. Thus. Piplia Kalan is probably best classified as a genomict breccia that could represent fragments of a single lava flow or shallow intrusive body, including fine-grained or glassy outer margin and more slowly cooled coarser-grained interior. Piplia Kalan displays evidence of an early shock event, including brecciated matrix and areas of lithic clasts that contain fine-grained, equigranular pyroxene between deformed feldspar laths. The meteorite also displays evidence of at least one episode of thermal metamorphism: hypocrystalline materials are recrystallized to hornfelsic textures and the matrix has a nonporous texture similar to those of eucrites that were affected by post-brecciation heating. Veins of brown glass transect both lithic clasts and brecciated matrix and indicate a second, post-metamorphism shock event.
XPEEM valence state imaging of mineral micro-intergrowths with a spatial resolution of 100nm
NASA Astrophysics Data System (ADS)
Smith, A. D.; Schofield, P. F.; Scholl, A.; Pattrick, R. A. D.; Bridges, J. C.
2003-03-01
The crystal chemistry and textural relationships of minerals hold a vast amount of information relating to the formation, history and stability of natural materials. The application of soft X-ray spectroscopy to mineralogical material has revealed that 2p (L{2,3}) spectra provide a sensitive fingerprint of the electronic states of 3d metals. In bulk powdered samples much of the textural and microstructural information is lost, but the area-selectivity capability of X-ray Photo-Emission Electron Microscopy (XPEEM) provides the ability to obtain valence state information from mineral intergrowths with a submicron spatial resolution. Using the state-of-the-art PEEM2 facility on beamline 7.3.1.1 at the Advanced Light Source, Berkeley, USA, a range of minerals, mineral intergrowths and mineralogical textures have been studied for a broad suite of geological, planetary and environmental science materials. High-quality, multi-element valence images have been obtained showing the distribution/variation of the metal valence states across single grains or mineral intergrowths/textures at the l00 nm scale and quantitative valence state ratios can be obtained from areas of 0.01 μ m^2.
The effects of phase on the perception of 3D shape from texture: psychophysics and modeling.
Thaler, Lore; Todd, James T; Dijkstra, Tjeerd M H
2007-02-01
Two experiments are reported in which observers judged the apparent shapes of elliptical cylinders with eight different textures that were presented with scrambled and unscrambled phase spectra. The results revealed that the apparent depths of these surfaces varied linearly with the ground truth in all conditions, and that the overall magnitude of surface relief was systematically underestimated. In general, the apparent depth of a surface is significantly attenuated when the phase spectrum of its texture is randomly scrambled, though the magnitude of this effect varies for different types of texture. A new computational model of 3D shape from texture is proposed in which apparent depth is estimated from the relative density of edges in different local regions of an image, and the predictions of this model are highly correlated with the observers' judgments.
Trace element distributions in primitive achondrites
NASA Technical Reports Server (NTRS)
Davis, Andrew M.; Prinz, Martin; Weisberg, Michael K.
1993-01-01
The primitive achondrites have approximately chondritic bulk chemical composition but achondritic textures. Clayton et al. show that nine of these meteorites, the acapulcoites and the lodranites, have similar oxygen isotopic compositions. The acapulcoites appear to be highly metamorphosed, but undifferentiated meteorites of chondritic composition; whereas, the lodranites appear to have lost a feldspathic partial melt. In order to learn more about metamorphic processes and partial melt removal, we have measured the trace element compositions of constituent phases of a number of primitive achondrites by ion microprobe. We have analyzed two acapulcoites, Acapulco and ALH81261 (paired with ALH77081), and three londranites, Lodran, LEW88280, and MAC88177. In addition, we analyzed LEW88663, which has the bulk composition, mineral chemistry, and oxygen isotopic composition of L-chondrites, but is metal-free and has an achondrite texture; and Divnoe, a plagioclase-poor, olivine-rich primitive achondrite with an oxygen isotopic composition similar to that of the group IAB iron meteorites. These meteorites show a variety of REE patterns in their constituent phases, and there are consistent differences between acapulcoites and lodranites that are consistent with removal of a LREE- and Eu-enriched melt that is apparently responsible for the low plagioclase content of lodranites.
Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit
2001-01-01
A multi-domained bulk REBa.sub.2 Cu.sub.3 O.sub.x with low-angle domain boundaries which resembles a quasi-single domained material and a method for producing the same comprising arranging multiple seeds, which can be small single crystals, single domained melt-textured REBa.sub.2 Cu.sub.3 O.sub.x pieces, textured substrates comprised of grains with low misorientation angles, or thick film REBa.sub.2 Cu.sub.3 O.sub.x deposited on such textured substrate, such seeds being tailored for various REBa.sub.2 Cu.sub.3 O.sub.x compounds, in specific pattern and relative seed orientations on a superconductor precursor material which may be placed in contact with a porous substrate so as to reduce the amount of liquid phase in the melt. Because seeds can be arranged in virtually any pattern, high quality REBa.sub.2 Cu.sub.3 O.sub.x elements of virtually unlimited size and complex geometry can be fabricated.
Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit
2002-01-01
A multi-domained bulk REBa.sub.2 CU.sub.3 O.sub.x with low-angle domain boundaries which resemble a quasi-single domained material and a method for producing the same comprising arranging multiple seeds, which can be small single crystals, single domained melt-textured REBa.sub.2 CU.sub.3 O.sub.x pieces, textured substrates comprises of grains with low misorientation angles, or thick film REBa.sub.2 CU.sub.3 O.sub.x deposited on such textured substrate, such seeds being tailored for various REBa.sub.2 CU.sub.3 O.sub.x compounds, in specific pattern and relative seed orientations on a superconductor precursor material which may be placed in contact with a porous substrate so as to reduce the amount of liquid phase in the melt. Because seeds can be arranged in virtually any pattern, high quality REBa.sub.2 CU.sub.3 O.sub.x elements of virtually unlimited size and complex geometry can be fabricated.
NASA Astrophysics Data System (ADS)
McFarlane, K. J.; Torn, M. S.; Hanson, P. J.; Swanston, C.; Guilderson, T. P.; Porras, R. C.
2009-12-01
Forest soils represent a significant pool for C sequestration and storage, but the factors controlling soil C cycling are not well constrained. We used density fractionation and radiocarbon measurements to assess differences in soil C cycling amongst four eastern deciduous forests that are part of the AmeriFlux Network and vary in climate, soil type, parent material, and soil ecology. We collected mineral soil from 0-5 cm and 5-15 cm depth at Harvard Forest (HAF) in central Massachusetts, Bartlett Experimental Forest (BEF) in New Hampshire, the University of Michigan Biological Station (UMBS), and Baskett Wildlife Recreation and Education Area in the Missouri Ozarks (MOZ). Deeper soil samples have been collected (to 75 cm in some cases) for future analysis. We fractionated soil samples by density into free light (unprotected SOM), occluded light (physically protected SOM), and dense (mineral-protected) fractions using sodium polytungstate (1.65 g ml-1), measured C concentration and radiocarbon in bulk soil and fractions, and used a three-pool steady-state model to determine radiocarbon-based turnover times for fractions. The northeastern sites, HAF and BEF, had higher bulk soil C (65 and 40 g C kg soil-1, respectively) than did MOZ or UMBS (20 and 10 g C kg soil-1). Bulk soil radiocarbon values (Δ14C) decreased with depth and were lower at northeastern sites than Midwestern sites (36, 8, 113, and 65 ‰ for 0-5 cm at HF, BEF, MOZ, and UMBS, respectively). Soil C distribution amongst fractions was similar at HAF, BEF, and MOZ with the unprotected free light fraction containing about 40% of bulk soil C for 0-5 cm and 20% of bulk soil C for 5-15 cm. At these three sites, the physically protected occluded light fraction contained about 10% of bulk soil C, with the mineral-protected dense fraction containing the remaining 50-70%. In contrast, UMBS, the site with the sandiest soil, had a greater portion of bulk soil C recovered in the unprotected free light fraction and very little C recovered in the occluded light fraction. Radiocarbon-based SOM turnover times for the sites suggest that soil carbon pools in all three fractions turn over much more quickly at MOZ, the warmest site, than at the other sites. In addition, turnover times for free and occluded light fractions were slower at UMBS and BEF, the coolest sites, than at HAF and MOZ. These results suggest that soil type and climate interact to control soil organic matter cycling. Specifically, soil organic matter decomposition is slower in cooler than in warmer climates and there is more physically protected C in soils of finer texture, at least at the scale encompassed by our study. Acknowledgments This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231.
NASA Astrophysics Data System (ADS)
Keller, Brad M.; Gastounioti, Aimilia; Batiste, Rebecca C.; Kontos, Despina; Feldman, Michael D.
2016-03-01
Visual characterization of histologic specimens is known to suffer from intra- and inter-observer variability. To help address this, we developed an automated framework for characterizing digitized histology specimens based on a novel application of color histogram and color texture analysis. We perform a preliminary evaluation of this framework using a set of 73 trichrome-stained, digitized slides of normal breast tissue which were visually assessed by an expert pathologist in terms of the percentage of collagenous stroma, stromal collagen density, duct-lobular unit density and the presence of elastosis. For each slide, our algorithm automatically segments the tissue region based on the lightness channel in CIELAB colorspace. Within each tissue region, a color histogram feature vector is extracted using a common color palette for trichrome images generated with a previously described method. Then, using a whole-slide, lattice-based methodology, color texture maps are generated using a set of color co-occurrence matrix statistics: contrast, correlation, energy and homogeneity. The extracted features sets are compared to the visually assessed tissue characteristics. Overall, the extracted texture features have high correlations to both the percentage of collagenous stroma (r=0.95, p<0.001) and duct-lobular unit density (r=0.71, p<0.001) seen in the tissue samples, and several individual features were associated with either collagen density and/or the presence of elastosis (p<=0.05). This suggests that the proposed framework has promise as a means to quantitatively extract descriptors reflecting tissue-level characteristics and thus could be useful in detecting and characterizing histological processes in digitized histology specimens.
Winfield, Kari A.
2003-01-01
The subsurface at the Idaho National Engineering and Environmental Laboratory (INEEL) is complex, comprised primarily of thick, fractured basalt flows interbedded with thinner sedimentary intervals. The unsaturated zone can be as thick as 200 m in the southwestern part of the INEEL. The Vadose Zone Research Park (VZRP), located approximately 10 km southwest of the Idaho Nuclear Technology and Engineering Center (INTEC), was established in 2001 to study the subsurface of a relatively undisturbed part of the INEEL. Waste percolation ponds for the INTEC were relocated to the VZRP due to concerns that perched water within the vadose zone under the original infiltration ponds (located immediately south of the INTEC) could contribute to migration of contaminants to the Snake River Plain aquifer. Knowledge of the spatial distribution of texture and hydraulic properties is important for developing a better understanding of subsurface flow processes within the interbeds, for example, by identifying low permeability layers that could lead to the formation of perched ground-water zones. Because particle-size distributions are easier to measure than hydraulic properties, particle size serves as an analog for determining how the unsaturated hydraulic properties vary both vertically within particular interbeds and laterally within the VZRP. As part of the characterization program for the subsurface at the VZRP, unsaturated and saturated hydraulic properties were measured on 10 core samples from six boreholes. Bulk properties, including particle size, bulk density, particle density, and specific surface area, were determined on material from the same depth intervals as the core samples, with an additional 66 particle- size distributions measured on bulk samples from the same boreholes. From lithologic logs of the 32 boreholes at the VZRP, three relatively thick interbeds (in places up to 10 m thick) were identified at depths of 35, 45, and 55 m below land surface. The 35-m interbed extends laterally over a distance of at least 900 m from the Big Lost River to the new percolation pond area of the VZRP. Most wells within the VZRP were drilled to depths less than 50 m, making it difficult to infer the lateral extent of the 45-m and 55-m interbeds. The 35-m interbed is uniform in texture both vertically and laterally; the 45-m interbed coarsens upward; and the 55-m interbed contains alternating coarse and fine layers. Seventy-one out of 90 samples were silt loams and 9 out of 90 samples were classified as either sandy loams, loamy sands, or sands. The coarsest samples were located within the 45-m and 55-m interbeds of borehole ICPP-SCI-V-215, located near the southeast corner of the new percolation pond area. At the tops of some interbeds, baked-zone intervals were identified by their oxidized color (yellowish red to red) compared to the color of the underlying non-baked material (pale yellow to brown). The average geometric mean particle diameter of baked-zone intervals was only slightly coarser, in some cases, than the underlying non-baked sediment. This is likely due to both depositional differences between the top and bottom of the interbeds and the presence of small basalt clasts in the sediment. Core sample hydraulic properties from baked zones within the different interbeds did not show effects from alteration caused during basalt deposition, but differed mainly by texture. Saturated hydraulic conductivities (Ksat) for the 10 core samples ranged from 10-7 to 10-4 cm/s. Low permeability layers, with Ksat values less than 10-7 cm/s, within the 35-m and 45-m interbeds may cause perched ground-water zones to form beneath the new percolation pond area, leading to the possible lateral movement of water away from the VZRP.
Effect of stone coverage on soil erosion
NASA Astrophysics Data System (ADS)
Jomaa, S.; Barry, D. A.; Heng, B. P.; Brovelli, A.; Sander, G. C.; Parlange, J.
2010-12-01
Soil surface coverage has a significant impact on water infiltration, runoff and soil erosion yields. In particular, surface stones protect the soils from raindrop detachment, they retard the overland flow therefore decreasing its sediment transport capacity, and they prevent surface sealing. Several physical and environmental factors control to what extent stones on the soil surface modify the erosion rates and the related hydrological response. Among the most important factors are the moisture content of the topsoil, stone size, emplacement, coverage density and soil texture. Owing to the different inter-related processes, there is ambiguity concerning the quantitative effect of stones, and process-based understanding is limited. Experiments were performed (i) to quantify how stone features affect sediment yields, (ii) to understand the local effect of isolated surface stones, that is, the changes of the soil particle size distribution in the vicinity of a stone and (iii) to determine how stones attenuate the development of surface sealing and in turn how this affects the local infiltration rate. A series of experiments using the EPFL 6-m × 2-m erosion flume were conducted at different rainfall intensities (28 and 74 mm h-1) and stone coverage (20 and 40%). The total sediment concentration, the concentration of the individual size classes and the flow discharge were measured. In order to analyze the measurements, the Hairsine and Rose (HR) erosion model was adapted to account for the shielding effect of the stone cover. This was done by suitably adjusting the parameters based on the area not covered by stones. It was found that the modified HR model predictions agreed well with the measured sediment concentrations especially for the long time behavior. Changes in the bulk density of the topsoil due to raindrop-induced compaction with and without stone protection revealed that the stones protect the upper soil surface against the structural seals resulting in negligible changes in the bulk density during the erosion event. Since the main process contributing to surface sealing development is the compaction due to the raindrop kinetic energy and associated physico-chemical changes, the protection provided by the stone cover is consistent with the area-averaging approach used in applying the HR model.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-14
... Texts for Use in the International Conference on Harmonisation Regions; Annex 13 on Bulk Density and... guidance entitled ``Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the ICH Regions... evaluation of the Bulk Density and Tapped Density of Powders General Chapter harmonized text from each of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Youngmoo; Agency for Defense Development, Yuseong, P.O. Box 35, Yuseong-gu, Daejeon 34186, Republic of Korea.; Lee, Dongju
2016-04-15
The present study has investigated the consolidation behaviors of tantalum powders during compaction and sintering, and the characteristics of sintered components. For die compaction, the densification behaviors of the powders are simulated by finite element analyses based on the yield function proposed by Shima and Oyane. Accordingly, the green density distribution for coarser particles is predicted to be more uniform because they exhibits higher initial relative tap density owing to lower interparticle friction. It is also found that cold isostatic pressing is capable of producing higher dense compacts compared to the die pressing. However, unlike the compaction behavior, the sinteredmore » density of smaller particles is found to be higher than those of coarser ones owing to their higher specific surface area. The maximum sintered density was found to be 0.96 of theoretical density where smaller particles were pressed isostatically at 400 MPa followed by sintering at 2000 °C. Moreover, the effects of processing conditions on grain size and texture were also investigated. The average grain size of the sintered specimen is 30.29 μm and its texture is less than 2 times random intensity. Consequently, it is concluded that the higher pressure compaction technique is beneficial to produce high dense and texture-free tantalum components compared to hot pressing and spark plasma sintering. - Highlights: • Higher Ta density is obtained from higher pressure and sintering temperature. • High compaction method enables P/M Ta to achieve the density of 16.00 g·cm{sup −3}. • A P/M Ta component with fine microstructure and random orientation is developed.« less
Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Fa-Jun, E-mail: Fajun.Ma@nus.edu.sg; Duttagupta, Shubham; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576
2014-11-14
Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boronmore » diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed.« less
NASA Astrophysics Data System (ADS)
Józefowska, Agnieszka; Zaleski, Tomasz; Sokołowska, Justyna; Dzierwa, Agata
2017-04-01
The study area was located in the Pieniny National Park (PNP) in the Carpathian Mountain (Southern Poland). Investigated soil belonged to Eutric Cambisols and had silt or silt loam texture. The purpose of this research was to investigated relationship between soil biota, such as microbial activity, soil Oligochaeta (Lumbricidae and Enchytraeidae) and soil physical properties, such as water retention or aggregates stability. This research was conducted at six forest monitoring areas of the PNP. Sampling was collected in the September 2016. For each of the 6 places, undisturbed and disturbed soil samples were taken from the 0-15-cm and 15-30-cm layer in 3 to 5 replicates. Undisturbed soil was taken: i) into Kopecky cylinders to determined soil physical properties; ii) a soil cores to determined enchytraeids and fine roots biomass (RB). Disturbed soil was collected in 3 reps and homogenized. Next such soil samples were divided into three parts: i) fresh one to determined dehydrogenase activity (ADh), microbial carbon biomass (MC) and labile carbon (LC); ii) air-dried, passed through a sieve (2-mm mesh size) and used for analysis: pH, organic carbon and bulk density; iii) last part air dried was used to determined stability of different size aggregates. In field, earthworms were collected in 3 reps using hand sorting method. Investigated soils were strongly acidic to neutral (pH 4.8-6.8). Organic carbon (Corg) content was varied from 0.8% to 4.5% and was higher in 0-15-cm layers than in 15-30-cm layers. Higher Corgcontent was connected with lower bulk density. Enchytraeids density was ranged from 1807 ind. m-2 to 88855 ind. m-2 and was correlated with microbial activity (ADh and MB) and RB. Earthworms density (ED) was ranged from 7 ind. m-2to 507 ind. m-2. In investigated soil was 6 genus and 7 species (Octolasion lacteum, Aporrectodea caliginosa, Aporrectodea rosea, Aporrectodea jassyensis, Lumbricus rubellus, Eisenia lucens, and Fitzingeria platyura depressa). ED was closely related with soil moisture and water field capacity. This Research was financed by the Ministry of Science and Higher Education of the Republic of Poland, No. BM - 4175/16
Advanced sample environments for in situ neutron diffraction studies of nuclear materials
NASA Astrophysics Data System (ADS)
Reiche, Helmut Matthias
Generation IV nuclear reactor concepts, such as the supercritical-water-cooled nuclear reactor (SCWR), are actively researched internationally. Operating conditions above the critical point of water (374°C, 22.1 MPa) and fuel core temperature that potentially exceed 1850°C put a high demand on the surrounding materials. For their safe application, it is essential to characterize and understand the material properties on an atomic scale such as crystal structure and grain orientation (texture) changes as a function of temperature and stress. This permits the refinement of models predicting the macroscopic behavior of the material. Neutron diffraction is a powerful tool in characterizing such crystallographic properties due to their deep penetration depth into condensed matter. This leads to the ability to study bulk material properties, as opposed to surface effects, and allows for complex sample environments to study e.g. the individual contributions of thermo-mechanical processing steps during manufacturing, operating or accident scenarios. I present three sample environments for in situ neutron diffraction studies that provide such crystallographic information and have been successfully commissioned and integrated into the user program of the High Pressure -- Preferred Orientation (HIPPO) diffractometer at the Los Alamos Neutron Science Center (LANSCE) user facility. I adapted a sample changer for reliable and fast automated texture measurements of multiple specimens. I built a creep furnace combining a 2700 N load frame with a resistive vanadium furnace, capable of temperatures up to 1000°C, and manipulated by a pair of synchronized rotation stages. This combination allows following deformation and temperature dependent texture and strain evolutions in situ. Utilizing the presented sample changer and creep furnace we studied pressure tubes made of Zr-2.5wt%Nb currently employed in CANDURTM nuclear reactors and proposed for future SCWRs, acting as the primary containment vessel of high temperature heavy water (D2O) inside the reactor core. The measured sample texture shows that upon traversing the phase transition, which proceeded according to the Burger orientation relationship, variant selection occurred during heating and cooling of the zirconium alloy. Experimental results of lattice strains depending on the crystallographic orientation can be used to calculate strain pole figures which grant insight into the three-dimensional mechanical response of a polycrystalline aggregate and represent an extremely powerful material model validation tool. Lastly, I developed a resistive graphite high-temperature furnace with sample motion for in situ crystal structure and texture measurements of nuclear materials at steady-state temperatures up to at least 2200°C. This permits in situ observation of e.g. phase transitions and coefficients of thermal expansion, as well as phase formation and texture development during solidification. Utilizing this apparatus, I investigated the carbothermic reduction of UO2 nanopowder forming uranium carbide, a promising Generation IV reactor fuel. The onset of the UO2 + 2C → UC + CO2 reaction was observed at 1440°C with the bulk portion being complete at 1500°C. I describe the novel synthesis for this nanoparticle UO2 powder, which closely imitates observed nano grains in partially burnt reactor fuels. Of the three opposing structure models reported for the non-quenchable cubic UC2 phase, stable between 1769°C and 2560°C, the NaCl-type structure according to Bowman is found to be correct. This is deemed major progress as the CaF2-type structure was used for recent thermal modeling of safety critical factors in nuclear reactors. A temperature dependent increase in density due to carbon diffusion has been observed and quantified. I provide first experimental data of an unspecified, reversible order-disorder transition in this delta-phase with its onset at ˜1800°C which is likely due to rotating C2 molecules in the sublattice.
Electric Arc and Electrochemical Surface Texturing Technologies
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Snyder, Scott A.
1997-01-01
Surface texturing of conductive materials can readily be accomplished by means of a moving electric arc which produces a plasma from the environmental gases as well as from the vaporized substrate and arc electrode materials. As the arc is forced to move across the substrate surface, a condensate from the plasma re-deposits an extremely rough surface which is intimately mixed and attached to the substrate material. The arc textured surfaces produce greatly enhanced thermal emittance and hold potential for use as high temperature radiator surfaces in space, as well as in systems which use radiative heat dissipation such as computer assisted tomography (CAT) scan systems. Electrochemical texturing of titanium alloys can be accomplished by using sodium chloride solutions along with ultrasonic agitation to produce a random distribution of craters on the surface. The crater size and density can be controlled to produce surface craters appropriately sized for direct bone in-growth of orthopaedic implants. Electric arc texturing and electrochemical texturing techniques, surface properties and potential applications will be presented.
Vibratory tactile display for textures
NASA Technical Reports Server (NTRS)
Ikei, Yasushi; Ikeno, Akihisa; Fukuda, Shuichi
1994-01-01
We have developed a tactile display that produces vibratory stimulus to a fingertip in contact with a vibrating tactor matrix. The display depicts tactile surface textures while the user is exploring a virtual object surface. A piezoelectric actuator drives the individual tactor in accordance with both the finger movement and the surface texture being traced. Spatiotemporal display control schemes were examined for presenting the fundamental surface texture elements. The temporal duration of vibratory stimulus was experimentally optimized to simulate the adaptation process of cutaneous sensation. The selected duration time for presenting a single line edge agreed with the time threshold of tactile sensation. Then spatial stimulus disposition schemes were discussed for representation of other edge shapes. As an alternative means not relying on amplitude control, a method of augmented duration at the edge was investigated. Spatial resolution of the display was measured for the lines presented both in perpendicular and parallel to a finger axis. Discrimination of texture density was also measured on random dot textures.
NASA Technical Reports Server (NTRS)
Wintucky, E. G.; Curren, A. N.; Sovey, J. S.
1981-01-01
Measurements are presented of secondary electron emission and reflected primary electron characteristics of sputter-textured pyrolitic graphite surfaces with microstructures of various sizes and densities, made with an Auger cylindrical mirror analyzer in a high-vacuum chamber at pressures below 1.33 x 10 to the -7th N/sq m (10 to the -9th torr). A dense, tall, thin, spire-like microstructure, obtained at ion energies of 1000 eV and ion current densities of 5 mA/sq cm, is the most effective. The secondary electron emission from such a surface is lower than that of soot, whose secondary emission is among the lowest of any material. At a primary electron energy of 1000 eV, the secondary electron emission yield of smooth CU is about 350% greater than the lowest value obtained for sputter-textured pyrolitic graphite. The reflected primary electron index of smooth Cu is a factor of 80 greater. If the secondary electron emission yield is reduced to 0.3, which is possible with sputter-textured pyrolitic graphite, the traveling wave tube collector efficiency could be improved by as much as 4% over that for smooth copper.
Computerized morphometry as an aid in distinguishing recurrent versus nonrecurrent meningiomas.
Noy, Shawna; Vlodavsky, Euvgeni; Klorin, Geula; Drumea, Karen; Ben Izhak, Ofer; Shor, Eli; Sabo, Edmond
2011-06-01
To use novel digital and morphometric methods to identify variables able to better predict the recurrence of intracranial meningiomas. Histologic images from 30 previously diagnosed meningioma tumors that recurred over 10 years of follow-up were consecutively selected from the Rambam Pathology Archives. Images were captured and morphometrically analyzed. Novel algorithms of digital pattern recognition using Fourier transformation and fractal and nuclear texture analyses were applied to evaluate the overall growth pattern complexity of the tumors, as well as the chromatin texture of individual tumor nuclei. The extracted parameters were then correlated with patient prognosis. Kaplan-Meier analyses revealed statistically significant associations between tumor morphometric parameters and recurrence times. Tumors with less nuclear orientation, more nuclear density, higher fractal dimension, and less regular chromatin textures tended to recur faster than those with a higher degree of nuclear order, less pattern complexity, lower density, and more homogeneous chromatin nuclear textures (p < 0.01). To our knowledge, these digital morphometric methods were used for the first time to accurately predict tumor recurrence in patients with intracranial meningiomas. The use of these methods may bring additional valuable information to the clinician regarding the optimal management of these patients.
NMR in an electric field: A bulk probe of the hidden spin and orbital polarizations
NASA Astrophysics Data System (ADS)
Ramírez-Ruiz, Jorge; Boutin, Samuel; Garate, Ion
2017-12-01
Recent theoretical work has established the presence of hidden spin and orbital textures in nonmagnetic materials with inversion symmetry. Here, we propose that these textures can be detected by nuclear magnetic resonance (NMR) measurements carried out in the presence of an electric field. In crystals with hidden polarizations, a uniform electric field produces a staggered magnetic field that points to opposite directions at atomic sites related by spatial inversion. As a result, the NMR resonance peak corresponding to inversion partner nuclei is split into two peaks. The magnitude of the splitting is proportional to the electric field and depends on the orientation of the electric field with respect to the crystallographic axes and the external magnetic field. As a case study, we present a theory of electric-field-induced splitting of NMR peaks for 77Se,125Te, and 209Bi in Bi2Se3 and Bi2Te3 . In conducting samples with current densities of ≃106A/cm 2 , the splitting for Bi can reach 100 kHz , which is comparable to or larger than the intrinsic width of the NMR lines. In order to observe the effect experimentally, the peak splitting must also exceed the linewidth produced by the Oersted field. In Bi2Se3 , this requires narrow wires of radius ≲1 μ m . We also discuss other potentially more promising candidate materials, such as SrRuO3 and BaIr2Ge2 , whose crystal symmetry enables strategies to suppress the linewidth produced by the Oersted field.
Crystallographic texture in pulsed laser deposited hydroxyapatite bioceramic coatings
Kim, Hyunbin; Camata, Renato P.; Lee, Sukbin; Rohrer, Gregory S.; Rollett, Anthony D.; Vohra, Yogesh K.
2008-01-01
The orientation texture of pulsed laser deposited hydroxyapatite coatings was studied by X-ray diffraction techniques. Increasing the laser energy density of the KrF excimer laser used in the deposition process from 5 to 7 J/cm2 increases the tendency for the c-axes of the hydroxyapatite grains to be aligned perpendicular to the substrate. This preferred orientation is most pronounced when the incidence direction of the plume is normal to the substrate. Orientation texture of the hydroxyapatite grains in the coatings is associated with the highly directional and energetic nature of the ablation plume. Anisotropic stresses, transport of hydroxyl groups and dehydroxylation effects during deposition all seem to play important roles in the texture development. PMID:18563207
Viscous entrainment on hairy surfaces
NASA Astrophysics Data System (ADS)
Nasto, Alice; Brun, P.-T.; Hosoi, A. E.
2018-02-01
Nectar-drinking bats and honeybees have tongues covered with hairlike structures, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory, we explore the physical mechanisms that govern viscous entrainment in a hairy texture. Hairy surfaces are fabricated using laser cut molds and casting samples with polydimethylsiloxane (PDMS) elastomer. We model the liquid trapped within the texture using a Darcy-Brinkmann-like approach and derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the withdrawal speed. Both experiments and theory reveal an optimal hair density to maximize fluid uptake.
NASA Astrophysics Data System (ADS)
Allu, N. C.; Prakash, V.; Gautam, P. K.; Bera, S. K.
2014-12-01
This work explains the sedimentation history and environment and climate changes during the Holocene along the southwest coast of India. The area is characterized by various landforms such as lagoons, barrier islands, beach ridges, paleostrandlines, alluvial plains, marshy lands and flood plains. Paleodelta, located at the mouth of the modern Periyar River is an important geomorphic marker. A borehole of 40 m depth was drilled in the paleodelta and sediment samples were recovered at different depth intervals. Paleoclimate and paleo-environment were inferred based on geochronology, textural and geotechnical parameters, clay minerals, and pollen analysis results. The bottom of the borehole represents an age of ~ 12 ka BP. Sediments exhibit coarsening texture upwards of the borehole, with fine mud and peat intercalations at the bottom. Six litho facies - muddy sand, sand, sandy mud, silty sand, sandy silt, and mud - were recorded. Geotechnical properties comprising moisture content, organic carbon, plasticity index record high values, whereas low bulk density associated with a low critical shear stress, are recorded. An increase in illite and to a lesser degree smectite with concomitant decrease in kaolinite is observed. Sediment texture represents a major change of depositional environment from marine to fluvial sedimentary facies during the major sea level fall i.e., after 7 ka B.P. The present sea level attained during 4-5 ka B.P; major rise of sea level has taken place from 7-11 ka BP and regression during 7 - 5 ka B.P. These transgression and regression phases introduced the changes in the environment of deposition. The monsoon was dynamic and more intense after the major fall of sea level causing the fluctuations in the fluvial facies. Upward coarsening of grain size in the borehole indicates change in sediment deposition due to increased hydrodynamic conditions and strong fluvial action, which can be linked to marine regression. Geotechnical properties suggest textural changes and sedimentary facies. An upward increase in smectite and kaolinite and decreasing illite supports major fall in sea level and also the aridity. Pollen record of sediment strata supports the paleo-environment dominated by the presence of semi-evergreen type of mangrove plants during mid- to early-Holocene times.
Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2
NASA Astrophysics Data System (ADS)
Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas; Fadil, Ahmed; Syväjärvi, Mikael; Petersen, Paul Michael; Ou, Haiyan
2016-07-01
Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface for TiO2 deposition, a three-step cleaning procedure was introduced after RIE etching. The morphology of anatase TiO2 indicates that the nano-textured substrate has a much higher surface nucleated grain density than a flat substrate at the beginning of the deposition process. The corresponding reflectance increases with TiO2 thickness due to increased surface diffuse reflection. The passivation effect of ALD TiO2 thin film on the nano-textured fluorescent 6H-SiC sample was also investigated and a PL intensity improvement of 8.05% was obtained due to the surface passivation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, M. B.; Carballido-Gamio, J.; Fritscher, K.
2009-11-15
Purpose: Texture analysis of femur radiographs may serve as a potential low cost technique to predict osteoporotic fracture risk and has received considerable attention in the past years. A further application of this technique may be the measurement of the quality of specific bone compartments to provide useful information for treatment of bone fractures. Two challenges of texture analysis are the selection of the best suitable texture measure and reproducible placement of regions of interest (ROIs). The goal of this in vitro study was to automatically place ROIs in radiographs of proximal femur specimens and to calculate correlations between variousmore » different texture analysis methods and the femurs' anchorage strength. Methods: Radiographs were obtained from 14 femoral specimens and bone mineral density (BMD) was measured in the femoral neck. Biomechanical testing was performed to assess the anchorage strength in terms of failure load, breakaway torque, and number of cycles. Images were segmented using a framework that is based on the usage of level sets and statistical in-shape models. Five ROIs were automatically placed in the head, upper and lower neck, trochanteric, and shaft compartment in an atlas subject. All other subjects were registered rigidly, affinely, and nonlinearly, and the resulting transformation was used to map the five ROIs onto the individual femora. Results: In each ROI, texture features were extracted using gray level co-occurence matrices (GLCM), third-order GLCM, morphological gradients (MGs), Minkowski dimensions (MDs), Minkowski functionals (MFs), Gaussian Markov random fields, and scaling index method (SIM). Coefficients of determination for each texture feature with parameters of anchorage strength were computed. In a stepwise multiregression analysis, the most predictive parameters were identified in different models. Texture features were highly correlated with anchorage strength estimated by the failure load of up to R{sup 2}=0.61 (MF and MG features, p<0.01) and were partially independent of BMD. The correlations were dependent on the choice of the ROI and the texture measure. The best predictive multiregression model for failure load R{sub adj}{sup 2}=0.86 (p<0.001) included a set of recently developed texture methods (MF and SIM) but excluded bone mineral density and commonly used texture measures. Conclusions: The results suggest that texture information contained in trabecular bone structure visualized on radiographs may predict whether an implant anchorage can be used and may determine the local bone quality from preoperative radiographs.« less
Imaging of surface spin textures on bulk crystals by scanning electron microscopy
NASA Astrophysics Data System (ADS)
Akamine, Hiroshi; Okumura, So; Farjami, Sahar; Murakami, Yasukazu; Nishida, Minoru
2016-11-01
Direct observation of magnetic microstructures is vital for advancing spintronics and other technologies. Here we report a method for imaging surface domain structures on bulk samples by scanning electron microscopy (SEM). Complex magnetic domains, referred to as the maze state in CoPt/FePt alloys, were observed at a spatial resolution of less than 100 nm by using an in-lens annular detector. The method allows for imaging almost all the domain walls in the mazy structure, whereas the visualisation of the domain walls with the classical SEM method was limited. Our method provides a simple way to analyse surface domain structures in the bulk state that can be used in combination with SEM functions such as orientation or composition analysis. Thus, the method extends applications of SEM-based magnetic imaging, and is promising for resolving various problems at the forefront of fields including physics, magnetics, materials science, engineering, and chemistry.
Modelling the physical properties of glasslike carbon foams
NASA Astrophysics Data System (ADS)
Letellier, M.; Macutkevic, J.; Bychanok, D.; Kuzhir, P.; Delgado-Sanchez, C.; Naguib, H.; Ghaffari Mosanenzadeh, S.; Fierro, V.; Celzard, A.
2017-07-01
In this work, model alveolar materials - carbon cellular and/or carbon reticulated foams - were produced in order to study and to model their physical properties. It was shown that very different morphologies could be obtained whereas the constituting vitreous carbon from which they were made remained exactly the same. Doing so, the physical properties of these foams were expected to depend neither on the composition nor on the carbonaceous texture but only on the porous structure, which could be tuned for the first time for having a constant pore size in a range of porosities, or a range of pore sizes at fixed porosity. The physical properties were then investigated through mechanical, acoustic, thermal and electromagnetic measurements. The results demonstrate the roles played by bulk density and cell size on all physical properties. Whereas some of the latter strongly depend on porosity and/or pore size, others are independent of pore size. It is expected that these results apply to many other kinds of rigid foams used in a broad range of different applications. The present results therefore open the route to their optimisation.
Gas Hydrate Estimation Using Rock Physics Modeling and Seismic Inversion
NASA Astrophysics Data System (ADS)
Dai, J.; Dutta, N.; Xu, H.
2006-05-01
ABSTRACT We conducted a theoretical study of the effects of gas hydrate saturation on the acoustic properties (P- and S- wave velocities, and bulk density) of host rocks, using wireline log data from the Mallik wells in the Mackenzie Delta in Northern Canada. We evaluated a number of gas hydrate rock physics models that correspond to different rock textures. Our study shows that, among the existing rock physics models, the one that treats gas hydrate as part of the solid matrix best fits the measured data. This model was also tested on gas hydrate hole 995B of ODP leg 164 drilling at Blake Ridge, which shows adequate match. Based on the understanding of rock models of gas hydrates and properties of shallow sediments, we define a procedure that quantifies gas hydrate using rock physics modeling and seismic inversion. The method allows us to estimate gas hydrate directly from seismic information only. This paper will show examples of gas hydrates quantification from both 1D profile and 3D volume in the deepwater of Gulf of Mexico.
Soil physics and chemistry at a medieval ridge and furrow site in northeastern Germany
NASA Astrophysics Data System (ADS)
Hirsch, Florian; van der Maaten-Theunissen, Marieke; van der Maaten, Ernst; Schneider, Anna; Raab, Alexandra; Raab, Thomas
2017-04-01
The usage of non-reversible ploughs, mainly during the Middle Ages and until historic times, led to the formation of ridge and furrow systems. Due to improvements of agricultural techniques, these historic agricultural sites were often abandoned and are now marginal land. The parallel ridges and furrows are usually, if not destroyed by later conventional ploughing, preserved in present-day forests. In northeastern Germany ridge and furrow systems are normally several decameters long and up to ten meters wide. The height difference between ridge top and furrow bottom is up to 50 centimeters and is expected to cause significant contrasts of soil properties and vegetation. Furthermore, due to the abandonment of sites with ridges and furrows, soils on these sites are unique archives for studies on fertilization, soil carbon dynamics and soil development. Therefore, we are characterizing soil physics (bulk density, saturated soil hydraulic conductivity, texture) and soil chemistry (soil acidity, carbon and nitrogen content) on a type location of historic ridges and furrows about 100 km northwest of Berlin.
Soil strength and macropore volume limit root elongation rates in many UK agricultural soils.
Valentine, Tracy A; Hallett, Paul D; Binnie, Kirsty; Young, Mark W; Squire, Geoffrey R; Hawes, Cathy; Bengough, A Glyn
2012-07-01
Simple indicators of crop and cultivar performance across a range of soil types and management are needed for designing and testing sustainable cropping practices. This paper determined the extent to which soil chemical and physical properties, particularly soil strength and pore-size distribution influences root elongation in a wide range of agricultural top soils, using a seedling-based indicator. Intact soil cores were sampled from the topsoil of 59 agricultural fields in Scotland, representing a wide geographic spread, range of textures and management practices. Water release characteristics, dry bulk density and needle penetrometer resistance were measured on three cores from each field. Soil samples from the same locations were sieved, analysed for chemical characteristics, and packed to dry bulk density of 1.0 g cm(-3) to minimize physical constraints. Root elongation rates were determined for barley seedlings planted in both intact field and packed soil cores at a water content close to field capacity (-20 kPa matric potential). Root elongation in field soil was typically less than half of that in packed soils. Penetrometer resistance was typically between 1 and 3 MPa for field soils, indicating the soils were relatively hard, despite their moderately wet condition (compared with <0.2 MPa for packed soil). Root elongation was strongly linked to differences in physical rather than chemical properties. In field soil root elongation was related most closely to the volume of soil pores between 60 µm and 300 µm equivalent diameter, as estimated from water-release characteristics, accounting for 65.7 % of the variation in the elongation rates. Root elongation rate in the majority of field soils was slower than half of the unimpeded (packed) rate. Such major reductions in root elongation rates will decrease rooting volumes and limit crop growth in soils where nutrients and water are scarce.
NASA Astrophysics Data System (ADS)
Wang, Qingfeng; Yang, Qianqian; Guo, Hong; Xiao, Xiongxin; Jin, Huijun; Li, Lili; Zhang, Tingjun; Wu, Qingbai
2018-06-01
Soil hydrothermal dynamics, resulting from the freezing and thawing processes in the active layer and their influencing factors, were studied in the upper Heihe River Basin (UHRB) in the Qilian Mountains, northeastern Tibetan Plateau. Soil temperature and water content measurements were taken in the active layer of the UHRB in alpine grassland from 2013 to 2014. The results showed that the thaw rate of the active layer was significantly smaller in alpine paludal meadows than the thaw rate in alpine meadows and alpine steppes. This was mainly related to the hydrothermal properties of soils in the active layer, such as moisture content, thermal conductivity, and specific heat. During the thawing process, the active layer soil water content was higher and fluctuated less in alpine paludal meadows. Conversely, the soil water content was lower and fluctuated more significantly in alpine meadows and alpine steppes. These findings could be explained by the prevalence of peat soils, with a low bulk density, and high clay and organic matter content. By contrast, the soil particles in the active layer of alpine meadows and alpine steppes were significantly coarser, with higher bulk density and lower organic matter content. During the freezing process, gravel content and soil texture had a great impact on the unfrozen water content in the frozen soils. However, the factors influencing the soil water retention in frozen soils are complex, and further study is needed. These results provide theoretical support for the evaluation of the hydrological characteristics of the alpine permafrost zone in the Qilian Mountains. Furthermore, the effect of frozen ground on hydrological changes due to climate change in the Heihe River Basin can be simulated and predicted, providing a scientific basis for the ecological conservation of the Qilian Mountains National Park.
NASA Astrophysics Data System (ADS)
Moorhead, Althea V.; Blaauw, Rhiannon C.; Moser, Danielle E.; Campbell-Brown, Margaret D.; Brown, Peter G.; Cooke, William J.
2017-12-01
The bulk density of a meteoroid affects its dynamics in space, its ablation in the atmosphere, and the damage it does to spacecraft and lunar or planetary surfaces. Meteoroid bulk densities are also notoriously difficult to measure, and we are typically forced to assume a density or attempt to measure it via a proxy. In this paper, we construct a density distribution for sporadic meteoroids based on existing density measurements. We considered two possible proxies for density: the KB parameter introduced by Ceplecha and Tisserand parameter, TJ. Although KB is frequently cited as a proxy for meteoroid material properties, we find that it is poorly correlated with ablation-model-derived densities. We therefore follow the example of Kikwaya et al. in associating density with the Tisserand parameter. We fit two density distributions to meteoroids originating from Halley-type comets (TJ < 2) and those originating from all other parent bodies (TJ > 2); the resulting two-population density distribution is the most detailed sporadic meteoroid density distribution justified by the available data. Finally, we discuss the implications for meteoroid environment models and spacecraft risk assessments. We find that correcting for density increases the fraction of meteoroid-induced spacecraft damage produced by the helion/antihelion source.
46 CFR 98.25-65 - Filling density.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
46 CFR 98.25-65 - Filling density.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
46 CFR 98.25-65 - Filling density.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
46 CFR 98.25-65 - Filling density.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
46 CFR 98.25-65 - Filling density.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
Radical re-appraisal of water structure in hydrophilic confinement.
Soper, Alan K
2013-12-18
The structure of water confined in MCM41 silica cylindrical pores is studied to determine whether confined water is simply a version of the bulk liquid which can be substantially supercooled without crystallisation. A combination of total neutron scattering from the porous silica, both wet and dry, and computer simulation using a realistic model of the scattering substrate is used. The water in the pore is divided into three regions: core, interfacial and overlap. The average local densities of water in these simulations are found to be about 20% lower than bulk water density, while the density in the core region is below, but closer to, the bulk density. There is a decrease in both local and core densities when the temperature is lowered from 298 K to 210 K. The radical proposal is made here that water in hydrophilic confinement is under significant tension, around -100 MPa, inside the pore.
The crust of the Moon as seen by GRAIL.
Wieczorek, Mark A; Neumann, Gregory A; Nimmo, Francis; Kiefer, Walter S; Taylor, G Jeffrey; Melosh, H Jay; Phillips, Roger J; Solomon, Sean C; Andrews-Hanna, Jeffrey C; Asmar, Sami W; Konopliv, Alexander S; Lemoine, Frank G; Smith, David E; Watkins, Michael M; Williams, James G; Zuber, Maria T
2013-02-08
High-resolution gravity data obtained from the dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft show that the bulk density of the Moon's highlands crust is 2550 kilograms per cubic meter, substantially lower than generally assumed. When combined with remote sensing and sample data, this density implies an average crustal porosity of 12% to depths of at least a few kilometers. Lateral variations in crustal porosity correlate with the largest impact basins, whereas lateral variations in crustal density correlate with crustal composition. The low-bulk crustal density allows construction of a global crustal thickness model that satisfies the Apollo seismic constraints, and with an average crustal thickness between 34 and 43 kilometers, the bulk refractory element composition of the Moon is not required to be enriched with respect to that of Earth.
A. T. Hudak; C.A. Wessman
2001-01-01
Fire suppression associated with decades of cattle grazing can result in bush encroachment in savannas. Textural analyses of historical, high resolution images was used to characterize bush densities across a South African study landscape. A control site, where vegetation was assumed to have changed minimally for the duration of the image record (1955-1996), was used...
NASA Astrophysics Data System (ADS)
Rosa, Benoit; Brient, Antoine; Samper, Serge; Hascoët, Jean-Yves
2016-12-01
Mastering the additive laser manufacturing surface is a real challenge and would allow functional surfaces to be obtained without finishing. Direct Metal Deposition (DMD) surfaces are composed by directional and chaotic textures that are directly linked to the process principles. The aim of this work is to obtain surface topographies by mastering the operating process parameters. Based on experimental investigation, the influence of operating parameters on the surface finish has been modeled. Topography parameters and multi-scale analysis have been used in order to characterize the DMD obtained surfaces. This study also proposes a methodology to characterize DMD chaotic texture through topography filtering and 3D image treatment. In parallel, a new parameter is proposed: density of particles (D p). Finally, this study proposes a regression modeling between process parameters and density of particles parameter.
Microwave sensing of moisture content and bulk density in flowing grain
USDA-ARS?s Scientific Manuscript database
Moisture content and bulk density were determined from measurement of the dielectric properties of flowing wheat kernels at a single microwave frequency (5.8 GHz). The measuring system consisted of two high-gain microwave patch antennas mounted on opposite sides of rectangular chute and connected to...
NASA Astrophysics Data System (ADS)
Kreitcberg, A.; Brailovski, V.; Sheremetyev, V.; Prokoshkin, S.
2017-12-01
The effect of different laser powder bed fusion (L-PBF) parameters on the phase composition, microstructure, and crystallographic texture of Ti-18Zr-14Nb alloy was studied. Two levels of laser power, scanning speed, and hatching space were used, while the layer thickness was kept constant. The resulting volume energy density was ranged from 20 to 60 J/mm3, and the build rate, from 12 to 36 cm3/h. The manufactured coupons were analyzed by X-ray diffractometry, transmission, and scanning electron microscopy. It was found that the greater influence observed on the microstructure and texture development was caused by the value of laser power, while the lowest, by that of hatching space. Based on the results obtained, the processing optimization strategy aimed at improving the density, superelastic, and fatigue properties of the L-PBF manufactured Ti-18Zr-14Nb alloy was proposed.
Singh, Ravendra; Román-Ospino, Andrés D; Romañach, Rodolfo J; Ierapetritou, Marianthi; Ramachandran, Rohit
2015-11-10
The pharmaceutical industry is strictly regulated, where precise and accurate control of the end product quality is necessary to ensure the effectiveness of the drug products. For such control, the process and raw materials variability ideally need to be fed-forward in real time into an automatic control system so that a proactive action can be taken before it can affect the end product quality. Variations in raw material properties (e.g., particle size), feeder hopper level, amount of lubrication, milling and blending action, applied shear in different processing stages can affect the blend density significantly and thereby tablet weight, hardness and dissolution. Therefore, real time monitoring of powder bulk density variability and its incorporation into the automatic control system so that its effect can be mitigated proactively and efficiently is highly desired. However, real time monitoring of powder bulk density is still a challenging task because of different level of complexities. In this work, powder bulk density which has a significant effect on the critical quality attributes (CQA's) has been monitored in real time in a pilot-plant facility, using a NIR sensor. The sensitivity of the powder bulk density on critical process parameters (CPP's) and CQA's has been analyzed and thereby feed-forward controller has been designed. The measured signal can be used for feed-forward control so that the corrective actions on the density variations can be taken before they can influence the product quality. The coupled feed-forward/feed-back control system demonstrates improved control performance and improvements in the final product quality in the presence of process and raw material variations. Copyright © 2015 Elsevier B.V. All rights reserved.
The Fall and Recovery of the Tagish Lake Meteorite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hildebrand, Alan R.; McCausland, Phil J.; Brown, Peter G.
2006-03-01
The Tagish Lake C2 (ungrouped) carbonaceous chondrite fall of January 18, 2000 delivered >10 kg of one of the most primitive and physically weak meteorites yet studied. In this paper we report the detailed circumstances of the fall and the recovery of all documented Tagish Lake fragments. We also provide measurements of bulk physical properties (mass, grain and bulk density), bulk triple oxygen-isotope ratios, and short-lived cosmogenic radionuclides counts for several fragments. Ground eyewitnesses and recorded observations of the Tagish Lake fireball event provide a refined estimate of the fireball trajectory, and hence, its pre-atmospheric orbit. From its calculated orbitmore » and its similarity to the remotely-sensed properties of the D and P-class asteroids, the Tagish Lake carbonaceous chondrite represents these outer belt asteroids, and is not of cometary origin. The bulk oxygen-isotope compositions reported here are among the highest known for meteorites. These data plot just below the Terrestrial Fractionation Line, following a trend similar to the CM meteorite mixing line. The bulk density of the Tagish Lake material (1.66 ±0.02 g/cm3) is the same, within error, as the total bulk densities of many C-class and especially D- and P-class asteroids. The high microporosity of Tagish Lake samples (~40%) provides an obvious candidate material for the composition of low bulk density primitive asteroids such as Phobos, Deimos and the P-class binary 87 Sylvia, without requiring a substantial contribution from macroporosity in the form of ice, thick regolith or “rubble pile” assemblages with large interior voids.« less
Statistical and Multifractal Evaluation of Soil Compaction in a Vineyard
NASA Astrophysics Data System (ADS)
Marinho, M.; Raposo, J. R.; Mirás Avalos, J. M.; Paz González, A.
2012-04-01
One of the detrimental effects caused by agricultural machines is soil compaction, which can be defined by an increase in soil bulk density. Soil compaction often has a negative impact on plant growth, since it reduces the macroporosity and soil permeability and increases resistance to penetration. Our research explored the effect of the agricultural machinery on soil when trafficking through a vineyard at a small spatial scale, based on the evaluation of the soil compaction status. The objectives of this study were: i) to quantify soil bulk density along transects following wine row, wheel track and outside track, and, ii) to characterize the variability of the bulk density along these transects using multifractal analysis. The field work was conducted at the experimental farm of EVEGA (Viticulture and Enology Centre of Galicia) located in Ponte San Clodio, Leiro, Orense, Spain. Three parallel transects were marked on positions with contrasting machine traffic effects, i.e. vine row, wheel-track and outside-track. Undisturbed samples were collected in 16 points of each transect, spaced 0.50 m apart, for bulk density determination using the cylinder method. Samples were taken in autumn 2011, after grape harvest. Since soil between vine rows was tilled and homogenized beginning spring 2011, cumulative effects of traffic during the vine growth period could be evaluated. The distribution patterns of soil bulk density were characterized by multifractal analysis carried out by the method of moments. Multifractality was assessed by several indexes derived from the mass exponent, τq, the generalized dimension, Dq, and the singularity spectrum, f(α), curves. Mean soil bulk density values determined for vine row, outside-track and wheel-track transects were 1.212 kg dm-3, 1.259 kg dm-3and 1.582 kg dm-3, respectively. The respective coefficients of variation (CV) for these three transects were 7.76%, 4.82% and 2.03%. Therefore mean bulk density under wheel-track was 30.5% higher than along the vine row. Vine row and outside-track positions showed not significant differences between means. The bulk density of the wheel-track transect also showed the lowest CV. The multifractal spectra of the three transects were asymmetric curves, rather short toward the left and much longer toward the right. The width of the right deviating shaped multifractal spectra was ranked as: wine row > outside-track ≈ wheel-track. Entropy dimension, D1, was 0.998, 0.992 and 0.992 for vine row, outside-track and track transects, respectively. These results show different patterns of variability of bulk density for parallel transects. They also suggest that multifractal parameters may be useful in assessing the variability of other soil properties such as soil particle density, soil porosity or soil water content, at different spatial scales as well. Acknowledgments. This work was funded in part by Spanish Ministry of Science and Innovation (MICINN) in the frame of project CGL2009-13700-C02. Financial support from CAPES/GOV., Brazil, is also acknowledged by Prof. M. Marinho.
NASA Astrophysics Data System (ADS)
Bhagat Singh, P.; Sabat, R. K.; Kumaran, S.; Suwas, S.
2018-02-01
In the present investigation, an effort has been made to understand the effect of aluminum addition to α Mg-Li alloys. The corresponding composition Mg-4Li- xAl ( x = 0, 2, 4 and 6 wt.%) alloys have been prepared by stir casting route under an argon environment. Extrusion was carried out at 300 °C with the extrusion ratio of 15:1. Significant grain refinement was observed after extrusion. X-ray diffraction-based investigation of the cast and extruded alloys showed the presence of intermetallic compounds such as Mg17Al12 and AlLi in the Al-rich alloys namely, Mg-4Li- xAl ( x = 4 and 6 wt.%). These precipitates were also present in the extruded plus annealed samples, indicating the stability of the precipitates at high temperature. The bulk x-ray texture measurement revealed a crystallographic texture where the c-axis of the h.c.p crystals was perpendicular to the extrusion direction (ED) for extruded sample. A texture transition was observed on annealing. The c-axis was oriented parallel to the ED. Mechanical properties of the cast, extruded and extruded plus annealed material illustrate that the addition of Al led to enhancement in hardness, yield strength and ultimate tensile strength.
Mechanical and chemical effects of ion-texturing biomedical polymers
NASA Technical Reports Server (NTRS)
Weigand, A. J.; Cenkus, M. A.
1979-01-01
To determine whether sputter etching may provide substantial polymer surface texturing with insignificant changes in chemical and mechanical properties, an 8 cm beam diameter, electron bombardment, argon ion source was used to sputter etch (ion-texture process) nine biomedical polymers. The materials included silicone rubber, 32% carbon impregnated polyolefin, polyoxymethylene, polytetrafluoroethylene, ultrahigh molecular weight (UHMW) polyethylene, UHMW polyethylene with carbon fibers (10%), and several polyurethanes (bioelectric, segmented, and cross linked). Ion textured microtensile specimens of each material except UHMW polyethylene and UHMW polyethylene with 10% carbon fibers were used to determine the effect of ion texturing on tensile properties. Scanning electron microscopy was used to determine surface morphology changes, and electron spectroscopy for chemical analysis was used to analyze the near surface chemical changes that result from ion texturing. Ion energies of 500 eV with beam current densities ranging from 0.08 to 0.19 mA/sq cm were used to ion texture the various materials. Standard microtensile specimens of seven polymers were exposed to a saline environment for 24 hours prior to and during the tensile testing. The surface chemical changes resulting from sputter etching are minimal in spite of the often significant changes in the surface morphology.
Fabrication and Piezoelectric Properties of Textured (Bi1/2K1/2)TiO3 Ferroelectric Ceramics
NASA Astrophysics Data System (ADS)
Nagata, Hajime; Saitoh, Masahiro; Hiruma, Yuji; Takenaka, Tadashi
2010-09-01
Textured (Bi1/2K1/2)TiO3 (BKT) ceramics were prepared by a reactive templated grain growth (RTGG) method to improve their piezoelectric properties. Also, a hot-pressing (HP) method was modified on the basis of RTGG method to obtain dense ceramics and promote the grain orientation. The textured BKT ceramics prepared by the RTGG and HP methods exhibited a relatively high orientation factor F of 0.82 and a high density ratio of 95-99%. Scanning electron microscopy (SEM) micrographs of the textured HP-BKT indicated a textured and poreless microstructure. In addition, the resistivity of the textured HP-BKT was 1.73×1013 Ω·cm. The piezoelectric strain constant d33 determined by means of resonance and antiresonance method was 125 pC/N for the direction parallel to the sheet-stacking direction of the RTGG process. From the measurement of field-induced stain, the normalized d33* (=Smax/Emax) at 80 kV/cm were 127 and 238 pm/V on the randomly oriented and textured samples (F=0.82) for the (∥) direction, respectively.
Tensile behavior and flow stress anisotropy of accumulative roll bonded Cu-Nb nanolaminates
Nizolek, Thomas; Beyerlein, Irene J.; Mara, Nathan A.; ...
2016-02-01
The flow stress, ductility, and in-plane anisotropy are evaluated for bulk accumulative roll bonded copper-niobium nanolaminates with layer thicknesses ranging from 1.8 μm to 15 nm. Uniaxial tensile tests conducted parallel to the rolling direction and transverse direction demonstrate that ductility generally decreases with decreasing layer thickness; however, at 30 nm, both high strengths (1200 MPa) and significant ductility (8%) are achieved. The yield strength increases monotonically with decreasing layer thickness, consistent with the Hall-Petch relationship, and significant in-plane flow stress anisotropy is observed. As a result, Taylor polycrystal modeling is used to demonstrate that crystallographic texture is responsible formore » the in-plane anisotropy and that the effects of texture dominate even at nanoscale layer thicknesses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranjanomennahary, P.; Ghalila, S. Sevestre; Malouche, D
Purpose: Hip fracture is a serious health problem and textural methods are being developed to assess bone quality. The authors aimed to perform textural analysis at femur on high-resolution digital radiographs compared to three-dimensional (3D) microarchitecture comparatively to bone mineral density. Methods: Sixteen cadaveric femurs were imaged with an x-ray device using a C-MOS sensor. One 17 mm square region of interest (ROI) was selected in the femoral head (FH) and one in the great trochanter (GT). Two-dimensional (2D) textural features from the co-occurrence matrices were extracted. Site-matched measurements of bone mineral density were performed. Inside each ROI, a 16more » mm diameter core was extracted. Apparent density (D{sub app}) and bone volume proportion (BV/TV{sub Arch}) were measured from a defatted bone core using Archimedes' principle. Microcomputed tomography images of the entire length of the core were obtained (Skyscan 1072) at 19.8 {mu}m of resolution and usual 3D morphometric parameters were computed on the binary volume after calibration from BV/TV{sub Arch}. Then, bone surface/bone volume, trabecular thickness, trabecular separation, and trabecular number were obtained by direct methods without model assumption and the structure model index was calculated. Results: In univariate analysis, the correlation coefficients between 2D textural features and 3D morphological parameters reached 0.83 at the FH and 0.79 at the GT. In multivariate canonical correlation analysis, coefficients of the first component reached 0.95 at the FH and 0.88 at the GT. Conclusions: Digital radiographs, widely available and economically viable, are an alternative method for evaluating bone microarchitectural structure.« less
Effect of back reflectors on photon absorption in thin-film amorphous silicon solar cells
NASA Astrophysics Data System (ADS)
Hossain, Mohammad I.; Qarony, Wayesh; Hossain, M. Khalid; Debnath, M. K.; Uddin, M. Jalal; Tsang, Yuen Hong
2017-10-01
In thin-film solar cells, the photocurrent conversion productivity can be distinctly boosted-up utilizing a proper back reflector. Herein, the impact of different smooth and textured back reflectors was explored and effectuated to study the optical phenomena with interface engineering strategies and characteristics of transparent contacts. A unique type of wet-chemically textured glass-substrate 3D etching mask used in superstrate (p-i-n) amorphous silicon-based solar cell along with legitimated back reflector permits joining the standard light-trapping methodologies, which are utilized to upgrade the energy conversion efficiency (ECE). To investigate the optical and electrical properties of solar cell structure, the optical simulations in three-dimensional measurements (3D) were performed utilizing finite-difference time-domain (FDTD) technique. This design methodology allows to determine the power losses, quantum efficiencies, and short-circuit current densities of various layers in such solar cell. The short-circuit current densities for different reflectors were varied from 11.50 to 13.27 and 13.81 to 16.36 mA/cm2 for the smooth and pyramidal textured solar cells, individually. Contrasted with the comparable flat reference cell, the short-circuit current density of textured solar cell was increased by around 24%, and most extreme outer quantum efficiencies rose from 79 to 86.5%. The photon absorption was fundamentally improved in the spectral region from 600 to 800 nm with no decrease of photocurrent shorter than 600-nm wavelength. Therefore, these optimized designs will help to build the effective plans next-generation amorphous silicon-based solar cells.
Texture related unusual phenomena in electrodeposition and vapor deposition
NASA Astrophysics Data System (ADS)
Lee, D. N.; Han, H. N.
2015-04-01
The tensile strength of electrodeposits generally decreases with increasing bath temperature because the grain size increases and the dislocation density decreases with increasing bath temperature. Therefore, discontinuities observed in the tensile strength vs. bath temperature curves in electrodeposition of copper are unusual. The tensile strength of electrodeposits generally increases with increasing cathode current density because the rate of nucleation in electrodeposits increases with increasing current density, which in turn gives rise to a decrease in the grain size and in turn an increase in the strength. Therefore, a decrease in the tensile strength of copper electrodeposits at a high current density is unusual. The grain size of vapor deposits is expected to decrease with decreasing substrate temperature. However, rf sputtered Co-Cr deposits showed that deposits formed on water-cooled polyimide substrates had a larger grain size than deposits formed on polyimide substrates at 200 °C. These unusual phenomena can be explained by the preferred growth model for deposition texture evolution.
Adaption of an In-Situ Microscale Tension Technique to Enable Fatigue Testing (PREPRINT)
2012-08-01
mechanical properties , including fatigue performance, are strongly related to the crystallographic texture of these alloys.[5-7] With the combined use...effects, exploration of deformation micromechanisms, and measurement of the local properties in a bulk material (e.g., variations in the local...Approved for public release; distribution unlimited 9 microstructure of this material , would be expected to exhibit a reduction in mechanical properties
Dielectric properties-based method for rapid and nondestructive moisture sensing in almonds
USDA-ARS?s Scientific Manuscript database
A dielectric-based method is presented for moisture determination in almonds independent of bulk density. The dielectric properties of almond were measured between 5 and 15 GHz, with a 1-GHz increments, for samples with moisture contents ranging from 4.8% to 16.5%, wet basis, bulk densities ranging ...
Soil compaction and initial height growth of planted ponderosa pine.
P. H. Cochran; Terry. Brock
1985-01-01
Early height growth of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings planted in clearcuts in central Oregon was negatively correlated with increasing soil bulk density. Change in bulk density accounted for less than half the total variation in height growth. Although many other factors affect the development of seedlings, compaction...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panda, Subrata, E-mail: subrata.panda@univ-lorrain
2017-01-15
Two distinct bulk light metals were opted to study the shear strain evolution and associated heterogeneities in texture/microstructure development during torsional straining by high pressure torsion (HPT): a face centered cubic Al alloy (A5086) and a hexagonal commercial purity Mg. Relatively thick disk samples - four times thicker than usually employed in HPT process - were processed to 180° and 270° rotations. With the help of X-ray tomography, the shear strain gradients were examined in the axial direction. The results showed strongly localized shear deformation in the middle plane of the disks in both materials. These gradients involved strong heterogeneitiesmore » in texture, microstructure and associated hardness, in particular through the thickness direction at the periphery of the disk where the interplay between significant strain hardening and possible dynamic recrystallization could occur. - Highlights: •HPT processing was conducted on bulk specimens thicker than the usual thin-disks. •The Al alloy (A5086) and commercial purity magnesium samples were compared. •Distributions of strain and microhardness were evaluated in the radial and axial direction. •Plastic deformation is highly localized in the middle plane at outer edge in both materials. •Different DRX rates governed the differences in microstructure and hardening behavior.« less
Battiato, Marco; Sánchez-Barriga, Jaime
2017-01-01
Quantum-phase transitions between trivial insulators and topological insulators differ from ordinary metal-insulator transitions in that they arise from the inversion of the bulk band structure due to strong spin–orbit coupling. Such topological phase transitions are unique in nature as they lead to the emergence of topological surface states which are characterized by a peculiar spin texture that is believed to play a central role in the generation and manipulation of dissipationless surface spin currents on ultrafast timescales. Here, we provide a generalized GW+Boltzmann approach for the description of ultrafast dynamics in topological insulators driven by electron–electron and electron–phonon scatterings. Taking the prototypical insulator Bi2Te3 as an example, we test the robustness of our approach by comparing the theoretical prediction to results of time- and angle-resolved photoemission experiments. From this comparison, we are able to demonstrate the crucial role of the excited spin texture in the subpicosecond relaxation of transient electrons, as well as to accurately obtain the magnitude and strength of electron–electron and electron–phonon couplings. Our approach could be used as a generalized theory for three-dimensional topological insulators in the bulk-conducting transport regime, paving the way for the realization of a unified theory of ultrafast dynamics in topological materials. PMID:28773171
Battiato, Marco; Aguilera, Irene; Sánchez-Barriga, Jaime
2017-07-17
Quantum-phase transitions between trivial insulators and topological insulators differ from ordinary metal-insulator transitions in that they arise from the inversion of the bulk band structure due to strong spin-orbit coupling. Such topological phase transitions are unique in nature as they lead to the emergence of topological surface states which are characterized by a peculiar spin texture that is believed to play a central role in the generation and manipulation of dissipationless surface spin currents on ultrafast timescales. Here, we provide a generalized G W +Boltzmann approach for the description of ultrafast dynamics in topological insulators driven by electron-electron and electron-phonon scatterings. Taking the prototypical insulator Bi 2 Te 3 as an example, we test the robustness of our approach by comparing the theoretical prediction to results of time- and angle-resolved photoemission experiments. From this comparison, we are able to demonstrate the crucial role of the excited spin texture in the subpicosecond relaxation of transient electrons, as well as to accurately obtain the magnitude and strength of electron-electron and electron-phonon couplings. Our approach could be used as a generalized theory for three-dimensional topological insulators in the bulk-conducting transport regime, paving the way for the realization of a unified theory of ultrafast dynamics in topological materials.
Petrophysical Properties of Twenty Drill Cores from the Los Azufres, Mexico, Geothermal Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iglesias, E.R.; Contreras L., E.; Garcia G., A.
1987-01-20
For this study we selected 20 drill cores covering a wide range of depths (400-3000 m), from 15 wells, that provide a reasonable coverage of the field. Only andesite, the largely predominant rock type in the field, was included in this sample. We measured bulk density, grain (solids) density, effective porosity and (matrix) permeability on a considerable number of specimens taken from the cores; and inferred the corresponding total porosity and fraction of interconnected total porosity. We characterized the statistical distributions of the measured and inferred variables. The distributions of bulk density and grain density resulted approximately normal; the distributionsmore » of effective porosity, total porosity and fraction of total porosity turned out to be bimodal; the permeability distribution resulted highly skewed towards very small (1 mdarcy) values, though values as high as 400 mdarcies were measured. We also characterized the internal inhomogeneity of the cores by means of the ratio (standard deviation/mean) corresponding to the bulk density in each core (in average there are 9 specimens per core). The cores were found to present clearly discernible inhomogeneity; this quantitative characterization will help design new experimental work and interpret currently available and forthcoming results. We also found statistically significant linear correlations between total density and density of solids, effective porosity and total density, total porosity and total density, fraction of interconnected total porosity and the inverse of the effective porosity, total porosity and effective porosity; bulk density and total porosity also correlate with elevation. These results provide the first sizable and statistically detailed database available on petrophysical properties of the Los Azufres andesites. 1 tab., 16 figs., 4 refs.« less
Tani, Toshihiko; Takeuchi, Tsuguto
2015-06-01
Plate-like Ca 3 Ti 2 O 7 (CT) and Nd 2 Ti 2 O 7 (NT) particles were synthesized in molten salts and used as reactive templates for the preparation of highly textured (Ca 0.7 Nd 0.3 ) 0.87 TiO 3 bulk ceramics (CNT) with preferred pseudocubic 〈100〉 and 〈110〉 orientations, respectively. During flux growth CT and NT particles developed facets parallel to the pseudocubic {100} and {110} planes, respectively, in a perovskite unit cell, since those planes correspond to the interlayers of the layered perovskite-type crystal structures. Complementary reactants for the CNT stoichiometry were wet-mixed with the reactive templates and the slurries were tape-cast. Then stacked tapes were heat-treated for dense single-phase CNT ceramics with a distorted and A-site deficient regular perovskite-type structure. The CNT ceramics prepared with CT and NT reactive templates exhibited strong pseudocubic 100- and 110-family x-ray diffraction peaks, respectively, with other peaks drastically suppressed when non-perovskite sources were used as complementary reactants. The textured ceramics possess unique microstructures; as either parallel or obliquely stacked block structures with a pseudocubic {100} plane faceted. The pseudocubic {100}-and {110}-textured CNT ceramics exhibited ∼10 and ∼20% higher products of the dielectric quality factor and frequency, Q · f , respectively, than conventional ceramic sintered at the same temperature. When Q · f is compared based on the same grain size, the {100}-textured CNT exhibited 27% higher values than non-textured while relative permittivity and temperature coefficient of resonant frequency were of similar values. Simple geometrical relationships between electric field and penetrated pseudocubic { hk 0}-type grain boundaries must lead to the reduced scattering and dielectric loss.
NASA Astrophysics Data System (ADS)
Ian Schipper, C.; Mandon, Céline; Maksimenko, Anton; Castro, Jonathan M.; Conway, Chris E.; Hauer, Peter; Kirilova, Martina; Kilgour, Geoff
2017-10-01
Vesicles in volcanic rocks are physical records of magmatic degassing; however, the interpretation of their textures is complicated by resorption, coalescence, and collapse. We discuss the textural significance of vesicle-hosted vapor-phase cristobalite (high-T, low-P SiO2 polymorph), and its utility as a complement to textural assessments of magmatic degassing, using a representative dacite bomb erupted from White Island volcano (New Zealand) in 1999. Imaging in 2D (SEM) and 3D (CT) shows the bomb to have 56% bulk porosity, almost all of which is connected ( 99%) and devoid of SiO2 phases. The remaining ( 1%) of porosity is in isolated, sub-spherical vesicles that have corroded walls and contain small (< 30 μm across) prismatic vapor-phase cristobalite crystals (98.4 ± 0.4 wt.% SiO2 with diagnostic laser Raman spectra). Halogen degassing models show vapor-phase cristobalite to be indicative of closed-system chlorine and fluorine partitioning into H2O-rich fluid in isolated pores. At White Island, this occurred during shallow (< 100s of meters) ascent and extensive ( 50%) groundmass crystallization associated with slow cooling in a volcanic plug. Pristine textures in this White Island bomb demonstrate the link between pore isolation and vapor-phase cristobalite deposition. We suggest that because these crystals have higher preservation potential than the bubbles in which they form, they can serve as durable, qualitative textural indicators of halogen degassing and pre-quench bubble morphologies in slowly cooled volcanic rocks (e.g., lava flows and domes), even where emplacement mechanisms have overprinted original bubble textures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigam, Sandeep, E-mail: snigam@barc.gov.in; Sudarsan, V., E-mail: vsudar@barc.gov.in; Majumder, C.
Present manuscript deals with the structural changes associated with transformation of bulk Y{sub 2}Sn{sub 2}O{sub 7} into nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7}. Nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7} both undoped and Eu{sup 3+} doped, were prepared at a relatively low temperature (700 °C) and investigated for their structural and luminescence properties and compared them with that of bulk Y{sub 2}Sn{sub 2}O{sub 7} sample prepared by the solid-state method at 1300 °C. Significant distortion in geometry and electron density distribution around Y{sup 3+}/Eu{sup 3+} ions in nanoparticles are confirmed from the Rietveld refinement of the powder X-ray diffraction patterns andmore » theoretical calculations based on the density functional theory (DFT). The SnO{sub 6} octahedron in Y{sub 2}Sn{sub 2}O{sub 7} is more expanded in nanoparticles compared to bulk. Iso-surface density distribution reveals that while bulk sample shows typical ionic feature in Y/Eu--O bonds, nanoparticle sample shows sharing of electron density along bond axis pertaining to covalent character. These inferences are further supported by the doped Eu{sup 3+} luminescence and calculated Ω{sub 2} and Ω{sub 4} parameters. - Graphical abstract: YO{sub 8} scalenohedron present in bulk and nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7}.Variation of the electron density around Y{sup 3+} ions in YO{sub 8} polyhedron is also shown in bulk and nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7}. The difference in the extent of ionic/covalent nature of the Y--O bond is clearly seen the contour plot of electron density. Highlights: ► YO{sub 8} scalenohedron is axially and equatorially distorted in Y{sub 2}Sn{sub 2}O{sub 7} nanoparticles. ► Enlargement of SnO{sub 6} octahedron in nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7} compared to bulk. ► Less symmetric charge distribution around Y{sup 3+} ions in Y{sub 2}Sn{sub 2}O{sub 7} nanoparticles.« less
Chen, Weifeng; Wu, Weijing; Zhou, Lei; Xu, Miao; Wang, Lei; Peng, Junbiao
2018-01-01
A semi-analytical extraction method of interface and bulk density of states (DOS) is proposed by using the low-frequency capacitance–voltage characteristics and current–voltage characteristics of indium zinc oxide thin-film transistors (IZO TFTs). In this work, an exponential potential distribution along the depth direction of the active layer is assumed and confirmed by numerical solution of Poisson’s equation followed by device simulation. The interface DOS is obtained as a superposition of constant deep states and exponential tail states. Moreover, it is shown that the bulk DOS may be represented by the superposition of exponential deep states and exponential tail states. The extracted values of bulk DOS and interface DOS are further verified by comparing the measured transfer and output characteristics of IZO TFTs with the simulation results by a 2D device simulator ATLAS (Silvaco). As a result, the proposed extraction method may be useful for diagnosing and characterising metal oxide TFTs since it is fast to extract interface and bulk density of states (DOS) simultaneously. PMID:29534492
NASA Technical Reports Server (NTRS)
Wintucky, E. G.; Curren, A. N.; Sovey, J. S.
1981-01-01
Low secondary and reflected primary electron emission from the collector electrode surfaces is important for optimum collector efficiency and hence for high overall efficiency of microwave amplifier tubes used in communication satellites and in military systems. Ion sputter texturing of the surface effectively suppresses electron emission from pyrolytic graphite, which is a promising collector electrode material. Secondary and reflected primary electron emission characteristics of sputter textured pyrolytic graphite surfaces with microstructures of various sizes and densities are presented. The microstructure with the lowest electron emission levels, less than those of soot, consists of a dense array of tall, thin spires.
Tunable emergent heterostructures in a prototypical correlated metal
NASA Astrophysics Data System (ADS)
Fobes, D. M.; Zhang, S.; Lin, S.-Z.; Das, Pinaki; Ghimire, N. J.; Bauer, E. D.; Thompson, J. D.; Harriger, L. W.; Ehlers, G.; Podlesnyak, A.; Bewley, R. I.; Sazonov, A.; Hutanu, V.; Ronning, F.; Batista, C. D.; Janoschek, M.
2018-05-01
At the interface between two distinct materials, desirable properties, such as superconductivity, can be greatly enhanced1, or entirely new functionalities may emerge2. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textures emerge spontaneously due to competing atomic-scale interactions3, the control of which would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom4. Here we report high-resolution neutron spectroscopy on the prototypical strongly correlated metal CeRhIn5, revealing competition between magnetic frustration and easy-axis anisotropy—a well-established mechanism for generating spontaneous superstructures5. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. The resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting6 and electronic nematic textures7 in CeRhIn5, suggesting that in situ tunable heterostructures can be realized in correlated electron materials.
NASA Technical Reports Server (NTRS)
Graham, C. D., Jr.; Pope, D. P.; Kulkarni, S.; Wolf, M.
1978-01-01
The hot workability of polycrystalline silicon was studied. Uniaxail stress-strain curves are given for strain rates in the range of .0001 to .1/sec and temperatures from 1100 to 1380 C. At the highest strain rates at 1380 C axial strains in excess of 20% were easily obtainable without cracking. After deformations of 36%, recrystallization was completed within 0.1 hr at 1380 C. When the recrystallization was complete, there was still a small volume fraction of unrecyrstallized material which appeared very stable and may degrade the electronic properties of the bulk materials. Texture measurements showed that the as-produced vapor deposited polycrystalline rods have a 110 fiber texture with the 110 direction parallel to the growth direction and no preferred orientation about this axis. Upon axial compression perpendicular to the growth direction, the former 110 fiber axis changed to 111 and the compression axis became 110 . Recrystallization changed the texture to 110 along the former fiber axis and to 100 along the compression axis.
Tunable emergent heterostructures in a prototypical correlated metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fobes, D. M.; Zhang, S.; Lin, S. -Z.
We report at the interface between two distinct materials, desirable properties, such as superconductivity, can be greatly enhanced1, or entirely new functionalities may emerge. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textures emerge spontaneously due to competing atomic-scale interactions, the control of which would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom. Here we report high-resolution neutron spectroscopy on the prototypical strongly correlated metal CeRhIn 5, revealingmore » competition between magnetic frustration and easy-axis anisotropy—a well-established mechanism for generating spontaneous superstructures. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. Finally, the resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting and electronic nematic textures in CeRhIn 5, suggesting that in situ tunable heterostructures can be realized in correlated electron materials.« less
Tunable emergent heterostructures in a prototypical correlated metal
Fobes, D. M.; Zhang, S.; Lin, S. -Z.; ...
2018-03-26
We report at the interface between two distinct materials, desirable properties, such as superconductivity, can be greatly enhanced1, or entirely new functionalities may emerge. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textures emerge spontaneously due to competing atomic-scale interactions, the control of which would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom. Here we report high-resolution neutron spectroscopy on the prototypical strongly correlated metal CeRhIn 5, revealingmore » competition between magnetic frustration and easy-axis anisotropy—a well-established mechanism for generating spontaneous superstructures. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. Finally, the resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting and electronic nematic textures in CeRhIn 5, suggesting that in situ tunable heterostructures can be realized in correlated electron materials.« less
Efficient optical analysis of surface texture combinations for silicon solar cells
NASA Astrophysics Data System (ADS)
Tucher, Nico; Eisenlohr, Johannes; Kiefel, Peter; Gebrewold, Habtamu; Höhn, Oliver; Hauser, Hubert; Müller, Claas; Goldschmidt, Jan Christoph; Bläsi, Benedikt
2016-04-01
Surface textures can significantly improve anti-reflective and light trapping properties of silicon solar cells. Combining standard pyramidal front side textures with scattering or diffractive rear side textures has the potential to further increase the light path length inside the silicon and thereby increase the solar cell efficiency. In this work we introduce the OPTOS (Optical Properties of Textured Optical Sheets) simulation formalism and apply it to the modelling of silicon solar cells with different surface textures at front and rear side. OPTOS is a matrix-based method that allows for the computationally-efficient calculation of non-coherent light propagation within textured solar cells, featuring multiple textures that may operate in different optical regimes. After calculating redistribution matrices for each individual surface texture with the most appropriate technique, optical properties like angle dependent reflectance, transmittance or absorptance can be determined via matrix multiplications. Using OPTOS, we demonstrate for example that the integration of a diffractive grating at the rear side of solar cells with random pyramids at the front results in an absorptance gain that corresponds to a photocurrent density enhancement of 0.73 mA/cm2 for a 250 μm thick cell. The re-usability of matrices enables the investigation of different solar cell thicknesses within minutes. For thicknesses down to 50 μm the simulated gain increases up to 1.22 mA/cm2. The OPTOS formalism is furthermore not restricted with respect to the number of textured interfaces. By combining two or more textured sheets to effective interfaces, it is possible to optically model a complete photovoltaic module including EVA and potentially textured glass layers with one calculation tool.
Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI
NASA Astrophysics Data System (ADS)
Pei, Linmin; Reza, Syed M. S.; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M.
2017-03-01
In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. To model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.
Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI.
Pei, Linmin; Reza, Syed M S; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M
2017-02-11
In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. In order to model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.
Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring.
Kallenberg, Michiel; Petersen, Kersten; Nielsen, Mads; Ng, Andrew Y; Pengfei Diao; Igel, Christian; Vachon, Celine M; Holland, Katharina; Winkel, Rikke Rass; Karssemeijer, Nico; Lillholm, Martin
2016-05-01
Mammographic risk scoring has commonly been automated by extracting a set of handcrafted features from mammograms, and relating the responses directly or indirectly to breast cancer risk. We present a method that learns a feature hierarchy from unlabeled data. When the learned features are used as the input to a simple classifier, two different tasks can be addressed: i) breast density segmentation, and ii) scoring of mammographic texture. The proposed model learns features at multiple scales. To control the models capacity a novel sparsity regularizer is introduced that incorporates both lifetime and population sparsity. We evaluated our method on three different clinical datasets. Our state-of-the-art results show that the learned breast density scores have a very strong positive relationship with manual ones, and that the learned texture scores are predictive of breast cancer. The model is easy to apply and generalizes to many other segmentation and scoring problems.
Spatial variability of shelf sediments in the STRATAFORM natural laboratory, Northern California
Goff, J.A.; Wheatcroft, R.A.; Lee, H.; Drake, D.E.; Swift, D.J.P.; Fan, S.
2002-01-01
The "Correlation Length Experiment", an intensive box coring effort on the Eel River shelf (Northern California) in the summer of 1997, endeavored to characterize the lateral variability of near-surface shelf sediments over scales of meters to kilometers. Coring focused on two sites, K60 and S60, separated by ??? 15 km along the 60 m isobath. The sites are near the sand-to-mud transition, although K60 is sandier owing to its proximity to the Eel River mouth. Nearly 140 cores were collected on dip and strike lines with core intervals from < 10m to 1 km. Measurements on each core included bulk density computed from gamma-ray attenuation, porosity converted from resistivity measurements, and surficial grain size. Grain size was also measured over the full depth range within a select subset of cores. X-radiograph images were also examined. Semi-variograms were computed for strike, dip, and down-hole directions at each site. The sand-to-mud transition exerts a strong influence on all measurements: on average, bulk density increases and porosity decreases with regional increases in mean grain size. Analysis of bulk density measurements indicates very strong contrasts in the sediment variability at K60 and S60. No coherent bedding is seen at K60; in the strike direction, horizontal variability is "white" (fully uncorrelated) from the smallest scales examined (a few meters) to the largest (8 km), with a variance equal to that seen within the cores. In contrast, coherent bedding exists at S60 related to the preservation of the 1995 flood deposit. A correlatable structure is found in the strike direction with a decorrelation distance of ??? 800 m, and can be related to long-wavelength undulations in the topography and/or thickness of the flood layer or overburden. We hypothesize that the high degree of bulk density variability at K60 is a result of more intense physical reworking of the seabed in the sandier environment. Without significant averaging, the resistivity-based porosity measurements are only marginally correlated to gamma-ray-bulk density measurements, and are largely independent of mean grain size. Furthermore, porosity displays a high degree of incoherent variability at both sites. Porosity, with a much smaller sample volume than bulk density, may therefore resolve small-scale biogenic variability which is filtered out in the bulk density measurement. ?? 2002 Elsevier Science Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)
1992-01-01
A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.
Method of altering the effective bulk density of solid material and the resulting product
Kool, Lawrence B.; Nolen, Robert L.; Solomon, David E.
1983-01-01
A method of adjustably tailoring the effective bulk density of a solid material in which a mixture comprising the solid material, a film-forming polymer and a volatile solvent are sprayed into a drying chamber such that the solvent evaporates and the polymer dries into hollow shells having the solid material captured within the shell walls. Shell density may be varied as a function of solid/polymer concentration, droplet size and drying temperature.
Compositon of sediments transported by the wind at different heights
NASA Astrophysics Data System (ADS)
Iturri, Antonela; Funk, Roger; Leue, Martin; Sommer, Michael; Buschiazzo, Daniel
2017-04-01
Wind erosion (WE) is one of the most important degradation process of soils in arid- and semiarid environments in the world, affecting soil properties and adjacent ecosystems, including human health. Estimations about the amount of eroded soil are available in Argentina and in the world, but the quality of the eroded sediments, particularly the sorting effects in agricultural soils, has been scarcely studied. The trend of the different mineral and organic soil compounds, which enrich in different size classes, can define height distribution profiles. Therefore, the uppermost 2.5 cm of four agricultural loess soils that differ in granulometric composition were used for WE simulations in a wind tunnel. Particles with a diameter smaller than 10 µm (PM10) were collected with a laboratory dust generator. The bulk soil and all the sediment samples were characterized by the granulometric composition, the soil organic carbon (SOC) content and the mineral and organic functional groups. Despite different texture, the soils were subjected to similar sorting processes in height, but differed depending on their granulometry. There was a separation between coarser and finer soil particles in coarser textured soils, while finer textured soils were more homogeneous in all heights. This correlated with the preferential transport of Si-O from quartz and C-H, C=O and C-C from soil organic matter (SOM), which were transported in larger and/or denser particles at lower heights. O-H from clay minerals and C-O-C and C-O from polysaccharides, carbohydrates and derivatives from SOM were transported in higher heights. Despite similar SOC content in the bulk soils, both the amount and composition in the PM10 fractions was different. The SOC transported at higher heights was mostly composed of polysaccharides, carbohydrates and derivatives associated with clay minerals. The SOC in PM10 fractions of coarser-textured soils was dominated by labile C-H groups. According to the determined height distribution profiles, it can be deduced that WE may affect both soil quality and the soil C balance due to the sorting effects during transport.
High Precision Iron Isotope Compositions in Components From the Allende CV3 Meteorite by MC-ICP-MS
NASA Astrophysics Data System (ADS)
Mullane, E.; Russell, S. S.; Weiss, D.; Mason, T. F.; Gounelle, M.
2001-12-01
Four chondrules and one matrix sample of Allende were examined for Fe-isotope frac-tionation, using multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS). Iron is the most volatile major constituent of chondrules and a recent study [1] suggested that solar system Fe was initially isotopically homogeneous. Thus, any isotopic variation is likely due to mass fractionation during nebular process-ing. The chondrule samples were split. One portion was subject to a standard acid dis-solution whilst the other was polished, ena-bling textural and compositional characteri-zation. Fe, Cu and Zn are separated from the remaining matrix elements [2], removing potential interfering ions from the solution. 100 % elemental recovery (within error) is achieved, ensuring that chromatographic fractionation does not occur [2]. Hydrogen is bled into the collision cell, minimising Ar polyatomic species interferences. Typical precisions of 0.1‰ (2σ ) for 54Fe/56Fe ratios are achieved for 75 replicates. Instrumental mass bias is assessed using (1) sample-standard brack-eting and (2) doping with Cu. A variation of 0.8‰ /amu is observed, which is approximately 18 times the analyti-cal uncertainty at the 2σ level. Our high precision data show that: (1) Allende chondrules and matrix exhibit clear isotopic variation in iron. (2) δ 54Fe val-ues appear to be correlated to the bulk FeO content, with the more iron rich samples enriched in the lighter 54Fe isotope. (3) δ 54Fe values appear to be unre-lated to texture, and consequently to the temperature of chondrule formation. Bulk Fe-content may be a proxy for the amount of volatilisation experienced, and volatilisation of Fe in chondrule precursor material has resulted in a residue of the heavier Fe isotopes. Chondrules are known to have often experienced several heating events, and their texture primarily reflects the nature of the last event. Thus, the lack of correlation between the δ 54Fe value and chondrule texture suggests that Fe-isotope composi-tion was derived from chondrule precursor material. [1] Zhu et al. (2001) Nature 412, p.311 [2] Mullane et al. (2001) LPS XXXII, No.1545.
Evaluation of soil manipulation to prepare engineered earthen waste covers for revegetation
Waugh, W. Joseph; Benson, Craig H.; Albright, William H.; ...
2015-10-21
Seven ripping treatments designed to improve soil physical conditions for revegetation were compared on a test pad simulating an earthen cover for a waste disposal cell. The field test was part of study of methods to convert compacted-soil waste covers into evapotranspiration covers. The test pad consisted of a compacted layer of fine-textured soil simulating a barrier protection layer overlain by a gravelly sand bedding layer and a cobble armor layer. Treatments included combinations of soil-ripping implements (conventional shank [CS], wing-tipped shank [WTS], and parabolic oscillating shank with wings [POS]), ripping depths, and number of passes. Dimensions, dry density, moisturemore » content, and particle size distribution of disturbance zones were determined in two trenches excavated across rip rows. The goal was to create a root-zone dry density between 1.2 and 1.6 Mg m-3 and a seedbed soil texture ranging from clay loam to sandy loam with low rock content. All treatments created V-shaped disturbance zones as measured on trench faces. Disturbance zone size was most influenced by ripping depth. Winged implements created larger disturbance zones. All treatments lifted fines into the bedding layer, moved gravel and cobble down into the fine-textured protection layer, and thereby disrupted the capillary barrier at the interface. Changes in dry density within disturbance zones were comparable for the CS and WTS treatments but were highly variable among POS treatments. Water content increased in the bedding layer and decreased in the protection layer after ripping. The POS at 1.2-m depth and two passes created the largest zone with a low dry density (1.24 Mg m-3) and the most favorable seedbed soil texture (gravely silt loam). Furthermore, ripping also created large soil aggregates and voids in the protection layer that may produce preferential flow paths and reduce water storage capacity.« less
Microstructure of Transparent Strontium Fresnoite Glass-Ceramics
Wisniewski, Wolfgang; Takano, Kazuya; Takahashi, Yoshihiro; Fujiwara, Takumi; Rüssel, Christian
2015-01-01
Glass-ceramics grown from a glass of the composition Sr2TiSi2.45O8.9 (STS 45) are analyzed by scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). Oriented nucleation with the c-axes preferably perpendicular to the surface is detected. A very strong 001-texture is observed after only 10 μm of growth into the bulk, making this the first system in which an orientation preferred during nucleation prevails during growth into the bulk in glass-ceramics. Piezoelectric measurements are performed and d33-values presented and discussed. The obtained results are critically viewed with respect to the two growth models describing Sr2TiSi2O8 growth in glasses. PMID:25780988
Interplay between bulk and edge-bound topological defects in a square micromagnet
Sloetjes, Sam D.; Digernes, Einar; Olsen, Fredrik K.; ...
2018-01-22
A field-driven transformation of a domain pattern in a square micromagnet, defined in a thin film of La 0.7Sr 0.3MnO 3, is discussed in terms of creation and annihilation of bulk vortices and edge-bound topological defects with half-integer winding numbers. The evolution of the domain pattern was mapped with soft x-ray photoemission electron microscopy and magnetic force microscopy. Micromagnetic modeling, permitting detailed analysis of the spin texture, accurately reproduces the measured domain state transformation. The simulations also helped stipulate the energy barriers associated with the creation and annihilation of the topological charges and thus to assess the stability of themore » domain states in this magnetic microstructure.« less
Interplay between bulk and edge-bound topological defects in a square micromagnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloetjes, Sam D.; Digernes, Einar; Olsen, Fredrik K.
A field-driven transformation of a domain pattern in a square micromagnet, defined in a thin film of La 0.7Sr 0.3MnO 3, is discussed in terms of creation and annihilation of bulk vortices and edge-bound topological defects with half-integer winding numbers. The evolution of the domain pattern was mapped with soft x-ray photoemission electron microscopy and magnetic force microscopy. Micromagnetic modeling, permitting detailed analysis of the spin texture, accurately reproduces the measured domain state transformation. The simulations also helped stipulate the energy barriers associated with the creation and annihilation of the topological charges and thus to assess the stability of themore » domain states in this magnetic microstructure.« less
Frictional Behavior of Micro/nanotextured Surfaces Investigated by Atomic Force Microscope: a Review
NASA Astrophysics Data System (ADS)
Zhang, Xiaoliang; Jia, Junhong
2015-08-01
Tribological issues between friction pair are fundamental problems for minimized devices because of their higher surface-to-volume ratio. Micro/nanotexturing is an effective technique to reduce actual contact area between contact pair at the nanoscale. Micro/nanotexture made a great impact on the frictional behavior of textured surfaces. This paper summarizes the recent advancements in the field of frictional behavior of micro/nanotextured surfaces, which are based on solid surface contact in atmosphere environment, especially focusing on the factors influencing the frictional behavior: Surface property, texturing density, texturing height, texturing structure and size of contact pair (atomic force microscope (AFM) tip) and texturing structures. Summarizing the effects of these factors on the frictional behavior is helpful for the understanding and designing of the surfaces in sliding micro/nanoelectromechanical systems (MEMS/NEMS). Controlling and reducing the friction force in moving mechanical systems is very important for the performance and reliability of nanosystems, which contribute to a sustainable future.
Fatigue mechanism of textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics
NASA Astrophysics Data System (ADS)
Yan, Yongke; Zhou, Yuan; Gupta, Shashaank; Priya, Shashank
2013-08-01
Grain orientation, BaTiO3 heterogeneous template content, and electrode materials are expected to play an important role in controlling the polarization fatigue behavior of ⟨001⟩ textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. A comparative analysis with randomly oriented ceramics showed that ⟨001⟩ grain orientation/texture exhibits improved fatigue characteristics due to the reduced switching activation energy and high domain mobility. The hypothesis was validated from the systematic characterization of polarization—electric field behavior and domain wall density. The defect accumulation at the grain boundary and clamping effect arising from the presence of BaTiO3 heterogeneous template in the final microstructure was found to be the main cause for polarization degradation in textured ceramic.
Estimating canopy bulk density and canopy base height for interior western US conifer stands
Seth A. Ex; Frederick W. Smith; Tara L. Keyser; Stephanie A. Rebain
2016-01-01
Crown fire hazard is often quantified using effective canopy bulk density (CBD) and canopy base height (CBH). When CBD and CBH are estimated using nonlocal crown fuel biomass allometries and uniform crown fuel distribution assumptions, as is common practice, values may differ from estimates made using local allometries and nonuniform...
Estimating forest canopy bulk density using six indirect methods
Robert E. Keane; Elizabeth D. Reinhardt; Joe Scott; Kathy Gray; James Reardon
2005-01-01
Canopy bulk density (CBD) is an important crown characteristic needed to predict crown fire spread, yet it is difficult to measure in the field. Presented here is a comprehensive research effort to evaluate six indirect sampling techniques for estimating CBD. As reference data, detailed crown fuel biomass measurements were taken on each tree within fixed-area plots...
BDEN: A timesaving computer program for calculating soil bulk density and water content.
Lynn G. Starr; Michael J. Geist
1983-01-01
This paper presents an interactive computer program written in BASIC language that will calculate soil bulk density and moisture percentage by weight and volume. Coarse fragment weights are required. The program will also summarize the resulting data giving mean, standard deviation, and 95-percent confidence interval on one or more groupings of data.
Susceptibility of volcanic ash-influenced soil in northern Idaho to mechanical compaction
Deborah S. Page-Dumroese
1993-01-01
Timber harvesting and mechanical site preparation can reduce site productivity if they excessively disturb or compact the soil. Volcanic ash-influenced soils with low undisturbed bulk densities and rock content are particularly susceptible. This study evaluates the effects of harvesting and site preparation on changes in the bulk density of ash-influenced forest soils...
Soil Compaction Absent in Plantation Thinning
Tony King; Sharon Haines
1979-01-01
We examine the effects on soil bulk density by using a TH-105 Thinner Harvester and two forwarders in a mechanically thinned slash pine (Pinus elliottii Engelm.) plantation. Points in the machine tracks were sampled before and after harvesting at depths of 5 and 10 cm (2 and 4 in) for moisture and bulk density. Both the standard gravimetric method...
Experimental investigation of fire propagation in single live shrubs
Jing Li; Shankar Mahalingam; David R. Weise
2017-01-01
This work focuses broadly on individual, live shrubs and, more specifically, it examines bulk density in chaparral and its combined effects with wind and ignition location on the resulting fire behaviour. Empirical functions to predict bulk density as a function of height for 4-year-old chaparral were developed for two typical species of shrub fuels in southern...
Li, Jonathan G.; Liu, Chihray; Olivier, Kenneth R.; Dempsey, James F.
2009-01-01
The aim of this study was to investigate the relative accuracy of megavoltage photon‐beam dose calculations employing either five bulk densities or independent voxel densities determined by calibration of the CT Houndsfield number. Full‐resolution CT and bulk density treatment plans were generated for 70 lung or esophageal cancer tumors (66 cases) using a commercial treatment planning system with an adaptive convolution dose calculation algorithm (Pinnacle3, Philips Medicals Systems). Bulk densities were applied to segmented regions. Individual and population average densities were compared to the full‐resolution plan for each case. Monitor units were kept constant and no normalizations were employed. Dose volume histograms (DVH) and dose difference distributions were examined for all cases. The average densities of the segmented air, lung, fat, soft tissue, and bone for the entire set were found to be 0.14, 0.26, 0.89, 1.02, and 1.12 g/cm3, respectively. In all cases, the normal tissue DVH agreed to better than 2% in dose. In 62 of 70 DVHs of the planning target volume (PTV), agreement to better than 3% in dose was observed. Six cases demonstrated emphysema, one with bullous formations and one with a hiatus hernia having a large volume of gas. These required the additional assignment of density to the emphysemic lung and inflammatory changes to the lung, the regions of collapsed lung, the bullous formations, and the hernia gas. Bulk tissue density dose calculation provides an accurate method of heterogeneous dose calculation. However, patients with advanced emphysema may require high‐resolution CT studies for accurate treatment planning. PACS number: 87.53.Tf
Sert, Durmuş; Mercan, Emin; Aydemir, Serdar; Civelek, Mustafa
2016-07-01
The aim of this work was to study the influence of milk somatic cell count (SCC) levels on spray-dried milk powders. For this reason, 3 cow milks with different SCC (<300,000, 300,000-700,000, >700,000 SCC/mL) were processed into skim (SMP) and whole milk powder (WMP). The effect of SCC on the physicochemical and functional characteristics of the milk powders and textural properties of set-type yogurts produced from reconstituted milk powders with different SCC was evaluated. A crucial difference was noted between milk powders depending on different SCC. Protein values and ash content of powder samples decreased correlatively with increasing SCC. The hydroxymethylfurfural content of SMP was higher than WMP. We noted an increase in hydroxymethylfurfural content of both SMP and WMP depending on elevated SCC. Solubility index of SMP and WMP was 1.280 to 1.632 and 0.940 to 1.208mL, respectively; with increasing SCC, solubility index was affected adversely. The highest foam stability was determined in SMP containing >700,000 SCC. Bulk density of SMP and WMP was between 0.682 and 0.708 and 0.660 to 0.685g/cm(3), respectively. An increase was observed in scorched particle of both SMP and WMP depending on increasing SCC. We found significant differences in particle size distribution of milk powders produced from milk with SCC at different levels. Although WMP had more uniform and big particle structure, SMP had more specific area. A negative correlation was noted between yogurt texture and SCC. Results indicate that milk SCC has negative influences on milk powder quality. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ruairuen, W.; Sparrow, E. B.; Fochesatto, G. J.
2016-12-01
Sago palm is one of the most important plants for sustainable agriculture and rural development in tropical swampy and peaty soils. Where no major crops can grow without drainage or soil improvement. It stores large quantities of starch which can be further processed into various basic raw materials for food, animal feed, industrial uses and alternative energy. This study aims to investigate the physicochemical properties of soil across the sago palm growing areas at Surat Thani province Thailand, where major of sago palms growth naturally exists. The soil samples from three districts Khiri Rat Nikhom (KR; 9 sampling sites), Kanchanadit (KD; 5 sampling sites), and Khian Sa (KS; 2 sampling sites) were studied and compared at 0-15 cm depth during March to June 2016. Observations indicated that the physicochemical properties of soil varied in each growing area. Soil bulk densities averages were lower in KD (0.52 g cm-3) than those in KR (0.58 g cm-3) and KS (0.57 g cm-3). Soil texture around KD and KS were dominated by silty loam. While in KR soil texture was dominated by sandy loam. The average soil conductivity in KS (5.68 mS m-1) was higher than KR (2.62 mS m-1) and KD (1.65 mS m-1). Furthermore, we found the sago palms grow well in a range of soil pH from 5.52 to 7.15, average soil pH: KS (6.8) and KD (6.96), while acid in KR (5.84). We also discuss the conservation activities to adequately protect sago palm, most of which are significantly threatened by habitat destruction and unsustainable harvesting.
Caracterisation des occupations du sol en milieu urbain par imagerie radar
NASA Astrophysics Data System (ADS)
Codjia, Claude
This study aims to test the relevance of medium and high-resolution SAR images on the characterization of the types of land use in urban areas. To this end, we have relied on textural approaches based on second-order statistics. Specifically, we look for texture parameters most relevant for discriminating urban objects. We have used in this regard Radarsat-1 in fine polarization mode and Radarsat-2 HH fine mode in dual and quad polarization and ultrafine mode HH polarization. The land uses sought were dense building, medium density building, low density building, industrial and institutional buildings, low density vegetation, dense vegetation and water. We have identified nine texture parameters for analysis, grouped into families according to their mathematical definitions in a first step. The parameters of similarity / dissimilarity include Homogeneity, Contrast, the Differential Inverse Moment and Dissimilarity. The parameters of disorder are Entropy and the Second Angular Momentum. The Standard Deviation and Correlation are the dispersion parameters and the Average is a separate family. It is clear from experience that certain combinations of texture parameters from different family used in classifications yield good results while others produce kappa of very little interest. Furthermore, we realize that if the use of several texture parameters improves classifications, its performance ceils from three parameters. The calculation of correlations between the textures and their principal axes confirm the results. Despite the good performance of this approach based on the complementarity of texture parameters, systematic errors due to the cardinal effects remain on classifications. To overcome this problem, a radiometric compensation model was developed based on the radar cross section (SER). A radar simulation from the digital surface model of the environment allowed us to extract the building backscatter zones and to analyze the related backscatter. Thus, we were able to devise a strategy of compensation of cardinal effects solely based on the responses of the objects according to their orientation from the plane of illumination through the radar's beam. It appeared that a compensation algorithm based on the radar cross section was appropriate. Some examples of the application of this algorithm on HH polarized RADARSAT-2 images are presented as well. Application of this algorithm will allow considerable gains with regard to certain forms of automation (classification and segmentation) at the level of radar imagery thus generating a higher level of quality in regard to visual interpretation. Application of this algorithm on RADARSAT-1 and RADARSAT-2 images with HH, HV, VH, and VV polarisations helped make considerable gains and eliminate most of the classification errors due to the cardinal effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Yan, E-mail: yanfeng@nwpu.edu.cn
Ni{sub 45}Mn{sub 36.6}In{sub 13.4}Co{sub 5} magnetic shape memory alloy was successfully produced as preferentially textured ribbon by melting spinning with different wheel speed. X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) were used to study structure and texture evolution of these melt-spun ribbons. The thickness of melt-spun ribbon is 42 μm, 65 μm and 30 μm depending on wheel speed of 1 0 m/s, 15 m/s and 20 m/s, respectively. Density of α fiber texture (〈100〉//ND) vary with wheel speed changes, and is most intensive in the ribbon with wheel speed of 15 m/s. Grains of the ribbons growmore » after being annealed at 873 K, 973 K, 1073 K and 1173 K, recrystallization was not observed in ribbons after being annealed at 873 K but occurred in ribbons after being annealed at higher temperatures. The α fiber texture becomes weaker to some extent after annealing at different temperatures, due to new recrystallization texture formed at the process of annealing. - Highlights: •Sectional part of shape memory ribbon is firstly investigated by EBSD method. •Thickness and texture of ribbons vary with wheel speed. •Annealing temperature affect texture and microstructure evolution greatly. •Recrystallization textures were observed in ribbons after being annealed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Nacre, also known as mother-of-pearl, is a biocomposite material that exhibits higher strength and fracture toughness than its component materials. It derives its strength from the brick-and-mortar layering of aragonite (CaCO{sub 3}) platelets and organic binder. It is believed that the protein binder helps redistribute the stress throughout all tablets for optimal mechanical performance. In this study, we attempt to measure the mechanical properties of aragonite within nacre and compare them to bulk aragonite and bulk nacre and understand the redistribution of stresses. Here we show that x-ray diffraction techniques are useful for isolating and measuring strain of crystallites withinmore » a composite material. Our results show that the apparent stiffness of aragonite varies with crystallographic directions and is higher than the stiffness of bulk nacre in all cases, meaning that aragonite tablets are exposed to less than the average bulk stress. The average force applied to the bulk sample is partitioned between the aragonite and the binder, so that the protein layer bears as much as 27.2% of the total applied force. Different crystallographic directions exhibit behaviors different than bulk aragonite or bulk nacre. These are related to texture of aragonite platelets (i.e. preferred orientations within nacre). By examining nacre, we can obtain a better understanding of the mechanical relationship between the ceramic and polymer in composite materials. We expect that x-ray diffraction will become the standard method for probing the mechanical properties of composite materials.« less
Plate versus bulk trolley food service in a hospital: comparison of patients' satisfaction.
Hartwell, Heather J; Edwards, John S A; Beavis, John
2007-03-01
The aim of this research was to compare plate with bulk trolley food service in hospitals in terms of patient satisfaction. Key factors distinguishing satisfaction with each system would also be identified. A consumer opinion card (n = 180), concentrating on the quality indicators of core foods, was used to measure patient satisfaction and compare two systems of delivery, plate and trolley. Binary logistic regression analysis was used to build a model that would predict food service style on the basis of the food attributes measured. Further investigation used multinomial logistic regression to predict opinion for the assessment of each food attribute within food service style. Results showed that the bulk trolley method of food distribution enables all foods to have a more acceptable texture, and for some foods (potato, P = 0.007; poached fish, P = 0.001; and minced beef, P < or = 0.0005) temperature, and for other foods (broccoli, P < or = 0.0005; carrots, P < or = 0.0005; and poached fish, P = 0.001) flavor, than the plate system of delivery, where flavor is associated with bad opinion or dissatisfaction. A model was built indicating patient satisfaction with the two service systems. This research confirms that patient satisfaction is enhanced by choice at the point of consumption (trolley system); however, portion size was not the controlling dimension. Temperature and texture were the most important attributes that measure patient satisfaction with food, thus defining the focus for hospital food service managers. To date, a model predicting patient satisfaction with the quality of food as served has not been proposed, and as such this work adds to the body of knowledge in this field. This report brings new information about the service style of dishes for improving the quality of food and thus enhancing patient satisfaction.
Drinking with a hairy tongue: viscous entrainment by dipping hairy surfaces
NASA Astrophysics Data System (ADS)
Nasto, Alice; Brun, Pierre-Thomas; Alvarado, José; Bush, John; Hosoi, Anette
2016-11-01
Nectar-drinking bats have tongues covered with hair-like papillae, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory reminiscent of Landau-Levich-Derjaguin dip coating, we rationalize this mechanism of viscous entrainment in a hairy texture. For the model experiments, hairy surfaces are fabricated using laser cut molds and casting samples with PDMS elastomer. Modeling the liquid trapped within the texture using a Darcy-Brinkman like approach, we derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the dipping speed. We find that there is an optimal hair density to maximize fluid uptake.
Wright, Heather M.; Folkes, Christopher B.; Cas, Ray A.F.; Cashman, Katharine V.
2011-01-01
Triggering mechanisms of large silicic eruptions remain a critical unsolved problem. We address this question for the ~2.08-Ma caldera-forming eruption of Cerro Galán volcano, Argentina, which produced distinct pumice populations of two colors: grey (5%) and white (95%) that we believe may hold clues to the onset of eruptive activity. We demonstrate that the color variations correspond to both textural and compositional variations between the clast types. Both pumice types have bulk compositions of high-K, high-silica dacite to low-silica rhyolite, but there are sufficient compositional differences (e.g., ~150 ppm lower Ba at equivalent SiO2 content and 0.03 wt.% higher TiO2 in white pumice than grey) to suggest that the two pumice populations are not related by simple fractionation. Trace element concentrations in crystals mimic bulk variations between clast types, with grey pumice containing elevated Ba, Cu, Pb, and Zn concentrations in both bulk samples (average Cu, Pb, and Zn concentrations are 27, 35, and 82 in grey pumice vs. 11, 19, and 60 in white pumice) and biotite phenocrysts and white pumice showing elevated Li concentrations in biotite and plagioclase phenocrysts. White and grey clasts are also texturally distinct: White pumice clasts contain abundant phenocrysts (44–57%), lack microlites, and have highly evolved groundmass glass compositions (76.4–79.6 wt.% SiO2), whereas grey pumice clasts contain a lower percentage of phenocrysts/microphenocrysts (35–49%), have abundant microlites, and have less evolved groundmass glass compositions (69.4–73.8 wt.% SiO2). There is also evidence for crystal transfer between magma producing white and grey pumice. Thin highly evolved melt rims surround some fragmental crystals in grey pumice clasts and appear to have come from magma that produced white pumice. Furthermore, based on crystal compositions, white bands within banded pumice contain crystals originating in grey magma. Finally, only grey pumice clasts form breadcrusted surface textures. We interpret these compositional and textural variations to indicate distinct magma batches, where grey pumice originated from an originally deeper, more volatile-rich dacite recharge magma that ascended through and mingled with the volumetrically dominant, more highly crystalline chamber that produced white pumice. Shortly before eruption, the grey pumice magma stalled within shallow fractures, forming a vanguard magma phase whose ascent may have provided a trigger for eruption of the highly crystalline rhyodacite magma. We suggest that in the case of the Cerro Galán eruption, grey pumice provides evidence not only for cryptic silicic recharge in a large caldera system but also a probable trigger for the eruption.
NASA Astrophysics Data System (ADS)
Wright, Heather M. N.; Folkes, Chris B.; Cas, Raymond A. F.; Cashman, Katharine V.
2011-12-01
Triggering mechanisms of large silicic eruptions remain a critical unsolved problem. We address this question for the ~2.08-Ma caldera-forming eruption of Cerro Galán volcano, Argentina, which produced distinct pumice populations of two colors: grey (5%) and white (95%) that we believe may hold clues to the onset of eruptive activity. We demonstrate that the color variations correspond to both textural and compositional variations between the clast types. Both pumice types have bulk compositions of high-K, high-silica dacite to low-silica rhyolite, but there are sufficient compositional differences (e.g., ~150 ppm lower Ba at equivalent SiO2 content and 0.03 wt.% higher TiO2 in white pumice than grey) to suggest that the two pumice populations are not related by simple fractionation. Trace element concentrations in crystals mimic bulk variations between clast types, with grey pumice containing elevated Ba, Cu, Pb, and Zn concentrations in both bulk samples (average Cu, Pb, and Zn concentrations are 27, 35, and 82 in grey pumice vs. 11, 19, and 60 in white pumice) and biotite phenocrysts and white pumice showing elevated Li concentrations in biotite and plagioclase phenocrysts. White and grey clasts are also texturally distinct: White pumice clasts contain abundant phenocrysts (44-57%), lack microlites, and have highly evolved groundmass glass compositions (76.4-79.6 wt.% SiO2), whereas grey pumice clasts contain a lower percentage of phenocrysts/microphenocrysts (35-49%), have abundant microlites, and have less evolved groundmass glass compositions (69.4-73.8 wt.% SiO2). There is also evidence for crystal transfer between magma producing white and grey pumice. Thin highly evolved melt rims surround some fragmental crystals in grey pumice clasts and appear to have come from magma that produced white pumice. Furthermore, based on crystal compositions, white bands within banded pumice contain crystals originating in grey magma. Finally, only grey pumice clasts form breadcrusted surface textures. We interpret these compositional and textural variations to indicate distinct magma batches, where grey pumice originated from an originally deeper, more volatile-rich dacite recharge magma that ascended through and mingled with the volumetrically dominant, more highly crystalline chamber that produced white pumice. Shortly before eruption, the grey pumice magma stalled within shallow fractures, forming a vanguard magma phase whose ascent may have provided a trigger for eruption of the highly crystalline rhyodacite magma. We suggest that in the case of the Cerro Galán eruption, grey pumice provides evidence not only for cryptic silicic recharge in a large caldera system but also a probable trigger for the eruption.
Hogenkamp, P S
2014-09-01
Sensory properties guide the amount that people eat. In particular, food texture plays an important role in a food's 'expected satiation', which in turn affects the food-related decision making process. One hypothesis is that incongruent pairing of a textural cue with a post-ingestive outcome compromises this process, leading to poor energy compensation. Several studies examined the effect of both energy density and sensory characteristics (i.e. increased creaminess and thickness) on expectations, subjective appetite and food intake. To add to this literature, a re-analysis of data assessed whether the effect of sensory-nutrient pairings on energy intake compensation persisted after repeated exposure to a food. In this cross-over design, 27 participants consumed two preloads with 'congruent' (low-energy/liquid; high-energy/semi-solid) and two preloads with 'incongruent' (low-energy/semi-solid; high-energy/liquid) texture-nutrient combinations for nine subsequent meals, during which ad libitum intake was measured. Intake at first exposure did not differ between the low-energy (280±150kcal) and high-energy preloads (292±183kcal) in the incongruent conditions. By contrast, it was greater after the low-energy (332±203kcal) than after the high-energy (236±132kcal) preload in the congruent conditions (energy∗incongruent/congruent, p=0.04). Post-exposure, this pattern changed: intake depended on the energy density of the preloads in all conditions, and was greater after low-energy preloads (day∗energy∗incongruent/congruent-interaction for breakfast: p=0.02). Thus, manipulating the sensory properties of a food influenced energy compensation and meal size, but only at initial exposure. Repeated exposure 'corrected' the initial lack of compensation observed in conditions with incongruent sensory-nutrient pairings. Copyright © 2014 Elsevier Inc. All rights reserved.
Texturing Silicon Nanowires for Highly Localized Optical Modulation of Cellular Dynamics.
Fang, Yin; Jiang, Yuanwen; Acaron Ledesma, Hector; Yi, Jaeseok; Gao, Xiang; Weiss, Dara E; Shi, Fengyuan; Tian, Bozhi
2018-06-18
Engineered silicon-based materials can display photoelectric and photothermal responses under light illumination, which may lead to further innovations at the silicon-biology interfaces. Silicon nanowires have small radial dimensions, promising as highly localized cellular modulators, however the single crystalline form typically has limited photothermal efficacy due to the poor light absorption and fast heat dissipation. In this work, we report strategies to improve the photothermal response from silicon nanowires by introducing nanoscale textures on the surface and in the bulk. We next demonstrate high-resolution extracellular modulation of calcium dynamics in a number of mammalian cells including glial cells, neurons, and cancer cells. The new materials may be broadly used in probing and modulating electrical and chemical signals at the subcellular length scale, which is currently a challenge in the field of electrophysiology or cellular engineering.
Improvements to quality of needle coke by controlled carbonized conditions
NASA Astrophysics Data System (ADS)
Liu, Dong; Lou, Bin; Yu, Ran; Chen, Qingtai; Li, Zhiheng; Zhang, Yadong
2018-06-01
In this study, the selected aromatic-rich fraction derived from hydrocracking tail oil was carbonized and further improvement in the quality of resultant coke was achieved by promoting temperature at the solidification stage. In comparison with conventional process carried out isothermally and isobarically, the coupling analysis between formation and subsequent uni-axial orientation of mesophase textures during the controlled process was systematically discussed on the basis of the mutual relevance among mesophase texture evolution, gas evolution rate and solidification rate of intermediates. The results show that on the premise that formation of bulk mesophase, appropriate rate of gas evolution at a right time of solidification contributes to fine produces fine fibrous mesophase aligned uni-axially and less pores. Moreover, the intermediates with solidification index of 2˜6 are suitable for deformation induced by gas evolution.
Effect of the Crystal Structure on the Electrical Properties of Thin-Film PZT Structures
NASA Astrophysics Data System (ADS)
Delimova, L. A.; Gushchina, E. V.; Zaitseva, N. V.; Seregin, D. S.; Vorotilov, K. A.; Sigov, A. S.
2018-03-01
A new method of two-stage crystallization of lead zirconate-titanate (PZT) films using a seed sublayer with a low excess lead content has been proposed and realized. A seed layer with a strong texture of perovskite Pe(111) grains is formed from a solution with a lead excess of 0-5 wt %; the fast growth of the grains is provided by the deposition of the main film from a solution with high lead content. As a result, a strong Pe(111) texture with complete suppression of the Pe(100) orientation forms. An analysis of current-voltage dependences of the transient currents and the distributions of the local conductivity measured by the contact AFM method reveals two various mechanisms of current percolation that are determined by traps in the bulk and at the perovskite grain interfaces.
Synthesis and thermoelectric properties of Rashba semiconductor BiTeBr with intensive texture.
Xin, Jia-Zhan; Fu, Chen-Guang; Shi, Wu-Jun; Li, Guo-Wei; Auffermann, Gudrun; Qi, Yan-Peng; Zhu, Tie-Jun; Zhao, Xin-Bing; Felser, Claudia
2018-01-01
Bismuth tellurohalides with Rashba-type spin splitting exhibit unique Fermi surface topology and are developed as promising thermoelectric materials. However, BiTeBr, which belongs to this class of materials, is rarely investigated in terms of the thermoelectric transport properties. In the study, polycrystalline bulk BiTeBr with intensive texture was synthesized via spark plasma sintering (SPS). Additionally, its thermoelectric properties above room temperature were investigated along both the in-plane and out-plane directions, and they exhibit strong anisotropy. Low sound velocity along two directions is found and contributes to its low lattice thermal conductivity. Polycrystalline BiTeBr exhibits relatively good thermoelectric performance along the in-plane direction, with a maximum dimensionless figure of merit (ZT) of 0.35 at 560 K. Further enhancements of ZT are expected by utilizing systematic optimization strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liangzhe Zhang; Anthony D. Rollett; Timothy Bartel
2012-02-01
A calibrated Monte Carlo (cMC) approach, which quantifies grain boundary kinetics within a generic setting, is presented. The influence of misorientation is captured by adding a scaling coefficient in the spin flipping probability equation, while the contribution of different driving forces is weighted using a partition function. The calibration process relies on the established parametric links between Monte Carlo (MC) and sharp-interface models. The cMC algorithm quantifies microstructural evolution under complex thermomechanical environments and remedies some of the difficulties associated with conventional MC models. After validation, the cMC approach is applied to quantify the texture development of polycrystalline materials withmore » influences of misorientation and inhomogeneous bulk energy across grain boundaries. The results are in good agreement with theory and experiments.« less
Ferreiro-Rangel, Carlos A; Gelb, Lev D
2013-06-13
Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792-15802), consists of spherical "primary" gel particles that interact through weak nonbonded forces and through microscopically motivated interparticle bonds that may break and form during the simulations. Aerogel models are prepared using a three-stage protocol consisting of separate simulations of gelation, aging, and a final relaxation during which no further bond formation is permitted. Models of varying particle size, density, and size dispersity are considered. These are characterized in terms of fractal dimensions and pore size distributions, and generally good agreement with experimental data is obtained for these metrics. The bulk moduli of these materials are studied in detail. Two different techniques for obtaining the bulk modulus are considered, fluctuation analysis and direct compression/expansion simulations. We find that the fluctuation result can be subject to systematic error due to coupling with the simulation barostat but, if performed carefully, yields results equivalent with those of compression/expansion experiments. The dependence of the bulk modulus on density follows a power law with an exponent between 3.00 and 3.15, in agreement with reported experimental results. The best correlate for the bulk modulus appears to be the volumetric bond density, on which there is also a power law dependence. Polydisperse models exhibit lower bulk moduli than comparable monodisperse models, which is due to lower bond densities in the polydisperse materials.
Descriptive sensory and instrumental texture profile analysis of woody breast in marinated chicken.
Aguirre, M E; Owens, C M; Miller, R K; Alvarado, C Z
2018-04-01
The broiler industry is currently experiencing a muscle anomaly referred to as "woody breast," and the effect of different cooking methods on the marination properties of severe woody breast (SWB) has not yet been reported. This study compared the texture attributes of marinated (injected) normal (NOR) and SWB using a convection oven and a flat-top grill. The objectives were 1) to develop and validate a descriptive texture attribute panel with 6 trained panelists using a 16-point scale and 2) to evaluate the instrumental texture profile analysis (TPA) using a texture analyzer. Sixty-four NOR and SWB were obtained from a commercial facility. Fillet color (L*, a*, b*) and pH were measured before marination. In each of 2 trials, the breast muscles were injected in bulk with 15% brine (0.48 STPP, 0.55% NaCl, final concentration), and marinade retention was determined after 20 minutes. The meat was vacuum packaged, stored at -20°C (7 d sensory; 29 d TPA) and then thawed (4°C, 24 h). Fillets were cooked to 73°C on a flat-top grill (176°C) or in an oven (176°C), and cook loss % was determined. Panelist samples (2 × 2 cm) and TPA samples (4 × 2 cm) were cut into 3 pieces. Color and pH were higher for SWB than NOR fillets (P < 0.05). Marinade retention was 83.21% for NOR meat and 59.23% for SWB meat. The flat-top grill method resulted in higher cook loss than oven (P < 0.05). SWB had higher cook loss when compared to NOR (P < 0.05). Sensory texture descriptors springiness, hardness, denseness, cohesiveness, fracturability, fibrousness, crunchiness, and chewiness were higher for SWB than NOR fillets (P < 0.05). TPA attributes also showed higher values for SWB compared to NOR (P < 0.05). No differences in texture were found between the grill and oven for sensory and TPA attributes. In summary, marinated SWB has significant texture differences when compared to NOR, regardless of cooking method.
Dennis M. Dudley; Kenneth W. Tate; Neil K. McDougald; Melvin R. George
2002-01-01
The objectives of this study were to compare soil-surface bulk density between rangeland pastures not grazed since 1935, 1975, and 1995 to grazed areas with a 15-year record of light (>1,000 lbs ac-1 RDM), moderate (600-800 lbs ac-1 RDM), and heavy (-1 RDM) grazing by beef cattle; and...
Michael P. Amaranthus; David E. Steinfeld
1997-01-01
This study evaluated the effect on soil bulk density of yarding small-diameter Douglas-fir (Pseudosuga menziesii var. glauca (Beissn.) Franco) with a small tractor. Levels of compaction were measured before yarding and after one trip, three trips, and six trips by the tractor. Bulk densities in the surface (10 cm) and...
Soil bulk density and soil moisture calculated with a FORTRAN 77 program.
G.L. Starr; J.M. Geist
1988-01-01
This paper presents an improved version of BDEN, an interactive computer program written in FORTRAN 77 that will calculate soil bulk density and moisture percentage by weight and volume. Calculations allow for deducting coarse fragment weight and volume. The program will also summarize the resulting data by giving the mean, standard deviation, and 95-percent confidence...
Preparation and Characterization of Ato Nanoparticles by Coprecipitation with Modified Drying Method
NASA Astrophysics Data System (ADS)
Liu, Shimin; Liang, Dongdong; Liu, Jindong; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan
Antimony-doped tin oxide (ATO) nanoparticles were prepared by coprecipitation by packing drying and traditional direct drying (for comparison) methods. The as-prepared ATO nanoparticles were characterized by TG, XRD, EDS, TEM, HRTEM, BET, bulk density and electrical resistivity measurements. Results indicated that the ATO nanoparticles obtained by coprecipitation with direct drying method featured hard-agglomerated morphology, high bulk density, low surface area and low electrical resistivity, probably due to the direct liquid evaporation during drying, the fast shrinkage of the precipitate, the poor removal efficiency of liquid molecules and the hard agglomerate formation after calcination. Very differently, the ATO product obtained by the packing and drying method featured free-agglomerated morphology, low bulk density, high surface area and high electrical resistivity ascribed probably to the formed vapor cyclone environment and liquid evaporation-resistance, avoiding fast liquid removal and improving the removal efficiency of liquid molecules. The intrinsic formation mechanism of ATO nanoparticles from different drying methods was illustrated based on the dehydration process of ATO precipitates. Additionally, the packing and drying time played key roles in determining the bulk density, morphology and electrical conductivity of ATO nanoparticles.
Influence of wood-derived biochar on the compactibility and strength of silt loam soil
NASA Astrophysics Data System (ADS)
Ahmed, Ahmed; Gariepy, Yvan; Raghavan, Vijaya
2017-04-01
Biochar is proven to enhance soil fertility and increase crop productivity. Given that the influence of biochar on soil compaction remains unclear, selected physico-mechanical properties of soil amended with wood-derived biochar were assessed. For unamended silt loam, the bulk density, maximum bulk density, optimum moisture content, plastic limit, liquid limit, and plasticity index were 1.05 Mg m-3, 1.69 Mg m-3, 16.55, 17.1, 29.3, and 12.2%, respectively. The penetration resistance and shear strength of the unamended silt loam compacted in the standard compaction Proctor mold and at its optimum moisture content were 1800 kPa and 850 kPa, respectively. Results from amending the silt loam with 10% particle size ranges (0.5-212 μm) led to relative decreases of 18.1, 17.75, 66.66, and 97.4% in bulk density, maximum bulk density, penetration resistance, and shear strength, respectively; a 26.8% relative increase in optimum moisture content; along with absolute increases in plastic limit, liquid limit, and plasticity index of 5.3, 13.7, and 8.4%, respectively. While the biochar-amended silt loam soil was more susceptible to compaction, however, soil mechanical impedance enhanced.
The thermal and physical characteristics of the Gao-Guenie (H5) meteorite
NASA Astrophysics Data System (ADS)
Beech, Martin; Coulson, Ian M.; Nie, Wenshuang; McCausland, Phil
2009-06-01
Measurements of the bulk density, grain density, porosity, and magnetic susceptibility of 19 Gao-Guenie H5 chondrite meteorite samples are presented. We find average values of bulk density < ρbulk>=3.46±0.07 g/cm 3, grain density < ρgrain>=3.53±0.08 g/cm 3, porosity < P(%)>=2.46±1.39, and bulk mass magnetic susceptibility
Measurement of carrier transport and recombination parameter in heavily doped silicon
NASA Technical Reports Server (NTRS)
Swanson, Richard M.
1986-01-01
The minority carrier transport and recombination parameters in heavily doped bulk silicon were measured. Both Si:P and Si:B with bulk dopings from 10 to the 17th and 10 to the 20th power/cu cm were studied. It is shown that three parameters characterize transport in bulk heavily doped Si: the minority carrier lifetime tau, the minority carrier mobility mu, and the equilibrium minority carrier density of n sub 0 and p sub 0 (in p-type and n-type Si respectively.) However, dc current-voltage measurements can never measure all three of these parameters, and some ac or time-transient experiment is required to obtain the values of these parameters as a function of dopant density. Using both dc electrical measurements on bipolar transitors with heavily doped base regions and transients optical measurements on heavily doped bulk and epitaxially grown samples, lifetime, mobility, and bandgap narrowing were measured as a function of both p and n type dopant densities. Best fits of minority carrier mobility, bandgap narrowing and lifetime as a function of doping density (in the heavily doped range) were constructed to allow accurate modeling of minority carrier transport in heavily doped Si.
Martínez-Velarte, M. Carmen; Kretz, Bernhard; Moro-Lagares, Maria; ...
2017-06-13
Here, we show that the chemical inhomogeneity in ternary three-dimensional topological insulators preserves the topological spin texture of their surface states against a net surface magnetization. The spin texture is that of a Dirac cone with helical spin structure in the reciprocal space, which gives rise to spin-polarized and dissipation-less charge currents. Thanks to the nontrivial topology of the bulk electronic structure, this spin texture is robust against most types of surface defects. However, magnetic perturbations break the time-reversal symmetry, enabling magnetic scattering and loss of spin coherence of the charge carriers. This intrinsic incompatibility precludes the design of magnetoelectronicmore » devices based on the coupling between magnetic materials and topological surface states. We demonstrate that the magnetization coming from individual Co atoms deposited on the surface can disrupt the spin coherence of the carriers in the archetypal topological insulator Bi 2Te 3, while in Bi 2Se 2Te the spin texture remains unperturbed. This is concluded from the observation of elastic backscattering events in quasiparticle interference patterns obtained by scanning tunneling spectroscopy. The mechanism responsible for the protection is investigated by energy resolved spectroscopy and ab initio calculations, and it is ascribed to the distorted adsorption geometry of localized magnetic moments due to Se–Te disorder, which suppresses the Co hybridization with the surface states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Velarte, M. Carmen; Kretz, Bernhard; Moro-Lagares, Maria
Here, we show that the chemical inhomogeneity in ternary three-dimensional topological insulators preserves the topological spin texture of their surface states against a net surface magnetization. The spin texture is that of a Dirac cone with helical spin structure in the reciprocal space, which gives rise to spin-polarized and dissipation-less charge currents. Thanks to the nontrivial topology of the bulk electronic structure, this spin texture is robust against most types of surface defects. However, magnetic perturbations break the time-reversal symmetry, enabling magnetic scattering and loss of spin coherence of the charge carriers. This intrinsic incompatibility precludes the design of magnetoelectronicmore » devices based on the coupling between magnetic materials and topological surface states. We demonstrate that the magnetization coming from individual Co atoms deposited on the surface can disrupt the spin coherence of the carriers in the archetypal topological insulator Bi 2Te 3, while in Bi 2Se 2Te the spin texture remains unperturbed. This is concluded from the observation of elastic backscattering events in quasiparticle interference patterns obtained by scanning tunneling spectroscopy. The mechanism responsible for the protection is investigated by energy resolved spectroscopy and ab initio calculations, and it is ascribed to the distorted adsorption geometry of localized magnetic moments due to Se–Te disorder, which suppresses the Co hybridization with the surface states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kametani, F.; Jiang, J.; Matras, M.
Why Bi₂Sr₂CaCu₂O x (Bi2212) allows high critical current density J c in round wires rather than only in the anisotropic tape form demanded by all other high temperature superconductors is important for future magnet applications. Here we compare the local texture of state-of-the-art Bi2212 and Bi2223 ((Bi,Pb)₂Sr₂Ca₂Cu₃O₁₀), finding that round wire Bi2212 generates a dominant a-axis growth texture that also enforces a local biaxial texture (FWHM <15°) while simultaneously allowing the c-axes of its polycrystals to rotate azimuthally along and about the filament axis so as to generate macroscopically isotropic behavior. By contrast Bi2223 shows only a uniaxial (FWHM <15°)more » c-axis texture perpendicular to the tape plane without any in-plane texture. Consistent with these observations, a marked, field-increasing, field-decreasing J c(H) hysteresis characteristic of weak-linked systems appears in Bi2223 but is absent in Bi2212 round wire. Growth-induced texture on cooling from the melt step of the Bi2212 J c optimization process appears to be the key step in generating this highly desirable microstructure.« less
High-Power Characteristics of Thickness Shear Mode for Textured SrBi2Nb2O9 Ceramics
NASA Astrophysics Data System (ADS)
Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Higuchi, Yukio; Takagi, Hiroshi
2009-09-01
The high-power piezoelectric characteristics of the thickness shear mode for <00l> oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi2Nb2O9 (SBN), were studied by the constant current driving method. These textured ceramics were fabricated by the templated grain growth (TGG) method, and the Lotgering factor was 95%. The vibration of the thickness shear mode in the textured SBN ceramics was stable at the vibration velocity of 2.0 m/s. The resonant frequency was almost constant with increasing vibration velocity in the textured SBN ceramics, however, it decreased with increasing vibration velocity in the randomly oriented SBN ceramics. In the case of Pb(Mn,Nb)O3-Pb(Zr,Ti)O3 ceramics, the vibration velocity of the thickness shear mode was saturated at more than 0.3 m/s, and the resonant frequency decreased at lower vibration velocity than in the case of SBN ceramics. The dissipation power density of the textured SBN ceramics was the lowest among those of the randomly oriented SBN and Pb(Mn,Nb)O3-PZT ceramics. The thickness shear mode of textured SBN ceramics is a good candidate for high-power piezoelectric applications.
Short-Term Effects of Pacifier Texture on NNS in Neurotypical Infants
Oder, Austin L.; Stalling, David L.; Barlow, Steven M.
2013-01-01
The dense representation of trigeminal mechanosensitive afferents in the lip vermilion, anterior tongue, intraoral mucosa, and temporomandibular joint allows the infant's orofacial system to encode a wide range of somatosensory experiences during the critical period associated with feed development. Our understanding of how this complex sensorium processes texture is very limited in adults, and the putative role of texture encoding in the infant is unknown. The purpose of this study was to examine the short-term effects of a novel textured pacifier experience in healthy term infants (N = 28). Nonnutritive suck (NNS) compression pressure waveforms were digitized in real time using a variety of custom-molded textured pacifiers varying in spatial array density of touch domes. MANCOVA, adjusted for postmenstrual age at test and sex, revealed that infants exhibited an increase in NNS burst attempts at the expense of a degraded suck burst structure with the textured pacifiers, suggesting that the suck central pattern generator (sCPG) is significantly disrupted and reorganized by this novel orocutaneous experience. The current findings provide new insight into oromotor control as a function of the oral somatosensory environment in neurotypically developing infants. PMID:23737804
First-principles studies of electronic, transport and bulk properties of pyrite FeS2
NASA Astrophysics Data System (ADS)
Banjara, Dipendra; Malozovsky, Yuriy; Franklin, LaShounda; Bagayoko, Diola
2018-02-01
We present results from first principle, local density approximation (LDA) calculations of electronic, transport, and bulk properties of iron pyrite (FeS2). Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO) formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). We discuss the electronic energy bands, total and partial densities of states, electron effective masses, and the bulk modulus. Our calculated indirect band gap of 0.959 eV (0.96), using an experimental lattice constant of 5.4166 Å, at room temperature, is in agreement with the measured indirect values, for bulk samples, ranging from 0.84 eV to 1.03 ± 0.05 eV. Our calculated bulk modulus of 147 GPa is practically in agreement with the experimental value of 145 GPa. The calculated, partial densities of states reproduced the splitting of the Fe d bands to constitute the dominant upper most valence and lower most conduction bands, separated by the generally accepted, indirect, experimental band gap of 0.95 eV.
Epitaxial Electrodeposition of Methylammonium Lead Iodide Perovskites
Koza, Jakub A.; Hill, James C.; Demster, Ashley C.; ...
2015-12-16
Here, an electrochemical/chemical route is introduced to deposit both textured and epitaxial films of methylammonium lead iodide (MAPbI 3) perovskites. The perovskite films are produced by chemical conversion of lead dioxide films that have been electrodeposited as either textured or epitaxial films onto [111]-textured Au and [100] and [111] single-crystal Au substrates. The epitaxial relationships for the MAPbI 3 films are MAPbI 3(001)[010]∥PbO 2(100)<001> and MAPbI 3(110)[111]∥PbO 2(100)<001> regardless of the Au substrate orientation, because the in-plane order of the converted film is controlled by the epitaxial PbO 2 precursor film. The textured and epitaxial MAPbI 3 films both havemore » trap densities lower than and photoluminescence intensities higher than those of polycrystalline films produced by spin coating.« less
[Study on nano-CaCO3 applicated in Xin Yue Shu Capsules preliminarily].
Jiang, Yan-Rong; Zhang, Zhen-Hai; Cui, Li; He, Jun-Jie; Hu, Shao-Ying; Jia, Xiao-Bin
2012-11-01
To investigate the characteristics of nano-CaCO3 applicated in Xin Yue Shu Capsules. Studied the effect of different dosages of aerosil or nano-CaCO3 on fluidity, bulk density, moisture absorption of Xin Yue Shu capsules spray drying powder. In vitro dissolution and ferulic acid stability of Xin Yue Shu capsules was observed. It significantly improved powder fluidity and bulk density of Xin Yue Shu spray drying powder when aerosil or nano-CaCO3 was added. But there was no significant effect on powder moisture absorption, ferulic acid in vitro dissolution and ferulic acid stability. The effect of Nano-CaCO3 on improving powder fluidity and bulk density applicated in the spray drying powder of traditional Chinese medicine deserves studying further.
NASA Technical Reports Server (NTRS)
Osinski, G. R.; Spray, J. G.
2001-01-01
We present the preliminary results of a detailed investigation of the shock effects in highly shocked, low density sedimentary rocks from the Haughton impact structure. We suggest that some textural features can be explained by carbonate-silicate immiscibility. Additional information is contained in the original extended abstract.
Fracture Toughness Properties of Gd123 Superconducting Bulks
NASA Astrophysics Data System (ADS)
Fujimoto, H.; Murakami, A.
Fracture toughness properties of melt growth GdBa2Cu3Ox (Gd123) large single domain superconducting bulks with Ag2O of 10 wt% and Pt of 0.5 wt%; 45 mm in diameter and 25 mm in thickness with low void density were evaluated at 77 K through flexural tests of specimens cut from the bulks, and compared to those of a conventional Gd123 with voids. The densified Gd123 bulks were prepared with a seeding and temperature gradient method; first melt processed in oxygen, then crystal growth in air; two-step regulated atmosphere heat treatment. The plane strain fracture toughness, KIC was obtained by the three point flexure test of the specimens with through precrack, referring to the single edge pre-cracked beam (SEPB) method, according to the JIS-R-1607, Testing Methods for Fracture Toughness of High Performance Ceramics. The results show that the fracture toughness of the densified Gd123 bulk with low void density was higher than that of the standard Gd123 bulk with voids, as well as the flexural strength previously reported. We also compared the fracture toughness of as-grown bulks with that of annealed bulks. The relation between the microstructure and the fracture toughness of the Gd123 bulk was clearly shown.
NASA Astrophysics Data System (ADS)
Ntaflos, Theodoros; Abart, Rainer; Bizimis, Michel
2017-04-01
Pliocene alkali basalts from the western Pannonian Basin carry mantle xenoliths comprising hydrous and anhydrous spinel peridotites. We studied coarse and fine grained fertile to depleted spinel lherzolites, spinel harzubrgites and dunites from Szentbékálla, Balaton, in detail, using XRF, EPMA and LA-ICP-MS and MC-ICP-MS techniques. Pliocene alkali basalts containing mantle xenoliths with three major types of textures are widespread in the studied area: fine-grained primary and secondary equigranular, coarse-grained protogranular and transitional between equigranular and protogranular textures. Melt pockets, are common in the studied xenoliths. The shape of several melt pockets resembles euhedral amphibole. Other samples have thin films of intergranular glass attributed to the host basalt infiltration. Calculations have shown that such xenoliths experienced an up to 2.4% host basalt infiltration. The bulk rock Al2O3 and CaO concentrations vary from 0.75 to 4.1 and from 0.9 to 3.6 wt% respectively, and represent residues after variable degrees of partial melting. Using bulk rock major element abundances, the estimated degree of partial melting ranges from 4 to 20%.. The Primitive Mantle normalized clinopyroxene trace element abundances reveal a complicated evolution of the Lithospheric mantle underneath Balaton, which range from partial melting to modal and cryptic metasomatism. Subduction-related melt/fluids and/or infiltration of percolating undersaturated melts could be account for the metasomatic processes. The radiogenic isotopes of Sr, Nd and Hf in clinopyroxene suggest that this metasomatism was a relatively recent event. Textural evidence suggests that the calcite filling up the vesicles in the melt pockets and in veinlets cross-cutting the constituent minerals is of epigenetic nature and not due to carbonatite metasomatism. Mass balance calculations have shown that the bulk composition of the melt pockets is identical to small amphibole relics found as inclusions in second generation clinopyroxene within the melt pockets. Evidently the melt pockets represent amphibole, which have been incongruently molten. The necessary heat for the amphibole breakdown was derived from the host basalt. The estimated time for diffusive Ca exchange between matrix olivine and olivine overgrowth in contact with the melt pockets is very short, ranging between 21 and 200 days, indicating that amphibole breakdown took place immediately before or during the xenolith entrainment in the alkali basalt.
Augustin, Arun; Huilgol, Prashant; Udupa, K Rajendra; Bhat K, Udaya
2016-10-01
Copper is a well proven antimicrobial material which can be used in the form of a coating on the touch surfaces. Those coating can offer a good service as touch surface for very long time if only they possess good mechanical properties like scratch resistance and microhardness. In the present work the above mentioned mechanical properties were determined on the electrodeposited copper thin film; deposited on double zincated aluminium. During deposition, current density was varied from 2Adm(-2) to 10Adm(-2), to produce crystallite size in the range of 33.5nm to 66nm. The crystallite size was calculated from the X-ray peak broadening (Scherrer׳s formula) which were later confirmed by TEM micrographs. The scratch hardness and microhardness of the coating were measured and correlated with the crystallite size in the copper coating. Both characteristic values were found to increase with the reduction in crystallite size. Reduced crystallite size (Hall-Petch effect) and preferred growth of copper films along (111) plane play a significant role on the increase in the hardness of the coating. Further, TEM analysis reveals the presence of nano-twins in the film deposited at higher current density, which contributed to a large extent to the sharp increase of coating hardness compared to the mechanism of Hall-Petch effect. The antimicrobial ability of the coated sample has been evaluated against Escherichia coli bacteria and which is compared with that of commercially available bulk copper using the colony count method. 94% of E. coli cells were died after six hours of exposure to the copper coated surface. The morphology of the copper treated cells was studied using SEM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Paraskevas, Dimos; Vanmeensel, Kim; Vleugels, Jef; Dewulf, Wim; Deng, Yelin; Duflou, Joost R.
2014-01-01
Recently, “meltless” recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS) is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I) to prove the technical feasibility of this approach; and (II) to characterize the recycled samples. Aluminum (Al) alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT) analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach. PMID:28788153
Paraskevas, Dimos; Vanmeensel, Kim; Vleugels, Jef; Dewulf, Wim; Deng, Yelin; Duflou, Joost R
2014-08-06
Recently, "meltless" recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS) is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I) to prove the technical feasibility of this approach; and (II) to characterize the recycled samples. Aluminum (Al) alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT) analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach.
Preparation and characterization of starch-based loose-fill packaging foams
NASA Astrophysics Data System (ADS)
Fang, Qi
Regular and waxy corn starches were blended in various ratios with biodegradable polymers including polylactic acid (PLA), Eastar Bio Copolyester 14766 (EBC) and Mater-Bi ZF03U (MBI) and extruded with a C. W. Brabender laboratory twin screw extruder using a 3-mm die nozzle at 150°C and 150 rev/min. Physical characteristics including radial expansion, unit density and bulk density and water solubility index, water absorption characteristics, mechanical properties including compressibility, Young's modulus, spring index, bulk compressibility and bulk spring index and abrasion resistance were investigated as affected by the ingredient formulations, i.e. type of polymers, type of starches, polymer to starch ratio and starch moisture content. A completely randomized factorial blocking experimental design was used. Fifty-four treatments resulted. Each treatment was replicated three times. SAS statistical software package was used to analyze the data. Foams made of waxy starch had better radial expansion, lower unit density and bulk density than did foams made of regular starch. Regular starch foams had significantly lower water solubility index than did the waxy starch foams. PLA-starch foams had the lowest compressibility and Young's modulus. MBI-starch foams were the most rigid. All foams had excellent spring indices and bulk spring indices which were comparable to the spring index of commercial expanded polystyrene foam. Correlations were established between the foam mechanical properties and the physical characteristics. Foam compressibility and Young's modulus decreased as increases in radial expansion and decreases in unit and bulk densities. Their relationships were modeled with power law equations. No correlation was observed between spring index and bulk spring index and foam physical characteristics. MBI-starch foams had the highest equilibrium moisture content. EBC-starch and PLA-starch foams had similar water absorption characteristics. No significant difference existed in water absorption characteristics between foams made of regular and waxy starches. Empirical models were developed to correlate foam water absorption characteristics with relative humidity and polymer content. The developed models fit the data well with relatively small standard errors and uniformly scattered residual plots. Foams with higher polymer content had better abrasion resistance than did foams with lower polymer content.
Guided waves and ultrasonic characterization of three-dimensional composites
NASA Astrophysics Data System (ADS)
Leymarie, Nicolas; Baste, Stéphane
2000-05-01
Ultrasonic NDE of anisotropic media appears nowadays as one of the best experimental approaches in studying mechanical properties. A complete identification of stiffness tensor can be performed with phase velocity measurements of obliquely incidence ultrasonic bulk waves from water onto a plate. The medium considered, however, has to be homogeneous with respect to wavelength used. In the case of 3D-composites, textures scales may reach one millimeter and their cut-off frequency is less than MHz. The dispersion curves observed in the considered range of frequencies are often very close and sometimes may be overlapped. Experimental studies show complex signals, which are due to a combination of both bulk and guided waves. Wave-speed measurements of the bulk wave and its detection become unreliable with classical techniques of signal processing (simple time or spectral analysis). Moreover, even if the coupled time-frequency analysis with wavelet transforms allows a better interpretation of the signal, the time delay estimation for the bulk wave and so the characterization of the material remains uncertain. To understand blended signals more accurately, different analytical and numerical models are proposed to show the advantages and disadvantages of methods used in NDE.
Bulk density and compaction behavior of knife mill chopped switchgrass,wheat straw, and corn stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevanan, Nehru; Womac, A.R.; Bitra, V.S.P.
2009-08-01
Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5 18.4 kg/m3 for switchgrass, 36.1 8.6 kg/m3 for wheat straw, and 52.1 10.8 kg/m3 for corn stover. Mean tapped bulk densities were 81.8 26.2 kg/m3 for switchgrass, 42.8 11.7 kg/m3 for wheat straw, and 58.9 13.4 kg/m3 for corn stover. Percentage changes in compressibility duemore » to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2 51.5 for chopped wheat straw and 42.1 117.7 for chopped corn stover within the tested consolidation pressure range of 5 120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone s model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone s model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.« less
Chevanan, Nehru; Womac, Alvin R; Bitra, Venkata S P; Igathinathane, C; Yang, Yuechuan T; Miu, Petre I; Sokhansanj, Shahab
2010-01-01
Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5+/-18.4 kg/m(3) for switchgrass, 36.1+/-8.6 kg/m(3) for wheat straw, and 52.1+/-10.8 kg/m(3) for corn stover. Mean tapped bulk densities were 81.8+/-26.2 kg/m(3) for switchgrass, 42.8+/-11.7 kg/m(3) for wheat straw, and 58.9+/-13.4 kg/m(3) for corn stover. Percentage changes in compressibility due to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2-51.5 for chopped wheat straw and 42.1-117.7 for chopped corn stover within the tested consolidation pressure range of 5-120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone's model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone's model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.
Investigation of Backside Textures for Genesis Solar Wind Silicon Collectors
NASA Technical Reports Server (NTRS)
Gonzalez, C. P.; Burkett, P. J.; Rodriguez, M. C.; Allton, J. H.
2014-01-01
Genesis solar wind collectors were comprised of a suite of 15 types of ultrapure materials. The single crystal, pure silicon collectors were fabricated by two methods: float zone (FZ) and Czochralski (CZ). Because of slight differences in bulk purity and surface cleanliness among the fabrication processes and the specific vendor, it is desirable to know which variety of silicon and identity of vendor, so that appropriate reference materials can be used. The Czochralski method results in a bulk composition with slightly higher oxygen, for example. The CZ silicon array wafers that were Genesis-flown were purchased from MEMC Electronics. Most of the Genesis-flown FZ silicon was purchased from Unisil and cleaned by MEMC, although a few FZ wafers were acquired from International Wafer Service (IWS).
Kinetic Controls on Formation of Textures in Rapidly Cooled Rocks
NASA Technical Reports Server (NTRS)
Lofgren, Gary E.
2006-01-01
The crystallization of silicate melts is a complex process involving melts usually produced by partial melting and cooling environments that are rapid in volcanic lavas or so slow as to be auto-metamorphic in plutonic regimes. The volcanic lavas are amenable to laboratory study as are chondrules that comprise the bulk of chondritic meteorites. Dynamic crystallization studies of basalt and chondrule melts have shown that nucleation has a more profound effect on the final texture than the cooling or crystal growth rates. The sequence of crystal shapes grown at increasing degrees of supercooling (DELTA T) or cooling rate demonstrates the effect of increasing growth rate. Equant or euhedral crystals become skeletal, then dendritic and ultimately spherulitic indicating the nucleation temperature and the DELTA T when growth began. Because crystals cannot grow until they nucleate, cooling rate does not always correlate with crystal growth rate and thus crystal shape. Silicate melts cooled at the same rate can have drastically different textures depending on the temperature of nucleation. A dynamic crystallization study of basaltic rocks shows that basaltic lavas must erupt with sufficient crystals present in the melt to act as nuclei and foster growth. With nuclei present, growth will begin when the temperature drops below the liquidus temperature and typical basaltic textures such as intersertal, intergranular or subophitic will form. If nuclei are not present, crystallization will not begin immediately and the DELTA T will increase until embryos in the melts become nuclei. The DELTA T present when grow begins dictates the growth rate and the crystal shapes and thus the rock texture. If nucleation is delayed, growth will take place at high DELTA T and the crystals will favor skeletal or dendritic shapes. Chondrules are usually considered crystallized melt droplets and clearly some are, but most are not. Most chondrules have porphyritic textures that cannot develop from totally melted droplets because nucleation is delayed during cooling and growth occurs at high DELTA T and the resulting textures are dendritic or spherulitic. The porphyritic textures will develop only if the chondrule is partially molten and begins to crystallize immediately upon cooling. Chondrule compositions are close to komatiites and these studies bear on the origin of their textures as well.
Deborah Page-Dumroese
2005-01-01
Moving equipment and logs over the surface of forest soils causes gouges and ruts in the mineral soil, displaces organic matter, and can cause compaction. Compaction is the component of soil productivity most influenced by forest management, but the degree to which soils may be compacted depends on initial soil bulk density. For example, low bulk density soils (such as...
Establishment and early growth of conifers on compact soils in urban areas
Robert P. Zisa; Howard G. Halverson; Benjamin B. Stout
1979-01-01
A study of pitch pine, Austrian pine, and Norway spruce on two different urban soils compacted to bulk densities of 1.2, 1.3, 1.6, and 1.8 gcm-3 and maintained at high water potentials showed that all three species could become established from seed at high soil bulk densities. Pitch pine was the most suceessful species in establishment...
NASA Astrophysics Data System (ADS)
Ocloo, F. C. K.; Darfour, B.; Ofosu, D. O.; Wilson, D. D.
2012-01-01
Cowpeas ( Vigna unguiculata L. Walp) are leguminous seeds widely produced and consumed in most developing countries of sub-Saharan Africa where they are a good source of affordable proteins, minerals and vitamins to the mainly carbohydrate-based diet of sub-Saharan Africa. At storage cowpea may be attacked by insects that cause severe damage to the seeds. The objective of this study was to investigate the effects of gamma irradiation on some physical and sensory characteristics of cowpea seed cultivars. Four cowpea cultivars were irradiated with gamma radiation at dose levels of 0.25, 0.50, 0.75, 1.0 and 1.5 kGy. Moisture content, thousand grain weight and bulk densities were determined as well as the amount of water absorbed during soaking and some sensory characteristics were equally determined. All the physical parameters studied were not significantly ( p>0.05) affected by the radiation. There was no significant ( p>0.05) effect of the radiation on the sensory attributes like flavour, taste, texture, softness and colour of the cowpea seeds. Similarly, the radiation did not affect significantly ( p>0.05) the acceptability of the treated cowpea cultivars.
Carbon aerogels by pyrolysis of TEMPO-oxidized cellulose
NASA Astrophysics Data System (ADS)
Zhang, Sizhao; Feng, Jian; Feng, Junzong; Jiang, Yonggang; Ding, Feng
2018-05-01
Although carbon aerogels derived from naturally occurring materials have been developed extensively, a reasonable synthetic approach using cellulose-resource remains unclear. Here, we report a strategy to prepare carbon aerogels originated from cellulose position-selectively oxidized by TEMPO-oxidized process. Contrary to non-TEMPO-oxidized cellulose-derived carbon aerogels (NCCA) with relative loose structure, TEMPO-oxidized cellulose-derived carbon aerogels (TCCA) with tight fibrillar-continuous network are monitored, suggesting the importance of TEMPO-oxidized modification towards creating the architecture of subsequently produced carbon aerogels. TCCA endows a higher BET area despite owning slightly dense bulk density comparing with that of NCCA. The structural texture of TCCA could be maintained in a way in comparison to TEMPO-oxidized cellulose-derived aerogel, due to the integration and aggregation effect by losing the electric double layer repulsion via ionization of the surface carboxyl groups. FTIR and XPS analyses signify the evidence of non-functionalized carbon-skeleton network formation in terms of TCCA. Further, the mechanism concerning the creation of carbon aerogels is also established. These findings not only provide new insights into the production of carbon aerogels but also open up a new opportunity in the field of functional carbon materials.
Electronic properties of one-dimensional nanostructures of the Bi2Se3 topological insulator
NASA Astrophysics Data System (ADS)
Virk, Naunidh; Autès, Gabriel; Yazyev, Oleg V.
2018-04-01
We theoretically study the electronic structure and spin properties of one-dimensional nanostructures of the prototypical bulk topological insulator Bi2Se3 . Realistic models of experimentally observed Bi2Se3 nanowires and nanoribbons are considered using the tight-binding method. At low energies, the band structures are composed of a series of evenly spaced degenerate subbands resulting from circumferential confinement of the topological surface states. The direct band gaps due to the nontrivial π Berry phase show a clear dependence on the circumference. The spin-momentum locking of the topological surface states results in a pronounced 2 π spin rotation around the circumference with the degree of spin polarization dependent on the momentum along the nanostructure. Overall, the band structures and spin textures are more complicated for nanoribbons, which expose two distinct facets. The effects of reduced dimensionality are rationalized with the help of a simple model that considers circumferential quantization of the topological surface states. Furthermore, the surface spin density induced by an electric current along the nanostructure shows a pronounced oscillatory dependence on the charge-carrier energy, which can be exploited in spintronics applications.
A computational DFT study of structural transitions in textured solid-fluid interfaces
NASA Astrophysics Data System (ADS)
Yatsyshin, Petr; Parry, Andrew O.; Kalliadasis, Serafim
2015-11-01
Fluids adsorbed at walls, in capillary pores and slits, and in more exotic, sculpted geometries such as grooves and wedges can exhibit many new phase transitions, including wetting, pre-wetting, capillary-condensation and filling, compared to their bulk counterparts. As well as being of fundamental interest to the modern statistical mechanical theory of inhomogeneous fluids, these are also relevant to nanofluidics, chemical- and bioengineering. In this talk we will show using a microscopic Density Functional Theory (DFT) for fluids how novel, continuous, interfacial transitions associated with the first-order prewetting line, can occur on steps, in grooves and in wedges, that are sensitive to both the range of the intermolecular forces and interfacial fluctuation effects. These transitions compete with wetting, filling and condensation producing very rich phase diagrams even for relatively simple geometries. We will also discuss practical aspects of DFT calculations, and demonstrate how this statistical-mechanical framework is capable of yielding complex fluid structure, interfacial tensions, and regions of thermodynamic stability of various fluid configurations. As a side note, this demonstrates that DFT is an excellent tool for the investigations of complex multiphase systems. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031.
Jiang, Ming; Middleton, Beth A.
2011-01-01
Amendments of sediment from dredging activities have played an important role in raising the elevation of sinking coastal wetlands. This study compared the soil characteristics of sediment- amended coastal swamps in the Barataria Preserve unit of Jean Lafitte National Historical Park and Preserve with natural swamps along Bayou des Familles. The sandy sediment amendments used in the coastal forests had different soil texture and characteristics than the more organic soils of the natural swamps. Three years after the application of these sediments on the sediment-amended swamps, dewatering and compaction of the sediment had occurred but the sediment still had high salinity and bulk density, and low organic matter content. The two sediment-amended swamps differed from each other in that Site 1 had a higher elevation (mean = 25 cm higher) and drier soil than Site 2. The effects of sediment in coastal forested wetlands require separate consideration from studies of salt marshes, e.g., the weight of the sediment might damage tree roots, or the amendments might influence soil stability during storms in a different way. Generally, this study suggests that shallower depths of sediment are more likely to yield environments beneficial to these sinking baldcypress swamps in coastal Louisiana.
NASA Astrophysics Data System (ADS)
Gasch, C. K.; Brown, D. J.; Campbell, C. S.; Cobos, D. R.; Brooks, E. S.; Chahal, M.; Poggio, M.
2017-12-01
We describe a soil water content monitoring data set and auxiliary data collected at a 37 ha experimental no-till farm in the Northwestern United States. Water content measurements have been compiled hourly since 2007 by ECH2O-TE and 5TE sensors installed at 42 locations and five depths (0.3, 0.6, 0.9, 1.2, and 1.5 m, 210 sensors total) across the R.J. Cook Agronomy Farm, a Long-Term Agro-Ecosystem Research Site stationed on complex terrain in a Mediterranean climate. In addition to soil water content readings, the data set includes hourly and daily soil temperature readings, annual crop histories, a digital elevation model, Bt horizon maps, seasonal apparent electrical conductivity, soil texture, and soil bulk density. Meteorological records are also available for this location. We discuss the unique challenges of maintaining the network on an operating farm and demonstrate the nature and complexity of the soil water content data. This data set is accessible online through the National Agriculture Library, has been assigned a DOI, and will be maintained for the long term.
NASA Astrophysics Data System (ADS)
Imandoust, Aidin
The origin of texture components associated with rare-earth (RE) element additions in wrought magnesium (Mg) alloys is a long-standing problem in magnesium technology. The objective of this research is to identify the mechanisms accountable for rare-earth texture during dynamic recrystallization (DRX). Towards this end, we designed binary Mg-Cerium and Mg-Gadolinium alloys along with complex alloy compositions containing zinc, yttrium and Mischmetal. Binary alloys along with pure Mg were designed to individually investigate their effects on texture evolutions, while complex compositions are designed to develop randomized texture, and be used in automotive and aerospace applications. We selected indirect extrusion to thermo-mechanically process our materials. Different extrusion ratios and speeds were designed to produce partially and fully recrystallized microstructures, allowing us to analyze DRX from its early stages to completion. X-ray diffraction, electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to conduct microstructure and texture analyses. Our analyses revealed that rare-earth elements in zinc-containing magnesium alloys promote discontinuous dynamic recrystallization at the grain boundaries. During nucleation, the effect of rare earth elements on orientation selection was explained by the concomitant actions of multiple Taylor axes in the same grain. Isotropic grain growth was observed due to rare earth elements segregating to grain boundaries, which lead to texture randomization. The nucleation in binary Mg-RE alloys took place by continuous formation of necklace structures. Stochastic relaxation of basal and non-basal dislocations into low-angle grain boundaries produced chains of embryos with nearly random orientations. Schmid factor analysis showed a lower net activation of dislocations in RE textured grains compared to ones on the other side of the stereographic triangle. Lower dislocation densities within RE grains favored their growth by setting the boundary migration direction toward grains with higher dislocation density, thereby decreasing the system energy. We investigated the influence of RE elements on extension twinning induced hardening. RE addition enhanced tensile twinning induced hardening significantly. EBSD analysis illustrated that tensile twins cross low angle grain boundaries in Mg-RE alloys, which produced large twins and facilitated transmutation of basal to prismatic dislocations. Higher activity of pyramidal II dislocations in Mg-RE alloys resulted in higher twinning induced hardening.
Texture discrimination and multi-unit recording in the rat vibrissal nerve
Albarracín, Ana L; Farfán, Fernando D; Felice, Carmelo J; Décima, Emilio E
2006-01-01
Background Rats distinguish objects differing in surface texture by actively moving their vibrissae. In this paper we characterized some aspects of texture sensing in anesthetized rats during active touch. We analyzed the multifiber discharge from a deep vibrissal nerve when the vibrissa sweeps materials (wood, metal, acrylic, sandpaper) having different textures. We polished these surfaces with sandpaper (P1000) to obtain close degrees of roughness and we induced vibrissal movement with two-branch facial nerve stimulation. We also consider the change in pressure against the vibrissa as a way to improve the tactile information acquisition. The signals were compared with a reference signal (control) – vibrissa sweeping the air – and were analyzed with the Root Mean Square (RMS) and the Power Spectrum Density (PSD). Results We extracted the information about texture discrimination hidden in the population activity of one vibrissa innervation, using the RMS values and the PSD. The pressure level 3 produced the best differentiation for RMS values and it could represent the "optimum" vibrissal pressure for texture discrimination. The frequency analysis (PSD) provided information only at low-pressure levels and showed that the differences are not related to the roughness of the materials but could be related to other texture parameters. Conclusion Our results suggest that the physical properties of different materials could be transduced by the trigeminal sensory system of rats, as are shown by amplitude and frequency changes. Likewise, varying the pressure could represent a behavioral strategy that improves the information acquisition for texture discrimination. PMID:16719904
Texture discrimination and multi-unit recording in the rat vibrissal nerve.
Albarracín, Ana L; Farfán, Fernando D; Felice, Carmelo J; Décima, Emilio E
2006-05-23
Rats distinguish objects differing in surface texture by actively moving their vibrissae. In this paper we characterized some aspects of texture sensing in anesthetized rats during active touch. We analyzed the multifiber discharge from a deep vibrissal nerve when the vibrissa sweeps materials (wood, metal, acrylic, sandpaper) having different textures. We polished these surfaces with sandpaper (P1000) to obtain close degrees of roughness and we induced vibrissal movement with two-branch facial nerve stimulation. We also consider the change in pressure against the vibrissa as a way to improve the tactile information acquisition. The signals were compared with a reference signal (control)--vibrissa sweeping the air--and were analyzed with the Root Mean Square (RMS) and the Power Spectrum Density (PSD). We extracted the information about texture discrimination hidden in the population activity of one vibrissa innervation, using the RMS values and the PSD. The pressure level 3 produced the best differentiation for RMS values and it could represent the "optimum" vibrissal pressure for texture discrimination. The frequency analysis (PSD) provided information only at low-pressure levels and showed that the differences are not related to the roughness of the materials but could be related to other texture parameters. Our results suggest that the physical properties of different materials could be transduced by the trigeminal sensory system of rats, as are shown by amplitude and frequency changes. Likewise, varying the pressure could represent a behavioral strategy that improves the information acquisition for texture discrimination.
Ecological model of glittering texture
NASA Astrophysics Data System (ADS)
Vallet, Matthieu; Paille, Damien; Monot, Annie; Kemeny, Andras
2003-06-01
The perceptual effects of changes of texture luminance either between the eyes or over time have been studied in several experiments and have led to a better comprehension of phenomenons such as sieve effect, binocular and monocular lustre and rivaldepth. In this paper, we propose an ecological model of glittering texture and analyze glitter perception in terms of variations of texture luminance and animation frequency, in dynamic illumination conditions. Our approach is based on randomly oriented mirrors that are computed according to the specular term of Phong's image rendering formula. The sparkling effect is thus correlated to the relative movements of the resulting textured object, the light array and the observer's point of view. The perceptual effect obtained with this model depends on several parameters: mirrors' density, the Phong specular exponent and the statistical properties of the mirrors' normal vectors. The ability to independently set these properties offers a way to explore a characterization space of glitter. A rating procedure provided a first approximation of the numerical values that lead to the best feeling of typical sparkling surfaces such as metallic paint, granite or sea shore.
NASA Astrophysics Data System (ADS)
Stefanov, W. L.; Stefanov, W. L.; Christensen, P. R.
2001-05-01
Land cover and land use changes associated with urbanization are important drivers of global ecologic and climatic change. Quantification and monitoring of these changes are part of the primary mission of the ASTER instrument, and comprise the fundamental research objective of the Urban Environmental Monitoring (UEM) Program. The UEM program will acquire day/night, visible through thermal infrared ASTER data twice per year for 100 global urban centers over the duration of the mission (6 years). Data are currently available for a number of these urban centers and allow for initial comparison of global city structure using spatial variance texture analysis of the 15 m/pixel visible to near infrared ASTER bands. Variance texture analysis highlights changes in pixel edge density as recorded by sharp transitions from bright to dark pixels. In human-dominated landscapes these brightness variations correlate well with urbanized vs. natural land cover and are useful for characterizing the geographic extent and internal structure of cities. Variance texture analysis was performed on twelve urban centers (Albuquerque, Baghdad, Baltimore, Chongqing, Istanbul, Johannesburg, Lisbon, Madrid, Phoenix, Puebla, Riyadh, Vancouver) for which cloud-free daytime ASTER data are available. Image transects through each urban center produce texture profiles that correspond to urban density. These profiles can be used to classify cities into centralized (ex. Baltimore), decentralized (ex. Phoenix), or intermediate (ex. Madrid) structural types. Image texture is one of the primary data inputs (with vegetation indices and visible to thermal infrared image spectra) to a knowledge-based land cover classifier currently under development for application to ASTER UEM data as it is acquired. Collaboration with local investigators is sought to both verify the accuracy of the knowledge-based system and to develop more sophisticated classification models.
Sensitivity of simulated snow cloud properties to mass-diameter parameterizations.
NASA Astrophysics Data System (ADS)
Duffy, G.; Nesbitt, S. W.; McFarquhar, G. M.
2015-12-01
Mass to diameter (m-D) relationships are used in model parameterization schemes to represent ice cloud microphysics and in retrievals of bulk cloud properties from remote sensing instruments. One of the most common relationships, used in the current Global Precipitation Measurement retrieval algorithm for example, assigns the density of snow as a constant tenth of the density of ice (0.1g/m^3). This assumption stands in contrast to the results of derived m-D relationships of snow particles, which imply decreasing particle densities at larger sizes and result in particle masses orders of magnitude below the constant density relationship. In this study, forward simulations of bulk cloud properties (e.g., total water content, radar reflectivity and precipitation rate) derived from measured size distributions using several historical m-D relationships are presented. This expands upon previous studies that mainly focused on smaller ice particles because of the examination of precipitation-sized particles here. In situ and remote sensing data from the GPM Cold season Experiment (GCPEx) and Canadian CloudSAT/Calypso Validation Program (C3VP), both synoptic snowstorm field experiments in southern Ontario, Canada, are used to evaluate the forward simulations against total water content measured by the Nevzorov and Cloud Spectrometer and Impactor (CSI) probe, radar reflectivity measured by a C band ground based radar and a nadir pointing Ku/Ka dual frequency airborne radar, and precipitation rate measured by a 2D video disdrometer. There are differences between the bulk cloud properties derived using varying m-D relations, with constant density assumptions producing results differing substantially from the bulk measured quantities. The variability in bulk cloud properties derived using different m-D relations is compared against the natural variability in those parameters seen in the GCPEx and C3VP field experiments.
NASA Astrophysics Data System (ADS)
Alekseev, V. I.; Eliseyev, A. N.; Irribarra, E.; Kishin, I. A.; Klyuev, A. S.; Kubankin, A. S.; Nazhmudinov, R. M.; Zhukova, P. N.
2018-02-01
The Parametric X-Ray radiation (PXR) spectra and yield dependencies on the orientation angle are measured during the interaction of 7 MeV electrons with a tungsten textured polycrystalline foil for different observation angles. The effects of PXR spectral density increase and PXR yield orientation dependence broadening in the backward direction is shown experimentally for the first time. The experimental results are compared with PXR kinematical theories for both mosaic crystals and polycrystals.
Structure, mechanical and magnetic properties of Al4C3 reinforced nickel matrix nanocomposites
NASA Astrophysics Data System (ADS)
Chaudhari, Alok Kumar; Singh, Dhananjay Kumar; Singh, V. B.
2018-05-01
A new type of nanocomposite, Ni-Al4C3 was prepared using Al4C3 as reinforcement by cathodic co-deposition at different current densities (1.0 to 5.0 A dm‑2) from a nickel acetate-N-methyl formamide (non-aqueous) bath. Influence of current density and incorporation of Al4C3 particles in nickel matrix on the structure and properties of the composite coatings was investigated. Surface morphology and composition of the deposits were determined by SEM and EDAX. Crystallographic structure and orientation of the electrodeposited Ni-Al4C3 composite were studied by x-ray diffraction. Compared to nickel metal, these nanocomposites exhibited finer grains, higher microhardness, improved corrosion resistance and enhanced soft magnetic properties. Composite deposited at higher current densities (>2 A dm‑2) shows mild texturing along (200) plane. The effect of heat treatment on the microstructure, texture and microhardness of the nanocomposites was also investigated.
Bulk density of asteroid 243 Ida from the orbit of its satellite Dactyl
Belton, M.J.S.; Chapmant, C.R.; Thomas, P.C.; Davies, M.E.; Greenberg, R.; Klaasen, K.; Byrnes, D.; D'Amario, L.; Synnott, S.; Johnson, T.V.; McEwen, A.; Merline, W.J.; Davis, D.R.; Petit, J.-M.; Storrs, A.; Veverka, J.; Zellner, B.
1995-01-01
DURING its reconnaissance of the asteroid 243 Ida, the Galileo spacecraft returned images of a second object, 1993(243)1 Dactyl1 - the first confirmed satellite of an asteroid. Sufficient data were obtained on the motion of Dactyl to determine its orbit as a function of Ida's mass. Here we apply statistical and dynamical arguments to constrain the range of possible orbits, and hence the mass of Ida. Combined with the volume of Ida2, this yields a bulk density of 2.6??0.5 g cm-3. Allowing for the uncertainty in the porosity of Ida, this density range is consistent with a bulk chondritic composition, and argues against some (but not all) classes of meteoritic igneous rock types that have been suggested as compositionally representative of S-type asteroids like Ida.
Bulk density of asteroid 243 Ida from the orbit of its satellite Dactyl
Belton, M.J.S.; Chapman, C.R.; Thomas, P.C.; Davies, M.E.; Greenberg, R.; Klaasen, K.; Byrnes, D.; D'Amario, L.; Synnott, S.; Johnson, T.V.; McEwen, A.; Merline, W.J.; Davis, D.R.; Petit, J.-M.; Storrs, A.; Veverka, J.; Zellner, B.
1995-01-01
DURING its reconnaissance of the asteroid 243 Ida, the Galileo spacecraft returned images of a second object, 1993(243)1 Dactyl1 - the first confirmed satellite of an asteroid. Sufficient data were obtained on the motion of Dactyl to determine its orbit as a function of Ida's mass. Here we apply statistical and dynamical arguments to constrain the range of possible orbits, and hence the mass of Ida. Combined with the volume of Ida2, this yields a bulk density of 2.6 ?? 0.5 g cm-3. Allowing for the uncertainty in the porosity of Ida, this density range is consistent with a bulk chon-dritic composition, and argues against some (but not all) classes of meteoritic igneous rock types that have been suggested as compositionally representative of S-type asteroids like Ida. ?? 2002 Nature Publishing Group.
First-principles studies of electronic, transport and bulk properties of pyrite FeS2
NASA Astrophysics Data System (ADS)
Banjara, Dipendra; Mbolle, Augustine; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola
We present results of ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of pyrite FeS2. We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO) formalism, following the Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method requires successive, self consistent calculations with increasing basis sets to reach the ground state of the system under study. We report the band structure, the band gap, total and partial densities of states, effective masses, and the bulk modulus. Work funded in part by the US Department of Energy (DOE), National Nuclear Security Administration (NNSA) (Award No.DE-NA0002630), the National Science Foundation (NSF) (Award No, 1503226), LaSPACE, and LONI-SUBR.
NASA Astrophysics Data System (ADS)
Trommler, S.; Hänisch, J.; Matias, V.; Hühne, R.; Reich, E.; Iida, K.; Haindl, S.; Schultz, L.; Holzapfel, B.
2012-08-01
Optimized, biaxially textured BaFe1.8Co0.2As2 thin films with an in-plane alignment of 1.7° have been realized on high-quality IBAD-textured MgO-coated technical substrates utilizing additional Fe buffer layers. High critical current densities (Jc) were achieved, comparable to films on single crystalline MgO (Jc ≥ 1 MA cm-2 at 4 K, self-field). Transmission electron microscopy investigations reveal a small number of c-axis correlated defects introduced by the MgO template. The effect of these defects on the Jc anisotropy was determined in angular-dependent electronic transport measurements.
NASA Astrophysics Data System (ADS)
Kühbach, Markus; Brüggemann, Thiemo; Molodov, Konstantin D.; Gottstein, Günter
2015-03-01
In the current study, we detail a novel in situ X-ray diffraction-based bulk measurement technique, which allows for the continuous tracking of primary recrystallization kinetics. The approach is based on measuring the diffracted intensity that is correlated with the evolution of the volume fraction of particular texture components during annealing of a sample within a texture goniometer. The method is applied in an experimental study on a cold-rolled industrial Al-Fe-Si alloy. For comparison purposes, the macrotexture and the hardness evolution were monitored ex situ along isothermal and nonisothermal annealing. These measurements were then contrasted to the in situ obtained growth kinetics of recrystallizing grains in beta-fiber deformation and cube orientation. The results showed clearly that this method can be reliably utilized for the characterization of recrystallization kinetics in an industrial context.
Spin-polarized surface resonances accompanying topological surface state formation
Jozwiak, Chris; Sobota, Jonathan A.; Gotlieb, Kenneth; Kemper, Alexander F.; Rotundu, Costel R.; Birgeneau, Robert J.; Hussain, Zahid; Lee, Dung-Hai; Shen, Zhi-Xun; Lanzara, Alessandra
2016-01-01
Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi2Se3. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture with opposite orientation. Its momentum dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states can emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. This work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure. PMID:27739428
NASA Astrophysics Data System (ADS)
Pertsev, N. A.; Zembilgotov, A. G.; Waser, R.
1998-08-01
The effective dielectric, piezoelectric, and elastic constants of polycrystalline ferroelectric materials are calculated from single-crystal data by an advanced method of effective medium, which takes into account the piezoelectric interactions between grains in full measure. For bulk BaTiO3 and PbTiO3 polarized ceramics, the dependences of material constants on the remanent polarization are reported. Dielectric and elastic constants are computed also for unpolarized c- and a-textured ferroelectric thin films deposited on cubic or amorphous substrates. It is found that the dielectric properties of BaTiO3 and PbTiO3 polycrystalline thin films strongly depend on the type of crystal texture. The influence of two-dimensional clamping by the substrate on the dielectric and piezoelectric responses of polarized films is described quantitatively and shown to be especially important for the piezoelectric charge coefficient of BaTiO3 films.
Band-Gap Engineering in ZnO Thin Films: A Combined Experimental and Theoretical Study
NASA Astrophysics Data System (ADS)
Pawar, Vani; Jha, Pardeep K.; Panda, S. K.; Jha, Priyanka A.; Singh, Prabhakar
2018-05-01
Zinc oxide thin films are synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, and optical spectroscopy. Our results reveal that the structural, morphological, and optical properties are closely related to the stress of the sample provided that the texture of the film remains the same. The anomalous results are obtained once the texture is altered to a different orientation. We support this experimental observation by carrying out first-principles hybrid functional calculations for two different orientations of the sample and show that the effect of quantum confinement is much stronger for the (100) surface than the (001) surface of ZnO. Furthermore, our calculations provide a route to enhance the band gap of ZnO by more than 50% compared to the bulk band gap, opening up possibilities for wide-range industrial applications.
NASA Astrophysics Data System (ADS)
Bemiller, James N.
Carbohydrates are important in foods as a major source of energy, to impart crucial textural properties, and as dietary fiber which influences physiological processes. Digestible carbohydrates, which are converted into monosaccharides, which are absorbed, provide metabolic energy. Worldwide, carbohydrates account for more than 70% of the caloric value of the human diet. It is recommended that all persons should limit calories from fat (the other significant source) to not more than 30% and that most of the carbohydrate calories should come from starch. Nondigestible polysaccharides (all those other than starch) comprise the major portion of dietary fiber (Sect. 10.5). Carbohydrates also contribute other attributes, including bulk, body, viscosity, stability to emulsions and foams, water-holding capacity, freeze-thaw stability, browning, flavors, aromas, and a range of desirable textures (from crispness to smooth, soft gels). They also provide satiety. Basic carbohydrate structures, chemistry, and terminology can be found in references (1, 2).
Intergrannular strain evolution in a zircaloy-4 alloy with Widmanstatten microstructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clausen, Bjorn; Vogel, Sven C; Garlea, Eena
2009-01-01
A Zircaloy-4 alloy with Widmanstatten-Basketweave microstructure and random texture has been used to study the deformation systems responsible for the polycrystalline plasticity at the grain level. The evolution of internal strain and bulk texture is investigated using neutron diffraction and an elasto-plastic self-consistent (EPSC) modeling scheme. The macroscopic stress-strain behavior and intergranular (hkil-specific) strain development, parallel and perpendicular to the loading direction, were measured in-situ during uniaxial tensile loading. Then, the EPSC model was employed to simulate the experimental results. This modeling scheme accounts for the thermal anisotropy; elastic-plastic properties of the constituent grains; and activation, reorientation, and stress relaxationmore » associated with twinning. The agreement between the experiment and the model will be discussed as well as the critical resolved shear stresses (CRSS) and the hardening coefficients obtained from the model.« less
Milchev, Andrey; Egorov, Sergei A; Binder, Kurt
2017-03-01
Semiflexible polymers under good solvent conditions interacting with attractive planar surfaces are investigated by Molecular Dynamics (MD) simulations and classical Density Functional Theory (DFT). A bead-spring type potential complemented by a bending potential is used, allowing variation of chain stiffness from completely flexible coils to rod-like polymers whose persistence length by far exceeds their contour length. Solvent is only implicitly included, monomer-monomer interactions being purely repulsive, while two types of attractive wall-monomer interactions are considered: (i) a strongly attractive Mie-type potential, appropriate for a strictly structureless wall, and (ii) a corrugated wall formed by Lennard-Jones particles arranged on a square lattice. It is found that in dilute solutions the former case leads to the formation of a strongly adsorbed surface layer, and the profile of density and orientational order in the z-direction perpendicular to the wall is predicted by DFT in nice agreement with MD. While for very low bulk densities a Kosterlitz-Thouless type transition from the isotropic phase to a phase with power-law decay of nematic correlations is suggested to occur in the strongly adsorbed layer, for larger densities a smectic-C phase in the surface layer is detected. No "capillary nematization" effect at higher bulk densities is found in this system, unlike systems with repulsive walls. This finding is attributed to the reduction of the bulk density (in the center of the slit pore) due to polymer adsorption on the attractive wall, for a system studied in the canonical ensemble. Consequently in a system with two attractive walls nematic order in the slit pore can occur only at a higher density than for a bulk system.
Johanna D. Landsberg; Richard E. Miller; Harry W. Anderson; Jeffrey S. Tepp
2003-01-01
Bulk density and soil resistance to penetration were measured in ten, 3- to 11-ha operational units in overstocked, mixed-conifer stands in northeast Washington. Resistance was measured with a recording penetrometer to the 33-cm depth (13 in) at 10 stations on each of 8 to 17, 30.5-m-long, randomly located transects in each unit. Subsequently, different combinations of...
Effect of Alkali Concentration on Fly Ash Geopolymers
NASA Astrophysics Data System (ADS)
Fatimah Azzahran Abdullah, Siti; Yun-Ming, Liew; Bakri, Mohd Mustafa Al; Cheng-Yong, Heah; Zulkifly, Khairunnisa; Hussin, Kamarudin
2018-03-01
This paper presents the effect of NaOH concentration on fly ash geopolymers with compressive up to 56 MPa at 12M. The physical and mechanical on fly ash geopolymer are investigated. Test results show that the compressive strength result complied with bulk density result whereby the higher the bulk density, the higher the strength. Thus, the lower water absorption and porosity due to the increasing of NaOH concentration.
Disruption rates for one vulnerable soil in Organ Pipe Cactus National Monument, Arizona, USA
Webb, Robert H.; Esque, Todd C.; Nussear, Kenneth E.; Sturm, Mark
2013-01-01
Rates of soil disruption from hikers and vehicle traffic are poorly known, particularly for arid landscapes. We conducted an experiment in Organ Pipe Cactus National Monument (ORPI) in western Arizona, USA, on an air-dry very fine sandy loam that is considered to be vulnerable to disruption. We created variable-pass tracks using hikers, an all-terrain vehicle (ATV), and a four-wheel drive vehicle (4WD) and measured changes in cross-track topography, penetration depth, and bulk density. Hikers (one pass = 5 hikers) increased bulk density and altered penetration depth but caused minimal surface disruption up to 100 passes; a minimum of 10 passes were required to overcome surface strength of this dry soil. Both ATV and 4WD traffic significantly disrupted the soil with one pass, creating deep ruts with increasing passes that rendered the 4WD trail impassable after 20 passes. Despite considerable soil loosening (dilation), bulk density increased in the vehicle trails, and lateral displacement created berms of loosened soil. This soil type, when dry, can sustain up to 10 passes of hikers but only one vehicle pass before significant soil disruption occurs; greater disruption is expected when soils are wet. Bulk density increased logarithmically with applied pressure from hikers, ATV, and 4WD.
Zhu, Han-hua; Huang, Dao-you; Liu, Shou-long; Zhu, Qi-hong
2007-11-01
Two typical land-use types, i.e., newly cultivated slope land and mellow upland, were selected to investigate the effects of ex situ rice straw incorporation on the organic matter content, field water-holding capacity, bulk density, and porosity of hilly red soil, and to approach the correlations between these parameters. The results showed that ex situ incorporation of rice straw increased soil organic matter content, ameliorated soil physical properties, and improved soil water storage. Comparing with non-fertilization and applying chemical fertilizers, ex situ incorporation of rice straw increased the contents of organic matter (5.8%-28.9%) and > 0.25 mm water-stable aggregates in 0-20 cm soil layer, and increased the field water-holding capacity (6.8%-16.2%) and porosity (4.8%-7.7%) significantly (P < 0.05) while decreased the bulk density (4.5%-7.5%) in 10-15 cm soil layer. The organic matter content in 0-20 cm soil layer was significantly correlated to the bulk density, porosity, and field water-holding capacity in 10-15 cm soil layer (P < 0.01), and the field water-holding capacity in 0-20 cm and 10-15 cm soil layers was significantly correlated to the bulk density and porosity in these two layers (P < 0.05).
Natural gas storage with activated carbon from a bituminous coal
Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.
1996-01-01
Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (<0.044 mm). The increase in Vm/Vs is due to the increase in bulk density of the carbons. Volumetric methane adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.
Impact of storage on dark chocolate: texture and polymorphic changes.
Nightingale, Lia M; Lee, Soo-Yeun; Engeseth, Nicki J
2011-01-01
Chocolate storage is critical to final product quality. Inadequate storage, especially with temperature fluctuations, may lead to rearrangement of triglycerides that make up the bulk of the chocolate matrix; this rearrangement may lead to fat bloom. Bloom is the main cause of quality loss in the chocolate industry. The effect of storage conditions leading to bloom formation on texture and flavor attributes by human and instrumental measures has yet to be reported. Therefore, the impact of storage conditions on the quality of dark chocolate by sensory and instrumental measurements was determined. Dark chocolate was kept under various conditions and analyzed at 0, 4, and 8 wk of storage. Ten members of a descriptive panel analyzed texture and flavor. Instrumental methods included texture analysis, color measurement, lipid polymorphism by X-ray diffraction and differential scanning calorimetry, triglyceride concentration by gas chromatography, and surface properties by atomic force microscopy. Results were treated by analysis of variance, cluster analysis, principal component analysis, and linear partial least squares regression analysis. Chocolate stored 8 wk at high temperature without fluctuations and 4 wk with fluctuations transitioned from form V to VI. Chocolates stored at high temperature with and without fluctuations were harder, more fracturable, more toothpacking, had longer melt time, were less sweet, and had less cream flavor. These samples had rougher surfaces, fewer but larger grains, and a heterogeneous surface. Overall, all stored dark chocolate experienced instrumental or perceptual changes attributed to storage condition. Chocolates stored at high temperature with and without fluctuations were most visually and texturally compromised. Practical Application: Many large chocolate companies do their own "in-house" unpublished research and smaller confectionery facilities do not have the means to conduct their own research. Therefore, this study relating sensory and instrumental data provides published evidence available for application throughout the confectionery industry.
NASA Astrophysics Data System (ADS)
Clarke, A. B.; Stephens, S.; Teasdale, R.; Sparks, R. S. J.; Diller, K.
2007-04-01
A series of 88 Vulcanian explosions occurred at the Soufrière Hills volcano, Montserrat, between August and October, 1997. Conduit conditions conducive to creating these and other Vulcanian explosions were explored via analysis of eruptive products and one-dimensional numerical modeling of magma ascent through a cylindrical conduit. The number densities and textures of plagioclase microlites were documented for twenty-three samples from the events. The natural samples all show very high number densities of microlites, and > 50% by number of microlites have areas < 20 μm 2. Pre-explosion conduit conditions and decompression history have been inferred from these data by comparison with experimental decompressions of similar groundmass compositions. Our comparisons suggest quench pressures < 30 MPa (origin depths < 2 km) and multiple rapid decompressions of > 13.75 MPa each during ascent from chamber to surface. Values are consistent with field studies of the same events and statistical analysis of explosion time-series data. The microlite volume number density trend with depth reveals an apparent transition from growth-dominated crystallization to nucleation-dominated crystallization at pressures of ˜ 7 MPa and lower. A concurrent sharp increase in bulk density marks the onset of significant open-system degassing, apparently due to a large increase in system permeability above ˜ 70% vesicularity. This open-system degassing results in a dense plug which eventually seals the conduit and forms conditions favorable to Vulcanian explosions. The corresponding inferred depth of overpressure at 250-700 m, near the base of the dense plug, is consistent with depth to center of pressure estimated from deformation measurements. Here we also illustrate that one-dimensional models representing ascent of a degassing, crystal-rich magma are broadly consistent with conduit profiles constructed via our petrologic analysis. The comparison between models and petrologic data suggests that the dense conduit plug forms as a result of high overpressure and open-system degassing through conduit walls.
Tani, Toshihiko; Takeuchi, Tsuguto
2015-01-01
Plate-like Ca3Ti2O7 (CT) and Nd2Ti2O7 (NT) particles were synthesized in molten salts and used as reactive templates for the preparation of highly textured (Ca0.7Nd0.3)0.87TiO3 bulk ceramics (CNT) with preferred pseudocubic 〈100〉 and 〈110〉 orientations, respectively. During flux growth CT and NT particles developed facets parallel to the pseudocubic {100} and {110} planes, respectively, in a perovskite unit cell, since those planes correspond to the interlayers of the layered perovskite-type crystal structures. Complementary reactants for the CNT stoichiometry were wet-mixed with the reactive templates and the slurries were tape-cast. Then stacked tapes were heat-treated for dense single-phase CNT ceramics with a distorted and A-site deficient regular perovskite-type structure. The CNT ceramics prepared with CT and NT reactive templates exhibited strong pseudocubic 100- and 110-family x-ray diffraction peaks, respectively, with other peaks drastically suppressed when non-perovskite sources were used as complementary reactants. The textured ceramics possess unique microstructures; as either parallel or obliquely stacked block structures with a pseudocubic {100} plane faceted. The pseudocubic {100}-and {110}-textured CNT ceramics exhibited ∼10 and ∼20% higher products of the dielectric quality factor and frequency, Q · f, respectively, than conventional ceramic sintered at the same temperature. When Q · f is compared based on the same grain size, the {100}-textured CNT exhibited 27% higher values than non-textured while relative permittivity and temperature coefficient of resonant frequency were of similar values. Simple geometrical relationships between electric field and penetrated pseudocubic {hk0}-type grain boundaries must lead to the reduced scattering and dielectric loss. PMID:27877809
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B; Yu, H; Jara, H
Purpose: To compare enhanced Laws texture derived from parametric proton density (PD) maps to other MRI-based surrogate markers (T2, PD, ADC) in assessing degrees of liver fibrosis in a murine model of hepatic fibrosis using 11.7T scanner. Methods: This animal study was IACUC approved. Fourteen mice were divided into control (n=1) and experimental (n=13). The latter were fed a DDC-supplemented diet to induce hepatic fibrosis. Liver specimens were imaged using an 11.7T scanner; the parametric PD, T2, and ADC maps were generated from spin-echo pulsed field gradient and multi-echo spin-echo acquisitions. Enhanced Laws texture analysis was applied to the PDmore » maps: first, hepatic blood vessels and liver margins were segmented/removed using an automated dual-clustering algorithm; secondly, an optimal thresholding algorithm was applied to reduce the partial volume artifact; next, mean and stdev were corrected to minimize grayscale variation across images; finally, Laws texture was extracted. Degrees of fibrosis was assessed by an experienced pathologist and digital image analysis (%Area Fibrosis). Scatterplots comparing enhanced Laws texture, T2, PD, and ADC values to degrees of fibrosis were generated and correlation coefficients were calculated. Unenhanced Laws texture was also compared to assess the effectiveness of the proposed enhancements. Results: Hepatic fibrosis and the enhanced Laws texture were strongly correlated with higher %Area Fibrosis associated with higher Laws texture (r=0.89). Only a moderate correlation was detected between %Area Fibrosis and unenhanced Laws texture (r=0.70). Strong correlation also existed between ADC and %Area Fibrosis (r=0.86). Moderate correlations were seen between %Area Fibrosis and PD (r=0.65) and T2 (r=0.66). Conclusions: Higher degrees of hepatic fibrosis are associated with increased Laws texture. The proposed enhancements improve the accuracy of Laws texture. Enhanced Laws texture features are more accurate than PD and T2 in assessing fibrosis, and can potentially serve as an accurate surrogate marker for hepatic fibrosis.« less
NASA Astrophysics Data System (ADS)
Trigalet, Sylvain; Chartin, Caroline; Van Oost, Kristof; van Wesemael, Bas
2017-04-01
Understanding the soil organic carbon (SOC) distribution a few decades after conversion to cropland and plantations in a hilly catchment in southern Brazil is challenging due to scale-dependent controlling factors. Firstly, SOC, bulk density (BD) and texture were measured by depth intervals along 18 soil profiles located in three topographical positions (sloping plateau, central back slope and concave foot slope) in cropland and forest with contrasting slopes. SOC stocks in concave footslope position were not significantly different between fields on steep (11.1 kg C m-2) and gentle slopes (12.8 kg C m-2). However, in eroding profiles, SOC stocks are twice as high in fields on gentle slopes (17.6/12.6 kg C m-2) compared to steep slopes (8.3/7.1 kg C m-2). SOC stocks on steep slope on cropland (8.8 kg C m-2) are three times lower than SOC stocks on steep slope under undisturbed forest (23.7 kg C m-2). On gentle slopes, the effect of deforestation on SOC stocks was not so drastic (14.3 and 14.4 kg C m-2). Therefore, contrasting topography generates different patterns of SOC redistribution in the catchment. The effect of conversion to cropland is probably due to soil redistribution by water and tillage erosion aggravated by the steep terrain. Secondly, in order to assess the heterogeneity of SOC distribution at catchment scale, samples were collected at 10-20; 40-50 and 75-85 cm in 167 soil profiles sampled with an auger. SOC concentrations (gC kg-1 ) in numerous bulk soil samples (n = 378) were predicted by VIS-NIR spectroscopy and partial least-square regression models. SOC stocks were assessed by a mass preserving spline tool by interpolating SOC mass at the three non-contiguous depth intervals. Samples of calibration-validation dataset (n = 95) were used for physical SOC fractionation allowing the measurement of carbon associated with < 20 μm fraction. Multivariate linear regression models and Pearson correlation coefficients were used to assess the influence of several covariates on SOC stocks, SOC in bulk soil and fractions. This integrated approach highlights how SOC distribution is influenced by different proximal or distal controlling factors that are scale-dependent. Spectroscopy increases the density of samples available at catchment scale while SOC fractionation provides information on SOC quality on a representative subset of samples.
NASA Astrophysics Data System (ADS)
Scarciglia, Fabio; Morrone, Fabio; Pelle, Teresa; Buttafuoco, Gabriele; Conforti, Massimo; Muto, Francesco; Critelli, Salvatore; Fabbricatore, Davide; Filomena, Luciana; Rago, Valeria; Robustelli, Gaetano; Tripodi, Vincenzo; Versace, Pasquale
2015-04-01
Effects of chemical and physical weathering processes on different rock types as predisposing factors of a number of landslides are often investigated in detail. Conversely, very few research studies on triggering mechanisms of shallow landslides and related risk assessment are focused on evaluation of morphological and physical discontinuities caused by pedogenetic processes affecting parent materials. Also sampling strategies for geotechnical or hydrological laboratory analyses can be biased by the lack of detailed information about the soil spatial variability and of a consequent horizon-wise selection of samples from soil profiles. In this work we summarize the main results on the assessment of shallow landslide susceptibility along the A3 highway section between Cosenza Sud and Altilia in northern Calabria (southern Italy). This research is part of a wider project (PON01-01503: "Integrated systems for hydrogeological risk monitoring, early warning and mitigation along the main lifelines"), aimed at hydro-geological risk mitigation and early warning along three highway sections of southern Italy. Based on a detailed geological and geomorphological survey, the main lithological, structural and relief features of the landscape were mapped, with a special emphasis on active, dormant and inactive landslides and their geo-lithological control factors. A soil survey was also carried out in the field, showing a dominance of Entisols and Inceptisols on steep slopes, and Mollisols and Alfisols on gentle landforms. Soil observations were focused on the identification of pedological discontinuities as potential factors that might trigger shallow landslides. A number of soil profiles, often close to landslide scarps, evidenced significant morphological changes of the parent materials, such as texture, pedogenic structure, dry consistence and moisture, or hydromorphic features caused by transient water-logging conditions, and clay-illuviated horizons. Buried soils were recognized, often truncated by erosion, and overlain by younger soils developed on colluvia, debris flows and detrital slope deposits. Five representative soil profiles were selected and sampled for pedological, geotechnical and hydrological laboratory analyses. Bulk and undisturbed samples were collected for chemical and physical soil analyses (particle size distribution, organic and inorganic carbon, pH, electrical conductivity, soluble salts), for determining bulk density, Atterberg limits, cohesive strength, angle of internal friction, water retention and for thin sections to be observed under an optical polarizing microscope, respectively. Preliminary results of laboratory analyses showed irregular patterns of pedological (particle size distribution, organic matter content, bulk density), geotechnical (Atterberg limits) and hydrological data (water content, pore distribution) along the soil profiles, coherently with field observations.
NASA Astrophysics Data System (ADS)
Fonseca, Felícia; de Figueiredo, Tomás; Leite, Micaela
2014-05-01
Human induced fire in scrublands to obtain better pastures for cattle is a relatively common practice in North Portugal. During burning, plant cover and litter layers are consumed, and the mineral soil is heated, resulting in changes to physical, chemical, mineralogical, and biological soil properties. Aiming at evaluating the effect of this kind of fires on a set of physical and chemical soil properties, two study areas were selected in contrasting mountain environments: Edroso, Vinhais municipality, NE Portugal, with typical Mediterranean climate, and Revelhe, Fafe, NW Portugal, with a strong ocean-influenced climate. In both, sampling was carried out in contiguous areas burnt and not burnt, covered by shrub vegetation, predominantly Cytisus multiflorus and Ulex europeus. In each study area (Edroso and Revelhe) 16 locations were selected for soil sampling (8 in the burned area and 8 in the not burnt area), six months after fire occurrence. Disturbed soil samples were collected in the layers 0-5, 5-10, 10-15, 15-20 and 20-30 cm depth, for assessing organic matter, N, P and K concentration, cation exchange capacity and related determinations, soil pH, electrical conductivity and soil texture. Undisturbed samples were collected, in 100 cm3 cylinders, to determine bulk density in the same above mentioned layers, and permeability in the 0-5 cm layer. Compared results of burnt and not burnt areas in Edroso and Revelhe study sites, show that coarse elements content and permeability decreased and bulk density slightly increased with the fire effect. Chemical properties in both sites changed with after fire, as organic matter content, exchangeable Al and cation exchange capacity increased, the opposite trend being found for phosphorus, sum of exchangeable bases and electrical conductivity. Potassium, total nitrogen and exchangeable acidity showed different soil responses to fire in the two study areas. Results stress the clear effects of fire on fertility related soil properties, not only chemical but also physical, which is decisive for the post-fire recover of burnt shrub communities, in terms of vegetation and soil functions in these marginal mountain environments.
NASA Astrophysics Data System (ADS)
Borja Ramon, Pablo; Alvarado Moncayo, Dario; Vanacker, Veerle; Cisneros, Pedro; Molina, Armando; Govers, Gerard
2015-04-01
Revegetation projects in degraded lands have the potential to recover essential soil functions. If vegetation restoration is combined with bioengineering techniques, such as the construction of retention dams in active gully systems, soil restoration could be enhanced. One important aspect of this process is the role of vegetation on restoration of soil chemical and physical properties. There is currently a lack of knowledge on the potential of soil restoration in active badland systems, as most studies have concentrated on the direct and visible effect of revegetation on erosion control. The aim of this study is to evaluate the role of revegetation and bioengineering works on the restoration of soil physical and chemical properties. The analyses are realized in a highly degraded area of 3 km2, located in the lower part of the Loreto catchment (Southern Ecuadorian Andes). First, the soil physical and/or chemical parameters that are most sensitive to track environmental change were evaluated. Second, the role of vegetation on soil restoration was quantified. . Soil samples were taken in sites with different vegetation cover, land use and physiographic position. The following physical and chemical parameters were measured: volumetric water content (θsat, θact), bulk density, pH, texture, organic matter, C and N content. Our first results do not show a clear relationship between volumetric water content at saturation (θsat), bulk density, or C content. The saturation water content does not vary significantly between different sites, or land use types. However, significant differences are found between sites at different stages of restoration; and this for most chemical and physical soil properties. Vegetation cover (%) appears to exert a strong control on the C content in the mineral soils. The highest C values are found in soils of forest plantations with Eucalyptus and Pinus species. These plantations are located in areas that were previously affected by active gullying. Our results show that the establishment of a protective vegetation cover is an important factor in soil restoration.
Microbial and physical properties as indicators of sandy soil quality under cropland and grassland
NASA Astrophysics Data System (ADS)
Frac, Magdalena; Lipiec, Jerzy; Usowicz, Boguslaw; Oszust, Karolina; Brzezinska, Malgorzata
2017-04-01
Land use is one of the key factor driving changes in soil properties influencing on soil health and quality. Microbial diversity and physical properties are sensitive indicators for assessing soil health and quality. The alterations of microbial diversity and physical properties following land use changes have not been sufficiently elucidated, especially for sandy soils. We investigated microbial diversity indicators including fungal communities composition and physical properties of sandy acid soil under cropland and more than 20-yr-old grassland (after cropland) in Trzebieszów, Podlasie Region, Poland (N 51° 59' 24", E 22° 33' 37"). The study included four depths within 0-60 cm. Microbial genetic diversity was assessed by terminal restriction fragment length polymorphism (t-RFLP) analysis, fungal community composition was evaluated by next generation sequencing (NGS) analysis and functional diversity was determined by Biolog EcoPlate method. Overall microbial activity was assessed by soil enzymes (dehydrogenases, β-glucosidase) and respiration test. At the same places soil texture, organic carbon content, pH, bulk density, water holding capacity were determined. Our results showed that grassland soil was characterized by higher activity of soil enzymes than cropland. The average well color development of soil microorganisms, the microbial functional diversity and the number of carbon source utilization were significantly affected by land use type and were differentiated among soil depths. In grassland compared to cropland soil a significant increase of carboxylic acids and decrease of amino acids utilization was observed. The quantitative and qualitative differences were found in community of ammonia oxidizing archaea in cropland and grassland soil. The results of fungal community composition help to explain the soil health of grassland and cropland based on the appearance of phytopathogenic and antagonistic fungi. In general bulk density and field water capacity were greater and saturated hydraulic conductivity was lower under grassland than cropland soil. The study was funded by HORIZON 2020, European Commission, Programme: H2020-SFS-4-2014: Soil quality and function, project No. 635750, Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience (iSQAPER, 2015-2020).
Wheatcroft, R.A.; Stevens, A.W.; Hunt, L.M.; Milligan, T.G.
2006-01-01
Event-response coring on the Po River prodelta (northern Adriatic Sea) coupled with shipboard digital X-radiography, resistivity profiling, and grain-size analyses permitted documentation of the initial distribution and physical properties of the October 2000 flood deposit. The digital X-radiography system comprises a constant-potential X-ray source and an amorphous silicon imager with an active area of 29??42 cm and 12-bit depth resolution. Objective image segmentation algorithms based on bulk density (brightness), layer contacts (edge detection) and small-scale texture (fabric) were used to identify the flood deposit. Results indicate that the deposit formed in water depths of 6-29 m immediately adjacent to the three main distributary mouths of the Po (Pila, Tolle and Gnocca/Goro). Maximal thickness was 36 cm at a 20-m site off the main mouth (Pila), but many other sites hadthicknesses >20 cm. The Po flood deposit has a complex internal stratigraphy, with multiple layers, a diverse suite of physical sedimentary structures (e.g., laminations, ripple cross bedding, lenticular bedding, soft-sediment deformation structures), and dramatic changes in grain size that imply rapid deposition and fluctuations in energy during emplacement. Based on the flood deposit volume and well-constrained measurements of deposit bulk density the mass of the flood deposit was estimated to be 16??109 kg, which is about two-thirds of the estimated suspended sediment load delivered by the river during the event. The locus of deposition, overall thickness, and stratigraphic complexity of the flood deposit can best be explained by the relatively long sediment throughput times of the Po River, whereby sediment is delivered to the ocean during a range of conditions (i.e., the storm responsible for the precipitation is long gone), the majority of which are reflective of the fair-weather condition. Sediment is therefore deposited proximal to the river mouths, where it can form thick, but stratigraphically complex deposits. In contrast, floods of small rivers such as the Eel (northern California) are coupled to storm conditions, which lead to high levels of sediment dispersion. ?? 2006 Elsevier Ltd. All rights reserved.
Physical properties of the Nankai inner accretionary prism at Site C0002, IODP Expedition 348
NASA Astrophysics Data System (ADS)
Kitamura, Manami; Kitajima, Hiroko; Henry, Pierre; Valdez, Robert; Josh, Matthew
2014-05-01
Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expedition 348 focused on deepening the existing riser hole at Site C0002 to ~3000 meters below seafloor (mbsf) to access the deep interior of the Miocene inner accretionary prism. This unique tectonic environment, which has never before been sampled in situ by ocean drilling, was characterized through riser drilling, logging while drilling (LWD), mud gas monitoring and sampling, and cuttings and core analysis. Shipboard physical properties measurements including moisture and density (MAD), electrical conductivity, P-wave, natural gamma ray, and magnetic susceptibility measurements were performed mainly on cuttings samples from 870.5 to 3058.5 mbsf, but also on core samples from 2163 and 2204 mbsf. MAD measurements were conducted on seawater-washed cuttings ("bulk cuttings") in two size fractions of >4 mm and 1-4 mm from 870.5 to 3058.5 mbsf, and hand-picked intact cuttings from the >4 mm size fractions within 1222.5-3058.5 mbsf interval. The bulk cuttings show grain density of 2.68 g/cm3 and 2.72 g/cm3, bulk density of 1.9 g/cm3 to 2.2 g/cm3, and porosity of 50% to 32%. Compared to the values on bulk cuttings, the intact cuttings show almost the same grain density (2.66-2.70 g/cm3), but higher bulk density (2.05-2.41 g/cm3) and lower porosity (37-18%), respectively. The grain density agreement suggests that the measurements on both bulk cuttings and intact cuttings are of good quality, and the differences in porosity and density are real, but the values from the bulk cuttings are affected strongly by artifacts of the drilling process. Thus, the bulk density and porosity data on handpicked cuttings are better representative of formation properties. Combined with the MAD measurements on hand-picked intact cuttings and discrete core samples from previous expeditions, porosity generally decreases from ~60% to ~20% from the seafloor to 3000 mbsf at Site C0002. Electrical conductivity and P-wave velocity on discrete samples, which were prepared from both cuttings and core samples in the depth interval of 1745.5-3058.5 mbsf, range 0.15-0.9 S/m and 1.7-4.5 km/s, respectively. The electrical resistivity (a reciprocal of conductivity) on discrete samples is generally higher than the LWD resistivity data but the overall depth trends are similar. On the other hand, the P-wave velocity on discrete samples is lower than the LWD P-wave velocity between 2200 mbsf and 2600 mbsf, while the P-wave velocity on discrete samples and LWD P-wave velocity are in a closer agreement below 2600 mbsf. The electrical conductivity and P-wave velocity on discrete samples corrected for in-situ pressure and temperature will be presented. The shipboard physical properties measurements on cuttings are very limited but can be useful with careful treatment and observation.
Gillespie, Dirk
2014-11-01
Classical density functional theory (DFT) of fluids is a fast and efficient theory to compute the structure of the electrical double layer in the primitive model of ions where ions are modeled as charged, hard spheres in a background dielectric. While the hard-core repulsive component of this ion-ion interaction can be accurately computed using well-established DFTs, the electrostatic component is less accurate. Moreover, many electrostatic functionals fail to satisfy a basic theorem, the contact density theorem, that relates the bulk pressure, surface charge, and ion densities at their distances of closest approach for ions in equilibrium at a smooth, hard, planar wall. One popular electrostatic functional that fails to satisfy the contact density theorem is a perturbation approach developed by Kierlik and Rosinberg [Phys. Rev. A 44, 5025 (1991)PLRAAN1050-294710.1103/PhysRevA.44.5025] and Rosenfeld [J. Chem. Phys. 98, 8126 (1993)JCPSA60021-960610.1063/1.464569], where the full free-energy functional is Taylor-expanded around a bulk (homogeneous) reference fluid. Here, it is shown that this functional fails to satisfy the contact density theorem because it also fails to satisfy the known low-density limit. When the functional is corrected to satisfy this limit, a corrected bulk pressure is derived and it is shown that with this pressure both the contact density theorem and the Gibbs adsorption theorem are satisfied.
Inspection of wood density by spectrophotometry and a diffractive optical element based sensor
NASA Astrophysics Data System (ADS)
Palviainen, Jari; Silvennoinen, Raimo
2001-03-01
Correlation among gravimetric, spectrophotometric and radiographic data from dried wood samples of Scots pine (Pinus sylvestris L) was observed. A diffractive optical element (DOE) based sensor was applied to investigate density variations as well as optical anisotropy inside year rings of the wood samples. The correlation between bulk density of wood and spectrophotometric data (reflectance and transmittance) was investigated for the wavelength range 200-850 nm and the highest correlation was found at wavelengths from 800 to 850 nm. The correlation at this wavelength was smaller than the correlation between bulk density and radiography data. The DOE sensor was found to be capable of sensing anisotropy of the wood samples inside the year ring.
Calculation of density of states of transition metals: From bulk sample to nanocluster
NASA Astrophysics Data System (ADS)
Krasavin, Andrey V.; Borisyuk, Petr V.; Vasiliev, Oleg S.; Zhumagulov, Yaroslav V.; Kashurnikov, Vladimir A.; Kurelchuk, Uliana N.; Lebedinskii, Yuriy Yu.
2018-03-01
A technique is presented of restoring the electronic density of states of the valence band from data of X-ray photoelectron spectroscopy (XPS). The originality of the technique consists in using a stochastic procedure to solve an integral equation relating the density of states and the experimental X-ray photoelectron spectra via the broadening function. To obtain the broadening function, only the XPS spectra of the core levels are needed. The results are presented for bulk sample of gold and tungsten and nanoclusters of tantalum; the possibility of using the results to determine the density of states of low-dimensional structures, including ensembles of metal nanoclusters, is demonstrated.
Universal scattering response across the type-II Weyl semimetal phase diagram
NASA Astrophysics Data System (ADS)
Rüßmann, P.; Weber, A. P.; Glott, F.; Xu, N.; Fanciulli, M.; Muff, S.; Magrez, A.; Bugnon, P.; Berger, H.; Bode, M.; Dil, J. H.; Blügel, S.; Mavropoulos, P.; Sessi, P.
2018-02-01
The discovery of Weyl semimetals represents a significant advance in topological band theory. They paradigmatically enlarged the classification of topological materials to gapless systems while simultaneously providing experimental evidence for the long-sought Weyl fermions. Beyond fundamental relevance, their high mobility, strong magnetoresistance, and the possible existence of even more exotic effects, such as the chiral anomaly, make Weyl semimetals a promising platform to develop radically new technology. Fully exploiting their potential requires going beyond the mere identification of materials and calls for a detailed characterization of their functional response, which is severely complicated by the coexistence of surface- and bulk-derived topologically protected quasiparticles, i.e., Fermi arcs and Weyl points, respectively. Here, we focus on the type-II Weyl semimetal class in which we find a stoichiometry-dependent phase transition from a trivial to a nontrivial regime. By exploring the two extreme cases of the phase diagram, we demonstrate the existence of a universal response of both surface and bulk states to perturbations. We show that quasiparticle interference patterns originate from scattering events among surface arcs. Analysis reveals that topologically nontrivial contributions are strongly suppressed by spin texture. We also show that scattering at localized impurities can generate defect-induced quasiparticles sitting close to the Weyl point energy. These give rise to strong peaks in the local density of states, which lift the Weyl node, significantly altering the pristine low-energy spectrum. Remarkably, by comparing the WTe2 and the MoTe2 cases we found that scattering response and topological transition are not directly linked. Visualizing the existence of a universal microscopic response to scattering has important consequences for understanding the unusual transport properties of this class of materials. Overall, our observations provide a unifying picture of the type-II Weyl phase diagram.
NASA Technical Reports Server (NTRS)
Keil, K.; Kirchner, E.; Gomes, C. B.; Jarosewich, E.; Murta, R. L. L.
1978-01-01
The Conquista chondrite is described and classified as an H4. The mineral composition is reported. H-group classification is based on described microscopic, electron microprobe, and bulk chemical studies. The evidence for petrologic type 4 classification includes the pronounced well-developed chondritic texture; the slight compositional variations in constituent phases; the high Ca contents of pyroxene and the presence of pigeonite; glassy to microcrystalline interstitial material rich in alkalis and SiO2; and twinned low-Ca clinopyroxene.
NASA Astrophysics Data System (ADS)
Yung, Lai Chin; Fei, Cheong Choke; Mandeep, Jit Singh; Amin, Nowshad; Lai, Khin Wee
2015-11-01
The leadframe fabrication process normally involves additional thin-metal layer plating on the bulk copper substrate surface for wire bonding purposes. Silver, tin, and copper flakes are commonly adopted as plating materials. It is critical to assess the density of the plated metal layer, and in particular to look for porosity or voids underneath the layer, which may reduce the reliability during high-temperature stress. A fast, reliable inspection technique is needed to assess the porosity or void weakness. To this end, the characteristics of x-rays generated from bulk samples were examined using an energy-dispersive x-ray (EDX) detector to examine the porosity percentage. Monte Carlo modeling was integrated with Castaing's formula to verify the integrity of the experimental data. Samples with different porosity percentages were considered to test the correlation between the intensity of the collected x-ray signal and the material density. To further verify the integrity of the model, conventional cross-sectional samples were also taken to observe the porosity percentage using Image J software measurement. A breakthrough in bulk substrate assessment was achieved by applying EDX for the first time to nonelemental analysis. The experimental data showed that the EDX features were not only useful for elemental analysis, but also applicable to thin-film metal layer thickness measurement and bulk material density determination. A detailed experiment was conducted using EDX to assess the plating metal layer and bulk material porosity.
High Performance of N-Doped Graphene with Bubble-like Textures for Supercapacitors.
Zhang, Shuo; Sui, Lina; Kang, Hongquan; Dong, Hongzhou; Dong, Lifeng; Yu, Liyan
2018-02-01
Nitrogen-doped graphene (NG) with wrinkled and bubble-like texture is fabricated by a thermal treatment. Especially, a novel sonication-assisted pretreatment with nitric acid is used to further oxidize graphene oxide and its binding with melamine molecules. There are many bubble-like nanoflakes with a dimension of about 10 nm appeared on the undulated graphene nanosheets. The bubble-like texture provides more active sites for effective ion transport and reversible capacitive behavior. The specific surface area of NG (5.03 at% N) can reach up to 438.7 m 2 g -1 , and the NG electrode demonstrates high specific capacitance (481 F g -1 at 1 A g -1 , four times higher than reduced graphene oxide electrode (127.5 F g -1 )), superior cycle stability (the capacitance retention of 98.9% in 2 m KOH and 99.2% in 1 m H 2 SO 4 after 8000 cycles), and excellent energy density (42.8 Wh kg -1 at power density of 500 W kg -1 in 2 m KOH aqueous electrolyte). The results indicate the potential use of NG as graphene-based electrode material for energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Khanlari, G. R.; Heidari, M.; Noori, M.; Momeni, A.
2016-07-01
To assess relationship between engineering characteristics and petrographic features, conglomerates samples related to Qom formation from Famenin region in northeast of Hamedan province were studied. Samples were tested in laboratory to determine the uniaxial compressive strength, point load strength index, modulus of elasticity, porosity, dry and saturation densities. For determining petrographic features, textural and mineralogical parameters, thin sections of the samples were prepared and studied. The results show that the effect of textural characteristics on the engineering properties of conglomerates supposed to be more important than mineralogical composition. It also was concluded that the packing proximity, packing density, grain shape and mean grain size, cement and matrix frequency are as textural features that have a significant effect on the physical and mechanical properties of the studied conglomerates. In this study, predictive statistical relationships were developed to estimate the physical and mechanical properties of the rocks based on the results of petrographic features. Furthermore, multivariate linear regression was used in four different steps comprising various combinations of petrographical characteristics for each engineering parameters. Finally, the best equations with specific arrangement were suggested to estimate engineering properties of the Qom formation conglomerates.
Direct Measurements of Pore Fluid Density by Vibrating Tube Densimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruszkiewicz, Miroslaw S.; Rother, Gernot; Wesolowski, David J.
2012-02-27
The densities of pore-confined fluids were measured for the first time by means of a vibrating tube method. Isotherms of total adsorption capacity were measured directly making the method complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess). A custom-made high-pressure, high-temperature vibrating tube densimeter (VTD) was used to measure the densities of subcritical and supercritical propane (between 35 °C and 97 °C) and supercritical carbon dioxide (between 32 C and 50°C) saturating hydrophobic silica aerogel (0.2 g/cm 3, 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, excess adsorption isotherms for supercriticalmore » CO 2 and the same porous solid were measured gravimetrically using a precise magnetically-coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum at a subcritical density of the bulk fluid, and then decreased towards zero or negative values at supercritical densities. Compression of the confined fluid significantly beyond the density of the bulk liquid at the same temperature was observed at subcritical temperatures. The features of the isotherms of confined fluid density are interpreted to elucidate the observed behavior of excess adsorption. The maxima of excess adsorption were found to occur below the critical density of the bulk fluid at the conditions corresponding to the beginning of the plateau of total adsorption, marking the end of the transition of pore fluid to a denser, liquid-like pore phase. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. No measurable effect of pore confinement on the liquid-vapor critical point was found. Quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Vibrating tube densimetry was demonstrated as a novel experimental approach capable of providing the average density of pore-confined fluids.« less
Learning about the energy density of liquid and semi-solid foods.
Hogenkamp, P S; Stafleu, A; Mars, M; de Graaf, C
2012-09-01
People learn about a food's satiating capacity by exposure and consequently adjust their energy intake. To investigate the effect of energy density and texture on subsequent energy intake adjustments during repeated consumption. In a randomized crossover design, participants (n=27, age: 21±2.4 years, body mass index: 22.2±1.6 kg m(-2)) repeatedly consumed highly novel foods that were either low-energy-dense (LE: 30 kcal per 100 g) or high-energy-dense (HE: 130 kcal per 100 g), and either liquid or semi-solid, resulting in four product conditions. In each condition, a fixed portion of test food was consumed nine times as an obligatory part of breakfast, lunch and dinner on 3 consecutive days. All meals continued with an ad libitum buffet; food items for evening consumption were provided and the intake (kcal per day) was measured. Buffet intake depended on energy density and day of consumption of the test foods (day*energy interaction: P=0.02); daily buffet intake increased from day 1 (1745±577 kcal) to day 3 (1979±567 kcal) in the LE conditions; intake did not change in the HE conditions (day 1: 1523±429 kcal, day 3: 1589±424 kcal). Food texture did not affect the intake (P=0.56). Intake did depend on energy density of the test foods; participants increased their buffet intake over days in response to learning about the satiating capacity of the LE foods, but did not change buffet intake over days when repeatedly consuming a HE food as part of their meal. The adjustments in intake were made irrespective of the food texture.
Accurate bulk density determination of irregularly shaped translucent and opaque aerogels
NASA Astrophysics Data System (ADS)
Petkov, M. P.; Jones, S. M.
2016-05-01
We present a volumetric method for accurate determination of bulk density of aerogels, calculated from extrapolated weight of the dry pure solid and volume estimates based on the Archimedes' principle of volume displacement, using packed 100 μm-sized monodispersed glass spheres as a "quasi-fluid" media. Hard particle packing theory is invoked to demonstrate the reproducibility of the apparent density of the quasi-fluid. Accuracy rivaling that of the refractive index method is demonstrated for both translucent and opaque aerogels with different absorptive properties, as well as for aerogels with regular and irregular shapes.
Trapping effects in irradiated and avalanche-injected MOS capacitors
NASA Technical Reports Server (NTRS)
Bakowski, M.; Cockrum, R. H.; Zamani, N.; Maserjian, J.; Viswanathan, C. R.
1978-01-01
The trapping parameters for holes, and for electrons in the presence of trapped holes, have been measured from a set of wafers with different oxide thickness processed under controlled conditions. The trap cross-sections and densities indicate at least three trap species, including an interfacial species, a dominant bulk species which is determined to tail off from the silicon interface, and a third, lower density bulk species that is distributed throughout the oxide.
Theory of the interface between a classical plasma and a hard wall
NASA Astrophysics Data System (ADS)
Ballone, P.; Pastore, G.; Tosi, M. P.
1983-09-01
The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody selfconsistently into the theory a contact theorem, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. The interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.
Theory of the interface between a classical plasma and a hard wall
NASA Astrophysics Data System (ADS)
Ballone, P.; Pastore, G.; Tosi, M. P.
1984-12-01
The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody self-consistently into the theory a “contact theorem”, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. It is also shown that the interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.
Cured composite materials for reactive metal battery electrolytes
Harrup, Mason K.; Stewart, Frederick F.; Peterson, Eric S.
2006-03-07
A solid molecular composite polymer-based electrolyte is made for batteries, wherein silicate compositing produces a electrolytic polymer with a semi-rigid silicate condensate framework, and then mechanical-stabilization by radiation of the outer surface of the composited material is done to form a durable and non-tacky texture on the electrolyte. The preferred ultraviolet radiation produces this desirable outer surface by creating a thin, shallow skin of crosslinked polymer on the composite material. Preferably, a short-duration of low-medium range ultraviolet radiation is used to crosslink the polymers only a short distance into the polymer, so that the properties of the bulk of the polymer and the bulk of the molecular composite material remain unchanged, but the tough and stable skin formed on the outer surface lends durability and processability to the entire composite material product.
Winkler, Gary R.; McLean, Hugh; Plafker, George
1976-01-01
Petrographic examination of 74 outcrop samples of Paleocene through Pliocene age from the onshore Gulf of Alaska Tertiary Province indicates that sandstones of the province characteristically are texturally immature and mineralogically unstable. Diagenetic alteration of framework grains throughout the stratigraphic sequence has produced widespread zeolite cement or phyllosilicate grain coatings and pseudomatrix. Multiple deformation and deep burial of the older Tertiary sequence--the Orca Group, the shale of Haydon Peak, and the Kulthieth and Tokun Formations--caused extensive alteration and grain interpenetration, resulting in low porosity values. Less intense deformation and intermediate depth of burial of the younger Tertiary sequence--the Katalla, Poul Creek, Redwood, and Yakataga Formations--has resulted in a greater range in textural properties. Most sandstone samples in the younger Tertiary sequence are poorly sorted, tightly packed, and have strongly appressed framework grains, but some are less tightly packed and contain less matrix. Soft and mineralogically unstable framework grains have undergone considerable alteration, reducing pore space even in the youngest rocks. Measurements of porosity, permeability, grain density, and sonic velocity of outcrop samples of the younger Tertiary sequence indicate a modest up-section improvement in sandstone reservoir characteristics. Nonetheless porosity and permeability values typically are below 16 percent and 15 millidarcies respectively and grain densities are consistently high, about 2.7 gm/cc. Low permeability and porosity values, and high grain densities and sonic velocities appear to be typical of most outcrop areas throughout the onshore Gulf of Alaska Tertiary Province.
Implications of the observed Pluto-Charon density contrast
NASA Astrophysics Data System (ADS)
Bierson, C. J.; Nimmo, F.; McKinnon, W. B.
2018-07-01
Observations by the New Horizons spacecraft have determined that Pluto has a larger bulk density than Charon by 153 ± 44 kg m-3 (2σ uncertainty). We use a thermal model of Pluto and Charon to determine if this density contrast could be due to porosity variations alone, with Pluto and Charon having the same bulk composition. We find that Charon can preserve a larger porous ice layer than Pluto due to its lower gravity and lower heat flux but that the density contrast can only be explained if the initial ice porosity is ≳ 30%, extends to ≳100 km depth and Pluto retains a subsurface ocean today. We also find that other processes such as a modern ocean on Pluto, self-compression, water-rock interactions, and volatile (e.g., CO) loss cannot, even in combination, explain this difference in density. Although an initially high porosity cannot be completely ruled out, we conclude that it is more probable that Pluto and Charon have different bulk compositions. This difference could arise either from forming Charon via a giant impact, or via preferential loss of H2O on Pluto due to heating during rapid accretion.
NASA Astrophysics Data System (ADS)
Maji, Tuhin Kumar; Pal, Samir Kumar; Karmakar, Debjani
2018-04-01
We aim at comparing the electronic properties of topological insulator Sb2S3 in bulk and Nanorod using density-functional scheme and investigating the effects of Se-doping at chalcogen-site. While going from bulk to nano, there is a drastic change in the band gap due to surface-induced strain. However, the trend of band gap modulation with increased Se doping is more prominent in bulk. Interestingly, Se-doping introduces different type of carriers in bulk and nano.
NASA Astrophysics Data System (ADS)
Drüsedau, T. P.; Koppenhagen, K.; Bläsing, J.; John, T.-M.
Molybdenum films sputter-deposited at low pressure show a (110) to (211) texture turnover with increasing film thickness, which is accompanied by a transition from a fiber texture to a mosaic-like texture. The degree of (002) texturing of sputtered aluminum nitride (AlN) films strongly depends on nitrogen pressure in Ar/N2 or in a pure N2 atmosphere. For the understanding of these phenomena, the power density at the substrate during sputter deposition was measured by a calorimetric method and normalized to the flux of deposited atoms. For the deposition of Mo films and various other elemental films, the results of the calorimetric measurements are well described by a model. This model takes into account the contributions of plasma irradiation, the heat of condensation and the kinetic energy of sputtered atoms and reflected Ar neutrals. The latter two were calculated by TRIM.SP Monte Carlo simulations. An empirical rule is established showing that the total energy input during sputter deposition is proportional to the ratio of target atomic mass to sputtering yield. For the special case of a circular planar magnetron the radial dependence of the Mo and Ar fluxes and related momentum components at the substrate were calculated. It is concluded that mainly the lateral inhomogeneous radial momentum component of the Mo atoms is the cause of the in-plane texturing. For AlN films, maximum (002) texturing appears at about 250 eV per atom energy input.
NASA Astrophysics Data System (ADS)
Ren, Siming; Huang, Jinxia; Cui, Mingjun; Pu, Jibin; Wang, Liping
2017-04-01
With the development of surface treatment technology, an increasing number of bearings, seals, dynamic friction drive or even biomedical devices involve a textured surface to improve lubrication and anti-wear. The present investigation has been conducted in order to evaluate the friction and wear behaviours of textured polyaryl-ether-ether-ketone (PEEK) coated with a graphite-like carbon (GLC) film sliding against stainless steel pin in biological medium. Compared with pure PEEK, the PEEK coated with GLC film shows excellent tribological performance with a low friction of 0.08 and long lifetime (wear volumes are about 3.78 × 10-4 mm3 for un-textured one and 2.60 × 10-4 mm3 for textured GLC film after 36,000 s of sliding) under physiological saline solution. In particular, the GLC film with appropriate dimple area density is effective to improve friction reduction and wear resistance properties of PEEK substrate under biological solution, which is attributed to the entrapment of wear debris in the dimples to inhibit the graphitization and the fluid dynamic pressure effect derived from the texture surface to increase the thickness in elastohydrodynamic lubrication (EHL) film during sliding motions. Moreover, the friction coefficient of GLC film under physiological saline solution decreases with the increase in the applied load. With the increasing applied load, the texture surface is responsible for accounting the improved wear resistance and a much lower graphitization of the GLC film during whole test.
Ultrafast imprinting of topologically protected magnetic textures via pulsed electrons
Schaffer, A. F.; Durr, H. A.; Berakdar, J.
2017-07-17
Short electron pulses are demonstrated to trigger and control magnetic excitations, even at low electron current densities. We show that the tangential magnetic field surrounding a picosecond electron pulse can imprint topologically protected magnetic textures such as skyrmions in a sample with a residual Dzyaloshinskii-Moriya spin-orbital coupling. Characteristics of the created excitations such as the topological charge can be steered via the duration and the strength of the electron pulses. Here, the study points to a possible way for a spatiotemporally controlled generation of skyrmionic excitations.
The effect of texture on the crack growth resistance of alumina
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Shannon, John L., Jr.; Bradt, Richard C.
1987-01-01
The crack growth resistance of a textured, extruded alumina body was compared with that of an isotropic, isopressed body of similar grain size, density, and chemistry. R-curve levels reflected the preferred orientation; however, R-curve slopes (dK sub IR/d Delta a) were the same in all instances, implying a similar crack growth resistive mechanism. Three orthogonal orientations of crack growth in the two structures exhibited similar forms of K sub IR versus Delta-a curves, for which a schematic diagram for polycrystalline ceramics is proposed.
The solvent component of macromolecular crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weichenberger, Christian X.; Afonine, Pavel V.; Kantardjieff, Katherine
2015-04-30
On average, the mother liquor or solvent and its constituents occupy about 50% of a macromolecular crystal. Ordered as well as disordered solvent components need to be accurately accounted for in modelling and refinement, often with considerable complexity. The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initialmore » phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands.« less
Microwave dielectric spectrum of rocks
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Bengal, T.; East, J.; Dobson, M. C.; Garvin, J.; Evans, D.
1988-01-01
A combination of several measurement techniques was used to investigate the dielectric properties of 80 rock samples in the microwave region. The real part of the dielectric constant, epsilon', was measured in 0.1 GHz steps from 0.5 to 18 GHz, and the imaginary part, epsilon'', was measured at five frequencies extending between 1.6 and 16 GHz. In addition to the dielectric measurements, the bulk density was measured for all the samples and the bulk chemical composition was determined for 56 of the samples. The study shows that epsilon' is frequency-dependent over the 0.5 to 18 GHz range for all rock samples, and that the bulk density rho accounts for about 50 percent of the observed variance of epsilon'. For individual rock types (by genesis), about 90 percent of the observed variance may be explained by the combination of density and the fractional contents of SiO2, Fe2O3, MgO, and TiO2. For the loss factor epsilon'', it was not possible to establish statistically significant relationships between it and the measured properties of the rock samples (density and chemical composition).
Mason C. Carter; Thomas J. Dean; Ziyin Wang; Ray A. Newbold
2006-01-01
At four sites in the Gulf Coastal Plain, mechanical whole-tree harvesting (MWT) removed from biomass and nutrients than hand-fell bole-only harvesting (HFBO). Soil compaction and loblolly pine (Pinus taeda L.) regeneration growth varied among sites. At one location, MWT increased soil bulk density by 0.1 Mgm-3, from 1.14 to 1....
Spherical nitroguanidine process
Sanchez, John A.; Roemer, Edward L.; Stretz, Lawrence A.
1990-01-01
A process of preparing spherical high bulk density nitroguanidine by dissing low bulk density nitroguanidine in N-methyl pyrrolidone at elevated temperatures and then cooling the solution to lower temperatures as a liquid characterized as a nonsolvent for the nitroguanidine is provided. The process is enhanced by inclusion in the solution of from about 1 ppm up to about 250 ppm of a metal salt such as nickel nitrate, zinc nitrate or chromium nitrate, preferably from about 20 to about 50 ppm.
Xia, Xianping; Xie, Changsheng; Zhu, Changhong; Cai, Shuizhou; Yang, Xiangliang
2007-08-01
To investigate the damage of endometrium caused by the implanted Cu/low-density polyethylene (LDPE) nanocomposite and the contraceptive effect of this novel copper-containing intrauterine device material. Experimental animal study. TongJi Medical College of Huazhong University of Science and Technology. Sixty healthy female mice. Twenty mice received no implants, 20 mice received the Cu/LDPE nanocomposite, and 20 mice received bulk copper. Morphologic features of the endometrium, contraceptive effect, and surface condition of the implanted implants. The contraceptive effect of both the Cu/LDPE nanocomposite and bulk copper is 100%, the damage of the endometrium caused by the Cu/LDPE nanocomposite is much less than that caused by bulk copper, and the surface of the implanted Cu/LDPE nanocomposite is much smoother and much softer than that of the implanted bulk copper. The contraceptive effect of the Cu/LDPE nanocomposite is comparable with that of bulk copper, and the damage of the endometrium caused by the Cu/LDPE nanocomposite is much less than that caused by bulk copper. The endometrium injury is related to the surface condition of the implanted intrauterine device material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Z.Y., E-mail: zhengye.zhong@hzg.de; Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht; Brokmeier, H.-G.
2015-10-15
The dislocation density evolution along the loading axis of a textured AA 7020-T6 aluminum alloy during uniaxial tension was investigated by in-situ synchrotron diffraction. The highly parallel synchrotron beam at the High Energy Materials Science beamline P07 in PETRA III, DESY, offers excellent conditions to separate different influences for line broadening from which micro-strains are obtained using the modified Williamson–Hall method which is also for defect density investigations. During tensile loading the dislocation density evolution was documented from the as-received material (initial micro-strain state) to the relaxation of the strains during elastic deformation. After yield, the increasing rate of dislocationmore » density growth was relatively fast till half-way between yield and UTS. After that, the rate started to decrease and the dislocation density fluctuated as the elongation increased due to the generation and annihilation of dislocations. When dislocation generation is dominant, the correlation between the flow stress and dislocation density satisfies the Taylor equation. Besides, a method to correct the thickness effect on peak broadening is developed in the present study. - Highlights: • In-situ synchrotron diffraction was applied to characterize peak broadening. • Dislocation evolution along the loading axis during uniaxial tension was investigated. • A method to correct the sample thickness effect on peak broadening was developed. • Dislocation density and flow stress satisfy the Taylor equation at a certain range. • The texture before load and after sample fracture was analyzed.« less
NASA Astrophysics Data System (ADS)
Selverstone, J.; Sharp, Z. D.
2013-10-01
Chlorine isotope compositions of high-pressure (˜2.3 GPa) serpentinite, rodingite, and hydrothermally altered oceanic crust (AOC) differ significantly from high- and ultrahigh-pressure (> 3.2 GPa) metasedimentary rocks in the Aosta region, Italy. Texturally early serpentinites, rodingites, and AOC have bulk δ37Cl values indistinguishable from those of modern seafloor analogues (δ37Cl = -1.0 to +1.0‰). In contrast, serpentinites and AOC samples that recrystallized during exhumation have low δ37Cl values (-2.7 to -0.5‰); 37Cl depletion correlates with progressive changes in bulk chemistry. HP/UHP metasediments have low δ37Cl values (median = -2.5‰) that differ statistically from modern marine sediments (median = -0.6‰). Cl in metasedimentary rocks is concentrated in texturally early minerals, indicating modification of seafloor compositions early in the subduction history. The data constrain fluid sources during both subduction and exhumation-related phases of fluid-rock interaction: (1) marine sediments at the top of the downgoing plate likely interacted with isotopically light pore fluids from the accretionary wedge in the early stages of subduction. (2) No pervasive interaction with externally derived fluid occurred during subsequent subduction to the maximum depths of burial. (3) Localized mixing between serpentinites and fluids released by previously isotopically modified metasediments occurred during exhumation in the subduction channel. Most samples, however, preserved protolith signatures during subduction to near-arc depths.
Role of B19' martensite deformation in stabilizing two-way shape memory behavior in NiTi
Benafan, O.; Padula, S. A.; Noebe, R. D.; ...
2012-11-01
Deformation of a B19' martensitic, polycrystallineNi49.9Ti50.1 (at. %) shape memoryalloy and its influence on the magnitude and stability of the ensuing two-way shape memory effect (TWSME) was investigated by combined ex situ mechanical experimentation and in situneutron diffraction measurements at stress and temperature. The microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were captured and compared to the bulk macroscopic response of the alloy. With increasing uniaxial strain, it was observed that B19' martensite deformed by reorientation and detwinning with preferred selection of the (1¯50) M and (010) M variants, (201¯) B19' deformationmore » twinning, and dislocation activity. These mechanisms were indicated by changes in bulk texture from the neutron diffraction measurements. Partial reversibility of the reoriented variants and deformation twins was also captured upon load removal and thermal cycling, which after isothermal deformation to strains between 6% and 22% resulted in a strong TWSME. Consequently, TWSME functional parameters including TWSME strain, strain reduction, and transformation temperatures were characterized and it was found that prior martensite deformation to 14% strain provided the optimum condition for the TWSME, resulting in a stable two-way shape memory strain of 2.2%. Thus, isothermal deformation of martensite was found to be a quick and efficient method for creating a strong and stable TWSME in Ni₄₉.₉Ti₅₀.₁.« less
NASA Astrophysics Data System (ADS)
Stefurak, Elizabeth J. T.; Fischer, Woodward W.; Lowe, Donald R.
2015-02-01
Sedimentary cherts are unusually abundant in early Archean (pre-3.0 Ga) sequences, suggesting a silica cycle that was profoundly different than the modern system. Previously applied for the purpose of paleothermometry, Si isotopes in ancient cherts can offer broader insight into mass fluxes and mechanisms associated with silica concentration, precipitation, diagenesis, and metamorphism. Early Archean cherts contain a rich suite of sedimentological and petrographic textures that document a history of silica deposition, cementation, silicification, and recrystallization. To add a new layer of insight into the chemistry of early cherts, we have used wavelength-dispersive spectroscopy and then secondary ion mass spectrometry (SIMS) to produce elemental and Si and O isotope ratio data from banded black-and-white cherts from the Onverwacht Group of the Barberton Greenstone Belt, South Africa. This geochemical data is then interpreted in the framework of depositional and diagenetic timing of silica precipitation provided by geological observations. SIMS allows the comparison of Si and O isotope ratios of distinct silica phases, including black carbonaceous chert beds and bands (many including well-defined sedimentary grains), white relatively pure chert bands including primary silica granules, early cavity-filling cements, and later quartz-filled veins. Including all chert types and textures analyzed, the δ30Si dataset spans a range from -4.78‰ to +3.74‰, with overall mean 0.20‰, median 0.51‰, and standard deviation 1.30‰ (n = 1087). Most samples have broadly similar δ30Si distributions, but systematic texture-specific δ30Si differences are observed between white chert bands (mean +0.60‰, n = 750), which contain textures that represent primary and earliest diagenetic silica phases, and later cavity-filling cements (mean -1.41‰, n = 198). We observed variations at a ∼100 μm scale indicating a lack of Si isotope homogenization at this scale during diagenesis and metamorphism, although fractionations during diagenetic phase transformations may have affected certain textures. We interpret these systematic variations to reflect fractionation during silica precipitation as well as isotopically distinct fluids from which later phases originated. SIMS δ18O values fall in a range from 16.39‰ to 23.39‰ (n = 381), similar to previously published data from bulk gas source mass spectrometry of Onverwacht cherts. We observed only limited examples of texture-related variation in δ18O and did not observe correlation of δ18O with δ30Si trends. This is consistent with hypotheses that Si isotope ratios are more resistant to alteration under conditions of rock-buffered diagenesis (Marin-Carbonne et al., 2011). Our results indicate that low temperature processes fractionated silicon isotopes in early Archean marine basins, a behavior that probably precludes the application of chert δ30Si as a robust paleothermometer. The values we observe for facies that sedimentological and petrographic observations indicate formed as primary and earliest diagenetic silica precipitates from seawater are more 30Si-rich than that expected for bulk silicate Earth. This is consistent with the hypothesis that the silicon isotope budget is balanced by the coeval deposition of 30Si-enriched cherts and 30Si-depleted iron formation lithologies. Precipitation of authigenic clay minerals in both terrestrial and marine settings may have also comprised a large 30Si-depleted sink, with the corollary of an important non-carbonate alkalinity sink consuming cations released by silicate weathering.
A low-dimensional analogue of holographic baryons
NASA Astrophysics Data System (ADS)
Bolognesi, Stefano; Sutcliffe, Paul
2014-04-01
Baryons in holographic QCD correspond to topological solitons in the bulk. The most prominent example is the Sakai-Sugimoto model, where the bulk soliton in the five-dimensional spacetime of AdS-type can be approximated by the flat space self-dual Yang-Mills instanton with a small size. Recently, the validity of this approximation has been verified by comparison with the numerical field theory solution. However, multi-solitons and solitons with finite density are currently beyond numerical field theory computations. Various approximations have been applied to investigate these important issues and have led to proposals for finite density configurations that include dyonic salt and baryonic popcorn. Here we introduce and investigate a low-dimensional analogue of the Sakai-Sugimoto model, in which the bulk soliton can be approximated by a flat space sigma model instanton. The bulk theory is a baby Skyrme model in a three-dimensional spacetime with negative curvature. The advantage of the lower-dimensional theory is that numerical simulations of multi-solitons and finite density solutions can be performed and compared with flat space instanton approximations. In particular, analogues of dyonic salt and baryonic popcorn configurations are found and analysed.
Zeng, L. F.; Gao, R.; Xie, Z. M.; Miao, S.; Fang, Q. F.; Wang, X. P.; Zhang, T.; Liu, C. S.
2017-01-01
Traditional nanostructured metals are inherently comprised of a high density of high-energy interfaces that make this class of materials not stable in extreme conditions. Therefore, high performance bulk nanostructured metals containing stable interfaces are highly desirable for extreme environments applications. Here, we reported an attractive bulk Cu/V nanolamellar composite that was successfully developed by integrating interface engineering and severe plastic deformation techniques. The layered morphology and ordered Cu/V interfaces remained stable with respect to continued rolling (total strain exceeding 12). Most importantly, for layer thickness of 25 nm, this bulk Cu/V nanocomposite simultaneously achieves high strength (hardness of 3.68 GPa) and outstanding thermal stability (up to 700 °C), which are quite difficult to realize simultaneously in traditional nanostructured materials. Such extraordinary property in our Cu/V nanocomposite is achieved via an extreme rolling process that creates extremely high density of stable Cu/V heterophase interfaces and low density of unstable grain boundaries. In addition, high temperature annealing result illustrates that Rayleigh instability is the dominant mechanism driving the onset of thermal instability after exposure to 800 °C. PMID:28094346
Touvier, J; Winzenrieth, R; Johansson, H; Roux, J P; Chaintreuil, J; Toumi, H; Jennane, R; Hans, D; Lespessailles, E
2015-04-01
The use of bone mineral density (BMD) for fracture discrimination may be improved by considering bone microarchitecture. Texture parameters such as trabecular bone score (TBS) or mean Hurst parameter (H) could help to find women who are at high risk of fracture in the non-osteoporotic group. The purpose of this study was to combine BMD and microarchitectural texture parameters (spine TBS and calcaneus H) for the detection of osteoporotic fractures. Two hundred and fifty five women had a lumbar spine (LS), total hip (TH), and femoral neck (FN) DXA. Additionally, texture analyses were performed with TBS on spine DXA and with H on calcaneus radiographs. Seventy-nine women had prevalent fragility fractures. The association with fracture was evaluated by multivariate logistic regressions. The diagnostic value of each parameter alone and together was evaluated by odds ratios (OR). The area under curve (AUC) of the receiver operating characteristics (ROC) were assessed in models including BMD, H, and TBS. Women were also classified above and under the lowest tertile of H or TBS according to their BMD status. Women with prevalent fracture were older and had lower TBS, H, LS-BMD, and TH-BMD than women without fracture. Age-adjusted ORs were 1.66, 1.70, and 1.93 for LS, FN, and TH-BMD, respectively. Both TBS and H remained significantly associated with fracture after adjustment for age and TH-BMD: OR 2.07 [1.43; 3.05] and 1.47 [1.04; 2.11], respectively. The addition of texture parameters in the multivariate models didn't show a significant improvement of the ROC-AUC. However, women with normal or osteopenic BMD in the lowest range of TBS or H had significantly more fractures than women above the TBS or the H threshold. We have shown the potential interest of texture parameters such as TBS and H in addition to BMD to discriminate patients with or without osteoporotic fractures. However, their clinical added values should be evaluated relative to other risk factors.
3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples
NASA Technical Reports Server (NTRS)
Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.
2015-01-01
In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible
NASA Astrophysics Data System (ADS)
Gomes, M. L.; Fike, D. A.; Bergmann, K.; Knoll, A. H.
2015-12-01
Sulfur (S) isotope signatures of sedimentary pyrite preserved in marine rocks provide a rich suite of information about changes in biogeochemical cycling associated with the evolution of microbial metabolisms and oxygenation of Earth surface environments. Conventionally, these S isotope records are based on bulk rock measurements. Yet, in modern microbial mat environments, S isotope compositions of sulfide can vary by up to 40‰ over a spatial range of ~ 1 mm. Similar ranges of S isotope variability have been found in Archean pyrite grains using both Secondary Ion Mass Spectrometry and other micro-analytical techniques. These micron-scale patterns have been linked to changes in rates of microbial sulfate reduction and/or sulfide oxidation, isotopic distillation of the sulfate reservoir due to microbial sulfate reduction, and post-depositional alteration. Fine-scale mapping of S isotope compositions of pyrite can thus be used to differentiate primary environmental signals from post-depositional overprinting - improving our understanding of both. Here, we examine micron-scale S isotope patterns of pyrite in microbialites from the Mesoproterozoic-Neoproterozoic Sukhaya Tunguska Formation and Neoproterozoic Draken Formation in order to explore S isotope variability associated with different mat textures and pyrite grain morphologies. A primary goal is to link modern observations of how sulfide spatial isotope distributions reflect active microbial communities present at given depths in the mats to ancient processes driving fine-sale pyrite variability in microbialites. We find large (up to 60‰) S isotope variability within a spatial range of less than 2.5cm. The micron-scale S isotope measurements converge around the S isotope composition of pyrite extracted from bulk samples of the same microbialites. These micron-scale pyrite S isotope patterns have the potential to reveal important information about ancient biogeochemical cycling in Proterozoic mat environments with implications for interpreting S isotope signatures from the geological record.
The harzburgites-lherzolite cycle: depletion and refertilization processes
NASA Astrophysics Data System (ADS)
Dijkstra, A. H.
2011-12-01
Lherzolites or clinopyroxene-rich harzburgites sampled at the ocean floor are now generally interpreted as refractory harzburgites refertilized by melt-rock reaction or melt impregnation at the spreading center, rather than as relatively undepleted bulk upper mantle. The key evidence for a melt refertilization origin is often textural. Critically, the refertilization can mask the underlying very refractory character: oceanic peridotites prior to melt refertilization at the ridge are often too refractory to be simple mantle residues of bulk upper mantle that was melted at the ridge. This suggests that the upper mantle contains large domains that record prior melting histories. This is supported by ancient rhenium-depletion ages that are common in oceanic peridotites. In this presentation, I will discuss some key examples (e.g., Macquarie Island [1], Pindos, Totalp, Lanzarote) of refertilized oceanic peridotites, which all have recorded previous, ancient depletions. I will show the textural and geochemical evidence for melt refertilization. It has often been assumed that melt refertilization occurs by interaction with mantle melts. However, there is now evidence for melt refertilization through a reaction with eclogite-derived melts, probably at the base of the melting column underneath the ridge system. These eclogitic mantle heterogeneities themselves do not normally survive the melting underneath the spreading center, but their isotopic signature can be recognized in the reacted peridotites. In summary, we have moved away from the idea that oceanic mantle rocks are simple melting residues of homogeneous bulk upper mantle. The picture that emerges is a rich and complex one, suggesting that oceanic mantle rocks record dynamic histories of melting and refertilization. In particular, the melting event in refertilized peridotites can be much older than the age of the ridge system at which they are sampled. Many oceanic peridotites contain evidence for a Mesoproterozoic melting event of perhaps global significance. Regardless of the nature of these melting events, it is now clear that in their complex overprinting history, oceanic peridotites more and more resemble polygenetic metamorphic rocks.
Sahraei, Nasim; Forberich, Karen; Venkataraj, Selvaraj; Aberle, Armin G; Peters, Marius
2014-01-13
Light scattering at randomly textured interfaces is essential to improve the absorption of thin-film silicon solar cells. Aluminium-induced texture (AIT) glass provides suitable scattering for amorphous silicon (a-Si:H) solar cells. The scattering properties of textured surfaces are usually characterised by two properties: the angularly resolved intensity distribution and the haze. However, we find that the commonly used haze equations cannot accurately describe the experimentally observed spectral dependence of the haze of AIT glass. This is particularly the case for surface morphologies with a large rms roughness and small lateral feature sizes. In this paper we present an improved method for haze calculation, based on the power spectral density (PSD) function of the randomly textured surface. To better reproduce the measured haze characteristics, we suggest two improvements: i) inclusion of the average lateral feature size of the textured surface into the haze calculation, and ii) considering the opening angle of the haze measurement. We show that with these two improvements an accurate prediction of the haze of AIT glass is possible. Furthermore, we use the new equation to define optimum morphology parameters for AIT glass to be used for a-Si:H solar cell applications. The autocorrelation length is identified as the critical parameter. For the investigated a-Si:H solar cells, the optimum autocorrelation length is shown to be 320 nm.